Science.gov

Sample records for cdte cdznte detectors

  1. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications.

    PubMed

    Sordo, Stefano Del; Abbene, Leonardo; Caroli, Ezio; Mancini, Anna Maria; Zappettini, Andrea; Ubertini, Pietro

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors.

  2. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    PubMed Central

    Sordo, Stefano Del; Abbene, Leonardo; Caroli, Ezio; Mancini, Anna Maria; Zappettini, Andrea; Ubertini, Pietro

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors. PMID:22412323

  3. New developments in clinical applications of CdTe and CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Scheiber, C.

    1996-10-01

    This review about the medical applications of CdTe and CdZnTe is an update on the 1992 paper [1]. This new paper is legitimized by the recent progress which has been made in this field. First of all, the usefulness of a new material, i.e. CdZnTe, has been demonstrated. While the two materials are still being improved, it seems as yet too early to debate which of CdTe:Cl or CdZnTe will be the best choice. Historical applications span over the past 18 years, involving devices like miniature probes for per-operative scintigraphy or the monitoring of physiological functions and, closer to us, appliances dedicated to bone densitometry, and have been expanding as such devices have become commercially available, for many years now. Newly available microelectronic circuitry allows 2D-arrays to be built for digital quantitative X-ray (chest, dental …) and for high-resolution gamma cameras. The clinical demand is very high, especially in the field of nuclear medicine. Although there already exist clinical demonstrators, the future of such CdTe applications depends on further reduction in material and device mounting costs. New perspectives concern XCT applications, but the data resulting from research work are kept for restricted use within industrial R&D laboratories.

  4. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications.

    PubMed

    Barber, W C; Wessel, J C; Nygard, E; Iwanczyk, J S

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  5. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    PubMed Central

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2014-01-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  6. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    NASA Astrophysics Data System (ADS)

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  7. Dynamics of native oxide growth on CdTe and CdZnTe X-ray and gamma-ray detectors

    PubMed Central

    Zázvorka, Jakub; Franc, Jan; Beran, Lukáš; Moravec, Pavel; Pekárek, Jakub; Veis, Martin

    2016-01-01

    Abstract We studied the growth of the surface oxide layer on four different CdTe and CdZnTe X-ray and gamma-ray detector-grade samples using spectroscopic ellipsometry. We observed gradual oxidization of CdTe and CdZnTe after chemical etching in bromine solutions. From X-ray photoelectron spectroscopy measurements, we found that the oxide consists only of oxygen bound to tellurium. We applied a refined theoretical model of the surface layer to evaluate the spectroscopic ellipsometry measurements. In this way we studied the dynamics and growth rate of the oxide layer within a month after chemical etching of the samples. We observed two phases in the evolution of the oxide layer on all studied samples. A rapid growth was visible within five days after the chemical treatment followed by semi-saturation and a decrease in the growth rate after the first week. After one month all the samples showed an oxide layer about 3 nm thick. The oxide thickness was correlated with leakage current degradation with time after surface preparation. PMID:27933118

  8. Long-Term Stable Surface Treatments on CdTe and CdZnTe Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Pekarek, Jakub; Belas, Eduard; Zazvorka, Jakub

    2016-12-01

    The spectral resolution and charge collection efficiency (CCE) of cadmium telluride (CdTe) and cadmium zinc telluride (CZT) room-temperature x-ray and gamma-ray detectors are often limited by high surface leakage current due to conducting surface species created during detector fabrication. Surface treatments play a major role in reduction of this surface leakage current. The effect of various types of surface etching and passivation on the leakage current and thereby the spectral energy resolution, CCE, and internal electric field profile of CdTe/CZT detectors has been studied. The main aim of this work is preparation of long-term stable detectors with strongly reduced leakage current. The time stability of the current-voltage characteristic and spectral resolution was investigated during 21 days and 1 year, respectively, after performing surface treatments. Our results suggest that the optimal detector preparation method is chemomechanical polishing in bromine-ethylene glycol solution followed by chemical etching in bromine-methanol solution then surface passivation in potassium hydroxide or ammonium fluoride (NH4F/H2O2). Detectors prepared using this optimal treatment exhibited low leakage current, high spectral resolution, and long-term stability compared with those subjected to other surface preparation methods.

