Science.gov

Sample records for cdse obtenidas por

  1. Amphoteric CdSe nanocrystalline quantum dots.

    PubMed

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  2. Anisotropy in CdSe quantum rods

    SciTech Connect

    Li, Liang-shi

    2003-09-01

    The size-dependent optical and electronic properties of semiconductor nanocrystals have drawn much attention in the past decade, and have been very well understood for spherical ones. The advent of the synthetic methods to make rod-like CdSe nanocrystals with wurtzite structure has offered us a new opportunity to study their properties as functions of their shape. This dissertation includes three main parts: synthesis of CdSe nanorods with tightly controlled widths and lengths, their optical and dielectric properties, and their large-scale assembly, all of which are either directly or indirectly caused by the uniaxial crystallographic structure of wurtzite CdSe. The hexagonal wurtzite structure is believed to be the primary reason for the growth of CdSe nanorods. It represents itself in the kinetic stabilization of the rod-like particles over the spherical ones in the presence of phosphonic acids. By varying the composition of the surfactant mixture used for synthesis we have achieved tight control of the widths and lengths of the nanorods. The synthesis of monodisperse CdSe nanorods enables us to systematically study their size-dependent properties. For example, room temperature single particle fluorescence spectroscopy has shown that nanorods emit linearly polarized photoluminescence. Theoretical calculations have shown that it is due to the crossing between the two highest occupied electronic levels with increasing aspect ratio. We also measured the permanent electric dipole moment of the nanorods with transient electric birefringence technique. Experimental results on nanorods with different sizes show that the dipole moment is linear to the particle volume, indicating that it originates from the non-centrosymmetric hexagonal lattice. The elongation of the nanocrystals also results in the anisotropic inter-particle interaction. One of the consequences is the formation of liquid crystalline phases when the nanorods are dispersed in solvent to a high enough

  3. Colloidal CdSe Quantum Rings.

    PubMed

    Fedin, Igor; Talapin, Dmitri V

    2016-08-10

    Semiconductor quantum rings are of great fundamental interest because their non-trivial topology creates novel physical properties. At the same time, toroidal topology is difficult to achieve for colloidal nanocrystals and epitaxially grown semiconductor nanostructures. In this work, we introduce the synthesis of luminescent colloidal CdSe nanorings and nanostructures with double and triple toroidal topology. The nanorings form during controlled etching and rearrangement of two-dimensional nanoplatelets. We discuss a possible mechanism of the transformation of nanoplatelets into nanorings and potential utility of colloidal nanorings for magneto-optical (e.g., Aharonov-Bohm effect) and other applications.

  4. Medición de placas astrométricas obtenidas con el telescopio Astrográfico de La Plata

    NASA Astrophysics Data System (ADS)

    di Sisto, R. P.; Orellana, R.

    El Observatorio de La Plata cuenta con un gran número de placas de asteroides y cometas obtenidas con el telescopio astrográfico, que cubren gran parte del cielo del hemisferio sur. En 1996 se recopilaron y clasificaron 2187 placas (Beca para estudiantes de la AAA 1996) de las cuales 2031 corresponden a asteroides. Los datos de cada placa se volcaron en una base de datos creada para facilitar su manejo y preservar la información. A partir de este trabajo se revisaron los MPC electrónicos y se identificaron aquellas placas de asteroides pertenecientes a nuestra base de datos cuyos resultados no fueron publicados en los mismos. De un total de 400 placas que no aparecían publicadas sobresalía un paquete constituído por 40 placas obtenidas en 1977. Estas últimas fueron reducidas utilizando las posiciones y movimientos propios de las estrellas de referencia obtenidas del catálogo SAO 2000 dadas para el sistema FK5. Las posiciones calculadas fueron enviadas y publicadas en los Minor Planet Circulars (MPC).

  5. Magnetic study of Fe-doped CdSe nanomaterials

    NASA Astrophysics Data System (ADS)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-05-01

    Nanoparticles of pure and iron (50 %) doped cadmium selenide (CdSe) have been synthesized by soft chemical route. EDAX analysis supports the inclusion of Fe into CdSe nanoparticles. The average particle size of pure and doped CdSe is found to be ˜50 nm from scanning electron microscopy (SEM). Magnetization of the samples are measured under the field cooled (FC) and zero field cooled (ZFC) modes in the temperature range from 5K to 300K applying a magnetic field of 500Oe. Field dependent magnetization (M-H) measurement indicates presence of room temperature (RT) paramagnetism and low temperature (5K) ferromagnetism of the sample.

  6. Piezo-phototronic effect of CdSe nanowires.

    PubMed

    Dong, Lin; Niu, Simiao; Pan, Caofeng; Yu, Ruomeng; Zhang, Yan; Wang, Zhong Lin

    2012-10-23

    The piezo-phototronic effect on transport properties of flexible CdSe NW devices is investigated. An optimum sensitivity of the flexible CdSe NW devices can be achieved by adjusting the applied strain and illumination intensity. The piezo-phototronic effect under compressive strain increases the internal electric field of the Schottky barrier, and assists the separation of the photo-excited electron-hole pairs, resulting in the increase of photocurrent. A trap-mediated mechanism is responsible for the decreased hole separation when the strain is larger than the critical strain.

  7. CdSe quantum dot formation: alternative paths to relaxation of a strained CdSe layer and influence of the capping conditions.

    PubMed

    Robin, I C; Aichele, T; Bougerol, C; André, R; Tatarenko, S; Bellet-Amalric, E; Van Daele, B; Van Tendeloo, G

    2007-07-01

    CdSe/ZnSe quantum dot formation is investigated by studying different steps of the growth. To precisely control the critical thickness of CdSe grown on a ZnSe buffer layer, the CdSe self-regulated growth rate in atomic layer epitaxy growth mode is determined by reflection high-energy electron diffraction (RHEED) measurements for a temperature range between 180 and 280 °C. Then, the two-dimensional-three-dimensional (2D-3D) transition of a strained CdSe layer on (001)-ZnSe induced by the use of amorphous selenium is studied. The formation of CdSe islands is found when 3 monolayers (ML) of CdSe are deposited. When only 2.5 ML of CdSe are deposited, another relaxation mechanism is observed, leading to the appearance of strong undulations on the surface. We also studied the evolution of the surface morphology when 2.7 ML are deposited, to study the boundary between those two phenomena. The influence of capping on quantum dot morphology is investigated. It is found that cadmium is redistributed within the layer during capping. Our results show that the cadmium distribution after capping depends on the capping temperature and on the strain of the CdSe layer. Cadmium incorporation after capping is also studied. It is found that the amount of incorporated cadmium depends on the strain of the CdSe layer before capping.

  8. van der Waals epitaxy and photoresponse of two-dimensional CdSe plates

    NASA Astrophysics Data System (ADS)

    Zhu, Dan-Dan; Xia, Jing; Wang, Lei; Li, Xuan-Ze; Tian, Li-Feng; Meng, Xiang-Min

    2016-06-01

    Here we demonstrate the first growth of two-dimensional (2D) single-crystalline CdSe plates on mica substrates via van der Waals epitaxy. The as-synthesized 2D plates exhibit hexagonal, truncated triangular and triangular shapes with the lateral size around several microns. Photodetectors based on 2D CdSe plates present a fast response time of 24 ms, revealing that 2D CdSe is a promising building block for ultrathin optoelectronic devices.

  9. Direct Patterning of CdSe Quantum Dots into Sub-100 nm Structures

    SciTech Connect

    Hampton, Meredith J.; Templeton, Joseph L.; DeSimone, Joseph M.

    2010-03-02

    Ordered, two-dimensional cadmium selenide (CdSe) arrays have been fabricated on indium-doped tin oxide (ITO) electrodes using the pattern replication in nonwetting templates (PRINT) process. CdSe quantum dots (QDs) with an average diameter of 2.7 nm and a pyridine surface ligand were used for patterning. The PRINT technique utilizes a perfluoropolyether (PFPE) elastomeric mold that is tolerant of most organic solvents, thus allowing solutions of CdSe QDs in 4-picoline to be used for patterning without significant deformation of the mold. Nanometer-scale diffraction gratings have been successfully replicated with CdSe QDs.

  10. Structure and optical properties of CdSe chalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Ganaie, Mohsin; Prince, Zulfequar, M.

    2015-08-01

    CdSe bulk sample has been prepared by melt-quenching technique and were characterized with XRD, SEM, FTIR, and electrical measurements. Thin films were deposited by thermal evaporation technique on ultra clean glass substrates under a high vacuum of 10-6 Torr. An XRD measurement reveals the coexistence of glassy and crystalline phase in bulk sample. SEM studies shows single phase, porous, and granular surface morphology of powder CdSe alloy. Optical properties (optical gap, absorption coefficient, extinction coefficient, refractive index) are calculated in the range of 190-1100nm. Analysis of the optical measurement shows that the non-direct transition is predominant and the band gap come outs to be 1.751eV. Dc conductivity measurement is thermally activated process which shows the semiconducting nature of the sample having activation energy 0.31eV.

  11. Deposition of CdSe by EC-ALE

    NASA Astrophysics Data System (ADS)

    Mathe, Mkhulu K.; Cox, Stephen M.; Flowers, Billy H.; Vaidyanathan, R.; Pham, Long; Srisook, Nattapong; Happek, Uwe; Stickney, John L.

    2004-10-01

    The optimization of a program for CdSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) is reported. EC-ALE uses surface limited reactions, underpotential deposition, to form compound thin film deposits one atomic layer at a time on Au substrates. Cyclic voltammograms showing deposition of Cd and Se on the Au substrate were first performed to identify cycle potentials. CdSe thin films were formed using an automated flow deposition system, by alternately depositing Se and Cd atomic layers, forming a compound monolayer each cycle. In total, 200 cycle deposits were formed using a series of different potentials, to better optimize the deposition conditions. Electron probe microanalysis of the deposits showed Cd/Se ratio between 1.01 and 1.13. X-ray diffraction indicated the deposits were zinc blende, with a (1 1 1) preferred orientation. The thickness of the deposits were determined using ellipsometry, and found to be around 70 nm. AFM studies of the morphology of substrates and deposits indicated that conformal films were formed. The band gaps of the deposits was determined using UV-VIS absorption measurements, photoconductivity and reflection adsorption FTIR, and all suggested a value of 1.74 eV, consistent with literature values.

  12. Ligand Induced Circular Dichroism and Circularly Polarized Luminescence in CdSe Quantum Dots

    PubMed Central

    Tohgha, Urice; Deol, Kirandeep K.; Porter, Ashlin G.; Bartko, Samuel G.; Choi, Jung Kyu; Leonard, Brian M.; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2014-01-01

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by post-synthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Density functional theory (DFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The chirality was induced by the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand. PMID:24200288

  13. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots.

    PubMed

    Tohgha, Urice; Deol, Kirandeep K; Porter, Ashlin G; Bartko, Samuel G; Choi, Jung Kyu; Leonard, Brian M; Varga, Krisztina; Kubelka, Jan; Muller, Gilles; Balaz, Milan

    2013-12-23

    Chiral thiol capping ligands L- and D-cysteines induced modular chiroptical properties in achiral cadmium selenide quantum dots (CdSe QDs). Cys-CdSe prepared from achiral oleic acid capped CdSe by postsynthetic ligand exchange displayed size-dependent electronic circular dichroism (CD) and circularly polarized luminescence (CPL). Opposite CPL signals were measured for the CdSe QDs capped with D- and L-cysteine. The CD profile and CD anisotropy varied with size of CdSe nanocrystals with largest anisotropy observed for CdSe nanoparticles of 4.4 nm. Magic angle spinning solid state NMR (MAS ssNMR) experiments suggested bidentate interaction between cysteine and the surface of CdSe. Time Dependent Density Functional Theory (TDDFT) calculations verified that attachment of L- and D-cysteine to the surface of model (CdSe)13 nanoclusters induces measurable opposite CD signals for the exitonic band of the nanocluster. The origin of the induced chirality is consistent with the hybridization of highest occupied CdSe molecular orbitals with those of the chiral ligand.

  14. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    NASA Technical Reports Server (NTRS)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-01-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria.

  15. Influence of Surfactants and Charges on CdSe Quantum Dots

    SciTech Connect

    Yang, Ping; Tretiak, Sergei; Ivanov, Sergei

    2011-07-11

    The chemistry between CdSe quantum dots and common surface capping ligands is invested using density functional theory. We will discuss the electronic structures and optical properties of CdSe QDs controlled by the size of particle, self-organization, capping ligands, and positive charges. Charges on quantum dots have profound effects on their structures, binding energies, and optical properties.

  16. Multi-branched CdSe nanocrystals stabilized by weak ligand for hybrid solar cell application.

    PubMed

    Liu, Jincheng; Tao, Hong; Cao, Yong; Ackermann, Jorg

    2014-04-01

    In this article, multi-branched CdSe nanocrystals were produced by a facile colloidal approach stabilized by oleylamine at a relative low temperature. The as-prepared multi-branched CdSe nanocrystals after simple washing process were used in the fabrication of poly(3-hexylthiophene)/CdSe bulk heterojunction photovoltaic device. The effective charge separation in the poly(3-hexylthiophene)/ CdSe nanocomposites have been confirmed by the strong photoluminescence quenching. The films of the blends of P3HT and simply-washed CdSe nanocrystals show more uniform morphology and flatter surface than the film of the bends of P3HT and pyridine-refluxed CdSe nanocrystals. The corresponding power conversion efficiency under 1 sun is about 0.66% for the P3HT/pyridine-washed CdSe hybrid device. Our work did a preliminary study in the hybrid solar cell application of branched blenze CdSe nanocrystals prepared by an easier way, and will be interesting and helpful for making the high-efficiency hybrid solar cells with branched CdSe acceptors.

  17. Thiolated graphene--a new platform for anchoring CdSe quantum dots for hybrid heterostructures.

    PubMed

    Debgupta, Joyashish; Pillai, Vijayamohanan K

    2013-05-01

    Effective organization of small CdSe quantum dots on graphene sheets has been achieved by a simple solution exchange with thiol terminated graphene prepared by diazonium salt chemistry. This generic methodology of CdSe QD attachment to any graphene surface has remarkable implications in designing hybrid heterostructures.

  18. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals

    ERIC Educational Resources Information Center

    Boatman, Elizabeth M.; Lisensky, George C.; Nordell, Karen J.

    2005-01-01

    The synthesis for CdSe quantum dot nanocrystals that vary in color and are a visually engaging way to demonstrate quantum effects in chemistry is presented. CdSe nanocrystals are synthesized from CdO and elemental Se using a kinetic growth method where particle size depends on reaction time.

  19. Toxicity of CdSe Nanoparticles in Caco-2 Cell Cultures

    PubMed Central

    Wang, Lin; Nagesha, Dattatri K; Selvarasah, Selvapraba; Dokmeci, Mehmet R; Carrier, Rebecca L

    2008-01-01

    Background Potential routes of nanomaterial exposure include inhalation, dermal contact, and ingestion. Toxicology of inhalation of ultra-fine particles has been extensively studied; however, risks of nanomaterial exposure via ingestion are currently almost unknown. Using enterocyte-like Caco-2 cells as a small intestine epithelial model, the possible toxicity of CdSe quantum dot (QD) exposure via ingestion was investigated. Effect of simulated gastric fluid treatment on CdSe QD cytotoxicity was also studied. Results Commercially available CdSe QDs, which have a ZnS shell and poly-ethylene glycol (PEG) coating, and in-house prepared surfactant coated CdSe QDs were dosed to Caco-2 cells. Cell viability and attachment were studied after 24 hours of incubation. It was found that cytotoxicity of CdSe QDs was modulated by surface coating, as PEG coated CdSe QDs had less of an effect on Caco-2 cell viability and attachment. Acid treatment increased the toxicity of PEG coated QDs, most likely due to damage or removal of the surface coating and exposure of CdSe core material. Incubation with un-dialyzed in-house prepared CdSe QD preparations, which contained an excess amount of free Cd2+, resulted in dramatically reduced cell viability. Conclusion Exposure to CdSe QDs resulted in cultured intestinal cell detachment and death; cytotoxicity depended largely, however, on the QD coating and treatment (e.g. acid treatment, dialysis). Experimental results generally indicated that Caco-2 cell viability correlated with concentration of free Cd2+ ions present in cell culture medium. Exposure to low (gastric) pH affected cytotoxicity of CdSe QDs, indicating that route of exposure may be an important factor in QD cytotoxicity. PMID:18947410

  20. Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity

    PubMed Central

    Wang, Wei; He, Yan; Yu, Guodong; Li, Baolong; Sexton, Darren W.; Wileman, Thomas; Roberts, Alexandra A.; Hamilton, Chris J.; Liu, Ruoxi; Chao, Yimin; Shan, Yujuan; Bao, Yongping

    2015-01-01

    The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy. PMID:26402917

  1. Spontaneous emission enhancement of colloidal CdSe nanoplatelets

    NASA Astrophysics Data System (ADS)

    Yang, Zhili; Pelton, Matthew; Waks, Edo

    Colloidal CdS /CdSe/CdS nanoplatelets synthesized recently are high efficient nano-emitters and gain media for nanoscale lasers and other nonlinear optical devices. They are characterized as quantum well structure due to energy gap difference between core CdSe and shell CdS, of which the luminescent wavelength could be tuned precisely by their thickness of growth. However, the influence of environment on the material's optical properties and further enhancement of the emission to implement nanoscale systems remains to be investigated. Here we demonstrate spontaneous emission rate enhancement of these CdSe nanoplatelets coupled to a photonic crystal cavity. We show clearly the photoluminescent spectrum modification of the nanoplatelets emission and an averaged Purcell enhancement factor of 3.1 is achieved when they are coupled to carefully-designed nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our experiment of lifetime measurement. Also the phenomenon of cavity quality factor increasing is observed when increasing intensity of pumping, which attributes to saturable absorption of the nanoplatelets. Our success in enhancement of emission from these nanoplatelets here paves the road to realize actual nanoscale integrated systems such as ultra-low threshold micro-cavity lasers.

  2. Two-Photon Photochemistry of CdSe Quantum Dots.

    PubMed

    Zeng, Youhong; Kelley, David F

    2015-10-27

    The two-photon photochemistry of CdSe quantum dots (QDs) has been systematically studied. We find that upon intense irradiation CdSe quantum dots that absorb two or more visible photons undergo photodarkening. The quantum yield for this process is on the order of 6% in chloroform and much smaller in nonpolar solvents, such as octane. An analysis of the energetics indicates that, following two-photon excitation, the biexciton undergoes an Auger process producing a hot hole. This hot hole is ejected to a surface-bound TOP ligand, forming a QD(-)/TOP(+) contact ion pair that separates in chloroform, but not in octane. The charged and deligated QD is dark, resulting in the overall photodarkening. This photodarkening reaction may or may not be reversible, depending on what other chemical components are in the irradiated solution. The quantum dot concentration dependence and PL decay kinetics indicate that charge recombination occurs rapidly, followed by ligand reattachment and reorganization on a longer (tens of minutes) time scale. The relation of this mechanism to one-photon photochemistry is also discussed.

  3. Synthesis and applications of CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Rao, M. C.; Ravindranadh, K.; Shekhawat, M. S.

    2013-06-01

    Polymer nanoparticle composite materials have attracted the interest of a number of researchers, due to their synergistic and hybrid properties derived from several components. Whether in solution or in bulk, these materials offer unique mechanical, electrical, optical and thermal properties. CdSe nanoparticles have been prepared at room temperature. Cadmium chloride 99 mM of 4 mL is added to 2.2g Poly vinyl alcohol. The volume of solution is made up to 50 mL by bi-distilled water and the solution is left for 24 hours at room temperature to swell. After that the solution is warmed up to 60°C and stirred for 4 hours until viscous transparent solution is obtained. One milliliter of Sodium Hydrogen Selenide is dropped into the solution with gentle stirring. Solution is casted on flat glass plate dishes. After the solvent evaporation, a thin film containing CdSe nanoparticles are obtained. The film is washed with de-ionized water to remove other soluble salts before measurements.

  4. Ferromagnetism in (Mn,Li) co-doped CdSe

    NASA Astrophysics Data System (ADS)

    Nabi, Z.; Ahuja, R.

    2008-12-01

    Ab initio calculations based on the density functional theory are reported for the Mn-doped CdSe for 5.5% and 12.5% Mn on a Cd sublattice. It is found that Mn-doped CdSe is antiferromagnetic. An essential ingredient to stabilize the ferromagnetism in bulk Cd1-xMnxSe can be realized by the co-doping of Li. We demonstrate that CdSe co-doped with Mn and Li has a stable ferromagnetic ground state and we show that the electronic structure of Cd1-2xMnxLixSe has a nearly metallic character.

  5. Experimental Observation of Quantum Confinement in the Conduction Band of CdSe Quantum Dots

    SciTech Connect

    Lee, J I; Meulenberg, R W; Hanif, K M; Mattoussi, H; Klepeis, J E; Terminello, L J; van Buuren, T

    2006-12-15

    Recent theoretical descriptions as to the magnitude of effect that quantum confinement has on he conduction band (CB) of CdSe quantum dots (QD) have been conflicting. In this manuscript, we experimentally identify quantum confinement effects in the CB of CdSe QDs for the first time. Using X-ray absorption spectroscopy, we have unambiguously witnessed the CB minimum shift to higher energy with decreasing particle size and have been able to compare these results to recent theories. Our experiments have been able to identify which theories correctly describe the CB states in CdSe QDs. In particular, our experiments suggest that multiple theories describe the shifts in the CB of CdSe QDs and are not mutually exclusive.

  6. Tuning luminescence and reducing reabsorption of CdSe quantum disks for luminescent solar concentrators

    NASA Astrophysics Data System (ADS)

    Lin, Huichuan; Xie, Peng; Liu, Yong; Zhou, Xiang; Li, Baojun

    2015-08-01

    Cadmium selenide (CdSe) quantum disks (QDs) have been synthesized for application in luminescent solar concentrators (LSCs). Luminescence tuning and reabsorption reduction of the QDs were achieved by controlling their size using a hot injection method. The overlap of the absorption and photoluminescence spectra of the as-prepared CdSe QDs was negligible. The as-prepared CdSe QDs were incorporated into polymethylmethacrylate without aggregation and luminescence quenching. The obtained highly transparent composites with non-affecting light-emitting properties were used as LSCs. The placement of a CdSe QDs doped LSC prototype (10 × 1 × 0.1 cm) on a Si-cell resulted in a 201% increase in the electrical power output of the Si-cell compared with that of the bare Si-cell.

  7. Importance of pulse reversal effect of CdSe thin films for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Saaminathan, V.; Murali, K. R.

    2005-06-01

    Systematic studies of cadmium selenide thin films were prepared by without and with pulse reversal plating technique. In the present work, preparation of CdSe thin films was reported with lower duty cycle and pulse reversal effect. Due to these effects electrical and opto-electronic property of the material were changed. The thin film of CdSe was deposited on cleaned conducting substrates like titanium, SnO 2, nickel and stainless steel, respectively. The pulse plated CdSe films without and with pulse reversal films were heat treated and characterized by XRD, optical studies, scanning electron microscopy and photo electrochemical properties. Semiconductor parameters were estimated for without and with pulse plating technique. The barrier height Φ was calculated for CdSe deposited on different conducting substrates.

  8. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    SciTech Connect

    Singh, Neetu Kapoor, Avinashi; Kumar, Vinod; Mehra, R. M.

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  9. Efficient cw lasing in a Cr{sup 2+}:CdSe crystal

    SciTech Connect

    Akimov, V A; Kozlovskii, V I; Korostelin, Yu V; Landman, A I; Podmar'kov, Yu P; Skasyrsky, Ya K; Frolov, M P

    2007-11-30

    Continuous wave lasing in a Cr{sup 2+}:CdSe crystal is obtained for the first time. The Cr{sup 2+}:CdSe crystal pumped by a 1.908-{mu}m thulium fibre laser generated 1.07 W at 2.623 {mu}m with the quantum slope efficiency with respect to the absorbed power equal to 60%. (letters)

  10. Synthesis and photoelectric characterization of semiconductor CdSe microrod array by a simple electrochemical synthesis method

    NASA Astrophysics Data System (ADS)

    Tian, Lecheng; Ding, Juan; Zhang, Wei; Yang, Haibin; Fu, Wuyou; Zhou, Xiaoming; Zhao, Wenyan; Zhang, Lina; Fan, Xiaoyu

    2011-10-01

    It is reported here that the microrod array of CdSe on indium doped tin oxide coated conducting glass (ITO) substrate has been developed by a simple electrochemical synthesis method. The electrodeposition of CdSe was also investigated by cyclic voltammetric technique. The sample was characterized by XRD, EDX, FESEM and UV-vis spectroscopic. The X-ray diffraction investigation demonstrates that the CdSe microrod is a uniform hexagonal CdSe crystal. EDX shows that the high purity CdSe is obtained. Field emission scanning electron microscope (FESEM) results show that the microrods' length, diameter, and direction of growth are nearly uniform and perpendicular to the ITO substrate. UV-vis absorption spectrum study shows the presence of direct transition with the band gap energy 2.13 eV. Photoelectrochemical solar cells are constructed using CdSe microrod array as the photocathode in polysulphide electrolyte and their power output characteristics are studied.

  11. Structural and transport properties of CdSe nanorods

    SciTech Connect

    Das, Sayantani Banerjee, Sourish; Dutta, Alo; Ghosh, Binita; Sinha, T. P.

    2015-06-24

    The nanorods of cadmium selenide (CdSe) have been synthesized by soft chemical route. The selected area electron diffraction pattern, high resolution TEM and X-ray diffraction pattern indicate the cubic structure of the sample. The band gap of the sample is obtained using Tauc relation to UV-visible spectrum and found to be 1.92 eV. 1{sup st} order and 2{sup nd} order Raman bands are followed to investigate the behaviour of the phonon modes of the materials which is considered to be important to predict the potential of the material to microwave applications. Thermal behaviour of the sample is investigated using differential scanning calorimeter. Kissinger equation is used to calculate the activation energy of the sample, which is found to be 1.67 eV.

  12. Fluorescence quenching of CdSe quantum dots on graphene

    SciTech Connect

    Guo, Xi Tao; Hua Ni, Zhen Yan Nan, Hai; Hui Wang, Wen; Yan Liao, Chun; Zhang, Yan; Wei Zhao, Wei

    2013-11-11

    We studied systematically the fluorescence quenching of CdSe quantum dots (QDs) on graphene and its multilayers, as well as graphene oxide (GO) and reduced graphene oxide (rGO). Raman intensity of QDs was used as a quantitatively measurement of its concentration in order to achieve a reliable quenching factor (QF). It was found that the QF of graphene (∼13.1) and its multilayers is much larger than rGO (∼4.4), while GO (∼1.5) has the lowest quenching efficiency, which suggests that the graphitic structure is an important factor for quenching the fluorescence of QDs. It was also revealed that the QF of graphene is not strongly dependent on its thicknesses.

  13. In-situ material state monitoring using embedded CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Brubaker, Cole D.; Frecker, Talitha M.; Njoroge, Ian; Shane, Dylan O.; Smudde, Christine M.; Rosenthal, Sandra J.; Jennings, G. Kane; Adams, Douglas E.

    2016-04-01

    The development of new, smart materials capable of intrinsically detecting and communicating the occurrence of external loads and resultant damage present in a material will be crucial in the advancement of future structural health monitoring (SHM) and nondestructive evaluation (NDE) technologies. Traditionally, many SHM and NDE approaches have relied on the use of physical sensors to monitor a structure for damage, but are often hindered by their requirements for power consumption and large-scale data collection. In this work, we seek to evaluate the effectiveness of ultrasmall, white-light emitting Cadmium Selenide quantum dots (CdSe QDs) as an alternative to providing in-situ material state monitoring capabilities, while also aiming to reduce reliance on data collection and power consumption to effectively monitor a material and structure for damage. To achieve this goal, CdSe QDs are embedded in an optically clear epoxy composite matrix and exposed to external mechanical loadings. Initial results show a corresponding relationship between the shifts in observed emission spectra and external load for samples containing CdSe QDs. The effectiveness of CdSe QDs as a surface strain gauge on aluminum and fiberglass are also investigated in this paper. By monitoring changes in the emission spectra for materials containing CdSe QDs before, during and after the application of external loads, the effectiveness of CdSe QDs for communicating the occurrence of external loads acting on a material and detecting changes in material state is evaluated.

  14. Thermal conductivity of zinc blende and wurtzite CdSe nanostructures.

    PubMed

    Yang, Juekuan; Tang, Hao; Zhao, Yang; Zhang, Yin; Li, Jiapeng; Ni, Zhonghua; Chen, Yunfei; Xu, Dongyan

    2015-10-14

    Many binary octet compounds including CdSe can be grown in either the wurtzite (WZ) or zinc blende (ZB) phase, which has aroused great interest among the research community in understanding the phase dependence of the thermal transport properties of these compounds. So far, it has been debatable whether the ZB phase possesses higher thermal conductivity than the WZ phase. In this work, we report on thermal conductivity measurements of CdSe nanowires/nanoribbons with both WZ and ZB phases via a suspended device method. At room temperature, the thermal conductivity of all the ZB CdSe nanostructures measured in this work is higher than the bulk thermal conductivity of the WZ CdSe reported in the literature, suggesting that the bulk thermal conductivity of the ZB CdSe is higher than that of the WZ phase. Our result is different from previous experimental results in the literature for InAs nanowires which suggest similar thermal conductivity values for the bulk ZB and WZ InAs crystals. The higher thermal conductivity of the ZB CdSe can be explained by its lower anharmonicity and a smaller number of atoms per unit cell compared to the WZ phase.

  15. Moléculas orgánicas obtenidas en simulaciones experimentales del medio interestelar.

    NASA Astrophysics Data System (ADS)

    Muñoz-Caro, Guillermo Manuel

    Las nubes moleculares son regiones de formación de estrellas, con temperaturas cinéticas entre 10-50 K y densidades de 103-106 átomos cm-3. Su materia está formada por gas y polvo interestelar. Estas partículas de polvo están cubiertas por una fina capa de hielo, de unos 0.01 μm, que contiene H2O y a menudo CO, CO2, CH3OH y NH3. El hielo es presumiblemente irradiado por fotones ultravioleta y rayos cósmicos en las zonas poco profundas de las nubes moleculares y las regiones circunestelares. En un sistema de vacío, P ˜ 10-7 mbar, simulamos la deposición de hielo a partir de 10 K y la irradiación ultravioleta por medio de una lámpara de descarga de hidrógeno activada con microondas. La evolución del hielo se observa por medio de un espectrómetro infrarrojo. De este modo es posible determinar la composición del hielo observado en el medio interestelar y predecir la presencia de moléculas aún no detectadas en el espacio, que han sido producto del procesamiento del hielo en nuestros experimentos. También es posible calentar el sistema hasta temperatura ambiente para sublimar el hielo depositado. Cuando el hielo ha sido previamente irradiado, se observa un residuo compuesto por moléculas orgánicas complejas, algunas prebióticas, como varios ácidos carboxílicos, aminas, amidas, ésteres y en menor proporción moléculas heterocíclicas y aminoácidos. Algunas de estas moléculas podrían detectarse en estado gaseoso por medio de observaciones milimétricas y de radio. También podrían estar presentes en el polvo cometario, cuyo análisis químico está planeado por las misiones Stardust y Rosetta. Mientras tanto, nuestro grupo está llevando a cabo el análisis de partículas de polvo interplanetario (IDPs), algunas de las cuales pueden ser de origen cometario. Al igual que ocurre con los productos obtenidos por irradiación del hielo en nuestros experimentos, algunas IDPs son ricas en material orgánico que contiene oxígeno.

  16. Quantum chemistry of the minimal CdSe clusters.

    PubMed

    Yang, Ping; Tretiak, Sergei; Masunov, Artëm E; Ivanov, Sergei

    2008-08-21

    Colloidal quantum dots are semiconductor nanocrystals (NCs) which have stimulated a great deal of research and have attracted technical interest in recent years due to their chemical stability and the tunability of photophysical properties. While internal structure of large quantum dots is similar to bulk, their surface structure and passivating role of capping ligands (surfactants) are not fully understood to date. We apply ab initio wavefunction methods, density functional theory, and semiempirical approaches to study the passivation effects of substituted phosphine and amine ligands on the minimal cluster Cd(2)Se(2), which is also used to benchmark different computational methods versus high level ab initio techniques. Full geometry optimization of Cd(2)Se(2) at different theory levels and ligand coverage is used to understand the affinities of various ligands and the impact of ligands on cluster structure. Most possible bonding patterns between ligands and surface CdSe atoms are considered, including a ligand coordinated to Se atoms. The degree of passivation of Cd and Se atoms (one or two ligands attached to one atom) is also studied. The results suggest that B3LYP/LANL2DZ level of theory is appropriate for the system modeling, whereas frequently used semiempirical methods (such as AM1 and PM3) produce unphysical results. The use of hydrogen atom for modeling of the cluster passivating ligands is found to yield unphysical results as well. Hence, the surface termination of II-VI semiconductor NCs with hydrogen atoms often used in computational models should probably be avoided. Basis set superposition error, zero-point energy, and thermal corrections, as well as solvent effects simulated with polarized continuum model are found to produce minor variations on the ligand binding energies. The effects of Cd-Se complex structure on both the electronic band gap (highest occupied molecular orbital-lowest unoccupied molecular orbital energy difference) and ligand

  17. Nanostructured TiO2 Films Attached CdSe QDs Toward Enhanced Photoelectrochemical Performance.

    PubMed

    Du, Yingying; Yang, Ping; Liu, Yunshi; Zhao, Jie; He, Haiyan; Miao, Yanping

    2016-06-01

    TiO2 films consisted of small nanoparticles were fabricated via a spinning coating method on fluorine doped in tin oxide (FTO) slide glass. After calcination, the films were subsequently sensitized by CdSe quantum dots (QDs) using mercaptopropionic acid (MPA) as a bifunctional surface modifier. Upon UV light irradiation, CdSe QDs inject electrons into TiO2 nanoparticles, thus resulting in the generation of photocurrent in QD-sensitized solar cell. The results indicate that TiO2 films sensitized by CdSe QDs have achieved 1.5-fold enhancement in photocurrent compared with pure TiO2 films, indicating that CdSe QDs can improve the photocurrent by promoting the separation of photoinduced charge carriers. In addition, the photocurrent enhances as the thickness of TiO2 films increased. Such improved photoelectrochemical performance is ascribed to the basis of improved interfacial charge transport of the TiO2-CdSe composite films. Combining QDs on TiO2 thin films is a promising and effective way to enhance the photoelectrochemical performance, which is important in QD-sensitized solar cell application. PMID:27427714

  18. The Optical Properties of CdSe Quantum Dots by Using Spray-Atomization Method

    NASA Astrophysics Data System (ADS)

    Rosmani, C. H.; Abdullah, S.; Rusop, M.

    2013-06-01

    Cadmium Selenide (CdSe) quantum dots (QDs) is inorganic material by using spray-atomization method which is the novelty to find out the optical properties for the CdSe QDs. The Selenium (Se) precursor and Cadmium (Cd) precursor were prepared first. Se precursor by using sodium sulfite aqueous was mixed with selenium (Se) powder. For Cd precursor was used cadmium chloride (CdCI) as the Cd precursor. From previous research, CdSe QDs was obtained by using capping agent such as tri-n-octylphosphine oxide (TOPO) and trioctylphosphine (TOP). These capping agent are hazardous to environment and human. By using spray-atomization method it is more safe and economically. The photoluminescence (PL) was used to investigate the optical properties and to investigate the energy band gap from PL result. The field emission scanning electron microscopy (FESEM) was used to know the surface morphology of CdSe QDs. By PL result, the energy band gap was calculate and the comparison was investigate between the size of particle and the energy band gap. This important in this paper is to investigate the optical properties of CdSe QDs by using sprays-atomization method and to relate with the particle size.

  19. Flower-like CdSe ultrathin nanosheet assemblies for enhanced visible-light-driven photocatalytic H2 production.

    PubMed

    Peng, Yong; Shang, Lu; Bian, Tong; Zhao, Yufei; Zhou, Chao; Yu, Huijun; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2015-03-18

    Flower-like CdSe architectures composed of ultrathin nanosheets were prepared via a facile solvothermal method. A relationship was established between the solvothermal temperature and the product structure, and thus the photocatalytic activity. When compared with well-studied CdSe quantum dots, the ultrathin nanosheet assemblies exhibited a better photocatalytic H2 evolution activity under visible light irradiation.

  20. Serotonin-Labeled CdSe Nanocrystals: Applications for Neuroscience

    NASA Astrophysics Data System (ADS)

    Kippeny, Tadd; Adkins, Erika; Adams, Scott; Thomlinson, Ian; Schroeter, Sally; Defelice, Louis; Blakely, Randy; Rosenthal, Sandra

    2000-03-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter which has been linked to the regulation of critical behaviors including sleep, appetite, and mood. The serotonin transporter (SERT) is a 12-transmembrane domain protein responsible for clearance of serotonin from extracellular spaces following release. In order to assess the potential for use of ligand-conjugated nanocrystals to target cell surface receptors, ion channels, and transporters we have measured the ability of serotonin-labeled CdSe nanocrystals (SNACs) to block the uptake of tritiated serotonin by the human and Drosophila serotonin transporters (hSERT and dSERT). Estimated Ki values, the SNAC concentration at which half of the serotonin transport activity is blocked, were determined by nonlinear regression to be Ki (hSERT ) = 74uM and Ki (dSERT ) = 29uM. These values and our inability to detect free serotonin indicate that SNACs selectively interact with the serotonin recognition site of the transporter. We have also exposed the SNACs to cells containing ionotropic serotonin receptors and have measured the electrical response of the cell using a two microelectrode voltage clamp. We find that serotonin receptors do respond to the SNACs and we measure currents similar to the free serotonin response. These results indicate that ligand-conjugated nanocrystals can be used to label both receptor and transporter proteins. Initial fluorescence labeling experiments will be discussed.

  1. Digital Doping in Magic-Sized CdSe Clusters.

    PubMed

    Muckel, Franziska; Yang, Jiwoong; Lorenz, Severin; Baek, Woonhyuk; Chang, Hogeun; Hyeon, Taeghwan; Bacher, Gerd; Fainblat, Rachel

    2016-07-26

    Magic-sized semiconductor clusters represent an exciting class of materials located at the boundary between quantum dots and molecules. It is expected that replacing single atoms of the host crystal with individual dopants in a one-by-one fashion can lead to unique modifications of the material properties. Here, we demonstrate the dependence of the magneto-optical response of (CdSe)13 clusters on the discrete number of Mn(2+) ion dopants. Using time-of-flight mass spectrometry, we are able to distinguish undoped, monodoped, and bidoped cluster species, allowing for an extraction of the relative amount of each species for a specific average doping concentration. A giant magneto-optical response is observed up to room temperature with clear evidence that exclusively monodoped clusters are magneto-optically active, whereas the Mn(2+) ions in bidoped clusters couple antiferromagnetically and are magneto-optically passive. Mn(2+)-doped clusters therefore represent a system where magneto-optical functionality is caused by solitary dopants, which might be beneficial for future solotronic applications. PMID:27420556

  2. Digital Doping in Magic-Sized CdSe Clusters.

    PubMed

    Muckel, Franziska; Yang, Jiwoong; Lorenz, Severin; Baek, Woonhyuk; Chang, Hogeun; Hyeon, Taeghwan; Bacher, Gerd; Fainblat, Rachel

    2016-07-26

    Magic-sized semiconductor clusters represent an exciting class of materials located at the boundary between quantum dots and molecules. It is expected that replacing single atoms of the host crystal with individual dopants in a one-by-one fashion can lead to unique modifications of the material properties. Here, we demonstrate the dependence of the magneto-optical response of (CdSe)13 clusters on the discrete number of Mn(2+) ion dopants. Using time-of-flight mass spectrometry, we are able to distinguish undoped, monodoped, and bidoped cluster species, allowing for an extraction of the relative amount of each species for a specific average doping concentration. A giant magneto-optical response is observed up to room temperature with clear evidence that exclusively monodoped clusters are magneto-optically active, whereas the Mn(2+) ions in bidoped clusters couple antiferromagnetically and are magneto-optically passive. Mn(2+)-doped clusters therefore represent a system where magneto-optical functionality is caused by solitary dopants, which might be beneficial for future solotronic applications.

  3. CdSe nanocrystal based chem-/bio- sensors.

    PubMed

    Somers, Rebecca C; Bawendi, Moungi G; Nocera, Daniel G

    2007-04-01

    Semiconductor nanocrystals (NCs) have found application in biology mostly as optical imaging agents where the photophysical properties of the NCs are insensitive to species in their environment. This tutorial review examines the application of CdSe NCs as optical sensing agents where the NC's photophysical properties are sensitive to species in their environment. For this case, the NC is modified at the surface with a conjugate, which interacts with an external agent by physical (i.e. recognition) or chemical means. Signal transduction in these chem-bio (CB) sensitive NCs is derived primarily from energy transfer between the NC and the external agent, which functions as the energy transfer acceptor or donor. Signaling may be obtained by directly detecting luminescence from the NC and/or the conjugate. New developments for the use of NCs as gain materials in micro-lasing cavities (distributed feedback gratings and spherical resonators) opens the way to designing CB-sensitive NCs for high-gain sensing applications. PMID:17387407

  4. Fluorescence relaxation dynamics of CdSe and CdSe/CdS core/shell quantum dots

    SciTech Connect

    Kaur, Gurvir; Kaur, Harmandeep; Tripathi, S. K.

    2014-04-24

    Time-resolved fluorescence spectra for colloidal CdSe and CdSe/CdS core/shell quantum dots have been investigated to know their electron relaxation dynamics at the maximum steady state fluorescence intensity. CdSe core and CdSe/CdS type I core-shell materials with different shell (CdS) thicknesses have been synthesized using mercaptoacetic acid as a capping agent. Steady state absorption and emission studies confirmed successful synthesis of CdSe and CdSe/CdS core-shell quantum dots. The fluorescence shows a tri-exponential decay with lifetimes 57.39, 7.82 and 0.96 ns for CdSe quantum dots. The lifetime of each recombination decreased with growth of CdS shell over the CdSe core, with maximum contribution to fluorescence by the fastest transition.

  5. Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance

    SciTech Connect

    Dai, Qilin; Wang, Wenyong E-mail: jtang2@uwyo.edu; Tang, Jinke E-mail: jtang2@uwyo.edu; Sabio, Erwin M.

    2014-05-05

    In this work, we demonstrate (1) a facile method to prepare Mn doped CdSe quantum dots (QDs) on Zn{sub 2}SnO{sub 4} photoanodes by pulsed laser deposition and (2) improved device performance of quantum dot sensitized solar cells of the Mn doped QDs (CdSe:Mn) compared to the undoped QDs (CdSe). The band diagram of photoanode Zn{sub 2}SnO{sub 4} and sensitizer CdSe:Mn QD is proposed based on the incident-photon-to-electron conversion efficiency (IPCE) data. Mn-modified band structure leads to absorption at longer wavelengths than the undoped CdSe QDs, which is due to the exchange splitting of the CdSe:Mn conduction band by the Mn dopant. Three-fold increase in the IPCE efficiency has also been observed for the Mn doped samples.

  6. A novel "green" synthesis of starch-capped CdSe nanostructures.

    PubMed

    Oluwafemi, Oluwatobi S

    2009-10-15

    This paper reports a "green" facile, room temperature, one-pot synthesis of starch-capped CdSe nanostructures with an obvious quantum confinement effect via a novel non-organometallic method. It is found that by simply tuning the Cd:Se molar ratio, dots and elongated particles of high aspect ratio could be prepared selectively in the presence of the same ligand concentration without any post-treatment. Spherical particles were produced at 1:1 ratio, while elongated particles were produced at 0.5:1 Cd:Se ratio. The X-ray diffraction (XRD) analysis showed that the particles were predominantly of wurtzite structure, with sharp diffraction patterns regardless of their size and shapes. We inferred that the elongated particles are formed by self-reorganisation occurring via adhesion between the spherical nanoparticles as a result of dipole-dipole interactions. PMID:19577905

  7. Photogeneration of hydrogen from water using CdSe nanocrystals demonstrating the importance of surface exchange

    PubMed Central

    Das, Amit; Han, Zhiji; Haghighi, Mohsen Golbon; Eisenberg, Richard

    2013-01-01

    Unique tripodal S-donor capping agents with an attached carboxylate are found to bind tightly to the surface of CdSe nanocrystals (NCs), making the latter water soluble. Unlike that in similarly solubilized CdSe NCs with one-sulfur or two-sulfur capping agents, dissociation from the NC surface is greatly reduced. The impact of this behavior is seen in the photochemical generation of H2 in which the CdSe NCs function as the light absorber with metal complexes in aqueous solution as the H2-forming catalyst and ascorbic acid as the electron donor source. This precious-metal–free system for H2 generation from water using [Co(bdt)2]− (bdt, benzene-1,2-dithiolate) as the catalyst exhibits excellent activity with a quantum yield for H2 formation of 24% at 520 nm light and durability with >300,000 turnovers relative to catalyst in 60 h. PMID:24082134

  8. Synchronously pumped CdSe optical parametric oscillator in the 9-10 microm region.

    PubMed

    Watson, M A; O'Connor, M V; Shepherd, D P; Hanna, D C

    2003-10-15

    Continuous mode-locked operation of a singly resonant, synchronously pumped optical parametric oscillator (SPOPO) based on CdSe has produced idler output tuned over the range of 9.1-9.7 microm, the longest wavelength generated so far to our knowledge from a SPOPO. Average idler powers as high as approximately 70 mW are generated in the crystal. Tandem pumping with a diffraction-grating-tuned parametric oscillator in periodically poled lithium niobate provides a convenient and agile means of tuning the noncritically phase-matched CdSe device. The absence of any detrimental thermal effects in the CdSe crystal suggests that significant further power scaling should be possible, with idler tuning ranges extendable to cover 8-12 microm.

  9. Acetate ligands determine the crystal structure of CdSe nanoplatelets - a density functional theory study.

    PubMed

    Koster, Rik S; Fang, Changming; van Blaaderen, Alfons; Dijkstra, Marjolein; van Huis, Marijn A

    2016-08-10

    Cadmium selenide (CdSe) nanoplatelets of a few atomic layers thick exhibit extremely sharp photoluminescence peaks and are synthesized in the zinc blende crystal structure, whereas the most stable bulk polymorph of CdSe is the wurtzite structure. These platelets can be synthesized very monodispersely in thickness, and are covered with acetate ligands. Here, we show by means of density functional theory (DFT) calculations that these ligands play a pivoting role in the stabilization of 2D nanosheets as a whole, including the deviating crystal structure. The relative stability as a function of slab thickness, strong effects on electronic properties, and implications for synthesis are discussed. PMID:27453036

  10. Highly luminescent two dimensional excitons in atomically thin CdSe nanosheets

    SciTech Connect

    Halder, O.; Pradhani, A.; Rath, S.; Sahoo, P. K.; Satpati, B.

    2014-05-05

    Atomically thin Cadmium Selenide (CdSe) nanosheets have been synthesized using a surfactant mediated growth technique. The transmission electron microscopy studies confirm the presence of single layered nanosheets with thickness 1.31 nm and their stacking structures which are complemented by the small angle x-ray scattering measurements. The strongly bound and polarized character of two dimensional excitonic states with enhanced oscillator strength yielding distinct narrow blue luminescence has been observed from the CdSe nanosheets using room temperature based optical studies.

  11. An oleic acid-capped CdSe quantum-dot sensitized solar cell

    SciTech Connect

    Chen Jing; Song, J. L.; Deng, W. Q.; Sun, X. W.; Jiang, C. Y.; Lei, W.; Huang, J. H.; Liu, R. S.

    2009-04-13

    In this letter, we report an oleic acid (OA)-capped CdSe quantum-dot sensitized solar cell (QDSSC) with an improved performance. The TiO{sub 2}/OA-CdSe photoanode in a two-electrode device exhibited a photon-to-current conversion efficiency of 17.5% at 400 nm. At AM1.5G irradiation with 100 mW/cm{sup 2} light intensity, the QDSSCs based on OA-capped CdSe showed a power conversion efficiency of about 1%. The function of OA was to increase QD loading, extend the absorption range and possibly suppress the surface recombination.

  12. Abundancias químicas de estrellas de Mercurio-Manganeso obtenidas con espectros EBASIM

    NASA Astrophysics Data System (ADS)

    Pintado, O. I.; Adelman, S. J.

    Se determinan las abundancias químicas de estrellas de HgMn usando espectros obtenidos con EBASIM en CASLEO en un rango de longitud de onda comprendido entre los 400 y 890 nm. Los valores iniciales de temperatura efectiva y gravedad superficial se calculan con la fotometría uvbyβ. Las abundancias se calculan usando WIDTH9 y SYNTHE. Los resultados se comparan análisis realizados por los autores usando espectros obtenidos con el espectrógrado REOSC del CASLEO, el espectrógrafo echelle del Telescopio Anglo-Australiano y el espectrógrafo Coudé del Dominion Astrophysical Observatory.

  13. In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells

    PubMed Central

    2013-01-01

    Organic/inorganic hybrid solar cells have great potentials to revolutionize solar cells, but their use has been limited by inefficient electron/hole transfer due to the presence of long aliphatic ligands and unsatisfying continuous interpenetrating networks. To solve this problem, herein, we have developed a one-pot route for in situ synthesis of poly(3-hexylthiophene) (P3HT)-capped CdSe superstructures, in which P3HT acts directly as the ligands. These CdSe superstructures are in fact constructed from numerous CdSe nanoparticles. The presence of P3HT ligands has no obvious adverse effects on the morphologies and phases of CdSe superstructures. Importantly, higher content of P3HT ligands results in stronger photoabsorption and fluorescent intensity of CdSe superstructure samples. Subsequently, P3HT-capped CdSe superstructures prepared with 50 mg P3HT were used as a model material to fabricate the solar cell with a structure of PEDOT:PSS/P3HT-capped CdSe superstructures: P3HT/Al. This cell gives a power conversion efficiency of 1.32%. PMID:23442609

  14. Substrate driven photochemistry of CdSe quantum dot films: charge injection and irreversible transformations on oxide surfaces.

    PubMed

    Tvrdy, Kevin; Kamat, Prashant V

    2009-04-23

    The photochemical behavior of CdSe quantum dots anchored to different surfaces was probed through their deposition on glass, SiO2, and TiO2 films. Following visible light irradiation under ambient conditions, CdSe quantum dots deposited on semiconducting TiO2 surface degraded, where no such degradation was observed when deposited on inert SiO2 surface or glass. Fluorescence decay and transient absorption experiments confirmed that charge injection from excited CdSe into TiO2 occurs with an apparent rate constant of 5.62 x 10(8) s(-1) and is the primary event responsible for photodegradation. In the presence of air, injected electrons are scavenged by surface adsorbed oxygen leaving behind reactive holes which induce anodic corrosion of CdSe quantum dots. In a vacuum environment, minimal CdSe degradation was observed as electron scavenging by oxygen is replaced with charge recombination between injected electrons and holes in CdSe nanocrystals. Spectroscopic measurements presented in this study highlight the role of both substrate and medium in dictating the photochemistry of CdSe quantum dots. PMID:19152253

  15. Investigation of size dependent structural and optical properties of thin films of CdSe quantum dots

    SciTech Connect

    Sharma, Madhulika; Sharma, A.B.; Mishra, N.; Pandey, R.K.

    2011-03-15

    Research highlights: {yields} CdSe q-dots have been synthesized using simple chemical synthesis route. {yields} Thin film of CdSe quantum dots exhibited self-organized growth. {yields} Size dependent blue shift observed in the absorption edge of CdSe nanocrystallites. {yields} PL emission band corresponds to band edge luminescence and defect luminescence. {yields} Organized growth led to enhancement in luminescence yield of smaller size Q-dots. -- Abstract: Cadmium selenide (CdSe) quantum dots were grown on indium tin oxide substrate using wet chemical technique for possible application as light emitting devices. The structural, morphological and luminescence properties of the as deposited thin films of CdSe Q-dot have been investigated, using X-ray diffraction, transmission electron microscopy, atomic force microscopy and optical and luminescence spectroscopy. The quantum dots have been shown to deposit in an organized array on ITO/glass substrate. The as grown Q-dots exhibited size dependent blue shift in the absorption edge. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the nanocrystalline CdSe exhibits intense photoluminescence as compared to the large grained polycrystalline CdSe films.

  16. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    ERIC Educational Resources Information Center

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  17. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-03-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  18. Optical Absorption Behavior of co (ii) Ion Doped Pva Assisted CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    CdSe is an important II-VI, n-type direct band gap semiconductor with wide band gap (bulk band gap of 2.6 eV) and an attractive host for the development of doped nanoparticles. Poly vinyl alcohol (PVA) is used as a capping agent to stabilize the CdSe nanoparticles. The optical properties of Co (II) ion doped PVA capped CdSe nanoparticles grown at room temperature are studied in the wavelength region of 200-1400 nm. The spectrum of Co (II) ion doped PVA capped CdSe nanoparticles exhibit five bands at 1185, 620, 602, 548 and 465 nm (8437, 16125, 16607, 18243 and 21499 cm-1). The bands observed at 1185, 548 and 465 nm are correspond to the three spin allowed transitions 4T1g (F) → 4T2g (F), 4T1g (F) → 4A2g (F) and 4T1g (F) → 4T1g (P) respectively. The other bands observed at 602 nm and 620 nm are assigned to spin forbidden transitions 4T1g (F) → 2T2g (G), 4T1g (F) → 2T1g (G). The small value of the Urbach energy indicates greater stability of the prepared sample.

  19. Photostability of CdSe quantum dots functionalized with aromatic dithiocarbamate ligands.

    PubMed

    Tan, Yizheng; Jin, Song; Hamers, Robert J

    2013-12-26

    Organic ligands are widely used to enhance the ability of CdSe quantum dots (QDs) to resist photodegradation processes such as photo-oxidation. Because long alkyl chains may adversely affect the performance of QD devices that require fast and efficient charge transfer, shorter aromatic ligands are of increasing interest. In this work, we characterize the formation of phenyl dithiocarbamate (DTC) adducts on CdSe surfaces and the relative effectiveness of different para-substituted phenyl dithiocarbamates to enhance the aqueous photostability of CdSe QDs on TiO2. Optical absorption and photoluminescence measurements show that phenyl DTC ligands can be highly effective at reducing QD photocorrosion in water, and that ligands bearing electron-donating substituents are the most effective. A comparison of the QD photostability resulting from use of ligands bearing DTC versus thiol surface-binding groups shows that the DTC group provides greater QD photostability. Density functional calculations with natural bond order analysis show that the effectiveness of substituted phenyl DTC results from the ability of these ligands to remove positive charge away from the CdSe and to delocalize positive charge on the ligand. PMID:24256318

  20. Size effect on the electronic and optical band gap of CdSe QD

    SciTech Connect

    Sisodia, Namita

    2014-04-24

    Present paper deals with a critical and comprehensive analysis of the dependence of photo emission (PE) electronic band gap and optical absorption (OA) excitonic band gap on the size of CdSe QD, via connecting it with excitonic absorbance wavelength. Excitonic absorbance wavelength is determined through an empirical fit of established experimental evidences. Effective excitonic charge and Bohr radius is determined as a function of size. Increase in size of the CdSe QD results in greater Bohr radius and smaller effective excitonic charge. Excitonic binding energy as a degree of size of QD is also calculated which further relates with the difference in PE electronic and OA optical band gaps. It is also shown that with increase in size of CdSe QD, the excitonic binding energy decreases which consequently increases differences in two band gaps. Our results are very well comparable with the established results. Explanation for the origin of the unusual optical properties of CdSe QD has been also discussed.

  1. Ligand-assisted fabrication of hollow CdSe nanospheres via Ostwald ripening and their microwave absorption properties.

    PubMed

    Cao, Minhua; Lian, Huiqin; Hu, Changwen

    2010-12-01

    Hollow CdSe nanospheres were successfully synthesized by a ligand-assisted solvothermal method based on an Ostwald ripening mechanism. The hollow CdSe nanospheres were synthesized in benzyl alcohol under solvothermal conditions using Cd(Ac)2 and Se as the precursors, and tryptophan as a ligand. The resulting hollow structures consisted of small nanocrystallite building blocks. More importantly, the hollow CdSe nanospheres could be used as an excellent microwave absorber for cm- and mm-wave absorption, depending on the thickness of the absorber.

  2. Electronic structures and magnetism for carbon doped CdSe: Modified Becke-Johnson density functional calculations

    NASA Astrophysics Data System (ADS)

    Fan, S. W.; Song, T.; Huang, X. N.; Yang, L.; Ding, L. J.; Pan, L. Q.

    2016-09-01

    Utilizing the full potential linearized augment plane wave method, the electronic structures and magnetism for carbon doped CdSe are investigated. Calculations show carbon substituting selenium could induce CdSe to be a diluted magnetic semiconductor. Single carbon dopant could induce 2.00 μB magnetic moment. Electronic structures show the long-range ferromagnetic coupling mainly originates from the p-d exchange-like p-p coupling interaction. Positive chemical pair interactions indicate carbon dopants would form homogeneous distribution in CdSe host. The formation energy implies the non-equilibrium fabricated technology is necessary during the samples fabricated.

  3. Photophysical properties of CdSe quantum dot self-assemblies with zinc phthalocyanines and azaphthalocyanines.

    PubMed

    Suchánek, Jan; Lang, Kamil; Novakova, Veronika; Zimcik, Petr; Zelinger, Zdeněk; Kubát, Pavel

    2013-05-01

    The formation of self-assemblies between CdSe quantum dots (QDs) and Zn phthalocyanines (Pc) and azaphthalocyanines (AzaPc) bearing alkylsulfanyl substituents and the photophysical properties of these assemblies were studied using both steady-state and time-resolved luminescence/absorption spectroscopy. The formation of the self-assemblies was accompanied by a blue shift of the Q band of the dyes and by a quenching of the CdSe QDs luminescence. The largest spectral shift of the Q-band was approximately 7 nm and was observed for pentan-3-ylsulfanyl-functionalised phthalocyanine (). Assuming a 1 : 1 stoichiometry, the calculated binding constant was 4 × 10(4) M(-1). Pc substituted with the bulky tert-butylsulfanyl groups (1) exhibited a smaller shift of the Q band. The quenching of the CdSe QDs luminescence by 1 was more effective than that observed for 3. The results indicated that the luminescence quenching may be due to a photoinduced charge transfer between 1 or 3 and the CdSe QDs. In contrast, the AzaPc (2) with the same substituents as 1 had little effect on the QDs luminescence. For all cases, we found an inefficient resonance energy transfer between the attached dyes and the CdSe QD. The formation of the self-assemblies had negligible effects on the photogeneration of the singlet oxygen, O2((1)Δg), that was fully controlled only by the absorption of the light by the macrocycles.

  4. Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement

    NASA Astrophysics Data System (ADS)

    Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao

    2016-10-01

    The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.

  5. Enhanced photorefractive performance in CdSe quantum-dot-dispersed poly(styrene-co-acrylonitrile) polymers

    SciTech Connect

    Li Xiangping; Embden, Joel van; Chon, James W. M.; Gu Min; Evans, Richard A.

    2010-06-21

    This paper reports on the enhanced photorefractive behavior of a CdSe quantum-dot-dispersed less expensive polymer of poly(styrene-co-acrylonitrile). The capability of CdSe quantum dots used as photosensitizers and the associated photorefractive performance are characterized through a photocurrent experiment and a two-beam coupling experiment, respectively. An enhanced two-beam coupling gain coefficient of 12.2 cm{sup -1} at 46 V/mum was observed owning to the reduced potential barrier. The photorefractive performance per CdSe quantum dot is three orders of magnitude higher than that in the sample sensitized by trinitrofluorenone in poly(styrene-co-acrylonitrile), and almost ten times higher than that in the CdSe quantum-dot-sensitized poly(N-vinylcarbazole) polymers.

  6. Optical properties of water soluble CdSe quantum dots modified by a novel biopolymer based on sodium alginate.

    PubMed

    Bardajee, Ghasem Rezanejade; Hooshyar, Zari

    2013-10-01

    Water soluble CdSe quantum dots (QDs) were modified using a novel biopolymer based on the graft copolymerization of poly (acrylic acid) as a monomer onto sodium alginate as a backbone at room temperature. The obtained CdSe QDs were characterized by Fourier transform infrared spectrometer, thermo-gravimetry analysis, transmission electron microscopy, and dynamic light scattering. Optical properties of the prepared CdSe QDs were investigated by absorption and fluorescence spectra. It was found that the resultant QDs incredibly exhibited high fluorescence intensity and quantum yields. Lastly, the influence of the aging time on the fluorescence intensity of the modified CdSe QDs was studied by their fluorescence spectra. Due to the optical behavior of this modified QDs; it could be of potential interest in biological systems.

  7. Study of optical and structural properties of CdSe quantum dot embedded in PVA polymer matrix

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2015-08-01

    To enhance the properties and applicability of devices it is essential to incorporate semiconductor nanoparticles into polymer matrix. This introduces a new branch of science which includes device fabrications such as gas sensors, nonlinear optics, catalysis etc. Herein, we have synthesized CdSe/PVA nanocomposite (NC) material using wet chemical synthesis technique. The XRD studies revealed the formation of crystalline structure of CdSe nanoparticles (NP's) and PVA NC's with an average size of 100 nm and 5 nm respectively. Energy band gap is determined using UV-VIS Spectroscopy. A red shift in the absorption edge of CdSe/PVA NC is observed with respect to CdSe Np's, The photoluminescence spectra also show red shift for CdSe/PVA NC as compared to CdSe NP's Thus the use of CdSe/PVA for solar cell application would be more preferable than CdSe NP's.

  8. Precisión de las velocidades radiales obtenidas con el REOSC

    NASA Astrophysics Data System (ADS)

    González, J. F.; Lapasset, E.

    Complementando una línea de trabajo iniciada con anterioridad discutimos la estabilidad del espectrógrafo REOSC de CASLEO en DC para la medición de velocidades radiales en base al análisis de observaciones realizadas en enero y abril de 1997. En esas oportunidades obtuvimos 26 espectros de estrellas patrones y 27 espectros de 3 estrellas usadas como estrellas de referencia en nuestro programa de cúmulos abiertos. Además tomamos 26 espectros de crepúsculo con el telescopio en posiciones cubriendo el rango H=-4,+4 y δ =-90,+30. Mediante correlaciones cruzadas derivamos la velocidad de 19 órdenes en cada uno de estos espectros. En base a un análisis estadístico de los datos obtenidos discutimos la contribución de los distintos factores que afectan a la dispersión de lectura observada. En particular, la flexión del instrumento no introduciría errores significativos cuando se observa con masas de aire menores que 2.0. La dispersión de los valores de velocidad medidos para espectros de alta relación S/N de una misma estrella resultó del orden de 0.5 km/s. La comparación con los valores de velocidad publicados por distintos autores para las estrellas patrones no permite distinguir ninguna diferencia sistemática apreciable de las velocidades de CASLEO, siendo la media cuadrática de los residuos del orden de 1.0 km/s.

  9. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry.

    PubMed

    Bang, Jin Ho; Kamat, Prashant V

    2011-12-27

    The development of organic/inorganic hybrid nanocomposite systems that enable efficient solar energy conversion has been important for applications in solar cell research. Nanostructured carbon-based systems, in particular C(60), offer attractive strategies to collect and transport electrons generated in a light harvesting assembly. We have assembled CdSe-C(60) nanocomposites by chemically linking CdSe quantum dots (QDs) with thiol-functionalized C(60). The photoinduced charge separation and collection of electrons in CdSe QD-C(60) nanocomposites have been evaluated using transient absorption spectroscopy and photoelectrochemical measurements. The rate constant for electron transfer between excited CdSe QD and C(60) increased with the decreasing size of the CdSe QD (7.9 × 10(9) s(-1) (4.5 nm), 1.7 × 10(10) s(-1) (3.2 nm), and 9.0 × 10(10) s(-1) (2.6 nm)). Slower hole transfer and faster charge recombination and transport events were found to dominate over the forward electron injection process, thus limiting the deliverance of maximum power in CdSe QD-C(60)-based solar cells. The photoinduced charge separation between CdSe QDs and C(60) opens up new design strategies for developing light harvesting assemblies.

  10. Quantum confinement effect of CdSe induced by nanoscale solvothermal reaction

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Wook; Im, Jeong-Hyuk; Park, Nam-Gyu

    2012-09-01

    We report a novel method, nanoscale solvothermal reaction (NSR), to induce the quantum confinement effect of CdSe on nanostructured TiO2 by solvothermal route. The time-dependent growth of CdSe is observed in solution at room temperature, which is found to be accomplished instantly by heat-treatment in the presence of solvent at 1 atm. However, no crystal growth occurs upon heat-treatment in the absence of solvent. The nanoscale solvothermal growth of CdSe quantum dot is realized on the nanocrystalline oxide surface, where Cd(NO3)2.4H2O and Na2SeSO3 solutions are sequentially spun on nanostructured TiO2, followed by heat-treatment at temperatures ranging from 100 °C to 250 °C. Size of CdSe increases from 4.4 nm to 5.3 nm, 8.7 nm and 14.8 nm, which results in decrease in optical band gap from 2.19 eV to, 1.95 eV, 1.74 eV and 1.75 eV with increasing the NSR temperature from 100 °C to 150 °C, 200 °C and 250 °C, respectively, which is indicative of the quantum confinement effect. Thermodynamic studies reveal that increase in the size of CdSe is related to increase in enthalpy, for instance, from 3.77 J mg-1 for 100 °C to 8.66 J mg-1 for 200 °C. Quantum confinement effect is further confirmed from the CdSe-sensitized solar cell, where onset wavelength in external quantum efficiency spectra is progressively shifted from 600 nm to 800 nm as the NSR temperature increases, which leads to a significant improvement of power conversion efficiency by a factor of more than four. A high photocurrent density of 13.7 mA cm-2 is obtained based on CdSe quantum dot grown by NSR at 200 °C.

  11. Electric field-induced emission enhancement and modulation in individual CdSe nanowires.

    PubMed

    Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru

    2012-10-23

    CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.

  12. Direct growth of CdSe semiconductor quantum dots in glass matrix by femtosecond laser beam

    NASA Astrophysics Data System (ADS)

    Bell, G.; Filin, A. I.; Romanov, D. A.; Levis, R. J.

    2016-02-01

    Controllable, spatially inhomogeneous distributions of CdSe nanocrystals smaller than the exciton Bohr radius are grown in a glass matrix under combined action of sample heating (below the transformation temperature) and focused high-repetition femtosecond (fs) laser beam. Selective quantum dot precipitation is evidenced by position-dependent absorption and Raman spectra. The particle size is estimated as r = 2.1 ± 0.3 nm by comparing the measured absorption and Raman spectra with those obtained from the samples grown in glass by traditional heat-treatment procedure. Direct growth of CdSe quantum dots in glass is enabled by nonlinear excitation using a focused fs duration laser beam (as differentiated from other methods), and this opens an avenue for adjustable selective growth patterns.

  13. Distribution of CdSe nanoparticles synthesized in porous SiO{sub x} matrix

    SciTech Connect

    Bacherikov, Yu. Yu. Indutnyi, I. Z.; Okhrimenko, O. B.; Optasyuk, S. V.; Shepeliavyi, P. E.; Ponamarenko, V. V.

    2011-09-15

    Photoluminescence spectra of CdSe nanoparticles synthesized by the chemical method from an aqueous solution are studied in relation to nanoparticle location over depth in the porous SiO{sub x} layer consisting of a set of distinct SiO{sub x} columns {approx}(10-100) nm in diameter. An analysis of radiative characteristics of this structure shows that the distributions of different-size nanoparticle fractions over the nanocomposite layer depth are different. A model explaining the cause of such distributions is considered. Within this model the parameter defining the 'constrained geometry' notion for the used conditions of CdSe nanoparticles' growth in the SiO{sub x} matrix is estimated.

  14. Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting

    PubMed Central

    2015-01-01

    Enhanced plasmonic fields are a promising way to increase the efficiency of photocatalytic water splitting. The availability of atomically thin materials opens up completely new opportunities. We report photocatalytic water splitting on ultrathin CdSe nanoplatelets placed in plasmonic nanogaps formed by a flat gold surface and a gold nanoparticle. The extreme field intensity created in these gaps increases the electron–hole pair production in the CdSe nanoplatelets and enhances the plasmon-mediated interfacial electron transfer. Compared to individual nanoparticles commonly used to enhance photocatalytic processes, gap-plasmons produce several orders of magnitude higher field enhancement, strongly localized inside the semiconductor sheet thus utilizing the entire photocatalyst efficiently. PMID:25937870

  15. CdSe quantum dot internalization by Bacillus subtilis and Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kloepfer, Jeremiah A.; Mielke, Randall E.; Nadeau, Jay L.

    2004-06-01

    Biological labeling has been demonstrated with CdSe quantum dots in a variety of animal cells, but bacteria are harder to label because of their cell walls. We discuss the challenges of using minimally coated, bare CdSe quantum dots as luminescent internal labels for bacteria. These quantum dots were solubilized with mercaptoacetic acid and conjugated to adenine. Significant evidence for the internal staining of Bacillus subtilis (Gram positive) and Escherichia coli (Gram negative) using these structures is presented via steady-state emission, epifluorescence microscopy, transmission electron microscopy, and energy dispersive spectroscopy. In particular, the E. coli adenine auxotroph, and not the wild type, took up adenine coated quantum dots, and this only occurred in adenine deficient growth media. Labeling strength was enhanced by performing the incubation under room light. This process was examined with steady-state emission spectra and time-resolved luminescence profiles obtained from time-correlated-single-photon counting.

  16. Distance-Dependent Triplet Energy Transfer between CdSe Nanocrystals and Surface Bound Anthracene.

    PubMed

    Li, Xin; Huang, Zhiyuan; Zavala, Ramsha; Tang, Ming Lee

    2016-06-01

    We investigate triplet energy transfer (TET) across variable-length aromatic oligo-p-phenylene and aliphatic bridges in a covalently linked CdSe nanocrystal (NC)-bridge-anthracene hybrid system. Photon upconversion measurements in saturated 9,10-diphenylanthracene hexane solutions under air-free conditions at room temperature provided the steady-state rate of TET (ket) across this interface. For flexible transmitters, ket is similar for different lengths of aliphatic bridges, suggesting that the ligands bend backward. For the rigid phenylene spacer, triplet sensitization of anthracene transmitter molecules by CdSe NCs shows a strong distance dependence, with a Dexter damping coefficient of 0.43 ± 0.07 Å(-1). The anthracene transmitter bound closest to the NC surface gave the highest quantum yield of 14.3% for the conversion of green to violet light, the current record for a hybrid platform. PMID:27164056

  17. Fingerprint detection and using intercalated CdSe nanoparticles on non-porous surfaces.

    PubMed

    Algarra, Manuel; Radotić, Ksenija; Kalauzi, Aleksandar; Mutavdžić, Dragosav; Savić, Aleksandar; Jiménez-Jiménez, José; Rodríguez-Castellón, Enrique; da Silva, Joaquim C G Esteves; Guerrero-González, Juan José

    2014-02-17

    A fluorescent nanocomposite based on the inclusion of CdSe quantum dots in porous phosphate heterostructures, functionalized with amino groups (PPH-NH2@CdSe), was synthesized, characterized and used for fingerprint detection. The main scopes of this work were first to develop a friendly chemical powder for detecting latent fingerprints, especially in non-porous surfaces; their further intercalation in PPH structure enables not to spread the fluorescent nanoparticles, for that reason very good fluorescent images can be obtained. The fingerprints, obtained on different non-porous surfaces such as iron tweezers, mobile telephone screen and magnetic band of a credit card, treated with this powder emit a pale orange luminescence under ultraviolet excitation. A further image processing consists of contrast enhancement that allows obtaining positive matches according to the information supplied from a police database, and showed to be more effective than that obtained with the non-processed images. Experimental results illustrate the effectiveness of proposed methods.

  18. A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states.

    PubMed

    Guyot-Sionnest, Philippe; Lhuillier, Emmanuel; Liu, Heng

    2012-10-21

    Thermal deflection spectroscopy allows to measure very small absorption and uncovers absorption tails extending well below the bulk bandgap energy for CdSe quantum dots films after ligand exchange by sulfide. In this monodispersed system, the redshift, the broadening, and the absorption tails cannot be solely attributed to electronic coupling between the dots. Instead, mixing of hole states from the quantum dot and surface is proposed to dominate the changes of the interband spectra at the absorption edge. PMID:23083181

  19. A mirage study of CdSe colloidal quantum dot films, Urbach tail, and surface states

    NASA Astrophysics Data System (ADS)

    Guyot-Sionnest, Philippe; Lhuillier, Emmanuel; Liu, Heng

    2012-10-01

    Thermal deflection spectroscopy allows to measure very small absorption and uncovers absorption tails extending well below the bulk bandgap energy for CdSe quantum dots films after ligand exchange by sulfide. In this monodispersed system, the redshift, the broadening, and the absorption tails cannot be solely attributed to electronic coupling between the dots. Instead, mixing of hole states from the quantum dot and surface is proposed to dominate the changes of the interband spectra at the absorption edge.

  20. Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals.

    PubMed

    Dong, Shuo; Trivedi, Dhara; Chakrabortty, Sabyasachi; Kobayashi, Takayoshi; Chan, Yinthai; Prezhdo, Oleg V; Loh, Zhi-Heng

    2015-10-14

    Recent observations of excitonic coherences within photosynthetic complexes suggest that quantum coherences could enhance biological light harvesting efficiencies. Here, we employ optical pump-probe spectroscopy with few-femtosecond pulses to observe an excitonic quantum coherence in CdSe nanocrystals, a prototypical artificial light harvesting system. This coherence, which encodes the high-speed migration of charge over nanometer length scales, is also found to markedly alter the displacement amplitudes of phonons, signaling dynamics in the non-Born-Oppenheimer regime.

  1. Conduction band offset determination between strained CdSe and ZnSe layers using DLTS

    SciTech Connect

    Rangel-Kuoppa, Victor-Tapio

    2013-12-04

    The conduction band offset between strained CdSe layers embedded in unintentionally n-type doped ZnSe is measured and reported. Two samples, consisting of thirty Ultra Thin Quantum Wells (UTQWs) of CdSe embedded in ZnSe, grown by Atomic Layer Epitaxy, are used for this study. The thicknesses of the UTQWs are one and three monolayers (MLs) in each sample, respectively. As expected, the sample with one ML UTQWs does not show any energy level in the UTQWs due to the small thickness of the UTQWs, while the thickness of the sample with 3 ML UTQWs is large enough to form an energy level inside the UTQWs. This energy level appears as a majority trap with an activation energy of 223.58 ± 9.54 meV. This corresponds to UTQWs with barrier heights (the conduction band offset) between 742 meV and 784 meV. These values suggest that the band gap misfit between strained CdSe and ZnSe is around 70.5 to 74 % in the conduction band.

  2. Interaction of the CdSe quantum dots with plant cell walls.

    PubMed

    Djikanović, Daniela; Kalauzi, Aleksandar; Jeremić, Milorad; Xu, Jianmin; Mićić, Miodrag; Whyte, Jeffrey D; Leblanc, Roger M; Radotić, Ksenija

    2012-03-01

    There is an increasing application of quantum dots (QDs) in plant science, as markers for the cells or their cell walls (CWs). In a plant cell the CW is a first target place for external agents. We studied interaction of CdSe QDs with CWs isolated from a conifer -Picea omorika (Panč) Purkynĕ branch. Binding of CdSe QDs was followed by using fluorescence microscopy, fluorescence and FT-IR spectroscopy. The aim of the study was to see whether the QDs induce structural changes in the CW, as well as to find out which kind of interactions between QDs and CWs occur and to which particular constituent polymers QDs preferably bind. The isolated CW is an appropriate object for study of the interactions with nanoparticles. The results show that in the CW, CdSe predominantly binds to cellulose, via OH groups and to lignin, via the conjugated CC/C-C chains. The differences in interaction of wet and dry CWs with QDs/chloroform were also studied. In the reaction of the dry CW sample with QDs/chloroform, hydrophobic interactions are dominant. When water was added after QDs/chloroform, hydrophilic interactions enable a partial reconstruction of the CC chains. The results have an implication on the use of the QDs in plant bio-imaging.

  3. Femtosecond cooling of hot electrons in CdSe quantum-well platelets.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; van der Bok, Johanna C; Van Dijk-Moes, Relinde J A; Hannappel, Thomas; Eichberger, Rainer; Vanmaekelbergh, Daniel

    2015-04-01

    Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatelets using ultrafast two-photon photoemission spectroscopy at low excitation intensities, resulting typically in 1-5 hot electrons per platelet. We observe initial electron cooling in the femtosecond time domain that slows down with decreasing electron energy and is finished within 2 ps. The cooling is considerably faster at cryogenic temperatures than at room temperature, and at least for the systems that we studied, independent of the thickness of the platelets (here 3-5 CdSe units) and the presence of a CdS shell. The cooling rates that we observe are orders of magnitude faster than reported for similar CdSe platelets under strong excitation. Our results are understood by a classic cooling mechanism with emission of longitudinal optical phonons without a significant influence of the surface. PMID:25764379

  4. Analysis of the effects of surface chemistry on the XAS spectra of CdSe nanomaterials

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Prendergast, David; Ogitsu, Tadashi; Schwegler, Eric

    2010-03-01

    X-ray absorption spectroscopy (XAS) is an element-specific probe of local electronic structure, and is an ideal method to analyze chemical bonding. We investigate the consistency of theoretically predicted structures of CdSe nanomaterials with recently measured XAS via ab initio calculations. Using plane-wave DFT, the x-ray absorption cross-section for the Cd L3-edge of small CdSe clusters with a variety of surface ligands is calculated. We also highlight the importance of including excitonic effects in our simulations of core excitation spectra. We compare our simulations to existing experimental data on the ligand dependence of XAS for ligated quantum dots up to ˜3nm in diameter. Based on the favorable comparison of our theoretical spectra with experimental measurements, we infer the validity of our DFT-derived structure and surface passivation for these quantum dots and its relevance to understanding optoelectronic properties of solution-synthesized CdSe nanocrystals. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Detection of CdSe quantum dot photoluminescence for security label on paper

    NASA Astrophysics Data System (ADS)

    Isnaeni, Sugiarto, Iyon Titok; Bilqis, Ratu; Suseno, Jatmiko Endro

    2016-02-01

    CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program to reveal quantum dot pattern stamp having the word 'RAHASIA'. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.

  6. Self assembly and optical properties of CdSe nanoplatelet superlattice

    NASA Astrophysics Data System (ADS)

    Gao, Yunan; Tisdale, William; Tisdale Lab MIT Team

    Colloidal CdSe nanoplatelets (NPs) are 1-D confined materials with atomic uniform thickness, and only have homogeneous broadening in energy level distributions and very narrow emission spectrum. Additionally, NPs have a giant oscillator strength that leads to a faster emission rate compared to quantum dots and rods. Due to these properties, NPs have shown promising potential applications in light-emitting diodes, colloidal lasers, and harvesting multiple exciton generation in photovoltaic cells.Self-assembly of superlattice has been studied broadly for many nano-particles, but not yet for CdSe NPs. We will show for the first time a selective control of CdSe NP superlattice self-assembly, i.e., self-assembled into columnar or lamellar superlattice. Moreover, we will present that the assembly morphology of superlattice has direct effects on their optical properties, like polarization, absorption efficiency and emission rate, etc., and also on their Forster energy transfer properties. The self-assembly is based on liquid interfacial self-assembly and transfer technique. The structure and propertied of the superlattice are characterized by transmission electron microscopy, and time-, polarization- and space-resolved photo-luminescent micro-spectroscopy.

  7. Optical properties of P3HT:tributylphosphine oxide-capped CdSe nanocomposites

    NASA Astrophysics Data System (ADS)

    Benchaabane, A.; Ben Hamed, Z.; Lahmar, A.; Sanhoury, M. A.; Kouki, F.; Zellama, K.; Zeinert, A.; Bouchriha, H.

    2016-08-01

    The optical properties of nanocomposite layers prepared by incorporation of tributylphosphine oxide (TBPO)-capped CdSe nanocrystals (NCs) in a P3HT polymer matrix are studied using different nanocrystal concentrations. Reflection spectra analyzed through Kim oscillator model lead to the determination of optical constants such as refractive index n, extinction coefficient k, dielectric permittivity ɛ and absorption coefficient α.Using the common Cauchy, Drude-Lorentz, Tauc and single-effective-oscillator theoretical models, we have determined the values of static refractive index n s and permittivity ɛ s, plasma frequency ω_{{p}}, carrier density N, optical band gap E g and oscillator and dispersion energies E0 and E d, respectively. It is found that TBPO-capped CdSe NCs concentration affects the optoelectronic parameters of the nanocomposite thin films. Moreover, the disorder of this hybrid system is also studied by the determination of Urbach energy, which increases with TBPO-capped CdSe concentration.

  8. Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers.

    PubMed

    Aldakov, Dmitry; Jiu, Tonggang; Zagorska, Malgorzata; de Bettignies, Rémi; Jouneau, Pierre-Henri; Pron, Adam; Chandezon, Frédéric

    2010-07-21

    Two types of conjugated polymers were prepared with the goal to blend them with rod-like CdSe nanocrystals. The polymers of the first type were synthesized through copolymerization of 3-octylthiophene and 3-methylene-ethylcarboxylate-thiophene to give polythiophene with solubilizing alkyl groups and methylene ester functional groups (PE series). Post-polymerization hydrolysis of the ester type polymers yielded acid-type ones (PA series). Photoluminescence (PL) quenching in these polymers induced by their titration with nanocrystals solution was chosen as a measure of the polymer-nanocrystal interactions. PL of polyacids turned out to be more efficiently quenched as compared to the case of polymers with ester groups which was interpreted as an indication of better electronic communication between the hybrid components. Infrared (IR) spectroscopy confirmed efficient coordination of the carboxylic groups to CdSe. Voltammetric studies combined with UV-vis spectroelectrochemistry enabled the determination of energy levels alignment of the molecular composite components which turned out to be of staggered type-appropriate for photovoltaic applications. The obtained blends of polyacids with CdSe nanocrystals, when studied by transmission electron microscopy (TEM), revealed the presence of an interpenetrating network in which nanorods were homogeneously distributed within the polymer matrix without any indication of agglomerates formation both on the film surface and in the cross-section. Blends with polymers containing ester groups were less homogeneous which could be explained by weaker polymer-nanocrystals interactions. Photovoltaic cells based on these hybrid materials are also discussed.

  9. Influence of Surfactants and Charges on CdSe Quantum Dots

    SciTech Connect

    Yang, Ping; Tretiak, Sergei; Ivanov, Sergei

    2011-01-01

    Surface effects significantly influence the functionality of semiconductor nanocrystals. High quality nanocrystals can be achieved with good control of surface passivation by various hydrophobic ligands. In this work, the chemistry between CdSe quantum dots and common surface capping ligands is investigated using density functional theory (DFT). We discuss the electronic structures and optical properties of small CdSe clusters controlled by their size of particle, self-organization, capping ligands, and positive charges. The chosen model ligands reproduce good structural and energetic description of the interactions between the ligands and quantum dots. In order to capture the chemical nature and energetics of the interactions between the capping ligands and CdSe quantum dots, we found that PMe3 is needed to adequately model trioctylphosphine (TOP), NH3 is sufficient for amines, while OPH2Me could be used to model trioctylphosphine oxide. The relative binding interaction strength between ligands was found to decrease in order Cd–O > Cd–N > Cd–P with average binding energy per ligand being -25 kcal/mol for OPH₂Me, -20 kcal/mol for NH₃ and -10 kcal/mol for PMe₃. Charges on studied stoichiometric clusters were found to have a significant effect on their structures, binding energies, and optical properties.

  10. Inverted organic solar cells using a solution-processed TiO2/CdSe electron transport layer to improve performance

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxiao; Xiong, Zhicheng; Wang, Wen; Zhang, Luming; Wu, Sujuan; Lu, Xubing; Gao, Xingsen; Shui, Lingling; Liu, Jun-Ming

    2016-04-01

    In the present work, cadmium selenide (CdSe) nanoparticles are deposited directly on TiO2 film to fabricate the TiO2/CdSe interlayer by a chemical bath deposition method. The inverted organic solar cells using poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) bulk heterojunction as an active layer and TiO2/CdSe interlayer as an electron transport layer (ETL) are fabricated in air. A series of microstructural, photo-electronic, and electrochemical characterizations on these cells are performed. The TiO2/CdSe structure with respect to either the TiO2 layer or the CdSe layer as the ETL exhibits significantly enhanced external quantum efficiency (EQE) in the visible region. The photoluminescence (PL) measurement shows that the exciton dissociation in the TiO2/CdSe structure is more effective than that in either the TiO2 or CdSe structure. The Nyquist plots obtained from electrochemical impedance spectroscopy (EIS) implies that the charge recombination in the TiO2/CdSe structure can be suppressed with respect to that in either the CdSe or TiO2 structure. The photovoltaic performances of the cells with the TiO2/CdSe ETL are clearly improved compared with the reference cells only with the TiO2 layer or CdSe layer as the ETL.

  11. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    SciTech Connect

    Bera, Susnata; Singh, Shashi B.; Ray, S.K.

    2012-05-15

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage ({approx}2.2 V) .The EL peak intensity was found to increase by increasing the operating current. - Graphical abstract: Light emitting diode was fabricated using CdSe quantum dots using olive oil as the capping agent, instead of toxic phosphine. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting device shows strong electroluminescence in the range 630-661 nm. Highlights: Black-Right-Pointing-Pointer CdSe Quantum dots were synthesized using olive oil as the capping agent. Black-Right-Pointing-Pointer Light emitting device was fabricated using CdSe QDs/P3HT polymer heterojunction. Black-Right-Pointing-Pointer The I-V characteristics study showed low turn on voltage at {approx}2.2 V. Black-Right-Pointing-Pointer The EL peak intensity increases with increasing the operating current.

  12. Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots.

    PubMed

    Moh, Sang Hyun; Kulkarni, Atul; San, Boi Hoa; Lee, Jeong Hun; Kim, Doyoun; Park, Kwang Su; Lee, Min Ho; Kim, Taesung; Kim, Kyeong Kyu

    2016-01-28

    We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 10(6), the highest value compared to other SiNW-based devices in the visible light range. PMID:26755346

  13. p -State Luminescence in CdSe Nanoplatelets: Role of Lateral Confinement and a Longitudinal Optical Phonon Bottleneck

    NASA Astrophysics Data System (ADS)

    Achtstein, Alexander W.; Scott, Riccardo; Kickhöfel, Sebastian; Jagsch, Stefan T.; Christodoulou, Sotirios; Bertrand, Guillaume H. V.; Prudnikau, Anatol V.; Antanovich, Artsiom; Artemyev, Mikhail; Moreels, Iwan; Schliwa, Andrei; Woggon, Ulrike

    2016-03-01

    We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k .p calculations—all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

  14. Effect of amine addition on the synthesis of CdSe nanocrystals in liquid paraffin via one-pot method

    NASA Astrophysics Data System (ADS)

    Jia, Jinqian; Tian, Jintao; Tian, Weiguo; Mi, Wen; Liu, Xiaoyun; Dai, Jinhui; Wang, Xin

    2014-02-01

    The effect of n-octylamine (OA) and octadecylamine (ODA) addition on the synthesis of CdSe nanocrystals in liquid paraffin via one-pot method is investigated via the measurements of their ultraviolet-visible absorption and fluorescence emission spectra. Our results showed that the in situ added amines can activate the formation reaction of Cd precursor and, as a result, substantially decrease the initial reaction temperature and accelerate the particle growth. By adding OA at high temperature of 200 °C, remarkable improvement on particle quality is achieved, giving relatively narrow size distribution of 33.1 nm and high photoluminescence quantum yield (PLQY) of 81.9% for the CdSe nanoparticles. OA addition at low temperature shows also good quality improvement for the nanoparticles. With regard to the primary amine of ODA, it may be inappropriate for quality improvement of the CdSe nanoparticles from liquid paraffin via one-pot method.

  15. Comparative behavior of CdS and CdSe quantum dots in poly(3-hexylthiophene) based nanocomposites

    SciTech Connect

    Sonar, Prashant . E-mail: sonar@mat.ethz.ch; Sreenivasan, K.P.; Madddanimath, Trupti; Vijayamohanan, K. . E-mail: viji@ems.ncl.res.in

    2006-01-05

    CdS and CdSe nanoparticles have been prepared using conducting poly(3-hexylthiophene) (P3HT) matrix with an objective to understand the effect of nanoparticles on the polymer matrix using electrochemical and spectroscopic techniques. The spectroscopic results reveal that the electronic structure of polymer is strongly influenced by the characteristics of embedded semiconducting nanoparticles. SEM and TEM images show the ordered morphology of the CdS and CdSe nanoparticles in presence of the polymer matrix. Cyclic voltammetry performed both in the presence and absence of light enables us to understand the redox changes in P3HT due to CdS and CdSe quantum dots such as the generation of free radical in the excited state and their electrochemical band gaps.

  16. Photocurrent enhancement of SiNW-FETs by integrating protein-shelled CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Moh, Sang Hyun; Kulkarni, Atul; San, Boi Hoa; Lee, Jeong Hun; Kim, Doyoun; Park, Kwang Su; Lee, Min Ho; Kim, Taesung; Kim, Kyeong Kyu

    2016-01-01

    We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range.We proposed a new strategy to increase the photoresponsivity of silicon NW field-effect transistors (FETs) by integrating CdSe quantum dots (QDs) using protein shells (PSs). CdSe QDs were synthesized using ClpP, a bacterial protease, as protein shells to control the size and stability of QD and to facilitate the mounting of QDs on SiNWs. The photocurrent of SiNW-FETs in response to light at a wavelength of 480 nm was enhanced by a factor of 6.5 after integrating CdSe QDs because of the coupling of the optical properties of SiNWs and QDs. As a result, the photoresponsivity to 480 nm light reached up to 3.1 × 106, the highest value compared to other SiNW-based devices in the visible light range. Electronic supplementary information (ESI) available: Materials and methods. See DOI: 10.1039/c5nr07901b

  17. Dislocation-driven growth of porous CdSe nanorods from CdSe.(ethylenediamine)0.5 nanorods

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Bae; Jang, Du-Jeon

    2015-12-01

    Porous CdSe nanorods having a novel flute-like morphology have been prepared facilely via the hydrothermal treatment of CdSe.(en)0.5 (en = ethylenediamine) nanorods as sacrificial templates. During the hydrothermal process, various crystalline imperfections such as stacking faults and twinning planes appear due to lattice mismatches between orthorhombic CdSe.(en)0.5 and hexagonal wurtzite porous CdSe nanorods and subsequently disappear to release mismatched strains. In the self-healing process of defects, due to the imbalance of in-and-out atomic diffusion, point defects of atomic vacancies are heavily generated in CdSe nanorods to produce volume defects of voids eventually. The photoluminescence of CdSe nanorods shifts to the red region and decreases in intensity with the increase of the hydrolysis time as surface states and selenium vacancies increase. The mean lifetime of photoluminescence increases with the increase of the hydrothermal-treatment time as the fractional amplitude of the surface-state-related component increases.Porous CdSe nanorods having a novel flute-like morphology have been prepared facilely via the hydrothermal treatment of CdSe.(en)0.5 (en = ethylenediamine) nanorods as sacrificial templates. During the hydrothermal process, various crystalline imperfections such as stacking faults and twinning planes appear due to lattice mismatches between orthorhombic CdSe.(en)0.5 and hexagonal wurtzite porous CdSe nanorods and subsequently disappear to release mismatched strains. In the self-healing process of defects, due to the imbalance of in-and-out atomic diffusion, point defects of atomic vacancies are heavily generated in CdSe nanorods to produce volume defects of voids eventually. The photoluminescence of CdSe nanorods shifts to the red region and decreases in intensity with the increase of the hydrolysis time as surface states and selenium vacancies increase. The mean lifetime of photoluminescence increases with the increase of the hydrothermal

  18. Pyramid-Shaped Wurtzite CdSe Nanocrystals with Inverted Polarity.

    PubMed

    Ghosh, Sandeep; Gaspari, Roberto; Bertoni, Giovanni; Spadaro, Maria Chiara; Prato, Mirko; Turner, Stuart; Cavalli, Andrea; Manna, Liberato; Brescia, Rosaria

    2015-08-25

    We report on pyramid-shaped wurtzite cadmium selenide (CdSe) nanocrystals (NCs), synthesized by hot injection in the presence of chloride ions as shape-directing agents, exhibiting reversed crystal polarity compared to former reports. Advanced transmission electron microscopy (TEM) techniques (image-corrected high-resolution TEM with exit wave reconstruction and probe-corrected high-angle annular dark field-scanning TEM) unequivocally indicate that the triangular base of the pyramids is the polar (0001̅) facet and their apex points toward the [0001] direction. Density functional theory calculations, based on a simple model of binding of Cl(-) ions to surface Cd atoms, support the experimentally evident higher thermodynamic stability of the (0001̅) facet over the (0001) one conferred by Cl(-) ions. The relative stability of the two polar facets of wurtzite CdSe is reversed compared to previous experimental and computational studies on Cd chalcogenide NCs, in which no Cl-based chemicals were deliberately used in the synthesis or no Cl(-) ions were considered in the binding models. Self-assembly of these pyramids in a peculiar clover-like geometry, triggered by the addition of oleic acid, suggests that the basal (polar) facet has a density and perhaps type of ligands significantly different from the other three facets, since the pyramids interact with each other exclusively via their lateral facets. A superstructure, however with no long-range order, is observed for clovers with their (0001̅) facets roughly facing each other. The CdSe pyramids were also exploited as seeds for CdS pods growth, and the peculiar shape of the derived branched nanostructures clearly arises from the inverted polarity of the seeds.

  19. Pyramid-Shaped Wurtzite CdSe Nanocrystals with Inverted Polarity.

    PubMed

    Ghosh, Sandeep; Gaspari, Roberto; Bertoni, Giovanni; Spadaro, Maria Chiara; Prato, Mirko; Turner, Stuart; Cavalli, Andrea; Manna, Liberato; Brescia, Rosaria

    2015-08-25

    We report on pyramid-shaped wurtzite cadmium selenide (CdSe) nanocrystals (NCs), synthesized by hot injection in the presence of chloride ions as shape-directing agents, exhibiting reversed crystal polarity compared to former reports. Advanced transmission electron microscopy (TEM) techniques (image-corrected high-resolution TEM with exit wave reconstruction and probe-corrected high-angle annular dark field-scanning TEM) unequivocally indicate that the triangular base of the pyramids is the polar (0001̅) facet and their apex points toward the [0001] direction. Density functional theory calculations, based on a simple model of binding of Cl(-) ions to surface Cd atoms, support the experimentally evident higher thermodynamic stability of the (0001̅) facet over the (0001) one conferred by Cl(-) ions. The relative stability of the two polar facets of wurtzite CdSe is reversed compared to previous experimental and computational studies on Cd chalcogenide NCs, in which no Cl-based chemicals were deliberately used in the synthesis or no Cl(-) ions were considered in the binding models. Self-assembly of these pyramids in a peculiar clover-like geometry, triggered by the addition of oleic acid, suggests that the basal (polar) facet has a density and perhaps type of ligands significantly different from the other three facets, since the pyramids interact with each other exclusively via their lateral facets. A superstructure, however with no long-range order, is observed for clovers with their (0001̅) facets roughly facing each other. The CdSe pyramids were also exploited as seeds for CdS pods growth, and the peculiar shape of the derived branched nanostructures clearly arises from the inverted polarity of the seeds. PMID:26203791

  20. Surface plasmon propelled high-performance CdSe nanoribbons photodetector.

    PubMed

    Luo, Lin-Bao; Xie, Wei-Jie; Zou, Yi-Feng; Yu, Yong-Qiang; Liang, Feng-Xia; Huang, Zi-Jun; Zhou, Ke-Ya

    2015-05-18

    In this work, we present a plasmonic photodetector (PPD) with high sensitivity to red light illumination. The ultrasensitive PPD was composed of high-crystalline CdSe nanoribbons (NRs) decorated with plasmonic hollow gold nanoparticles (HGNs) on the surface, which were capable of coupling the incident light due to localized surface plasmon resonance (LSPR). Device analysis reveals that after modification of HGNs, both responsivity and detectivity were considerably improved. Further device performance analysis and theoretical simulation based on finite element method (FEM) find that the optimized performance is due to HGNs induced localized field enhancement and direct electron transfer. PMID:26074550

  1. Multicolored silica coated CdSe core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Goftman, Valentina V.; Markin, Alexey V.; De Saeger, Sarah; Goryacheva, Irina Y.

    2016-04-01

    Silanization is a convenient route to provide water-solubility to the quantum dots (QDs) with different structure. Green, orange and red emitting CdSe-based QDs were synthesized by varying of number and material of wider-band gap shells and fluorescent properties of QDs were characterized before and after silanization. It was shown that structure of the QD influences on the quantum yield of the silanized QDs: the better CdSe core is protected with wider-band gap semiconductor shells, the more fluorescence properties remain after silica coated QD possess. Hence silica coated QDs have a great perspectives for the multiplex analysis.

  2. Selenium Redox Reactivity on Colloidal CdSe Quantum Dot Surfaces

    PubMed Central

    2016-01-01

    Understanding the structural and compositional origins of midgap states in semiconductor nanocrystals is a longstanding challenge in nanoscience. Here, we report a broad variety of reagents useful for photochemical reduction of colloidal CdSe quantum dots, and we establish that these reactions proceed via a dark surface prereduction step prior to photoexcitation. Mechanistic studies relying on the specific properties of various reductants lead to the proposal that this surface prereduction occurs at oxidized surface selenium sites. These results demonstrate the use of small-molecule inorganic chemistries to control the physical properties of colloidal QDs and provide microscopic insights into the identities and reactivities of their localized surface species. PMID:27518320

  3. Hot spot assisted blinking suppression of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Lu, Liu; Tong, Xuan; Zhang, Xu; Ren, Naifei; Jiang, Bo; Lu, Haifei

    2016-05-01

    This work compares the blinking of CdSe QDs on glass, single silver nanowire, and double aligned nanowires. The corresponding on-time fractions of these three cases are 50%, 70% and 85% respectively, which indicates that aligned double nanowires shows more efficient suppression than that of single nanowire. This phenomenon is attributed to the higher concentration of hot electron from hot spot between nanowires. Occupation of the non-radiative recombination centers by hot electrons from silver nanowires can be explained for the suppressed blinking behavior. The result has provided a novel pathway of suppressing the blinking behavior of QDs through plasmonic hot spot.

  4. Dipolar structures in colloidal dispersions of PbSe and CdSe quantum dots.

    PubMed

    Klokkenburg, Mark; Houtepen, Arjan J; Koole, Rolf; de Folter, Julius W J; Erné, Ben H; van Faassen, Ernst; Vanmaekelbergh, Daniël

    2007-09-01

    We show by cryogenic transmission electron microscopy that PbSe and CdSe nanocrystals of various shapes in a liquid colloidal dispersion self-assemble into equilibrium structures that have a pronounced dipolar character, to an extent that depends on particle concentration and size. Analyzing the cluster-size distributions with a one-dimensional (1D) aggregation model yields a dipolar pair attraction of 8-10 kBT at room temperature. This accounts for the long-range alignment of the crystal planes of individual nanocrystals in self-assembled superstructures and for anisotropic nanostructures grown via oriented attachment. PMID:17713960

  5. A novel strategy towards designing a CdSe quantum dot-metallohydrogel composite material.

    PubMed

    Chatterjee, Sayantan; Maitra, Uday

    2016-08-11

    We have described here an efficient method to disperse hydrophobic CdSe quantum dots (QDs) in an aqueous phase using cetyltrimethylammonium bromide (CTAB) micelles without any surface ligand exchange. The water soluble QDs were then embedded in 3D self assembled fibrillar networks (SAFINs) of a hydrogel showing homogeneous dispersibility as evidenced from optical and electron microscopic techniques. The photophysical studies of the hydrogel-QD composite are reported for the first time. These composite materials may have potential applications in biology, optoelectronics, sensors, non-linear optics and materials science.

  6. Selenium Redox Reactivity on Colloidal CdSe Quantum Dot Surfaces.

    PubMed

    Tsui, Emily Y; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-09-01

    Understanding the structural and compositional origins of midgap states in semiconductor nanocrystals is a longstanding challenge in nanoscience. Here, we report a broad variety of reagents useful for photochemical reduction of colloidal CdSe quantum dots, and we establish that these reactions proceed via a dark surface prereduction step prior to photoexcitation. Mechanistic studies relying on the specific properties of various reductants lead to the proposal that this surface prereduction occurs at oxidized surface selenium sites. These results demonstrate the use of small-molecule inorganic chemistries to control the physical properties of colloidal QDs and provide microscopic insights into the identities and reactivities of their localized surface species. PMID:27518320

  7. Electrooptical properties of hybrid liquid crystalline systems containing CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Dradrach, K.; Bartkiewicz, S.; Miniewicz, A.

    2014-12-01

    In this paper, we present electrooptical properties of hybrid liquid crystalline systems, which contained CdSe quantum dots (QDs). We have shown by experiments of degenerated two-wave mixing and transverse conductivity measurements that liquid crystal cells filled with nematic and doped with semiconductor nanoparticles exhibit photorefractive effect associated with photoconductivity appearing in the system. We also present the mathematical model, which explains the relationship between the photoconductivity of the layer on which the QDs reside and the generation of holographic gratings. Our research may help to develop better understanding of processes observed in such systems and create more efficient materials for holographic data storage.

  8. Nanoparticle Concentration Effects on Kinetic Stability of CdSe Quantum Dots in Waters

    NASA Astrophysics Data System (ADS)

    Wan, J.; Kim, Y.; Tokunaga, T. K.

    2009-12-01

    Many recent laboratory studies on nanoparticle (NP) behavior used highly concentrated particle suspensions (up to several mM concentrations), largely to overcome instrument detection limits. In potentially engineered-NP impacted aquatic systems NP-concentrations can vary many orders of magnitude lower depending on the pathways of their release. We investigated NP concentration effects on kinetic stability of CdSe quantum dots (QDs), that have CdSe core diameter of 4.4 ±0.2 nm (by TEM), and the mercaptoundecanoic acid (MUA) coatings. The term stability is used to describe resistance to NP aggregation/coagulation and precipitation. We measured stability ratios of varied NP suspension concentrations, 10 to 0.1 mM (atom-based concentrations), under stability-favorable pH condition, and ionic strength (IS) from 1.0 mM to 2.0 M NaCl. In addition to determining short-term stability (10 seconds to 60 minute), we also measured long-term stability, up to 2 months (in order to observe precipitation). The results were compared with DLVO predictions using calculated Hamaker constants for MUA-coated CdSe QDs). Our data indicate that at the high concentrations (≥ 1.4 mM), CdSe QDs are extremely stable under low IS and favorable pH conditions, staying monodispersed for beyond the long experiment duration. Surprisingly, decreasing NP concentrations to < 1.4 mM resulted in rapid coagulation (< 10 seconds) of the primary NPs under the same low IS and stability-favorable pH. Interestingly, after this initial rapid coagulation the aggregates were relatively stable in suspensions, with larger aggregate sizes in more diluted solutions, suspended in water for beyond the long experiment duration. Measured electrokinetic properties of NP suspensions at different concentrations are presented, and mechanisms are discussed. The phenomena observed in this study may be extended to some of other types of charge-stabilized engineered NPs, and their impacts on transport and bioavailability can

  9. Electrooptical properties of hybrid liquid crystalline systems containing CdSe quantum dots

    SciTech Connect

    Dradrach, K. Bartkiewicz, S.; Miniewicz, A.

    2014-12-08

    In this paper, we present electrooptical properties of hybrid liquid crystalline systems, which contained CdSe quantum dots (QDs). We have shown by experiments of degenerated two-wave mixing and transverse conductivity measurements that liquid crystal cells filled with nematic and doped with semiconductor nanoparticles exhibit photorefractive effect associated with photoconductivity appearing in the system. We also present the mathematical model, which explains the relationship between the photoconductivity of the layer on which the QDs reside and the generation of holographic gratings. Our research may help to develop better understanding of processes observed in such systems and create more efficient materials for holographic data storage.

  10. Magneto-optical spectrum and the effective excitonic Zeeman splitting energies of Mn and Co-doped CdSe nanowires

    SciTech Connect

    Xiong, Wen; Chen, Wensuo

    2013-12-21

    The electronic structure of Mn and Co-doped CdSe nanowires are calculated based on the six-band k·p effective-mass theory. Through the calculation, it is found that the splitting energies of the degenerate hole states in Mn-doped CdSe nanowires are larger than that in Co-doped CdSe nanowires when the concentration of these two kinds of magnetic ions is the same. In order to analysis the magneto-optical spectrum of Mn and Co-doped CdSe nanowires, the four lowest electron states and the four highest hole states are sorted when the magnetic field is applied, and the 10 lowest optical transitions between the conduction subbands and the valence subbands at the Γ point in Mn and Co-doped CdSe nanowires are shown in the paper, it is found that the order of the optical transitions at the Γ point almost do not change although two different kinds of magnetic ions are doped in CdSe nanowires. Finally, the effective excitonic Zeeman splitting energies at the Γ point are found to increase almost linearly with the increase of the concentration of the magnetic ions and the magnetic field; meanwhile, the giant positive effective excitonic g factors in Mn and Co-doped CdSe nanowires are predicted based on our theoretical calculation.

  11. Blue and green electroluminescence from CdSe nanocrystal quantum-dot-quantum-wells

    SciTech Connect

    Lu, Y. F.; Cao, X. A.

    2014-11-17

    CdS/CdSe/ZnS quantum dot quantum well (QDQW) nanocrystals were synthesized using the successive ion layer adsorption and reaction technique, and their optical properties were tuned by bandgap and strain engineering. 3-monolayer (ML) CdSe QWs emitted blue photoluminescence at 467 nm with a spectral full-width-at-half-maximum of ∼30 nm. With a 3 ML ZnS cladding layer, which also acts as a passivating and strain-compensating layer, the QDQWs acquired a ∼35% quantum yield of the QW emission. Blue and green electroluminescence (EL) was obtained from QDQW light-emitting devices with 3–4.5 ML CdSe QWs. It was found that as the peak blueshifted, the overall EL was increasingly dominated by defect state emission due to poor hole injection into the QDQWs. The weak EL was also attributed to strong field-induced charge separation resulting from the unique QDQW geometry, weakening the oscillator strength of optical transitions.

  12. High-Temperature Microfluidic Synthesis of CdSe Nanocrystals inNanoliter Droplets

    SciTech Connect

    Chan, Emory M.; Alivisatos, A. Paul; Mathies, Richard A.

    2005-06-09

    The high-temperature synthesis of CdSe nanocrystals innanoliter-volume droplets flowing in a perfluorinated carrier fluidthrough a microfabricated reactor is presented. A flow-focusing nanojetstructure with a step increase in channel height reproducibly generatedoctadecene droplets in Fomblin Y 06/6 perfluorinated polyether atcapillary numbers up to 0.81 and with a droplet:carrier fluid viscosityratio of 0.035. Cadmium and selenium precursors flowing in octadecenedroplets through a high-temperature (240-300 degrees C) glassmicroreactor produced high quality CdSe nanocrystals, as verified byoptical spectroscopy and transmission electron microscopy. Isolating thereaction solution in droplets prevented particle deposition andhydrodynamic dispersion, allowing the reproducible synthesis ofnanocrystals at three different temperatures and four different residencetimes in the span of four hours. Our synthesis of a wide range ofnanocrystals at high temperatures, high capillary numbers, and lowviscosity ratio illustrates the general utility of droplet-basedmicrofluidic reactors to encapsulate nanoliter volumes of organic oraqueous solutions and to precisely control chemical or biochemicalreactions.

  13. Structure investigation of ultra-small CdSe nanoparticles using the atomic PDF

    NASA Astrophysics Data System (ADS)

    Masadeh, Ahmad S.; Billinge, Simon J. L.; Bozin, Emil S.; McBride, James R.; Rosenthal, Sandra J.

    2011-03-01

    The size-dependent structure of CdSe nanoparticles, with diameter ranging from 1.5 to 3.6 nm, has been studied using the atomic pair distribution function (PDF) method. The samples are prepared by the methods of Peng et al, with modifications. The structure of the smallest stable size, (~ 1.5 nm), have been found to posses locally distorted wurtzite structure, with no clear evidence of a heavily disordered surface region. The PDF data of the smallest particle show an extra structural peak appears around r = 3.5 A indicates there is structure modification happened in this sample. This peak start appearing the nanoparticles PDF data gradually as nanoparticle size decreases. The structural parameters are reported quantitatively. We measure a size-dependent strain on the Cd-Se bond which reaches 1.0% at the smallest particle size. The size of the well-ordered core extracted directly from the data agrees with the size determined from other methods.

  14. Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging.

    PubMed

    Giblin, Jay; Syed, Muhammad; Banning, Michael T; Kuno, Masaru; Hartland, Greg

    2010-01-26

    Absorption cross sections ((sigma)abs) of single branched CdSe nanowires (NWs) have been measured by photothermal heterodyne imaging (PHI). Specifically, PHI signals from isolated gold nanoparticles (NPs) with known cross sections were compared to those of individual CdSe NWs excited at 532 nm. This allowed us to determine average NW absorption cross sections at 532 nm of (sigma)abs = (3.17 +/- 0.44) x 10(-11) cm2/microm (standard error reported). This agrees well with a theoretical value obtained using a classical electromagnetic analysis ((sigma)abs = 5.00 x 10(-11) cm2/microm) and also with prior ensemble estimates. Furthermore, NWs exhibit significant absorption polarization sensitivities consistent with prior NW excitation polarization anisotropy measurements. This has enabled additional estimates of the absorption cross section parallel ((sigma)abs) and perpendicular ((sigma)abs(perpendicular) to the NW growth axis, as well as the corresponding NW absorption anisotropy ((rho)abs). Resulting values of (sigma)abs = (5.6 +/- 1.1) x 10(-11) cm2/microm, (sigma)abs(perpendicular) = (1.26 +/- 0.21) x 10(-11) cm2/microm, and (rho)abs = 0.63+/- 0.04 (standard errors reported) are again in good agreement with theoretical predictions. These measurements all indicate sizable NW absorption cross sections and ultimately suggest the possibility of future direct single NW absorption studies.

  15. A Closer Look into the Traditional Purification Process of CdSe Semiconductor Quantum Dots.

    PubMed

    Shakeri, Behtash; Meulenberg, Robert W

    2015-12-15

    This paper describes how the postprocessing procedure for wurtzite CdSe quantum dots (QDs) 4.8 and 6.7 nm in diameter is affected by both the choice of nonsolvent and the number of processing steps. Using a host of analytical techniques (ultraviolet-visible, photoluminescence, nuclear magnetic, X-ray photoelectron, and infrared spectroscopy, as well as thermogravimetric analysis), we find that control over the ligand type and surface density can be achieved simply by the number of washing steps used during the postprocessing procedure. Using multiple washing steps we can achieve colloidally stable solutions of QDs with organic mass fractions as low as 13% by mass. For CdSe QDs passivated with trioctylphosphine oxide (TOPO) and stearic acid (SA), essentially no TOPO is bound to the particle surface after three or four washing steps, with a plateau in the amount of SA being removed. The results can be explained using the L- and X-type ligand classification system for QDs, with L-type ligands (TOPO) removed in the early processing steps but the removal of X-type (SA) ligand stalling at a large number of washing steps due to charging of the QDs. Importantly, very little change is observed in the photoluminescence (PL) properties, suggesting that the choice of nonsolvent during postprocessing will allow the production of QD materials with very low organic content by mass but with good PL quantum yields. PMID:26625188

  16. Efficient intranuclear gene delivery by CdSe aqueous quantum dots electrostatically-coated with polyethyleneimine

    NASA Astrophysics Data System (ADS)

    Au, Giang H. T.; Y Shih, Wan; Shih, Wei-Heng

    2015-01-01

    Quantum dots (QDs) are semiconducting nanoparticles with photoluminescence properties that do not photobleach. Due to these advantages, using QDs for non-viral gene delivery has the additional benefit of being able to track the delivery of the genes in real time as it happens. We investigate the efficacy of mercaptopropionic acid (MPA)-capped CdSe aqueous quantum dots (AQDs) electrostatically complexed with branched polyethyleneimine (PEI) both as a non-viral gene delivery vector and as a fluorescent probe for tracking the delivery of genes into nuclei. The MPA-capped CdSe AQDs that were completely synthesized in water were the model AQDs. A nominal MPA:Cd:Se = 4:3:1 was chosen for optimal photoluminescence and zeta potential. The gene delivery study was carried out in vitro using a human colon cancer cell line, HT29 (ATCC). The model gene was a plasmid DNA (pDNA) that can express red fluorescent protein (RFP). Positively charged branched PEI was employed to provide a proton buffer to the AQDs to allow for endosomal escape. It is shown that by using a PEI-AQD complex with a PEI/AQD molar ratio of 300 and a nominal pDNA/PEI-AQD ratio of 6, we can achieve 75 ± 2.6% RFP expression efficiency with cell vitality remaining at 78 ± 4% of the control.

  17. Structural and optical properties of solvothermal synthesized nearly monodispersed CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Shahi, A. K.; Pandey, B. K.; Singh, B. P.; Gopal, R.

    2016-09-01

    Water soluble nearly monodisperse CdSe nanocrystals have been successfully synthesized via aqueous phase solvothermal route in non ionic surfactant glycolic acid ethoxylate 4-non phenyl ether (GAEPE). X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) are used to determine the phase, structural parameters such as lattice constants, strain, x-ray density and specific surface area, morphology, shape and size distribution, respectively, whereas optical properties are studied by UV-visible absorption and photoluminescence (PL) spectroscopy. All the diffraction peaks of XRD pattern indexed to wurtzite phase of hexagonal system of CdSe and crystallite sizes estimated to be 13–29 nm along some stronger and narrower peaks which is also consistent with TEM measurement while crystallinity and defects have been analyzed with selective area electron diffraction (SAED) pattern. Optical absorption spectrum shows that the as prepared sample exhibits primary and secondary absorption band centered at 2.15 eV and 1.82 eV, respectively, which is blue shifted as compared to bulk value (1.74 eV) of band gap due to quantum confinement effect. Photoluminescence spectrum shows sharp excitonic emission band centered at 583 nm which is nearer to primary band gap energy.

  18. CdSe Ring- and Tribulus-Shaped Nanocrystals: Controlled Synthesis, Growth Mechanism, and Photoluminescence Properties

    PubMed Central

    2009-01-01

    With air-stable and generic reagents, CdSe nanocrystals with tunable morphologies were prepared by controlling the temperature in the solution reaction route. Thereinto, the lower reaction temperature facilitates the anisotropic growth of crystals to obtain high-yield CdSe ring- and tribulus-shaped nanocrystals with many branches on their surfaces. The photoluminescence properties are sensitive to the nature of particle and its surface. The products synthesized at room temperature, whose surfaces have many branches, show higher blue shift and narrower emission linewidths (FWHM) of photoluminescence than that of samples prepared at higher temperature, whose surfaces have no branches. Microstructural studies revealed that the products formed through self-assembly of primary crystallites. Nanorings formed through the nonlinear attachment of primary crystallites, and the branches on the surfaces grew by linear attachment at room temperature. And the structure of tribulus-shaped nanoparticle was realized via two steps of aggregation, i.e., random and linear oriented aggregation. Along with the elevation of temperature, the branches on nanocrystal surfaces shortened gradually because of the weakened linear attachment. PMID:20596352

  19. Temporary Charge Carrier Separation Dominates the Photoluminescence Decay Dynamics of Colloidal CdSe Nanoplatelets.

    PubMed

    Rabouw, Freddy T; van der Bok, Johanna C; Spinicelli, Piernicola; Mahler, Benoît; Nasilowski, Michel; Pedetti, Silvia; Dubertret, Benoît; Vanmaekelbergh, Daniël

    2016-03-01

    Luminescent colloidal CdSe nanoplatelets with atomically defined thicknesses have recently been developed, and their potential for various applications has been shown. To understand their special properties, experiments have until now focused on the relatively short time scales of at most a few nanoseconds. Here, we measure the photoluminescence decay dynamics of colloidal nanoplatelets on time scales up to tens of microseconds. The excited state dynamics are found to be dominated by the slow (∼μs) dynamics of temporary exciton storage in a charge-separated state, previously overlooked. We study the processes of charge carrier separation and exciton recovery in pure CdSe nanoplatelets as well as in core-crown and core-shell CdSe/CdS nanoplatelets with high ensemble quantum yields of 50%, and discuss the implications. Our work highlights the importance of reversible charge carrier trapping and experiments over a wide range of time scales for the understanding of colloidal nanoemitters in general and nanoplatelets in particular. PMID:26863992

  20. Passivation of CdSe Quantum Dots by Graphene and MoS2 Monolayer Encapsulation

    NASA Astrophysics Data System (ADS)

    Zhang, Datong; Wang, Dennis Zi-Ren; Creswell, Richard C.; Lu, Chenguang; Herman, Irving P.

    The encapsulation of a monolayer of CdSe quantum dots (QDs) by one-to-three layer graphene and MoS2 sheets protects the QDs from oxidation. Photoluminescence (PL) from the QD cores shows a much slower decrease in core diameter over time due to slower oxidation in regions where the QDs are covered by van der Waals (vdW) layers than in those where they are not, for chips stored both in the dark and in the presence of light. PL mapping shows that the CdSe QDs under the central part of the vdW sheet age slower than those near its edges, because oxidation of the covered QDs is limited by transport of oxygen from the edges of the vdW sheets and not transport across the vdW layers. This encapsulation effect is also tested with other environments. Preliminary results show that vdW materials could be promising candidates for nano-coating materials for devices operating in extreme environments.

  1. Structure determination of the high-pressure phase of CdSe

    SciTech Connect

    Li, Yanchun E-mail: liuj@ihep.ac.cn; Lin, Chuanlong; Li, Xiaodong; Liu, Jing E-mail: liuj@ihep.ac.cn; Li, Gong; Xu, Jian

    2014-06-14

    Structural phase transition sequence of CdSe has been investigated at pressures up to 60 GPa under quasi-hydrostatic conditions using synchrotron X-ray diffraction. A phase transition from the wurtzite type (B4) to the NaCl-type (B1) structure has been observed, followed by another phase transition to an orthorhombic structure at 27 GPa, in agreement with previous reports. We show that this high-pressure orthorhombic phase has a Pnma symmetry rather than being a Cmcm-symmetric structure as previously suggested. From our observations, the appearance of the new reflections and reflection splitting with increasing pressure is due to the change of atomic relative positions in crystal lattice and the difference in the compression ratio of lattice parameters for the Pnma structure, and we find no evidence for the third phase transition reported previously. The pressure-induced phase transition of CdSe has been further confirmed by the density-functional theory calculations.

  2. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots.

    PubMed

    Kelley, Anne Myers

    2016-06-01

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ˜2.8 and ˜5.2 nm (˜410 and ˜2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies for the strongly Raman-active "longitudinal optical" phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.

  3. Templating growth of gold nanostructures with a CdSe quantum dot array.

    PubMed

    Paul, Neelima; Metwalli, Ezzeldin; Yao, Yuan; Schwartzkopf, Matthias; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter; Paul, Amitesh

    2015-06-01

    In optoelectronic devices based on quantum dot arrays, thin nanolayers of gold are preferred as stable metal contacts and for connecting recombination centers. The optimal morphology requirements are uniform arrays with precisely controlled positions and sizes over a large area with long range ordering since this strongly affects device performance. To understand the development of gold layer nanomorphology, the detailed mechanism of structure formation are probed with time-resolved grazing incidence small-angle X-ray scattering (GISAXS) during gold sputter deposition. Gold is sputtered on a CdSe quantum dot array with a characteristic quantum dot spacing of ≈7 nm. In the initial stages of gold nanostructure growth, a preferential deposition of gold on top of quantum dots occurs. Thus, the quantum dots act as nucleation sites for gold growth. In later stages, the gold nanoparticles surrounding the quantum dots undergo a coarsening to form a complete layer comprised of gold-dot clusters. Next, growth proceeds dominantly via vertical growth of gold on these gold-dot clusters to form an gold capping layer. In this capping layer, a shift of the cluster boundaries due to ripening is found. Thus, a templating of gold on a CdSe quantum dot array is feasible at low gold coverage.

  4. Study of the Spectral Properties of Nanocomposites with CdSe Quantum Dots in a Wide Range of Low Temperatures

    NASA Astrophysics Data System (ADS)

    Magaryan, K. A.; Eremchev, I. Y.; Karimullin, K. R.; Knyazev, M. V.; Mikhailov, M. A.; Vasilieva, I. A.; Klimusheva, G. V.

    2015-09-01

    Luminescence spectra of the colloidal solution of CdSe quantum dots (in toluene) were studied in a wide range of low temperatures. Samples were synthesized in the liquid crystal matrix of cadmium octanoate (CdC8). A comparative analysis of the obtained data with previous results was performed.

  5. Dislocation-driven growth of porous CdSe nanorods from CdSe·(ethylenediamine)(0.5) nanorods.

    PubMed

    Kim, Hyung-Bae; Jang, Du-Jeon

    2016-01-01

    Porous CdSe nanorods having a novel flute-like morphology have been prepared facilely via the hydrothermal treatment of CdSe·(en)0.5 (en = ethylenediamine) nanorods as sacrificial templates. During the hydrothermal process, various crystalline imperfections such as stacking faults and twinning planes appear due to lattice mismatches between orthorhombic CdSe·(en)0.5 and hexagonal wurtzite porous CdSe nanorods and subsequently disappear to release mismatched strains. In the self-healing process of defects, due to the imbalance of in-and-out atomic diffusion, point defects of atomic vacancies are heavily generated in CdSe nanorods to produce volume defects of voids eventually. The photoluminescence of CdSe nanorods shifts to the red region and decreases in intensity with the increase of the hydrolysis time as surface states and selenium vacancies increase. The mean lifetime of photoluminescence increases with the increase of the hydrothermal-treatment time as the fractional amplitude of the surface-state-related component increases. PMID:26615794

  6. Study of optical and structural properties of CdSe quantum dot embedded in PVA polymer matrix

    SciTech Connect

    Tyagi, Chetna Sharma, Ambika

    2015-08-28

    To enhance the properties and applicability of devices it is essential to incorporate semiconductor nanoparticles into polymer matrix. This introduces a new branch of science which includes device fabrications such as gas sensors, nonlinear optics, catalysis etc. Herein, we have synthesized CdSe/PVA nanocomposite (NC) material using wet chemical synthesis technique. The XRD studies revealed the formation of crystalline structure of CdSe nanoparticles (NP’s) and PVA NC’s with an average size of 100 nm and 5 nm respectively. Energy band gap is determined using UV-VIS Spectroscopy. A red shift in the absorption edge of CdSe/PVA NC is observed with respect to CdSe Np’s, The photoluminescence spectra also show red shift for CdSe/PVA NC as compared to CdSe NP’s Thus the use of CdSe/PVA for solar cell application would be more preferable than CdSe NP’s.

  7. Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2015-04-01

    Cadmium selenide (CdSe) was synthesized by Pseudomonas aeruginosa strain RB in a culture containing lactic acid as a carbon source, 1 mM selenite, and 1 mM cadmium under various conditions. High purity (1.02-1.16 of the atomic ratio of Se to Cd) and efficient synthesis of biogenic CdSe nanoparticles were observed at 25-30°C, 0.05-10 g L(-1) NaCl, and neutral pH conditions compared with other tested conditions. However, the size and shape of synthesized CdSe nanoparticles were not changed by changing culture conditions. The contents of S and Se in the particles respectively increased under alkaline and weak acidic conditions. Furthermore, high temperature (>37°C), high salinity (>10 g L(-1) NaCl), and alkaline pH affected the CdSe-synthesizing rate by strain RB. This report is the first optimizing the culture conditions for synthesizing biogenic CdSe nanoparticles in a batch processing.

  8. Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Bing; Shen, Chao; Zhang, Bo; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia; Chen, Guorong

    2014-05-01

    Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30 nm, and absorption peak from 475 nm to 510 nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO2 electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO2's to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO2. The resulting green synthesized CdSe QDSCs with Cu2S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

  9. Green synthesis of highly efficient CdSe quantum dots for quantum-dots-sensitized solar cells

    SciTech Connect

    Gao, Bing; Shen, Chao; Zhang, Mengya; Yuan, Shuanglong; Yang, Yunxia E-mail: grchen@ecust.edu.cn; Chen, Guorong E-mail: grchen@ecust.edu.cn; Zhang, Bo

    2014-05-21

    Green synthesis of CdSe quantum dots for application in the quantum-dots-sensitized solar cells (QDSCs) is investigated in this work. The CdSe QDs were prepared with glycerol as the solvent, with sharp emission peak, full width at half maximum around 30 nm, and absorption peak from 475 nm to 510 nm. The reaction is environmental friendly and energy saving. What's more, the green synthesized CdSe QDs are coherence to the maximum remittance region of the solar spectrum and suitable as sensitizers to assemble onto TiO{sub 2} electrodes for cell devices application. What's more, the dynamic procedure of the carriers' excitation, transportation, and recombination in the QDSCs are discussed. Because the recombination of the electrons from the conduction band of TiO{sub 2}'s to the electrolyte affects the efficiency of the solar cells greatly, 3-Mercaptopropionic acid capped water-dispersible QDs were used to cover the surface of TiO{sub 2}. The resulting green synthesized CdSe QDSCs with Cu{sub 2}S as the electrode show a photovoltaic performance with a conversion efficiency of 3.39%.

  10. Controlled synthesis and optical properties of tunable CdSe quantum dots and effect of pH

    SciTech Connect

    Ratnesh, R. K.; Mehata, Mohan Singh

    2015-09-15

    Cadmium selenide (CdSe) quantum dots (Q-dots) were prepared by using non-coordinating solvent octadecene instead of coordinating agent trioctylphosphine oxide (TOPO). Reaction processes were carried out at various temperatures of 240°, 260°, 280° and 300° C under nitrogen atmosphere. The prepared CdSe Q-dots which are highly stable show uniform size distribution and tunable optical absorption and photoluminescence (PL). The growth temperature significantly influenced the particle size; spectral behavior, energy band gap and PL intensity and the full width at half maxima (FWHM). Three different methods were employed to determine the particle size and the average particle size of the CdSe Q-dots is 3.2 - 4.3 nm, grown at different temperatures. In addition, stable and mono-dispersed water soluble CdSe Q-dots were prepared by the ligand exchange technique. Thus, the water soluble Q-dots, which are sensitive to the basic pH may be important for biological applications.

  11. Comparative Electrical Study on n-Type Cd1-XSeX and CdSe Thin Films Deposited by Electron Beam Evaporation Technique

    NASA Astrophysics Data System (ADS)

    Verma, Aneet Kumar; Tripathi, Ravishankar Nath; Vishwakarma, Rahul S. R.

    2011-10-01

    Since the last two decades, in the area of electronics, group II-VI compounds have drawn considerable interest due to their various applications. Cadmium selenide (CdSe), a member of this group, is one of the promising semiconducting material from its application point of view. The n-type Cd1-XSeX and CdSe films have been deposited onto ultra cleaned glass substrates by electron bean evaporated technique under 10-5 torr vacuum. The n-type Cd1-XSeX thin films has confirmed by Hall effect data. The resistivity of the film has been determined by I-V measurement using four probe setup. It is observed that the resistivity decreases with increases Cd/Se ratio and we found that n-type Cd1-XSeX thin films is more better than CdSe thin films.

  12. Measuring photoluminescence spectra of self-assembly array nanowire of colloidal CdSe quantum dots using scanning near-field optics microscopy

    NASA Astrophysics Data System (ADS)

    Bai, Zhongchen; Hao, Licai; Zhang, Zhengping; Qin, Shuijie

    2016-05-01

    A novel periodic array CdSe nanowire is prepared on a substrate of the porous titanium dioxide by using a self-assembly method of the colloidal CdSe quantum dots (QDs). The experimental results show that the colloidal CdSe QDs have renewedly assembled on its space scale and direction in process of losing background solvent and form the periodic array nanowire. The main peak wavelength of Photoluminescence (PL) spectra, which is measured by using a 100-nm aperture laser beam spot on a scanning near-field optics microscopy, has shifted 60 nm with compared to the colloidal CdSe QDs. Furthermore, we have measured smaller ordered nanometer structure in thin QDs area as well, a 343-nm periodic nanowire in thick QDs area and the colloidal QDs in edge of well-ordered nanowire.

  13. Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

    SciTech Connect

    Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul

    2006-01-27

    We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.

  14. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    PubMed

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  15. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    PubMed

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs. PMID:27224958

  16. Superresolution Structure Optical Disk with Semiconductor-Doped Glass Mask Layer Containing CdSe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yeh, Tung‑Ti; Wang, Jr‑Hau; Hsieh, Tsung‑Eong; Shieh, Han‑Ping D.

    2006-02-01

    In this work, we demonstrate a distinct superresolution phenomenon and signal properties of an optical disk with a semiconductor-doped glass (SDG) mask layer containing CdSe nanoparticles. It was found that the 69 nm marks could be consistently retrieved at reading power (Pr) = 4 mW with carrier-to-noise ratio (CNR) = 13.56 dB. The signals were clearly resolved with CNRs nearly equal to 40 dB at Pr=4 mW when the recorded marks were larger than 100 nm. The cyclability test indicated that the CdSe-SiO2 SDG layer might serve as a stable and reliable optical mask layer in 105 readout cycles.

  17. Persistent Inter-Excitonic Quantum Coherence in CdSe Quantum Dots

    PubMed Central

    Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Fidler, Andrew F.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.

    2014-01-01

    The creation and manipulation of quantum superpositions is a fundamental goal for the development of materials with novel optoelectronic properties. In this letter, we report persistent (~80 fs lifetime) quantum coherence between the 1S and 1P excitonic states in zinc-blende colloidal CdSe quantum dots at room temperature, measured using Two-Dimensional Electronic Spectroscopy. We demonstrate that this quantum coherence manifests as an intradot phenomenon, the frequency of which depends on the size of the dot excited within the ensemble of QDs. We model the lifetime of the coherence and demonstrate that correlated interexcitonic fluctuations preserve relative phase between excitonic states. These observations suggest an avenue for engineering long-lived interexcitonic quantum coherence in colloidal quantum dots. PMID:24719679

  18. CdTe and CdSe Quantum Dots Cytotoxicity: A Comparative Study on Microorganisms

    PubMed Central

    Gomes, Suzete A.O.; Vieira, Cecilia Stahl; Almeida, Diogo B.; Santos-Mallet, Jacenir R.; Menna-Barreto, Rubem F. S.; Cesar, Carlos L.; Feder, Denise

    2011-01-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus. PMID:22247686

  19. Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots.

    PubMed

    Bloom, Brian P; Kiran, Vankayala; Varade, Vaibhav; Naaman, Ron; Waldeck, David H

    2016-07-13

    This work demonstrates that chiral imprinted CdSe quantum dots (QDs) can act as spin selective filters for charge transport. The spin filtering properties of chiral nanoparticles were investigated by magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements and magnetoresistance measurements. The mCP-AFM measurements show that the chirality of the quantum dots and the magnetic orientation of the tip affect the current-voltage curves. Similarly, magnetoresistance measurements demonstrate that the electrical transport through films of chiral quantum dots correlates with the chiroptical properties of the QD. The spin filtering properties of chiral quantum dots may prove useful in future applications, for example, photovoltaics, spintronics, and other spin-driven devices. PMID:27336320

  20. Size effects on Raman spectra of small CdSe nanoparticles in polymer films

    NASA Astrophysics Data System (ADS)

    Dzhagan, V. M.; Valakh, M. Ya; Raevskaya, A. E.; Stroyuk, A. L.; Kuchmiy, S. Ya; Zahn, D. R. T.

    2008-07-01

    The results of a resonant Raman scattering (RRS) study of polymer-stabilized colloidal CdSe nanoparticles (NPs) are reported. The size-selective nature of the RRS is demonstrated by analysing the NP ensembles with different average size \\bar {d} and size distribution Δd using a set of excitation wavelengths. The effect of size selection on the estimation of \\bar {d} and Δd values from the RRS spectra is discussed, as well as some peculiarities of RRS on surface optical phonons. From the experimentally observed small variation of the I2LO/ILO ratio for 2-5 nm NPs a minor effect of \\bar {d} on the electron-phonon coupling strength in this \\bar {d} range is supposed.

  1. Ultralow thermal conductivity in polycrystalline CdSe thin films with controlled grain size.

    PubMed

    Feser, Joseph P; Chan, Emory M; Majumdar, Arun; Segalman, Rachel A; Urban, Jeffrey J

    2013-05-01

    Polycrystallinity leads to increased phonon scattering at grain boundaries and is known to be an effective method to reduce thermal conductivity in thermoelectric materials. However, the fundamental limits of this approach are not fully understood, as it is difficult to form uniform sub-20 nm grain structures. We use colloidal nanocrystals treated with functional inorganic ligands to obtain nanograined films of CdSe with controlled characteristic grain size between 3 and 6 nm. Experimental measurements demonstrate that thermal conductivity in these composites can fall beneath the prediction of the so-called minimum thermal conductivity for disordered crystals. The measurements are consistent, however, with diffuse boundary scattering of acoustic phonons. This apparent paradox can be explained by an overattribution of transport to high-energy phonons in the minimum thermal conductivity model where, in compound semiconductors, optical and zone edge phonons have low group velocity and high scattering rates.

  2. Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy

    SciTech Connect

    Joshua T. Wright; Su, Dong; van Buuren, Tony; Meulenberg, Robert W.

    2014-08-21

    The electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Moreover, the electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and an octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.

  3. Silver nanowires-based signal amplification for CdSe quantum dots electrochemiluminescence immunoassay.

    PubMed

    Huang, Tingyu; Meng, Qingmin; Jie, Guifen

    2015-04-15

    A novel silver-cysteine hybrid nanowires (SCNWs) with many reactive carboxyl and amine groups were prepared, which enable them to be used as idea signal amplifying labels in bioassays. A large number of CdSe quantum dots (QDs) were loaded on the SCNWs to develop amplified SCNWs-QDs electrochemiluminescence (ECL) signal probe. The PAMAM dendrimer-SCNWs nanohybrids covered on the electrode constructed an effective antibody immobilization matrix and made the immobilized biomolecules hold high stability and bioactivity. Based on the specific sandwich immunoreaction strategy, the detection antibody (Ab2)-SCNWs-QDs ECL signal probe was applied to the sensitive signal-on ECL immunoassay of human IgG. The SCNWs-QDs ECL not only opens promising new ECL emitting species, but also promotes the development of novel ECL signal-transition platforms for biosensing devices.

  4. Quantum-confined emission and fluorescence blinking of individual exciton complexes in CdSe nanowires.

    PubMed

    Franz, Dennis; Reich, Aina; Strelow, Christian; Wang, Zhe; Kornowski, Andreas; Kipp, Tobias; Mews, Alf

    2014-11-12

    One-dimensional semiconductor nanostructures combine electron mobility in length direction with the possibility of tailoring the physical properties by confinement effects in radial direction. Here we show that thin CdSe quantum nanowires exhibit low-temperature fluorescence spectra with a specific universal structure of several sharp lines. The structure strongly resembles the pattern of bulk spectra but show a diameter-dependent shift due to confinement effects. Also the fluorescence shows a pronounced complex blinking behavior with very different blinking dynamics of different emission lines in one and the same spectrum. Time- and space-resolved optical spectroscopy are combined with high-resolution transmission electron microscopy of the very same quantum nanowires to establish a detailed structure-property relationship. Extensive numerical simulations strongly suggest that excitonic complexes involving donor and acceptor sites are the origin of the feature-rich spectra.