  9. Long-Term Stable Surface Treatments on CdTe and CdZnTe Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Pekarek, Jakub; Belas, Eduard; Zazvorka, Jakub

    2017-04-01

    The spectral resolution and charge collection efficiency (CCE) of cadmium telluride (CdTe) and cadmium zinc telluride (CZT) room-temperature x-ray and gamma-ray detectors are often limited by high surface leakage current due to conducting surface species created during detector fabrication. Surface treatments play a major role in reduction of this surface leakage current. The effect of various types of surface etching and passivation on the leakage current and thereby the spectral energy resolution, CCE, and internal electric field profile of CdTe/CZT detectors has been studied. The main aim of this work is preparation of long-term stable detectors with strongly reduced leakage current. The time stability of the current-voltage characteristic and spectral resolution was investigated during 21 days and 1 year, respectively, after performing surface treatments. Our results suggest that the optimal detector preparation method is chemomechanical polishing in bromine-ethylene glycol solution followed by chemical etching in bromine-methanol solution then surface passivation in potassium hydroxide or ammonium fluoride (NH4F/H2O2). Detectors prepared using this optimal treatment exhibited low leakage current, high spectral resolution, and long-term stability compared with those subjected to other surface preparation methods.

  10. Characterization of CdTe and CdZnTe detectors for gamma-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Verger, L.; Boitel, M.; Gentet, M. C.; Hamelin, R.; Mestais, C.; Mongellaz, F.; Rustique, J.; Sanchez, G.

    2001-02-01

    CEA-LETI in association with Bicron and Crismatec has been developing solid-state gamma camera technology based on CZT. The project included gamma camera head systems development including front-end electronics with an integrated circuit (ASIC), material growth, and detector fabrication and characterization. One feature of the work is the use of linear correlation between the amplitude and the fast rise time of the signal - which corresponds to the electron transit time in the detector, a development that was reported previously and which allows more than 80% of the 122 keV γ-photons incident on HPBM material to be recovered in a ±6.5% 2D window. In the current work, we summarize other methods to improve CZT detector performance and compare them with the Bi-Parametric Spectrum (BPS) method. The BPS method can also be applied as a diagnositic. BPS curve shapes are shown to vary with electric field, and with electron transport properties, and the correction algorithims are seen to be robust over a range of values. In addition, the technique is found to improve detectors from a variety of sources including some with special electrode geometries. In all cases, the BPS method improves efficiency (>75%) without degrading energy resolution (± 6.5% 2D window) even for a monolithic detector. The method does not overcome bulk inhomogeneity nor noise which comes from low resistivity.

  11. Investigation of the peak shape parameter of CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Hartley, I.; Arlt, R.

    2001-02-01

    There is a need to define the magnitude of the asymmetry of the peak shapes (the tailing fraction) of CdTe and CdZnTe detectors. Since this tailing parameter determines to a large extent, the performance of peak fitting programs used to extract the peak areas from gamma spectra taken for the verification of nuclear material, a well-defined knowledge of this parameter is an important factor in such programs. The magnitude of the asymmetry of this tailing fraction was investigated for different models of CdTe and CdZnTe detectors. The gamma peak analysis program PkCheck (R. Gunnink, R. Arlt, Proceedings of 11th International Workshop on room temperature Semiconductor X- and gamma-ray detectors and associated electronics, 11-15 October 1999, Vienna, Austria, Nucl. Instr. and Meth. A 485 (2001) 196, This issue) was used to determine the tailing fraction as a function of detector type, high voltage and other operational parameters. Although there are considerable individual differences between different detector units of the same model, a general trend towards the growing of the tailing fraction with increasing detector volume was clearly observed. The lowest fractions are observed for electrically cooled planar pin CdTe detectors operated with a charge loss corrector, followed by small size hemispheric CdZnTe detectors.

  12. Spectrometric characteristic improvement of CdTe detectors

    SciTech Connect

    Ivanov, V.I.; Garbusin, V.A.; Dorogov, P.G.; Loutchanski, A.E.; Kondrashov, V.V.