  5. Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes.

    PubMed

    Washington, Aaron L; Strouse, Geoffrey F

    2008-07-16

    Controlling nanomaterial growth via the "specific microwave effect" can be achieved by selective heating of the chalcogenide precursor. The high polarizability of the precursor allows instantaneous activation and subsequent nucleation leading to the synthesis of CdSe and CdTe in nonmicrowave absorbing alkane solvents. Regardless of the desired size, narrow dispersity nanocrystals can be isolated in less than 3 min with high quantum efficiencies and elliptical morphologies. The reaction does not require a high temperature injection step, and the alkane solvent can be easily removed. In addition, batch-to-batch variance in size is 4.2 +/- 0.14 nm for 10 repeat experimental runs. The use of a stopped-flow reactor allows near continuous automation of the process leading to potential industrial benefits.

  6. Thickness dependent optical and electrical properties of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Chander, S.; Nehra, S. P.; Lal, C.; Dhaka, M. S.

    2016-05-01

    The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows that the electrical resistivity is observed to be decreased with thickness.

  7. Photoconductivity of composites based on CdSe quantum dots and low-band-gap polymers

    NASA Astrophysics Data System (ADS)

    Dayneko, Sergey; Linkov, Pavel; Martynov, Igor; Tameev, Alexey; Tedoradze, Marine; Samokhvalov, Pavel; Nabiev, Igor; Chistyakov, Alexander

    2016-05-01

    Photoconductivity of thin layers prepared by spin coating of blends of CdSe quantum dots (QDs) and a low-band-gap polymer PCDTBT or PTB7 has been studied. It has been found that photocurrent in the composites containing QDs of 10-nm in size is significantly higher than in those of containing 5-nm QDs. Analysis of the results showed that the photoresponse of the thin layers is mainly determined by the relative positions of the frontier energy levels of the materials used, organic semiconductors and QDs. Therefore, the ability to tune the relative positions of these levels by varying the QD size is of special importance, thus allowing the optimization of photodetectors and photovoltaic cells.

  8. Radiative rate modification in CdSe quantum dot-coated microcavity

    SciTech Connect

    Veluthandath, Aneesh V.; Bisht, Prem B.

    2015-12-21

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  9. Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes.

    PubMed

    Washington, Aaron L; Strouse, Geoffrey F

    2008-07-16

    Controlling nanomaterial growth via the "specific microwave effect" can be achieved by selective heating of the chalcogenide precursor. The high polarizability of the precursor allows instantaneous activation and subsequent nucleation leading to the synthesis of CdSe and CdTe in nonmicrowave absorbing alkane solvents. Regardless of the desired size, narrow dispersity nanocrystals can be isolated in less than 3 min with high quantum efficiencies and elliptical morphologies. The reaction does not require a high temperature injection step, and the alkane solvent can be easily removed. In addition, batch-to-batch variance in size is 4.2 +/- 0.14 nm for 10 repeat experimental runs. The use of a stopped-flow reactor allows near continuous automation of the process leading to potential industrial benefits. PMID:18576624

  10. Hole surface trapping in CdSe nanocrystals: dynamics, rate fluctuations, and implications for blinking.

    PubMed

    Gómez-Campos, Francisco M; Califano, Marco

    2012-09-12

    Carrier trapping is one of the main sources of performance degradation in nanocrystal-based devices. Yet the dynamics of this process is still unclear. We present a comprehensive investigation into the efficiency of hole transfer to a variety of trap sites located on the surface of the core or the shell or at the core/shell interface in CdSe nanocrystals with both organic and inorganic passivation, using the atomistic semiempirical pseudopotential approach. We separate the contribution of coupling strength and energetics in different systems and trap configurations, obtaining useful general guidelines for trapping rate engineering. We find that trapping can be extremely efficient in core-only systems, with trapping times orders of magnitude faster than radiative recombination. The presence of an inorganic shell can instead bring the trapping rates well below the typical radiative recombination rates observed in these systems. PMID:22849432

  11. Selective recognition of dysprosium(III) ions by enhanced chemiluminescence CdSe quantum dots.

    PubMed

    Hosseini, Morteza; Ganjali, Mohammad R; Vaezi, Zahra; Faridbod, Farnoush; Arabsorkhi, Batool; Sheikhha, Mohammad H

    2014-01-01

    The intensity of emitted light from CdSe quantum dots (QDs)-H2O2 is described as a novel chemiluminescence (CL) reaction for determination of dysprosium. This reaction is based on the catalytic effect of Dy(3+) ions, causing a significant increase in the light emission, as a result of the reaction of quantum dots (QDs) with hydrogen peroxide. In the optimum conditions, this method was satisfactorily described by linear calibration curve in the range of 8.3×10(-7)-5.0×10(-6)M, the detection limit of 6.0×10(-8)M, and the relative standard deviation for five determinations of 2.5×10(-6)M Dy(3+) 3.2%. The main experimental advantage of the proposed method is its selective to Dy(3+) ions compared with common coexisting cations, therefore, it was successfully applied for the determination of dysprosium ions in water samples.

  12. Tuning the Surface Structure and Optical Properties of CdSe Clusters Using Coordination Chemistry

    SciTech Connect

    Cossairt, Brandi M.; Juhas, Pavol; Billinge, Simon J.L.; Owen, Jonathan S.

    2012-03-26

    A series of nonstoichiometric CdSe clusters with lowest energy electronic absorptions between 409 and 420 nm has been prepared from cadmium 1-naphthoate, 2-naphthoate, 4-thiomethyl-1-naphthaote, and 1-naphthalene thiolate complexes and diphenylphosphine selenide (DPPSe). Pair distribution function analysis of X-ray diffraction data, ligand exchange experiments, and NMR molecular weight analyses suggest the nanocrystal core changes minimally among these clusters despite significant changes to their absorption and luminescence spectra. Photoluminescence excitation spectra obtained at 77 K reveal an energy transfer process between the surface-trapped excited state and the naphthalene-containing ligands that leads to ligand phosphorescence. A Dexter energy transfer mechanism is proposed to explain the observation of ligand phosphorescence on excitation of the cluster. These compounds demonstrate that cluster absorption and trap luminescence can be controlled with surface coordination chemistry.

  13. Photon echo studies of biexcitons and coherences in colloidal CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Colonna, Anne E.; Yang, Xiujuan; Scholes, Gregory D.

    2005-04-01

    The cover picture shows the size-dependent photoluminescence from CdSe colloidal quantum dots that were investigated in the work [1]. Ultrafast photon echo experiments were undertaken in conjunction with simulations based on a realistic many-body theory, shown in the picture, to ascertain the significance of many-body contributions to the third-order nonlinear response.The first author Anne E. Colonna undertook this research during a summer internship in the Department of Chemistry, University of Toronto. She is currently pursuing graduate studies at École Polytechnique, Saclay, in the Laboratoire d'Optique et Biosciences.The author Gregory D. Scholes is an Assistant Professor in the Department of Chemistry, University of Toronto. His research interests include synthesis and shape control of quantum dots, as well as the application of ultrafast laser spectroscopy to investigate the electronic structure of inorganic and organic semiconductors.

  14. Optical and Phonon Characterization of Ternary CdSe x S1- x Alloy Quantum Dots

    NASA Astrophysics Data System (ADS)

    Thi, L. A.; Cong, N. D.; Dang, N. T.; Nghia, N. X.; Quang, V. X.

    2016-05-01

    Ternary CdSe x S1- x alloy quantum dots (QDs) were synthesized using a wet chemical method. Their morphology, particle size, structural, optical, and vibrational properties were investigated using transmission electron microscopy, x-ray diffraction, UV-Vis, fluorescence and Raman spectroscopy, respectively. The optical and vibrational properties of the QDs can be controlled by adjusting the Se/S molar ratio. The absorption and emission peaks shift to a longer wavelength range when increasing the Se content. The presence of two CdSe-like and CdS-like longitudinal optical phonon modes was observed. The dependencies of the optical and phonon modes on the Se content are discussed in detail.

  15. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    NASA Astrophysics Data System (ADS)

    Milekhin, Alexander G.; Sveshnikova, Larisa L.; Duda, Tatyana A.; Rodyakina, Ekaterina E.; Dzhagan, Volodymyr M.; Sheremet, Evgeniya; Gordan, Ovidiu D.; Himcinschi, Cameliu; Latyshev, Alexander V.; Zahn, Dietrich R. T.

    2016-05-01

    Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir-Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 103 which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  16. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  17. Molecular-Counting-Free and Electrochemiluminescent Single-Molecule Immunoassay with Dual-Stabilizers-Capped CdSe Nanocrystals as Labels.

    PubMed

    Zhang, Xin; Zhang, Bin; Miao, Wujian; Zou, Guizheng

    2016-05-17

    Biorelated single-molecule detection (SMD) has been achieved typically by imaging the redox fluorescent labels and then determining each label one by one. Herein, we demonstrated that the capping agents (i.e., mercaptopropionic acid and sodium hexametaphosphate) can facilitate the electrochemical involved hole (or electron) injecting process and improve the stability of the dual-stabilizers-capped CdSe nanocrystals (NCs), so that the CdSe NCs could be electrochemically and repeatedly inspired to excited states by giving off electrochemiluminescence (ECL) in a cyclic pattern. With the CdSe NCs as ECL label and carcinoembryonic antigen (CEA) as target molecule, a convenient single-molecule immunoassay was proposed by simply detecting the ECL intensity of the dual-stabilizers-capped CdSe NCs in a sandwich-typed immune complex. The limit of detection is 0.10 fg/mL at S/N = 3, which corresponds to about 6-8 CEA molecules in 20 μL of serum sample. Importantly, the ECL spectra of both CdSe NCs and its conjugate with probe antigen in the immune complex were almost identical to the photoluminescence spectrum of bare CdSe NCs, indicating that all emissions were originated from the same excited species. The molecular-counting-free and ECL-based SMD might be a promising alternative to the fluorescent SMD. PMID:27118637

  18. Computational insights into CdSe quantum dots' interactions with acetate ligands.

    PubMed

    Tamukong, Patrick K; Peiris, Wadumesthrige D N; Kilina, Svetlana

    2016-07-27

    Using density functional theory (DFT) and time-dependent DFT (TDDFT), we investigate the effects of carboxylate groups on the electronic and optical properties of CdSe quantum dots (QDs). We specifically focus on the mechanisms of the binding of the acetate anion to the QD surface with and without excess of Cd(2+) cations. Our calculations show that the most stable ligated conformations are those where an acetate is attached to extra Cd(2+) ion forming a [Cd(2+)(CH3COO(-))] at the QD's surface, while also accompanied by an acetate attached nearby at the surface balancing the overall neutral charge of the system. In contrast, formation of a neutral metal-acetate complex [Cd(2+)(CH3COO(-))2] at the QD surface is found to be the least energetically preferable. A strength of the QD-ligand interaction depends on the solvent, the facet of the QD to which the ligands are attached, and the binding mode - with the bridging mode found to be the most stable conformation for both acetate and cadmium acetate ligands. The cadmium acetate ligands introduce electron trap states at the edge of the conduction band - unoccupied orbitals predominately localized on Cd(2+) ion - that are extremely sensitive to the ligand position and the solvent polarity. Polar solvents like acetonitrile delocalize the electronic density over the entire system and, thus, eliminate trap states. As a result, mixed passivation of the CdSe QDs by pairs of cadmium acetate and acetate ligands provides optimal optical properties with minimal contributions of the ligand-related trap states and optically bright lowest energy transitions. PMID:27406268

  19. Orbital alignment at the internal interface of arylthiol functionalized CdSe molecular hybrids

    SciTech Connect

    Li, Zhi; Schlaf, Rudy; Mazzio, Katherine A.; Okamoto, Ken; Luscombe, Christine K.

    2015-04-21

    Organic-inorganic nanoparticle molecular hybrid materials are interesting candidates for improving exciton separation in organic solar cells. The orbital alignment at the internal interface of cadmium selenide (ArS-CdSe) hybrid materials functionalized with covalently attached arylthiolate moieties was investigated through X-ray photoemission spectroscopy (XPS) and ultraviolet photoemission spectroscopy (UPS). A physisorbed interface between arylthiol (ArSH) ligands and CdSe nanoparticles was also investigated for comparison. This interface was created via a multi-step thin film deposition procedure in-vacuo, where the surface was characterized after each experimental step. This enabled the direct comparison of ArSH/CdSe interfaces produced via physisorption and ArS-CdSe covalently attached hybrid materials, which rely on a chemical reaction for their synthesis. All material depositions were performed using an electrospray deposition, which enabled the direct injection of solution-originating molecular species into the vacuum system. This method allows XPS and UPS measurements to be performed immediately after deposition without exposure to the atmosphere. Transmission electron microscopy was used to determine the morphology and particle size of the deposited materials. Ultraviolet-visible spectroscopy was used to estimate the optical band gap of the CdSe nanoparticles and the HOMO-LUMO gap of the ArSH ligands. These experiments showed that hybridization via covalent bonds results in an orbital realignment at the ArSH/CdSe interface in comparison to the physisorbed interface. The orbital alignment within the hybrid caused a favorable electron injection barrier, which likely facilitates exciton-dissociation while preventing charge-recombination.

  20. Effect of reaction media on the growth and photoluminescence of colloidal CdSe nanocrystals.

    PubMed

    Yu, Kui; Singh, Shanti; Patrito, Natasha; Chu, Virginia

    2004-12-01

    Using cadium oxide (CdO) as the Cd precursor and tri-n-octylphosphine selenide (TOPSe) as the Se source, TOP-capped and TOP/tri-n-octylphosphine oxide (TOPO)-capped CdSe nanocrystals were synthesized without the use of an acid. The synthetic approach involved the addition of a TOPSe/TOP solution into a CdO/TOP solution with or without TOPO at one temperature and subsequent growth at a lower temperature. The temporal evolution of the optical properties, namely, absorption and luminescence, of the growing nanocrystals was monitored in detail. A comprehensive examination on the control of the photoluminescence (PL) properties was performed by systematically varying the TOP/TOPO weight ratio of the reaction media. Surprisingly, a rational choice of 100% TOP or 80% TOP was found to produce "quality" nanocrystals when monitored under the present experimental conditions and growth-time scale. The term "quality" is mainly based on the sharp features and rich substructure exhibited in the absorption spectra of the growing nanocrystals, as well as the sharp features in the emission spectra with narrow full width at half-maximum (fwhm). There are two distinguishable stages of growth: an early stage (<5 min) and a later stage. TOP plays a major role in the control of a slow growth rate in the early stage, while TOPO controls slow growth in the later stage. The optical sensitivity of the growing nanocrystals when dispersed in nonpolar or polar solvents was studied, including two size-dependent parameters, namely, the solvent sensitivity (PL intensity) and nonresonant Stokes shift (NRSS). The insights gained from the present study enable a synthetic approach in which high-quality CdSe nanocrystals are achieved with high synthetic reproducibility.

  1. Electrochemical preparation of vertically aligned, hollow CdSe nanotubes and their p-n junction hybrids with electrodeposited Cu2O

    NASA Astrophysics Data System (ADS)

    Debgupta, Joyashish; Devarapalli, Ramireddy; Rahman, Shakeelur; Shelke, Manjusha V.; Pillai, Vijayamohanan K.

    2014-07-01

    Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar device prepared with electrodeposited CdSe films (not nanotubes) and Cu2O on FTO. This has been attributed to the hollow 1-D nature of CdSe NTs, which provides enhanced inner and outer surface areas for better absorption of light and also assists faster transport of photogenerated charge carriers.Vertically aligned, hollow nanotubes of CdSe are grown on fluorine doped tin oxide (FTO) coated glass substrates by ZnO nanowire template-assisted electrodeposition technique, followed by selective removal of the ZnO core using NH4OH. A detailed mechanism of nucleation and anisotropic growth kinetics of nanotubes have been studied by a combination of characterization tools such as chronoamperometry, SEM and TEM. Interestingly, ``as grown'' CdSe nanotubes (CdSe NTs) on FTO coated glass plates behave as n-type semiconductors exhibiting an excellent photo-response (with a generated photocurrent density value of ~470 μA cm-2) while in contact with p-type Cu2O (p-type semiconductor, grown separately on FTO plates) because of the formation of a n-p heterojunction (type II). The observed photoresponse is 3 times higher than that of a similar

  2. Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis.

    PubMed

    Yang, Xiaohao; Masadeh, Ahmad S; McBride, James R; Božin, Emil S; Rosenthal, Sandra J; Billinge, Simon J L

    2013-06-14

    The atomic pair distribution function (PDF) analysis of X-ray powder diffraction data has been used to study the structure of small and ultra-small CdSe nanoparticles. A method is described that uses a wurtzite and zinc-blende mixed phase model to account for stacking faults in CdSe particles. The mixed-phase model successfully describes the structure of nanoparticles larger than 2 nm yielding a stacking fault density of about 30%. However, for ultrasmall nanoparticles smaller than 2 nm, the models cannot fit the experimental PDF showing that the structure is significantly modified from that of larger particles and the bulk. The observation of a significant change in the average structure at ultra-small size is likely to explain the unusual properties of the ultrasmall particles such as their white light emitting ability.

  3. Thiolated DAB dendrimers and CdSe quantum dots nanocomposites for Cd(II) or Pb(II) sensing.

    PubMed

    Algarra, M; Campos, B B; Alonso, B; Miranda, M S; Martínez, A M; Casado, C M; Esteves da Silva, J C G

    2012-01-15

    Four different generation of thiol-DAB dendrimers were synthesized, S-DAB-G(x) (x=1, 2, 3 and 5), and coupled with CdSe quantum dots, to obtain fluorescent nanocomposites as metal ions sensing. Cd(II) and Pb(II) showed the higher enhancement and quenching effects respectively towards the fluorescence of S-DAB-G(5)-CdSe nanocomposite. The fluorescence enhancement provoked by Cd(II) can be linearized using a Henderson-Hasselbalch type equation and the quenching provoked by Pb(II) can be linearized by a Stern-Volmer equation. The sensor responds to Cd(II) ion in the 0.05-0.7μM concentration range and to Pb(II) ion in the 0.01-0.15mM concentration range with a LOD of 0.06mM. The sensor has selectivity limitations but its dendrimer configuration has analytical advantages.

  4. CdSe quantum dots-poly(3-hexylthiophene) nanocomposite sensors for selective chloroform vapor detection at room temperature

    NASA Astrophysics Data System (ADS)

    Mondal, S. P.; Bera, S.; Narender, G.; Ray, S. K.

    2012-10-01

    Olive oil capped CdSe quantum dots (QDs) of average size ˜6 nm have been grown by a green chemical route synthesis for the fabrication of nanocomposite organic vapor sensing devices. A highly selective, room temperature chloroform vapor sensor has been fabricated using capped CdSe QDs and conducting polymer [poly(3-hexylthiophene)] nanocomposites. The nanocomposite sensor has been tested with the choloroform vapor of concentration varying from 100-1200 ppm at room temperature using different bias voltages. The recovery time of the sensor has been found to be improved on illumination with a monochromatic light of 600 nm, due to the photo-induced enhancement of charge transfer in nanocomposites.

  5. Structural and optical characterization of CdSe nanocrystallites/rare earth ions in sol gel glasses

    NASA Astrophysics Data System (ADS)

    Jose, Gijo; Joseph, Cyriac; Ittyachen, M. A.; Unnikrishnan, N. V.

    2007-07-01

    Sol-gel method is used to prepare semiconductor cadmium selenide nanocrystallites together with europium and terbium ions in silica matrix. From the electron diffraction pattern in the transmission electron micrograph (TEM), the plane distances (d) were estimated to be 1.072 Å, 1.233 Å and 2.149 Å, which match the (2 1 4), (3 0 0) and (1 1 0) planes of bulk CdSe. The intensity of characteristic red emission of Europium (Eu3+) and green emission of Terbium (Tb3+) ions increases considerably in the presence of CdSe particles. The blue emission is prominent in the glass samples in the gel stage. The purity of the colors are measured using the Commission Internationale de Eclairage (CIE) color coordinate diagram and is found to be 100% for RED and GREEN.

  6. Increased carrier mobility and lifetime in CdSe quantum dot thin films through surface trap passivation and doping.

    PubMed

    Straus, Daniel B; Goodwin, E D; Gaulding, E Ashley; Muramoto, Shin; Murray, Christopher B; Kagan, Cherie R

    2015-11-19

    Passivating surface defects and controlling the carrier concentration and mobility in quantum dot (QD) thin films is prerequisite to designing electronic and optoelectronic devices. We investigate the effect of introducing indium in CdSe QD thin films on the dark mobility and the photogenerated carrier mobility and lifetime using field-effect transistor (FET) and time-resolved microwave conductivity (TRMC) measurements. We evaporate indium films ranging from 1 to 11 nm in thickness on top of approximately 40 nm thick thiocyanate-capped CdSe QD thin films and anneal the QD films at 300 °C to densify and drive diffusion of indium through the films. As the amount of indium increases, the FET and TRMC mobilities and the TRMC lifetime increase. The increase in mobility and lifetime is consistent with increased indium passivating midgap and band-tail trap states and doping the films, shifting the Fermi energy closer to and into the conduction band. PMID:26536065

  7. Photoelectrochemical Characterization of Polycrystalline CdSe, CdTe and CuInSe2 Semiconductor Films

    NASA Astrophysics Data System (ADS)

    Koutsikou, R.; Bouroushian, M.

    2010-01-01

    Useful optical parameters of thin semiconducting films can be determined by electrochemical and electrical techniques. This work is an attempt to characterize cathodically electrodeposited binary cadmium chalcogenide (CdSe, CdTe) and ternary Cu-chalcopyrite (CuInSe2) films by photoelectrochemical techniques. Namely, photovoltammetry, photocurrent spectroscopy and onset potential method. Some fundamentals, regarding the estimation of band gap energy and flat band potential values of these semiconductors, are briefly discussed.

  8. Enhanced lateral photovoltaic effect observed in CdSe quantum dots embedded structure of Zn/CdSe/Si.

    PubMed

    Lan, Tian; Liu, Shuai; Wang, Hui

    2011-01-01

    The quantum dots (QDs) system has been intensively studied for decades owing to its huge potential for applications. In this Letter, we report a lateral photovoltaic effect (LPE) with a large sensitivity observed in CdSe QDs embedded structure of Zn/CdSe/Si. This result not only enriches applications of the QDs system but also opens a new window to study the carrier dynamics of the QDs system.

  9. Synthesis, Surface Studies, Composition and Structural Characterization of CdSe, Core/Shell, and Biologically Active Nanocrystals

    PubMed Central

    Rosenthal, Sandra J.; McBride, James; Pennycook, Stephen J.; Feldman, Leonard C.

    2011-01-01

    Nanostructures, with their very large surface to volume ratio and their non-planar geometry, present an important challenge to surface scientists. New issues arise as to surface characterization, quantification and interface formation. This review summarizes the current state of the art in the synthesis, composition, surface and interface control of CdSe nanocrystal systems, one of the most studied and useful nanostructures. PMID:21479151

  10. Understanding the electronic structure of CdSe quantum dot-fullerene (C60) hybrid nanostructure for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab

    2014-09-01

    By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C60) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C60 systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD. With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C60-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C60 hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.

  11. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.

    PubMed

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates. PMID:25483981

  12. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films

    NASA Astrophysics Data System (ADS)

    Hu, Lian; Zhang, Bingpo; Xu, Tianning; Li, Ruifeng; Wu, Huizhen

    2015-01-01

    Dendritic Ag2Se nanostructures are synthesized in a dry environment by UV irradiating the hybrids composed of CdSe quantum dots (QDs) and silver (Ag). UV irradiation on CdSe QDs induces a photooxidation effect on the QD surface and leads to the formation of SeO2 components. Then SeO2 reacts with the Ag atoms in either Ag film or QD layer to produce the Ag2Se. The growth mechanism of Ag2Se dendrites on solid Ag films is explored and explained by a diffusion limited aggregation model in which the QD layer provides enough freedom for Ag2Se motion. Since the oxidation of the CdSe QDs is the critical step for the Ag2Se dendrites formation this dry chemical interaction between QDs and Ag film can be applied in the study of the QD surface chemical properties. With this dry synthesis method, the Ag2Se dendrites can also be facilely formed at the designed area on Ag substrates.

  13. Synthesis of CdSe nanocrystals in a noncoordinating solvent: effect of reaction temperature on size and optical properties.

    PubMed

    Nag, Angshuman; Sapra, Sameer; Chakraborty, S; Basu, S; Sarma, D D

    2007-06-01

    Colloidal synthesis of high quality CdSe nanocrystals with controllable size and tunable properties have been one of the most important topics of research over the last decade, in view of its huge technological potentials. CdSe is one of the most studied nanocrystals of this category because of its photoluminescence tunability across the visible spectrum. We have synthesized CdSe nanocrystals using CdO precursor in a noncoordinating solvent and studied the effect of the reaction temperature on the size and optical properties of the nanocrystals. The size of the nanocrystals could be varied systematically in the range of 3.5 to 6.6 nm diameter with a remarkably narrow size distribution by controlling only the reaction temperature, without any need for a post-synthesis processing. The band gap and the corresponding band edge emission could be tuned across the entire visible range by tuning the size of the nanocrystals. The narrow width of the photoluminescence emissions of different colours (blue to red) make these nanocrystals a potential candidate for different optical and optoelectronic devices. PMID:17654973

  14. Reconstructing a solid-solid phase transformation pathway in CdSe nanosheets with associated soft ligands.

    PubMed

    Wang, Zhongwu; Wen, Xiao-Dong; Hoffmann, Roald; Son, Jae Sung; Li, Ruipeng; Fang, Chia-Chen; Smilgies, Detlef-M; Hyeon, Taeghwan

    2010-10-01

    Integrated single-crystal-like small and wide-angle X-ray diffraction images of a CdSe nanosheet under pressure provide direct experimental evidence for the detailed pathway of transformation of the CdSe from a wurtzite to a rock-salt structure. Two consecutive planar atomic slips [(001) {110} in parallel and (102) {101}with a distortion angle of ∼40°] convert the wurtzite-based nanosheet into a saw-like rock-salt nanolayer. The transformation pressure is three times that in the bulk CdSe crystal. Theoretical calculations are in accord with the mechanism and the change in transformation pressure, and point to the critical role of the coordinated amines. Soft ligands not only increase the stability of the wurtzite structure, but also improve its elastic strength and fracture toughness. A ligand extension of 2.3 nm appears to be the critical dimension for a turning point in stress distribution, leading to the formation of wurtzite (001)/zinc-blende (111) stacking faults before rock-salt nucleation.

  15. Inclusion of CdSe quantum dots on the P-doped emitter of Si solar cells.

    PubMed

    Choi, Jaeho; Parida, Bhaskar; Ji, Hyung Yong; Park, Seungil; Kim, Keunjoo

    2012-07-01

    We investigated Cadium Selenide quantum dots embedded in the Si solar cell in order to improve the efficiency of conventional Si solar cell. CdSe quantum dots with 3 to approximately 4 nm size were printed on the phospho-silicate glass layer grown over the emitter surface of p-n junction Si solar cells during the phosphorous diffusion process. Ohmic contact was formed by the contribution of nanoparticles at the Si emitter in spite of the existance of phospho-silicate glass layer. The enhanced light absorption due to the quantum dots was ranged from 500 to 600 nm where the CdSe nanodots have the corresponding emission wavelength of 560 nm. The efficiency of reference solar cell with the glass layer was measured to be 1.0% and it was increased to 12.72% for the reference sample without the glass layer. Furthermore, the efficiency of CdSe quantum dot sample was measured to be 13.6%. This indicates that the quantum dots play the roles of both the formation of tunneling channel and the enhancement of the light conversion efficiency in the visible spectral range.

  16. Effect of Different Ligands on Carrier Dynamics of CdSe Quatum Dots for Solar Cells Applications

    NASA Astrophysics Data System (ADS)

    Yakami, Baichhabi R.; Togha, Urice; Mahat, Meg; Nandyala, Shashank R.; Balaz, Milan; Pikal, Jon M.; Department of Electrical; Computer Engineering Team; Department of Chemistry Team; Department of Physics Team

    2015-03-01

    We have carried out steady state absorption and photoluminescence (PL), as well as time resolved PL and ultrafast transient absorption (TA) studies of CdSe quantum dots (QD) with five different capping ligands: trioctylphosphine oxide (TOPO), oleic acid (OA), dodecanethiol (DDT), mercaptopropionic acid (MPA), and L-cysteine (Cys). These ligands have different chemical structures and which effects the optical properties of the QDs. Measurements were conducted on QD sizes ranging from Ø = 2.5nm to 4.6nm with smaller QDs showing an excitonic PL and a broad surface trap state PL. The ligand exchange of OA CdSe QDs with MPA, DDT and Cys leads to quenching of excitonic PL intensity accompanied by a larger surface trap state to excitonic PL intensity ratio. This is consistent with the TRPL measurements, which show faster exciton PL decays for CdSe QDs with MPA, DDT and Cys ligands compared to OA and TOPO. The PL decay shows multi-exponential behavior with the average lifetime decreasing with increasing QD size. Data from TA experiments using a white light probe is also used to study the picosecond carrier dynamics. These measurements shed light on the role of capping ligands on the carrier dynamics of the QD used as sensitizers in solar cells. U.S. Department of Energy.

  17. Reconstructing a solid-solid phase transformation pathway in CdSe nanosheets with associated soft ligands

    PubMed Central

    Wang, Zhongwu; Wen, Xiao-Dong; Hoffmann, Roald; Son, Jae Sung; Li, Ruipeng; Fang, Chia-Chen; Smilgies, Detlef-M.; Hyeon, Taeghwan

    2010-01-01

    Integrated single-crystal-like small and wide-angle X-ray diffraction images of a CdSe nanosheet under pressure provide direct experimental evidence for the detailed pathway of transformation of the CdSe from a wurtzite to a rock-salt structure. Two consecutive planar atomic slips [(001) 〈110〉 in parallel and (102) with a distortion angle of ∼40°] convert the wurtzite-based nanosheet into a saw-like rock-salt nanolayer. The transformation pressure is three times that in the bulk CdSe crystal. Theoretical calculations are in accord with the mechanism and the change in transformation pressure, and point to the critical role of the coordinated amines. Soft ligands not only increase the stability of the wurtzite structure, but also improve its elastic strength and fracture toughness. A ligand extension of 2.3 nm appears to be the critical dimension for a turning point in stress distribution, leading to the formation of wurtzite (001)/zinc-blende (111) stacking faults before rock-salt nucleation. PMID:20855580

  18. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir-Blodgett technique.

    PubMed

    Milekhin, Alexander G; Sveshnikova, Larisa L; Duda, Tatyana A; Rodyakina, Ekaterina E; Dzhagan, Volodymyr M; Gordan, Ovidiu D; Veber, Sergey L; Himcinschi, Cameliu; Latyshev, Alexander V; Zahn, Dietrich R T

    2015-01-01

    We present the results of an investigation of surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir-Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR) energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm), confirming the formation of SERS "hot spots". PMID:26734529

  19. Surface-enhanced Raman scattering by colloidal CdSe nanocrystal submonolayers fabricated by the Langmuir–Blodgett technique

    PubMed Central

    Sveshnikova, Larisa L; Duda, Tatyana A; Rodyakina, Ekaterina E; Dzhagan, Volodymyr M; Gordan, Ovidiu D; Veber, Sergey L; Himcinschi, Cameliu; Latyshev, Alexander V; Zahn, Dietrich R T

    2015-01-01

    Summary We present the results of an investigation of surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on both arrays of Au nanoclusters and Au dimers using the Langmuir–Blodgett technique. The coverage of the deposited NCs was less than one monolayer, as determined by transmission and scanning electron microscopy. SERS by optical phonons in CdSe nanocrystals showed a significant enhancement that depends resonantly on the Au nanocluster and dimer size, and thus on the localized surface plasmon resonance (LSPR) energy. The deposition of CdSe nanocrystals on the Au dimer nanocluster arrays enabled us to study the polarization dependence of SERS. The maximal SERS signal was observed for light polarization parallel to the dimer axis. The polarization ratio of the SERS signal parallel and perpendicular to the dimer axis was 20. The SERS signal intensity was also investigated as a function of the distance between nanoclusters in a dimer. Here the maximal SERS enhancement was observed for the minimal distance studied (about 10 nm), confirming the formation of SERS “hot spots”. PMID:26734529

  20. Optical and Surface Characterization Studies of CdSe Quantum Dots Undergoing Photooxidation

    NASA Astrophysics Data System (ADS)

    Powell, Lauren C. J.

    Realization of the potential of Quantum Dots (QDs) for biological, energy-efficient lighting and energy harvesting applications requires that their long-term photostability be improved, especially with regards to protection from photooxidation. The overarching objective of this project was the determination of the chemical and physical mechanisms of photooxidation of CdSe QDs. Pittsburgh-based Crystalplex, Inc. provided CdSe QDs with different organic ligands for this research. Three integrated in situ and ex situ characterization techniques were used to observe changes in optical behavior, QD morphology, and surface chemistry during photooxidation conditions. Single-molecule fluorescence microscopy experiments were used to observe real-time changes in the photoluminescence (PL) behavior of single QDs with oleic and lauric acid ligands. The QDs are exposed to 1 atm of pure O2, dry Ar, Ar bubbled through DI water, or air in an environmental chamber and excited with a 488 nm light. Changes in PL intensities were analyzed with respect to the periods of exposure to controlled atmospheres and light. Samples illuminated continuously exhibited strong photoenhancement effects, while those kept in the dark showed atmospheric-dependent PL loss. Microstructural and chemical identification was performed with aberration-corrected transmission electron microscopy (TEM). Ex situ exposures of QD samples to air, dry O2, and dry Ar revealed changes in surface oxide growth with respect to exposure length, illumination, and column vacuum pressure. Samples exposed to air and light exhibited the most extensive photooxidation. Quantum dots with oleic acid ligands were treated with UV/ozone plasma, and extensive degradation of QDs was observed. X-ray photoemission spectroscopy (XPS) measurements at CMU were used to identify the chemical and bonding states of the surface species before and after photooxidation. Analysis of the acquired spectra showed that exposure to below-bandgap light

  1. Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization.

    PubMed

    Roiban, L; Hartmann, L; Fiore, A; Djurado, D; Chandezon, F; Reiss, P; Legrand, J-F; Doyle, S; Brinkmann, M; Ersen, O

    2012-11-21

    Highly oriented and nanostructured hybrid thin films made of regioregular poly(3-hexylthiophene) and colloidal CdSe nanocrystals are prepared by a zone melting method using epitaxial growth on 1,3,5-trichlorobenzene oriented crystals. The structure of the films has been analyzed by X-ray diffraction using synchrotron radiation, electron diffraction and 3D electron tomography to afford a multi-scale structural and morphological description of the highly structured hybrid films. A quantitative analysis of the reconstructed volumes based on electron tomography is used to establish a 3D map of the distribution of the CdSe nanocrystals in the bulk of the films. In particular, the influence of the P3HT-CdSe ratio on the 3D structure of the hybrid layers has been analyzed. In all cases, a bi-layer structure was observed. It is made of a first layer of pure oriented semi-crystalline P3HT grown epitaxially on the TCB substrate and a second P3HT layer containing CdSe nanocrystals uniformly distributed in the amorphous interlamellar zones of the polymer. The thickness of the P3HT layer containing CdSe nanoparticles increases gradually with increasing content of NCs in the films. A growth model is proposed to explain this original transversal organization of CdSe NCs in the oriented matrix of P3HT.

  2. Effects of morphology, diameter and periodic distance of the Ag nanoparticle periodic arrays on the enhancement of the plasmonic field absorption in the CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Kohnehpoushi, Saman; Eskandari, Mehdi; Ahmadi, Vahid; Yousefirad, Mansooreh; Nabavi, Elham

    2016-09-01

    In this work, the numerical calculations of plasmonic field absorption of Ag nanoparticles (Ag NPs) periodic arrays in the CdSe quantum dot (QD) film are investigated by the three-dimensional finite difference time domain (FDTD). Diameter (D), periodic distance (P), and morphology effects of Ag NPs are investigated on the improvement of the plasmonic field absorption in CdSe QD film. Results show that plasmonic field absorption in CdSe QD film is enhanced with reduction of D of Ag NPs until 5 nm and reduces thereafter. It is observed that with raising D of Ag NPs, optimum plasmonic field absorption in CdSe QD film is shifted toward the higher P. Moreover, with varying morphology of Ag NPs from spherical to cylindrical, cubic, ringing and pyramid, the plasmonic field absorption is considerably enhanced in CdSe QD film and position of quadrupole plasmon mode (QPPM) is shifted toward further wavelength. For cylindrical Ag NPs, the QPPM intensity increased with raising height (H) until 15 nm and reduces thereafter.

  3. Enhancement in the photorefractive performance of organic composites photosensitized with functionalized CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Liang, Yichen; Wang, Wei; Moon, Jong-Sik; Winiarz, Jeffrey G.

    2016-08-01

    Enhancement in the photorefractive (PR) performance of organic composites photosensitized by CdSe quantum dots (QCdSe) passivated with the charge-transport ligands, sulfonated triphenyldiamine (STPD), is reported. This enhancement is primarily attributed to the ability of the passivating ligand, STPD, to facilitate the charge-transfer process between the QCdSe and the triphenyldiamine (TPD) charge-transport matrix. The PR composites exhibited a maximum photocharge-generation efficiency of 0.9% and two-beam coupling gain coefficient of 110 cm-1. These figures of merit represent a significant improvement over similar composites photosensitized with more conventional trioctylphosphine oxide-passivated QCdSe (TQCdSe). Moreover, composites photosensitized with SQCdSe had a faster response time of τ = 128 ms at an electric field of 60 V/μm compared with τ = 982 ms for those containing TQCdSe. Because of the molecular similarity between the STPD passivating groups and the TPD-based charge-transport matrix, concentrations of up to 1.4 wt% of SQCdSe are achieved in PR composites without any detectable phase separation, a considerable improvement over the 0.7 wt% for TQCdSe.

  4. Structure and Ultrafast Dynamics of White-Light-Emitting CdSe Nanocrystals

    SciTech Connect

    Bowers, Michael J; McBride, James; Garrett, Maria Danielle; Sammons, Jessica A.; Dukes, Albert; Schreuder, Michael A.; Watt, Tony L.; Lupini, Andrew R; Pennycook, Stephen J; Rosenthal, Sandra

    2009-01-01

    White-light emission from ultrasmall CdSe nanocrystals offers an alternative approach to the realization of solid-state lighting as an appealing technology for consumers. Unfortunately, their extremely small size limits the feasibility of traditional methods for nanocrystal characterization. This paper reports the first images of their structure, which were obtained using aberration-corrected atomic number contrast scanning transmission electron microscopy (Z-STEM). With subangstrom resolution, Z-STEM is one of the few available methods that can be used to directly image the nanocrystal's structure. The initial images suggest that they are crystalline and approximately four lattice planes in diameter. In addition to the structure, for the first time, the exciton dynamics were measured at different wavelengths of the white-light spectrum using ultrafast fluorescence upconversion spectroscopy. The data suggest that a myriad of trap states are responsible for the broad-spectrum emission. It is hoped that the information presented here will provide a foundation for the future development and improvement of white-light-emitting nanocrystals.

  5. Electronic structure at nanocontacts of surface passivated CdSe nanorods with gold clusters.

    PubMed

    Saraf, Deepashri; Kshirsagar, Anjali

    2014-06-14

    We report the electronic structure of free standing and gold attached passivated CdSe nanorods. The goal is to assess the changes at the nanolevel after formation of contacts with gold clusters serving as electrodes and compare the results with experimental observations [Steiner et al., Phys. Rev. Lett., 2005, 95, 056805]. It is interesting to note that upon attaching gold clusters, the nanorods shorter than 27 Å develop metallicity by means of metal induced gap states (MIGS). Longer nanorods exhibit a nanoscale Schottky barrier emerging at the center. For these nanorods, the interfacial region closest to the gold electrodes shows a finite density of states in the gap due to MIGS, which gradually decreases towards the center of the nanorod opening up a finite gap. Our theoretical results agree qualitatively with the experimental results of Steiner et al. This study attempts to identify the minimum length of a one-dimensional nanostructure to be used in an electronic device. An analysis of density of states and charge density brings out the role of hybridization of semiconductor states with metal states. Bader charge analysis indicates localized charge transfer from metal to semiconductor.

  6. Synthesis and characterization of CdSe quantum dots dispersed in PVA matrix by chemical route

    NASA Astrophysics Data System (ADS)

    Khan, Zubair M. S. H.; Ganaie, Mohsin; Khan, Shamshad A.; Husain, M.; Zulfequar, M.

    2016-05-01

    CdSe quantum dots using polyvinyl alcohol as a capping agent have been synthesized via a simple heat induced thermolysis technique. The structural analysis of CdSe/PVA thin film was studied by X-ray diffraction, which confirms crystalline nature of the prepared film. The surface morphology and particle size of the prepared sample was studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The SEM studies of CdSe/PVA thin film shows the average size of particles in the form of clusters of several quantum dots in the range of 10-20 nm. The morphology of CdSe/PVA thin film was further examined by TEM. The TEM image shows the fringes of tiny dots with average sizes of 4-7 nm. The optical properties of CdSe/PVA thin film were studied by UV-VIS absorption spectroscopy. The CdSe/PVA quantum dots follow the role of direct transition and the optical band gap is found to be 4.03 eV. From dc conductivity measurement, the observed value of activation energy was found to be 0.71 eV.

  7. Directed energy transfer in films of CdSe quantum dots: beyond the point dipole approximation.

    PubMed

    Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Zhu, Nan; Chábera, Pavel; Lenngren, Nils; Chi, Qijin; Pullerits, Tõnu

    2014-04-30

    Understanding of Förster resonance energy transfer (FRET) in thin films composed of quantum dots (QDs) is of fundamental and technological significance in optimal design of QD based optoelectronic devices. The separation between QDs in the densely packed films is usually smaller than the size of QDs, so that the simple point-dipole approximation, widely used in the conventional approach, can no longer offer quantitative description of the FRET dynamics in such systems. Here, we report the investigations of the FRET dynamics in densely packed films composed of multisized CdSe QDs using ultrafast transient absorption spectroscopy and theoretical modeling. Pairwise interdot transfer time was determined in the range of 1.5 to 2 ns by spectral analyses which enable separation of the FRET contribution from intrinsic exciton decay. A rational model is suggested by taking into account the distribution of the electronic transition densities in the dots and using the film morphology revealed by AFM images. The FRET dynamics predicted by the model are in good quantitative agreement with experimental observations without adjustable parameters. Finally, we use our theoretical model to calculate dynamics of directed energy transfer in ordered multilayer QD films, which we also observe experimentally. The Monte Carlo simulations reveal that three ideal QD monolayers can provide exciton funneling efficiency above 80% from the most distant layer. Thereby, utilization of directed energy transfer can significantly improve light harvesting efficiency of QD devices.

  8. Electronic Structure of Ligated CdSe Clusters: Dependence on DFT Methodology

    SciTech Connect

    Albert, VV; Ivanov, SA; Tretiak, S; Kilina, SV

    2011-07-07

    Simulations of ligated semiconductor quantum dots (QDs) and their physical properties, such as morphologies, QD-ligand interactions, electronic structures, and optical transitions, are expected to be very sensitive to computational methodology. We utilize Density Functional Theory (DFT) and systematically study how the choice of density functional, atom-localized basis set, and a solvent affects the physical properties of the Cd{sub 33}Se{sub 33} cluster ligated with a trimethyl phosphine oxide ligand. We have found that qualitative performance of all exchange-correlation (XC) functionals is relatively similar in predicting strong QD-ligand binding energy ({approx}1 eV). Additionally, all functionals predict shorter Cd-Se bond lengths on the QD surface than in its core, revealing the nature and degree of QD surface reconstruction. For proper modeling of geometries and QD-ligand interactions, however, augmentation of even a moderately sized basis set with polarization functions (e.g., LANL2DZ* and 6-31G*) is very important. A polar solvent has very significant implications for the ligand binding energy, decreasing it to 0.2-0.5 eV. However, the solvent model has a minor effect on the optoelectronic properties, resulting in persistent blue shifts up to {approx}0.3 eV of the low-energy optical transitions. For obtaining reasonable energy gaps and optical transition energies, hybrid XC functionals augmented by a long-range Hartree-Fock orbital exchange have to be applied.

  9. The role of ligands in the optical and electronic spectra of CdSe nanoclusters

    SciTech Connect

    Kilina, Svletana; Sergei, Ivanov A; Victor, Klimov I; Sergei, Tretiak

    2008-01-01

    We investigate the impact of ligands on morphology, electronic structure, and optical response of the Cd33Se33 cluster, which already overlapps in size with the smallest synthesized CdSe quantum dots (QDs). Our Density Functional Theory (DFT) calculations demonstrate significant surface reorganization both for the bare cluster and for the cluster capped by amine and phosphine oxide ligand models. We observe strong surface-ligand interactions leading to substantial charge redistribution and polarization effects on the surface. This effect results in the appearance of hybridized states, where the electronic density is spread over the cluster and the ligands. Neither the ligand's nor hybridized molecular orbitals appear as trap states inside or near the band gap of the QD. Instead, being optically dark, dense hybridized states from the edges of the valence and the conduction bands could open new relaxation channels for high energy photoexcitations. Comparing quantum dots passivated by different ligands, we found that hybridized states are denser in at the edge of the conduction band of the cluster ligated with phosphine oxide molecules than that with primary amines. Such a different manifestation of ligand binding may potentially lead to the faster electron relaxation in dots passivated by phosphine oxide than by amine ligands, which is in agreement with experimental data.

  10. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGES

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  11. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    SciTech Connect

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in the SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.

  12. Photoinduced Electron Transfer to Engineered Surface Traps in CdSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Califano, Marco; Zhu, Haiming; Yang, Ye; Hyeon-Deuk, Kim; Song, Nianhui; Wang, Youwei; Zhang, Wenqing; Prezhdo, Oleg; Lian, Tianquan

    2014-03-01

    Quantum confined nanomaterials, such as semiconductor nanocrystals (NCs), have emerged in the past decade as a new class of materials for solar energy conversion. An appropriate model for describing photoinduced charge transfer in these systems is, however, still lacking. Recently we observed that the rate of photoinduced electron transfer from CdSe NCs to molecular acceptors increased with decreasing NC size (and increasing driving force) exhibiting a lack of Marcus inverted regime behaviour over an apparent driving force range of 0-1.3 V. Our atomistic semiempirical pseudopotential calculations show that an Auger assisted ET mechanism, in which the transfer of the electron is coupled to the excitation of the hole, can circumvent the unfavourable Frank-Condon overlap (that is a signature of inter- or intra- molecular electron transfer) in the Marcus inverted regime, reproducing our observed ET rates with remarkable accuracy. We conclude that electron transfer from quantum dots differs from electron transfer originating from both molecules and bulk semiconductors. It proceeds via a novel Auger-assisted pathway which we believe is available to most excitonic nanomaterials. This new finding will have a major impact on the design of next generation solar energy harvesting devices.

  13. Efficient CdSe nanocrystal diffraction gratings prepared by microcontact molding.

    PubMed

    Shallcross, R Clayton; Chawla, Gulraj S; Marikkar, F Saneeha; Tolbert, Stephanie; Pyun, Jeffrey; Armstrong, Neal R

    2009-11-24

    We describe the formation of efficient transmission diffraction gratings created from patterned high quality ligand-capped CdSe nanocrystals (NCs), using a facile microcontact molding procedure. Soft polymer replicas of commercially available master gratings were "inked" with solvated NCs and the resulting pattern transferred to a variety of substrates after drying. Large-area (>0.5 cm(2)), defect free diffraction gratings were prepared with a variety of submicrometer line spacings and feature sizes down to ca. 160 nm. The morphology of the resulting pattern was tuned by controlling the concentration of the NC-based ink. Optimized gratings (1200 g/mm) showed an increase in transmission diffraction efficiency (DE) with increasing nanocrystal diameter. DE = ca. 15% (488 nm) for 2.5 nm diameter NCs versus DE = ca. 25-30% (488 nm) for 7.3 nm nanocrystals. These increases in DE are ascribed to changes in both the real (n) and imaginary (k) components of the complex index of refraction as NC diameter increases. We demonstrate the ability to in- and out-couple incident laser radiation into internal reflection elements using these stamped NC gratings, including single-mode waveguides, offering a novel application of ordered nanocrystal thin films. PMID:19803496

  14. Improved luminescence from CdSe quantum dots with a strain-compensated shell

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Zhang, Y. Q.; Cao, X. A.

    2013-01-01

    Colloidal CdSe quantum dots (QDs) with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized and characterized. The core/shell/shell structure enjoys the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell. The resulting CdSe/ZnS/ZnCdS QDs exhibited a 40% higher photoluminescence quantum yield and a more controllable wavelength compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD light-emitting diodes (LEDs) had a luminance of 556 cd/m2 at 20 mA/cm2, 28% higher than that of CdSe/ZnCdS/ZnS QD-LEDs. The former also had better spectral purity at high injection currents and are thus better suited for full-color displays.

  15. CdSe Quantum-Dot-Sensitized Solar Cell with ~100% Internal Quantum Efficiency

    SciTech Connect

    Fuke, Nobuhiro; Hoch, Laura B.; Koposov, Alexey Y.; Manner, Virginia W.; Werder, Donald J.; Fukui, Atsushi; Koide, Naoki; Katayama, Hiroyuki; Sykora, Milan

    2010-10-20

    We have constructed and studied photoelectrochemical solar cells (PECs) consisting of a photoanode prepared by direct deposition of independently synthesized CdSe nanocrystal quantum dots (NQDs) onto a nanocrystalline TiO2 film (NQD/TiO2), aqueous Na2S or Li2S electrolyte, and a Pt counter electrode. We show that light harvesting efficiency (LHE) of the NQD/TiO2 photoanode is significantly enhanced when the NQD surface passivation is changed from tri-n-octylphosphine oxide (TOPO) to 4-butylamine (BA). In the PEC the use of NQDs with a shorter passivating ligand, BA, leads to a significant enhancement in both the electron injection efficiency at the NQD/TiO2 interface and charge collection efficiency at the NQD/electrolyte interface, with the latter attributed mostly to a more efficient diffusion of the electrolyte through the pores of the photoanode. We show that by utilizing BA-capped NQDs and aqueous Li2S as an electrolyte, it is possible to achieve ~100% internal quantum efficiency of photon-to-electron conversion, matching the performance of dye-sensitized solar cells.

  16. Direct Observation of sp-d Exchange Interactions in Colloidal Mn2+- and Co2+-Doped CdSe Quantum Dots

    SciTech Connect

    Archer, Paul I.; Santangelo, Steven A.; Gamelin, Daniel R.

    2007-03-23

    The defining attribute of a diluted magnetic semiconductor (DMS) is the existence of dopant-carrier magnetic exchange interactions. In this letter, we report the first direct observation of such exchange interactions in colloidal doped CdSe nanocrystals. Doped CdSe quantum dots were synthesized by thermal decomposition of (Me4N)2[Cd4(SePh)10] in the presence of TMCl2 (TM2+ ) Mn2+ or Co2+) in hexadecylamine and were characterized by several analytical and spectroscopic techniques. Using magnetic circular dichroism spectroscopy, successful doping and the existence of giant excitonic Zeeman splittings in both Mn2+- and Co2+-doped wurtzite CdSe quantum dots are demonstrated unambiguously.

  17. Amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots.

    PubMed

    Kyhm, Kwangseuk; Je, Koo-Chul; Taylor, Robert A

    2012-08-27

    We propose an amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots. When the local surface plasmon of a spherical Au quantum dot is in resonance with the exciton energy level of a CdSe quantum dot, a significant enhancement of the linear and nonlinear refractive index is found in both the real and imaginary terms via the interaction with the dipole field of the local surface plasmon. Given a gating pulse intensity, an elliptical polarization induced by the phase retardation is described in terms of elliptical and rotational angles. In the case that a larger excitation than the bleaching intensity is applied, the signal light can be amplified due to the presence of gain in the CdSe quantum dot. This enables a longer propagation of the signal light relative to the metal loss, resulting in more feasible polarization modulation.

  18. Plasmon-phonon coupling in charged n-type CdSe quantum dots: A THz time-domain spectroscopic study.

    PubMed

    Mandal, Pankaj K; Chikan, Viktor

    2007-08-01

    This work aims to experimentally determine the polarizability of confined electron in CdSe quantum dots (QD). The dielectric response of uncharged and charged CdSe quantum dots (3.2 and 6.3 nm) has been measured using terahertz time-domain spectroscopy in the frequency range of 2.0-7.0 THz. A strong coupling between the surface plasmon and surface phonons appears upon charging the QDs. The absolute polarizability of an electron in 3.2 and 6.3 nm charged QDs are experimentally determined to be 0.5 +/- 0.1 x 10(3) A3 and 14.6 +/- 0.3 x 10(3) A3, respectively, and the values agree reasonably well with theory and the previous experiment. The observed plasmon-phonon coupling is expected to play an important role in electron relaxation in absence of a hole in CdSe QDs.

  19. A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles

    SciTech Connect

    Sukanya, D.; Sagayaraj, P.

    2015-06-24

    II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM)

  20. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    SciTech Connect

    Kumar, Vijay Goswami, Y. C.; Rajaram, P.

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope shows the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.

  1. Influence of pH on the thermo-optic properties of CdSe QDs prepared by a microwave irradiation method

    NASA Astrophysics Data System (ADS)

    Augustine, Anju K.; Girijavallabhan, C. P.; Nampoori, V. P. N.; Kailasnath, M.

    2014-11-01

    In this letter the optical behavior as well as the thermal properties of CdSe quantum dots (QDs) capped with mercapto succinic acid (MSA) are studied and analyzed. CdSe QDs with an average particle size of 7.0 nm are prepared by a microwave irradiation method. The unique structure of MSA plays an important role in determining the PL intensity and better stability by controlling the pH of the medium. A significant increase in thermal diffusivity with pH values is observed with a mode matched thermal lens method. At the optimum value of pH, the surface charge of nanoparticles increases, which increases the repulsive forces. The resulting reduced agglomeration of QDs enhances mobility and improves heat transport. There is a clear correlation between luminous intensity and thermal diffusivity in these nano fluids containing CdSe QDs.

  2. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells.

    PubMed

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-10-01

    We investigated CdSe-sensitized TiO(2) solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO(2) gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO(2) nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( < 5 min) but also being easily scalable to the sensitization of large-area panels. XRD together with SAED analysis highlight that the deposit of CdSe is exclusively constituted of the hexagonal polymorph. In addition, hierarchical growth has also been shown, starting from the formation of a TiO(2)-CdSe core-shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO(2) and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions-100 mW cm(-2) in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V(oc ) = 485 mV, J(sc ) = 4.26 mA cm (-2), ff=0.37).

  3. Structural and optical characterization of electrodeposited CdSe in mesoporous anatase TiO2 for regenerative quantum-dot-sensitized solar cells.

    PubMed

    Sauvage, Frédéric; Davoisne, Carine; Philippe, Laetitia; Elias, Jamil

    2012-10-01

    We investigated CdSe-sensitized TiO(2) solar cells by means of electrodeposition under galvanostatic control. The electrodeposition of CdSe within the mesoporous film of TiO(2) gives rise to a uniform, thickness controlled, conformal layer of nanostructured CdSe particles intimately wrapping the anatase TiO(2) nanoparticles. This technique has the advantage of providing not only a fast method for sensitization ( < 5 min) but also being easily scalable to the sensitization of large-area panels. XRD together with SAED analysis highlight that the deposit of CdSe is exclusively constituted of the hexagonal polymorph. In addition, hierarchical growth has also been shown, starting from the formation of a TiO(2)-CdSe core-shell structure followed by the growth of an assembly of CdSe nanoparticles resembling cauliflowers. This assembly exhibits at its core a mosaic texture with crystallites of about 3 nm in size, in contrast to a shell composed of well-crystallized single crystals between 5 and 10 nm in size. Preliminary results on the photovoltaic performance of such a nanostructured composite of TiO(2) and CdSe show 0.8% power conversion efficiency under A.M.1.5 G conditions-100 mW cm(-2) in association with a new regenerative redox couple based on cobalt(+III/+II) polypyridil complex (V(oc ) = 485 mV, J(sc ) = 4.26 mA cm (-2), ff=0.37). PMID:22972037

  4. Theoretical calculations of structural, electronic, and elastic properties of CdSe1‑x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1‑x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  5. A DFT/TDDFT study on the optoelectronic properties of the amine-capped magic (CdSe)13 nanocluster.

    PubMed

    Azpiroz, Jon M; Matxain, Jon M; Infante, Ivan; Lopez, Xabier; Ugalde, Jesus M

    2013-07-14

    Motivated by the recent experiments by Wang et al. (Angew. Chem., Int. Ed. 2012, 51, 6154-6157), in which the alkylamine-capped magic-size (CdSe)13 has been isolated for the first time, we report on the computational modeling of the putative low-lying isomers of (CdSe)13, both bare and ligand-protected. According to Density Functional Theory (DFT) calculations, the core@cage configuration Se@Cd13Se12, consisting of a Se atom incarcerated in the center of a puckered Cd13Se12 cage, lies lower in energy than fullerene- and wurtzite-like structures. Methylamine-capped nanoclusters present average bond energies per ligand of about 20 kcal mol(-1), while bond energy decomposition schemes show this interaction to be mostly electrostatically-driven. The computed Time-Dependent-DFT (TDDFT) spectrum of the lowest-lying methylamine-protected (CdSe)13 isomer essentially coincides with the experiment, with a notable blueshift of the absorption features induced by the ligands. The LUMO has been found to be the acceptor orbital for all the lowest-lying electronic excitations, in both the bare and methylamine-capped clusters, which could explain the narrow emission profiles inherent in semiconductor nanostructures. In addition, the attachment of pyridine and aniline molecules has been evaluated. Interestingly, the molecular orbitals of these aromatic amines located on the edges of the valence and conduction bands may act as trap states, in agreement with experimental evidences. In the particular case of pyridine molecules, unoccupied orbitals intrude into the HOMO-LUMO gap of the cluster. PMID:23712668

  6. A detailed examination of the growth of CdSe thin films through structural and optical characterization

    SciTech Connect

    Yükselici, M.H.; Aşıkoğlu Bozkurt, A.; Ömür, B. Can

    2013-07-15

    Highlights: ► Urbach tail width decreases by about 200 meV with the film thickness. ► A coefficient of strain of around 3 × 10{sup −3} along [0 0 2] axis was predicted. ► Compressive strain gives rise to about 11 meV red shift in the band gap energy. ► A relative shift of about 2 cm{sup −1} of LO{sub 1} phonon mode in Raman spectra was observed between different thickness films. - Abstract: Different thickness CdSe thin films were grown on glass substrates by physical vapor deposition and characterized by optical and structural investigations. Urbach energy related to the width of the optical absorption tail decreases from 430 meV for a film thickness of 50 nm to 200 meV for 450 nm. The film thickness dependent grain sizes were estimated by using effective mass model under quantum size effect from the shift of around 500 meV in the asymptotic absorption edge. The X-ray diffraction (XRD) pattern is consistent with CdSe hexagonal crystal structure which indicates crystal growth mode along c axis. XRD peaks broaden and shift depending on film thicknesses which are presumably due to strain and size effect. We observe both blue and red shift depending on thickness in Longitudinal Optical phonon frequency in Raman spectra with respect to that of the source CdSe powder which could also be due to strain on thin films and/or finite crystallite size. In this work we combine the results of optical absorption, Raman and XRD spectroscopies to study the evolution of grain size, strain and structural disorder depending on film thickness.

  7. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres

    SciTech Connect

    Mthethwa, T.P.; Moloto, M.J.; De Vries, A.; Matabola, K.P.

    2011-04-15

    Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: {yields} TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. {yields} The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. {yields} The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. {yields} Both TEM images for nanoparticles and SEM for fibres shows the morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the

  8. Photoluminescence and structural properties of CdSe quantum dot-gelatin composite films

    NASA Astrophysics Data System (ADS)

    Borkovska, L.; Korsunska, N.; Stara, T.; Gudymenko, O.; Kladko, V.; Stroyuk, O.; Raevskaya, A.; Kryshtab, T.

    2014-11-01

    Optical and structural properties of composite films of CdSe quantum dots (QDs) embedded in gelatin matrix have been investigated by photoluminescence (PL), optical absorption and X-ray diffraction (XRD) methods. The optical absorption of the composite in the visible spectral range is found to be determined mainly by light absorption in the QDs. The decrease of the film transparency and the shift of the absorption edge to lower energies observed upon thermal annealing of the films at 140-160 °C are ascribed to the formation of chromophore groups in gelatin matrix. XRD patterns of the composite revealed helix to coil transition in gelatin matrix under thermal annealing of the composite at 100-160 °C. It is found that PL spectra of the composite are dominated by exciton and defect-related emission of the QDs and also contain weak emission of gelatin matrix. It is found that thermal annealing of the composite at 100-160 °C changes PL intensity and produces the shift of the PL bands to lower energies. As the annealed composite was kept in air for several months, the shift of exciton-related PL band position restored partially and the PL intensity increased. It is proposed that the increase of the PL intensity upon the thermal annealing of composite at 140 °C can be used for enhancement of the QD-related PL. Changes that occurred in the PL spectra of composite are ascribed to structural and chemical transformations in gelatin matrix and at the QD/gelatin interface.

  9. Hybrid bulk heterojunction solar cells based on low band gap polymers and CdSe nanocrystals

    NASA Astrophysics Data System (ADS)

    Dayneko, Sergey; Tameev, Alexey; Tedoradze, Marine; Martynov, Igor; Linkov, Pavel; Samokhvalov, Pavel; Nabiev, Igor; Chistyakov, Alexander

    2014-03-01

    Solar energy converters based on organic semiconductors are inexpensive, can be layered onto flexible surfaces, and show great promise for photovoltaics. In bulk heterojunction polymer solar cells, charges are separated at the interface of two materials, an electron donor and an electron acceptor. Typically, only the donor effectively absorbs light. Therefore, the use of an acceptor with a wide absorption spectrum and high extinction coefficient and charge mobility should increase the efficiency of bulk heterojunction polymer solar cells. Semiconductor nanocrystals (quantum dots and rods) are good candidate acceptors for these solar cells. Recently, most progress in the development of bulk heterojunction polymer solar cells was achieved using PCBM, a traditional fullerene acceptor, and two low band gap polymers, poly[N- 9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and poly4,8-bis[(2- ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b] thiophenediyl (PTB7). Therefore, the possibility of combining these polymers with semiconductor nanocrystals deserves consideration. Here, we present the first comparison of solar cells based on PCDTBT and PTB7 where CdSe quantum dots serve as acceptors. We have found that PTB7-based cells are more efficient than PCDTBT-based ones. The efficiency also strongly depends on the nanocrystal size. An increase in the QD diameter from 5 to 10 nm causes a more than fourfold increase in the cell efficiency. This is determined by the relationship between the nanoparticle size and energy spectrum, its pattern clearly demonstrating how the mutual positions of the donor and acceptor levels affect the solar cell efficiency. These results will help to develop novel, improved nanohybrid components of solar cells based on organic semiconductors and semiconductor nanocrystals.

  10. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals.

    PubMed

    Querner, Claudia; Reiss, Peter; Sadki, Said; Zagorska, Malgorzata; Pron, Adam

    2005-09-01

    The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size range (from 3 to 6.5 nm) with the goal to amplify the influence of the quantum confinement effect on the electrochemical response. The determined HOMO and LUMO levels have been found in good agreement with the ones obtained from photoluminescence studies and those predicted theoretically. Ligand exchange with aniline tetramer significantly influences the voltammetric peaks associated with the HOMO oxidation and the LUMO reduction of the quantum dots, which are shifted to higher and lower potentials, respectively. These shifts are interpreted in terms of the positive ligand charging which precedes the oxidation of the nanocrystals and the insulating nature of the ligand in the case of the nanocrystal reduction. The ligand-nanocrystal interactions have also been studied by UV-Vis-NIR and Raman spectroelectrochemistry in comparison with a specially prepared model compound which, apart from the anchoring function is identical to the grafted oligoaniline ligand. Both spectroelectrochemical techniques clearly indicate the same nature of the oxidation/reduction pathway for both the model compound and the grafted ligand. The influence of the grafting is manifested by a shift in the onset of the ligand oxidation as compared to the case of the "free" model compound. Since both components (ligands and nanocrystals) mutually influence their electrochemical and spectroelectrochemical properties, the newly developed system can be considered as a true molecular hybrid. Such hybrids are of interest because the potential zone of the ligand electroactivity is well separated from that of the nanocrystals and, as a result, the organic part can be electrochemically switched between the

  11. Fabrication of fluorescence-based biosensors from functionalized CdSe and CdTe quantum dots for pesticide detection

    NASA Astrophysics Data System (ADS)

    Tran, Thi Kim Chi; Chinh Vu, Duc; Dieu Thuy Ung, Thi; Yen Nguyen, Hai; Hai Nguyen, Ngoc; Cao Dao, Tran; Nga Pham, Thu; Liem Nguyen, Quang

    2012-09-01

    This paper presents the results on the fabrication of highly sensitive fluorescence biosensors for pesticide detection. The biosensors are actually constructed from the complex of quantum dots (QDs), acetylcholinesterase (AChE) and acetylthiocholine (ATCh). The biosensor activity is based on the change of luminescence from CdSe and CdTe QDs with pH, while the pH is changed with the hydrolysis rate of ATCh catalyzed by the enzyme AChE, whose activity is specifically inhibited by pesticides. Two kinds of QDs were used to fabricate our biosensors: (i) CdSe QDs synthesized in high-boiling non-polar organic solvent and then functionalized by shelling with two monolayers (2-ML) of ZnSe and eight monolayers (8-ML) of ZnS and finally capped with 3-mercaptopropionic acid (MPA) to become water soluble; and (ii) CdTe QDs synthesized in aqueous phase then shelled with CdS. For normal checks the fabricated biosensors could detect parathion methyl (PM) pesticide at very low contents of ppm with the threshold as low as 0.05 ppm. The dynamic range from 0.05 ppm to 1 ppm for the pesticide detection could be expandable by increasing the AChE amount in the biosensor.

  12. Linear and nonlinear optical properties of functionalized CdSe quantum dots prepared by plasma sputtering and wet chemistry.

    PubMed

    Humbert, Christophe; Dahi, Abdellatif; Dalstein, Laetitia; Busson, Bertrand; Lismont, Marjorie; Colson, Pierre; Dreesen, Laurent

    2015-05-01

    We develop an innovative manufacturing process, based on radio-frequency magnetron sputtering (RFMS), to prepare neat CdSe quantum dots (QDs) on glass and silicon substrates and further chemically functionalize them. In order to validate the fabrication protocol, their optical properties are compared with those of QDs obtained from commercial solutions and deposited by wet chemistry on the substrates. Firstly, AFM measurements attest that nano-objects with a mean diameter around 13 nm are located on the substrate after RFMS treatment. Secondly, the UV-Vis absorption study of this deposited layer shows a specific optical absorption band, located at 550 nm, which is related to a discrete energy level of QDs. Thirdly, by using two-color sum-frequency generation (2C-SFG) nonlinear optical spectroscopy, we show experimentally the functionalization efficiency of the RFMS CdSe QDs layer with thiol derived molecules, which is not possible on the QDs layer prepared by wet chemistry due to the surfactant molecules from the native solution. Finally, 2C-SFG spectroscopy, performed at different visible wavelengths, highlights modifications of the vibration mode shape whatever the QDs deposition method, which is correlated to the discrete energy level of the QDs.

  13. Dimensionality of nanoscale TiO2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

    DOE PAGES

    Tafen, De Nyago; Long, Run; Prezhdo, Oleg V.