    1995-08-01

    A new pulse shape correction method combined with a pulse shape selection method has been proposed for a CdTe detectors energy resolution improvement and increasing the total absorption peak efficiency. The capabilities of the new technique for the spectrometric characteristic improvement are based on using specific features of the CdTe detectors output pulses. The energy resolution of about 1% FWHM at 662 keV has been achieved with planar CdTe detector under room temperature without decrease of peak efficiency. Standard measurement techniques give 3.7% FWHM. A significant spectrometric characteristic improvement of other room temperature semiconductor detectors such as HgI{sub 2} and CdZnTe detectors was also obtained.

  13. Noise in CdZnTe detectors

    SciTech Connect

    Luke, P. N.; Amman, M.; Lee J. S.; Manfredi, P. F.

    2000-10-10

    Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may be the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments.

  14. Evaluation of ZnO:Al as a contact material to CdZnTe for radiation detector applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roy, Utpal N.; Camarda, Giuseppe S.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Yang, Ge; James, Ralph B.; Pradhan, Aswini K.; Mundle, Rajeh

    2016-09-01

    Aluminum (Al) doped ZnO with very high Al concentration acts as metal regarding its electrical conductivity. ZnO offers many advantages over the commonly-known metals being used today as electrode materials for nuclear detector fabrication. Often, the common metals show poor adhesion to CdZnTe or CdTe surfaces and have a tendency to peel off. In addition, there is a large mismatch of the coefficients of thermal expansion (CTE) between the metals and underlying CdZnTe, which is one of the reasons for mechanical degradation of the contact. In contrast ZnO has a close match of the CTE with CdZnTe and possesses 8-20 times higher hardness than the commonly-used metals. In this presentation, we will explore and discuss the properties of CdZnTe detectors with ZnO:Al contacts.

  15. Performance characteristics of CdTe drift ring detector

    NASA Astrophysics Data System (ADS)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Veeramani, P.; Kazemi, S.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2014-03-01

    CdTe and CdZnTe material is an excellent candidate for the fabrication of high energy X-ray spectroscopic detectors due to their good quantum efficiency and room temperature operation. The main material limitation is associated with the poor charge transport properties of holes. The motivation of this work is to investigate the performance characteristics of a detector fabricated with a drift ring geometry that is insensitive to the transport of holes. The performance of a prototype Ohmic CdTe drift ring detector fabricated by Acrorad with 3 drift rings is reported; measurements include room temperature current voltage characteristics (IV) and spectroscopic performance. The data shows that the energy resolution of the detector is limited by leakage current which is a combination of bulk and surface leakage currents. The energy resolution was studied as a function of incident X-ray position with an X-ray microbeam at the Diamond Light Source. Different ring biasing schemes were investigated and the results show that by increasing the lateral field (i.e. the bias gradient across the rings) the active area, evaluated by the detected count rate, increased significantly.

  16. ATMOSPHERIC EFFECTS ON THE PERFORMANCE OF CDZNTE SINGLE CRYSTAL DETECTORS

    SciTech Connect

    Washington, A.; Duff, M.; Teague, L.

    2010-05-12

    The production of high-quality ternary single-crystal materials for radiation detectors has progressed over the past 15 years. One of the more common materials being studied is CdZnTe (CZT), which can be grown using several methods to produce detector-grade materials. The work presented herein examines the effects of environmental conditions including temperature and humidity on detector performance [full-width at half-maximum (FWHM)] using the single pixel with guard detector configuration. The effects of electrical probe placement, reproducibility, and aging are also presented.

  17. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    SciTech Connect

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O'CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  18. CHARACTERIZATION OF DETECTOR GRADE CDZNTE MATERIAL FROM REDLEN TECHNOLOGIES

    SciTech Connect

    Duff, M

    2008-07-09

    CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. This large band gap material shows great promise for use as a gamma radiation spectrometer. Historically, the performance of CZT has typically been adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity) and secondary phases (SP). The synthesis of CZT material has improved greatly with the primary performance limitation being attributed to mainly SP. In this presentation, we describe the extensive characterization of detector grade material that has been treated with post growth annealing to remove the SPs. Some of the analytical methods used in this study included polarized, cross polarized and transmission IR imaging, I-V curves measurements, synchrotron X-ray topography and electron microscopy.

  19. Development of CdZnTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Aleksey; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Gul, Rubi; Cui, Yonggang; James, Ralph B.