    2014-03-10

    Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO2 depends on TiO2 dimensionality. The injection into a TiO2 QD is adiabatic due to strong donor–acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor–acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbant breaks symmetry of delocalizedmore » TiO2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. Furthermore, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.« less

  14. Annealing-induced optical and sub-band-gap absorption parameters of Sn-doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Tripathi, S. K.

    2016-01-01

    Thin films of Sn-doped CdSe were prepared by thermal evaporation onto glass substrates in an argon gas atmosphere and annealed at different temperatures. Structural evaluation of the films was carried out using X-ray diffraction and their stoichiometry studied by energy-dispersive X-ray analysis. The films exhibit a preferred orientation along the hexagonal direction of CdSe. The optical transmittance of the films shows a red shift of the absorption edge with annealing. The fundamental absorption edge corresponds to a direct energy gap with a temperature coefficient of 3.34 × 10-3 eV K-1. The refractive index, optical conductivity and real and imaginary parts of the dielectric constants were found to increase after annealing. The sub-band gap absorption coefficient was evaluated using the constant photocurrent method. It varies exponentially with photon energy. The Urbach energy, the density of defect states, and the steepness of the density of localized states were evaluated from the sub-band-gap absorption.

  15. Graphene oxide based CdSe photocatalysts: Synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye

    SciTech Connect

    Ghosh, Trisha; Lee, Jeong-Ho; Meng, Ze-Da; Ullah, Kefayat; Park, Chong-Yeon; Nikam, Vikram; Oh, Won-Chun

    2013-03-15

    Highlights: ► CdSe–graphene is synthesized by hydrothermal method. ► Three molar solutions of CdSe were used making three different composites. ► RhB and Texbrite MST-L were used as sample dye solutions. ► Texbrite MST-L is photo degraded in visible light. ► UV-spectroscopic analysis was done to measure degradation. - Abstract: CdSe–graphene composites were prepared using simple “hydrothermal method” where the graphene surface was modified using different molar solutions of cadmium selenide (CdSe) in aqueous media. The characterization of CdSe–graphene composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM). The catalytic activities of CdSe-composites were evaluated by degradation of rhodamine B (RhB) and commercial industrial dye “Texbrite MST-L (TXT-MST)” with fixed concentration. The degradation was observed by the decrease in the absorbance peak studied by UV spectrophotometer. The decrease in the dye concentration indicated catalytic degradation effect by CdSe–graphene composites.

  16. Electroluminescence of colloidal quasi-two-dimensional semiconducting CdSe nanostructures in a hybrid light-emitting diode

    SciTech Connect

    Selyukov, A. S. Vitukhnovskii, A. G.; Lebedev, V. S.; Vashchenko, A. A.; Vasiliev, R. B.; Sokolikova, M. S.

    2015-04-15

    We report on the results of studying quasi-two-dimensional nanostructures synthesized here in the form of semiconducting CdSe nanoplatelets with a characteristic longitudinal size of 20–70 nm and a thick-ness of a few atomic layers. Their morphology is studied using TEM and AFM and X-ray diffraction analysis; the crystal structure and sizes are determined. At room and cryogenic temperatures, the spectra and kinetics of the photoluminescence of such structures (quantum wells) are investigated. A hybrid light-emitting diode operating on the basis of CdSe nanoplatelets as a plane active element (emitter) is developed using the organic materials TAZ and TPD to form electron and hole transport layers, respectively. The spectral and current-voltage characteristics of the constructed device with a radiation wavelength λ = 515 nm are obtained. The device triggering voltage is 5.5 V (visible glow). The use of quasi-two-dimensional structures of this type is promising for hybrid light-emitting diodes with pure color and low operating voltages.

  17. Reassignment of the O{sub Se}−V{sub Cd} complex in CdSe

    SciTech Connect

    Bastin, Dirk; Lavrov, E. V.; Weber, J.

    2014-02-21

    An IR absorption study of CdSe single crystals is presented. The as-received material revealed three absorption lines at 1094.2, 1107.5, and 1126.3 cm{sup −1}, which were previously assigned to the O{sub Se}−V{sub Cd} complex [G. Chen et al., Phys. Rev. Lett. 101, 195502 (2008)] We show that each of the lines is accompanied by a number of weaker satellites with intensities which match the natural abundances of sulfur isotopes. In contrast to the original identification it is suggested that these peaks are local vibrational modes of a SO{sub n} complex. The three modes correspond to different orientations of the complex in the CdSe lattice. Arguments are presented in favor of 2 oxygen atoms (n = 2) in the complex. Measurements with uniaxial stress applied to the samples revealed defect symmetries and activation energies for the defect reorientation. The complex was found to be stable up to 750 °C.

  18. The influence of applied magnetic fields on the optical properties of zero- and one-dimensional CdSe nanocrystals.

    PubMed

    Blumling, Daniel E; McGill, Stephen; Knappenberger, Kenneth L

    2013-10-01

    Shape-dependent exciton relaxation dynamics of CdSe 0-D nanocrystals and 1-D nanorods were studied using low-temperature (4.2 K), time-resolved and intensity-integrated magneto-photoluminscence (MPL) spectroscopy. Analysis of the average MPL rate constants from several different nanocrystal quantum dots and rods excited by 400 nm light in applied magnetic fields up to 17.5 T revealed size-dependent energy gaps separating bright and dark exciton fine-structure states. For 1-D nanorods under strong cross-sectional confinement and large length-to-diameter aspect ratios, efficient mixing of bright and dark exciton states was achieved using relatively low applied field strengths (≤4 T). The effect was attributed, in part, to decreased confinement of CdSe hole states associated with the long axis of the nanorod, which resulted in reduction of the energy gaps separating the bright and dark states. Increased control over the angle formed between the applied field vectors and the nanocrystal c-axis led to more efficient and uniform mixing of nanorod exciton states than for quantum dots. The findings suggest 1-D nanostructures are advantageous over 0-D ones for field-responsive applications. PMID:23945622

  19. High performance of Mn-doped CdSe quantum dot sensitized solar cells based on the vertical ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Hou, Juan; Zhao, Haifeng; Huang, Fei; Jing, Qun; Cao, Haibin; Wu, Qiang; Peng, Shanglong; Cao, Guozhong

    2016-09-01

    Doping transition metal ions Mn2+ to semiconductor quantum dots (QDs) are extremely interesting for the development of photovoltaic devices. Quantum dot sensitized solar cells (QDSCs) are able to show promising power conversion efficiencies (PCE) by employing Mn2+ doped QDs. Herein we achieve effective CdS/Mnsbnd CdSe/ZnS QDs co-sensitized vertical ZnO nanorod arrays film that provides an appreciable enhancement in photovoltaic performance. The measured PCE of the solar cells with Mn2+ doped CdSe QDs is 4.14%, which is higher than the efficiency of 2.91% for the solar cells without Mn2+ or a ∼42% increase. The improvement in PCE is ascribed to a higher open-circuit voltage (Voc = 0.74 V) and a superior short-circuit current density (Jsc = 12.6 mA cm-2) with the introduction of Mn2+ into CdSe QDs. The enhancement seen with Mn2+ doped CdSe QDs are investigated and explained by the fact that the enhanced light absorption and reduced charge recombination by the formation of Mnsbnd CdSe passivation layer covering the QDs.

  20. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles.

    PubMed

    Ayano, Hiroyuki; Miyake, Masaki; Terasawa, Kanako; Kuroda, Masashi; Soda, Satoshi; Sakaguchi, Toshifumi; Ike, Michihiko

    2014-05-01

    Bacteria capable of synthesizing CdSe from selenite and cadmium ion were enriched from a soil sample. After repeated transfer of the soil-derived bacterial cultures to a new medium containing selenite and cadmium ion 42 times (during 360 days), an enrichment culture that can simultaneously remove selenite and cadmium ion (1 mM each) from the liquid phase was obtained. The culture's color became reddish-brown, indicating CdSe nanoparticle production, as confirmed by energy-dispersive x-ray spectra (EDS). As a result of isolation operations, the bacterium that was the most responsible for synthesizing CdSe, named Pseudomonas sp. RB, was obtained. Transmission electron microscopy and EDS revealed that this strain accumulated nanoparticles (10-20 nm) consisting of selenium and cadmium inside and on the cells when cultivated in the same medium for the enrichment culture. This report is the first describing isolation of a selenite-reducing and cadmium-resistant bacterium. It is useful for CdSe nanoparticle synthesis in the simple one-vessel operation.

  1. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles.

    PubMed

    Ayano, Hiroyuki; Miyake, Masaki; Terasawa, Kanako; Kuroda, Masashi; Soda, Satoshi; Sakaguchi, Toshifumi; Ike, Michihiko

    2014-05-01

    Bacteria capable of synthesizing CdSe from selenite and cadmium ion were enriched from a soil sample. After repeated transfer of the soil-derived bacterial cultures to a new medium containing selenite and cadmium ion 42 times (during 360 days), an enrichment culture that can simultaneously remove selenite and cadmium ion (1 mM each) from the liquid phase was obtained. The culture's color became reddish-brown, indicating CdSe nanoparticle production, as confirmed by energy-dispersive x-ray spectra (EDS). As a result of isolation operations, the bacterium that was the most responsible for synthesizing CdSe, named Pseudomonas sp. RB, was obtained. Transmission electron microscopy and EDS revealed that this strain accumulated nanoparticles (10-20 nm) consisting of selenium and cadmium inside and on the cells when cultivated in the same medium for the enrichment culture. This report is the first describing isolation of a selenite-reducing and cadmium-resistant bacterium. It is useful for CdSe nanoparticle synthesis in the simple one-vessel operation. PMID:24216457

  2. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.

    PubMed

    Lee, Hyojoong; Wang, Mingkui; Chen, Peter; Gamelin, Daniel R; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Md K

    2009-12-01

    In pursuit of efficient quantum dot (QD)-sensitized solar cells based on mesoporous TiO(2) photoanodes, a new procedure for preparing selenide (Se(2-)) was developed and used for depositing CdSe QDs in situ over TiO(2) mesopores by the successive ionic layer adsorption and reaction (SILAR) process in ethanol. The sizes and density of CdSe QDs over TiO(2) were controlled by the number of SILAR cycles applied. After some optimization of these QD-sensitized TiO(2) films in regenerative photoelectrochemical cells using a cobalt redox couple [Co(o-phen)(3)(2+/3+)], including addition of a final layer of CdTe, over 4% overall efficiencies were achieved at 100 W/m(2) with about 50% IPCE at its maximum. Light-harvesting properties and transient voltage decay/impedance measurements confirmed that CdTe-terminated CdSe QD cells gave better charge-collection efficiencies and kinetic parameters than corresponding CdSe QD cells. In a preliminary study, a CdSe(Te) QD-sensitized TiO(2) film was combined with an organic hole conductor, spiro-OMeTAD, and shown to exhibit a promising efficiency of 1.6% at 100 W/m(2) in inorganic/organic hybrid all-solid-state cells.

  3. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    PubMed

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1 mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1 mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills.

  4. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated CdSe quantum-dots-TiO2 -Ni(OH)2 assembly.

    PubMed

    Yu, Shan; Li, Zhi-Jun; Fan, Xiang-Bing; Li, Jia-Xin; Zhan, Fei; Li, Xu-Bing; Tao, Ye; Tung, Chen-Ho; Wu, Li-Zhu

    2015-02-01

    A visible-light-induced hydrogen evolution system based on a CdSe quantum dots (QDs)-TiO2 -Ni(OH)2 ternary assembly has been constructed under an ambient environment, and a bifunctional molecular linker, mercaptopropionic acid, is used to facilitate the interaction between CdSe QDs and TiO2 . This hydrogen evolution system works effectively in a basic aqueous solution (pH 11.0) to achieve a hydrogen evolution rate of 10.1 mmol g(-1)  h(-1) for the assembly and a turnover frequency of 5140 h(-1) with respect to CdSe QDs (10 h); the latter is comparable with the highest value reported for QD systems in an acidic environment. X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and control experiments demonstrate that Ni(OH)2 is an efficient hydrogen evolution catalyst. In addition, inductively coupled plasma optical emission spectroscopy and the emission decay of the assembly combined with the hydrogen evolution experiments show that TiO2 functions mainly as the electron mediator; the vectorial electron transfer from CdSe QDs to TiO2 and then from TiO2 to Ni(OH)2 enhances the efficiency for hydrogen evolution. The assembly comprises light antenna CdSe QDs, electron mediator TiO2 , and catalytic Ni(OH)2 , which mimics the strategy of photosynthesis exploited in nature and takes us a step further towards artificial photosynthesis.

  5. Aqueous-phase linker-assisted attachment of cysteinate(2-)-capped cdse quantum dots to TiO2 for quantum dot-sensitized solar cells.

    PubMed

    Coughlin, Kathleen M; Nevins, Jeremy S; Watson, David F

    2013-09-11

    We have synthesized water-dispersible cysteinate(2-)-capped CdSe nanocrystals and attached them to TiO2 using one-step linker-assisted assembly. Room-temperature syntheses yielded CdSe magic-sized clusters (MSCs) exhibiting a narrow and intense first excitonic absorption band centered at 422 nm. Syntheses at 80 °C yielded regular CdSe quantum dots (RQDs) with broader and red-shifted first excitonic absorption bands. Cysteinate(2-)-capped CdSe MSCs and RQDs adsorbed to bare nanocrystalline TiO2 films from aqueous dispersions. CdSe-functionalized TiO2 films were incorporated into working electrodes of quantum dot-sensitized solar cells (QDSSCs). Short-circuit photocurrent action spectra of QDSSCs corresponded closely to absorptance spectra of CdSe-functionalized TiO2 films. Power-conversion efficiencies were (0.43±0.04)% for MSC-functionalized TiO2 and (0.83±0.11)% for RQD-functionalized TiO2. Absorbed photon-to-current efficiencies under white-light illumination were approximately 0.3 for both MSC- and RQD-based QDSSCs, despite the significant differences in the electronic properties of MSCs and RQDs. Cysteinate(2-) is an attractive capping group and ligand, as it engenders water-dispersibility of CdSe nanocrystals with a range of photophysical properties, enables facile all-aqueous linker-assisted attachment of nanocrystals to TiO2, and promotes efficient interfacial charge transfer.

  6. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Tran, Thi Kim Chi; Nga Pham, Thu; Nghia Nguyen, Duc; Khang Dinh, Duy; Liem Nguyen, Quang

    2012-12-01

    This paper highlights the results of the whole work including the synthesis of highly luminescent quantum dots (QDs), characterizations and testing applications of them in different kinds of sensors. Concretely, it presents: (i) the successful synthesis of colloidal CdTe and CdSe QDs, their core/shell structures with single- and/or double-shell made by CdS, ZnS or ZnSe/ZnS; (ii) morphology, structural and optical characterizations of the synthesized QDs; and (iii) testing examples of QDs as the fluorescence labels for agricultural-bio-medical objects (for tracing residual pesticide in agricultural products, residual clenbuterol in meat/milk and for detection of H5N1 avian influenza virus in breeding farms). Overall, the results show that the synthesized QDs have very good crystallinity, spherical shape and strongly emit at the desired wavelengths between ˜500 and 700 nm with the luminescence quantum yield (LQY) of 30-85%. These synthesized QDs were used in fabrication of the three testing fluorescence QD-based sensors for the detection of residual pesticides, clenbuterol and H5N1 avian influenza virus. The specific detection of parathion methyl (PM) pesticide at a content as low as 0.05 ppm has been realized with the biosensors made from CdTe/CdS and CdSe/ZnSe/ZnS QDs and the acetylcholinesterase (AChE) enzymes. Fluorescence resonance energy transfer (FRET)-based nanosensors using CdTe/CdS QDs conjugated with 2-amino-8-naphthol-6-sulfonic acid were fabricated that enable detection of diazotized clenbuterol at a content as low as 10 pg ml-1. For detection of H5N1 avian influenza virus, fluorescence biosensors using CdTe/CdS QDs bound on the surface of chromatophores extracted and purified from bacteria Rhodospirillum rubrum were prepared and characterized. The specific detection of H5N1 avian influenza virus in the range of 3-50 ng μl-1 with a detection limit of 3 ng μL-1 has been performed based on the antibody-antigen recognition.

  7. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    SciTech Connect

    Han, Jinkyu; McBean, Coray; Wang, Lei; Hoy, Jessica; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Sfeir, Matthew Y.; Fischer, Daniel A.; Taylor, Gordon T.; Misewich, James A.; Wong, Stanislaus S.

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementary electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.

  8. Organic light-emitting diode with an emitter based on a planar layer of CdSe semiconductor nanoplatelets

    NASA Astrophysics Data System (ADS)

    Vashchenko, A. A.; Vitukhnovskii, A. G.; Lebedev, V. S.; Selyukov, A. S.; Vasiliev, R. B.; Sokolikova, M. S.

    2014-09-01

    Colloidal CdSe semiconductor nanoplatelets with characteristic longitudinal sizes of 20-70 nm and thicknesses of several atomic layers are synthesized. The spectra and kinetics of the photoluminescence of these quasi-two-dimensional nanostructures (quantum wells) at room and cryogenic temperatures are investigated. A hybrid light-emitting diode with the electron and hole transport layers based on TAZ and TPD organic compounds, respectively, and the active "emissive" element based on a layer of such single-component nanoplatelets is designed. The spectral and electrical characteristics of the fabricated device, emitting at a wavelength of λ = 515 nm, are determined. The use of quasi-two-dimensional nanostructures of this kind (nanoplatelets) is promising for the fabrication of hybrid light-emitting diodes with pure colors.

  9. Structure and Composition of Cu Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy

    SciTech Connect

    Meulenberg, R W; van Buuren, T; Hanif, K M; Willey, T M; Strouse, G F; Terminello, L J

    2004-06-04

    The local structure and composition of Cu ions dispersed in CdSe nanocrystals is examined using soft x-ray absorption near edge spectroscopy (XANES). Using Cu L-edge XANES and X-ray photoelectron measurements (XPS), we find that the Cu ions exist in the Cu(I) oxidation state. We also find that the observed Cu L-edge XANES signal is directly proportional to the molar percent of Cu present in our final material. Se L-edge XANES indicates changes in the Se density of states with Cu doping, due to a chemical bonding effect, and supports a statistical doping mechanism. Photoluminescence (PL) measurements indicate the Cu ions may act as deep electron traps. We show that XANES, XPS, and PL are a powerful combination of methods to study the electronic and chemical structure of dopants in nanostructured materials.

  10. Investigation of the surface chemical and electronic states of pyridine-capped CdSe nanocrystal films after plasma treatments using H{sub 2}, O{sub 2}, and Ar gases

    SciTech Connect

    Wang, Seok-Joo; Kim, Hyuncheol; Park, Hyung-Ho; Lee, Young-Su; Jeon, Hyeongtag; Chang, Ho Jung

    2010-07-15

    Surface chemical bonding and the electronic states of pyridine-capped CdSe nanocrystal films were evaluated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy before and after plasma treatments using H{sub 2}, O{sub 2}, and Ar gases from the viewpoint of studying the effects of surface capping organic molecules and surface oxidation. Surface capping organic molecules could be removed during the plasma treatment due to the chemical reactivity, ion energy transfer, and vacuum UV (VUV) of the plasma gases. With O{sub 2} plasma treatment, surface capping organic molecules were effectively removed but substantial oxidation of CdSe occurred during the plasma treatment. The valence band maximum energy (E{sub VBM}) of CdSe nanocrystal films mainly depends on the apparent size of pyridine-capped CdSe nanocrystals, which controls the interparticle distance, and also on the oxidation of CdSe nanocrystals. Cd-rich surface in O{sub 2} and H{sub 2} plasma treatments partially would compensate for the decrease in E{sub VBM}. After Ar plasma treatment, the smallest value of E{sub VBM} resulted from high VUV photon flux, short wavelength, and ion energy transfer. The surface bonding states of CdSe had a strong influence on the electronic structure with the efficient strip of capping molecules as well as different surface oxidations and surface capping molecule contents.

  11. Formation of highly luminescent Zn1-xCdxSe nanocrystals using CdSe and ZnSe seeds

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Yang, Ping

    2013-05-01

    High-quality colloidal Zn1-xCdxSe nanocrystals (NCs) with tunable photoluminescence (PL) from blue to orange were synthesized using oleic acid as a capping agent. The Zn1-xCdxSe NCs were prepared through two approaches: using CdSe or ZnSe seeds. In the case of CdSe NCs as seeds, Zn1-xCdxSe NCs were fabricated by the reaction of Zn, Cd, and Se precursors in the coordinating solvent system at high temperature. The Zn1-xCdxSe NCs revealed orange emitting. A significant blue-shift of absorption and PL spectra were observed with time, indicating the formation of ternary NCs. In contrast, Zn1-xCdxSe NCs revealed blue to green PL for ZnSe NCs as seeds. This is ascribed to an embryonic nuclei-induced alloying process. With increasing time, the Zn1-xCdxSe NCs exhibited a red-shift both in their absorption and PL spectra. This is attributed to the engineering in band gap energy via the control of NC composition. The PL properties of as-prepared alloyed NCs are comparable or even better than those for the parent binary systems. The PL peak wavelength of the Zn1-xCdxSe NCs depended strongly on reaction time and the molar ratio of Cd/Zn. The Zn1-xCdxSe NCs revealed a spherical morphology and exhibited a wurtzite structure according to transmission electron microscopy observation and an X-ray diffraction analysis.

  12. Ultrafast Photoinduced Interfacial Proton Coupled Electron Transfer from CdSe Quantum Dots to 4,4'-Bipyridine.

    PubMed

    Chen, Jinquan; Wu, Kaifeng; Rudshteyn, Benjamin; Jia, Yanyan; Ding, Wendu; Xie, Zhao-Xiong; Batista, Victor S; Lian, Tianquan

    2016-01-27

    Pyridine and derivatives have been reported as efficient and selective catalysts for the electrochemical and photoelectrochemical reduction of CO2 to methanol. Although the catalytic mechanism remains a subject of considerable recent debate, most proposed models involve interfacial proton coupled electron transfer (PCET) to electrode-bound catalysts. We report a combined experimental and theoretical study of the photoreduction of 4,4'-bipyridium (bPYD) using CdSe quantum dots (QDs) as a model system for interfacial PCET. We observed ultrafast photoinduced PCET from CdSe QDs to form doubly protonated [bPYDH2](+•) radical cations at low pH (4-6). Through studies of the dependence of PCET rate on isotopic substitution, pH and bPYD concentration, the radical formation mechanism was identified to be a sequential interfacial electron and proton transfer (ET/PT) process with a rate-limiting pH independent electron transfer rate constant, kint, of 1.05 ± 0.13 × 10(10) s(-1) between a QD and an adsorbed singly protonated [bPYDH](+). Theoretical studies of the adsorption of [bPYDH](+) and methylviologen on QD surfaces revealed important effects of hydrogen bonding with the capping ligand (3-mercaptopropionic acid) on binding geometry and interfacial PCET. In the presence of sacrificial electron donors, this system was shown to be capable of generating [bPYDH2](+•) radical cations under continuous illumination at 405 nm with a steady-state photoreduction quantum yield of 1.1 ± 0.1% at pH 4. The mechanism of bPYD photoreduction reported in this work may provide useful insights into the catalytic roles of pyridine and pyridine derivatives in the electrochemical and photoelectrochemical reduction of CO2. PMID:26713752

  13. Coexpression of CdSe and CdSe/CdS quantum dots in live cells using molecular hyperspectral imaging technology.

    PubMed

    Li, Qingli; Peng, Hui; Wang, Jing; Wang, Yiting; Guo, Fangmin

    2015-11-01

    A direct spatial and spectral observation of CdSe and CdSe/CdS quantum dots (QDs) as probes in live cells is performed by using a custom molecular hyperspectral imaging (MHI) system. Water-soluble CdSe and CdSe/CdS QDs are synthesized in aqueous solution under the assistance of high-intensity ultrasonic irradiation and incubated with colon cancer cells for bioimaging. Unlike the traditional fluorescence microscopy methods, MHI technology can identify QD probes according to their spectral signatures and generate coexpression and stain titer maps by a clustering method. The experimental results show that the MHI method has potential to unmix biomarkers by their spectral information, which opens up a pathway of optical multiplexing with many different QD probes. PMID:26588112

  14. Study of optical nonlinearity of CdSe and CdSe@ZnO core-shell quantum dots in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Deepika; Dhar, Rakesh; Mohan, Devendra

    2015-12-01

    Thioglycolic acid capped cadmium selenide (CdSe) and CdSe@ZnO core-shell quantum dots have been synthesized in aqueous phase. The sample was characterized by UV-vis spectrophotometer, TEM and Z-scan technique. The nonlinear optical parameters viz. nonlinear absorption coefficient (β), nonlinear refractive index (n2) and third-order nonlinear susceptibilities (χ3) of quantum dots have been estimated using second harmonic of Nd:YAG laser. The study predicts that CdSe@ZnO quantum dots exhibits strong nonlinearity as compared to core CdSe quantum dots. The nonlinearity in quantum dots is attributed to the presence of resonant excitation and free optical processes. The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.

  15. Coexpression of CdSe and CdSe/CdS quantum dots in live cells using molecular hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Li, Qingli; Peng, Hui; Wang, Jing; Wang, Yiting; Guo, Fangmin

    2015-11-01

    A direct spatial and spectral observation of CdSe and CdSe/CdS quantum dots (QDs) as probes in live cells is performed by using a custom molecular hyperspectral imaging (MHI) system. Water-soluble CdSe and CdSe/CdS QDs are synthesized in aqueous solution under the assistance of high-intensity ultrasonic irradiation and incubated with colon cancer cells for bioimaging. Unlike the traditional fluorescence microscopy methods, MHI technology can identify QD probes according to their spectral signatures and generate coexpression and stain titer maps by a clustering method. The experimental results show that the MHI method has potential to unmix biomarkers by their spectral information, which opens up a pathway of optical multiplexing with many different QD probes.

  16. Synthesis of CdSe -- TiO2 Nanocomposites and Their Applications to TiO2 Sensitized Solar Cells

    SciTech Connect

    Kim, J. Y.; Choi, S. B.; Noh, J. H.; HunYoon, S.; Lee, S.; Noh, T. H.; Frank, A. J.; Hong, K. S.

    2009-01-01

    CdSe-TiO{sub 2} nanocomposites were synthesized via aminolysis of Ti-oleate complexes in the presence of CdSe nanocrystals, and their application as sensitizers for TiO{sub 2} solar cells was investigated. The formation of CdSe-TiO{sub 2} nanocomposites was confirmed using transmission electron microscopy and Raman spectroscopy. The emission spectrum of CdSe-TiO{sub 2} nanocomposites revealed photoinduced charge separation at the CdSe-TiO{sub 2} interface of the composite. The photocurrent-voltage properties of CdSe-TiO{sub 2}-sensitized TiO{sub 2} particle films compared favorably with those of CdSe-sensitized TiO{sub 2} films. Evidence was also found indicating that the TiO{sub 2} component of the composite protects CdSe against degradation during film annealing.

  17. Tunable 10- to 11-μm CdSe optical parametric oscillator pumped by a 2.1-μm Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Yuan, J. H.; Duan, X. M.; Yao, B. Q.; Cui, Z.; Li, Y. Y.; Dai, T. Y.; Shen, Y. J.; Ju, Y. L.

    2016-07-01

    We demonstrated a CdSe optical parametric oscillator (OPO) pumped by a 2090.7-nm Ho:YAG laser at a pulse repetition frequency of 500 Hz. Up to 140 mW output which corresponds to a pulse energy of 280 μJ was obtained at the idler wavelength of 10.28 μm with a pump power of 7 W. The idler pulse width was 19 ns when pumped by a 32 ns pulse. The idler wavelength can be tuned from 10.07 to 11.1 μm. With 6.3 W pump, the output power at 11.1 μm reached 46 mW (92 μJ pulse energy). To the best of our knowledge, 11.1 μm was the longest wavelength obtained with a 2.1-μm laser pumped CdSe OPO.

  18. Anodic Electrogenerated Chemiluminescence of Ru(bpy)3(2+) with CdSe Quantum Dots as Coreactant and Its Application in Quantitative Detection of DNA.

    PubMed

    Dong, Yong-Ping; Gao, Ting-Ting; Zhou, Ying; Jiang, Li-Ping; Zhu, Jun-Jie

    2015-01-01

    In the present paper, we report that CdSe quantum dots (QDs) can act as the coreactant of Ru(bpy)3(2+) electrogenerated chemiluminescence (ECL) in neutral condition. Strong anodic ECL signal was observed at ~1.10 V at CdSe QDs modified glassy carbon electrode (CdSe/GCE), which might be mainly attributed to the apparent electrocatalytic effect of QDs on the oxidation of Ru(bpy)3(2+). Ru(bpy)3(2+) can be intercalated into the loop of hairpin DNA through the electrostatic interaction to fabricate a probe. When the probe was bound to the CdSe QDs modified on the GCE, the intense ECL signal was obtained. The more Ru(bpy)3(2+) can be intercalated when DNA loop has larger diameter and the stronger ECL signal can be observed. The loop of hairpin DNA can be opened in the presence of target DNA to release the immobilized Ru(bpy)3(2+), which can result in the decrease of ECL signal. The decreased ECL signal varied linearly with the concentration of target DNA, which showed the ECL biosensor can be used in the sensitive detection of DNA. The proposed ECL biosensor showed an excellent performance with high specificity, wide linear range and low detection limit. PMID:26472243

  19. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water

    PubMed Central

    Wen, Min; Li, Xu-Bing; Jian, Jing-Xin; Wang, Xu-Zhe; Wu, Hao-Lin; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-01-01

    Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA−) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts. PMID:27417065

  20. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-01

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  1. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: the effects of surface and ligands.

    PubMed

    Gao, Yuan; Peng, Xiaogang

    2015-04-01

    A systematic and reproducible method was developed to study the decay dynamics of an exciton, a photogenerated electron-hole pair, in semiconductor nanocrystals in solution. Results revealed that the excitons in plain core CdSe nanocrystals in either zinc-blende or wurtzite or mixed lattice structures could be reproducibly prepared to decay radiatively in unity quantum yield and in single channel. The single-channel lifetime was found to increase monotonically by increasing size of the CdSe nanocrystals, with zinc-blende ones increasing in a relatively slow pace. Surface inorganic stoichiometry was found to be a sensitive parameter to affect the exciton decay dynamics for all crystal structures with different sizes. Excess Se (Cd) sites on the surface were found to induce short (long) lifetime channels for the excitons. Both types of traps reduced the quantum yield of the radiative decay of the excitons, and the hole traps associated with Se sites were nearly not emissive. With optimal surface inorganic stoichiometry, primary amines were identified as "ideal" organic ligands for CdSe core nanocrystals to achieve unity radiative decay of excitons in single channel in comparison to other types of neutral ligands commonly applied in the field.

  2. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-01

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs. PMID:24514936

  3. Anodic Electrogenerated Chemiluminescence of Ru(bpy)32+ with CdSe Quantum Dots as Coreactant and Its Application in Quantitative Detection of DNA

    PubMed Central

    Dong, Yong-Ping; Gao, Ting-Ting; Zhou, Ying; Jiang, Li-Ping; Zhu, Jun-Jie

    2015-01-01

    In the present paper, we report that CdSe quantum dots (QDs) can act as the coreactant of Ru(bpy)32+ electrogenerated chemiluminescence (ECL) in neutral condition. Strong anodic ECL signal was observed at ~1.10 V at CdSe QDs modified glassy carbon electrode (CdSe/GCE), which might be mainly attributed to the apparent electrocatalytic effect of QDs on the oxidation of Ru(bpy)32+. Ru(bpy)32+ can be intercalated into the loop of hairpin DNA through the electrostatic interaction to fabricate a probe. When the probe was bound to the CdSe QDs modified on the GCE, the intense ECL signal was obtained. The more Ru(bpy)32+ can be intercalated when DNA loop has larger diameter and the stronger ECL signal can be observed. The loop of hairpin DNA can be opened in the presence of target DNA to release the immobilized Ru(bpy)32+, which can result in the decrease of ECL signal. The decreased ECL signal varied linearly with the concentration of target DNA, which showed the ECL biosensor can be used in the sensitive detection of DNA. The proposed ECL biosensor showed an excellent performance with high specificity, wide linear range and low detection limit. PMID:26472243

  4. Understanding the electronic structure of CdSe quantum dot-fullerene (C{sub 60}) hybrid nanostructure for photovoltaic applications

    SciTech Connect

    Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab

    2014-09-21

    By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C{sub 60}) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C{sub 60} systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD. With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C{sub 60}-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C{sub 60} hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.

  5. Nondestructive chemical functionalization of MWNTs by poly(2-dimethylaminoethyl methacrylate) and their conjugation with CdSe quantum dots: Synthesis, properties, and cytotoxicity studies

    NASA Astrophysics Data System (ADS)

    Islam, Md. Rafiqul; Bach, Long Giang; Vo, Thanh-Sang; Tran, Thi-Nga; Lim, Kwon Taek

    2013-12-01

    Multi-walled carbon nanotubes (MWNTs) were functionalized with poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) in a nondestructive manner by UV-driven surface-initiated reversible addition fragmentation chain transfer (RAFT) polymerization. The RAFT agent having benzophenone groups was initially synthesized, and anchored to MWNTs through UV-triggered photoreaction. The subsequent RAFT polymerization of DMAEMA from the surface of MWNTs afforded PDMAEMA grafted MWNTs (MWNTs-g-PDMAEMA). The successful grafting of PDMAEMA on MWNTs via chemical linkage was confirmed by FT-IR, 1H NMR, XPS, EDX, TGA, TEM, and SEM analyses. A reversible dispersion phenomenon was observed in an aqueous solution of MWNTs-g-PDMAEMA as induced either by temperature or pH. The CdSe quantum dots (CdSe QDs) were attached to quaternized MWNTs-g-PDMAEMA to produce MWNTs-g-PDMAEMA-MeI/CdSe nanohybrids via electrostatic self-assembly. The formation of the nanohybrids was elucidated by EDS, TEM, and XRD. The cell viability assessment of the nanohybrids suggested their biocompatible character. The photoluminescence spectra of the nanohybrids indicated that the CdSe QDs significantly preserved its optical property after conjugation with MWNTs-g-PDMAEMA.

  6. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water

    NASA Astrophysics Data System (ADS)

    Wen, Min; Li, Xu-Bing; Jian, Jing-Xin; Wang, Xu-Zhe; Wu, Hao-Lin; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-07-01

    Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA‑) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts.

  7. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water.

    PubMed

    Wen, Min; Li, Xu-Bing; Jian, Jing-Xin; Wang, Xu-Zhe; Wu, Hao-Lin; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-01-01

    Achieving highly efficient hydrogen (H2) evolution via artificial photosynthesis is a great ambition pursued by scientists in recent decades because H2 has high specific enthalpy of combustion and benign combustion product. [FeFe]-Hydrogenase ([FeFe]-H2ase) mimics have been demonstrated to be promising catalysts for H2 photoproduction. However, the efficient photocatalytic H2 generation system, consisting of PAA-g-Fe2S2, CdSe QDs and H2A, suffered from low stability, probably due to the hole accumulation induced photooxidation of CdSe QDs and the subsequent crash of [FeFe]-H2ase mimics. In this work, we take advantage of supramolecular interaction for the first time to construct the secondary coordination sphere of electron donors (HA(-)) to CdSe QDs. The generated secondary coordination sphere helps realize much faster hole removal with a ~30-fold increase, thus leading to higher stability and activity for H2 evolution. The unique photocatalytic H2 evolution system features a great increase of turnover number to 83600, which is the highest one obtained so far for photocatalytic H2 production by using [FeFe]-H2ase mimics as catalysts. PMID:27417065

  8. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    SciTech Connect

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  9. Direct electro-optical pumping for hybrid CdSe nanocrystal/III-nitride based nano-light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mikulics, M.; Arango, Y. C.; Winden, A.; Adam, R.; Hardtdegen, A.; Grützmacher, D.; Plinski, E.; Gregušová, D.; Novák, J.; Kordoš, P.; Moonshiram, A.; Marso, M.; Sofer, Z.; Lüth, H.; Hardtdegen, H.

    2016-02-01

    We propose a device concept for a hybrid nanocrystal/III-nitride based nano-LED. Our approach is based on the direct electro-optical pumping of nanocrystals (secondary excitation) by electrically driven InGaN/GaN nano-LEDs as the primary excitation source. To this end, a universal hybrid optoelectronic platform was developed for a large range of optically active nano- and mesoscopic structures. The advantage of the approach is that the emission of the nanocrystals can be electrically induced without the need of contacting them. The proof of principal was demonstrated for the electro-optical pumping of CdSe nanocrystals. The nano-LEDs with a diameter of 100 nm exhibit a very low current of ˜8 nA at 5 V bias which is several orders of magnitude smaller than for those conventionally used. The leakage currents in the device layout were typically in the range of 8 pA to 20 pA/cm2 at 5 V bias. The photon-photon down conversion efficiency was determined to be 27%. Microphotoluminescence and microelectroluminescence characterization demonstrate the potential for future optoelectronics and highly secure "green" information technology applications.

  10. Photorefractive performance of a CdSe /ZnS core/shell nanoparticle-sensitized polymer

    NASA Astrophysics Data System (ADS)

    Aslam, Farzana; Binks, David J.; Rahn, Mark D.; West, David P.; O'Brien, Paul; Pickett, Nigel; Daniels, Steve

    2005-05-01

    We report the photorefractive performance of a polymer composite sensitized by CdSe /ZnS core/shell nanoparticles, and also comprising poly(N-vinylcarbazole) and an electro-optic chromophore. The nanoparticles are characterized by absorption and photoluminescence spectroscopy, elemental analysis, transmission electron microscopy, and powder x-ray diffraction. The electro-optic response of the composite is measured independently of the photorefractive effect by transmission ellipsometry. An asymmetric two-beam coupling gain of 30.6±0.4cm-1 is obtained, confirming photorefractivity. Degenerate four-wave mixing is used to assess photorefractive performance and, at a poling field of 70Vμm-1, yields a diffraction efficiency of 4.21%±0.03%, a holographic contrast of 3.05×10-4±1×10-6, a space-charge rise time of 25±2s, and a sensitivity of 4.7×10-5±4×10-6cm3J-1. These results constitute a significant improvement on the performance of previous nanoparticle-sensitized photorefractive polymer composites.

  11. CdSe Nanowire-Based Flexible Devices: Schottky Diodes, Metal-Semiconductor Field-Effect Transistors, and Inverters.

    PubMed

    Jin, Weifeng; Zhang, Kun; Gao, Zhiwei; Li, Yanping; Yao, Li; Wang, Yilun; Dai, Lun

    2015-06-24

    Novel CdSe nanowire (NW)-based flexible devices, including Schottky diodes, metal-semiconductor field-effect transistors (MESFETs), and inverters, have been fabricated and investigated. The turn-on voltage of a typical Schottky diode is about 0.7 V, and the rectification ratio is larger than 1 × 10(7). The threshold voltage, on/off current ratio, subthreshold swing, and peak transconductance of a typical MESFET are about -0.3 V, 4 × 10(5), 78 mV/dec, and 2.7 μS, respectively. The inverter, constructed with two MESFETs, exhibits clear inverting behavior with the gain to be about 28, 34, and 38, at the supply voltages (V(DD)) of 3, 5, and 7 V, respectively. The inverter also shows good dynamic behavior. The rising and falling times of the output signals are about 0.18 and 0.09 ms, respectively, under 1000 Hz square wave signals input. The performances of the flexible devices are stable and reliable under different bending conditions. Our work demonstrates these flexible NW-based Schottky diodes, MESFETs, and inverters are promising candidate components for future portable transparent nanoelectronic devices.

  12. Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO 2 Nanobelt

    DOE PAGES

    Tafen, De Nyago; Prezhdo, Oleg V.

    2015-02-24

    Understanding charge transfer reactions between quantum dots (QD) and metal oxides is fundamental for improving photocatalytic, photovoltaic and electronic devices. The complexity of these processes makes it difficult to find an optimum QD size with rapid charge injection and low recombination. We combine time-domain density functional theory with nonadiabatic molecular dynamics to investigate the size and temperature dependence of the experimentally studied electron transfer and charge recombination at CdSe QD-TiO2 nanobelt (NB) interfaces. The electron injection rate shows strong dependence on the QD size, increasing for small QDs. The rate exhibits Arrhenius temperature dependence, with the activation energy of themore » order of millielectronvolts. The charge recombination process occurs due to coupling of the electronic subsystem to vibrational modes of the TiO2 NB. Inelastic electron-phonon scattering happens on a picosecond time scale, with strong dependence on the QD size. Our simulations demonstrate that the electron-hole recombination rate decreases significantly as the QD size increases, in excellent agreement with experiments. The temperature dependence of the charge recombination rates can be successfully modeled within the framework of the Marcus theory through optimization of the electronic coupling and the reorganization energy. Our simulations indicate that by varying the QD size, one can modulate the photoinduced charge separation and charge recombination, fundamental aspects of the design principles for high efficiency devices.« less

  13. μ-Rainbow: CdSe Nanocrystal Photoluminescence Gradients via Laser Spike Annealing for Kinetic Investigations and Tunable Device Design.

    PubMed

    Treml, Benjamin E; Jacobs, Alan G; Bell, Robert T; Thompson, Michael O; Hanrath, Tobias

    2016-02-10

    Much of the promise of nanomaterials derives from their size-dependent, and hence tunable, properties. Impressive advances have been made in the synthesis of nanoscale building blocks with precisely tailored size, shape and composition. Significant attention is now turning toward creating thin film structures in which size-dependent properties can be spatially programmed with high fidelity. Nonequilibrium processing techniques present exciting opportunities to create nanostructured thin films with unprecedented spatial control over their optical and electronic properties. Here, we demonstrate single scan laser spike annealing (ssLSA) on CdSe nanocrystal (NC) thin films as an experimental test bed to illustrate how the size-dependent photoluminescence (PL) emission can be tuned throughout the visible range and in spatially defined profiles during a single annealing step. Through control of the annealing temperature and time, we discovered that NC fusion is a kinetically limited process with a constant activation energy in over 2 orders of magnitude of NC growth rate. To underscore the broader technological implications of this work, we demonstrate the scalability of LSA to process large area NC films with periodically modulated PL emission, resulting in tunable emission properties of a large area film. New insights into the processing-structure-property relationships presented here offer significant advances in our fundamental understanding of kinetics of nanomaterials as well as technological implications for the production of nanomaterial films. PMID:26536402

  14. Lifetime and Polarization of the Radiative Decay of Excitons, Biexcitons, and Trions in CdSe Nanocrystal Quantum Dots

    SciTech Connect

    Califano, M.; Franceschetti, A.; Zunger, A.

    2007-01-01

    Using the pseudopotential configuration-interaction method, we calculate the intrinsic lifetime and polarization of the radiative decay of single excitons (X), positive and negative trions (X{sup +} and X{sup -}), and biexcitons (XX) in CdSe nanocrystal quantum dots. We investigate the effects of the inclusion of increasingly more complex many-body treatments, starting from the single-particle approach and culminating with the configuration-interaction scheme. Our configuration-interaction results for the size dependence of the single-exciton radiative lifetime at room temperature are in excellent agreement with recent experimental data. We also find the following. (i) Whereas the polarization of the bright exciton emission is always perpendicular to the hexagonal c axis, the polarization of the dark exciton switches from perpendicular to parallel to the hexagonal c axis in large dots, in agreement with experiment. (ii) The ratio of the radiative lifetimes of mono- and biexcitons (X):(XX) is {approx}1:1 in large dots (R=19.2 {angstrom}). This ratio increases with decreasing nanocrystal size, approaching 2 in small dots (R=10.3 {angstrom}). (iii) The calculated ratio (X{sup +}):(X{sup -}) between positive and negative trion lifetimes is close to 2 for all dot sizes considered.

  15. Chirality Inversion of CdSe and CdS Quantum Dots without Changing the Stereochemistry of the Capping Ligand.

    PubMed

    Choi, Jung Kyu; Haynie, Benjamin E; Tohgha, Urice; Pap, Levente; Elliott, K Wade; Leonard, Brian M; Dzyuba, Sergei V; Varga, Krisztina; Kubelka, Jan; Balaz, Milan

    2016-03-22

    L-cysteine derivatives induce and modulate the optical activity of achiral cadmium selenide (CdSe) and cadmium sulfide (CdS) quantum dots (QDs). Remarkably, N-acetyl-L-cysteine-CdSe and L-homocysteine-CdSe as well as N-acetyl-L-cysteine-CdS and L-cysteine-CdS showed "mirror-image" circular dichroism (CD) spectra regardless of the diameter of the QDs. This is an example of the inversion of the CD signal of QDs by alteration of the ligand's structure, rather than inversion of the ligand's absolute configuration. Non-empirical quantum chemical simulations of the CD spectra were able to reproduce the experimentally observed sign patterns and demonstrate that the inversion of chirality originated from different binding arrangements of N-acetyl-L-cysteine and L-homocysteine-CdSe to the QD surface. These efforts may allow the prediction of the ligand-induced chiroptical activity of QDs by calculating the specific binding modes of the chiral capping ligands. Combined with the large pool of available chiral ligands, our work opens a robust approach to the rational design of chiral semiconducting nanomaterials.

  16. Effect of air annealing on structural, optical, morphological and electrical properties of thermally evaporated CdSe thin films

    NASA Astrophysics Data System (ADS)

    Purohit, A.; Chander, S.; Nehra, S. P.; Dhaka, M. S.

    2015-05-01

    In this paper, a study on effect of air annealing on structural, optical, morphological and electrical properties of CdSe thin films is undertaken. The thin films of thickness 810 nm were deposited on glass and ITO coated glass substrates employing thermal evaporation technique. The glass substrates were used to find structural, optical and morphological properties while ITO coated glass substrates for electrical properties. The as-deposited films were subjected to thermal annealing in air atmosphere at different temperatures 100 °C, 200 °C and 300 °C. The X-ray diffraction pattern shows that the films have cubic phase with preferred orientation (111). The structural parameters like inter-planner spacing, lattice constant, grain size, dislocation density, strain and number of crystallites per unit area are calculated. The grain size is found in the range 27.11-34.03 nm and observed to be varied with air annealing. The dislocation density and strain vary with annealing in the range (0.86-1.36)×1011 cm-2 and 0.276-0.347 respectively. The extinction coefficient is found to be increased at lower annealing temperature and decreased at higher. The refractive index is also calculated and found in the range 2.75-2.80. The AFM studies show that roughness of thin films are increased with annealing. The electrical resistivity is found to be decreased with annealing temperature. The results are in good agreement with the standard data and available literature.

  17. Electron relaxation in the CdSe quantum dot--ZnO composite: prospects for photovoltaic applications.

    PubMed

    Zídek, Karel; Abdellah, Mohamed; Zheng, Kaibo; Pullerits, Tõnu

    2014-11-28

    Quantum dot (QD)-metal oxide composite forms a "heart" of the QD-sensitized solar cells. It maintains light absorption and electron-hole separation in the system and has been therefore extensively studied. The interest is largely driven by a vision of harvesting the hot carrier energy before it is lost via relaxation. Despite of importance of the process, very little is known about the carrier relaxation in the QD-metal oxide composites. In order to fill this gap of knowledge we carry out a systematic study of initial electron dynamics in different CdSe QD systems. Our data reveal that QD attachment to ZnO induces a speeding-up of transient absorption onset. Detailed analysis of the onset proves that the changes are caused by an additional relaxation channel dependent on the identity of the QD-ZnO linker molecule. The faster relaxation represents an important factor for hot carrier energy harvesting, whose efficiency can be influenced by almost 50%.

  18. Quantitative assessment of Tn antigen in breast tissue micro-arrays using CdSe aqueous quantum dots.

    PubMed

    Au, Giang H T; Mejias, Linette; Swami, Vanlila K; Brooks, Ari D; Shih, Wan Y; Shih, Wei-Heng

    2014-03-01

    In this study, we examined the use of CdSe aqueous quantum dots (AQDs) each conjugated to three streptavidin as a fluorescent label to image Tn antigen expression in various breast tissues via a sandwich staining procedure where the primary monoclonal anti-Tn antibody was bound to the Tn antigen on the tissue, a biotin-labeled secondary antibody was bound to the primary anti-Tn antibody, and finally the streptavidin-conjugated AQDs were bound to the biotin on the secondary antibody. We evaluated the AQD staining of Tn antigen on tissue microarrays consisting of 395 cores from 115 cases including three tumor cores and one normal-tissue core from each breast cancer case and three tumor cores from each benign case. The results indicated AQD-Tn staining was positive in more than 90% of the cells in the cancer cores but not the cells in the normal-tissue cores and the benign tumor cores. As a result, AQD-Tn staining exhibited 95% sensitivity and 90% specificity in differentiating breast cancer against normal breast tissues and benign breast conditions. These results were better than the 90% sensitivity and 80% specificity exhibited by the corresponding horse radish peroxidase (HRP) staining using the same antibodies on the same tissues and those of previous studies that used different fluorescent labels to image Tn antigen. In addition to sensitivity and specificity, the current AQD-Tn staining with a definitive threshold was quantitative. PMID:24411673

  19. Nonlinear optical properties of cobalt and iron doped CdSe nanoparticles using Z-scan technique

    NASA Astrophysics Data System (ADS)

    Gaur, Poonam; Malik, B. P.; Gaur, Arun

    2015-01-01

    The present work aims at the synthesis of pure, Cobalt (Co) and Iron (Fe) doped CdSe nanoparticles by the wet chemical method. The optical properties of synthesized nanoparticles have been characterized by X-ray diffraction (XRD), UV-vis spectroscopy to find the optical direct band gap and estimation of particle size by using Debye-Scherrer formula and HRTEM. The nonlinear optical properties such as nonlinear absorption co-efficient, nonlinear refraction co-efficient and third order nonlinear susceptibility χ(3) are investigated. The calculations have been performed with the help of Z-scan experimental set-up using Nd: YAG laser emitting 532 nm, 5 ns laser pulses with intensity maintained at 2.296 TW/cm2. The nanoparticles clearly exhibit a negative value of nonlinear refraction, which is attributed to the two photon absorption and free carrier absorption. Further the optical limiting behavior is determined (figure of merit (FOM)). The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.

  20. Tandem structured quantum dot/rod sensitized solar cell based on solvothermal synthesized CdSe quantum dots and rods

    NASA Astrophysics Data System (ADS)

    Golobostanfard, Mohammad Reza; Abdizadeh, Hossein

    2014-06-01

    The quantum dots (QD) and quantum rods (QR) of different sizes, shapes, and crystalline phases are synthesized by modified solvothermal method spontaneously employed stirring system and controlled internal applied pressure. The tandem structure of QDs and QRs as well as tetrapods is formed on hierarchical porous titania photoanode by means of electrophoretic deposition. A tremendous enhancement in efficiency of the cell is obtained in samples synthesized at 220 °C for 24 h due to the formation of tandem structure, utilization of Cu2S/CNT composite cathode, co-sensitization of CdS and CdSe, and beneficial role of QRs in electron lifetime. Smaller size QDs with higher band gaps penetrate deeper through the macro-channels of the hierarchical porous structure, while the QRs and tetrapods with lower band gaps are placed on upper layers. Although the charge injection is improved in smaller QDs, the electron lifetime in QRs is longer mainly due to the higher absorption cross section, proper charge separation, introduction of quasi-one dimensional route for charge transport through QRs, and higher surface area available for regeneration with electrolyte. The cell shows the efficiency of 1.05% with JSC of 4.48 mA cm-2, VOC of 0.45 V, and fill factor of 0.52.

  1. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    SciTech Connect

    Xu, Xingsheng

    2015-03-02

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreased with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.

  2. Conditions for Directional Charge Transfer in CdSe Quantum Dots Functionalized by Ru(II) Polypyridine Complexes.

    PubMed

    Kilina, Svetlana; Cui, Peng; Fischer, Sean A; Tretiak, Sergei

    2014-10-16

    Thermodynamic conditions governing the charge transfer direction in CdSe quantum dots (QD) functionalized by either Ru(II)-trisbipyridine or black dye are studied using density functional theory (DFT) and time-dependent DFT (TDDFT). Compared to the energy offsets of the isolated QD and the dye, QD-dye interactions strongly stabilize dye orbitals with respect to the QD states, while the surface chemistry of the QD has a minor effect on the energy offsets. In all considered QD/dye composites, the dyes always introduce unoccupied states close to the edge of the conduction band and control the electron transfer. Negatively charged ligands and less polar solvents significantly destabilize the dye's occupied orbitals shifting them toward the very edge of the valence band, thus, providing favorite conditions for the hole transfer. Overall, variations in the dye's ligands and solvent polarity can progressively adjust the electronic structure of QD/dye composites to modify conditions for the directed charge transfer. PMID:26278611

  3. Enhanced performance of branched TiO{sub 2} nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell

    SciTech Connect

    Kim, Soo-Kyoung; Gopi, Chandu V. V. M.; Lee, Jae-Cheol; Kim, Hee-Je

    2015-04-28

    TiO{sub 2} branched nanostructures could be efficient as photoanodes for quantum dot-sensitized solar cells (QDSCs) due to their large surface area for QD deposition. In this study, Mn-doped CdS/Mn-doped CdSe deposited branched TiO{sub 2} nanorods were fabricated to enhance the photovoltaic performance of QDSCs. Mn doping in CdS and CdSe retards the recombination losses of electrons, while branched TiO{sub 2} nanorods facilitate effective electron transport and compensate for the low surface area of the nanorod structure. As a result, the charge-transfer resistance (R{sub CT}), electron lifetime (τ{sub e}), and the amount of QD deposition were significantly improved with branched TiO{sub 2} nanorod based Mn-doped CdS/Mn-doped CdSe quantum dot-sensitized solar cell.

  4. CdSe quantum dot-functionalized TiO2 nanohybrids as a visible light induced photoelectrochemical platform for the detection of proprotein convertase subtilisin/kexin type 6.

    PubMed

    Pang, Xuehui; Pan, Jihong; Wang, Lin; Ren, Wei; Gao, Picheng; Wei, Qin; Du, Bin

    2015-09-15

    Proprotein convertase subtilisin/kexin type 6 (PCSK6) plays a major role in promoting the progression of rheumatoid arthritis to a higher aggressive status. A novel highly sensitive photoelectrochemical platform was developed for the detection of PCSK6 by using CdSe quantum dots (QDs)-functionalized TiO2 nanoparticles (NPs) nanohybrids (TiO2@CdSe) as the photo-to-electron conversion medium. TiO2@CdSe showed excellent visible-light absorbency, and much higher photoelectrochemical activity than both CdSe QDs and TiO2 NPs. The 5' and 3' primers of PCSK6 ssDNA acted as capture probes to realize the detection of PCSK6 ssDNA by the specific recognition. The capture probes can be fixed by poly-l-lysine (PLL) through positively strong electrostatic attraction and the carboxyl group of TiO2@CdSe nanohybrids. PLL was electropolymerized on ITO electrode by cyclic voltammetry (CV). Simultaneously, the amino group of PLL can interact with the carboxyl group of TiO2@CdSe nanohybrids to enhance the stability of the photoelectrochemical signal. The fabricated aptsensor exhibited excellent performance towards PCSK6 with a wide linear range (0.5 pg/mL to 80.0 ng/mL) and a detection limit of 0.1 fg/mL. This work opens up a new detection platform for PCSK6 with good sensitivity, reproducibility and stability. PMID:25889349

  5. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    DOE PAGES

    Han, Jinkyu; McBean, Coray; Wang, Lei; Hoy, Jessica; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Sfeir, Matthew Y.; Fischer, Daniel A.; Taylor, Gordon T.; et al

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementarymore » electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.« less

  6. Atomistic description of thiostannate-capped CdSe nanocrystals: retention of four-coordinate SnS4 motif and preservation of Cd-rich stoichiometry.

    PubMed

    Protesescu, Loredana; Nachtegaal, Maarten; Voznyy, Oleksandr; Borovinskaya, Olga; Rossini, Aaron J; Emsley, Lyndon; Copéret, Christophe; Günther, Detlef; Sargent, Edward H; Kovalenko, Maksym V

    2015-02-11

    Colloidal semiconductor nanocrystals (NCs) are widely studied as building blocks for novel solid-state materials. Inorganic surface functionalization, used to displace native organic capping ligands from NC surfaces, has been a major enabler of electronic solid-state devices based on colloidal NCs. At the same time, very little is known about the atomistic details of the organic-to-inorganic ligand exchange and binding motifs at the NC surface, severely limiting further progress in designing all-inorganic NCs and NC solids. Taking thiostannates (K4SnS4, K4Sn2S6, K6Sn2S7) as typical examples of chalcogenidometallate ligands and oleate-capped CdSe NCs as a model NC system, in this study we address these questions through the combined application of solution (1)H NMR spectroscopy, solution and solid-state (119)Sn NMR spectroscopy, far-infrared and X-ray absorption spectroscopies, elemental analysis, and by DFT modeling. We show that through the X-type oleate-to-thiostannate ligand exchange, CdSe NCs retain their Cd-rich stoichiometry, with a stoichiometric CdSe core and surface Cd adatoms serving as binding sites for terminal S atoms of the thiostannates ligands, leading to all-inorganic (CdSe)core[Cdm(Sn2S7)yK(6y-2m)]shell (taking Sn2S7(6-) ligand as an example). Thiostannates SnS4(4-) and Sn2S7(6-) retain (distorted) tetrahedral SnS4 geometry upon binding to NC surface. At the same time, experiments and simulations point to lower stability of Sn2S6(4-) (and SnS3(2-)) in most solvents and its lower adaptability to the NC surface caused by rigid Sn2S2 rings.

  7. Role of ZnS shell on stability, cytotoxicity, and photocytotoxicity of water-soluble CdSe semiconductor quantum dots surface modified with glutathione

    NASA Astrophysics Data System (ADS)

    Ibrahim, Salwa Ali; Ahmed, Wafaa; Youssef, Tareq

    2014-09-01

    Biomedical applications of quantum dots (QDs) have become a subject of a considerable concern in the past few decades. The present study examines the stability and cytotoxicity of two QDs systems in cell culture medium in the presence and absence of a thin layer of ZnS shell. The two systems were built from core, CdSe QDs, surface modified with glutathione (GSH), named CdSe˜GSH and CdSe/ZnS˜GSH. Our results demonstrated that 0.7 nm layer of ZnS shell played a significant role in the stability of CdSe/ZnS~GSH QDs in supplemented cell culture medium (RPMI). Also, a significant improvement in the physicochemical properties of the core CdSe QDs was shown by maintaining their spectroscopic characteristics in RPMI medium due to the wide band gap of ZnS shell. Both systems showed insignificant reduction in cell viability of HFB-4 or MCF-7 cell lines in the dark which was attributed to the effective GSH coating. Following photoirradiation with low laser power (irradiance 10 mW cm-2), CdSe~GSH QDs showed a significant decrease in cell viability after 60 min irradiation which may result from detachment of GSH molecules. Under the same irradiation condition, CdSe/ZnS~GSH QDs showed insignificant decrease in cell viability or after 2 h incubation from laser irradiation which was attributed to the strong binding between ZnS and GSH coatings. It can be concluded that the stability of CdSe core QDs was significantly improved in cell culture medium by encapsulation with a thin layer of ZnS shell whereas their cytotoxicity and photo-cytotoxicity are highly dependent on surface modification.

  8. Comparison of Toxicity of CdSe: ZnS Quantum Dots on Male Reproductive System in Different Stages of Development in Mice

    PubMed Central

    Amiri, Gholamreza; Valipoor, Akram; Parivar, Kazem; Modaresi, Mehrdad; Noori, Ali; Gharamaleki, Hamideh; Taheri, Jafar; Kazemi, Ali

    2016-01-01

    Background Quantum dots (QDs) are new types of fluorescent materials for biological labeling. QDs toxicity study is an essential requirement for future clinical applications. Therefore, this study aimed to evaluate cytotoxic effects of CdSe: ZnS QDs on male reproductive system. Materials and Methods In this experimental study, the different concentrations of CdSe: ZnS QDs (10, 20 and 40 mg/kg) were injected to 32 male mice (adult group) and 24 pregnant mice (embryo group) on day 8 of gestation. The histological changes of testis and epididymis were studied by a light microscopy, and the number of seminiferous tubules between two groups was compared. One-way analysis of variance (one-way Anova) using the Statistical Package for the Social Sciences (SPSS, SPSS Inc., USA) version 16 were performed for statistical analysis. Results In adult group, histological studies of testis tissues showed a high toxicity of CdSe: ZnS in 40 mg/kg dose followed by a decrease in lamina propria; destruction in interstitial tissue; deformation of seminiferous tubules; and a reduction in number of spermatogonia, spermatocytes, and spermatids. However, there was an interesting result in fetal testis development, meaning there was no significant effect on morphology and structure of the seminiferous tubules and number of sperm stem cells. Also histological study of epididymis tissues in both groups (adult and embryo groups) showed no significant effect on morphology and structure of tubule and epithelial cells, but there was a considerable reduction in number of spermatozoa in the lumen of the epididymal duct in 40 mg/kg dose of adult group. Conclusion The toxicity of QDs on testicular tissue of the mice embryo and adult are different before and after puberty. Due to lack of research in this field, this study can be an introduction to evaluate the toxicity of QDs on male reproduction system in different stages of development. PMID:26985339

  9. Thermodynamic Equilibrium-Driven Formation of Single-Sized Nanocrystals: Reaction Media Tuning CdSe Magic-Sized versus Regular Quantum Dots

    SciTech Connect

    Yu, Kui; Hu, Michael Z.; Wang, Ruibing; Le Piolet, Mickael; Frotey, Marion; Zaman, Md. Badruz; Wu, Xiaohua; Leek, Donald M.; Tao, Ye; Wilkinson, Diana; Li, Chunsheng

    2010-01-01

    A concept for the fundamental science of nanoparticle synthesis, thermodynamic equilibrium-driven formation of colloidal single-sized nanoparticle ensembles, is proposed and demonstrated in this manuscript, which addresses the controlled formation of CdSe magic-sized and regular quantum dots (MSQDs and RQDs). During formation, the former are magic-sized nuclei without further growth in size, while the latter experience nucleation and growth. Both MSQDs and RQDs exhibit bandgap emission, while the former have homogeneous spectra broadening only and the latter both homogeneous and inhomogeneous spectra broadening. The former are single-sized and the latter have size distribution. With continuous and homogeneous nucleation, the thermodynamically driven formation of MSQDs was realized via our one-pot noninjection approach, which features highly synthetic reproducibility and large-scale capability. With the proper tuning of the synthetic parameters, such as the nature of the reaction medium, that affect the thermodynamic equilibria, various CdSe MSQDs and RQDs were synthesized discriminately under otherwise identical synthetic formulation and reaction conditions; the reaction media were noncoordinating 1-octadecene, coordinating trioctylphosphine, and mixtures of the two. The nature of Cd precursors, affected also by the reaction media, plays a major role in the formation of MSQDs versus RQDs. The present investigation on the thermodynamically driven formation of CdSe single-sized nanoparticles via tuning of the reaction medium, mainly, brings novel insights into the formation mechanism and into the surface ligands of the resulting colloidal nanocrystals. More importantly, the present study provides novel experimental design and approaches to single-sized nanoparticles desired for various applications.

  10. Optimization of structural and dielectric properties of CdSe loaded poly(diallyl dimethyl ammonium chloride) polymer in a desired frequency and temperature window

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2016-01-01

    In the present paper, investigations of CdSe loaded poly(diallyl dimethyl ammonium chloride) (PDADMAC) nanocomposites and pure PDADMAC synthesized by wet chemical technique have been carried out. Fourier transform infrared and X-ray diffraction analysis have been performed to reveal the structural details of pure polymer and polymer nanocomposite (PNC). The dielectric behavior of pure polymer and PNC has been recorded, which results in higher value of the real and imaginary part of dielectric constant for PNC, as compared with pure PDADMAC. The increase is attributed to the addition of CdSe quantum dots to the pure polymer. The contribution of ionic and electronic polarization has been observed at higher frequency. The theoretical fitting of Cole-Cole function to the experimental data of dielectric constant of PNC and pure PDADMAC results in the determination of relaxation time and conductivity of space charge carriers. The CdSe loaded polymer nanocomposite has been used as an electrolyte in the battery fabrication with configuration Al/PNC/Ag2O. The ac conductivity measurements have been carried out for both samples in a frequency window of 1 kHz-5 MHz and at different temperatures varying from 298 K to 523 K. Activation energy (Ea) has been determined for pure polymer as well as PNC and is found to be less for PNC, as compared with pure polymer. Further, impedance measurement at different temperatures results in two frequency ranges corresponding to ionic conduction and blocking electrode effect. The value of bulk resistance for pure polymer and PNC has been found to be 3660 Ω and 442 Ω, respectively, at 298 K temperature. Electric modulus has been determined and is observed to support the dielectric constant data; it further reveals the deviation from Debye behavior at a higher frequency.

  11. Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry

    PubMed Central

    2016-01-01

    Colloidal semiconductor nanocrystals (NCs) are widely studied as building blocks for novel solid-state materials. Inorganic surface functionalization, used to displace native organic capping ligands from NC surfaces, has been a major enabler of electronic solid-state devices based on colloidal NCs. At the same time, very little is known about the atomistic details of the organic-to-inorganic ligand exchange and binding motifs at the NC surface, severely limiting further progress in designing all-inorganic NCs and NC solids. Taking thiostannates (K4SnS4, K4Sn2S6, K6Sn2S7) as typical examples of chalcogenidometallate ligands and oleate-capped CdSe NCs as a model NC system, in this study we address these questions through the combined application of solution 1H NMR spectroscopy, solution and solid-state 119Sn NMR spectroscopy, far-infrared and X-ray absorption spectroscopies, elemental analysis, and by DFT modeling. We show that through the X-type oleate-to-thiostannate ligand exchange, CdSe NCs retain their Cd-rich stoichiometry, with a stoichiometric CdSe core and surface Cd adatoms serving as binding sites for terminal S atoms of the thiostannates ligands, leading to all-inorganic (CdSe)core[Cdm(Sn2S7)yK(6y-2m)]shell (taking Sn2S76– ligand as an example). Thiostannates SnS44– and Sn2S76– retain (distorted) tetrahedral SnS4 geometry upon binding to NC surface. At the same time, experiments and simulations point to lower stability of Sn2S64– (and SnS32–) in most solvents and its lower adaptability to the NC surface caused by rigid Sn2S2 rings. PMID:25597625

  12. Formation of Assemblies Comprising Ru–Polypyridine Complexes and CdSe Nanocrystals Studied by ATR-FTIR Spectroscopy and DFT Modeling

    SciTech Connect

    Koposov, Alexey Y.; Cardolaccia, Thomas; Albert, Victor; Badaeva, Ekaterina; Kilina, Svetlana; Meyer, Thomas J.; Tretiak, Sergei; Sykora, Milan

    2011-07-05

    The interaction between CdSe nanocrystals (NCs) passivated with trioctylphosphine oxide (TOPO) ligands and a series of Ru–polypyridine complexes was studied by attenuated total reflectance FTIR (ATR-FTIR) and modeled using density functional theory (DFT). The results of DFT modeling are consistent with the experiment, showing that for the deprotonated carboxylic acid group the coupling to two Cd atoms via a bridging mode is the energetically most favorable mode of attachment for all nonequivalent NC surface sites and that the attachment of the protonated carboxylic acid is thermodynamically significantly less favorable.

  13. Tailoring the optical properties of poly(diallyl dimethyl ammonium chloride) polyelectrolyte by incorporation of 2-mercaptoethanol capped CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2016-10-01

    The present work deals with the preparation and characterization of 2-mercaptoethanol capped cadmium selenide (CdSe) nanoparticles, dispersed in poly(diallyl dimethyl ammonium chloride) (PDADMAC) polyelectrolyte aqueous solution. X-ray diffraction spectra, scanning electron microscopy and energy-dispersive x-ray have been used to determine the structure, particle size (d), surface morphology and composition of various constituents. The absorption spectra of pure PDADMAC and the CdSe/PDADMAC polymer nanocomposite (PNC) are analyzed to determine the values of the absorption coefficient (α) and energy band gap (E g) which are found to be 4 eV and 3.26 eV respectively. A red shift in the spectrum of the PNC, as compared to the pure polymer, has been observed. With the addition of CdSe nanoparticles in the PDADMAC polyelectrolyte, a remarkable change in the optical parameters of the pure polymer has been observed. The refractive index (n) obtained by using Swanepoel’s method decreases in the case of the PNC as compared to the pure polymer. The value of the static refractive index (n 0) is found to be 4.29 for the pure polymer and 1.52 for the PNC. The extinction coefficient, dielectric constants, optical conductivity and relaxation time have been evaluated. The Wemple-DiDomenico model has been used to evaluate the dispersion parameters such as the average energy gap (E 0) and dispersion energy (E d). The values of the nonlinear refractive index (n 2) of the pure polymer and PNC have been determined using the theoretical approaches suggested by Boling and Tichy and Ticha. n 2 increases in the case of PNC, which relates to the decreased energy band gap. Photoluminescence (PL) spectra have been studied to explore the energy band structure and interaction between CdSe nanoparticles and PDADMAC. The PL peaks obtained at 437 nm and 461 nm correspond to the pure polymer whereas the peak at 577 nm is attributed to CdSe.

  14. Thin film photoelectrodes of ternary chalcogenide CdSe1-xTex for photoelectrochemical solar cells applications

    NASA Astrophysics Data System (ADS)

    Das, V. D.

    1992-02-01

    The basic requirements of a good thin film photoelectrode for high efficiency photoelectrochemical (PEC) cells are low resistivity and large grain size. The large size grains lead to a reduction of the grain boundary area of the thin films, with important consequences for efficient energy conversion. The low resistivity of the photoelectrodes is required to minimize the series resistance of the PEC cell which leads to lower short circuit current. In addition, we have to tailor the band gap of the material further by adjusting the composition x in the alloy CdSe1-xTex. Low resistivity in the materials can be achieved by a careful control of the stoichiometry of the material or by doping with a proper trivalent dopant such as Ga or In. The control of the stoichiometry and the dopant concentration can be achieved by a careful control of the rate/s of deposition/s. The deposition rates should also be kept comparatively low and also the substrates should be heated to elevated temperatures so that the films formed consist of large size grains. It is advisable to also change the angle of deposition from normal incidence to an inclined deposition so that the films will tend to grow with columnar grains, which are very essential. The grain size can be further increased to some extent by carefully annealing the films in vacuum at pre-determined temperature and for a time interval. The large grain size films formed this way should be coated with very thin layers of oxides like TiO2 or In2O3 to prevent corrosion of the thin film electrodes when used in the PEC cells. Thus, by carefully controlling the various parameters as outlined above, it is possible to obtain high efficiency photo-electrochemical solar cells using these Cd-Se-Te ternary alloy thin films as photoelectrodes.

  15. The molecular recognition of β-cyclodextrin modified CdSe quantum dots with tyrosine enantiomers: Theoretical calculation and experimental study

    NASA Astrophysics Data System (ADS)

    Cao, Yujuan; Wu, Shuangshuang; Liang, Yaozhen; Yu, Ying

    2013-01-01

    In the present work, the molecular recognition of mono-(6-mercapto)-β-cyclodextrin modified CdSe quantum dots (β-CD/CdSe QDs) with tyrosine enantiomers were investigated with theoretical calculation and fluorescence spectroscopy. The inclusion processes and the most probable structures of the inclusion complexes were simulated using PM3 energy scanning and optimization method. The trends of stability of the two inclusion complexes deduced from their calculated stabilization energies were studied. Moreover, the fluorescence spectra of β-CD/CdSe QDs in the presence of tyrosine enantiomers as well as the effect of ionic strength on the complexation of β-CD/CdSe QDs-tyrosine were discussed. The experimental results indicated that the β-CD/CdSe QDs have better enantioselectivity to L-tyrosine than that to D-tyrosine, and good linearity between the fluorescence intensity of β-CD/CdSe QDs and L-tyrosine over the concentration range from 0.10 × 10-4 mol/L to 4.00 × 10-4 mol/L with relative coefficient of 0.9909 was obtained. The experimental data agrees well with that obtained from theoretical calculation, indicating that β-cyclodextrin modified CdSe quantum dots contained good inclusion capability and fluorescence property, it has good potential application in the field of biological diagnosis, analysis, etc.

  16. CdSe magic-sized quantum dots incorporated in biomembrane models at the air-water interface composed of components of tumorigenic and non-tumorigenic cells.

    PubMed

    Goto, Thiago E; Lopes, Carla C; Nader, Helena B; Silva, Anielle C A; Dantas, Noelio O; Siqueira, José R; Caseli, Luciano

    2016-07-01

    Cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) are semiconductor nanocrystals with stable luminescence that are feasible for biomedical applications, especially for in vivo and in vitro imaging of tumor cells. In this work, we investigated the specific interaction of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and Langmuir-Blodgett (LB) films of lipids as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers constituted either of selected lipids or of tumorigenic and non-tumorigenic cell extracts. The films were transferred to solid supports to obtain microscopic images, providing information on their morphology. Similarity between films with different compositions representing cell membranes, with or without the quantum dots, was evaluated by atomic force microscopy (AFM) and confocal microscopy. This study demonstrates that the affinity of quantum dots for models representing cancer cells permits the use of these systems as devices for cancer diagnosis. PMID:27107554

  17. Composition and structure of ZnxCd1-xSe single layers prepared by thermal evaporation of ZnSe and CdSe

    NASA Astrophysics Data System (ADS)

    Nesheva, D.; Aneva, Z.; Šćepanović, M. J.; Bineva, I.; Levi, Z.; Popović, Z. V.; Pejova, B.

    2010-11-01

    Single layers of ZnxCd1-xSe with five different compositions and thickness of 400 nm have been prepared by thermal vacuum evaporation, through alloying of ultra thin ZnSe and CdSe films with equivalent thickness of 0.12, 0.25 or 0.37 nm. The deposition was carried out on rotating substrates kept at room temperature. The layer composition was varied by alloying ZnSe and CdSe films with different equivalent thicknesses. The film composition x = 0.39, 0.52, 0.59, 0.69 and 0.8 has been determined by Energy-Dispersive Spectroscopy and confirmed with Raman scattering data. The microstructure of ZnxCd1-xSe has been investigated by Atomic Force Microscopy and Raman scattering measurement. The Atomic Force Microscopy results have revealed that the layers are nanocrystalline and the grain size is <= 20 nm. The Raman scattering data have shown four replicas of the longitudinal optical phonons, thus confirming the conclusion for the layer crystallinity. The obtained results have shown that the applied deposition technique makes possible preparation of ternary nanocrystalline ZnxCd1-xSe layers with desired compositions..

  18. The influence of capping thioalkyl acid on the growth and photoluminescence efficiency of CdTe and CdSe quantum dots.

    PubMed

    Aldeek, Fadi; Balan, Lavinia; Lambert, Jacques; Schneider, Raphaël

    2008-11-26

    The influence of thioalkyl acid ligand was evaluated during aqueous synthesis at 100 °C and under hydrothermal conditions (150 °C) of CdTe and CdSe quantum dots (QDs). Experiments performed with 3-mercaptopropionic acid (MPA), 6-mercaptohexanoic acid (MHA) and 11-mercaptoundecanoic acid (MUA) demonstrated that the use of MHA and MUA allowed for the preparation of very small nanoparticles (0.6-2.5 nm) in carrying out the reaction under atmospheric pressure or in an autoclave and that the photophysical properties of QDs were dependent on the ligand and on the synthesis conditions. The influence of various experimental conditions, including the Te-to-Cd ratio, temperature, and precursor concentration, on the growth rate of CdTe or CdSe QDs has been systematically investigated. The fluorescence intensities of CdTe QDs capped with MPA, MHA, or MUA versus pH were also found to be related to the surface coverage of the nanoparticles. PMID:21836270

  19. Dimensionality of nanoscale TiO2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle

    SciTech Connect

    Tafen, De Nyago; Long, Run; Prezhdo, Oleg V.

    2014-03-10

    Assumptions about electron transfer (ET) mechanisms guide design of catalytic, photovoltaic, and electronic systems. We demonstrate that the mechanism of ET from a CdSe quantum dot (QD) into nanoscale TiO2 depends on TiO2 dimensionality. The injection into a TiO2 QD is adiabatic due to strong donor–acceptor coupling, arising from unsaturated chemical bonds on the QD surface, and low density of acceptor states. In contrast, the injection into a TiO2 nanobelt (NB) is nonadiabatic, because the state density is high, the donor–acceptor coupling is weak, and multiple phonons accommodate changes in the electronic energy. The CdSe adsorbant breaks symmetry of delocalized TiO2 NB states, relaxing coupling selection rules, and generating more ET channels. Both mechanisms can give efficient ultrafast injection. Furthermore, the dependence on system properties is very different for the two mechanisms, demonstrating that the fundamental principles leading to efficient charge separation depend strongly on the type of nanoscale material.

  20. CdSe magic-sized quantum dots incorporated in biomembrane models at the air-water interface composed of components of tumorigenic and non-tumorigenic cells.

    PubMed

    Goto, Thiago E; Lopes, Carla C; Nader, Helena B; Silva, Anielle C A; Dantas, Noelio O; Siqueira, José R; Caseli, Luciano

    2016-07-01

    Cadmium selenide (CdSe) magic-sized quantum dots (MSQDs) are semiconductor nanocrystals with stable luminescence that are feasible for biomedical applications, especially for in vivo and in vitro imaging of tumor cells. In this work, we investigated the specific interaction of CdSe MSQDs with tumorigenic and non-tumorigenic cells using Langmuir monolayers and Langmuir-Blodgett (LB) films of lipids as membrane models for diagnosis of cancerous cells. Surface pressure-area isotherms and polarization modulation reflection-absorption spectroscopy (PM-IRRAS) showed an intrinsic interaction between the quantum dots, inserted in the aqueous subphase, and Langmuir monolayers constituted either of selected lipids or of tumorigenic and non-tumorigenic cell extracts. The films were transferred to solid supports to obtain microscopic images, providing information on their morphology. Similarity between films with different compositions representing cell membranes, with or without the quantum dots, was evaluated by atomic force microscopy (AFM) and confocal microscopy. This study demonstrates that the affinity of quantum dots for models representing cancer cells permits the use of these systems as devices for cancer diagnosis.

  1. Molecularly imprinted optosensing material based on hydrophobic CdSe quantum dots via a reverse microemulsion for specific recognition of ractopamine.

    PubMed

    Liu, Huilin; Fang, Guozhen; Wang, Shuo

    2014-05-15

    A novel molecularly imprinted polymer (MIP) based on hydrophobic CdSe quantum dots (QDs) was synthesized using a one-pot room-temperature reverse microemulsion polymerization, and this polymer was applied as a molecular recognition element to construct a ractopamine (RAC) optosensor. Here, hydrophobic CdSe QDs were first introduced to the hydrophilic analyte-imprinted polymer for highly selective and sensitive detection of RAC via the change in fluorescence intensity, because of the high-quality hydrophobic QDs with high quantum yield, sharp photoluminescence spectra and chemical and fluorescent stability. Under optimal conditions, the relative fluorescence intensity of MIP based on hydrophobic QDs decreased linearly with the increasing concentration of RAC in the range of 1.21 × 10(-9) -3.03 × 10(-6)mol L(-1) with a detection limit of 7.57 × 10(-10)mol L(-1), and the precision for five replicate detections of 1.51 × 10(-8)mol L(-1) RAC was 2.09% (relative standard deviation). The proposed method was successfully applied for the determination of trace RAC in pork samples, with good recoveries ranging from 82.79% to 97.23%. PMID:24370883

  2. Differences in soil mobility and degradability between water-dispersible CdSe and CdSe/ZnS quantum dots.

    PubMed

    Navarro, Divina A; Banerjee, Sarbajit; Watson, David F; Aga, Diana S

    2011-08-01

    The relative leaching potential and degradation of water-dispersible CdSe and CdSe/ZnS quantum dots (QDs) were evaluated using small-scale soil columns. The potential of QDs to release toxic Cd(2+) and/or Se(2-)/SeO(3)(2-) ions upon degradation is of environmental concern and warrants investigation. Both classes of QDs exhibited limited soil mobility in CaCl(2), with more than 70% of the total Cd and Se species from QDs retained in the top soil after passing 10 column volumes of solution through the soil column. However, mobilization of Cd- and Se-species was observed when EDTA was used as the leaching solution. Approximately 98% of the total Cd(2+) loaded leached out from the Cd(2+)-spiked soil, while only 30% and 60% leached out from the CdSe and CdSe/ZnS QD-spiked soils, respectively. Soil column profiles and analysis of leachates suggest that intact QDs leached through the soil. Longer incubation (15 days) in soil prior to leaching indicated some degradation and/or surface modification of both QDs. These results suggest that chelating agents in the environment can enhance the soil mobility of intact and degraded QDs. It is apparent that QDs in soil, including the polymer-coated CdSe/ZnS QDs that are generally assumed to possess a higher degree of environmental stability, can undergo chemical transformations, which subsequently dictate their overall mobility.

  3. SU-E-T-526: On the Linearity, Stability and Beam Energy Dependence of CdSe Quantum Dots as Scintillating Probes

    SciTech Connect

    Delage, M-E; Lecavalier, M-E; Lariviere, D; Allen, C; Beaulieu, L

    2014-06-01

    Purpose: Structure and energy transfer mechanisms confer colloidal quantum dots (cQDs) interesting properties, among them their potential as scintillators. CdSe multi-shell cQDs in powder were investigated under photons irradiation. The purpose of this work is to characterize signal to dose linearity, stability with time and to quantify the dependence of their light output with beam energy. Methods: The cQDs are placed at the extremity of a non-scintillating plastic collecting fiber, with the other extremity connected to an Apogee U2000C CCD camera. The CCD camera collects the fluorescence light from irradiated cQDs from which the delivered dose is extracted. This signal is corrected for Cerenkov contamination at MV energies using the chromatic technique. The detector was irradiated with two devices: Xstrahl 200 orthovoltage unit for 120, 180 and 220 kVp and a Varian Clinac iX for 6 and 23 MV. Results: Linear output response with varying dose is observed for all beam energies with R2 factors > 0,999. Reproducibility measurements were performed at 120 kVp: the same set-up was irradiated at different time intervals (one week and three months). The results showed only a small relative decrease of light output of 3,2 % after a combine deposited dose of approximately 95 Gy. CdSe nanocrystals response has been studied as a function of beam energy. The output increases with decreasing energy from 120 kVp to 6 MV and increase again for 23 MV. This behavior could be explained in part by the cQDs high-Z composition. Conclusion: The fluorescence light output of CdSe cQDs was found to be linear as a function of dose. The results suggest stability of the scintillation output of cQDs over time. The specific composition of cQDs is the main cause of the observed energy dependence. We will further look into particle beam dependence of the cQDs. Bourse d'excellence aux etudes graduees du CRC (Centre de Recherche sur le Cancer, Universite Laval) Bourse d'excellence aux etudes

  4. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-01

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady

  5. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.

    PubMed

    Patty, K; Sadeghi, S M; Nejat, A; Mao, C-B

    2014-04-18

    We demonstrate that an ultra-thin layer of aluminum oxide can significantly enhance the emission efficiency of colloidal quantum dots on a Si substrate. For an ensemble of single quantum dots, our results show that this super brightening process can increase the fluorescence of CdSe quantum dots, forming well-resolved spectra, while in the absence of this layer the emission remains mostly at the noise level. We demonstrate that this process can be further enhanced with irradiation of the quantum dots, suggesting a significant photo-induced fluorescence enhancement via considerable suppression of non-radiative decay channels of the quantum dots. We study the impact of the Al oxide thickness on Si and interdot interactions, and discuss the results in terms of photo-induced catalytic properties of the Al oxide and the effects of such an oxide on the Coulomb blockade responsible for suppression of photo-ionization of the quantum dots.

  6. Light emission from conductive paths in nanocrystalline CdSe embedded Zr-doped HfO{sub 2} high-k stack

    SciTech Connect

    Lin, Chi-Chou; Kuo, Yue

    2015-03-23

    Electrical and optical properties of the solid state incandescent light emitting devices made of zirconium doped hafnium oxide high-k films with and without an embedded nanocrystalline CdSe layer on the p-type Si wafer have been studied. The broad band white light was emitted from nano sized conductive paths through the thermal excitation mechanism. Conductive paths formed from the dielectric breakdown have been confirmed from scanning electron microscopic and atomic force microscopic images and the secondary ion mass spectrometric elemental profiles. Si was diffused from the wafer to the device surface through the conductive path during the high temperature light emission process. There are many potential applications of this type of device.

  7. Synthesis of a CdSe-graphene hybrid composed of CdSe quantum dot arrays directly grown on CVD-graphene and its ultrafast carrier dynamics

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Tae; Shin, Hee-Won; Ko, Young-Seon; Ahn, Tae Kyu; Kwon, Young-Uk

    2013-01-01

    We report the original fabrication and performance of a photocurrent device that uses directly grown CdSe quantum dots (QDs) on a graphene basal plane. The direct junction between the QDs and graphene and the high quality of the graphene grown by chemical vapor deposition enables highly efficient electron transfer from the QDs to the graphene. Therefore, the hybrids show large photocurrent effects with a fast response time and shortened photoluminescence (PL) lifetime. The PL lifetime quenching can be explained as being due to the efficient electron transfer as evidenced by femtosecond transient absorption spectroscopy. These hybrids are expected to find applications in flexible electronics and optoelectronic devices.We report the original fabrication and performance of a photocurrent device that uses directly grown CdSe quantum dots (QDs) on a graphene basal plane. The direct junction between the QDs and graphene and the high quality of the graphene grown by chemical vapor deposition enables highly efficient electron transfer from the QDs to the graphene. Therefore, the hybrids show large photocurrent effects with a fast response time and shortened photoluminescence (PL) lifetime. The PL lifetime quenching can be explained as being due to the efficient electron transfer as evidenced by femtosecond transient absorption spectroscopy. These hybrids are expected to find applications in flexible electronics and optoelectronic devices. Electronic supplementary information (ESI) available: TEM data of MSTF, AFM data of T-QD-G samples, PL decay fitting results to the multiexponential decay equation, photoconductivity data of T-QD-2LG with two different illumination wavelengths, photocurrent efficiencies of QD-G hybrids prepared in various ways, photoconductivity and photoresponse data of T-QD-2LG and T-QD-3LG, and the bending stress on a PET film. See DOI: 10.1039/c2nr33294a

  8. Detección y estudio mediante Fluorescencia Inducida por Láser de radicales libres formados por Disociación Multifotónica Infrarroja

    NASA Astrophysics Data System (ADS)

    Santos, M.; Díaz, L.; Torresano, J. A.; Rubio, L.; Samoudi, B.

    Una de las principales aplicaciones actuales de los procesos de disociación multifotónica inducidos por radiación láser infrarroja (DMI) es la producción de radiales libres, con el fin de estudiar sus propiedades cinéticas y espectroscópicas. La disociación de moléculas poliatómicas en el IR con láseres de CO2 tiene lugar desde la superficie de energía molecular mas baja y conduce generalmente a la formación de fragmentos en el estado electrónico fundamental, con diversos grados de excitación vibracional. En el Grupo de Procesos Multifotónicos del Instituto de Estructura de la Materia del C.S.I.C. hemos puesto a punto la técnica de Fluorescencia Inducida por Láser (LIF) para la detección y análisis en tiempo real de los fragmentos producidos en la DMI inducida mediante uno o dos campos láseres de diferentes longitudes de onda. Objetivos de nuestro trabajo han sido el estudio de los canales de disociación mayoritarios y de las especies transitoria producidas, así como de la distribución de energía interna con que éstas son generadas. En particular hemos detectado mediante LIF las especies: C2, CF, CH, SiH2, CF2, CH2, SiHCl, y CF3 a partir de la disociación de, entre otras, las siguientes moléculas: C2H3Br, C3F6, C4H8Si, C2H5ClSi y CH5ClSi. En este trabajo presentamos algunos de los resultados obtenidos mediante el estudio por LIF de estos radicales: estudio temporal de la señal LIF obtenida con determinación de tiempos de vida, espectros de excitación y fluorescencia, temperaturas vibracionales de formación, variación de la intensidad LIF con el tiempo de retraso entre los láseres de disociación y prueba, etc.

  9. Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS.

    PubMed

    Shrivas, Kamlesh; Kailasa, Suresh Kumar; Wu, Hui-Fen

    2009-05-01

    We report the first use of functionalized cadmium selinide quantum dots (CdSe QDs) with 11-mercaptoundecanoic acid (MUA) as the matrix for the selective ionization of proteins with high resolution and rapid analysis of amino acids and peptides by using quantum dots laser desorption/ionization mass spectrometry (QDLDI-MS). The mercaptocarboxylic groups of CdSe QDs have been known to be an effective affinity probe to interact with the biomolecules at low abundance level. Using these QDs as the matrix, sensitivity of the method was greatly enhanced and the LOQ of peptides was found to be 100 pM with RSD <10%. The QDLDI-MS is capable for the selective ionization of insulin, lysozyme and myoglobin with high resolution, which is not observed with sinapic acid (SA) as the matrix. The QDLDI-MS technique offers many advantages for the analysis of amino acids, peptides and proteins with regard to simplicity, rapidity, sensitivity and the mass spectra were generated in the presence of signal suppressors such as urea and Trition X-100. In addition, the CdSe QDs have been successfully applied as preconcentrating probes for the analysis of digested peptides in lysozyme from chicken egg white by microwave-assisted enzymatic digestion. This indicates that the QDs are able to absorb radiation from microwave and their ability to trap peptides from microwave-digested lysozyme. These results demonstrate that the CdSe QDs are promising candidates for the selective ionization of the analytes with an accurate platform to the rapid screening of biomolecules. PMID:19391181

  10. Analysis of the electrodeposition and surface chemistry of CdTe, CdSe, and CdS thin films through substrate-overlayer surface-enhanced Raman spectroscopy.

    PubMed

    Gu, Junsi; Fahrenkrug, Eli; Maldonado, Stephen

    2014-09-01

    The substrate-overlayer approach has been used to acquire surface enhanced Raman spectra (SERS) during and after electrochemical atomic layer deposition (ECALD) of CdSe, CdTe, and CdS thin films. The collected data suggest that SERS measurements performed with off-resonance (i.e. far from the surface plasmonic wavelength of the underlying SERS substrate) laser excitation do not introduce perturbations to the ECALD processes. Spectra acquired in this way afford rapid insight on the quality of the semiconductor film during the course of an ECALD process. For example, SERS data are used to highlight ECALD conditions that yield crystalline CdSe and CdS films. In contrast, SERS measurements with short wavelength laser excitation show evidence of photoelectrochemical effects that were not germane to the intended ECALD process. Using the semiconductor films prepared by ECALD, the substrate-overlayer SERS approach also affords analysis of semiconductor surface adsorbates. Specifically, Raman spectra of benzenethiol adsorbed onto CdSe, CdTe, and CdS films are detailed. Spectral shifts in the vibronic features of adsorbate bonding suggest subtle differences in substrate-adsorbate interactions, highlighting the sensitivity of this methodology.

  11. Heterostructured Au NPs/CdS/LaBTC MOFs Photoanode for Efficient Photoelectrochemical Water Splitting: Stability Enhancement via CdSe QDs to 2D-CdS Nanosheets Transformation.

    PubMed

    Vaddipalli, Srinivasa Rao; Sanivarapu, Suresh Reddy; Vengatesan, Singaram; Lawrence, John Berchmans; Eashwar, Malayappan; Sreedhar, Gosipathala

    2016-09-01

    The electrochemical stability of MOFs in aqueous medium is most essential for MOFs based electrocatalysts for hydrogen production via water splitting. Since most MOFs suffer from instability issues in aqueous systems, there is enormous demand for electrochemically stable MOFs catalysts. Herein, we have developed a simple postsynthesis surface modification protocol for La (1,3,5-BTC) (H2O)6 metal-organic frameworks (LaBTC MOFs) using Mercaptopropionic acid (MPA), to attain electrochemical stability in aqueous mediums. The MPA treated LaBTC MOFs exhibited better stability than the bare LaBTC. Further, to facilitate light harvesting properties of LaBTC MOFs, Au nanoparticles (NPs) and CdSe quantum dots (QDs) are functionalized on LaBTC. The sensitization of LaBTC with Au NPs and CdSe QDs enhances the light harvesting properties of LaBTC in the visible region of solar spectrum. Using as a photoanode, the electrode generates the current density of ∼80 mA/cm(2) at 0.8 V (vs Ag/AgCl) during photoelectrochemical water splitting. The heterostructured LaBTC photoanode demonstrates the long-term stability for the period of 10 h. The electrode post-mortem analysis confirms the conversion of CdSe QDs into single crystalline 2D-CdS nanosheets. The present investigation reveals that CdS nanosheets together with SPR Au NPs improve the photoelectrochemical water splitting activity and stability of LaBTC MOFs.

  12. Heterostructured Au NPs/CdS/LaBTC MOFs Photoanode for Efficient Photoelectrochemical Water Splitting: Stability Enhancement via CdSe QDs to 2D-CdS Nanosheets Transformation.

    PubMed

    Vaddipalli, Srinivasa Rao; Sanivarapu, Suresh Reddy; Vengatesan, Singaram; Lawrence, John Berchmans; Eashwar, Malayappan; Sreedhar, Gosipathala

    2016-09-01

    The electrochemical stability of MOFs in aqueous medium is most essential for MOFs based electrocatalysts for hydrogen production via water splitting. Since most MOFs suffer from instability issues in aqueous systems, there is enormous demand for electrochemically stable MOFs catalysts. Herein, we have developed a simple postsynthesis surface modification protocol for La (1,3,5-BTC) (H2O)6 metal-organic frameworks (LaBTC MOFs) using Mercaptopropionic acid (MPA), to attain electrochemical stability in aqueous mediums. The MPA treated LaBTC MOFs exhibited better stability than the bare LaBTC. Further, to facilitate light harvesting properties of LaBTC MOFs, Au nanoparticles (NPs) and CdSe quantum dots (QDs) are functionalized on LaBTC. The sensitization of LaBTC with Au NPs and CdSe QDs enhances the light harvesting properties of LaBTC in the visible region of solar spectrum. Using as a photoanode, the electrode generates the current density of ∼80 mA/cm(2) at 0.8 V (vs Ag/AgCl) during photoelectrochemical water splitting. The heterostructured LaBTC photoanode demonstrates the long-term stability for the period of 10 h. The electrode post-mortem analysis confirms the conversion of CdSe QDs into single crystalline 2D-CdS nanosheets. The present investigation reveals that CdS nanosheets together with SPR Au NPs improve the photoelectrochemical water splitting activity and stability of LaBTC MOFs. PMID:27532805

  13. Directional charge transfer mediated by mid-gap states: A transient absorption spectroscopy study of CdSe quantum dot/β-Pb0.33V2O5 heterostructures

    DOE PAGES

    Milleville, Christopher C.; Pelcher, Kate E.; Sfeir, Matthew Y.; Banerjee, Sarbajit; Watson, David F.

    2016-02-15

    For solar energy conversion, not only must a semiconductor absorb incident solar radiation efficiently but also its photoexcited electron—hole pairs must further be separated and transported across interfaces. Charge transfer across interfaces requires consideration of both thermodynamic driving forces as well as the competing kinetics of multiple possible transfer, cooling, and recombination pathways. In this work, we demonstrate a novel strategy for extracting holes from photoexcited CdSe quantum dots (QDs) based on interfacing with β-Pb0.33V2O5 nanowires that have strategically positioned midgap states derived from the intercalating Pb2+ ions. Unlike midgap states derived from defects or dopants, the states utilized heremore » are derived from the intrinsic crystal structure and are thus homogeneously distributed across the material. CdSe/β-Pb0.33V2O5 heterostructures were assembled using two distinct methods: successive ionic layer adsorption and reaction (SILAR) and linker-assisted assembly (LAA). Transient absorption spectroscopy measurements indicate that, for both types of heterostructures, photoexcitation of CdSe QDs was followed by the transfer of electrons to the conduction band of β-Pb0.33V2O5 nanowires and holes to the midgap states of β-Pb0.33V2O5 nanowires. Holes were transferred on time scales less than 1 ps, whereas electrons were transferred more slowly on time scales of ~2 ps. In contrast, for analogous heterostructures consisting of CdSe QDs interfaced with V2O5 nanowires (wherein midgap states are absent), only electron transfer was observed. Interestingly, electron transfer was readily achieved for CdSe QDs interfaced with V2O5 nanowires by the SILAR method; however, for interfaces incorporating molecular linkers, electron transfer was observed only upon excitation at energies substantially greater than the bandgap absorption threshold of CdSe. Furthermore, transient absorbance decay traces reveal longer excited-state lifetimes (1–3

  14. Layer-by-layer assembled composite films of side-functionalized poly(3-hexylthiophene) and CdSe nanocrystals: electrochemical, spectroelectrochemical and photovoltaic properties.

    PubMed

    De Girolamo, Julia; Reiss, Peter; Zagorska, Malgorzata; De Bettignies, Remi; Bailly, Severine; Mevellec, Jean-Yves; Lefrant, Serge; Travers, Jean-Pierre; Pron, Adam

    2008-07-21

    Regioregular poly(3-hexylthiophene) containing one diaminopyrimidine side group per ten repeat units (P3HT-co-P3(ODAP)HT) can form molecular composites with 1-(6-mercaptohexyl)thymine capped CdSe nanocrystals (CdSe(MHT)) via hydrogen bonds directed molecular recognition. Here we report complementary spectroscopic, electrochemical and spectroelectrochemical investigations of both the functionalized poly(thiophene) and its composite with the nanocrystals, the latter being fabricated using the layer-by-layer (LbL) deposition technique. UV-Vis-NIR and Raman spectroelectrochemical investigations unequivocally show that the onset of the first anodic peak in the cyclic voltammogram of the copolymer can be attributed to the oxidation of the pi-conjugated backbone in the polymer chains. For this reason, it is possible to determine the width and the position of its band gap (corresponding to the pi-pi* transition) by UV-Vis spectroscopy combined with cyclic voltammetry. These studies show that the polymer exhibits a slightly larger band gap with the HOMO level insignificantly lower in energy (by 0.03 eV) as compared to the case of regioregular poly(3-hexylthiophene) of comparable degree of polymerization. Hydrogen bond interactions of the polymer with CdSe(MHT) in the molecular composite result in a hypsochromic shift of the band corresponding to the pi-pi* transition from 504 nm to 488 nm. This can be taken as a spectroscopic manifestation of the conformational changes induced by shortening of the conjugation length. The observed spectral modifications are consistent with electrochemically determined lowering of the polymer HOMO level (from -4.91 eV in the pure polymer to -4.99 eV in the composite). Cyclic voltammetry studies supported by spectroelectrochemistry also show that the redox stability of CdSe(MHT) in the molecular composite with P3HT-co-P3(ODAP)HT is lower than that determined for stearate-capped nanocrystals. Their irreversible oxidation starts at E = +0.7 V vs

  15. Colloidal CdSe nanocrystals from tri-n-octylphosphine with various Cd sources: Control of a slow growth for high-quality and large-scale production

    NASA Astrophysics Data System (ADS)

    Yu, Kui; Zaman, Badruz; Taal, Remon; Ripmeester, John A.

    2005-09-01

    A slow growth in size at the early stages of reaction, together with a period of zero growth in size and size distribution is observed via monitoring the temporal evolution of the optical properties of the growing CdSe nanocrystals from reaction media consisting of tri-n-octylphosphine (TOP). The synthetic approach is as simple as a swift injection of a TOPSe/TOP solution into a Cd-source/TOP solution at 300 °C with subsequent growth at 250 °C. The various Cd sources investigated are cadmium acetate (Cd(Ac)2), cadmium oxide (CdO)/tetradecylphosphonic acid (TDPA), CdO, and CdO/oleylamine (OLA). With these various Cd sources studied, CdO with a 4Cd-to-1Se stoichiometry demonstrates its suitability for high-quality and large-scale production, due to a slow growth in size (less than 17 nm redshift of bandgap absorption and emission) and size distribution, as well as fairly constant photoluminescent properties of the growing nanocrystals during the 0.5-60 min growth time.

  16. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II–VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures.

  17. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates.

    PubMed

    Reim, Natalia; Littig, Alexander; Behn, Dino; Mews, Alf

    2013-12-11

    Semiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters. Since the NW diameter is governed by the dimension of the Bi catalyst, the electrodeposition is a reliable method to synthesize nanowires directly on substrates with a desired size and density. We show that the density can be adjusted from individual NWs on several square micrometer to very dense NW networks. The diameter can be controlled between thick nanowires above 100 nm to very thin NW of 7 nm in diameter, which is well below the respective exciton dimension. Hence, especially the thinnest NWs exhibit diameter-dependent photoluminescence energies as a result of quantum confinement effects in the radial dimension.

  18. Novel magnetic Fe3O4@CdSe composite quantum dot-based electrochemiluminescence detection of thrombin by a multiple DNA cycle amplification strategy.

    PubMed

    Jie, Guifen; Yuan, Jinxin

    2012-03-20

    A novel small magnetic electrochemiluminescent Fe(3)O(4)@CdSe composite quantum dot (QD) was facilely prepared and successfully applied to sensitive electrochemiluminescence (ECL) detection of thrombin by a multiple DNA cycle amplification strategy for the first time. The as-prepared composite QDs feature intense ECL, excellent magnetism, strong fluorescence, and favorable biocompatibility, which offers promising advantages for ECL biosensing. ECL of the composite QDs was efficiently quenched by gold nanoparticles (NPs). Taking advantages of the unique and attractive ECL and magnetic characteristics of the composite QDs, a novel DNA-amplified detection method based on ECL quenching was thus developed for a sensitive assay of thrombin. More importantly, the DNA devices by cleavage reaction were cycled multiple rounds, which greatly amplified the ECL signal and much improve the detection sensitivity. This flexible biosensing system exhibits not only high sensitivity and specificity but also excellent performance in real human serum assay. The present work opens a promising approach to develop magnetic quantum dot-based amplified ECL bioassays, which has wider potential application with more favorable analytical performances than other ECL reagent-based systems. Moreover, the composite QDs are suitable for long-term fluorescent cellular imaging, which also highlights the promising directions for further development of QD-based in vitro and in vivo imaging materials.

  19. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates.

    PubMed

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. PMID:27102681

  20. Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO 2 Nanobelt

    SciTech Connect

    Tafen, De Nyago; Prezhdo, Oleg V.

    2015-02-24

    Understanding charge transfer reactions between quantum dots (QD) and metal oxides is fundamental for improving photocatalytic, photovoltaic and electronic devices. The complexity of these processes makes it difficult to find an optimum QD size with rapid charge injection and low recombination. We combine time-domain density functional theory with nonadiabatic molecular dynamics to investigate the size and temperature dependence of the experimentally studied electron transfer and charge recombination at CdSe QD-TiO2 nanobelt (NB) interfaces. The electron injection rate shows strong dependence on the QD size, increasing for small QDs. The rate exhibits Arrhenius temperature dependence, with the activation energy of the order of millielectronvolts. The charge recombination process occurs due to coupling of the electronic subsystem to vibrational modes of the TiO2 NB. Inelastic electron-phonon scattering happens on a picosecond time scale, with strong dependence on the QD size. Our simulations demonstrate that the electron-hole recombination rate decreases significantly as the QD size increases, in excellent agreement with experiments. The temperature dependence of the charge recombination rates can be successfully modeled within the framework of the Marcus theory through optimization of the electronic coupling and the reorganization energy. Our simulations indicate that by varying the QD size, one can modulate the photoinduced charge separation and charge recombination, fundamental aspects of the design principles for high efficiency devices.

  1. Comparison of magneto-optical properties of various excitonic complexes in CdTe and CdSe self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Kobak, J.; Smoleński, T.; Goryca, M.; Rousset, J.-G.; Pacuski, W.; Bogucki, A.; Oreszczuk, K.; Kossacki, P.; Nawrocki, M.; Golnik, A.; Płachta, J.; Wojnar, P.; Kruse, C.; Hommel, D.; Potemski, M.; Kazimierczuk, T.

    2016-07-01

    We present a comparative study of two self-assembled quantum dot (QD) systems based on II-VI compounds: CdTe/ZnTe and CdSe/ZnSe. Using magneto-optical techniques we investigated a large population of individual QDs. The systematic photoluminescence studies of emission lines related to the recombination of neutral exciton X, biexciton XX, and singly charged excitons (X+, X-) allowed us to determine average parameters describing CdTe QDs (CdSe QDs): X-XX transition energy difference 12 meV (24 meV); fine-structure splitting δ1=0.14 meV (δ1=0.47 meV); g-factor g  =  2.12 (g  =  1.71) diamagnetic shift γ=2.5 μeV T-2 (γ =1.3 μeV T-2). We find also statistically significant correlations between various parameters describing internal structure of excitonic complexes.

  2. Spectrally resolved modulated infrared radiometry of photothermal, photocarrier, and photoluminescence response of CdSe crystals: Determination of optical, thermal, and electronic transport parameters

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Chirtoc, M.; Horny, N.; Pelzl, J.

    2016-03-01

    Spectrally resolved modulated infrared radiometry (SR-MIRR) with super-band gap photoexcitation is introduced as a self-consistent method for semiconductor characterization (CdSe crystals grown under different conditions). Starting from a theoretical model combining the contributions of the photothermal (PT) and photocarrier (PC) signal components, an expression is derived for the thermal-to-plasma wave transition frequency ftc which is found to be wavelength-independent. The deviation of the PC component from the model at high frequency is quantitatively explained by a quasi-continuous distribution of carrier recombination lifetimes. The integral, broad frequency band (0.1 Hz-1 MHz) MIRR measurements simultaneously yielded the thermal diffusivity a, the effective IR optical absorption coefficient βeff, and the bulk carrier lifetime τc. Spectrally resolved frequency scans were conducted with interchangeable IR bandpass filters (2.2-11.3 μm) in front of the detector. The perfect spectral match of the PT and PC components is the direct experimental evidence of the key assumption in MIRR that de-exciting carriers are equivalent to blackbody (Planck) radiators. The exploitation of the β spectrum measured by MIRR allowed determining the background (equilibrium) free carrier concentration n0. At the shortest wavelength (3.3 μm), the photoluminescence (PL) component supersedes the PC one and has distinct features. The average sample temperature influences the PC component but not the PT one.

  3. Rapid and One-Pot Synthesis of Self-Assembled CdSe Quantum Dots Functionalized with β-Cyclodextrin: Reduced Cytotoxicity and Band Gap Engineering.

    PubMed

    Guleria, Apurav; Rath, Madhab C; Singh, Ajay K; Adhikari, Soumyakanti

    2015-12-01

    We report a simple, rapid and one step method for the synthesis and in situ functionalization of CdSe quantum dots (QDs) with β-cyclodextrin (β-CD) in aqueous solution via electron beam (EB) irradiation technique. A probable mechanism has been elucidated for the formation of the QDs using pulse radiolysis technique. The average size of the QDs was found to be in the range of 2-3 nm with a size distribution of -14%. XPS measurements indicate that the -OH groups of the β-CD molecules binds predominantly with the Cd atoms present on the surface of the QDs. These QDs displayed broad photoluminescence (PL) with two emission peaks at 525 nm and 600 nm, which could be tuned by varying the experimental parameters. The broad PL spectrum has been attributed to the polydispersity in the density and the distribution of trap/defects states. Time resolved PL decay measurements further substantiated the domination of surface state originated carrier relaxation processes in the overall PL decay dynamics of QDs synthesized at higher doses and dose rates. The present study reveals that β-CD passivate the QDs by a non-inclusion complex, induces the self-assembling process into a networking architecture and simultaneously reduces their cytotoxicity as compared to the bare nanoparticles. The methodology described in this article may provide unique and interesting aspects to regulate and fine tune the formation of superstructures of nanomaterials vis-à-vis their optoelectronic properties.

  4. Magnesium effects on CdSe self-assembled quantum dot formation on Zn xCd yMg 1-x-ySe layers

    NASA Astrophysics Data System (ADS)

    Noemi Perez-Paz, M.; Lu, Hong; Shen, Aidong; Jean Mary, F.; Akins, Daniel; Tamargo, Maria C.

    2006-09-01

    Optical and morphological studies are used to investigate the effects of chemical composition and, in particular, the magnesium content of the Zn xCd yMg 1-x-ySe barrier layers on the size, density and uniformity of CdSe self-assembled quantum dots (QDs). A reduction of the uncapped QD size, as well as a blue shift of the capped QD photoluminescence peak position by increasing Mg concentration in the Zn xCd yMg 1-x-ySe barrier has been demonstrated by changing the Mg cell temperature during growth. In addition, a more uniform and more densely packed QD layer has been observed with an increase of the MgSe fraction in the Zn xCd yMg 1-x-ySe barrier layer using three-dimensional topographic atomic force microscopy images of the surface of uncapped QDs. Results point to Mg as a chemical factor that induces QD formation, either by increasing the density of atomic steps or/and by changing the energy of the Zn xCd yMg 1-x-ySe surface.

  5. Chemical control of the photoluminescence of CdSe quantum dot-organic complexes with a series of para-substituted aniline ligands.

    PubMed

    Knowles, Kathryn E; Tice, Daniel B; McArthur, Eric A; Solomon, Gemma C; Weiss, Emily A

    2010-01-27

    Replacement of the native (as-synthesized) ligands of colloidal CdSe QDs with varying concentrations of a series of para-substituted anilines (R-An), where R ranges from strongly electron-withdrawing to strongly electron-donating, decreases the PL of the QDs. The molar ratio of R-An to QD ([R-An]:[QD]) at which the PL decreases by 50% shifts by 4 orders of magnitude over the series R-An. The model employed to describe the data combines a Freundlich binding isotherm (which reflects the dependence of the binding affinity of the amine headgroups of R-An on the substituent R) with a function that describes the response of the PL to R-An ligands once they are bound at their equilibrium surface coverage. The latter function includes as a parameter the rate constant, k(nr), for nonradiative decay of the exciton at a site to which an R-An ligand is coordinated. The value of this parameter reveals that the predominant mechanism of QD-ligand interaction is passivation of Cd(2+) surface sites through sigma-donation for R-An ligands with R = H, Br, OCF(3), and reductive quenching through photoinduced hole transfer for R = MeO, (Me)(2)N.

  6. A highly sensitive differential pulse anodic stripping voltammetry for determination of 17β-estradiol (E2) using CdSe quantum dots based on indirect competitive immunoassay.

    PubMed

    Chaisuwan, Nuanapa; Xu, He; Wu, Genying; Liu, Jianshe

    2013-08-15

    In this study a new and fast procedure was developed to determine trace 17β-estradiol (E2) concentrations using CdSe quantum dots (QDs) conjugation with bovine serum albumin (BSA)-E2. To increase the high efficiency of the method, the immunoassay design was restricted to an indirect competitive format. The E2 antigen and bioconjugate were incubated in a microtiter plate with an anti-E2 antibody and competition for antibody binding sites was established. The in situ bismuth-coated carbon electrodes were used for detecting the cadmium ions (Cd(2+)) released during the acid dissolution step. After optimization, the well-defined sharp anodic stripping voltammograms curves of the E2 concentration ranging from 50 to 1000 pg/mL was recorded, and the lowest detection limit was 50 pg/mL with 6% reproducibility and 7% repeatability. Finally, the assay was applied to tap water and wastewater samples. The detection limits were 52.56 ± 0.125 pg/mL for tap water and 51.42 ± 0.453 pg/mL for wastewater. These results show that the assay exhibited sensitive analytical performance in E2 detection with high sensitivity and accuracy with satisfactory results. PMID:23542084

  7. Performance Enhancement of 3-Mercaptopropionic Acid-Capped CdSe Quantum-Dot Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes.

    PubMed

    Yang, Jonghee; Park, Taehee; Lee, Jongtaek; Lee, Junyoung; Shin, Hokyeong; Yi, Whikun

    2016-03-01

    We fabricated a series of linker-assisted quantum-dot-sensitized solar cells based on the ex situ self-assembly of CdSe quantum dots (QDs) onto TiO2 electrode using sulfide/polysulfide (S(2-)/Sn(2-)) as an electrolyte and Au cathode. Our cell were combined with single-walled carbon nanotubes (SWNTs) by two techniques; One was mixing SWNTs with TiO2 electrode and the other was spraying SWNTs onto Au electrode. Absorption spectra were used to confirm the adsorption of QDs onto TiO2 electrode. Cell performance was measured on samples containing and not-containing SWNTs. Samples mixing SWNTs with TiO2 showed higher cell efficiency, on the while sample spraying SWNTs onto Au electrode showed lower efficiency compared with pristine sample (not-containing SWNTs). Electrochemical impedance spectroscopy analysis suggested that SWNTs can act as either barriers or excellent carrier transfers according their position and mixing method.

  8. CdSe nanoparticles dispersed in ferroelectric smectic liquid crystals: effects upon the smectic order and the smectic-A to chiral smectic-C phase transition.

    PubMed

    Thanassoulas, Angelos; Karatairi, Eva; Cordoyiannis, George; Kutnjak, Zdravko; Tzitzios, Vassilios; Lelidis, Ioannis; Nounesis, George

    2013-09-01

    Spherical CdSe nanoparticles, surface-treated with oleylamine and tri-octylphosphine, dispersed in ferroelectric liquid crystals, can efficiently target disclination lines, substantially altering the macroscopic properties of the host compound. Here we present an ac calorimetry and x-ray diffraction study demonstrating that for a large range of nanoparticle concentrations the smectic-A layer thickness increases monotonically. This provides evidence for enhanced accumulation of nanoparticles at the smectic layers. Our results for the Smectic-A (SmA) to chiral smectic-C (SmC) phase transition of the liquid crystal S-(+)4-(2'-methylbutyl)phenyl-4'-n-octylbiphenyl-4-carboxylate (CE8) reveal that the character of the transition is profoundly changed as a function of the nanoparticle concentration. Large transition temperature shifts are recorded. Moreover, the heat-capacity peaks exhibit a crossover trend to a step-like anomaly. This behavior may be linked to the weakening of the SmA and SmC order parameter coupling responsible for the observed near-tricritical, mean-field character of the transition in bulk CE8. At lower temperatures, the presence of nanoparticles disrupts the phase sequence involving the tilted hexatic phases most likely by obstructing the establishment of long-range bond-orientational order.

  9. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-05-01

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures.

  10. Controlled electrodeposition of bismuth nanocatalysts for the solution-liquid-solid synthesis of CdSe nanowires on transparent conductive substrates.

    PubMed

    Reim, Natalia; Littig, Alexander; Behn, Dino; Mews, Alf

    2013-12-11

    Semiconductor nanowires (NWs) composed of cadmium selenide (CdSe) have been directly grown on transparent conductive substrates via the solution-liquid-solid (SLS) approach using electrodeposited bismuth nanoparticles (Bi NPs) as catalyst. Bi NPs were fabricated on indium tin oxide (ITO) surfaces from a bismuth trichloride solution using potentiostatic double-pulse techniques. The size and density of electrodeposited Bi NPs were controlled by the pulse parameters. Since the NW diameter is governed by the dimension of the Bi catalyst, the electrodeposition is a reliable method to synthesize nanowires directly on substrates with a desired size and density. We show that the density can be adjusted from individual NWs on several square micrometer to very dense NW networks. The diameter can be controlled between thick nanowires above 100 nm to very thin NW of 7 nm in diameter, which is well below the respective exciton dimension. Hence, especially the thinnest NWs exhibit diameter-dependent photoluminescence energies as a result of quantum confinement effects in the radial dimension. PMID:24245969

  11. Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: influence of capping-group functionality on the phase-transfer mechanism.

    PubMed

    Navarro, Divina A; Banerjee, Sarbajit; Aga, Diana S; Watson, David F

    2010-08-01

    Studies of the fate and transport of engineered nanomaterials are invaluable in predicting environmental impact, bioavailability, and toxicity. We report on the influence of humic and fulvic acids (models of natural organic matter) on the phase transfer of organic-capped CdSe quantum dots (QDs) from hexane to water. QDs capped with tri-n-octylphosphine oxide, tetradecylphosphonic acid, and oleic acid, which were otherwise insoluble in water, were transferred into aqueous solutions of humic substances (HS) (Suwannee River humic acid and fulvic acid standards) within 1-10 days after mixing. Phase transfer was characterized by infrared and UV/Vis absorption spectroscopy, emission spectroscopy, dynamic light scattering, electron microscopy, and inductively coupled plasma mass spectrometry. Phase-transferred QDs were intact and temporarily stabilized by HS. On longer timescales, Cd(2+) leached into aqueous solution. Our data suggest that two mechanisms promote the phase transfer of QD-HS agglomerates: (1) an overcoating mechanism involving dispersion interactions between non-polar moieties of HS and hydrocarbon chains of organic capping groups and (2) a coordinative mechanism involving displacement of capping groups by Lewis basic functionalities of HS. The structure of the capping group of QDs influenced the relative contributions of the two mechanisms and the extent to which Cd(2+) leached into water.

  12. Study of optically trapped living Trypanosoma cruzi/Trypanosoma rangeli - Rhodnius prolixus interactions by real time confocal images using CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Almeida, D. B.; Faustino, W. M.; Jacob, G. J.; Fontes, A.; Barbosa, L. C.; Cesar, C. L.; Stahl, C. V.; Santos-Mallet, J. R.; Gomes, S. A. O.; Feder, D.

    2008-08-01

    One of the fundamental goals in biology is to understand the interplay between biomolecules of different cells. This happen, for example, in the first moments of the infection of a vector by a parasite that results in the adherence to the cell walls. To observe this kind of event we used an integrated Optical Tweezers and Confocal Microscopy tool. This tool allow us to use the Optical Tweezers to trigger the adhesion of the Trypanosoma cruzi and Trypanosoma rangeli parasite to the intestine wall cells and salivary gland of the Rhodnius prolixus vector and to, subsequently observe the sequence of events by confocal fluorescence microscopy under optical forces stresses. We kept the microorganism and vector cells alive using CdSe quantum dot staining. Besides the fact that Quantum Dots are bright vital fluorescent markers, the absence of photobleaching allow us to follow the events in time for an extended period. By zooming to the region of interested we have been able to acquire confocal images at the 2 to 3 frames per second rate.

  13. Portable exhauster POR-007/Skid E and POR-008/Skid F storage plan

    SciTech Connect

    Nelson, O.D.

    1998-07-25

    This document provides storage requirements for 1,000 CFM portable exhausters POR-O07/Skid E and POR-008/Skid F. These requirements are presented in three parts: preparation for storage, storage maintenance and testing, and retrieval from storage. The exhauster component identification numbers listed in this document contain the prefix POR-007 or POR-008 depending on which exhauster is being used.

  14. Lattice location and local magnetism of recoil implanted Fe impurities in wide and narrow band semiconductors CdTe, CdSe, and InSb: Experiment and theory

    SciTech Connect

    Mohanta, S. K.; Mishra, S. N.

    2014-05-07

    Employing the time differential perturbed angular distribution method, we have measured local susceptibility and spin relaxation rate of {sup 54}Fe nuclei implanted in III-V and II-VI semiconductors, CdTe, CdSe, and InSb. The magnetic response of Fe, identified to occupy the metal as well as the semi-metal atom sites, exhibit Curie-Weiss type susceptibility and Korringa like spin relaxation rate, revealing the existence of localized moments with small spin fluctuation temperature. The experimental results are supported by first principle electronic structure calculations performed within the frame work of density functional theory.

  15. Seed-mediated synthesis, properties and application of {gamma}-Fe{sub 2}O{sub 3}-CdSe magnetic quantum dots

    SciTech Connect

    Lin, Alex W.H.; Ang, Chung Yen; Patra, Pranab K.; Han Yu; Gu Hongwei; Le Breton, Jean-Marie; Juraszek, Jean; Chiron, Hubert; Papaefthymiou, Georgia C.; Tamil Selvan, Subramanian; Ying, Jackie Y.

    2011-08-15

    Seed-mediated growth of fluorescent CdSe quantum dots (QDs) around {gamma}-Fe{sub 2}O{sub 3} magnetic cores was performed at high temperature (300 deg. C) in the presence of organic surfactants. Bi-functional magnetic quantum dots (MQDs) with tunable emission properties were successfully prepared. The as-synthesized MQDs were characterized by high-resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS), which confirmed the assembly of heterodimers. When a longer growth period was employed, a homogeneous dispersion of QDs around a magnetic nanoparticle was obtained. The magnetic properties of these nanocomposites were examined. The MQDs were superparamagnetic with a saturation magnetization of 0.40 emu/g and a coercivity of 138 Oe at 5 K. To demonstrate their potential application in bio-labeling, these MQDs were coated with a thin silica shell, and functionalized with a polyethylene glycol (PEG) derivative. The functionalized MQDs were effectively used for the labeling of live cell membranes of 4T1 mouse breast cancer cells and HepG2 human liver cancer cells. - Graphical abstract: (a) HRTEM image of oleic acid capped MPs. The size of MPs ranges from 8 to 10 nm. (b) XRD pattern of {gamma}-Fe{sub 2}O{sub 3} MPs. Highlights: > The fabrication of MQDs through a seed-mediated approach has been demonstrated. > The formation and assembly of these bi-functional nanocomposites have been elucidated. > The MQDs exhibit superparamagnetism and tunable emissions characteristic of the components. > MQDs with thin silica coating were successfully employed in the labeling of cancer cell membranes.

  16. Formation of assemblies comprising Ru-polypyridine complexes and CdSe nanocrystals studied by ATR-FTIR spectroscopy and DFT modeling.

    PubMed

    Koposov, Alexey Y; Cardolaccia, Thomas; Albert, Victor; Badaeva, Ekaterina; Kilina, Svetlana; Meyer, Thomas J; Tretiak, Sergei; Sykora, Milan

    2011-07-01

    The interaction between CdSe nanocrystals (NCs) passivated with trioctylphosphine oxide (TOPO) ligands and a series of Ru-polypyridine complexes-[Ru(bpy)(3)](PF(6))(2) (1), [Ru(bpy)(2)(mcb)](PF(6))(2) (2), [Ru(bpy)(mcb)(2)](BarF)(2) (3), and [Ru(tpby)(2)(dcb)](PF(6))(2) (4) (where bpy = 2,2'-bipyridine, mcb = 4-carboxy-4'-methyl-2,2'-bipyridine, tbpy = 4,4'-di-tert-butyl-2,2'-bipyridine; dcb = 4,4'-dicarboxy-2,2'-bipyridine, and BarF = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate)-was studied by attenuated total reflectance FTIR (ATR-FTIR) and modeled using density functional theory (DFT). ATR-FTIR studies reveal that when the solid film of NCs is exposed to an acetonitrile solution of 2, 3, or 4, the complexes chemically bind to the NC surface through their carboxylic acid groups, replacing TOPO ligands. The corresponding spectral changes are observed on a time scale of minutes. In the case of 2, the FTIR spectral changes clearly show that the complex adsorption is associated with a loss of proton from the carboxylic acid group. In the case of 3 and 4, deprotonation of the anchoring group is also detected, while the second, "spectrator" carboxylic acid group remains protonated. The observed energy difference between the symmetric, ν(s), and asymmetric, ν(as), stretch of the deprotonated carboxylic acid group suggests that the complexes are bound to the NC surface via a bridging mode. The results of DFT modeling are consistent with the experiment, showing that for the deprotonated carboxylic acid group the coupling to two Cd atoms via a bridging mode is the energetically most favorable mode of attachment for all nonequivalent NC surface sites and that the attachment of the protonated carboxylic acid is thermodynamically significantly less favorable. PMID:21627143

  17. Use of Surface Photovoltage Spectroscopy to Measure Built-in Voltage, Space Charge Layer Width, and Effective Band Gap in CdSe Quantum Dot Films.

    PubMed

    Zhao, Jing; Nail, Benjamin A; Holmes, Michael A; Osterloh, Frank E

    2016-09-01

    Surface photovoltage spectroscopy (SPS) was used to study the photochemistry of mercaptoethanol-ligated CdSe quantum dot (2.0-4.2 nm diameter) films on indium doped tin oxide (ITO) in the absence of an external bias or electrolyte. The n-type films generate negative voltages under super band gap illumination (0.1-0.5 mW cm(-2)) by majority carrier injection into the ITO substrate. The photovoltage onset energies track the optical band gaps of the samples and are assigned as effective band gaps of the films. The photovoltage values (-125 to -750 mV) vary with quantum dot sizes and are modulated by the built-in potential of the CdSe-ITO Schottky type contacts. Deviations from the ideal Schottky model are attributed to Fermi level pinning in states approximately 1.1 V negative of the ITO conduction band edge. Positive photovoltage signals of +80 to +125 mV in films of >4.0 nm nanocrystals and in thin (70 nm) nanocrystal films are attributed to electron-hole (polaron) pairs that are polarized by a space charge layer at the CdSe-ITO boundary. The space charge layer is 70-150 nm wide, based on thickness-dependent photovoltage measurements. The ability of SPS to directly measure built-in voltages, space charge layer thickness, sub-band gap states, and effective band gaps in drop-cast quantum dot films aids the understanding of photochemical charge transport in quantum dot solar cells. PMID:27505130

  18. Electron beam induced and microemulsion templated synthesis of CdSe quantum dots: tunable broadband emission and charge carrier recombination dynamics

    NASA Astrophysics Data System (ADS)

    Guleria, Apurav; Singh, Ajay K.; Rath, Madhab C.; Adhikari, Soumyakanti

    2015-04-01

    CdSe quantum dots (QDs) were synthesized by a rapid and one step templated approach inside the water pool of AOT (sodium bis(2-ethylhexyl) sulfosuccinate) based water-in-oil microemulsions (MEs) via electron beam (EB) irradiation technique with high dose rate, which favours high nucleation rate. The interplay of different experimental parameters such as precursor concentration, absorbed dose and {{W}0} values (aqueous phase to surfactant molar ratio) of MEs were found to have interesting consequences on the morphology, photoluminescence (PL), surface composition and carrier recombination dynamics of as-grown QDs. For instance, highly stable ultrasmall (∼1.7 nm) bluish-white light emitting QDs were obtained with quantum efficiency (η) of ∼9%. Furthermore, QDs were found to exhibit tunable broadband light emission extending from 450 to 750 nm (maximum FWHM ∼180 nm). This could be realized from the CIE (Commission Internationale d’Eclairage) chromaticity co-ordinates, which varied across the blue region to the orange region thereby, conferring their potential application in white light emitting diodes. Additionally, the average PL lifetime ≤ft( ≤ft< τ \\right> \\right) values could be varied from 18 ns to as high as 74 ns, which reflect the role of surface states in terms of their density and distribution. Another interesting revelation was the self-assembling of the initially formed QDs into nanorods with high aspect ratios ranging from 7 to 20, in correspondence with the {{W}0} values. Besides, the fundamental roles of the chemical nature of water pool and the interfacial fluidity of AOT MEs in influencing the photophysical properties of QDs were investigated by carrying out a similar study in CTAB (cetyltrimethylammonium bromide; cationic surfactant) based MEs. Surprisingly, very profound and contrasting results were observed wherein ≤ft< τ \\right> and η of the QDs in case of CTAB MEs were found to be at least three times lower as compared to

  19. Use of Surface Photovoltage Spectroscopy to Measure Built-in Voltage, Space Charge Layer Width, and Effective Band Gap in CdSe Quantum Dot Films.

    PubMed

    Zhao, Jing; Nail, Benjamin A; Holmes, Michael A; Osterloh, Frank E

    2016-09-01

    Surface photovoltage spectroscopy (SPS) was used to study the photochemistry of mercaptoethanol-ligated CdSe quantum dot (2.0-4.2 nm diameter) films on indium doped tin oxide (ITO) in the absence of an external bias or electrolyte. The n-type films generate negative voltages under super band gap illumination (0.1-0.5 mW cm(-2)) by majority carrier injection into the ITO substrate. The photovoltage onset energies track the optical band gaps of the samples and are assigned as effective band gaps of the films. The photovoltage values (-125 to -750 mV) vary with quantum dot sizes and are modulated by the built-in potential of the CdSe-ITO Schottky type contacts. Deviations from the ideal Schottky model are attributed to Fermi level pinning in states approximately 1.1 V negative of the ITO conduction band edge. Positive photovoltage signals of +80 to +125 mV in films of >4.0 nm nanocrystals and in thin (70 nm) nanocrystal films are attributed to electron-hole (polaron) pairs that are polarized by a space charge layer at the CdSe-ITO boundary. The space charge layer is 70-150 nm wide, based on thickness-dependent photovoltage measurements. The ability of SPS to directly measure built-in voltages, space charge layer thickness, sub-band gap states, and effective band gaps in drop-cast quantum dot films aids the understanding of photochemical charge transport in quantum dot solar cells.

  20. Consequences of POR mutations and polymorphisms

    PubMed Central

    Miller, Walter L.; Agrawal, Vishal; Sandee, Duanpen; Tee, Meng Kian; Huang, Ningwu; Choi, Ji Ha; Morrissey, Kari; Giacomini, Kathleen M.

    2015-01-01

    P450 oxidoreductase (POR) transports electrons from NADPH to all microsomal cytochrome P450 enzymes, including steroidogenic P450c17, P450c21 and P450aro. Severe POR mutations A287P (in Europeans) and R457H (in Japanese) cause the Antley-Bixler skeletal malformation syndrome (ABS) plus impaired steroidogenesis (causing genital anomalies), but the basis of ABS is unclear. We have characterized the activities of ~40 POR variants, showing that assays based on P450c17 activities, but not cytochrome c assays, correlate with the clinical phenotype. The human POR gene is highly polymorphic: the A503V sequence variant, which decreases P450c17 activities to ~60%, is found on ~28% of human alleles. A promoter polymorphism (~8% of Asians and ~13% of Caucasians) at −152 reduces transcriptional activity by half. Screening of 35 POR variants showed that most mutants lacking activity with P450c17 or cytochrome c also lacked activity to support CYP1A2 and CYP2C19 metabolism of EOMCC (a fluorogenic non-drug substrate), although there were some remarkable differences: Q153R causes ABS and has ~30% of wild-type activity with P450c17 but had 144% of WT activity with CYP1A2 and 284% with CYP2C19. The effects of POR variants on CYP3A4, which metabolizes nearly 50% of clinically used drugs, was examined with multiple, clinically-relevant drug substrates, showing that A287P and R457H dramatically reduce drug metabolism, and that A503V variably impairs drug metabolism. The degree of activity can vary with the drug substrate assayed, as the drugs can influence the conformation of the P450. POR is probably an important contributor to genetic variation in both steroidogenesis and drug metabolism. PMID:21070833

  1. Colloidal CdSe nanocrystals from tri-n-octylphosphine: Part II: control of growth rate for high quality and large-scale production by tuning Cd-to-Se stoichiometry.

    PubMed

    Yu, Kui; Zaman, Badruz; Ripmeester, John A

    2005-04-01

    Colloidal CdSe nanocrystals were synthesized in reaction media consisting of tri-n-octylphosphine (TOP) without addition of other species; the single-step approach used cadmium oxide (CdO) and TOPSe as Cd and Se sources, respectively. The temporal evolution of the optical properties of the growing TOP-capped CdSe nanocrystals was monitored for a couple of hours, showing that there are two distinguishable stages of growth: an early stage (less than 5 minutes) and a later stage; the growth kinetics of the two stages is a function of the Cd-to-Se precursor molar ratios. A rational choice of 2-6Cd-to-1Se molar ratio was found, based on the temporal evolution of the photoluminescent (PL) efficiency (studied as PL intensity and sensitivity to the media of dispersion, and non-resonant Stokes shifts). For a 2Cd-to-1Se synthesis, the growth in size was slow in the early stages and became fast in the later stages; this fast-later-stage feature could be suppressed by going to a synthesis with a 4-6Cd-to-1Se mole ratio: the nanocrystals between 0.5-60 min growth time exhibit very much similar optical properties, with less than 19 nm redshift of bandgap absorption and emission occurring. Thus, the synthetic route developed here, with a rational 4-6Cd-to-1Se molar ratio, enables us to produce high-quality CdSe nanocrystals on a large-scale with a high degree of synthetic reproducibility. The insights gained facilitate a deeper understanding of the concept of what constitutes high-quality nano-crystals: high PL efficiency resulting from a low growth rate, which can be thoroughly and readily investigated by the red-shift rate of the band-gap peak positions; in addition, the insights gained help us to define a proper synthetic approach for large-scale production with high-quality product.

  2. Desigualdades por cáncer

    Cancer.gov

    Información básica de las desigualdades en salud por cáncer en EE. UU., factores que contribuyen a la carga desproporcionada del cáncer en algunos grupos y ejemplos de desigualdades en incidencia y mortalidad entre ciertos grupos de la población.

  3. Sensitive and selective determining ascorbic acid and activity of alkaline phosphatase based on electrochemiluminescence of dual-stabilizers-capped CdSe quantum dots in carbon nanotube-nafion composite.

    PubMed

    Ma, Xiaolong; Zhang, Xin; Guo, Xinli; Kang, Qi; Shen, Dazhong; Zou, Guizheng

    2016-07-01

    Sensitive and selective determining bio-related molecule and enzyme play an important role in designing novel procedure for biological sensing and clinical diagnosis. Herein, we found that dual-stabilizers-capped CdSe quantum dots (QDs) in composite film of multi-walled carbon nanotubes (CNTs) and Nafion, displaying eye-visible monochromatic electrochemiluminescence (ECL) with fwhm of 37nm, which offers promising ECL signal for detecting ascorbic acid (AA) as well as the activity of alkaline phosphatase (ALP) in biological samples. It was also shown that the dual-stabilizers-capped CdSe QDs can preserve their highly passivated surface states with prolonged lifetime of excited states in Nafion mixtures, and facilitate electron-transfer ability of Nafion film along with CNTs. Compared with the QDs/GCE, the ECL intensity is enhanced 1.8 times and triggering potential shifted to lower energy by 0.12V on the CdSe-CNTs-Nafion/GCE. The ECL quenching degree increases with increasing concentration of AA in the range of 0.01-30nM with a limit of detection (LOD) of 5pM. The activity of ALP was determined indirectly according to the concentration of AA, generated in the hydrolysis reaction of l-ascorbic acid 2-phosphate sesquimagnesium (AA-P) in the presence of ALP as a catalyst, with an LOD of 1μU/L. The proposed strategy is favorable for developing simple ECL sensor or device with high sensitivity, spectral resolution and less electrochemical interference. PMID:27154663

  4. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System

    PubMed Central

    Gorasia, Dhana G.; Veith, Paul D.; Hanssen, Eric G.; Glew, Michelle D.; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C.

    2016-01-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32–36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component. PMID:27509186

  5. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    PubMed

    Gorasia, Dhana G; Veith, Paul D; Hanssen, Eric G; Glew, Michelle D; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C

    2016-08-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component. PMID:27509186

  6. Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System.

    PubMed

    Gorasia, Dhana G; Veith, Paul D; Hanssen, Eric G; Glew, Michelle D; Sato, Keiko; Yukitake, Hideharu; Nakayama, Koji; Reynolds, Eric C

    2016-08-01

    The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.

  7. Uniform Thin Films of CdSe and CdSe(ZnS) Core(shell) Quantum Dots by Sol-Gel Assembly: Enabling Photoelectrochemical Characterization and Electronic Applications

    PubMed Central

    Korala, Lasantha; Wang, Zhijie; Liu, Yi; Maldonado, Stephen; Brock, Stephanie L.

    2013-01-01

    Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) non-radiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles. The ligand removal and assembly process is probed by thermogravimetric, spectroscopic and microscopic studies. Further enhancement of inter-particle coupling via mild thermal annealing, which removes residual ligands and reinforces QD connectivity, results in QD sol-gel thin films with superior charge transport properties, as shown by a dramatic enhancement of electrochemical photocurrent under white light illumination relative to thin films composed of ligand-capped QDs. A more than 2-fold enhancement in photocurrent, and a further increase in photovoltage can be achieved by passivation of surface defects via overcoating with a thin ZnS shell. The ability to tune interfacial and surface characteristics for the optimization of photophysical properties suggests that the sol-gel approach may enable formation of QD thin films suitable for a range of optoelectronic applications. PMID:23350924

  8. Effets de l'interaction avec l'oxygène sur le comportement de couches semi-conductrices de ZnO, SnO{2} et CdSe

    NASA Astrophysics Data System (ADS)

    Ain-Souya, A.; Ghers, M.; Haddad, A.; Tebib, W.; Rehamnia, R.; Messsalhi, A.; Bounouala, M.; Djouama, M. C.

    2005-05-01

    Les propriétés superficielles des matériaux solides diffèrent de celles du volume. A la surface, des défauts de différentes natures peuvent être présents. Ils permettent à la surface d'être interactive avec le milieu ambiant. Les multiples interactions entre les états de surface et des éléments du milieu extérieur peuvent modifier les propriétés superficielles. Ce travail étudie la régénération de couches semi-conductrices après adsorption isotherme d'oxygène à différentes températures effectuées entre 20 ° C et 300 ° C. Les matériaux qui ont servi à l'étude sont des couches de ZnO, SnO{2} et CdSe. Celles de CdSe ont été obtenues par co-évaporation, sous vide, de cadmium et de sélénium. Les échantillons de ZnO et SnO{2} ont été élaborés par oxydation, à des températures respectives de 450 ° C et 200 ° , de Zn et Sn déposés par électrolyse et par évaporation sous vide. Les matériaux évaporés ont été déposés sur des plaquettes en verre, les autres ont été électrodéposés sur des substrats métalliques. Les variations des propriétés électriques des couches ont été suivies par mesure de leur résistance électrique superficielle R. Les courbes LogR = f (103 /T (K)), relevées sous vide à différentes températures, sont caractéristiques d'un comportement de semi-conducteur. Des essais d'adsorption d'O{2} à différentes températures montrent des variations considérables de R. En effet, la chimisorption forte d'un gaz par une surface semi-conductrice est telle que l'échange électronique entre adsorbant et adsorbat provoque la formation d'une zone de charge d'espace modifiant la conduction superficielle. Les résultats mettent en évidence des domaines de température de plus haute sensibilité à l'oxygène. Pour le CdSe, certaines désorptions isothermes ont été suffisantes pour une régénération totale des échantillons. Les couches de ZnO ont souvent nécessité des désorptions programm

  9. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    PubMed Central

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  10. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit.

    PubMed

    Vincent, Maxence S; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  11. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit.

    PubMed

    Vincent, Maxence S; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS.

  12. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    PubMed Central

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS.

  13. System design description for portable 1,000 CFM exhauster Skids POR-007/Skid E and POR-008/Skid F

    SciTech Connect

    Nelson, O.D.

    1998-07-25

    The primary purpose of the two 1,000 CFM Exhauster Skids, POR-007-SKID E and POR-008-SKID F, is to provide backup to the waste tank primary ventilation systems for tanks 241-C-106 and 241-AY-102, and the AY-102 annulus in the event of a failure during the sluicing of tank 241-C-106 and subsequent transfer of sluiced waste to 241-AY-102. This redundancy is required since both of the tank ventilation systems have been declared as Safety Class systems.

  14. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system.

    PubMed

    Sato, Keiko; Yukitake, Hideharu; Narita, Yuka; Shoji, Mikio; Naito, Mariko; Nakayama, Koji

    2013-01-01

    The Gram-negative bacterium Porphyromonas gingivalis possesses a number of potential virulence factors for periodontopathogenicity. In particular, cysteine proteinases named gingipains are of interest given their abilities to degrade host proteins and process other virulence factors such as fimbriae. Gingipains are translocated on the cell surface or into the extracellular milieu by the Por secretion system (PorSS), which consists of a number of membrane or periplasmic proteins including PorK, PorL, PorM, PorN, PorO, PorP, PorQ, PorT, PorU, PorV (PG27, LptO), PorW and Sov. To identify proteins other than gingipains secreted by the PorSS, we compared the proteomes of P. gingivalis strains kgp rgpA rgpB (PorSS-proficient strain) and kgp rgpA rgpB porK (PorSS-deficient strain) using two-dimensional gel electrophoresis and peptide-mass fingerprinting. Sixteen spots representing 10 different proteins were present in the particle-free culture supernatant of the PorSS-proficient strain but were absent or faint in that of the PorSS-deficient strain. These identified proteins possessed the C-terminal domains (CTDs), which had been suggested to form the CTD protein family. These results indicate that the PorSS is used for secretion of a number of proteins other than gingipains and that the CTDs of the proteins are associated with the PorSS-dependent secretion. PMID:23075153

  15. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system.

    PubMed

    Sato, Keiko; Yukitake, Hideharu; Narita, Yuka; Shoji, Mikio; Naito, Mariko; Nakayama, Koji

    2013-01-01

    The Gram-negative bacterium Porphyromonas gingivalis possesses a number of potential virulence factors for periodontopathogenicity. In particular, cysteine proteinases named gingipains are of interest given their abilities to degrade host proteins and process other virulence factors such as fimbriae. Gingipains are translocated on the cell surface or into the extracellular milieu by the Por secretion system (PorSS), which consists of a number of membrane or periplasmic proteins including PorK, PorL, PorM, PorN, PorO, PorP, PorQ, PorT, PorU, PorV (PG27, LptO), PorW and Sov. To identify proteins other than gingipains secreted by the PorSS, we compared the proteomes of P. gingivalis strains kgp rgpA rgpB (PorSS-proficient strain) and kgp rgpA rgpB porK (PorSS-deficient strain) using two-dimensional gel electrophoresis and peptide-mass fingerprinting. Sixteen spots representing 10 different proteins were present in the particle-free culture supernatant of the PorSS-proficient strain but were absent or faint in that of the PorSS-deficient strain. These identified proteins possessed the C-terminal domains (CTDs), which had been suggested to form the CTD protein family. These results indicate that the PorSS is used for secretion of a number of proteins other than gingipains and that the CTDs of the proteins are associated with the PorSS-dependent secretion.

  16. Disminuyen en los Estados Unidos las infecciones por VPH.

    Cancer.gov

    La infección por los tipos del virus del papiloma humano (VPH) en el blanco de la vacuna cuadrivalente se redujo en casi dos tercios en las adolescentes desde que se recomendó la vacunación en los Estados Unidos.

  17. Centros oncológicos designados por el NCI

    Cancer.gov

    El programa de centros oncológicos designados por el Instituto Nacional del Cáncer (NCI) reconoce a los centros de todo el país que cumplen con rigurosos criterios para participar en proyectos avanzados de primer nivel para la investigación multidisciplinaria del cáncer.

  18. Se evitaron casi 800 000 muertes por descenso del tabaquismo

    Cancer.gov

    Programas y estrategias de control del tabaco del siglo XX fueron responsables de la prevención de más de 795 000 muertes por cáncer de pulmón en Estados Unidos de 1975 al 2000. Si todo el tabaquismo en este país hubiera cesado después de la publicación d

  19. Beam splitter coupled CDSE optical parametric oscillator

    DOEpatents

    Levinos, Nicholas J.; Arnold, George P.

    1980-01-01

    An optical parametric oscillator is disclosed in which the resonant radiation is separated from the pump and output radiation so that it can be manipulated without interfering with them. Thus, for example, very narrow band output may readily be achieved by passing the resonant radiation through a line narrowing device which does not in itself interfere with either the pump radiation or the output radiation.

  20. Neisseria meningitidis Lacking the Major Porins PorA and PorB Is Viable and Modulates Apoptosis and the Oxidative Burst of Neutrophils.

    PubMed

    Peak, Ian R; Chen, Adrienne; Jen, Freda E-C; Jennings, Courtney; Schulz, Benjamin L; Saunders, Nigel J; Khan, Arshad; Seifert, H Steven; Jennings, Michael P

    2016-08-01

    The bacterial pathogen Neisseria meningitidis expresses two major outer-membrane porins. PorA expression is subject to phase-variation (high frequency, random, on-off switching), and both PorA and PorB are antigenically variable between strains. PorA expression is variable and not correlated with meningococcal colonisation or invasive disease, whereas all naturally-occurring strains express PorB suggesting strong selection for expression. We have generated N. meningitidis strains lacking expression of both major porins, demonstrating that they are dispensable for bacterial growth in vitro. The porAB mutant strain has an exponential growth rate similar to the parental strain, as do the single porA or porB mutants, but the porAB mutant strain does not reach the same cell density in stationary phase. Proteomic analysis suggests that the double mutant strain exhibits compensatory expression changes in proteins associated with cellular redox state, energy/nutrient metabolism, and membrane stability. On solid media, there is obvious growth impairment that is rescued by addition of blood or serum from mammalian species, particularly heme. These porin mutants are not impaired in their capacity to inhibit both staurosporine-induced apoptosis and a phorbol 12-myristate 13-acetate-induced oxidative burst in human neutrophils suggesting that the porins are not the only bacterial factors that can modulate these processes in host cells.

  1. Compton imaging with the PorGamRays spectrometer

    NASA Astrophysics Data System (ADS)

    Judson, D. S.; Boston, A. J.; Coleman-Smith, P. J.; Cullen, D. M.; Hardie, A.; Harkness, L. J.; Jones, L. L.; Jones, M.; Lazarus, I.; Nolan, P. J.; Pucknell, V.; Rigby, S. V.; Seller, P.; Scraggs, D. P.; Simpson, J.; Slee, M.; Sweeney, A.; PorGamRays Collaboration

    2011-10-01

    The PorGamRays project aims to develop a portable gamma-ray detection system with both spectroscopic and imaging capabilities. The system is designed around a stack of thin Cadmium Zinc Telluride (CZT) detectors. The imaging capability utilises the Compton camera principle. Each detector is segmented into 100 pixels which are read out through custom designed Application Specific Integrated Circuits (ASICs). This device has potential applications in the security, decommissioning and medical fields. This work focuses on the near-field imaging performance of a lab-based demonstrator consisting of two pixelated CZT detectors, each of which is bonded to a NUCAM II ASIC. Measurements have been made with point 133Ba and 57Co sources located ˜35 mm from the surface of the scattering detector. Position resolution of ˜20 mm FWHM in the x and y planes is demonstrated.

  2. Acceptance test report for portable exhauster POR-007/Skid E

    SciTech Connect

    Kriskovich, J.R.

    1998-07-24

    This document describes Acceptance Testing performed on Portable Exhauster POR-007/Skid E. It includes measurements of bearing vibration levels, pressure decay testing, programmable logic controller interlocks, high vacuum, flow and pressure control functional testing. The purpose of Acceptance testing documented by this report was to demonstrate compliance of the exhausters with the performance criteria established within HNF-0490, Rev. 1 following a repair and upgrade effort at Hanford. In addition, data obtained during this testing is required for the resolution of outstanding Non-conformance Reports (NCR), and finally, to demonstrate the functionality of the associated software for the pressure control and high vacuum exhauster operating modes provided for by W-320. Additional testing not required by the ATP was also performed to assist in the disposition and close out of receiving inspection report and for application design information (system curve). Results of this testing are also captured within this document.

  3. Typing and surface charges of the variable loop regions of PorB from Neisseria meningitidis.

    PubMed

    Stefanelli, Paola; Neri, Arianna; Tanabe, Mikio; Fazio, Cecilia; Massari, Paola

    2016-06-01

    PorB is a pan-Neisserial major outer membrane protein with a trimeric β-barrel structure. Each monomer presents eight periplasmic turns and eight surface exposed loop regions with sequence variability. PorB induces activation of host cell responses via a TLR2-dependent mechanism likely mediated by electrostatic interactions between TLR2 and PorB surface exposed loops. Variability in the loop amino acid sequence is known to influence cell responses to PorB in vitro, particularly for the residues in L5 and L7. In this work, the sequence of the porB gene and the electrostatic surface charges of PorB from 35 invasive meningococcal isolates belonging to the main clonal complexes identified in Italy and from five carriage genomes available on the website http://pubmlst.org/neisseria/ were examined. Analysis of the porB encoding regions from the invasive meningococci has identified four new alleles and a potential association between porB alleles, serogroup, and clonal complexes. Through computer-based modeling and analysis of the electrostatic surface charges of PorB from these strains, loop charge segregation between PorB from invasive serogroups B and C was observed. Specifically, loops 1, 4, and 7 were negatively charged and L2 and L8 were mostly neutral in serogroup B isolates, while an overall homogeneous positive surface charge was present in PorB from invasive serogroup C strains. A higher PorB sequence variability was observed among carriage genomes, and a general prevalence of negative loop surface charges. The surface charge differences in PorB from serogroups B and C invasive and carriage strains may, in part, influence the outcomes of Neisseriae interactions with host cells. © 2016 IUBMB Life, 68(6):488-495, 2016. PMID:27156582

  4. Typing and surface charges of the variable loop regions of PorB from Neisseria meningitidis.

    PubMed

    Stefanelli, Paola; Neri, Arianna; Tanabe, Mikio; Fazio, Cecilia; Massari, Paola

    2016-06-01

    PorB is a pan-Neisserial major outer membrane protein with a trimeric β-barrel structure. Each monomer presents eight periplasmic turns and eight surface exposed loop regions with sequence variability. PorB induces activation of host cell responses via a TLR2-dependent mechanism likely mediated by electrostatic interactions between TLR2 and PorB surface exposed loops. Variability in the loop amino acid sequence is known to influence cell responses to PorB in vitro, particularly for the residues in L5 and L7. In this work, the sequence of the porB gene and the electrostatic surface charges of PorB from 35 invasive meningococcal isolates belonging to the main clonal complexes identified in Italy and from five carriage genomes available on the website http://pubmlst.org/neisseria/ were examined. Analysis of the porB encoding regions from the invasive meningococci has identified four new alleles and a potential association between porB alleles, serogroup, and clonal complexes. Through computer-based modeling and analysis of the electrostatic surface charges of PorB from these strains, loop charge segregation between PorB from invasive serogroups B and C was observed. Specifically, loops 1, 4, and 7 were negatively charged and L2 and L8 were mostly neutral in serogroup B isolates, while an overall homogeneous positive surface charge was present in PorB from invasive serogroup C strains. A higher PorB sequence variability was observed among carriage genomes, and a general prevalence of negative loop surface charges. The surface charge differences in PorB from serogroups B and C invasive and carriage strains may, in part, influence the outcomes of Neisseriae interactions with host cells. © 2016 IUBMB Life, 68(6):488-495, 2016.

  5. VDAC and the bacterial porin PorB of Neisseria gonorrhoeae share mitochondrial import pathways.

    PubMed

    Müller, Anne; Rassow, Joachim; Grimm, Jan; Machuy, Nikolaus; Meyer, Thomas F; Rudel, Thomas

    2002-04-15

    The human pathogen Neisseria gonorrhoeae induces host cell apoptosis during infection by delivering the outer membrane protein PorB to the host cell's mitochondria. PorB is a pore-forming beta-barrel protein sharing several features with the mitochondrial voltage-dependent anion channel (VDAC), which is involved in the regulation of apoptosis. Here we show that PorB of pathogenic Neisseria species produced by host cells is efficiently targeted to mitochondria. Imported PorB resides in the mitochondrial outer membrane and forms multimers with similar sizes as in the outer bacterial membrane. The mitochondria completely lose their membrane potential, a characteristic previously observed in cells infected with gonococci or treated with purified PorB. Closely related bacterial porins of non-pathogenic Neisseria mucosa or Escherichia coli remain in the cytosol. Import of PorB into mitochondria in vivo is independent of a linear signal sequence. Insertion of PorB into the mitochondrial outer membrane in vitro depends on the activity of Tom5, Tom20 and Tom40, but is independent of Tom70. Our data show that human VDAC and bacterial PorB are imported into mitochondria by a similar mechanism. PMID:11953311

  6. P450 (Cytochrome) Oxidoreductase Gene (POR) Common Variant (POR*28) Significantly Alters CYP2C9 Activity in Swedish, But Not in Korean Healthy Subjects.

    PubMed

    Hatta, Fazleen H M; Aklillu, Eleni

    2015-12-01

    CYP2C9 enzyme contributes to the metabolism of several pharmaceuticals and xenobiotics and yet displays large person-to-person and interethnic variation. Understanding the mechanisms of CYP2C9 variation is thus of immense importance for personalized medicine and rational therapeutics. A genetic variant of P450 (cytochrome) oxidoreductase (POR), a CYP450 redox partner, is reported to influence CYP2C9 metabolic activity in vitro. We investigated the impact of a common variant, POR*28, on CYP2C9 metabolic activity in humans. 148 healthy Swedish and 146 healthy Korean volunteers were genotyped for known CYP2C9 defective variant alleles (CYP2C9*2, *3). The CYP2C9 phenotype was determined using a single oral dose of 50 mg losartan. Excluding oral contraceptive (OC) users and carriers of 2C9*2 and *3 alleles, 117 Korean and 65 Swedish were genotyped for POR*5, *13 and *28 using Taqman assays. The urinary losartan to its metabolite E-3174 metabolic ratio (MR) was used as an index of CYP2C9 metabolic activity. The allele frequency of the POR*28 variant allele in Swedes and Koreans was 29% and 44%, respectively. POR*5 and *13 were absent in both study populations. Considering the CYP2C9*1/*1 genotypes only, the CYP2C9 metabolic activity was 1.40-fold higher in carriers of POR*28 allele than non-carriers among Swedes (p = 0.02). By contrast, no influence of the POR*28 on CYP2C9 activity was found in Koreans (p = 0.68). The multivariate analysis showed that ethnicity, POR genotype, and smoking were strong predictors of CYP2C9 MR (p < 0.05). This is the first report to implicate the importance of POR*28 genetic variation for CYP2C9 metabolic activity in humans. These findings contribute to current efforts for global personalized medicine and using medicines by taking into account pharmacogenetic and phenotypic variations. PMID:26669712

  7. Genome Sequences of Pseudomonas oryzihabitans Phage POR1 and Pseudomonas aeruginosa Phage PAE1

    PubMed Central

    Dyson, Zoe A.; Seviour, Robert J.; Tucci, Joseph

    2016-01-01

    We report the genome sequences of two double-stranded DNA siphoviruses, POR1 infective for Pseudomonas oryzihabitans and PAE1 infective for Pseudomonas aeruginosa. The phage POR1 genome showed no nucleotide sequence homology to any other DNA phage sequence in the GenBank database, while phage PAE1 displayed synteny to P. aeruginosa phages M6, MP1412, and YuA. PMID:27313312

  8. Genome Sequences of Pseudomonas oryzihabitans Phage POR1 and Pseudomonas aeruginosa Phage PAE1.

    PubMed

    Dyson, Zoe A; Seviour, Robert J; Tucci, Joseph; Petrovski, Steve

    2016-06-16

    We report the genome sequences of two double-stranded DNA siphoviruses, POR1 infective for Pseudomonas oryzihabitans and PAE1 infective for Pseudomonas aeruginosa The phage POR1 genome showed no nucleotide sequence homology to any other DNA phage sequence in the GenBank database, while phage PAE1 displayed synteny to P. aeruginosa phages M6, MP1412, and YuA.

  9. Genome Sequences of Pseudomonas oryzihabitans Phage POR1 and Pseudomonas aeruginosa Phage PAE1.

    PubMed

    Dyson, Zoe A; Seviour, Robert J; Tucci, Joseph; Petrovski, Steve

    2016-01-01

    We report the genome sequences of two double-stranded DNA siphoviruses, POR1 infective for Pseudomonas oryzihabitans and PAE1 infective for Pseudomonas aeruginosa The phage POR1 genome showed no nucleotide sequence homology to any other DNA phage sequence in the GenBank database, while phage PAE1 displayed synteny to P. aeruginosa phages M6, MP1412, and YuA. PMID:27313312

  10. An investigation of exploitation versus exploration in GBEA optimization of PORS 15 and 16 Problems

    SciTech Connect

    Koch, Kaelynn

    2012-01-01

    It was hypothesized that the variations in time to solution are driven by the competing mechanisms of exploration and exploitation.This thesis explores this hypothesis by examining two contrasting problems that embody the hypothesized tradeoff between exploration and exploitation. Plus one recall store (PORS) is an optimization problem based on the idea of a simple calculator with four buttons: plus, one, store, and recall. Integer addition and store are classified as operations, and one and memory recall are classified as terminals. The goal is to arrange a fixed number of keystrokes in a way that maximizes the numerical result. PORS 15 (15 keystrokes) represents the subset of difficult PORS problems and PORS 16 (16 keystrokes) represents the subset of PORS problems that are easiest to optimize. The goal of this work is to examine the tradeoff between exploitation and exploration in graph based evolutionary algorithm (GBEA) optimization. To do this, computational experiments are used to examine how solutions evolve in PORS 15 and 16 problems when solved using GBEAs. The experiment is comprised of three components; the graphs and the population, the evolutionary algorithm rule set, and the example problems. The complete, hypercube, and cycle graphs were used for this experiment. A fixed population size was used.

  11. Crystallographic analysis of Neisseria meningitidis PorB extracellular loops potentially implicated in TLR2 recognition.

    PubMed

    Kattner, Christof; Toussi, Deana N; Zaucha, Jan; Wetzler, Lee M; Rüppel, Nadine; Zachariae, Ulrich; Massari, Paola; Tanabe, Mikio

    2014-03-01

    Among all Neisseriae species, Neisseria meningitidis and Neisseria gonorrhoeae are the only human pathogens, causative agents of bacterial meningitis and gonorrhoea, respectively. PorB, a pan-Neisseriae trimeric porin that mediates diffusive transport of essential molecules across the bacterial outer membrane, is also known to activate host innate immunity via Toll-like receptor 2 (TLR2)-mediated signaling. The molecular mechanism of PorB binding to TLR2 is not known, but it has been hypothesized that electrostatic interactions contribute to ligand/receptor binding. Strain-specific sequence variability in the surface-exposed loops of PorB which are potentially implicated in TLR2 binding, may explain the difference in TLR2-mediated cell activation in vitro by PorB homologs from the commensal Neisseriae lactamica and the pathogen N. meningitidis. Here, we report a comparative structural analysis of PorB from N. meningitidis serogroup B strain 8765 (63% sequence homology with PorB from N. meningitidis serogroup W135) and a mutant in which amino acid substitutions in the extracellular loop 7 lead to significantly reduced TLR2-dependent activity in vitro. We observe that this mutation both alters the loop conformation and causes dramatic changes of electrostatic surface charge, both of which may affect TLR2 recognition and signaling. PMID:24361688

  12. Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB

    SciTech Connect

    Tanabe, Mikio; Nimigean, Crina M.; Iverson, T.M.

    2010-06-25

    PorB is the second most prevalent outer membrane protein in Neisseria meningitidis. PorB is required for neisserial pathogenesis and can elicit a Toll-like receptor mediated host immune response. Here, the x-ray crystal structure of PorB has been determined to 2.3 {angstrom} resolution. Structural analysis and cocrystallization studies identify three putative solute translocation pathways through the channel pore: One pathway transports anions nonselectively, one transports cations nonselectively, and one facilitates the specific uptake of sugars. During infection, PorB likely binds host mitochondrial ATP, and cocrystallization with the ATP analog AMP-PNP suggests that binding of nucleotides regulates these translocation pathways both by partial occlusion of the pore and by restricting the motion of a putative voltage gating loop. PorB is located on the surface of N. meningitidis and can be recognized by receptors of the host innate immune system. Features of PorB suggest that Toll-like receptor mediated recognition outer membrane proteins may be initiated with a nonspecific electrostatic attraction.

  13. Búsqueda de exoplanetas: ?`Cuán confiables son las observaciones obtenidas mediante telescopios terrestres?

    NASA Astrophysics Data System (ADS)

    von Essen, C.; Páez, R. I.; Schmitt, J. H. M. M.

    The main goal of this work is to present a model that generates synthetic light curves of primary transits, comparable to real observations, to study transit timing variations (TTV). Considering that we can observe the sky from different virtual observatories, we simulated observations of primary transits caused by a hot-Jupiter. We artificially added a perturbation caused by an Earth-like exoplanet in a 3:2 mean motion resonance. These simulations would allow to analyze the degree of distorsion that the light curves admit, in order to recover back the induced signal by the exoplanet. FULL TEXT IN SPANISH

  14. Por Secretion System-Dependent Secretion and Glycosylation of Porphyromonas gingivalis Hemin-Binding Protein 35

    PubMed Central

    Shoji, Mikio; Sato, Keiko; Yukitake, Hideharu; Kondo, Yoshio; Narita, Yuka; Kadowaki, Tomoko; Naito, Mariko; Nakayama, Koji

    2011-01-01

    The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS), which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps) and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs) in their C-termini. Hemin-binding protein 35 (HBP35), which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS) revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study. PMID:21731719

  15. Molecular characterisation of Porcine rubulavirus (PorPV) isolates from different outbreaks in Mexico.

    PubMed

    Cuevas-Romero, S; Rivera-Benítez, J F; Blomström, A-L; Ramliden, M; Hernández-Baumgarten, E; Hernández-Jáuregui, P; Ramírez-Mendoza, H; Berg, M

    2016-02-01

    Since the report of the initial outbreak of Porcine rubulavirus (PorPV) infection in pigs, only one full-length genome from 1984 (PorPV-LPMV/1984) has been characterised. To investigate the overall genetic variation, full-length gene nucleotide sequences of current PorPV isolates were obtained from different clinical cases of infected swine. Genome organisation and sequence analysis of the encoded proteins (NP, P, F, M, HN and L) revealed high sequence conservation of the NP protein and the expression of the P and V proteins in all PorPV isolates. The V protein of one isolate displayed a mutation that has been implicated to antagonise the antiviral immune responses of the host. The M protein indicated a variation in a short region that could affect the electrostatic charge and the interaction with the membrane. One PorPV isolate recovered from the lungs showed a mutation at the cleavage site (HRKKR) of the F protein that could represent an important factor to determine the tissue tropism and pathogenicity of this virus. The HN protein showed high sequence identity through the years (up to 2013). Additionally, a number of sequence motifs of very high amino acid conservation among the PorPV isolates important for polymerase activity of the L protein have been identified. In summary, genetic comparisons and phylogenetic analyses indicated that three different genetic variants of PorPV are currently spreading within the swine population, and a new generation of circulating virus with different characteristics has begun to emerge.

  16. Oral administration of recombinant Neisseria meningitidis PorA genetically fused to H. pylori HpaA antigen increases antibody levels in mouse serum, suggesting that PorA behaves as a putative adjuvant

    PubMed Central

    Vasquez, Abel E; Manzo, Ricardo A; Soto, Daniel A; Barrientos, Magaly J; Maldonado, Aurora E; Mosqueira, Macarena; Avila, Anastasia; Touma, Jorge; Bruce, Elsa; Harris, Paul R; Venegas, Alejandro

    2015-01-01

    The Neisseria meningitidis outer membrane protein PorA from a Chilean strain was purified as a recombinant protein. PorA mixed with AbISCO induced bactericidal antibodies against N. meningitidis in mice. When PorA was fused to the Helicobacter pylori HpaA antigen gene, the specific response against H. pylori protein increased. Splenocytes from PorA-immunized mice were stimulated with PorA, and an increase in the secretion of IL-4 was observed compared with that of IFN-γ. Moreover, in an immunoglobulin sub-typing analysis, a substantially higher IgG1 level was found compared with IgG2a levels, suggesting a Th2-type immune response. This study revealed a peculiar behavior of the purified recombinant PorA protein per se in the absence of AbISCO as an adjuvant. Therefore, the resistance of PorA to proteolytic enzymes, such as those in the gastrointestinal tract, was analyzed, because this is an important feature for an oral protein adjuvant. Finally, we found that PorA fused to the H. pylori HpaA antigen, when expressed in Lactococcus lactis and administered orally, could enhance the antibody response against the HpaA antigen approximately 3 fold. These observations strongly suggest that PorA behaves as an effective oral adjuvant. PMID:25750999

  17. Informe a la Nación de mortalidad por cáncer sigue bajando

    Cancer.gov

    El Informe Anual a la Nación sobre el Estado del Cáncer, de 1975 a 2009, indica que los índices generales de mortalidad por cáncer siguen bajando en los Estados Unidos en hombres y mujeres, entre todos los grupos raciales y étnicos principales y para todo

  18. Structure and function of the PorB porin from disseminating Neisseria gonorrhoeae.

    PubMed

    Zeth, Kornelius; Kozjak-Pavlovic, Vera; Faulstich, Michaela; Fraunholz, Martin; Hurwitz, Robert; Kepp, Oliver; Rudel, Thomas

    2013-02-01

    The outer membrane of Gram-negative bacteria contains a large number of channel-forming proteins, porins, for the uptake of small nutrient molecules. Neisseria gonorrhoeae PorBIA (PorB of serotype A) are associated with disseminating diseases and mediate a rapid bacterial invasion into host cells in a phosphate-sensitive manner. To gain insights into this structure-function relationship we analysed PorBIA by X-ray crystallography in the presence of phosphate and ATP. The structure of PorBIA in the complex solved at a resolution of 3.3 Å (1 Å=0.1 nm) displays a surplus of positive charges inside the channel. ATP ligand-binding in the channel is co-ordinated by the positively charged residues of the channel interior. These residues ligate the aromatic, sugar and pyrophosphate moieties of the ligand. Two phosphate ions were observed in the structure, one of which clamped by two arginine residues (Arg92 and Arg124) localized at the extraplasmic channel exit. A short β-bulge in β2-strand together with the long L3 loop narrow the barrel diameter significantly and further support substrate specificity through hydrogen bond interactions. Interestingly the structure also comprised a small peptide as a remnant of a periplasmic protein which physically links porin molecules to the peptidoglycan network. To test the importance of Arg92 on bacterial invasion the residue was mutated. In vivo assays of bacteria carrying a R92S mutation confirmed the importance of this residue for host-cell invasion. Furthermore systematic sequence and structure comparisons of PorBIA from Neisseriaceae indicated Arg92 to be unique in disseminating N. gonorrhoeae thereby possibly distinguishing invasion-promoting porins from other neisserial porins.

  19. Enchanced methods of hydrophilized CdSe quantum dots synthesis

    NASA Astrophysics Data System (ADS)

    Potapkin, D. V.; Zharkova, I. S.; Goryacheva, I. Y.

    2015-03-01

    Quantum dots are bright and stable fluorescence signal sources, but for most of applications they need an additional hydrophilization step. Unfortunately, most of existing approaches lead to QD's fluorescence quenching, so there is a need for additional enhancing of hydrophilized QD's brightness like UV irradiation, which can be used both on water insoluble QD's with oleic acid ligands (in toluene) and on hydrophilized QD's covered with UV-stable polymer (in aqueous solution). For synthesis of bright water-soluble fluorescent labels CdSe/CdS/ZnS colloidal quantum dots were covered with PAMAM dendrimer and irradiated with UV lamp in quartz cuvettes for 3 hours at the room temperature and then compared with control sample.

  20. ATP for the portable 500 CFM exhauster POR-005 skid C

    SciTech Connect

    Keller, C.M.

    1997-06-27

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-005 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results.

  1. ATP for the portable 500 CFM exhauster POR-006 skid D

    SciTech Connect

    Keller, C.M.

    1997-07-29

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-006 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results.

  2. ATP for the portable 500 CFM exhauster POR-004 skid B

    SciTech Connect

    Keller, C.M.

    1997-05-06

    This Acceptance Test Plan is for a 500 CFM Portable Exhauster POR-004 to be used for saltwell pumping. The Portable Exhauster System will be utilized to eliminate potential flammable gases that may exist within the dome space of the tank. This Acceptance Plan will test and verify that the exhauster meets the specified design criteria, safety requirements, operations requirements, and will provide a record of the functional test results.

  3. Expression, purification and preliminary X-ray analysis of the Neisseria meningitidis outer membrane protein PorB

    SciTech Connect

    Tanabe, Mikio; Iverson, Tina M.

    2010-01-28

    The Neisseria meningitidis outer membrane protein PorB was expressed in Escherichia coli and purified from inclusion bodies by denaturation in urea followed by refolding in buffered LDAO on a size-exclusion column. PorB has been crystallized in three different crystal forms: C222, R32 and P6{sub 3}. The C222 crystal form may contain either one or two PorB monomers in the asymmetric unit, while both the R32 and P6{sub 3} crystal forms contained one PorB monomer in the asymmetric unit. Of the three, the P6{sub 3} crystal form had the best diffraction quality, yielding data extending to 2.3 {angstrom} resolution.

  4. Effect of SPM-based cleaning POR on EUV mask performance

    NASA Astrophysics Data System (ADS)

    Choi, Jaehyuck; Lee, Han-shin; Yoon, Jinsang; Shimomura, Takeya; Friz, Alex; Montgomery, Cecilia; Ma, Andy; Goodwin, Frank; Kang, Daehyuk; Chung, Paul; Shin, Inkyun; Cho, H.

    2011-11-01

    EUV masks include many different layers of various materials rarely used in optical masks, and each layer of material has a particular role in enhancing the performance of EUV lithography. Therefore, it is crucial to understand how the mask quality and patterning performance can change during mask fabrication, EUV exposure, maintenance cleaning, shipping, or storage. The fact that a pellicle is not used to protect the mask surface in EUV lithography suggests that EUV masks may have to undergo more cleaning cycles during their lifetime. More frequent cleaning, combined with the adoption of new materials for EUV masks, necessitates that mask manufacturers closely examine the performance change of EUV masks during cleaning process. We have investigated EUV mask quality and patterning performance during 30 cycles of Samsung's EUV mask SPM-based cleaning and 20 cycles of SEMATECH ADT exposure. We have observed that the quality and patterning performance of EUV masks does not significantly change during these processes except mask pattern CD change. To resolve this issue, we have developed an acid-free cleaning POR and substantially improved EUV mask film loss compared to the SPM-based cleaning POR.

  5. Diagnóstico diferencial en la encefalitis por anticuerpos contra el receptor NMDA

    PubMed Central

    González-Valcárcel, J.; Rosenfeld, M.R.; Dalmau, J.

    2011-01-01

    Resumen Introducción La encefalitis por anticuerpos contra el receptor de NMDA (NMDAR) suele desarrollarse como un síndrome característico de evolución multifásica y diagnóstico diferencial amplio. Pacientes Presentamos a 2 pacientes diagnosticadas de encefalitis por anticuerpos NMDAR con un cuadro clínico típico, pero que inicialmente señaló otras etiologías. Discusión La afectación frecuente de pacientes jóvenes con manifestaciones psiquiátricas prominentes indica frecuentemente otras consideraciones diagnósticas; las más frecuentes son las encefalitis virales, los procesos psiquiátricos y el síndrome neuroléptico maligno. Varios síndromes previamente definidos de manera parcial o descriptiva en adultos y pacientes pediátricos probablemente eran casos de encefalitis anti-NMDAR. Conclusiones La encefalitis anti-NMDAR debe considerarse en pacientes jóvenes con manifestaciones psiquiátricas subagudas, movimientos anormales y alteraciones autonómicas. La caracterización clínica e inmunológica de esta enfermedad ha llevado a la identificación de nuevos anticuerpos que afectan a procesos de memoria, aprendizaje, conducta y psicosis. PMID:20964986

  6. Substrate-specific modulation of CYP3A4 activity by genetic variants of cytochrome P450 oxidoreductase (POR)

    PubMed Central

    Agrawal, Vishal; Choi, Ji Ha; Giacomini, Kathleen M.; Miller, Walter L.

    2010-01-01

    Objectives CYP3A4 receives electrons from P450 oxidoreductase (POR) to metabolize about 50% of clinically used drugs. There is substantial inter-individual variation in CYP3A4 catalytic activity that is not explained by CYP3A4 genetic variants. CYP3A4 is flexible and distensible, permitting it to accommodate substrates varying in shape and size. To elucidate mechanisms of variability in CYP3A4 catalysis, we examined the effects of genetic variants of POR, and explored the possibility that substrate-induced conformational changes in CYP3A4 differentially affect the ability of POR variants to support catalysis. Methods We expressed human CYP3A4 and four POR variants (Q153R, A287P, R457H, A503V) in bacteria, reconstituted them in vitro and measured the Michaelis constant and maximum velocity with testosterone, midazolam, quinidine and erythromycin as substrates. Results POR A287P and R457H had low activity with all substrates; Q153R had 76–94% of wild type (WT) activity with midazolam and erythromycin, but 129–150% activity with testosterone and quinidine. The A503V polymorphism reduced CYP3A4 activity to 61–77% of wild type with testosterone and midazolam, but had nearly wild type activity with quinidine and erythromycin. Conclusion POR variants affect CYP3A4 activities. The impact of a POR variant on catalysis by CYP3A4 is substrate-specific, probably due to substrate-induced conformational changes in CYP3A4. PMID:20697309

  7. Reconstrução tridimensional de arcos magnéticos por tomografia

    NASA Astrophysics Data System (ADS)

    Simões, P. J. A.; Costa, J. E. R.

    2003-08-01

    Uma explosão solar é uma variação súbita do brilho que ocorre nas regiões ativas da atmosfera solar. Estas regiões são constituídas por um plasma magnetizado com intensa indução magnética e em cenários bem complexos como visto recentemente através de experimentos embarcados em satélites operando instrumentos em raios X moles e ultra-violeta distante. A energia magnética, que pode ser armazenada por um período de horas até dias em configurações magnéticas estressadas, é subitamente lançada na atmosfera solar e transferida para partículas como elétrons, prótons e núcleos pesados, que são acelerados e/ou aquecidos, produzindo radiação eletromagnética. A proposta final deste projeto é determinar as características espaciais de alta resolução da emissão e polarização girossincrotrônica de explosões solares em ambientes complexos de campos magnéticos. Os recentes resultados da emissão difusa em EUV apresentado pelos satélites TRACE e SOHO dos arcos magnéticos conectando as diferentes polaridades magnéticas sobre as regiões ativas possibilitam novas abordagens sobre o papel do campo magnético na emissão em rádio. Nesta etapa apresentamos os resultados da reconstrução da geometria tridimensional das linhas de força destes arcos utilizando técnicas tomográficas, a partir de imagens de alta resolução espacial obtidas pelo instrumento EIT (Extreme ultraviolet Imaging Telescope), além da modelagem das induções magnéticas por um campo dipolar e as densidades de partículas aceleradas. Utilizamos para a reconstrução geométrica, imagens tomadas em vários ângulos dos arcos devido à rotacão solar. Com estes resultados, daremos continuidade ao projeto, com os cálculos da transferência radiativa nos modos ordinário e extraordinário de propagação da radiação girossincrotrônica de explosões solares.

  8. Using the PORS Problems to Examine Evolutionary Optimization of Multiscale Systems

    SciTech Connect

    Reinhart, Zachary; Molian, Vaelan; Bryden, Kenneth

    2013-01-01

    Nearly all systems of practical interest are composed of parts assembled across multiple scales. For example, an agrodynamic system is composed of flora and fauna on one scale; soil types, slope, and water runoff on another scale; and management practice and yield on another scale. Or consider an advanced coal-fired power plant: combustion and pollutant formation occurs on one scale, the plant components on another scale, and the overall performance of the power system is measured on another. In spite of this, there are few practical tools for the optimization of multiscale systems. This paper examines multiscale optimization of systems composed of discrete elements using the plus-one-recall-store (PORS) problem as a test case or study problem for multiscale systems. From this study, it is found that by recognizing the constraints and patterns present in discrete multiscale systems, the solution time can be significantly reduced and much more complex problems can be optimized.

  9. Rescue of cytochrome P450 oxidoreductase (Por) mouse mutants reveals functions in vasculogenesis, brain and limb patterning linked to retinoic acid homeostasis.

    PubMed

    Ribes, Vanessa; Otto, Diana M E; Dickmann, Leslie; Schmidt, Katy; Schuhbaur, Brigitte; Henderson, Colin; Blomhoff, Rune; Wolf, C Roland; Tickle, Cheryll; Dollé, Pascal

    2007-03-01

    Cytochrome P450 oxidoreductase (POR) acts as an electron donor for all cytochrome P450 enzymes. Knockout mouse Por(-/-) mutants, which are early embryonic (E9.5) lethal, have been found to have overall elevated retinoic acid (RA) levels, leading to the idea that POR early developmental function is mainly linked to the activity of the CYP26 RA-metabolizing enzymes (Otto et al., Mol. Cell. Biol. 23, 6103-6116). By crossing Por mutants with a RA-reporter lacZ transgene, we show that Por(-/-) embryos exhibit both elevated and ectopic RA signaling activity e.g. in cephalic and caudal tissues. Two strategies were used to functionally demonstrate that decreasing retinoid levels can reverse Por(-/-) phenotypic defects, (i) by culturing Por(-/-) embryos in defined serum-free medium, and (ii) by generating compound mutants defective in RA synthesis due to haploinsufficiency of the retinaldehyde dehydrogenase 2 (Raldh2) gene. Both approaches clearly improved the Por(-/-) early phenotype, the latter allowing mutants to be recovered up until E13.5. Abnormal brain patterning, with posteriorization of hindbrain cell fates and defective mid- and forebrain development and vascular defects were rescued in E9.5 Por(-/-) embryos. E13.5 Por(-/-); Raldh2(+/-) embryos exhibited abdominal/caudal and limb defects that strikingly phenocopy those of Cyp26a1(-/-) and Cyp26b1(-/-) mutants, respectively. Por(-/-); Raldh2(+/-) limb buds were truncated and proximalized and the anterior-posterior patterning system was not established. Thus, POR function is indispensable for the proper regulation of RA levels and tissue distribution not only during early embryonic development but also in later morphogenesis and molecular patterning of the brain, abdominal/caudal region and limbs. PMID:17126317

  10. Global Microlending in Education Reform: Enseñá Por Argentina and the Neoliberalization of the Grassroots

    ERIC Educational Resources Information Center

    Friedrich, Daniel S.

    2010-01-01

    This article examines the workings and underlying assumptions behind Enseñá por Argentina (Teach for Argentina), one specific program that takes part in the larger and expanding network of Teach for All, by thinking about the ways in which a global push for redefining teaching and teacher education encounters local characteristics and histories,…

  11. [Professor Frantisek Por MD and Professor Robert Klopstock MD, students at Budapest and Prague Faculties of Medicine].

    PubMed

    Mydlík, M; Derzsiová, K

    2010-11-01

    Professor Frantisek Por MD and Professor Robert Klopstock MD were contemporaries, both born in 1899, one in Zvolen, the other in Dombovar, at the time of Austro-Hungarian Monarchy. Prof. Por attended the Faculty of Medicine in Budapest from 1918 to 1920, and Prof. Klopstock studied at the same place between 1917 and 1919. From 1920 until graduation on 6th February 1926, Prof. Por continued his studies at the German Faculty of Medicine, Charles University in Prague. Prof. Klopstock had to interrupt his studies in Budapest due to pulmonary tuberculosis; he received treatment at Tatranske Matliare where he befriended Franz Kafka. Later, upon Kafka's encouragement, he changed institutions and continued his studies at the German Faculty of Medicine, Charles University in Prague, where he graduated the first great go. It is very likely that, during their studies in Budapest and Prague, both professors met repeatedly, even though their life paths later separated. Following his graduation, Prof. Por practiced as an internist in Prague, later in Slovakia, and from 1945 in Kosice. In 1961, he was awarded the title of university professor of internal medicine at the Faculty of Medicine, Pavol Jozef Safarik University in Kosice, where he practiced until his death in 1980. Prof. Klopstock continued his studies in Kiel and Berlin. After his graduation in 1933, he practiced in Berlin as a surgeon and in 1938 left for USA. In 1962, he was awarded the title of university professor of pulmonary surgery in NewYork, where he died in 1972.

  12. Sequence evolution of the porB gene of Neisseria gonorrhoeae and Neisseria meningitidis: evidence of positive Darwinian selection.

    PubMed

    Smith, N H; Maynard Smith, J; Spratt, B G

    1995-05-01

    Protein 1 (PI) is a major porin of Neisseria gonorrhoeae and Neisseria meningitidis and is encoded by a single locus, porB. Alleles of the porB locus of N. gonorrhoeae are assigned to two homology groups, PI(A) and PI(B), on the basis of immunological and structural similarity. In a like manner, alleles of the porB locus of the closely related bacterium, N. meningitidis, are allocated into class 2 and class 3 homology groups. An individual strain of N. gonorrhoeae or N. meningitidis expresses either one or other of these porin homology groups but never both, and the antigenic reactions of these highly diverse outer membrane proteins form part of the N. gonorrhoeae and N. meningitidis serotyping schemes. A comparison of the number of synonymous and nonsynonymous substitutions per site between the two most divergent alleles of each of these four groups of porB alleles shows that PI(A) alleles have accumulated significantly more nonsynonymous substitutions per site than synonymous substitutions. In contrast the distribution of synonymous and nonsynonymous substitutions between alleles of class 2 and class 3 porins are not significantly different from random. We localize the regions of the PI(A) alleles with an excess of amino acid changes to the surface-exposed loops of these outer membrane proteins and suggest that positive Darwinian selection for diversity, driven by the human immune system, can most easily explain the allelic polymorphism and the pattern of synonymous and nonsynonymous substitutions.

  13. Functional Expression of the PorAH Channel from Corynebacterium glutamicum in Cell-free Expression Systems

    PubMed Central

    Rath, Parthasarathi; Demange, Pascal; Saurel, Olivier; Tropis, Marielle; Daffé, Mamadou; Dötsch, Volker; Ghazi, Alexandre; Bernhard, Frank; Milon, Alain

    2011-01-01

    PorA and PorH are two small membrane proteins from the outer membrane of Corynebacterium glutamicum, which have been shown to form heteromeric ion channels and to be post-translationally modified by mycolic acids. Any structural details of the channel could not be analyzed so far due to tremendous difficulties in the production of sufficient amounts of protein samples. Cell-free (CF) expression is a new and remarkably successful strategy for the production of membrane proteins for which toxicity, membrane targeting, and degradation are key issues. In addition, reaction conditions can easily be modified to modulate the quality of synthesized protein samples. We developed an efficient CF expression strategy to produce the channel subunits devoid of post-translational modifications. 15N-labeled PorA and PorH samples were furthermore characterized by NMR and gave well resolved spectra, opening the way for structural studies. The comparison of ion channel activities of CF-expressed proteins with channels isolated from C. glutamicum gave clear insights on the influence of the mycolic acid modification of the two subunits on their functional properties. PMID:21799011

  14. jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections

    NASA Astrophysics Data System (ADS)

    Grove, Clayton; Jerram, Dougal A.

    2011-11-01

    A fast and effective method has been developed to measure total optical porosity (TOP) of blue resin-impregnated thin sections. This utilises a macro file (jPOR.txt) for ImageJ, which can be used on digital photomicrographs of thin sections. The method requires no specialised scientific equipment and can be run entirely using free to download software. Digital images are acquired from blue resin-impregnated thin sections using a conventional film scanner in the present study, though the technique can be applied to any high resolution colour digital acquired by different means (e.g., flat bed scanning, digital capture). Images are preprocessed using a newly developed custom 8-bit palette and analysed for porosity in ImageJ using the simple to use jPOR macro. Our method rapidly calculates TOP for batches of images with or without the option of user adjustment. Results are compared with conventional methods (e.g., to point counting), and tested with several users to estimate any user variability. jPOR provided comparable results to more time-consuming point counting, but with significantly less "counting error" and less interoperator variability than published point counting studies. The jPOR macro has been integrated into a macro tool set that can be configured to be run on ImageJ start up.

  15. Functional POR A503V is associated with the risk of bladder cancer in a Chinese population

    PubMed Central

    Xiao, Xue; Ma, Gaoxiang; Li, Shushu; Wang, Meilin; Liu, Nian; Ma, Lan; Zhang, Zhan; Chu, Haiyan; Zhang, Zhengdong; Wang, Shou-Lin

    2015-01-01

    Human cytochrome P450 oxidoreductase (POR) plays important roles in the metabolism of exogenous carcinogens and endogenous sterol hormones. However, few studies have explored the association between POR variants and the risk of bladder cancer. In this study, we first sequenced all 16 POR exons among 50 randomly selected controls, and found three variants, rs1135612, rs1057868 (A503V) and rs2228104, which were then assessed the relation to risk of bladder cancer in a case-control study of 1,050 bladder cancer cases and 1,404 cancer-free controls in a Chinese population. People with A503V TT genotype have a decreased risk of bladder cancer in a recessive model (TT vs. CC/CT, OR = 0.73, 95% CI = 0.57–0.93), which was more pronounced among elderly male, non-smoking, subjects. Especially, A503V TT genotype showed a protective effect in the invasive tumor stage. Functional analysis revealed that A503V activity decreased in cytochrome c reduction (50.5 units/mg vs. 135.4 units/mg), mitomycin C clearance (38.3% vs. 96.8%), and mitomycin C-induced colony formation (78.0 vs 34.3 colonies per dish). The results suggested that POR A503V might decrease the risk of bladder cancer by reducing its metabolic activity, and should be a potential biomarker for predicting the susceptibility to human bladder cancer. PMID:26123203

  16. Inversor Resonante de Tres Elementos L-LC con Caracteristica Cortocircuitable para Aplicaciones de Calentamiento por Induccion

    NASA Astrophysics Data System (ADS)

    Espi Huerta, Jose Miguel

    Los generadores de calentamiento por induccion son puentes inversores con carga resonante, cuya mision es basicamente crear una corriente sinusoidal de gran amplitud sobre la "bobina de caldeo", que forma parte del tanque resonante. En el interior de esta bobina se introduce la pieza que se desea calentar. EI campo magnetico creado induce corrientes superficiales (corrientes de Foucault) sobre la pieza, que producen su calentamiento. Los tanques resonantes (tambien llamados osciladores) utilizados en la actualidad son el resonante serie y el resonante paralelo. Aunque ya desde hace algun tiempo se vienen construyendo generadores de alta potencia basados en estos dos osciladores, el exito nunca ha. sido completo en ninguno de los dos casos. Tal y como se explica en la introduccion de esta memoria, los puentes inversores utilizados deben operar sobre una carga inductiva (corriente retrasada) para evitar el fenomeno de la recuperacion inversa de sus diodos y la consiguiente ruptura de los transistores. De la restriccion topologica anterior se deduce que el generador paralelo debe conmutar a frecuencias inferiores a la resonancia, y el serie a frecuencias superiores. A esta restriccion topologica hay que unir otra que es exclusiva del calentamiento por induccion: La corriente por la bobina de caldeo debe ser sinusoidal. De no ser asi, resultaria imposible disponer toda la potencia de calentamiento sobre la pieza en el espesor requerido por la aplicacion. Como consecuencia, los inversores no pueden operar por debajo de la frecuencia de resonancia del oscilador, pues en ese caso se amplifican los armonicos de orden superior de la tension/corriente de entrada situados sobre la resonancia, con la consiguiente distorsion de la corriente de salida. La conjuncion de las dos restricciones anteriores obligan al inversor paralelo a funcionar a la frecuencia de resonancia del oscilador. Esto imposibilita un control por variacion de frecuencia, regulandose la potencia desde la

  17. Encefalitis por anticuerpos contra el receptor de NMDA: experiencia con seis pacientes pediátricos. Potencial eficacia del metotrexato

    PubMed Central

    Bravo-Oro, Antonio; Abud-Mendoza, Carlos; Quezada-Corona, Arturo; Dalmau, Josep; Campos-Guevara, Verónica

    2016-01-01

    Introducción La encefalitis por anticuerpos contra el receptor de N-metil-D-aspartato (NMDA) es una entidad cada vez más diagnosticada en edad pediátrica. A diferencia de los adultos, en muchos casos no se asocia a tumores y las manifestaciones iniciales en niños más frecuentes son crisis convulsivas y trastornos del movimiento, mientras que en los adultos predominan las alteraciones psiquiátricas. Casos clínicos Presentamos seis casos pediátricos confirmados con anticuerpos contra la subunidad NR1 del receptor de NMDA en suero y líquido cefalorraquídeo. Cinco de los casos comenzaron con crisis convulsivas como manifestación clínica inicial antes de desarrollar el cuadro clásico de esta entidad. En todos los casos se utilizaron esteroides como primera línea de tratamiento, con los que sólo se observó control de las manifestaciones en uno, por lo que el resto de los pacientes requirió inmunomoduladores de segunda línea. Todos los pacientes recibieron metotrexato como tratamiento inmunomodulador para evitar recaídas y la evolución fue a la mejoría en todos ellos. Conclusiones En nuestra serie de pacientes con encefalitis por anticuerpos contra el receptor de NMDA, ninguno se asoció a tumores. Todos los casos recibieron metotrexato por lo menos durante un año, no observamos eventos adversos clínicos ni por laboratorio, ni hubo secuelas neurológicas ni recaídas durante el tratamiento. Aunque es una serie pequeña y es deseable incrementar el número y tiempo de evolución, consideramos el metotrexato una excelente alternativa como tratamiento inmunomodulador para esta patología. PMID:24150952

  18. Prevalencia y tamizaje del Trastorno por Déficit de Atención con Hiperactividad en Costa Rica

    PubMed Central

    Weiss, Nicholas T.; Schuler, Jovita; Monge, Silvia; McGough, James J.; Chavira, Denise; Bagnarello, Monica; Herrera, Luis Diego; Mathews, Carol A.

    2015-01-01

    Resumen La investigación tuvo como propósito estimar la prevalencia del Trastorno por Déficit de Atención con Hiperactividad (TDAH) en Costa Rica y determinar si la versión en español del cuestionario Swanson Nolan and Pelham Scale IV (SNAP-IV) es un instrumento de tamizaje útil en una población de niños y niñas escolares costarricenses. El instrumento fue entregado a padres y maestros de 425 niños entre 5 y 13 años de edad (promedio = 8.8). Todos fueron evaluados con el instrumento Swanson, Kotkin, Agler, M-Flynn and Pelham Scale (SKAMP). Su diagnóstico fue confirmado con una entrevista clínica. La sensibilidad y la especificidad del SNAP-IV fueron evaluadas como predictores de criterios de diagnóstico según el DSM-IV. La prevalencia puntual en la muestra del TDAH fue del 5%. El tamizaje más preciso lo hizo el SNAP-IV completado por el maestro en un corte de 20%, con una sensibilidad de 96% y una especificidad de un 82%. La sensibilidad de los instrumentos completados por los padres fue más baja que aquella de los maestros. El SNAP-IV completado por las maestras con un corte aislando el 20% de los mayores puntajes categorizó correctamente a un 87% de los sujetos. PMID:22432094

  19. The POR rs1057868–rs2868177 GC-GT diplotype is associated with high tacrolimus concentrations in early post-renal transplant recipients

    PubMed Central

    Liu, Shu; Chen, Rong-xin; Li, Jun; Zhang, Yu; Wang, Xue-ding; Fu, Qian; Chen, Ling-yan; Liu, Xiao-man; Huang, Hong-bing; Huang, Min; Wang, Chang-xi; Li, Jia-li

    2016-01-01

    Aim: Cytochrome P450 oxidoreductase (POR) is the only flavoprotein that donates electrons to all microsomal P450 enzymes (CYP), and several POR SNPs have been shown to be important contributors to altered CYP activity or CYP-mediated drug metabolism. In this study we examined the association between 6 POR SNPs and tacrolimus concentrations in Chinese renal transplant recipients. Methods: A total of 154 renal transplant recipients were enrolled. Genotyping of CYP3A5*3 and 6 POR SNPs was performed. All patients received a triple immunosuppressive regimen comprising tacrolimus, mycophenolate mofetil and prednisone. Dose-adjusted tacrolimus trough concentrations were obtained on d 7 (C0D7/D) after transplantation when steady-state concentration of tacrolimus was achieved (dosage had been unchanged for more than 3 d). Results: Tacrolimus C0D7/D in CYP3A5*3/*3/ POR rs1057868–rs2868177 GC-GT diplotype carriers was 1.62- and 2.72-fold higher than those in CYP3A5*3/*3/ POR rs1057868–rs2868177 GC-GT diplotype non-carriers and CYP3A5*1 carriers (220.17±48.09 vs 135.69±6.86 and 80.84±5.27 ng/mL/mg/kg, respectively, P<0.0001). Of CYP3A5*3/*3/ POR rs1057868-rs2868177GC-GT diplotype carriers, 85.71% exceeded the upper limit of the target range (8 ng/mL), which was also significantly higher compared with the latter two groups (14.29% and 0.00%, respectively, P<0.0001). The CYP3A5*3 and POR rs1057868–rs2868177 GC-GT diplotype explained 31.7% and 5.7%, respectively, of the inter-individual variability of tacrolimus C0D7/D, whereas the POR rs1057868–rs2868177 GC-GT diplotype could explain 10.9% of the inter-individual variability of tacrolimus C0D7/D in CYP3A5 non-expressers. Conclusion: The CYP3A5*3 and POR rs1057868–rs2868177 GC-GT diplotype accounted for the inter-individual variation of tacrolimus C0D7/D. Genotyping of POR rs1057868–rs2868177 diplotypes would help to differentiate initial tacrolimus dose requirements and to achieve early target C0 ranges in Chinese

  20. Targeting of Neisserial PorB to the mitochondrial outer membrane: an insight on the evolution of β-barrel protein assembly machines.

    PubMed

    Jiang, Jhih-Hang; Davies, John K; Lithgow, Trevor; Strugnell, Richard A; Gabriel, Kipros

    2011-11-01

    Mitochondria originated from Gram-negative bacteria through endosymbiosis. In modern day mitochondria, the Sorting and Assembly Machinery (SAM) is responsible for eukaryotic β-barrel protein assembly in the mitochondrial outer membrane. The SAM is the functional equivalent of the β-barrel assembly machinery found in the outer membrane of Gram-negative bacteria. In this study we examined the import pathway of a pathogenic bacterial protein, PorB, which is targeted from pathogenic Neisseria to the host mitochondria. We have developed a new method for measurement of PorB assembly into mitochondria that relies on the mobility shift exhibited by bacterial β-barrel proteins once folded and separated under semi-native electrophoretic conditions. We show that PorB is targeted to the outer mitochondrial membrane with a dependence on the intermembrane space shuttling chaperones and the core component of the SAM, Sam50, which is a functional homologue of BamA that is required for PorB assembly in bacteria. The peripheral subunits of the SAM, Sam35 and Sam37, which are essential for eukaryotic β-barrel protein assembly but do not have distinguishable functional homologues in bacteria, are not required for PorB assembly in eukaryotes. This shows that PorB uses an evolutionary conserved 'bacterial like' mechanism to infiltrate the host mitochondrial outer membrane. PMID:22032638

  1. Influence of Various Polymorphic Variants of Cytochrome P450 Oxidoreductase (POR) on Drug Metabolic Activity of CYP3A4 and CYP2B6

    PubMed Central

    Naranmandura, Hua; Zeng, Su; Chen, Shu Qing

    2012-01-01

    Cytochrome P450 oxidoreductase (POR) is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP) enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S) were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ∼70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km) of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S) were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S) on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication. PMID:22719896

  2. Análise dos Conceitos Astronômicos Apresentados por Professores de Algumas Escolas Estaduais Brasileiras

    NASA Astrophysics Data System (ADS)

    Voelzke, Marcos Rincon; Gonzaga, Edson Pereira

    2011-12-01

    A razão para o desenvolvimento deste trabalho baseia-se no fato de que muitos professores da Educação Básica (EB) não lidam com conceitos relacionados à astronomia, e quando o fazem eles simplesmente seguem livros didáticos que podem conter erros conceituais. Como é de conhecimento geral a astronomia é um dos conteúdos a serem ensinados na EB fazendo parte dos Parâmetros Curriculares Nacionais e das Propostas Curriculares do Estado de São Paulo, mas é um fato, que vários pesquisadores apontam, a existência de muitos problemas no ensino da astronomia. Com o propósito de minimizar algumas dessas deficiências foi realizado um trabalho de pesquisa com a utilização de questionários pré e pós pesquisa, para tanto foi desenvolvido um Curso de Extensão Universitária para professores da Diretoria de Ensino Regional (DE) que abrange Mauá, Ribeirão Pires e Rio Grande da Serra (no Estado de São Paulo) com os seguintes objetivos: levantar concepções alternativas; subsidiar os professores por meio de palestras, debates e workshops, e verificar o sucesso da aprendizagem após o curso, adotando-se como referência, para a análise dos resultados, os dicionários de Língua Portuguesa (FERREIRA, 2004) e Enciclopédico de Astronomia e Astronáutica (MOURĀO, 1995). Portanto, dezesseis questões foram aplicadas antes e após o curso, assim pode-se verificar após a pesquisa que 100,0% dos professores sabiam os nomes das fases da Lua, 97,0% entenderam que o Sistema Solar é composto por oito planetas, 78,1% foram capazes de explicar como ocorre um eclipse lunar, um eclipse solar e um solstício, 72,7% sabiam como explicar a ocorrência das estações do ano; 64,5% explicaram corretamente a ocorrência do equinócio, 89,7% foram capazes de definir adequadamente o termo cometa; 63,6% definiram asteróide, 54,5% meteoro, 58,1% galáxia, e 42,4% planeta. Os resultados obtidos indicam uma aprendizagem significativa por parte dos participantes.

  3. Population genetics of the porB gene of Neisseria gonorrhoeae: different dynamics in different homology groups.

    PubMed

    Posada, D; Crandall, K A; Nguyen, M; Demma, J C; Viscidi, R P

    2000-03-01

    The porB locus codes for the major outer membrane protein of Neisseria gonorrhoeae. Alleles of this locus have been assigned to two homology groups based on close sequence and immunological relationships and are designated as either PIA or PIB. Several population parameters were estimated and compared among these two groups using a data set of 22 PIA sequences and 91 PIB sequences obtained from diverse geographic localities and from time periods spanning approximately 50 years. Recombination appears to be extensive in the porB gene. While the recombination rates are similar for the PIA and PIB sequences, the relative contribution of recombination to genetic diversity is higher for the PIA sequences. Alleles belonging to the PIB group show greater genetic diversity than do those in the PIA group. Although phylogenetic analysis did not reveal temporal or geographic clustering of sequences, estimates of gene flow and the fixation index suggested that PIB sequences exhibit population substructure based on geographic locality. Selection acts in these homology groups in a different way. While positive Darwinian selection is the dominant force driving the evolution of the PIA sequences, purifying selection operates also on the PIB sequences. These differences may be attributable to the greater propensity of PIA strains, as compared with PIB strains, to cause disseminated gonococcal infection, which would expose the former to intense selection pressure from the host immune system. The molecular evolution of Neisseria gonorrhoeae seems to be driven by the simultaneous action of selection and recombination, but under different rates and selection pressures for the PIA and PIB homology groups.

  4. Immunogenicity and reactogenicity in UK infants of a novel meningococcal vesicle vaccine containing multiple class 1 (PorA) outer membrane proteins.

    PubMed

    Cartwright, K; Morris, R; Rümke, H; Fox, A; Borrow, R; Begg, N; Richmond, P; Poolman, J

    1999-06-01

    The development of effective vaccines against serogroup B meningococci is of great public health importance. We assessed a novel genetically engineered vaccine containing six meningococcal class 1 (PorA) outer membrane proteins representing 80% of prevalent strains in the UK. 103 infants were given the meningococcal vaccine at ages 2, 3 and 4 months with routine infant immunisations, with a fourth dose at 12-18 months. The vaccine was well tolerated. Three doses evoked good immune responses to two of six meningococcal strains expressing PorA proteins contained in the vaccine. Following a fourth dose, larger bactericidal responses to all six strains were observed, suggesting that the initial course had primed memory lymphocytes and revaccination stimulated a booster response. This hexavalent PorA meningococcal vaccine was safe and evoked encouraging immune responses in infants. Vaccines of this type warrant further development and evaluation. PMID:10418910

  5. Crystallization and preliminary X-ray analysis of the C-terminal fragment of PorM, a subunit of the Porphyromonas gingivalis type IX secretion system.

    PubMed

    Stathopulos, Julien; Cambillau, Christian; Cascales, Eric; Roussel, Alain; Leone, Philippe

    2015-01-01

    PorM is a membrane protein involved in the assembly of the type IX secretion system (T9SS) from Porphyromonas gingivalis, a major bacterial pathogen responsible for periodontal disease in humans. The periplasmic domain of PorM was overexpressed in Escherichia coli and purified. A fragment of the purified protein was obtained by limited proteolysis. Crystals of this fragment belonged to the tetragonal space group P4(3)2(1)2. Native and MAD data sets were recorded to 2.85 and 3.1 Å resolution, respectively, using synchrotron radiation. PMID:25615973

  6. "Estudio tribologico de aceros para moldes. Aplicacion al moldeo por inyeccion de polibutilentereftalato reforzado con fibra de vidrio"

    NASA Astrophysics Data System (ADS)

    Martinez Mateo, Isidoro Jose

    Mould materials for injection moulding of polymers and polymer-matrix composites represent a relevant industrial economic sector due to the large quantity of pieces and components processed. The material selection for mould manufacturing, its composition and heat treatment, the hardening procedures and machining and finishing processes determine the service performance and life of the mould. In the first part of the present study, the relationship between the hardness and microstructure and the wear resistance of mould steels from large blocks has been studied by pin-on-disc tests, studying the main wear mechanisms. In order to determine the surface damage on mould steels under real injection conditions, different commercial steels have been studied by measuring the variation of surface roughness with the number of injected pieces with different reinforcement percentages and different mould geometries, by using optical profilometry and scanning electron microscopy techniques. It was important to determine the variation of surface roughness of the moulded pieces with the number of injection operations. The materials used were polybutyleneterephthalate pure and reinforced with either 20% or 50% glass fibre. For the different mould designs, the evolution of the glass fibre orientation with injection flow has been determined by image analysis and related to roughness changes and surface damage, both of the composite parts and of the mould steel surface. Finally, the abrasion resistance of the composite parts has been studied by scratch tests as a function of the number of injected parts and of the scratch direction with respect to injection flow and glass fibre orientation. Los materiales para moldes de inyeccion de polimeros y materiales compuestos representan un sector economicamente muy relevante debido al gran aumento del numero de componentes fabricados a partir de materiales polimericos obtenidos mediante moldeo por inyeccion. La seleccion del material para la

  7. Palivizumab outcomes registry data from Spain: Infección Respiratoria Infantil por Virus Respiratorio Sincitial (IRIS) Study Group.

    PubMed

    Carbonell-Estrany, Xavier

    2003-02-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory illness in children <2 years of age. Severe RSV infection requiring hospitalization is linked to gestational age, chronic cardiopulmonary conditions and immunosuppression. The Infección Respiratoria Infantil por Virus Respiratorio Sincitial (IRIS) Study group in Spain conducted two pivotal epidemiologic studies establishing that serious RSV illness among premature infants was responsible for high rehospitalization rates (approximately 13%). RSV lower respiratory tract illness also correlated with prolonged hospital stay and more intensive care unit admissions. In Europe recent availability of palivizumab, a humanized monoclonal antibody to RSV, is a major therapeutic advancement directed against prevention of lower respiratory tract infection secondary to this viral pathogen. To ensure proper and optimal usage of palivizumab, the IRIS group, in conjunction with the Spanish Neonatology Group, developed prophylaxis guidelines for neonates. Palivizumab prophylaxis is strongly recommended in premature infants < or =28 weeks gestation or those affected with chronic lung disease. Additionally, palivizumab is recommended for infants with a gestational age of 29 to 32 weeks, without evidence of chronic lung disease and who are <6 months old at the onset of the RSV season. It was thought that slightly older premature infants (33 to 35 weeks gestational age) should be assessed on an individual basis to determine whether prophylaxis is warranted. The IRIS Study Group is currently determining the effectiveness of these recommendations by measuring the incidence of RSV-related hospital admissions in infants born at < or =32 weeks gestational age who are receiving palivizumab prophylaxis.

  8. Double-locus sequence typing using porA and peb1A for epidemiological studies of Campylobacter jejuni.

    PubMed

    Ahmed, Monir U; Dunn, Louise; Valcanis, Mary; Hogg, Geoff; Ivanova, Elena P

    2014-03-01

    Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis worldwide. Bacterial typing schemes play an important role in epidemiological investigations to trace the source and route of transmission of the infectious agent by identifying outbreak and differentiating among sporadic infections. In this study, a double-locus sequence typing (DLST) scheme for C. jejuni based on concatenated partial sequences of porA and peb1A genes is proposed. The DLST scheme was validated using 50 clinical and environmental C. jejuni strains isolated from human (C5, H, H15-H19), chicken (CH1-CH15), water (W2-W17), and ovine samples (OV1-OV6). The scheme was found to be highly discriminatory (discrimination index [DI]=0.964) and epidemiologically concordant based on C. jejuni strains studied. The DLST showed discriminatory power above 0.95 and excellent congruence to multilocus sequence typing and can be recommended as a rapid and low-cost typing scheme for epidemiological investigation of C. jejuni. It is suggested that the DLST scheme is suitable for identification of outbreak strains and differentiation of the sporadic infection strains.

  9. Archivo de placas astrométricas del Observatorio de La Plata

    NASA Astrophysics Data System (ADS)

    di Sisto, R.; Orellana, R. B.

    Se ha realizado una base de datos con las placas fotográficas obtenidas con el Astrográfico del Observatorio de La Plata. Se han clasificado un total de 3000 placas obtenidas para asteroides y cometas. El acceso a la base de datos se hará por FTP y la misma contendrá la siguiente información: fecha y tiempo de exposición, coordenadas del centro de placa, tipo de emulsión fotográfica, estado de la placa, objeto fotografiado.

  10. Saturating mutagenesis of an essential gene: a majority of the Neisseria gonorrhoeae major outer membrane porin (PorB) is mutable.

    PubMed

    Chen, Adrienne; Seifert, H Steven

    2014-02-01

    The major outer membrane porin (PorB) of Neisseria gonorrhoeae is an essential protein that mediates ion exchange between the organism and its environment and also plays multiple roles in human host pathogenesis. To facilitate structure-function studies of porin's multiple roles, we performed saturating mutagenesis at the porB locus and used deep sequencing to identify essential versus mutable residues. Random mutations in porB were generated in a plasmid vector, and mutant gene pools were transformed into N. gonorrhoeae to select for alleles that maintained bacterial viability. Deep sequencing of the input plasmid pools and the output N. gonorrhoeae genomic DNA pools identified mutations present in each, and the mutations in both pools were compared to determine which changes could be tolerated by the organism. We examined the mutability of 328 amino acids in the mature PorB protein and found that 308 of them were likely to be mutable and that 20 amino acids were likely to be nonmutable. A subset of these predictions was validated experimentally. This approach to identifying essential amino acids in a protein of interest introduces an additional application for next-generation sequencing technology and provides a template for future studies of both porin and other essential bacterial genes.

  11. Informe a la nación indica que los índices de muertes por cáncer siguen bajando

    Cancer.gov

    Los índices de mortalidad por todos los cánceres combinados para hombres, mujeres y niños siguieron bajando en Estados Unidos entre 2004 y 2008, según el Informe Anual a la Nación sobre el Estado del Cáncer de 1975 a 2008. El índice general de diagnóstico

  12. El proceso hacia la integracion de la equidad por genero al curriculo.(The Process of the Integration of Gender Equity in the Curriculum.)

    ERIC Educational Resources Information Center

    Rivera-Bermudez, Carmen D.

    "El Proyecto Colaborativo de Equidad por Genero en la Educacion," or the Collaborative Project for Gender Equity in Education, was undertaken in Puerto Rico between 1990 and 1992 to study how to facilitate the integration of gender equity themes in the curriculum through the direct action of participating teachers. A study examined the attitudes…

  13. Cell Growth Defect Factor1/CHAPERONE-LIKE PROTEIN OF POR1 Plays a Role in Stabilization of Light-Dependent Protochlorophyllide Oxidoreductase in Nicotiana benthamiana and Arabidopsis[C][W

    PubMed Central

    Lee, Jae-Yong; Lee, Ho-Seok; Song, Ji-Young; Jung, Young Jun; Reinbothe, Steffen; Park, Youn-Il; Lee, Sang Yeol; Pai, Hyun-Sook

    2013-01-01

    Angiosperms require light for chlorophyll biosynthesis because one reaction in the pathway, the reduction of protochlorophyllide (Pchlide) to chlorophyllide, is catalyzed by the light-dependent protochlorophyllide oxidoreductase (POR). Here, we report that Cell growth defect factor1 (Cdf1), renamed here as CHAPERONE-LIKE PROTEIN OF POR1 (CPP1), an essential protein for chloroplast development, plays a role in the regulation of POR stability and function. Cdf1/CPP1 contains a J-like domain and three transmembrane domains, is localized in the thylakoid and envelope membranes, and interacts with POR isoforms in chloroplasts. CPP1 can stabilize POR proteins with its holdase chaperone activity. CPP1 deficiency results in diminished POR protein accumulation and defective chlorophyll synthesis, leading to photobleaching and growth inhibition of plants under light conditions. CPP1 depletion also causes reduced POR accumulation in etioplasts of dark-grown plants and as a result impairs the formation of prolamellar bodies, which subsequently affects chloroplast biogenesis upon illumination. Furthermore, in cyanobacteria, the CPP1 homolog critically regulates POR accumulation and chlorophyll synthesis under high-light conditions, in which the dark-operative Pchlide oxidoreductase is repressed by its oxygen sensitivity. These findings and the ubiquitous presence of CPP1 in oxygenic photosynthetic organisms suggest the conserved nature of CPP1 function in the regulation of POR. PMID:24151298

  14. Estimaciones de Prevalencia del VIH por Género y Grupo de Riesgo en Tijuana, México: 2006

    PubMed Central

    Iñiguez-Stevens, Esmeralda; Brouwer, Kimberly C.; Hogg, Robert S.; Patterson, Thomas L.; Lozada, Remedios; Magis-Rodriguez, Carlos; Elder, John P.; Viani, Rolando M.; Strathdee, Steffanie A.

    2010-01-01

    OBJETIVO Estimar la prevalencia del VIH en adultos de 15-49 años de edad en Tijuana, México - en la población general y en subgrupos de riesgo en el 2006. METODOS Se obtuvieron datos demográficos del censo Mexicano del 2005, y la prevalencia del VIH se obtuvo de la literatura. Se construyó un modelo de prevalencia del VIH para la población general y de acuerdo al género. El análisis de sensibilidad consistió en estimar errores estándar del promedio-ponderado de la prevalencia del VIH y tomar derivados parciales con respecto a cada parámetro. RESULTADOS La prevalencia del VIH es 0.54%(N = 4,347) (Rango: 0.22%–0.86%, (N = 1,750–6,944)). Esto sugiere que 0.85%(Rango: 0.39%–1.31%) de los hombres y 0.22%(Rango: 0.04%–0.40%) de las mujeres podrían ser VIH-positivos. Los hombres que tienen sexo con hombres (HSH), las trabajadoras sexuales usuarias de drogas inyectables (MTS-UDI), MTS-noUDI, mujeres UDI, y los hombres UDI contribuyeron las proporciones más elevadas de personas infectadas por el VIH. CONCLUSIONES El número de adultos VIH-positivos entre subgrupos de riesgo en la población de Tijuana es considerable, marcando la necesidad de enforcar las intervenciones de prevención en sus necesidades específicas. El presente modelo estima que hasta 1 en cada 116 adultos podrían ser VIH-positivos. PMID:19685824

  15. Two-photon absorption in CdSe colloidal quantum dots compared to organic molecules.

    PubMed

    Makarov, Nikolay S; Lau, Pick Chung; Olson, Christopher; Velizhanin, Kirill A; Solntsev, Kyril M; Kieu, Khanh; Kilina, Svetlana; Tretiak, Sergei; Norwood, Robert A; Peyghambarian, Nasser; Perry, Joseph W

    2014-12-23

    We discuss fundamental differences in electronic structure as reflected in one- and two-photon absorption spectra of semiconductor quantum dots and organic molecules by performing systematic experimental and theoretical studies of the size-dependent spectra of colloidal quantum dots. Quantum-chemical and effective-mass calculations are used to model the one- and two-photon absorption spectra and compare them with the experimental results. Currently, quantum-chemical calculations are limited to only small-sized quantum dots (nanoclusters) but allow one to study various environmental effects on the optical spectra such as solvation and various surface functionalizations. The effective-mass calculations, on the other hand, are applicable to the larger-sized quantum dots and can, in general, explain the observed trends but are insensitive to solvent and ligand effects. Careful comparison of the experimental and theoretical results allows for quantifying the range of applicability of theoretical methods used in this work. Our study shows that the small clusters can be in principle described in a manner similar to that used for organic molecules. In addition, there are several important factors (quality of passivation, nature of the ligands, and intraband/interband transitions) affecting optical properties of the nanoclusters. The larger-size quantum dots, on the other hand, behave similarly to bulk semiconductors, and can be well described in terms of the effective-mass models. PMID:25427158

  16. Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots.

    PubMed

    Kilina, Svetlana; Velizhanin, Kirill A; Ivanov, Sergei; Prezhdo, Oleg V; Tretiak, Sergei

    2012-07-24

    Understanding the pathways of hot exciton relaxation in photoexcited semiconductor nanocrystals, also called quantum dots (QDs), is of paramount importance in multiple energy, electronics and biological applications. An important nonradiative relaxation channel originates from the nonadiabatic (NA) coupling of electronic degrees of freedom to nuclear vibrations, which in QDs depend on the confinement effects and complicated surface chemistry. To elucidate the role of surface ligands in relaxation processes of nanocrystals, we study the dynamics of the NA exciton relaxation in Cd(33)Se(33) semiconductor quantum dots passivated by either trimethylphosphine oxide or methylamine ligands using explicit time-dependent modeling. The large extent of hybridization between electronic states of quantum dot and ligand molecules is found to strongly facilitate exciton relaxation. Our computational results for the ligand contributions to the exciton relaxation and electronic energy-loss in small clusters are further extrapolated to larger quantum dots. PMID:22742432

  17. Electronic Structure of Ligated CdSe Clusters: Dependence on DFT Methodology

    SciTech Connect

    Albert, Victor V.; Ivanov, Sergei A.; Tretiak, Sergei; Kilina, Svetlana V.

    2011-08-18

    Simulations of ligated semiconductor quantum dots (QDs) and their physical properties, such as morphologies, QD–ligand interactions, electronic structures, and optical transitions, are expected to be very sensitive to computational methodology. We utilize Density Functional Theory (DFT) and systematically study how the choice of density functional, atom-localized basis set, and a solvent affects the physical properties of the Cd33Se33 cluster ligated with a trimethylphosphine oxide ligand. We have found that qualitative performance of all exchange-correlation (XC) functionals is relatively similar in predicting strong QD–ligand binding energy (~1 eV). Additionally, all functionals predict shorter Cd–Se bond lengths on the QD surface than in its core, revealing the nature and degree of QD surface reconstruction. For proper modeling of geometries and QD–ligand interactions, however, augmentation of even a moderately sized basis set with polarization functions (e.g., LANL2DZ* and 6-31G*) is very important. A polar solvent has very significant implications for the ligand binding energy, decreasing it to 0.2–0.5 eV. However, the solvent model has a minor effect on the optoelectronic properties, resulting in persistent blue shifts up to ~0.3 eV of the low-energy optical transitions. For obtaining reasonable energy gaps and optical transition energies, hybrid XC functionals augmented by a long-range Hartree–Fock orbital exchange have to be applied.

  18. Extracellular bio-production and characterization of small monodispersed CdSe quantum dot nanocrystallites

    NASA Astrophysics Data System (ADS)

    Suresh, Anil K.

    2014-09-01

    Engineered nanoparticles of diverse forms are being profoundly used for various applications and demand ecologically benign synthesis processes. Conventional chemical methods employed for the syntheses of nanoparticles are environmentally unfriendly and energy intensive. Biologically inspired biofabrication approaches that utilize naturally existing microorganisms or plant extracts or biomaterials might overcome these issues. The present investigation for the first time shows the synthesis of small and monodispersed cadmium selenide nanoparticles utilizing the plant pathogenic fungus, Helminthosporum solani upon incubating with an aqueous solution of CdCl2 and SeCl4 under ambient conditions. Multiple physical characterizations involving ultraviolet-visible and photoluminescence spectroscopy, transmission electron microscopy, selected area electron diffraction and X-ray photoelectron spectroscopy confirmed the production, purity, optical and surface characteristics, crystalline nature, size and shape distributions, and elemental composition of the nanoparticles. Pluralities of the particles are monodisperse spheres with a mean diameter of 5.5 ± 2 nm, are hydrophilic, highly stable with a broad photoluminescence and 1% quantum yield. This approach provides an alternative facile route for the biofabrication of quantum dot that is reliable, environmentally friendly, and lends itself directly for the creation of fluorescent biological labels.

  19. Molecular Recognition of Biomolecules by Chiral CdSe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Mukhina, Maria V.; Korsakov, Ivan V.; Maslov, Vladimir G.; Purcell-Milton, Finn; Govan, Joseph; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun’Ko, Yurii K.

    2016-04-01

    Molecular recognition is one of the most important phenomena in Chemistry and Biology. Here we present a new way of enantiomeric molecular recognition using intrinsically chiral semiconductor nanocrystals as assays. Real-time confocal microscopy studies supported by circular dichroism spectroscopy data and theoretical modelling indicate an ability of left-handed molecules of cysteine and, to a smaller extent, histidine and arginine to discriminate between surfaces of left- and right-handed nanocrystals.

  20. Universal Parameter Optimization of Density Gradient Ultracentrifugation Using CdSe Nanoparticles as Tracing Agents.

    PubMed

    Li, Pengsong; Huang, Jinyang; Luo, Liang; Kuang, Yun; Sun, Xiaoming

    2016-09-01

    Density gradient ultracentrifugation (DGUC) has recently emerged as an effective nanoseparation method to sort polydispersed colloidal NPs mainly according to their size differences to reach monodispersed fractions (NPs), but its separation modeling is still lack and the separation parameters' optimization mainly based on experience of operators. In this paper, we gave mathematical descriptions on the DGUC separation, which suggested the best separation parameters for a given system. The separation parameters, including media density, centrifuge speed and time, which affected the separation efficiency, were discussed in details. Further mathematical optimization model was established to calculate and yield the "best" (optimized) linear gradient for a colloidal system with given size and density. The practical experiment results matched well with theoretical prediction, demonstrating the DGUC method, an efficient, practical, and predictable separation technique with universal utilization for colloid sorting. PMID:27457445

  1. Linear and nonlinear optical study of pure PVA and CdSe doped PVA nanocomposite

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2016-05-01

    This research work reports the synthesis and optical properties of CdSe/PVA polymer nanocomposite (PNC's) prepared by wet chemical co-precipitation method. The transmission spectra obtained from UV-Vis-NIR spectrophotometer has been investigated to determine the optical properties of PNC's. Absorption spectra give the information about energy band gap (Eg) and type of transition. Refractive index (n), extinction coefficient (k) was calculated using well known Swanepoel method. Wemple-Di Domenico model (WDD) has been used to calculate dispersion energy (Ed) and oscillator energy (E0). Boling formula is used to calculate nonlinear refractive index (n2) of CdSe/PVA nanocomposite.

  2. Molecular Recognition of Biomolecules by Chiral CdSe Quantum Dots

    PubMed Central

    Mukhina, Maria V.; Korsakov, Ivan V.; Maslov, Vladimir G.; Purcell-Milton, Finn; Govan, Joseph; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun’ko, Yurii K.

    2016-01-01

    Molecular recognition is one of the most important phenomena in Chemistry and Biology. Here we present a new way of enantiomeric molecular recognition using intrinsically chiral semiconductor nanocrystals as assays. Real-time confocal microscopy studies supported by circular dichroism spectroscopy data and theoretical modelling indicate an ability of left-handed molecules of cysteine and, to a smaller extent, histidine and arginine to discriminate between surfaces of left- and right-handed nanocrystals. PMID:27063962

  3. Materials Data on CdSe (SG:225) by Materials Project

    SciTech Connect

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  4. Materials Data on Dy2CdSe4 (SG:227) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-07-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  5. Fast current blinking in individual PbS and CdSe quantum dots.

    PubMed

    Maturova, Klara; Nanayakkara, Sanjini U; Luther, Joseph M; van de Lagemaat, Jao

    2013-06-12

    Fast current intermittency of the tunneling current through single semiconductor quantum dots was observed through time-resolved intermittent contact conductive atomic force microscopy in the dark and under illumination at room temperature. The current through a single dot switches on and off at time scales ranging from microseconds to seconds with power-law distributions for both the on and off times. On states are attributed to the resonant tunneling of charges from the electrically conductive AFM tip to the quantum dot, followed by transfer to the substrate, whereas off states are attributed to a Coulomb blockade effect in the quantum dots that shifts the energy levels out of resonance conditions due to the presence of the trapped charge, while at the same bias. The observation of current intermittency due to Coulomb blockade effects has important implications for the understanding of carrier transport through arrays of quantum dots.

  6. Fluorescence modulation in single CdSe quantum dots by moderate applied electric fields

    NASA Astrophysics Data System (ADS)

    LeBlanc, Sharonda J.; McClanahan, Mason R.; Moyer, Tully; Jones, Marcus; Moyer, Patrick J.

    2014-01-01

    Single molecule time-resolved fluorescence spectroscopy of CdSe/ZnS core-shell quantum dots (QDs) under the influence of moderate applied electric fields reveals distributed emission from states which are neither fully on nor off and pronounced changes in the excited state decay. The data suggest that a 54 kV/cm applied electric field causes small perturbations to the QD surface charge distribution, effectively increasing the surface trapping probability and resulting in the appearance of gray states. We present simultaneous blinking and fluorescence decay results for two sets of QDs, with and without an applied electric field. Further kinetic modeling analysis suggests that a single trapped charged cannot be responsible for a blinking off event.

  7. Delayed Exciton Emission and Its Relation to Blinking in CdSe Quantum Dots.

    PubMed

    Rabouw, Freddy T; Kamp, Marko; van Dijk-Moes, Relinde J A; Gamelin, Daniel R; Koenderink, A Femius; Meijerink, Andries; Vanmaekelbergh, Daniël

    2015-11-11

    The efficiency and stability of emission from semiconductor nanocrystal quantum dots (QDs) is negatively affected by "blinking" on the single-nanocrystal level, that is, random alternation of bright and dark periods. The time scales of these fluctuations can be as long as many seconds, orders of magnitude longer than typical lifetimes of exciton states in QDs. In this work, we investigate photoluminescence from QDs delayed over microseconds to milliseconds. Our results prove the existence of long-lived charge-separated states in QDs. We study the properties of delayed emission as a direct way to learn about charge carrier separation and recovery of the exciton state. A new microscopic model is developed to connect delayed emission to exciton recombination and blinking from which we conclude that bright periods in blinking are in fact not characterized by uninterrupted optical cycling as often assumed.

  8. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells

    NASA Astrophysics Data System (ADS)

    Yan, Zhengyu; Qian, Jing; Gu, Yueqing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei

    2014-03-01

    A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling.

  9. Los índices de mortalidad por cáncer de pulmón siguen en descenso y contribuyen a la continua reducc

    Cancer.gov

    El Informe Anual a la Nación sobre el Estado del Cáncer (1975 a 2010), mostró un descenso más acelerado que en años anteriores de los índices de mortalidad por cáncer de pulmón. También contiene una sección especial que destaca los efectos significativos

  10. La doctora Amelie Ramírez y la investigación de desigualdades de salud por cáncer en la comunidad la

    Cancer.gov

    La doctora Ramírez es la investigadora principal de Redes en Acción, un centro del programa de redes comunitarias subvencionado por el NCI que se propone reducir la incidencia del cáncer en la comunidad latina a través de una red nacional de grupos comunitarios, investigadores, agencias de salud gubernamentales y la población en general.

  11. Binding of complement factor H to PorB3 and NspA enhances resistance of Neisseria meningitidis to anti-factor H binding protein bactericidal activity.

    PubMed

    Giuntini, Serena; Pajon, Rolando; Ram, Sanjay; Granoff, Dan M

    2015-04-01

    Among 25 serogroup B Neisseria meningitidis clinical isolates, we identified four (16%) with high factor H binding protein (FHbp) expression that were resistant to complement-mediated bactericidal activity of sera from mice immunized with recombinant FHbp vaccines. Two of the four isolates had evidence of human FH-dependent complement downregulation independent of FHbp. Since alternative complement pathway recruitment is critical for anti-FHbp bactericidal activity, we hypothesized that in these two isolates binding of FH to ligands other than FHbp contributes to anti-FHbp bactericidal resistance. Knocking out NspA, a known meningococcal FH ligand, converted both resistant isolates to anti-FHbp susceptible isolates. The addition of a nonbactericidal anti-NspA monoclonal antibody to the bactericidal reaction also increased anti-FHbp bactericidal activity. To identify a role for FH ligands other than NspA or FHbp in resistance, we created double NspA/FHbp knockout mutants. Mutants from both resistant isolates bound 10-fold more recombinant human FH domains 6 and 7 fused to Fc than double knockout mutants prepared from two sensitive meningococcal isolates. In light of recent studies showing functional FH-PorB2 interactions, we hypothesized that PorB3 from the resistant isolates recruited FH. Allelic exchange of porB3 from a resistant isolate to a sensitive isolate increased resistance of the sensitive isolate to anti-FHbp bactericidal activity (and vice versa). Thus, some PorB3 variants functionally bind human FH, which in the presence of NspA enhances anti-FHbp resistance. Combining anti-NspA antibodies with anti-FHbp antibodies can overcome resistance. Meningococcal vaccines that target both NspA and FHbp are likely to confer greater protection than either antigen alone.

  12. Obtención de la curva de luz en la ocultación de 35 Sgr por Júpiter el 6 de marzo de 1996

    NASA Astrophysics Data System (ADS)

    Paolantonio, S.; Duffard, R.; Carranza, G.

    La ocultación de la estrella de quinta magnitud 35 Sgr por Júpiter, se produjo el 6 de Marzo de 1996 a las 13 hs. TU. El objetivo era medir el cambio del flujo de la estrella en el ingreso y egreso por el limbo del planeta. Con estos datos se pueden determinar parámetros físicos del planeta (radio, eccentricidad) y de su atmósfera (escala de altura, temperatura, densidad, presión) Para lograr ésto se programó la cámara CCD TH 7896 1024 x 1025 instalada en el telescopio de 1.54 m de Bosque Alegre con el objetivo de lograr 2 imágenes por segundo. De esta forma se obtuvieron 2100 imágenes de la inmersión y otras tantas de la emersión. Hubo que tener grandes precauciones para evitar la saturación del CCD ya que la observación se realizó de día. En este momento las imágenes se encuentran en el Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, para su reducción.

  13. Immunogenicity studies with a genetically engineered hexavalent PorA and a wild-type meningococcal group B outer membrane vesicle vaccine in infant cynomolgus monkeys.

    PubMed

    Rouppe van der Voort, E; Schuller, M; Holst, J; de Vries, P; van der Ley, P; van den Dobbelsteen, G; Poolman, J

    2000-01-31

    The immunogenicity of two meningococcal outer membrane vesicle (OMV) vaccines, namely the Norwegian wild-type OMV vaccine and the Dutch hexavalent PorA OMV vaccine, were examined in infant cynomolgus monkeys. For the first time, a wild-type- and a recombinant OMV vaccine were compared. Furthermore, the induction of memory and the persistence of circulating antibodies were measured. The Norwegian vaccine contained all four classes of major outer membrane proteins (OMP) and wild-type L3/L8 lipopolysaccharide (LPS). The Dutch vaccine consisted for 90% of class 1 OMPs, had low expression of class 4 and 5 OMP, and GalE LPS. Three infant monkeys were immunised with a human dose at the age of 1.5, 2.5 and 4.5 months. Two monkeys of each group received a fourth dose at the age of 11 months. In ELISA, both OMV vaccines were immunogenic and induced booster responses, particularly after the fourth immunisation. The Norwegian vaccine mostly induced sero-subtype P1.7,16 specific serum bactericidal antibodies (SBA), although some other SBA were induced as well. The antibody responses against P1.7,16, induced by the Norwegian vaccine, were generally higher than for the Dutch vaccine. However, the Dutch vaccine induced PorA specific SBA against all six sero-subtypes included in the vaccine showing differences in the magnitude of SBA responses to the various PorAs. PMID:10618530

  14. Astronomy in the Classroom: Why? (Spanish Title: Astronomía en la Clase: ¿Por Qué?) Astronomia na Sala de Aula: Por Quê?

    NASA Astrophysics Data System (ADS)

    Daros Gama, Leandro; Bagdonas Henrique, Alexandre

    2010-07-01

    There are many discussions about the relevance of the topics covered in classes. One subject in particular is the focus of this essay: astronomy. In what sense and to what extent it would be worth to teach it in science or other kind of classes? In this paper we discuss some aspects of the advantages of dealing with this area of knowledge in schools, taking into account the epistemological and axiological dimensions of astronomy, in light of the vision of science as an intelligent dialogue with the world (Bachelard), in addition to the "problematization" knowledge of Paulo Freire. We propose that in fact the Astronomy does not need to be seen as just a new set of contents to be taught, but appears as a set of motivational contents for historical-philosophical discussions, and permit the discussion of concepts of other disciplines. Numerosas discusiones se están llevando a cabo acerca de la pertinencia de los temas tradicionalmente tratados en las clases. Uno de los temas, en particular, es el foco de este ensayo: la astronomía. ¿En qué sentido y en qué medida sería conveniente tratarla en clase, ya sea en clases de ciencias naturales, específicamente en las de astronomía o asignaturas afines? Elaboramos en este artículo algunos aspectos de las ventajas de tratar esta área del conocimiento en las escuelas, teniendo en cuenta las dimensiones epistemológica y axiológica de la astronomía, a la luz de la visión de la ciencia como un diálogo inteligente con el mundo (Bachelard), además de la propuesta del conocimiento "problematizador" de Paulo Freire. Proponemos que en realidad la astronomía no tiene por qué ser vista sólo como un nuevo conjunto de contenidos que se enseñan, sino que aparece como un conjunto de temas de motivación para el debate histórico-filosófico y para permitir la discusión de los conceptos típicos de otras disciplinas. Muitas discussões vêm acontecendo sobre a relevância dos temas abordados em sala de aula. Um tema, em

  15. Pincharse sin infectarse: estrategias para prevenir la infección por el VIH y el VHC entre usuarios de drogas inyectables

    PubMed Central

    MATEU-GELABERT, P.; FRIEDMAN, S.; SANDOVAL, M.

    2011-01-01

    Resumen Objetivo Desde principios de los noventa, en la ciudad de Nueva York se han implementado con éxito programas para reducir la incidencia del virus de la inmunodeficiencia humana (VIH) y, en menor medida, del virus de la hepatitis C (VHC). A pesar de ello, aproximadamente el 70% de los usuario de drogas inyectables (UDI) están infectados por el VHC. Queremos investigar cómo el 30% restante se las ha arreglado para no infectarse. El Staying safe (nombre original del estudio) explora los comportamientos y mecanismos que ayudan a evitar la infección por el VHC y el VIH a largo plazo. Material y métodos Hemos utilizado el concepto de «desviación positiva» aplicado en otros campos de salud pública. Estudiamos las estrategias, prácticas y tácticas de prevención de aquellos UDI que, viviendo en contextos de alta prevalencia, se mantienen sin infectar por VIH y el VHC, a pesar de haberse inyectado heroína durante años. Los resultados preliminares presentados en este artículo incluyen el análisis de las entrevistas realizadas a 25 UDI (17 doble negativos, 3 doble positivos y 5 con infección por el VHC y sin infección por el VIH). Se usaron entrevistas semiestructuradas que exploraban con detalle la historia de vida de los sujetos, incluyendo su consumo de drogas, redes sociales, contacto con instituciones, relaciones sexuales y estrategias de protección y vigilancia. Resultados La intencionalidad es importante para no infectarse, especialmente durante períodos de involución (períodos donde hay un deterioro económico y/o social que llevan al que se inyecta a situaciones de mayor riesgo). Presentamos tres dimensiones independientes de intencionalidad que conllevan comportamientos que pueden ayudar a prevenir la infección: a) evitar «el mono» (síntomas de abstención) asegurando el acceso a la droga; b) «llevarlo bien» para no convertirse en un junkie y así evitar la «muerte social» y la falta de acceso a los recursos, y c) seguir sin

  16. A Fast Real-Time Polymerase Chain Reaction Method for Sensitive and Specific Detection of the Neisseria gonorrhoeae porA Pseudogene

    PubMed Central

    Hjelmevoll, Stig Ove; Olsen, Merethe Elise; Sollid, Johanna U. Ericson; Haaheim, Håkon; Unemo, Magnus; Skogen, Vegard

    2006-01-01

    Ever since the advent of molecular methods, the diagnostics of Neisseria gonorrhoeae has been troubled by false negative and false positive results compared with culture. Commensal Neisseria species and Neisseria meningitidis are closely related to N. gonorrhoeae and may cross-react when using molecular tests comprising too-low specificity. We have devised a real-time polymerase chain reaction (PCR), including an internal amplification control, that targets the N. gonorrhoeae porA pseudogene. DNA was automatically isolated on a BioRobot M48. Our subsequent PCR method amplified all of the different N. gonorrhoeae international reference strains (n = 34) and N. gonorrhoeae clinical isolates (n = 176) but not isolates of the 13 different nongonococcal Neisseria species (n = 68) that we tested. Furthermore, a panel of gram-negative bacterial (n = 18), gram-positive bacterial (n = 23), fungal (n = 1), and viral (n = 4) as well as human DNA did not amplify. The limit of detection was determined to be less than 7.5 genome equivalents/PCR reaction. In conclusion, the N. gonorrhoeae porA pseudogene real-time PCR developed in the present study is highly sensitive, specific, robust, rapid and reproducible, making it suitable for diagnosis of N. gonorrhoeae infection. PMID:17065426

  17. Prevalencia y factores de riesgo para infecciones del tracto urinario de inicio en la comunidad causadas por Escherichia coli productor de betalactamasas de espectro extendido en Colombia

    PubMed Central

    Blanco, Victor M.; Maya, Juan J.; Correa, Adriana; Perenguez, Marcela; Muñoz, Juan S.; Motoa, Gabriel; Pallares, Christian J.; Rosso, Fernando; Matta, Lorena; Celis, Yamile; Garzon, Martha; Villegas, y María V.

    2016-01-01

    RESUMEN Introducción Las infecciones del tracto urinario (ITU) son frecuentes en la comunidad. Sin embargo, la información de aislamientos resistentes en este contexto es limitada en Latinoamérica. Este estudio tiene como objetivo determinar la prevalencia y los factores de riesgo asociados con ITU de inicio en la comunidad (ITU-IC) causadas por Escherichia coli productor de betalactamasas de espectro extendido (BLEE) en Colombia. Materiales y métodos Entre agosto y diciembre de 2011 se realizó un estudio de casos y controles en 3 instituciones de salud de tercer nivel en Colombia. Se invitó a participar a todos los pacientes admitidos a urgencias con diagnóstico probable de ITU-IC, y se les pidió una muestra de orina. En los aislamien-tos de E. coli se realizaron pruebas confirmatorias para BLEE, susceptibilidad antibiótica, caracterización molecular (PCR en tiempo real para genes bla, repetitive element palindromic PCR [rep-PCR], multilocus sequence typing [MLST] y factores de virulencia por PCR). Se obtuvo información clínica y epidemiológica, y posteriormente se realizó el análisis estadístico. Resultados De los 2.124 pacientes seleccionados, 629 tuvieron un urocultivo positivo, en 431 de estos se aisló E. coli, 54 fueron positivos para BLEE y 29 correspondieron a CTX-M-15. La mayoría de los aislamientos de E. coli productor de BLEE fueron sensibles a ertapenem, fosfomicina y amikacina. La ITU complicada se asoció fuertemente con infecciones por E. coli productor de BLEE (OR = 3,89; IC 95%: 1,10–13,89; p = 0,03). E. coli productor de CTX-M-15 mostró 10 electroferotipos diferentes; de estos, el 65% correspondieron al ST131. La mayoría de estos aislamientos tuvieron 8 de los 9 factores de virulencia analizados. Discusión E. coli portador del gen blaCTX-M-15 asociado al ST131 sigue siendo frecuente en Colombia. La presencia de ITU-IC complicada aumenta el riesgo de tener E. coli productor de BLEE, lo cual debe tenerse en cuenta para ofrecer

  18. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases.

    PubMed Central

    Müller, A; Günther, D; Düx, F; Naumann, M; Meyer, T F; Rudel, T

    1999-01-01

    The porin (PorB) of Neisseria gonorrhoeae is an intriguing bacterial factor owing to its ability to translocate from the outer bacterial membrane into host cell membranes where it modulates the infection process. Here we report on the induction of programmed cell death after prolonged infection of epithelial cells with pathogenic Neisseria species. The underlying mechanism we propose includes translocation of the porin, a transient increase in cytosolic Ca2+ and subsequent activation of the Ca2+ dependent protease calpain as well as proteases of the caspase family. Blocking the porin channel by ATP eliminates the Ca2+ signal and also abolishes its pro-apoptotic function. The neisserial porins share structural and functional homologies with the mitochondrial voltage-dependent anion channels (VDAC). The neisserial porin may be an analogue or precursor of the ancient permeability transition pore, the putative central regulator of apoptosis. PMID:9889191

  19. Four-month outbreak of invasive meningococcal disease caused by a rare serogroup B strain, identified through the use of molecular PorA subtyping, England, 2013.

    PubMed

    Chatt, C; Gajraj, R; Hawker, J; Neal, K; Tahir, M; Lawrence, M; Gray, S J; Lucidarme, J; Carr, A D; Clark, S A; Fowler, T

    2014-01-01

    Molecular PorA subtyping provides information that increasingly requires the adaptation of standard public health approaches to outbreak management. We report an outbreak of a rare subtype of meningococcal infection not previously identified in the United Kingdom (UK). The outbreak occurred in the Warwickshire area in England between February and June 2013. Molecular subtyping allowed the identification of additional cases, prompting an enhanced public health response that included efforts to identify potential social networks that might benefit from chemoprophylaxis. It also prompted swabbing to define nasopharyngeal carriage in the focal nursery and helped explain the unusual epidemiological pattern. Without subtyping to identify a link, the additional cases would have been managed as sporadic cases in accordance with current UK guidance. PMID:25394258

  20. Concepciones y concepciones alternativas de estudiantes universitarios/as de biologia y futuros maestros/as de Ciencia de escuela secundaria sobre la teoria de evolucion biologica por seleccion natural

    NASA Astrophysics Data System (ADS)

    Morales Ramos, Egda M.

    La teoria de evolucion biologica (TEB) por seleccion natural es uno de los conceptos unificadores mas importantes del curriculo de Biologia. En Puerto Rico se han hecho pocas investigaciones que abunden sobre las concepciones y concepciones alternativas (CA) que tienen los estudiantes universitarios/as de Biologia y los maestros/as de Ciencia del nivel secundario sobre esta teoria. La politica publica educativa actual establece mediante documentos normativos como los Estandares de contenido y Expectativas de grado del Programa de Ciencias [Puerto Rico Core Standards] la ensenanza de esta teoria. Sin embargo, no se encontraron preguntas sobre la seleccion natural en los ejercicios de practica provistos por el Departamento de Educacion para las pruebas estandarizadas lo cual puede influir para que no se ensene adecuadamente. Las preguntas de investigacion fueron 1. ¿Cuales son las concepciones y concepciones alternativas de estudiantes universitarios/as y de los futuros maestros y maestras de Ciencia sobre la TEB? 2. ¿Cuales conceptos que seleccionan los estudiantes universitarios/as y los futuros maestros y maestras de Ciencia sobre la TEB coinciden con lo aceptado como valido por la comunidad cientifica? y 3. ¿Como comparan las respuestas de la prueba original. v. Entendiendo el cambio biologico que mide concepciones y CA sobre la TEB por seleccion natural, con las de la traducida al idioma espanol? Se utilizo el metodo cuantitativo con un diseno de investigacion transversal por encuesta. La tecnica principal para recopilar los datos fue una prueba con doce items, que formo parte de un instrumento para el cual se recopilaron diversas fuentes de evidencia acerca de su validez. Las muestras estuvieron formadas por 69 estudiantes de Ciencias Naturales y por 16 estudiantes futuros maestros y maestras del nivel secundario de la UPR-RP. Se utilizaron estadisticas descriptivas, analisis de Ji cuadrado y se calcularon los coeficientes alfa de Cronbach y de Spearman

  1. Population genetics of Neisseria gonorrhoeae in a high-prevalence community using a hypervariable outer membrane porB and 13 slowly evolving housekeeping genes.

    PubMed

    Pérez-Losada, Marcos; Viscidi, Raphael P; Demma, James C; Zenilman, Jonathan; Crandall, Keith A

    2005-09-01

    Baltimore, Md., is an urban community with a high prevalence of Neisseria gonorrhoeae. Due to partially protective immune responses, introduction of new strains from other host populations, and exposure of N. gonorrhoeae to antibiotics, the phenotypic and genotypic characteristics of the circulating strains can fluctuate over time. Understanding the overall genetic diversity and population structure of N. gonorrhoeae is essential for informing public health interventions to eliminate this pathogen. We studied gonococci population genetics in Baltimore by analyzing a hypervariable and strongly selected outer membrane porB gene and 13 slowly evolving and presumably neutral housekeeping genes (abcZ, adk, aroE, fumC, gdh, glnA, gnd, pdhC, pgm, pilA, ppk, pyrD, and serC) in 204 isolates collected in 1991, 1996, and 2001 from male and female patients of two public sexually transmitted diseases clinics. Genetic diversity (), recombination (C), growth (g), population structure, and adaptive selection under codon-substitution and amino acid property models were estimated and compared between these two gene classes. Estimates of the F(ST) fixation index and the chi(2) test of sequence absolute frequencies revealed significant temporal substructuring for both gene types. Baltimore's N. gonorrhoeae populations have increased since 1991 as indicated by consistent positive values of g. Female patients showed similar or lower levels of and C than male patients. Within the MLST housekeeping genes, levels of and C ranged from 0.001-0.013 and 0.000-0.018, respectively. Overall recombination seems to be the dominant force driving evolution in these populations. All loci showed amino acid sites and physicochemical properties under adaptive (or positive-destabilizing) selection, rejecting the generally assumed hypothesis of stabilizing selection for these MLST genes. Within the porB gene, protein I B showed higher and C values than protein I A. Directional positive selection possibly

  2. Bifurcación de las soluciones de vientos impulsados por radiación en estrellas Be: formación de líneas

    NASA Astrophysics Data System (ADS)

    Curé, M.; Rial, D.; Cidale, L.; Venero, R.

    Se ha estudiado la topología de la ecuación hidrodinámica no-lineal que describe el perfil de velocidades de vientos impulsados por radiación en estrellas tempranas. Al aplicar este modelo a estrellas Be se encuentra que existen dos tipos De soluciones: la estándar, que describe el viento polar, y una nueva, que describe un viento más denso y lento y que explicaría el disco que se encuentra alrededor de estos objetos. Existe una región de transición en donde ambas soluciones coexisten (bifurcación}). Ambas soluciones satisfacen en esta región las mismas condiciones de borde. Para estas dos soluciones se han obtenido los perfiles de líneas de hidrógeno del visible y del IR, resolviendo el transporte de radiación en el ``comoving frame". Para la solución estándar, se obtienen perfiles con componentes en emisión, mientras que para la nueva solución se obtienen perfiles en absorción. Se comparan cualitativamente los resultados con las observaciones.

  3. Relación masa-radio para estrellas enanas blancas y la interpretación de recientes mediciones hechas por Hipparcos

    NASA Astrophysics Data System (ADS)

    Panei, J. A.; Althaus, L. G.; Benvenuto, O. G.

    Recientes mediciones de la masa y el radio hechas por Hipparcos de las estrellas enanas blancas 40 Eri B y Procyon B (Shipman, H. & Provencal, J. - ApJ. 1998, 494, 759), sugieren un núcleo compuesto de hierro para dichas estrellas, en lugar de carbono y oxígeno como predice la teoría standard de evolución estelar. Para interpretar estas observaciones, presentamos aquí, relaciones masa-radio para configuraciones degeneradas a temperatura finita para distintas composiciones químicas centrales. Para tal fin hemos calculado secuencias evolutivas de enanas blancas utilizando el código de evolución estelar, desarrollado en el Observatorio de La Plata. Dicho código resuelve las ecuaciones de estructura y evolución estelar mediante la técnica de relajación de Henyey, y esta basado en una descripción física muy detallada y actualizada.

  4. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance

    PubMed Central

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Wilhelm, Laurence; Michon, Agnès; Thomazic, Valérie; Stancu, Ioana; Alnawaqil, Abdel-Messieh; Bula, Christophe; Zumbach, Serge; Gaillard, Michel; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2014-01-01

    Aims A large interindividual variability in plasma concentrations has been reported in patients treated with donepezil, the most frequently prescribed antidementia drug. We aimed to evaluate clinical and genetic factors influencing donepezil disposition in a patient population recruited from a naturalistic setting. Methods A population pharmacokinetic study was performed including data from 129 older patients treated with donepezil. The patients were genotyped for common polymorphisms in the metabolic enzymes CYP2D6 and CYP3A, in the electron transferring protein POR and the nuclear factor NR1I2 involved in CYP activity and expression, and in the drug transporter ABCB1. Results The average donepezil clearance was 7.3 l h−1 with a 30% interindividual variability. Gender markedly influenced donepezil clearance (P < 0.01). Functional alleles of CYP2D6 were identified as unique significant genetic covariate for donepezil clearance (P < 0.01), with poor metabolizers and ultrarapid metabolizers demonstrating, respectively, a 32% slower and a 67% faster donepezil elimination compared with extensive metabolizers. Conclusion The pharmacokinetic parameters of donepezil were well described by the developed population model. Functional alleles of CYP2D6 significantly contributed to the variability in donepezil disposition in the patient population and should be further investigated in the context of individual dose optimization to improve clinical outcome and tolerability of the treatment. PMID:24433464

  5. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA.

    PubMed

    Lindberg, Robert; Fredlund, Hans; Nicholas, Robert; Unemo, Magnus

    2007-06-01

    The recent emergence and transmission of Neisseria gonorrhoeae isolates with reduced susceptibility to expanded-spectrum cephalosporins such as cefixime and ceftriaxone have been reported. The aim of this study was to determine the correlation of different polymorphisms in the penA, mtrR, porB1b (penB), and ponA genes of N. gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone. Eighteen gonococcal isolates with reduced cefixime and ceftriaxone susceptibility (Cef(i)) and two susceptible isolates were characterized using serovar determination, antibiograms, N. gonorrhoeae multiantigen sequence typing (NG-MAST), and sequencing of penA, mtrR, porB1b, and ponA alleles. For the Cef(i) isolates (n = 18), the MICs of cefixime and ceftriaxone ranged between 0.032 to 0.38 mug/ml and 0.064 to 0.125 mug/ml, respectively. These isolates were assigned five different serovars and six divergent NG-MAST sequence types. Eleven isolates (61%) with higher MICs of cefixime and ceftriaxone contained a nearly identical penA mosaic allele and previously described polymorphisms in mtrR (a single nucleotide [A] deletion in the promoter), penB (mutations in porB1b encoding loop 3 of PorB1b), and ponA (ponA1 polymorphism). The remaining seven Cef(i) isolates (39%), which had somewhat lower MICs of cefixime and ceftriaxone, contained an aspartic acid insertion (Asp-345a) in PBP 2 in conjunction with alterations of 4 to 10 amino acid residues in the C-terminal region of the transpeptidase domain of penA. In conclusion, an unambiguous association between penA mosaic alleles, in conjunction with genetic polymorphisms in mtrR, porB1b, and ponA, and greater reduced susceptibility to cefixime and ceftriaxone was identified.

  6. Fuentes de variabilidad en el diagnóstico de gastritis atrófica multifocal asociada con la infección por Helicobacter pylori1

    PubMed Central

    Bravo, Luis Eduardo; Bravo, Juan Carlos; Realpe, José Luis; Zarama, Guillermo; Piazuelo, MarÍa Blanca; Correa, Pelayo

    2014-01-01

    RESUMEN Introducción El mapeo de las diferentes regiones del estómago y el número de fragmentos de mucosa gástrica disponibles para evaluación histopatológica son fuentes importantes de variación en el momento de clasificar y hacer la gradación de la gastritis crónica. Objetivos Estimar la sensibilidad del número de fragmentos de mucosa gástrica necesarios para establecer los diagnósticos de gastritis atrófica con metaplasia intestinal (MI), displasia y estado de infección por Helicobacter pylori. Además evaluar la variabilidad intra-observador en la clasificación de estas lesiones precursoras del cáncer gástrico. Materiales y métodos En una cohorte de 6 años de seguimiento se evaluaron 1,958 procedimientos de endoscopia realizados por dos gastroenterólogos. En cada procedimiento y de cada participante se obtuvieron 5 biopsias de mucosa gástrica que representaban antro, incisura angularis y cuerpo. Un único patólogo hizo la interpretación histológica de las 5 biopsias y proporcionó un diagnóstico definitivo global que se utilizó como patrón de referencia. Cada fragmento de mucosa gástrica examinado condujo a un diagnóstico individual para cada biopsia que se comparó con el patrón de referencia. La variabilidad intra-observador se evaluó en 127 personas que corresponden a una muestra aleatoria de 20% del total de endoscopias hechas a los 72 meses de seguimiento. Resultados La sensibilidad del diagnóstico de MI y displasia gástrica aumentó de manera significativa con el número de fragmentos de mucosa gástrica evaluados El sitio anatómico de mayor sensibilidad para el diagnóstico de MI y displasia fue la incisura angularis. Para descubrir H. pylori se logró alta sensibilidad con el estudio de un solo fragmento de mucosa gástrica (95.9%) y fue independiente del sitio de obtención de la biopsia. El acuerdo intra-observador para el diagnóstico de gastritis crónica fue 86.1% con valor kappa de 0.79 IC 95% (0.76-0.85). Las

  7. Theoretical study of ligand and solvent effects on optical properties and stabilities of CdSe nanoclusters

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Zheng, Xianhong; He, Haitao; Chen, Xia; Dong, Biao; Fei, Rui

    2016-06-01

    It is of paramount importance to understand the ligand, solvent and temperature effects on the structure, growth and properties of quantum dot (QD) nanoclusters. In this work, using molecular models, we investigated the organic ligand effect on the geometric and electronic structure, stabilities and absorption spectra of CdnSen (n = 3, 6, 13) clusters by means of DFT and TDDFT calculations. The results indicate that the ligand can saturate dangling bonds on the cluster surface, which results in the charge redistribution, the opening of the HOMO-LUMO gap, stabilization of the cluster and a remarkable blue shift in the absorption peaks. When considering the solvent effect, the absorption peaks of clusters were found to blue shift further and in good agreement with the experimental results. The Cd13Se13 cluster displayed various stabilities in different states: weak polar ligands, low temperature and a strong polar agent are favorable for bulk-like Cd13Se13, whereas the reverse is favorable for cage-like Cd13Se13.

  8. Effect of metal oxide morphology on electron injection from CdSe quantum dots to ZnO

    NASA Astrophysics Data System (ADS)

    Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Chábera, Pavel; Abd El-sadek, Mahmoud S.; Pullerits, Tõnu

    2013-04-01

    Performance of quantum dot sensitized solar cells relies on a rapid electron injection from quantum dot to metal oxide. We studied the injection process in CdSe-ZnO system by ultrafast time-resolved absorption spectroscopy for two types of acceptor morphologies—nanowires and nanoparticles' films. Based on comparison between experimental data and Marcus theory, we demonstrate that the acceptor morphology has a significant impact on electron injection due to (i) change in material permittivity and (ii) different density of the band-edge states. The results open a reference to improve injection efficiency in quantum dot-metal oxide system by selection of the acceptor morphology.

  9. Bulk transport and interfacial transfer dynamics of photogenerated carriers in CdSe quantum dot solid electrodes.

    PubMed

    Yang, Ye; Liu, Zheng; Lian, Tianquan

    2013-08-14

    Practical solar-to-fuel conversion applications of quantum-confined semiconductor crystals require their integration into electrodes. We show that photogenerated electrons in quantum dot solid electrodes can be transported to the aqueous interface to reduce methyl viologen with 100% quantum efficiency and an effective time constant of 12 ± 2 ps. The charge separated state had a half-life of 200 ± 10 ns, limited by hole transport within the solid.

  10. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics

    NASA Astrophysics Data System (ADS)

    Chung, Heejae; Cho, Kyung-Sang; Koh, Weon-Kyu; Kim, Dongho; Kim, Jiwon

    2016-07-01

    Although Group II-VI quantum dots (QDs) have attracted much attention due to their wide range of applications in QD-based devices, the presence of toxic ions in II-VI QDs raises environmental concerns. To fulfill the demands of nontoxic QDs, synthetic routes for III-V QDs have been developed. However, only a few comparative analyses on optical properties of III-V QDs have been performed. In this study, the composition-related energetic trap distributions have been explored by using three different types of core/multishell QDs: CdSe-CdS (CdSe/CdS/ZnS), InP-ZnSe (InP/ZnSe/ZnS), and InP-GaP (InP/GaP/ZnS). It was shown that CdSe-CdS QDs have much larger trap densities than InP-shell QDs at higher energy states (at least 1Eg (band gap energy) above the lowest conduction band edge) based on probability density plots and Auger ionization efficiencies which are determined by analyses of photoluminescence blinking dynamics. This result suggests that the composition of encapsulated QDs is closely associated with the charge trapping processes, and also provides an insight into the development of more environmentally friendly QD-based devices.Although Group II-VI quantum dots (QDs) have attracted much attention due to their wide range of applications in QD-based devices, the presence of toxic ions in II-VI QDs raises environmental concerns. To fulfill the demands of nontoxic QDs, synthetic routes for III-V QDs have been developed. However, only a few comparative analyses on optical properties of III-V QDs have been performed. In this study, the composition-related energetic trap distributions have been explored by using three different types of core/multishell QDs: CdSe-CdS (CdSe/CdS/ZnS), InP-ZnSe (InP/ZnSe/ZnS), and InP-GaP (InP/GaP/ZnS). It was shown that CdSe-CdS QDs have much larger trap densities than InP-shell QDs at higher energy states (at least 1Eg (band gap energy) above the lowest conduction band edge) based on probability density plots and Auger ionization efficiencies which are determined by analyses of photoluminescence blinking dynamics. This result suggests that the composition of encapsulated QDs is closely associated with the charge trapping processes, and also provides an insight into the development of more environmentally friendly QD-based devices. Electronic supplementary information (ESI) available: Additional blinking traces, PL decay profile, PL spectra and fluorescence intensity lifetime distribution (FLID). See DOI: 10.1039/c5nr09291d

  11. White/blue-emitting, water-dispersible CdSe quantum dots prepared by counter ion-induced polymer collapse

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Goh, Jane Betty; Goh, M. Cynthia; Giri, Neeraj Kumar; Paige, Matthew F.

    2015-09-01

    The synthesis and characterization of water-dispersible, luminescent CdSe/ZnS semiconductor quantum dots that exhibit nominal "white" fluorescence emission and have potential applications in solid-state lighting is described. The nanomaterials, prepared through counter ion-induced collapse and UV cross-linking of high-molecular weight polyacrylic acid in the presence of appropriate aqueous inorganic ions, were of ∼2-3 nm diameter and could be prepared in gram quantities. The quantum dots exhibited strong luminescence emission in two bands, the first in the blue-region (band edge) of the optical spectrum and the second, a broad emission in the red-region (attributed to deep trap states) of the optical spectrum. Because of the relative strength of emission of the band edge and deep trap state luminescence, it was possible to achieve visible white luminescence from the quantum dots in aqueous solution and in dried, solid films. The optical spectroscopic properties of the nanomaterials, including ensemble and single-molecule spectroscopy, was performed, with results compared to other white-emitting quantum dot systems described previously in the literature.

  12. Preparation of II-VI semiconductor nanocrystallites in a glass matrix using chalcogenizing agent: Application to CdSe

    SciTech Connect

    Marc, J.L.; Granier, W.; Pradel, A.; Ribes, M.; Richard, T.; Allegre, J.; Lefebvre, P.

    1994-12-31

    A new route for preparing CdX (X = S, Se, Te, S+Se) nanocrystallites dispersed in a sodium borosilicate glass matrix from a hydrogel is proposed. Chalcogenizing complexing molecules -- for instance a mixture of NH{sub 4}SCN + H{sub 2}SeO{sub 3} -- introduced in the starting solution allowed an in situ crystallite preparation concomitant to gel densification. Prevention of crystallite oxidation is thus obtained. Moreover, coalescence is minimized because of the low gel-glass transition temperature. Low temperature absorption spectra have been interpreted in terms of exciton and electron-hole confinements, accounting for both an intrinsic broadening of energy states inside each nanocrystal and a Gaussian size distribution. Crystallite sizes and size dispersion can be adjusted by changing the initial Cd concentration. The crystallinity of the nanoparticles without change in dispersion is strongly improved by thermal treatment above the T{sub g} of the glass matrix.

  13. A study of optical absorption of cysteine-capped CdSe nanoclusters using first-principles calculations.

    PubMed

    Cui, Yingqi; Lou, Zhaoyang; Wang, Xinqin; Yu, Shengping; Yang, Mingli

    2015-04-14

    Understanding the size-dependent structures and properties of ligand-capped nanoclusters in solvent is of particular interest for the design, synthesis and application of II-VI colloidal QDs. Using DFT and TDDFT calculations, we studied the structure and optical property evolution of the cysteine-capped (CdSe)N clusters of N = 1-10, 13, 16 and 19 in gas, toluene, water and alkaline aqueous solution, and made a comparison with their corresponding bare clusters. The cysteine binds with (CdSe)Nvia several patterns depending on the medium they exist in, affecting the cluster structures and in consequence their optical absorption. In general, the absorption bands of (CdSe)N blueshift when cysteine is added, and the shift varies with the interaction strength between the cluster and the ligand, and the dielectric constant of the solvent. However, bare clusters retain their size sensitivity, in particular the redshift trend with increasing cluster size, and some similarity was noted for the optical absorption of the bare and ligated clusters regardless of the gas or solvent media. Population analysis reveals that the excitations are mainly from orbitals distributing on the (CdSe)N part, while the ligand is negligibly involved in the excitations. This is an important feature for the II-VI QDs as biosensors with which the information of biomolecules is detected from the size dependent optical absorption or emission of the QDs other than the biomolecules. PMID:25761258

  14. Organic/inorganic hybrid pn-junction between copper phthalocyanine and CdSe quantum dot layers as solar cells

    NASA Astrophysics Data System (ADS)

    Saha, Sudip K.; Guchhait, Asim; Pal, Amlan J.

    2012-08-01

    We have introduced an organic/inorganic hybrid pn-junction for solar cell applications. Layers of II-VI quantum dots and a metal-phthalocyanine in sequence have been used as n- and p-type materials, respectively, to form a junction. The film of quantum dots has been formed through a layer-by-layer process by replacing the long-chain ligands of the nanoparticles in each ultrathin layer or a monolayer with short-chain ones so that interparticle distance becomes small leading to a decrease in resistance of the quantum dot layer. With indium tin oxide and Au as electrodes, we have formed an inverted sandwiched structure. These electrodes formed ohmic contacts with the neighboring materials. From the current-voltage characteristics of the hybrid heterostructure, we have inferred formation of a depletion region at the pn-junction that played a key role in charge separation and correspondingly a photocurrent in the external circuit. For comparison, we have also formed and characterized Schottky devices based on components of the pn-junction keeping the electrode combination same. From capacitance-voltage characteristics, we have observed that the depletion region of the hybrid pn-junction was much wider as compared to that in Schottky devices based on components of the junction.

  15. Correlated blinking via time dependent energy transfer in single CdSe quantum dot-dye nanoassemblies

    NASA Astrophysics Data System (ADS)

    Gerlach, Frank; Täuber, Daniela; von Borczyskowski, Christian

    2013-05-01

    Optical confocal spectroscopy on self-assembled single nanoassemblies from CdSe/ZnS quantum dots (QD) and perylene diimide dye molecules demonstrates efficient Förster resonance energy transfer (FRET). Intramolecular dynamics of the flexible dye molecule change the FRET efficiency in course of the detection period of several minutes. This can be followed by correlated observations of luminescence intensities and related spectral shifts of both constituents. Contrary to several experiments on similar assemblies, the FRET efficiencies are by almost one order of magnitude larger in the non-polar liquid solvent TEHOS as compared e.g. to toluene. Experimental and theoretically expected efficiencies are in close agreement with each other.

  16. Elimination of deep surface traps in charged colloidal PbS and CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Voznyy, Oleksandr; Thon, Susanna; Ip, Alex; Sargent, Edward

    2013-03-01

    Colloidal quantum dots (CQDs) offer a promising path towards high efficiency, scalable, solution and room processed photovoltaics and electronics. Their promise is curtailed today by difficulty of doping, inefficient transport, nonradiative recombination, and blinking, all generally attributed to electronic trap formation. Using first-principles simulations on off-stoichiometric colloidal quantum dots, we show that preparing a CQD free of traps is possible. However, self-compensating defects can form deep electronic trap states in response to charging or doping even in the most idealized CQDs. Surface traps arise from atomic dimers whose energy levels reside within the bandgap. The same states can also form upon photoexcitation, providing an atomistic mechanism for blinking. We show that avoiding the trap formation upon doping is possible by incorporation of select cations on the surface which shift the dimer energy levels above the quantum-confined bandedge.

  17. Interband optical transition energy and oscillator strength in a lead based CdSe quantum dot quantum well heterostructure

    SciTech Connect

    Saravanamoorthy, S. N.; Peter, A. John

    2015-06-24

    Binding energies of the exciton and the interband optical transition energies are studied in a CdSe/Pb{sub 1-x}Cd{sub x}Se/CdSe spherical quantum dot-quantum well nanostructure taking into account the geometrical confinement effect. The core and shell are taken as the same material. The initial and final states of energy and the overlap integrals of electron and hole wave functions are determined by the oscillator strength. The oscillator strength and the radiative transition life time with the dot radius are investigated for various Cd alloy content in the core and shell materials.

  18. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    SciTech Connect

    Singh, U. B.; Pandey, M. B.; Dhar, R; Pandey, A. S.; Kumar, S.; Dabrowski, R.

    2014-11-15

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature.

  19. A study of specific features of the electronic spectrum of quantum dots in CdSe semiconductor

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. I.; Kabanov, V. F.; Gorbachev, I. A.; Glukhovskoi, E. G.

    2016-08-01

    Monolayers of CdSe/CdS/ZnS quantum dots (QDs) formed on the aqueous subphase and transferred to solid substrates by the Langmuir-Blodgett method have been studied. The samples obtained were examined by transmission electron microscopy, atomic-force microscopy, and scanning tunnel microscopy. The structure of the QD monolayer obtained on the substrate was analyzed. Specific features of the electronic spectrum of the quantum objects formed in the samples under study were determined.

  20. Estudio teórico de la desorción de Na y K de SiO2 estimulada por la acción de fotones o electrones

    NASA Astrophysics Data System (ADS)

    Domínguez Ariza, D.; López, N.; Illas, F.; Pacchioni, G.; Madey, T. E.

    Se ha estudiado el mecanismo de generación de sodio y potasio atómico a partir de muestras de SiO2 utilizando cálculos basados tanto en la teoría del funcional de la densidad como en métodos post-Hartree Fock, así como en el método de cluster para modelar el sólido. Como consecuencia del estudio se han propuesto distintos caminos posibles para la desorción, estimulada por la acción de fotones o electrones, de sodio y potasio desde el óxido de silicio, proporcionando por lo tanto una explicación a la atmósfera tenue de sodio y potasio de La Luna.

  1. Long-term RNA persistence of porcine rubulavirus (PorPV-LPMV) after an outbreak of a natural infection: the detection of viral mRNA in sentinel pigs suggests viral transmission.

    PubMed

    Cuevas-Romero, S; Hernández-Baumgarten, E; Kennedy, S; Hernández-Jáuregui, P; Berg, M; Moreno-López, J

    2014-08-01

    The persistence of porcine rubulavirus (PorPV-LPMV) in five pigs that had survived an outbreak of a natural infection was determined. After the resolution of the outbreak, each animal was housed in an isolation pen together with one sentinel pig. Approximately every 2 months thereafter one group of animals was euthanized and tissue samples taken for virological and serological analysis. Infectious virus was not isolated from any samples; antibodies to PorPV-LPMV were detected in convalescent pigs by virus neutralisation test and blocking ELISA but not in sentinel pigs. PorPV-LPMV mRNA of the nucleoprotein (NP) and phosphoprotein (P) genes was detected by a nested polymerase chain reaction (nPCR) in samples of trigeminal and optic nerves, cervical spinal cord, tonsils, salivary gland, lung and pancreas from convalescent pigs. mRNA was also detected in the midbrain, corpus callosum, or olfactory bulb in four out of five pigs by nRT-PCR, this result was confirmed by the sequencing of a 260bp PCR product of P gene region. The highest average viral copies/μg of total RNA occurred in the olfactory bulb and pancreas tissues of convalescent pigs and midbrain, tonsil and pancreas of sentinel pigs housed with the convalescent pigs. Satellitosis and gliosis of the midbrain, olfactory bulb, corpus callosum, medulla oblongata or choroid plexus were microscopically observed in four convalescent pigs. The control pig remained negative in all tests. The results indicate that PorPV-LPMV mRNA persists and induces a durable humoral immune response in pigs that have recovered from a natural infection. After a possible reactivation of the virus, it was transmitted to sentinel pigs in contact with the convalescent pigs.

  2. Comparación de resultados del método de clasificación de órbitas por análisis de frecuencias con el método de exponentes de Lyapunov

    NASA Astrophysics Data System (ADS)

    Carpintero, D. D.; Muzzio, J. C.; Wachlin, F. C.

    Hemos realizado extensas comparaciones del método de análisis de frecuencias con el de exponentes de Lyapunov. El primero resulta claramente superior por las siguientes razones: 1) permite distinguir distintos tipos de órbitas y no sólo si son regulares o caóticas 2) es mucho más veloz requiriendo mucho menos tiempo de cómputo. La concordancia de resultados es, en general, buena y se discuten algunas discrepancias.

  3. HRM confirmation of Neisseria gonorrhoeae in clinical specimens by G→A (position 857) mutation detection in the 16S rRNA gene before sequencing and after porA confirmation.

    PubMed

    Gurtler, Volker; Mayall, Barrie C; Wang, Jenny

    2012-05-01

    A total of 2273 specimens submitted to the Austin Hospital Pathology Service for Neisseria gonorrhoeae screening between September 1, 2009 and May 11, 2011 were used in this study. Specimens were simultaneously screened and confirmed with a previously published real time PCR assay for the opa gene (extra primers were included to increase sensitivity) and the porA gene respectively. The opa gene screen and initial porA gene confirmation yielded an N. gonorrhoeae positivity rate of 0.88% (20/2273) and 0.49% (11/2191) for specimens and patients respectively. A 16S rDNA High Resolution Melt confirmatory PCR was developed subsequently; this reduced the N. gonorrhoeae positivity rate to 0.35% (8/2273) and 0.27% (6/2191) for specimens and patients respectively (not altered by 16S sequencing). The higher rate of secondary confirmation (16S HRM) in patients compared with samples was due to the detection of species other than N. gonorrhoeae detected by the initial screening and confirmation test. This underlines the importance of performing the secondary confirmatory test that has been developed in this study.

  4. La inserción en el mercado laboral de los inmigrantes latinos en España y en los Estados Unidos: Diferencias por país de origen y estatus legal

    PubMed Central

    Connor, Phillip; Massey, Douglas

    2013-01-01

    Resumen Este artículo compara los resultados económicos entre los inmigrantes latinoamericanos en España y Estados Unidos. Detectamos un efecto de selección por el que la mayoría de los inmigrantes latinoamericanos en España proceden de Sudamérica de un entorno de clases medias, mientras la mayoría de los inmigrantes que van a los Estados Unidos son centroamericanos de clase baja. Este efecto de selección explica las diferencias transnacionales en la probabilidad de empleo, logro ocupacional y salarios obtenidos. A pesar de las diferencias en los orígenes y las características de los latinoamericanos en ambos países, los factores demográficos, humanos y de capital social parecen operar de forma similar en ambos países; y cuando los modelos se estiman separadamente por estatus legal, descubrimos que los efectos se acentúan más entre los inmigrantes irregulares cuando se los compara con los regulares, especialmente en Estados Unidos. PMID:24532857

  5. Aquisição fonológica do português brasileiro por crianças ouvintes bilíngues bimodais e surdas usuárias de implante coclear

    PubMed Central

    Cruz, Carina Rebello; Finger, Ingrid

    2014-01-01

    Resumo O presente estudo investiga a aquisição fonológica do Português Brasileiro (PB) por 24 crianças ouvintes bilíngues bimodais, com acesso irrestrito à Língua Brasileira de Sinais (Libras), e por 6 crianças surdas que utilizam implante coclear (IC), com acesso restrito ou irrestrito à Libras. Para a avaliação do sistema fonológico das crianças em PB, foi utilizada a Parte A, Prova de Nomeação, do ABFW – Teste de Linguagem Infantil (ANDRADE et al. 2004). Os resultados revelaram que as crianças ouvintes bilíngues bimodais e a criança surda usuária de IC com acesso irrestrito à Libras apresentaram processo de aquisição fonológica esperada (normal) para a sua faixa etária. Considera-se que a aquisição precoce e o acesso irrestrito à Libras podem ter sido determinantes para o desempenho dessas crianças no teste oral utilizado. PMID:25506105

  6. The Understanding of Astronomy Concepts by Students from Basic Education of a Public School. (Spanish Title: El Entendimiento de Conceptos de Aastronmía Por Los Alumnos de Educación Básica en Una Escuela Pública.) O Entendimento de Conceitos de Astronomia Por Alunos da Educação Básica: O Caso de Uma Escola Pública Brasileira

    NASA Astrophysics Data System (ADS)

    Iria Machado, Daniel; dos Santos, Carlos

    2011-07-01

    We present the results obtained in a research on the comprehension of basic astronomical concepts, in which 561 students from fifth grade middle school to third grade high school of a public school of the city of Foz do Iguaçu (Brazil) took part. A test with 20 multiple-choice questions was applied to indentify the most common conceptions expressed by the students. This test was elaborated based on the literature about misconceptions and covered the following topics: the day-night cycle; the time zones; the seasons of the year; the phases of the Moon; the movement of the Moon; the apparent movement of the Sun in the celestial sphere; the eclipses; the dimensions and distances in the Universe; the brightness of the stars and its observation from Earth. Though a small progress was verified in the proportion of scientifically acceptable answers when comparing the eighth grade of middle school to the fifth, and the third grade of high school to the first, there was an overall predominance of alternative conceptions regarding most of the explored subjects, which persisted up to the last year of secondary school. The comparison to data found in this research made in other socio-cultural contexts revealed, in many aspects, similar notions and difficulties revealed by the students. Se presentan los resultados de una investigación sobre la comprensión de conceptos astronómicos básicos, en la cual participaron 561 estudiantes que cursaban entre el quinto grado de la enseñanza primaria y el tercer año de la enseñanza secundaria de una escuela pública de la ciudad de Foz do Iguaçu (Brasil). Se utilizó un test de 20 preguntas de opción múltiple para identificar las concepciones más comunes expresadas por los estudiantes. Este instrumento de recolección de datos se desarrolló en base a la literatura sobre las concepciones alternativas y trató los siguientes temas: el ciclo día-noche, los husos horarios, las estaciones del año, las fases de la Luna, el

  7. The Understanding of Astronomy Concepts by Students from Basic Education of a Public School. (Spanish Title: El Entendimiento de Conceptos de Aastronmía Por Los Alumnos de Educación Básica en Una Escuela Pública.) O Entendimento de Conceitos de Astronomia Por Alunos da Educação Básica: O Caso de Uma Escola Pública Brasileira

    NASA Astrophysics Data System (ADS)

    Iria Machado, Daniel; dos Santos, Carlos

    2011-07-01

    We present the results obtained in a research on the comprehension of basic astronomical concepts, in which 561 students from fifth grade middle school to third grade high school of a public school of the city of Foz do Iguaçu (Brazil) took part. A test with 20 multiple-choice questions was applied to indentify the most common conceptions expressed by the students. This test was elaborated based on the literature about misconceptions and covered the following topics: the day-night cycle; the time zones; the seasons of the year; the phases of the Moon; the movement of the Moon; the apparent movement of the Sun in the celestial sphere; the eclipses; the dimensions and distances in the Universe; the brightness of the stars and its observation from Earth. Though a small progress was verified in the proportion of scientifically acceptable answers when comparing the eighth grade of middle school to the fifth, and the third grade of high school to the first, there was an overall predominance of alternative conceptions regarding most of the explored subjects, which persisted up to the last year of secondary school. The comparison to data found in this research made in other socio-cultural contexts revealed, in many aspects, similar notions and difficulties revealed by the students. Se presentan los resultados de una investigación sobre la comprensión de conceptos astronómicos básicos, en la cual participaron 561 estudiantes que cursaban entre el quinto grado de la enseñanza primaria y el tercer año de la enseñanza secundaria de una escuela pública de la ciudad de Foz do Iguaçu (Brasil). Se utilizó un test de 20 preguntas de opción múltiple para identificar las concepciones más comunes expresadas por los estudiantes. Este instrumento de recolección de datos se desarrolló en base a la literatura sobre las concepciones alternativas y trató los siguientes temas: el ciclo día-noche, los husos horarios, las estaciones del año, las fases de la Luna, el

  8. One-step purification and porin transport activity of the major outer membrane proteins P2 from Haemophilus influenzae, FomA from Fusobacterium nucleatum and PorB from Neisseria meningitidis.

    PubMed

    Kattner, Christof; Pfennig, Sabrina; Massari, Paola; Tanabe, Mikio

    2015-03-01

    Bacterial porins are major outer membrane proteins that function as essential solute transporters between the bacteria and the extracellular environment. Structural features of porins are also recognized by eukaryotic cell receptors involved in innate and adaptive immunity. To better investigate the function of porins, proper refolding is necessary following purification from inclusion bodies [1, 2]. Using a single-step size exclusion chromatographic method, we have purified three major porins from pathogenic bacteria, the OmpP2 (P2) from Haemophilus influenzae, FomA from Fusobacterium nucleatum and PorB from Neisseria meningitidis, at high yield and report their unique solute transport activity with size exclusion limit. Furthermore, we have optimized their purification method and achieved improvement of their thermostability for facilitating functional and structural analyses.

  9. Las líneas de aluminio neutro como diagnóstico cromosférico

    NASA Astrophysics Data System (ADS)

    Fernández Borda, R.; Mauas, P. J. D.

    Se presenta un modelo atómico para el cálculo de las lí neas del Aluminio neutro que se forman en la cromósfera solar. En particular, se estudia la línea λ 3961 Å, que, por estar muy próxima a la lí nea H del Ca II y a Hɛ es muy frecuentemente observada. Observaciones en esta lí nea obtenidas con el espectrógrafo a instalarse en el CASLEO, serán utilizadas para el estudio de fulguraciones solares.

  10. Characterization of fHbp, nhba (gna2132), nadA, porA, sequence type (ST), and genomic presence of IS1301 in group B meningococcal ST269 clonal complex isolates from England and Wales.

    PubMed

    Lucidarme, Jay; Comanducci, Maurizio; Findlow, Jamie; Gray, Stephen J; Kaczmarski, Edward B; Guiver, Malcolm; Kugelberg, Elisabeth; Vallely, Pamela J; Oster, Philipp; Pizza, Mariagrazia; Bambini, Stefania; Muzzi, Alessandro; Tang, Christoph M; Borrow, Ray

    2009-11-01

    Highly effective glycoconjugate vaccines exist against four of the five major pathogenic groups of meningococci: A, C, W-135, and Y. An equivalent vaccine against group B meningococci (menB) has remained elusive due to the poorly immunogenic capsular polysaccharide. A promising alternative, the investigational recombinant menB (rMenB)- outer membrane vesicle (OMV) vaccine, contains fHBP, NHBA (previously GNA2132), NadA, and outer membrane vesicles (OMVs) from the New Zealand MeNZB vaccine. MenB currently accounts for 90% of meningococcal disease in England and Wales, where the multilocus sequence type (ST) 269 (ST269) clonal complex (cc269) has recently expanded to account for a third of menB cases. To assess the potential cc269 coverage of the rMenB-OMV vaccine, English and Welsh cc269 isolates from the past decade were genetically characterized with respect to fHBP, NHBA, and NadA. All of the isolates harbored fHbp and nhba alleles, while 98% of the cc269 isolates were devoid of nadA. Subvariant profiling of fHbp, nhba, and porA against STs revealed the presence of two broadly distinct and well-defined clusters of isolates, centered around ST269 and ST275, respectively. An additional molecular marker, insertion sequence IS1301, was found to be present in 100% and <2% of isolates of the respective clusters. On the basis of the genetic data, the potential rMenB-OMV coverage of cc269 in England and Wales is high (up to 100%) within both clusters. Expression studies and serum bactericidal antibody assays will serve to enhance predictions of coverage and will augment ongoing studies regarding the significance of IS1301 within the ST269 cluster.

  11. Hybrid systems of AlInP microdisks and colloidal CdSe nanocrystals showing whispering-gallery modes at room temperature

    SciTech Connect

    Strelow, Christian; Weising, Simon; Bonatz, Dennis; Mews, Alf; Kipp, Tobias; Penttinen, Jussi-Pekka; Hakkarainen, Teemu V.; Schramm, Andreas

    2014-09-01

    We report on the realization of hybrid systems composed of passive optical microdisk resonators prepared from epitaxial layer systems and nanocrystal quantum emitters synthesized by colloidal chemistry. The AlInP disk material allows for the operation in the visible range, as probed by CdSe-based nanocrystals. Photoluminescence spectra at room temperature reveal sets of whispering-gallery modes consistent with finite-difference time-domain simulations. In the experiments, a special sample geometry renders it possible to detect resonant optical modes perpendicular to the disk plane.

  12. Biodistribution and stability of CdSe core quantum dots in mouse digestive tract following per os administration: Advantages of double polymer/silica coated nanocrystals

    SciTech Connect

    Loginova, Y.F.; Dezhurov, S.V.; Zherdeva, V.V.; Kazachkina, N.I.; Wakstein, M.S.; Savitsky, A.P.

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer New QDs coated with combination of polythiol ligands and silica shell were synthesized. Black-Right-Pointing-Pointer We examine the QDs stability in digestive tract of mice after per os administration. Black-Right-Pointing-Pointer The polymer/silica shell prevents QDs degradation and fluorescence quenching in vivo. -- Abstract: CdSe-core, ZnS-capped semiconductor quantum dots (QDs) are of great potential for biomedical applications. However, applications in the gastrointestinal tract for in vivo imaging and therapeutic purposes are hampered by their sensitivity to acidic environments and potential toxicity. Here we report the use of coatings with a combination of polythiol ligands and silica shell (QDs PolyT-APS) to stabilize QDs fluorescence under acidic conditions. We demonstrated the stability of water-soluble QDs PolyT-APS both in vitro, in strong acidic solutions, and in vivo. The biodistribution, stability and photoluminescence properties of QDs in the gastrointestinal tract of mice after per os administration were assessed. We demonstrated that QDs coated with current traditional materials - mercapto compounds (QDs MPA) and pendant thiol group (QDs PolyT) - are not capable of protecting QDs from chemically induced degradation and surface modification. Polythiol ligands and silica shell quantum dots (QDs PolyT-APS) are suitable for biological and biomedical applications in the gastrointestinal tract.

  13. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

    PubMed

    Ramos-Ruiz, Adriana; Zeng, Chao; Sierra-Alvarez, Reyes; Teixeira, Luiz H; Field, Jim A

    2016-11-01

    This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity. PMID:27494313

  14. Sub-picosecond spin relaxation of bright excitons and imbalance suppression in asymmetric Cdse/Zns nanocrystal quantum dots under an applied magnetic field.

    PubMed

    Kyhm, Kwangseuk; Kim, Jihoon; Yang, Ho-Soon; Je, Koo-Chul; Murayama, Akihiro

    2012-03-01

    The ultrafast spin dynamics of the bright exciton in CdSe/ZnS nanocrystal quantum dots has been investigated using a circularly polarized pump-probe experiment. A remarkably fast spin flip (-500 fs) of the bright exciton was observed at 4 K, which is attributed to the anisotropic electron-hole exchange interaction and the random positioning of nanocrystal quantum dots. In the presence of an applied magnetic field (5 T), the exciton spin parallel to the external magnetic field was favored due to Zeeman splitting. We found that this imbalance can possibly be suppressed by the state-blocking and the mixing of the 1(L) and 1(U) states in asymmetric quantum dots.

  15. Optical studies of carriers’ vertical transport in the alternately-strained ZnS{sub 0.4}Se{sub 0.6}/CdSe superlattice

    SciTech Connect

    Evropeytsev, E. A. Sorokin, S. V.; Gronin, S. V.; Sedova, I. V.; Klimko, G. V.; Ivanov, S. V.; Toropov, A. A.

    2015-03-15

    We present the results of theoretical modelling and experimental optical studies of the alternatively-strained CdSe/ZnS{sub y}Se{sub 1−y} (y = 0.4) superlattice (SL) with effective band-gap E{sub g}{sup eff} ∼ 2.580 eV and a thickness of ∼300 nm, which was grown by molecular-beam epitaxy on a GaAs substrate. The thicknesses and composition of the layers of the superlattice are determined on the basis of the SL minibands parameters calculated implying both full lattice matching of the SL as a whole to a GaAs substrate and high efficiency of photoexcited carriers transport along the growth axis. Photoluminescence studies of the transport properties of the structure (including a superlattice with one enlarged quantum well) show that the characteristic time of the diffusion of charge carriers at 300 K is shorter than the times defined by recombination processes. Such superlattices seem to be promising for the formation of a wide-gap photoactive region in a multijunction solar cell, which includes both III–V and II–VI compounds.

  16. 'Giant' multishell CdSe nanocrystal quantum dots with supporessed blinking: novel fluorescent probes for real-time detection of single-molecule events

    SciTech Connect

    Hollingsworth, Jennifer A; Vela, Javier; Htoon, Han; Klimov, Victor I; Casson, Amy R; Chen, Yongfen

    2009-01-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent ofNQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell. Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and lhat on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd.Znl.'S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  17. Description of the fluorescence intensity time trace of collections of CdSe nanocrystal quantum dots based on single quantum dot fluorescence blinking statistics.

    PubMed

    Chung, Inhee; Witkoskie, James B; Cao, Jianshu; Bawendi, Moungi G

    2006-01-01

    This paper analyzes the observed phenomenology of the fluorescence time trace of collections of quantum dots (QDs) in terms of the model parameters that characterize the fluorescence blinking statistics of single QDs. We demonstrate that the non-universal dynamics that appear in fluorescence time traces of collections of QDs at short time scales are related to the universal dynamics that appear at longer time scales. We explore how the extent of time separation between the short and long dynamics affects the transition region and the dynamics at longer time scales. We suggest a methodology to extract single QD statistical model parameters from experimental fluorescence time traces of collections of QDs. We explore theoretical time traces and their experimental analogs for three different cases that span the diverse nonuniversal dynamics that appear at short time scales.

  18. 'Giant' multishell CdSe nanocrystal quantum dots with suppressed blinking: Novel fluorescent probes for real-time detection of single-molecule events.

    PubMed

    Hollingsworth, Jennifer A; Vela, Javier; Chen, Yongfen; Htoon, Han; Klimov, Victor I; Casson, Amy R

    2009-03-01

    We reported for the first time that key nanocrystal quantum dot (NQD) optical properties-quantum yield, photobleaching and blinking-can be rendered independent of NQD surface chemistry and environment by growth of a very thick, defect-free inorganic shell (Chen, et al. J. Am. Chem. Soc. 2008). Here, we show the precise shell-thickness dependence of these effects. We demonstrate that 'giant-shell' NQDs can be largely non-blinking for observation times as long as 54 minutes and that on-time fractions are independent of experimental time-resolution from 1-200 ms. These effects are primarily demonstrated on (CdSe)CdS (core)shell NQDs, but we also show that alloyed shells comprising Cd(x)Zn(1-x)S and terminated with a non-cytotoxic ZnS layer exhibit similar properties. The mechanism for suppressed blinking and dramatically enhanced stability is attributed to both effective isolation of the NQD core excitonic wavefunction from the NQD surface, as well as a quasi-Type II electronic structure. The unusual electronic structure provides for effective spatial separation of the electron and hole into the shell and core, respectively, and, thereby, for reduced efficiencies in non-radiative Auger recombination.

  19. Purification non-aqueous solution of quantum dots CdSe- CdS-ZnS from excess organic substance-stabilizer by use PE- HD membrane

    NASA Astrophysics Data System (ADS)

    Kosolapova, K.; Al-Alwani, A.; Gorbachev, I.; Glukhovskoy, E.

    2015-11-01

    Recently, a new simple method for the purification of CdSe-CdS-ZnS quantum dots by using membrane filtration, the filtration process, successfully separated the oleic acid from quantum dots through membranes purification after synthesis; purification of quantum dots is a very significant part of post synthetical treatment that determines the properties of the material. We explore the possibilities of the Langmuir-Blodgett technique to make such layers, using quantum dots as a model system. The Langmuir monolayer of quantum dots were then investigated the surface pressure-area isotherm. From isotherm, we found the surface pressure monolayer changed with time.

  20. Effect of deposition temperature on the structural and optical properties of CdSe thin films synthesised by chemical bath deposition

    SciTech Connect

    Mohammed, Mudhafer Ali

    2013-12-16

    Cadmium selenide thin films were synthesized on glass substrates using chemical bath technique (CBD) at temperatures 320K, 330K, 340K,and 350K. The polycrystalline nature of the material was confirmed by X-ray diffraction technique and various structural parameters such as lattice parameters, grain size, dislocation density, and micro strain. The root mean square (RMS) roughness was obtained by using atomic force microscopy(AFM), which indicated a decreasing average roughness with the decrease of the bath temperature. Optical properties were carried out by UV-Visible transmittance spectra, and the band gap energy was determined.

  1. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

    PubMed

    Ramos-Ruiz, Adriana; Zeng, Chao; Sierra-Alvarez, Reyes; Teixeira, Luiz H; Field, Jim A

    2016-11-01

    This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity.

  2. Eficacia de la detección sistemática de la gripe en las fronteras en los viajeros que llegan por vía aérea*

    PubMed Central

    Priest, Patricia C.; Jennings, Lance C.; Duncan, Alasdair R.; Brunton, Cheryl R.; Baker, Michael G.

    2015-01-01

    Objetivos. Se midieron los síntomas y la prevalencia de la gripe (también llamada influenza), así como la eficacia del mecanismo de detección sistemática basado en los síntomas y la temperatura para diagnosticar la gripe en viajeros internacionales que llegaban por vía aérea. Métodos. El presente estudio transversal recopiló datos de viajeros que llegaron al aeropuerto internacional de Christchurch (Nueva Zelandia) en el invierno del 2008 mediante un cuestionario de salud, medición de la temperatura y toma de muestras de las vías respiratorias. Resultados. De los viajeros, 15 976 (68%) entregaron los formularios completos. De ellos, 17% notificaron al menos un síntoma de gripe; los síntomas más comunes fueron rinorrea o congestión nasal (10%) y tos (8%). Se tomaron muestras de las vías respiratorias de 3 769 viajeros. La prevalencia estimada de la gripe fue de 1,1% (4% en las personas sintomáticas, 0,2% en las asintomáticas). La sensibilidad de los criterios de detección varió de 84% para “cualquier síntoma” a 3% para la fiebre de 37,8 °C o mayor. El valor predictivo positivo fue bajo para todos los criterios. Conclusiones. El método de detección sistemática en las fronteras mediante la autonotificación de síntomas y la toma de la temperatura presenta limitaciones para impedir que una gripe pandémica entre en un país. Basarse en criterios como “cualquier síntoma” o la tos haría que se investigara a varias personas no infectadas, mientras que algunas personas infectadas pasarían inadvertidas. Si se usaran criterios más específicos como la fiebre, la mayoría de las personas infectadas entrarían en el país a pesar del mecanismo de detección.

  3. Neisseria gonorrhoeae antimicrobial susceptibility in Barcelona: penA, ponA, mtrR, and porB mutations and NG-MAST sequence types associated with decreased susceptibility to cephalosporins.

    PubMed

    Serra-Pladevall, J; Barberá, M J; Rodriguez, S; Bartolomé-Comas, R; Roig, G; Juvé, R; Andreu, A

    2016-09-01

    The aims of this study were to determine the antimicrobial susceptibility of Neisseria gonorrhoeae (NG) in our area, to analyze the molecular mechanisms involved in cephalosporins resistance, and to undertake molecular typing of our NG strains. Antimicrobial susceptibility was determined using the Etest. The genes penA, mtrR, penB, and ponA were studied. Molecular typing was performed by N. gonorrhoeae multiantigen sequence typing. Of 329 strains analyzed in 2013, none showed high-level cephalosporin resistance, but 8.2 % had resistance to cefixime [minimum inhibitory concentration (MIC) > 0.125 μg/mL] and 0.6 % to ceftriaxone (MIC > 0.125 μg/mL). Azithromycin resistance was documented in 4.3 % and ciprofloxacin resistance in 49.2 %. Among 48 strains with an MIC ≥ 0.125 μg/mL to cefixime, 58.3 % showed the penA mosaic pattern XXXIV, 98 % a Leu → Pro substitution at position 421 of the ponA gene, 100 % amino acid changes at positions 101 and 102 of the PorB1b porin, and 87.5 % of strains an adenine deletion in the promoter region of the MtrC-D-E efflux pump. A significant difference between strains with and without decreased cephalosporin susceptibility (MIC ≥ 0.125 μg/mL) was observed for these four genes. Of the 48 strains with an MIC ≥ 0.125 μg/mL to cefixime, 43.8 % belonged to the genogroup G1407 and 27.1 % belonged to the genogroup G2400. A significant association of G1407 with decreased susceptibility (MIC ≥ 0.125 μg/mL) and G2992 with susceptibility was found, and also between G1407 and mosaic pattern XXXIV and between G2400 and A501T substitution in penA. The NG resistance rate in our area is higher than the median of Europe. We have detected the emergence of G2400, which may be a source of antimicrobial resistance. PMID:27255221

  4. Construction and Functional Activities of Chimeric Mouse-Human Immunoglobulin G and Immunoglobulin M Antibodies against the Neisseria meningitidis PorA P1.7 and P1.16 Epitopes

    PubMed Central

    Michaelsen, Terje E.; Ihle, Øistein; Beckstrøm, Karen Johanne; Herstad, Tove K.; Kolberg, Jan; Høiby, E. Arne; Aase, Audun

    2003-01-01

    We studied the in vitro protective activities of human immunoglobulin G1 (IgG1), IgG3, and IgM antibodies against group B meningococci by constructing sets of chimeric mouse-human antibodies (chIgG1, chIgG3, and chIgM, respectively) with identical binding regions against the P1.7 and P1.16 epitopes on PorA. This was done by cloning the V genes of three mouse hybridoma antibodies and subsequently transfecting vectors containing the homologous heavy- and light-chain genes into NSO cells. Cell clones secreting intact human chIgG1, chIgG3, or chIgM antibodies originating from three parent mouse antibodies were isolated. The functional affinities appeared to be similar for all human isotypes and surprisingly also for the pentameric chIgM antibody. chIgG1 exhibited greater serum bactericidal activity (SBA) than chIgG3, while chIgG3 was more efficient in inducing a respiratory burst (RB) associated with opsonophagocytosis than chIgG1 was. On the other hand, chIgM exhibited SBA similar to that of chIgG1, but it exhibited much higher RB activity than chIgG3 and chIgG1 exhibited. The antibodies against the P1.16 epitope were more efficient in terms of SBA than the antibodies against the P1.7 epitope were; thus, 10- to 40-fold-lower concentrations of antibodies against P1.16 than of antibodies against P1.7 were needed to induce SBA. On the other hand, antibodies against these epitopes were equally effective in inducing RB. Our results revealed differences in the functional activities of human chIgG1, chIgG3, and chIgM antibodies against meningococci, which might influence their protective effects against meningococcal disease. PMID:14500492

  5. Characterization of fHbp, nhba (gna2132), nadA, porA, and sequence type in group B meningococcal case isolates collected in England and Wales during January 2008 and potential coverage of an investigational group B meningococcal vaccine.

    PubMed

    Lucidarme, Jay; Comanducci, Maurizio; Findlow, Jamie; Gray, Stephen J; Kaczmarski, Edward B; Guiver, Malcolm; Vallely, Pamela J; Oster, Philipp; Pizza, Mariagrazia; Bambini, Stefania; Muzzi, Alessandro; Borrow, Ray

    2010-06-01

    Invasive disease caused by meningococcal capsular groups A, C, W-135, and Y is now preventable by means of glycoconjugate vaccines that target their respective polysaccharide capsules. The capsule of group B meningococci (MenB) is poorly immunogenic and may induce autoimmunity. Vaccines based on the major immunodominant surface porin, PorA, are effective against clonal epidemics but, thus far, have a limited scope of coverage against the wider MenB population at large. In an alternative approach, the first-generation, investigational, recombinant MenB (rMenB) plus outer membrane vesicle (OMV) (rMenB-OMV) vaccine contains a number of relatively conserved surface proteins, fHBP, NHBA (previously GNA2132), and NadA, alongside PorA P1.4-containing OMVs from the New Zealand MeNZB vaccine. MenB currently accounts for approximately 90% of cases of meningococcal disease in England and Wales. To assess potential rMenB-OMV vaccine coverage of pathogenic MenB isolates within this region, all English and Welsh MenB case isolates from January 2008 (n = 87) were genetically characterized with respect to fHBP, NHBA, NadA, and PorA. Alleles for fHbp, nhba, and porA were identified in all of the isolates, of which 22% were also found to harbor nadA alleles. On the basis of genotypic data and predicted immunological cross-reactivity, the potential level of rMenB-OMV vaccine coverage in England and Wales ranges from 66% to 100%.

  6. Electron Irradiation Effects on Nanocrystal Quantum Dots Used in Bio-Sensing Applications

    NASA Technical Reports Server (NTRS)

    Leon, R.; Nadeau, J.; Evans, K.; Paskova, T.; Monemar, B.

    2004-01-01

    Effects of electron irradiation on some of the optical properties in organic CdSe nanocrystals coated in trioctylphosphine oxide (TOPO) and biologically compatible CdSe nanocrystals coated in mercaptoacetic acid, as CdSe as CdSe nanocrystals conjugated with the protein are investigated using the technique of cathodoluminescence. Effects of varying the beam energy and temperatures were examined and faster degradation at cryogenic temperatures and higher beam energies was found under some conditions.

  7. New halide-centered discrete Ag(I)(8) cubic clusters containing diselenophosphate ligands, [Ag(8)(X)[Se(2)P(OR)(2)](6)](PF(6)) (X = Cl, Br; R = Et, Pr, (i)Pr): syntheses, structures, and DFT calculations.

    PubMed

    Liu, C W; Haia, Hsien-Chung; Hung, Chiu-Mine; Santra, Bidyut Kumar; Liaw, Ben-Jie; Lin, Zhenyang; Wang, Ju-Chun

    2004-07-12

    Six clusters Ag(8)(micro(8)-X)[Se(2)P(OR)(2)](6)(PF(6)) (R = Et, X = Cl, 1a, X = Br, 1b; R = Pr, X = Cl, 2a, X = Br, 2b; R = (i)Pr, X = Cl, 3a, X = Br, 3b) were isolated from the reaction of [Ag(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NX in a molar ratio of 4:3:1 in CH(2)X(2). Positive FAB mass spectra show m/z peaks at 2573.2 for 1a, 2617.3 for 1b, 2740.9 for 2a, 2786.9 for 2b, 2742.3 for 3a, and 2787.0 for 3b due to respective molecular cation, (M - PF(6))(+). (31)P NMR spectra of 1a-3b display a singlet at delta 82.3, 81.5, 82.9, 81.7, 76.3, and 75.8 ppm with a set of satellites (J(PSe) = 661, 664, 652, 652, 656, and 656 Hz, respectively). The X-ray structure (1a-2b) consists of a discrete cationic cluster in which eight silver ions are linked by six diselenophosphate ligands and a central micro(8)-Cl or micro(8)-Br ion with a noncoordinating PF(6)(-) anion. The shape of the molecule is a halide-centered distorted Ag(8) cubic cluster. The dsep ligand exhibits a tetrametallic tetraconnective (micro(2), micro(2)) coordination pattern, and each caps on a square face of the cube. Each silver atom of the cube is coordinated by three selenium atoms and the central chloride or bromide ion. Additionally, molecular orbital calculations at the B3LYP level of the density functional theory have been carried out to study the Ag-micro(8)-X (X = Cl, Br) interactions for cluster cations [Ag(8)(micro(8)-X)[Se(2)P(OR)(2)](6)](+). Calculations show very weak bonding interactions exist between micro(8)-X and Ag atoms of the cube. PMID:15236560

  8. La busqueda textual por computadora (Textual Search by Computer)

    ERIC Educational Resources Information Center

    Davison, Ned J.

    1977-01-01

    Describes the use of the computer program EDIT for textual searches to locate a certain programmed word or word root. In the examples explained here, the vocabulary search is performed on poetry and allows examination of the metaphorical and conceptual poetic atmosphere achieved through word use. (Text is in Spanish.) (CHK)

  9. [Identification of Mycobacterium avium-intracellulare complex by PCR of AIDS and disseminated mycobacteriosis].

    PubMed

    García-Elorriaga, Guadalupe; Degollado-Estrada, Edgar; Villagómez-Ruiz, Alfredo; Cortés-Torres, Nancy; Arreguín-Reséndiz, Lilián; Del Rey-Pineda, Guillermo; González-Bonilla, César

    2016-01-01

    Introducción: el objetivo de este artículo es Identificar y diferenciar el complejo MAC por PCR en pacientes con SIDA y micobacteriosis diseminada. Métodos: se llevó a cabo un estudio transversal para identificar MAC por biología molecular. Se sintetizaron dos conjuntos de iniciadores: MAV y MIN, para M. avium y M. intracellulare, respectivamente. El ADN total de células obtenidas de 29 aislados clínicos y muestras de suero de otros 24 pacientes con SIDA e infección micobacteriana diseminada fue extraído y se amplificó por PCR con los iniciadores MAV y MIN. Cada uno de los iniciadores MAV y MIN amplificó un segmento altamente específico de 1.3 kb del ADN homólogo, respectivamente. Resultados: veintinueve ADN de los aislados clínicos de MAC identificadas por Gen-Probe AccuProbes se amplificaron con los iniciadores MAV (M. avium). De las 24 muestras clínicas, 3 fueron positivas para M. avium y 6 para M. tuberculosis. Conclusiones: nuestros resultados demostraron que la técnica de PCR se puede aplicar para la diferenciación de M. avium y M. intracellulare por iniciadores específicos 16S rRNA. En pacientes con estadio avanzado de SIDA y en quienes se sospecha micobacteriosis diseminada, la presencia de anemia (incluso con cultivos negativos) fosfatasa alcalina elevada y una mediana de CD4 de 15.9/ml, se debe considerar seriamente el diagnóstico de infección por MAC; sugerimos que, de acuerdo con nuestros resultados, se justifica una estratificación más precisa de los pacientes en términos de sus recuentos de células T CD4.

  10. La edad de las familias Eos, Themis y Koronis

    NASA Astrophysics Data System (ADS)

    Gil-Hutton, R.

    Las familias de asteroides son el producto de la disrupción colisional de objetos destruídos por impactos ocurridos en el cinturón principal. Las colisiones posteriores han modificado los tamaños y las órbitas de los miembros de estas familias, por lo que las distribuciones que vemos hoy en día pueden ser muy diferentes de aquellas producidas inmediatamente después de la fragmentación del objeto original. En esta hipótesis, puede ser difícil reconstruir la evolución colisional de la familia basándose sólo en las actuales distribuciones y puede ser necesario hacer ciertas suposiciones para obtener información sobre las condiciones iniciales. En este trabajo se deriva una estimación de la edad de las familias Eos, Themis y Koronis obtenida de una simulación de la evolución colisional de un cuerpo original teórico para cada familia usando un modelo de distribución para el cinturón propuesto por Gil-Hutton (1996).

  11. [Validity and consistency of the ECAVIPEP and CAVE scales to assess quality of life in paediatric patients with epilepsy].

    PubMed

    García-Galicia, Arturo; García-Carrasco, Mario; Montiel-Jarquín, Álvaro J; García-Cuautitla, Marco A; Barragán-Hervella, Rodolfo G; Romero-Figueroa, M Socorro

    2014-10-01

    Introduccion. La epilepsia tiene un alto impacto en la calidad de vida del niño, por lo que es importante contar con instrumentos validados y consistentes para su evaluacion. Objetivo. Comparar la validez y consistencia de una nueva escala de calidad de vida para pacientes epilepticos pediatricos (ECAVIPEP) de un hospital mexicano con la escala CAVE ampliamente validada. Pacientes y metodos. Estudio comparativo, en el que se analiza la validez y consistencia de una nueva escala para evaluar la epilepsia en niños. Se realizo en niños epilepticos de 4-10 años mediante la aplicacion de una escala de calidad de vida, comparandola con la escala CAVE ampliamente validada. Se utilizo el alfa de Cronbach y la rho de Spearman para la validez y la consistencia. Resultados. Fueron 114 pacientes, 72 (63,1%) niños y 42 (36,8%) niñas. La consistencia interna dio un valor del alfa de Cronbach de 0,673. Para el analisis de validez convergente, comparando las puntuaciones obtenidas por la CAVE y por la ECAVIPEP, se obtuvo una rho de Spearman de 0,670 (p menor que 0). Conclusion. La ECAVIPEP es una escala valida y consistente para la evaluacion en niños de 4-10 años con epilepsia.

  12. Síndrome del Outlet Torácico: ¿Una Patología Siempre Quirúrgica? Análisis de una Serie de 31 Cirugías Realizadas por Vía Supraclavicular Serie clínica

    PubMed Central

    Socolovsky, Mariano; Di Masi, Gilda; Binaghi, Daniela; Campero, Álvaro; Páez, Miguel Domínguez; Dubrovsky, Alberto

    2014-01-01

    Introducción: El síndrome de outlet torácico es una compresión del plexo braquial que suscita polémica. Se clasifica en Outlet Torácico Verdadero o neurogénico (OTV) y Outlet Torácico Disputado o no neurogénico (OTD). El primero presenta síntomas motores en la mano, mientras que el segundo sólo síntomas sensitivos en el miembro superior. El objetivo de este trabajo es analizar los resultados obtenidos en una serie de 31 cirugías. Métodos: Se analizaron las cirugías de nervios efectuadas entre 2003-2012, tomando los diagnósticos de outlet torácico cuyo período de seguimiento post-operatorio mínimo fuera de 6 meses. Se buscaron los siguientes datos: edad, sexo, presencia de síntomas sensitivos y/o motores, clasificación, resultado de los estudios neurofisiológicos y de imágenes, resultado de la cirugía, complicaciones post-operatorias y recidivas. Resultados: Se incluyeron 31 cirugías realizadas en 30 pacientes, 9 OTV (8 mujeres) de 24.3 años, y 21 con OTD (18 mujeres) de 37.4 años de edad en promedio. Un 90% presentaron alteraciones neurofisiológicas preoperatorias, y 66,6% imagenológicas. En el intraoperatorio, el 100% de los OTV presentó una alteración anatómica relacionada con la sintomatología, hecho observado sólo en el 36.7% de los OTD operados. El 87,5% de los OTV mejoraron sensitivamente, mientras que 77,7% mejoraron la atrofia. Por el contrario, 45.4% de los OTD mejoraron permanentemente, 36.3% no tuvieron cambios, 13.6% mejoraron transitoriamente y 4.5% (un caso) empeoró. Las complicaciones post-operatorias fueron más frecuentes aunque transitorias en el grupo de OTV (3 casos sobre 9 operados, 33.3%) que en los OTD (3 casos sobre 22, un 13.6%). Conclusión: El OTV suele mayormente mejorar luego de la cirugía, igual que el OTD aunque en una proporción mucho menor. Estos hallazgos coinciden con otros reportes recientes de esta patología. PMID:25165614

  13. A Comparison Between PSRK and GERG-2004 Equation of State for Simulation of Non-Isothermal Compressible Natural Gases Mixed with Hydrogen in Pipelines / Porównanie równań stanu opracowanych według metody PSRK oraz GERG-2004 wykorzystanych do symulacji zachowania ściśliwych mieszanin gazu ziemnego i wodoru w rurociągach, w warunkach przepływów nie-izotermicznych

    NASA Astrophysics Data System (ADS)

    Uilhoorn, Frits E.

    2013-06-01

    In this work, the GERG-2004 equation of state based on a multi-fluid approximation explicit in the reduced Helmholtz energy is compared with the predictive Soave-Redlich-Kwong group contribution method. In the analysis, both equations of state are compared by simulating a non-isothermal transient flow of natural gas and mixed hydrogen-natural gas in pipelines. Besides the flow conditions also linepack-energy and energy consumption of the compressor station are computed. The gas flow is described by a set of partial differential equations resulting from the conservation of mass, momentum and energy. A pipeline section of the Yamal-Europe gas pipeline on Polish territory has been selected for the case study. W artykule dokonano porównania wyników uzyskanych przy wykorzystaniu równania stanu GERG- 2004 opartego na jawnym przybliżeniu wyników dla wielu cieczy w oparciu o zredukowaną energię Helmhotza oraz wyników uzyskanych w oparciu o metodę Soave-Redlich Kwonga. Obydwa równania stanu porównano poprzez przeprowadzenie symulacji stanów przejściowych przepływów gazu ziemnego oraz mieszanin gazu ziemnego i wodoru w rurociągach w warunkach przepływów nie-izotermicznych. Oprócz warunków przepływu, określono energię w napełnionym układzie oraz zużycie energii przez stację kompresora. Przepływ gazu opisano zbiorem równań różniczkowych cząstkowych, wyprowadzonych w oparciu o prawa zachowania masy, pędu i energii. Jako studium przypadku wybrano fragment rurociągu jamalskiego (Yamal- Europa) przebiegającego przez terytorium Polski.

  14. Work Volition, Career Decision Self-Efficacy, and Academic Satisfaction: An Examination of Mediators and Moderators

    ERIC Educational Resources Information Center

    Jadidian, Alex; Duffy, Ryan D.

    2012-01-01

    The present study examined the relation of work volition to career decision self-efficacy (CDSE) and academic satisfaction in a diverse sample of 447 undergraduate college students. Work volition was found to be moderately correlated with academic satisfaction and strongly correlated with CDSE. Potential mediators and moderators in the link of…

  15. A Psychometric Evaluation of the Career Decision Self-Efficacy Scale with Korean Students: A Rasch Model Approach

    ERIC Educational Resources Information Center

    Nam, Suk Kyung; Yang, Eunjoo; Lee, Sang Min; Lee, Sang Hee; Seol, Hyunsoo

    2011-01-01

    The Career Decision Self-Efficacy Scale (CDSE) is one of the most frequently used in the field of career development and counseling. In this study, using the Rasch rating scale model analysis, the CDSE Scale was evaluated by the content, structural, and substantive aspects of validity in a sample of college students from South Korea. Overall, the…

  16. The Influence of Youth Assets on the Career Decision Self-Efficacy in Unattached Jamaican Youth

    ERIC Educational Resources Information Center

    Hayes, DeMarquis; Huey, Erron L.; Hull, Darrell M.; Saxon, Terrill F.

    2012-01-01

    The present study expands the career decision self-efficacy (CDSE) literature by focusing on a sample of unattached Jamaican youth to determine if youth assets (protective factors like family communication and peer role models) were predictive of increased CDSE. Unattached youth are defined as those that do not have a job or are not currently…

  17. Career Decision Self-Efficacy Scale-Short Form: A Rasch Analysis of the Portuguese Version

    ERIC Educational Resources Information Center

    Miguel, Jose P.; Silva, Jose T.; Prieto, Gerardo

    2013-01-01

    The present study analyzes the psychometric properties of the Career Decision Self-Efficacy Scale-Short Form (CDSE-SF) in a sample of Portuguese secondary education students using the Rasch model. The results indicate that the 25 items of the CDSE-SF are well fitted to a latent unidimensional structure, as required by Rasch modeling. The response…

  18. [Anthropometric model for the prediction of appendicular skeletal muscle mass in Chilean older adults].

    PubMed

    Lera, Lydia; Albala, Cecilia; Ángel, Bárbara; Sánchez, Hugo; Picrin, Yaisy; Hormazabal, María José; Quiero, Andrea

    2014-03-01

    Objetivos: Desarrollar un modelo antropométrico de predicción de masa muscular apendicular esquelética (MMAE), en adultos mayores chilenos. Métodos: La muestra estudiada corresponde a 616 adultos ≥60 años (69,9 ± 5,2 años), 64,6% mujeres, autovalentes, viviendo en la comunidad en Santiago, Chile, participantes del estudio ALEXANDROS. Se efectuaron mediciones antropométricas, dinamometría de mano, pruebas de movilidad y densitometría ósea (DEXA). Mediante modelos de regresión lineal paso a paso se relacionó la MMAE obtenida por DEXA con variables antropométricas, edad y sexo. La muestra se dividió en forma aleatoria en dos submuestras, obteniéndose ecuaciones de predicción para ambas, que se validaron mutuamente por doble validación cruzada. La alta correlación entre los valores de MMAE observados y pronosticados en ambas submuestras y el bajo grado de contracción permitieron desarrollar la ecuación de predicción final con la muestra total. Resultados: El coeficiente de validez cruzada entre las ecuaciones de predicción obtenidas en las dos submuestras fue 0,941 y 0,9409 y el grado de contracción 0,004 y 0,006. La ecuación de predicción final, en la muestra total, fue: MMAE (kg) = 0,107(peso kg) + 0,251(altura rodilla cm) + 0,197(circunferencia pantorrilla cm) + 0,047(dinamometría kg) - 0,034(circunferencia cadera cm) + 3,417(sexo) - 0,020 (edad años) - 7,646 (R2 = 0,89). La MMAE estimada y la medida por DEXA fueron similares (16,8±4,0 vs 16,9±3,7) y concordantes según los métodos de Bland y Altman (IC 95%: -2,6 -2,7) y Lin (coeficiente correlación concordancia = 0,94). Conclusiones: Se obtuvo una ecuación antropométrica para determinar la masa MMEA, de gran utilidad en la pesquisa de sarcopenia en adultos mayores.

  19. Spontaneous emission of semiconductor quantum dots in inverse opal SiO2 photonic crystals at different temperatures.

    PubMed

    Yang, Peng; Yang, Yingshu; Wang, Yinghui; Gao, Jiechao; Sui, Ning; Chi, Xiaochun; Zou, Lu; Zhang, Han-Zhuang

    2016-02-01

    The photoluminescence (PL) characteristics of CdSe quantum dots (QDs) infiltrated into inverse opal SiO2 photonic crystals (PCs) are systemically studied. The special porous structure of inverse opal PCs enhanced the thermal exchange rate between the CdSe QDs and their surrounding environment. Finally, inverse opal SiO2 PCs suppressed the nonlinear PL enhancement of CdSe QDs in PCs excited by a continuum laser and effectively modulated the PL characteristics of CdSe QDs in PCs at high temperatures in comparison with that of CdSe QDs out of PCs. The final results are of benefit in further understanding the role of inverse opal PCs on the PL characteristics of QDs. PMID:26781789

  20. Deep level defect luminescence in cadmium selenide nano-crystals films

    NASA Astrophysics Data System (ADS)

    Babentsov, V.; Riegler, J.; Schneider, J.; Ehlert, O.; Nann, T.; Fiederle, M.

    2005-07-01

    Undoped CdSe monocrystals and CdSe nano-crystals films have been studied at various temperatures by continuous wave (cw) photoluminescence. We report on a characteristic deep level emission, which is consistently observed in the wurtzite bulk- and nanocrystalline forms of CdSe. Two broad luminescence bands, which are separated from the excitonic emission by 0.5 and 0.7 eV occur in CdSe, prepared by quite different techniques. These bands experience, similar to the excitonic emission, a spectral shift to high energy enforced by the quantum confinement in nano-CdSe. The defects responsible for this luminescence are probably two different VCd- VSe divacancies: one is oriented along the hexagonal c-axis, the other is oriented along the basal Cd-Se bond directions.

  1. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal

    SciTech Connect

    Singh, D. P.; Gupta, S. K.; Manohar, R.; Varia, M. C.; Kumar, S.; Kumar, A.

    2014-07-21

    The effect of cadmium selenide quantum dots (CdSe QDs) on the dielectric relaxation and material constants of a ferroelectric liquid crystal (FLC) has been investigated. Along with the characteristic Goldstone mode, a new relaxation mode has been induced in the FLC material due to the presence of CdSe QDs. This new relaxation mode is strongly dependent on the concentration of CdSe QDs but is found to be independent of the external bias voltage and temperature. The material constants have also been modified remarkably due to the presence of CdSe QDs. The appearance of this new relaxation phenomenon has been attributed to the concentration dependent interaction between CdSe QDs and FLC molecules.

  2. Spontaneous emission of semiconductor quantum dots in inverse opal SiO2 photonic crystals at different temperatures.

    PubMed

    Yang, Peng; Yang, Yingshu; Wang, Yinghui; Gao, Jiechao; Sui, Ning; Chi, Xiaochun; Zou, Lu; Zhang, Han-Zhuang

    2016-02-01

    The photoluminescence (PL) characteristics of CdSe quantum dots (QDs) infiltrated into inverse opal SiO2 photonic crystals (PCs) are systemically studied. The special porous structure of inverse opal PCs enhanced the thermal exchange rate between the CdSe QDs and their surrounding environment. Finally, inverse opal SiO2 PCs suppressed the nonlinear PL enhancement of CdSe QDs in PCs excited by a continuum laser and effectively modulated the PL characteristics of CdSe QDs in PCs at high temperatures in comparison with that of CdSe QDs out of PCs. The final results are of benefit in further understanding the role of inverse opal PCs on the PL characteristics of QDs.

  3. Photocatalytic Hydrogen Generation by CdSe/CdS Nanoparticles.

    PubMed

    Qiu, Fen; Han, Zhiji; Peterson, Jeffrey J; Odoi, Michael Y; Sowers, Kelly L; Krauss, Todd D

    2016-09-14

    The photocatalytic hydrogen (H2) production activity of various CdSe semiconductor nanoparticles was compared including CdSe and CdSe/CdS quantum dots (QDs), CdSe quantum rods (QRs), and CdSe/CdS dot-in-rods (DIRs). With equivalent photons absorbed, the H2 generation activity orders as CdSe QDs ≫ CdSe QRs > CdSe/CdS QDs > CdSe/CdS DIRs, which is surprisingly the opposite of the electron-hole separation efficiency. Calculations of photoexcited surface charge densities are positively correlated with the H2 production rate and suggest the size of the nanoparticle plays a critical role in determining the relative efficiency of H2 production. PMID:27478995

  4. Ferritin levels in pregnant Colombian women.

    PubMed

    Ramírez-Vélez, Robinson; González-Ruíz, Katherine; Correa-Bautista, Jorge; Martínez-Torres, Javier; Meneses-Echávez, José F; Rincon-Pabon, David

    2014-09-20

    Objetivo: La deficiencia ferritina se asocia con resultados adversos para la salud y es altamente prevalente en todo el mundo. El presente estudio evaluó la prevalencia y los factores sociodemográficos asociados con la deficiencia de ferritina en una muestra representativa de mujeres embarazadas de Colombia. Métodos: Estudio descriptivo transversal, secundario de la información obtenida en la Encuesta Nacional de la Situación Nutricional 2010 (ENSIN 2010) en 1.386 mujeres gestantes entre los 13 y 49 años de edad. Los niveles plasmáticos de ferritina se determinaron por quimioluminiscencia, y los factores sociodemográficos evaluados (edad, etnia, puntaje de SISBEN, región y área geográfica) se recogieron por encuesta estructurada. Se establecieron asociaciones mediante la construcción de modelos de regresión binomial y factores asociados. Resultados: Se encontró una prevalencia global de deficiencia de ferritina (

  5. [The dementia of King Ferdinand VI and the year with no king].

    PubMed

    Fernandez-Menendez, S; Gonzalez-Gonzalez, J M; Alvarez-Antuna, V; Bobes, J

    2016-06-01

    Introduccion. Fernando VI fue rey de España entre 1746 y 1759. Su ultimo año de reinado se conoce como el año sin rey. Durante ese año, el monarca sufrio un rapido empeoramiento de sus condiciones mentales. La enfermedad generalmente ha sido atribuida a una condicion psiquiatrica primaria, generalmente por un trastorno bipolar. Desarrollo. Se realiza un estudio de investigacion en los archivos documentales españoles y bibliotecas en busca de informacion clinica sobre la enfermedad de Fernando VI. Se realiza una evaluacion y discusion clinica de la enfermedad del rey sobre la base de la informacion obtenida. Conclusiones. El inicio del empeoramiento clinico del ultimo año de Fernando VI empezo tras la muerte de su amada esposa. Los sintomas iniciales descritos pueden ser similares a los de un episodio depresivo mayor, sin embargo, el monarca sufrio un empeoramiento rapidamente progresivo con alteraciones de la personalidad, conductuales, encamamiento, perdida de control de esfinteres y crisis epilepticas. Los ultimos meses de su vida estuvo en un estado de postracion con un estado cognitivo compatible con una demencia grave. Por todo ello, aunque es posible que Fernando VI pudiera padecer previamente algun tipo de trastorno psiquiatrico, la enfermedad que le llevo a su muerte precoz seria compatible con lo que hoy conocemos como una demencia rapidamente progresiva.

  6. La masa de los grandes impactores

    NASA Astrophysics Data System (ADS)

    Parisi, M. G.; Brunini, A.

    Los planetas han sido formados fundamentalmente acretando masa a través de colisiones con planetesimales sólidos. La masa más grande de la distribución de planetesimales y las masas máxima y mínima de los impactores, han sido calculadas usando los valores actuales del período y de la inclinación de los planetas (Lissauer & Safronov 1991; Parisi & Brunini 1996). Recientes investigaciones han mostrado, que las órbitas de los planetas gigantes no han sufrido variaciones con el tiempo, siendo su movimiento regular durante su evolución a partir de la finalización de la etapa de acreción (Laskar 1990, 1994). Por lo tanto, la eccentricidad actual de los planetas gigantes se puede utilizar para imponer una cota máxima a las masas y velocidades orbitales de los grandes impactores. Mediante un simple modelo dinámico, y considerando lo arriba mencionado, obtenemos la cota superior para la masa del planetesimal más grande que impactó a cada planeta gigante al final de su etapa de acreción. El resultado más importante de este trabajo es la estimación de la masa máxima permitida para impactar a Júpiter, la cúal es ~ 1.136 × 10 -1, siendo en el caso de Neptuno ~ 3.99 × 10 -2 (expresada en unidades de la masa final de cada planeta). Además, fue posible obtener la velocidad orbital máxima permitida para los impactores como una función de su masa, para cada planeta. Las cotas obtenidas para la masa y velocidad de los impactores de Saturno y Urano (en unidades de la masa y velocidad final de cada planeta respectivamente) son casi las mismas que las obtenidas para Júpiter debido a que estos tres planetas poseen similar eccentricidad actual. Nuestros resultados están en buen acuerdo con los obtenidos por Lissauer & Safronov (1991). Estas cotas podrían ser utilizadas para obtener la distribución de planetesimales en el Sistema Solar primitivo.

  7. An in vitro assessment of the interaction of cadmium selenide quantum dots with DNA, iron, and blood platelets.

    PubMed

    Dunpall, Rekha; Nejo, Adeola Ayodeji; Pullabhotla, Viswanadha Srirama Rajasekhar; Opoku, Andy R; Revaprasadu, Neerish; Shonhai, Addmore

    2012-12-01

    Cadmium selenide (CdSe) quantum dots have gained increased attention for their potential use in biomedical applications. This has raised interest in assessing their toxicity. In this study, water-soluble, cysteine-capped CdSe nanocrystals with an average size of 15 nm were prepared through a one-pot solution-based method. The CdSe nanoparticles were synthesized in batches in which the concentration of the capping agent was varied with the aim of stabilizing the quantum dot core. The effects of the CdSe quantum dots on DNA stability, aggregation of blood platelets, and reducing activity of iron were evaluated in vitro . DNA damage was observed at a concentration of 200 μg/mL of CdSe quantum dots. Furthermore, the CdSe nanocrystals exhibited high reducing power and chelating activity, suggesting that they may impair the function of haemoglobin by interacting with iron. In addition, the CdSe quantum dots promoted aggregation of blood platelets in a dose dependent manner.

  8. Controlled synthesis, optical properties and cytotoxicity studies of CdSe-poly(lactic acid) multifunctional nanocomposites by ring-opening polymerization.

    PubMed

    Islam, Md Rafiqul; Bach, Long Giang; Vo, Thanh-Sang; Lee, Doh C; Lim, Kwon Taek

    2014-08-01

    A facile synthetic route has been developed for the covalent grafting of biocompatible poly(lactic acid) (PLA) onto CdSe Quantum Dots (QDs) using surface initiated ring opening polymerization (ROP) to afford CdSe-g-PLA nanocomposites. At first, 2-mercaptoethanol (ME) capped CdSe QDs were synthesized through a wet chemical process. The surface initiated ROP of lactide was accomplished with Sn(Oct)2 to give CdSe-g-PLA nanocomposites having surface hydroxyl functionality. FT-IR data suggested that a robust covalent bond was formed between ME capped CdSe QDs and polymer moieties. The grafting density of PLA on CdSe QDs was found to be moderate as measured by TGA analysis. The CdSe QDs were well dispersed in CdSe-g-PLA nanocomposites matrices as captured by TEM. The cubic phase crystal structure of CdSe QDs in the nanocomposites was determined by XRD. The optical properties of the CdSe-g-PLA nanocomposites were investigated by UV-vis and photoluminescence spectroscopy which suggested their potentialities as optical materials in biomedical application. Cell viability studies revealed that the biocompatibility of CdSe QDs was improved upon PLA immobilization. PMID:25936098

  9. Effectiveness of prediction equations in estimating energy expenditure sample of Brazilian and Spanish women with excess body weight.

    PubMed

    Lopes Rosado, Eliane; Santiago de Brito, Roberta; Bressan, Josefina; Martínez Hernández, José Alfredo

    2014-03-01

    Objetivo: Evaluar la adecuación de las ecuaciones de predicción para la estimación del gasto energético (GE), en comparación con el GE medido por calorimetría indirecta en una muestra de mujeres brasileñas y españolas con exceso de peso corporal. Métodos: Se trata de un estudio transversal con 92 mujeres adultas obesas [26 brasileñas —G1— y 66 españolas —G2— (20-50 años)]. Se evaluó el peso y la talla durante el ayuno para el cálculo del índice de masa corporal y las ecuaciones de predicción. Se evaluó el GE usando la calorimetría indirecta de circuito abierto con campana respiratoria. Resultados: En G1 y G2, se encontró que las estimaciones obtenidas por Harris-Benedict, Shofield, FAO/OMS/ ONU y Henry y Rees no difieren del GE estimado por calorimetría indirecta, la cual presentó valores más altos que las ecuaciones propuestas por Owen Mifflin -St Jeor y Oxford. Para G1 y G2 la ecuación predictiva que presentó valores más cercanos al valor obtenido por la calorimetría indirecta fue la FAO/OMS/ONU (7,9% y 0,46% subestimación, respectivamente), seguido por Harris-Benedict (8,6% y 1,5% subestimación, respectivamente). Conclusión: Las ecuaciones propuestas por la FAO/ OMS/ONU, Harris-Benedict, Shofield y Henry & Rees fueron adecuadas para estimar el GE en una muestra de mujeres brasileñas y españolas con exceso de peso corporal. Las otras ecuaciones subestimaron el GE.

  10. See the World on the Internet: Tips for Parents of Young Readers--and "Surfers" = Vea el mundo por Internet: Ideas por padres de jovenes lectores y exploradores.

    ERIC Educational Resources Information Center

    Moss, Jeanette

    Regardless of whether a parent has Internet access at home, it is essential that parents learn with their children and be aware of where their travels on the Internet are taking them. Many libraries have Internet workshops for parents or children or both. In the excitement of looking at sites, children may not even realize they are reading. Many…

  11. Verification and validation interim report for portable 1,000 CFM exhauster skids POR-007/Skid E and POR-008/Skid F

    SciTech Connect

    Nelson, O.D.

    1998-07-25

    This Verification and Validation (V/V) interim report summarizes to date the results of the V/V tasks performed in each of the following life cycle phases: concept, requirements, design, implementation, test, installation and checkout, and operation and maintenance. At the end of the installation and checkout phase, the V/V final report will be issued. This interim report contains or references the following for each phase: Description of V/V tasks performed; Summary of task results; Summary of anomalies and resolution; Assessment of system quality; Recommendations.

  12. Nanoparticulas basadas en complejos de Fe(II) con transicion de espin: sintesis, caracterizacion y aplicaciones en electronica molecular

    NASA Astrophysics Data System (ADS)

    Monrabal Capilla, Maria

    Esta tesis doctoral esta organizada en 5 capitulos y esta destinada al estudio de sistemas de Fe (II) que presentan el fenomeno de la transicion de espin a escala nanometrica. El capitulo 1 contiene una introduccion general sobre materiales moleculares multifuncionales, destacando aquellos ejemplos mas importantes. Por otro lado, se explicara el fenomeno de la transicion de espin, tratando aspectos conceptuales, los antecedentes mas importantes y la situacion actual. En el capitulo 2 se describen los diferentes procesos existentes para la obtencion de diferentes tipos de nanoparticulas. Ademas, se presenta la sintesis y caracterizacion de nanoparticulas del polimero de coordinacion unidimensional [Fe(Htrz)2(trz)]BF4, obtenidas mediante el metodo de micelas inversas. Estas nanoparticulas, con una estrecha distribucion de tamanos centrada alrededor de los 11 nm, presentan una transicion de espin muy abrupta, con un ancho ciclo de histeresis termica de unos 40K. En el capitulo 3 se describe el proceso de modificacion del tamano de las nanoparticulas descritas en el capitulo anterior, llevado a cabo variando la proporcion de surfactante/H2O en el medio. Ademas, con el objetivo de modificar las propiedades magneticas de las nanoparticulas obtenidas en el capitulo 2, se lleva a cabo la sintesis de nanoparticulas de polimeros de la misma familia del [Fe(Htrz)2(trz)]BF4. En concreto se sintetizaron 3 nuevos tipos de nanoparticulas basadas en el polimero [Fe(Htrz)1-x(NH2trz)x](ClO4)2, siendo x = 0.05, 0.15 y 0.3, en cada caso. Estas nanoparticulas siguen presentando una estrecha distribucion de tamanos y una transicion de espin muy abrupta y con un ancho ciclo de histeresis. Ademas, se observa que este ciclo se desplaza a temperaturas mas proximas a la temperatura ambiente a medida que se aumenta el porcentaje de 4-amino-1, 2, 4- triazol en la muestra. Pero al mismo tiempo se produce una disminucion de la anchura de este ciclo. Por ultimo, en este capitulo se presenta la

  13. Combinación de Valores de Longitud del Día (LOD) según ventanas de frecuencia

    NASA Astrophysics Data System (ADS)

    Fernández, L. I.; Arias, E. F.; Gambis, D.

    El concepto de solución combinada se sustenta en el hecho de que las diferentes series temporales de datos derivadas a partir de distintas técnicas de la Geodesia Espacial son muy disimiles entre si. Las principales diferencias, fácilmente detectables, entre las distintas series son: diferente intervalo de muestreo, extensión temporal y calidad. Los datos cubren un período reciente de 27 meses (julio 96-oct. 98). Se utilizaron estimaciones de la longitud del día (LOD) originadas en 10 centros operativos del IERS (International Earth Rotation Service) a partir de las técnicas GPS (Global Positioning System) y SLR (Satellite Laser Ranging). La serie temporal combinada así obtenida se comparó con la solución EOP (Parámetros de la Orientación Terrestre) combinada multi-técnica derivada por el IERS (C04). El comportamiento del ruido en LOD para todas las técnicas mostró ser dependiente de la frecuencia (Vondrak, 1998). Por esto, las series dato se dividieron en ventanas de frecuencia, luego de haberles removido bies y tendencias. Luego, se asignaron diferentes factores de peso a cada ventana discriminando por técnicas. Finalmente estas soluciones parcialmente combinadas se mezclaron para obtener la solución combinada final. Sabemos que la mejor solución combinada tendrá una precisión menor que la precisión de las series temporales de datos que la originaron. Aun así, la importancia de una serie combinada confiable de EOP, esto es, de una precisión aceptable y libre de sistematismos evidentes, radica en la necesidad de una base de datos EOP de referencia para el estudio de fenómenos geofísicos que motivan variaciones en la rotación terrestre.

  14. [Role of anaerobic blood culture in the simultaneous blood culture taking for the diagnosis of bacteremia].

    PubMed

    Guajardo-Lara, Claudia Elena; Saldaña-Ramírez, Martha Idalia; Ayala-Gaytán, Juan Jacobo; Valdovinos-Chávez, Salvador Bruno

    2016-01-01

    Introducción: la frecuencia de la septicemia va en aumento y su mortalidad es alta; por lo tanto, su detección, la identificación del microorganismo causal y su susceptibilidad son perentorias. Metodos: se revisaron los registros de 4110 botellas de cultivo de sangre obtenida de enero de 2013 a julio de 2014 de pacientes adultos en un hospital privado de tercer nivel. Resultados: se observó crecimiento de microorganismos en 559 cultivos (12.6 %). En 2648 hemocultivos (60 %) inoculados en pares de frascos uno con medio aeróbico y el otro anaeróbico (1324 sets), se detectó crecimiento en 182 frascos a los que les fueron inoculadas las muestras tomadas al mismo tiempo a 135 pacientes (13.7 %). En 86 pares de frascos con las muestras de 54 pacientes (40 %), el crecimiento solamente se dio en el frasco aeróbico (47.5 %); en 24 pares de frascos (13.19 %) tomados a 21 pacientes (15.5 %, p < 0.05), solamente hubo crecimiento en el frasco anaeróbico. En los hemocultivos de 32 de 60 pacientes con crecimiento en ambos frascos (53 %), el crecimiento se detectó primero en el frasco anaeróbico. Conclusiones: los hemocultivos anaeróbicos tienen una utilidad baja para la detección de bacteriemias por anaerobios estrictos; no obstante, en el 15.55 % de los pacientes estuvo presente el riesgo de pasar por alto la presencia de bacteriemia, y en 53 % de los pacientes con hemocultivos positivos, el diagnóstico de bacteriemia pudo establecerse de manera más temprana, lo que permitió anticipar con mejor precisión la toma de decisiones.

  15. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    NASA Astrophysics Data System (ADS)

    Creasey, C. L.; Flegal, A. R.

    'introduction accidentelle de contaminants au cours de l'échantillonnage, du stockage et de l'analyse. Lorsque ces techniques sont appliquées, les concentrations résultantes en éléments en traces sont nettement plus faibles que les résultats obtenus par les techniques d'échantillonnage classique. Dans une comparaison de données concernant des puits contaminés et des puits de contrôle d'un site de Californie (États-Unis), les concentrations en éléments en traces de cette étude ont été de 2 à 1000 fois plus faibles que celles déterminées par les techniques conventionnelles utilisées pour l'échantillonnage des mêmes puits cinq mois auparavant et un mois après ces prélèvements. En particulier, les concentrations en cadmium et en chrome obtenues par les techniques classiques de prélèvements dépassent les teneurs maximales admises en Californie, alors que les concentrations obtenues pour ces deux éléments dans cette étude sont nettement au-dessous de ces teneurs maximales. Par conséquent, le recours à des techniques à faible débit et sans traces de métal peut faire apparaître que la publication de contamination d'eaux souterraines par des éléments en traces était erronée. Resumen El uso combinado del purgado y muestreo a bajo caudal con las técnicas limpias de metales traza proporcionan medidas de la concentración de elementos traza en las aguas subterráneas que son más representativas que las obtenidas con técnicas tradicionales. El purgado y muestreo a bajo caudal proporciona muestras de agua prácticamente inalteradas, representativas de las condiciones en el terreno. Las técnicas limpias de metales traza limitan la no deseada introducción de contaminantes durante el muestreo, almacenamiento y análisis. Las concentraciones de elementos traza resultantes suelen ser bastante menores que las obtenidas por técnicas tradicionales. En una comparación entre los datos procedentes de pozos en California, las concentraciones obtenidas con el nuevo m

  16. [Autism spectrum disorder and epilepsy: the role of ketogenic diet].

    PubMed

    Garcia-Penas, J J

    2016-01-01

    Introduccion. Un 5-40% de los pacientes autistas desarrolla epilepsia. Aunque generalmente se controlan bien con medicacion, hasta un 20-30% de estas epilepsias son refractarias al tratamiento farmacologico. En esta poblacion, la dieta cetogenica (DC) puede ser una terapia alternativa altamente eficaz y debe considerarse seriamente. Objetivo. Revisar el papel de la DC en el tratamiento de la epilepsia infantil refractaria y en los pacientes que asocian autismo y epilepsia. Desarrollo. La DC es un tratamiento eficaz y bien tolerado para las epilepsias infantiles refractarias, incluyendo los pacientes que asocian autismo y epilepsia. Es fundamental caracterizar de forma precisa el sindrome epileptico para conocer cuales son los mejores candidatos para tratar con DC. Por otra parte, el efecto positivo de la DC sobre las alteraciones del metabolismo oxidativo mitocondrial y la evidencia experimental obtenida con DC en animales autistas sugieren que pueda ser una alternativa eficaz en los pacientes con autismo. Conclusiones. Basandose en la utilidad demostrada de la DC en el tratamiento de pacientes con epilepsia y autismo, esta terapia se ha usado en los ultimos años como una terapia alternativa para los pacientes autistas, aunque se desconoce cual es su eficacia real. Es necesario realizar un estudio aleatorizado y controlado para definir el perfil de eficacia y seguridad en esta poblacion.

  17. Estudio de distintos modelos de protuberancias solares

    NASA Astrophysics Data System (ADS)

    Cirigliano, D.; Rovira, M.; Mauas, P.

    En este trabajo presentamos perfiles de líneas del CaII, MgII y HeI calculados para distintos modelos de protuberancias, y los comparamos con observaciones obtenidas por los satélites OSO 8 y SOHO. Para obtener las poblaciones de los distintos niveles de los átomos, utilizamos un código numérico que combina las ecuaciones de transporte de radiación y equilibrio estadístico en un único sistema de ecuaciones no lineal. Los modelos básicos que consideramos para las protuberancias consisten en placas homogéneas y unidimensionales apoyadas sobre la superficie del Sol. Dichas placas se hallan estratificadas en hebras y los modelos difieren entre sí en la temperatura y ancho de la placa, en la presión a la cual se halla el plasma y en el número de hebras. A partir de estos modelos se investiga cada uno de estos parámetros libres y como influyen en la atmósfera de las protuberancias solares y en el perfil de línea de cada especie estudiada, con el objetivo de determinar las condiciones en las que se halla el material atmosférico de estas protuberancias.

  18. Curva de rotación de la Galaxia Eso 321-25

    NASA Astrophysics Data System (ADS)

    Díaz, R.; Carranza, G.; Ahumada, J.; Arreguine, V.

    Se presenta la curva de rotación de esta galaxia, generada a partir de espectros obtenidos con el Espectrógrafo Multifunción del telescopio de 1.54 m de Bosque Alegre. El análisis de las curvas de velocidad radial obtenidas muestra que el núcleo no coincide con el centro de simetría de las mismas, lo que es consistente con el aspecto morfológico exhibido por la galaxia en imágenes de banda ancha. En estas últimas, el núcleo muestra una estructura peculiar y no coincidiría con el centro geométrico del disco aparente. Los flujos relativos de líneas (Hα /[NII]λ 6583 y [SII]λ 6731/λ 6716) indicarían niveles de excitación y densidad electrónica normales en regiones HII, aún en la zona nuclear. Este trabajo forma parte de un programa de estudio de cinemática, excitación y densidad electrónica del gas ionizado en galaxias peculiares del Atlas de Galaxias Australes de Sérsic.

  19. [Quantitative gait analysis in patients with advanced Parkinson's disease].

    PubMed

    Villadoniga, M; San Millan, A; Cabanes-Martinez, L; Aviles-Olmos, I; Del Alamo-De Pedro, M; Regidor, I

    2016-08-01

    Objetivo. Describir las alteraciones de la marcha e inestabilidad postural en un grupo de pacientes con enfermedad de Parkinson (EP) avanzada. Pacientes y metodos. Se analizo la marcha de pacientes con EP en estadio avanzado on medicacion. Por medio de un sistema de analisis computarizado del movimiento, se estudiaron las variables cinematicas: cadencia, numero de ciclos con apoyo correcto (ciclos HFPS), numero de ciclos totales, duracion de las fases del ciclo, electromiografia, y goniometria de rodilla y tobillo. La valoracion clinica del equilibrio y la inestabilidad postural se completo con los tests Tinetti y Timed Up and Go. Resultados. El analisis mostro alteraciones en los parametros espaciotemporales con respecto a los rangos de normalidad: disminucion de los ciclos HFPS, aumento del numero total de ciclos y alteracion de la cadencia en muchos pacientes, y conservacion de la cadencia media dentro de los limites de la normalidad, aumento de la duracion de la fase de apoyo, disminucion del apoyo monopodal y alteracion del rango articular de la rodilla y el tobillo. Asimismo, se observo una alteracion en las puntuaciones obtenidas en las escalas clinicas, que mostraban un aumento del factor de riesgo de caidas y dependencia leve. Conclusion. La cuantificacion mediante analisis objetivo de las variables cineticas y cinematicas en los pacientes con EP puede emplearse como herramienta para establecer la influencia de las distintas alternativas terapeuticas en el trastorno de la marcha.

  20. [Neurological appraisal of children and adolescents with psychotic symptoms].

    PubMed

    Tomás-Vila, Miguel

    2015-05-01

    Introduccion. Las manifestaciones psicoticas en la infancia no son infrecuentes; sin embargo, la bibliografia existente acerca de la valoracion neurologica de niños y adolescentes con cuadros psicoticos es muy escasa. Objetivo. Realizar una revision bibliografica no sistematica que permita responder a estas tres cuestiones: cuando debe llevarse a cabo una valoracion neurologica en un niño con rasgos psicoticos?, cuales son las condiciones medicas que pueden incluir un cuadro psicotico en su evolucion? y cual debe ser el procedimiento diagnostico? Desarrollo. Se revisan las enfermedades que pueden presentar sintomatologia psicotica al inicio o durante la evolucion, y se agrupan por patologias: errores congenitos del metabolismo, enfermedades geneticas, enfermedades autoinmunes e infecciosas, malformaciones del sistema nervioso central, epilepsia, patologia vascular, procesos reumatologicos, tumores cerebrales, y farmacos y sustancias psicoactivas. Se propone una pauta diagnostica en la que se valora la informacion obtenida a partir de la anamnesis y la exploracion y la aportacion de cada prueba diagnostica. Conclusiones. El numero de procesos que pueden manifestar sintomatologia psicotica a lo largo de su evolucion es muy elevado, y hay que considerar las claves que ofrecen la anamnesis y la exploracion. Esta revision puede ayudar a neuropediatras y otros especialistas a realizar una valoracion mas sistematizada de niños y adolescentes con cuadros psicoticos.