    2011-08-01

    Cadmium Zinc Telluride (CdZnTe or CZT) is a very attractive material for room-temperature semiconductor detectors because of its wide band-gap and high atomic number. Despite these advantages, CZT still presents some material limitations and poor hole mobility. In the past decade most of the efforts developing CZT detectors focused on designing different electrode configurations, mainly to minimize the deleterious effect due to the poor hole mobility. A few different electrode geometries were designed and fabricated, such as pixelated anodes and Frisch-grid detectors developed at Brookhaven National Lab (BNL). However, crystal defects in CZT materials still limit the yield of detector-grade crystals, and, in general, dominate the detector's performance. In the past few years, our group's research extended to characterizing the CZT materials at the micro-scale, and to correlating crystal defects with the detector's performance. We built a set of unique tools for this purpose, including infrared (IR) transmission microscopy, X-ray micro-scale mapping using synchrotron light source, X-ray transmission- and reflection- topography, current deep level transient spectroscopy (I-DLTS), and photoluminescence measurements. Our most recent work on CZT detectors was directed towards detailing various crystal defects, studying the internal electrical field, and delineating the effects of thermal annealing on improving the material properties. In this paper, we report our most recent results.

  20. Growth and characterization of CdTe and CdZnTe crystals for substrate application

    NASA Astrophysics Data System (ADS)

    Azoulay, Moshe; Zilber, Raphael; Shusterman, Sergy; Goldgirsh, Alex; Zontag, Itzhak

    2003-01-01

    During the last decade we have investigated the synthesis, growth and characterization of CdTe and CdZnTe semiconductor compounds. As a result, substrate crystals, suitable for mercury cadmium telluride thin film growth are prepared. The emphasis will be given to the investigation of the thermal regime during growth, reflected at the solid liquid interface shape and its influence on the crystalline quality. Seeded and unseeded growth experiments are compared in terms of structural crystalline quality. Seeded and unseeded growth experiments are compared in terms of structural crystalline perfection as well as single crystal yield. The effect of thermal annealing on IR transmittance, precipitates and inclusions will be discussed in detail. Moreover, we will show the recent new trends for simulation of crystal growth processes by CRYSVUN software as well as practical implementation of calculated data for the grwoth of II-VI crystals. Preliminary study on the vapor phase control during growth and crystal cooling procedures will also be discussed.

  1. Nuclear reactor pulse calibration using a CdZnTe electro-optic radiation detector.

    PubMed

    Nelson, Kyle A; Geuther, Jeffrey A; Neihart, James L; Riedel, Todd A; Rojeski, Ronald A; Saddler, Jeffrey L; Schmidt, Aaron J; McGregor, Douglas S

    2012-07-01

    A CdZnTe electro-optic radiation detector was used to calibrate nuclear reactor pulses. The standard configuration of the Pockels cell has collimated light passing through an optically transparent CdZnTe crystal located between crossed polarizers. The transmitted light was focused onto an IR sensitive photodiode. Calibrations of reactor pulses were performed using the CdZnTe Pockels cell by measuring the change in the photodiode current, repeated 10 times for each set of reactor pulses, set between 1.00 and 2.50 dollars in 0.50 increments of reactivity.

  2. Characterization of a large CdZnTe detector with a coplanar quad-grid design

    NASA Astrophysics Data System (ADS)

    Theinert, R.

    2017-02-01

    The COBRA collaboration aims to search for neutrinoless double beta-decays of several isotopes using CdZnTe semiconductor detectors. To improve the sensitivity on the half-lifes of such decays, a large (2 × 2 × 1.5)cm3 CdZnTe detector for applications in gamma-ray spectroscopy and low-background operation is investigated. The electric properties as well as the spectroscopic performance of the detector, such as energy response and resolution, are characterized. In addition, several measurements are conducted to investigate the operational stability. Furthermore, the possibility to identify multiple-scattered gamma-rays with the new anode design is studied.

  3. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    NASA Astrophysics Data System (ADS)

    Lu, P. H.; Gomolchuk, P.; Chen, H.; Beitz, D.; Grosser, A. W.

    2015-06-01

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments.

  4. Preliminary results obtained from novel CdZnTe pad detectors

    SciTech Connect

    Tuemer, T.O.; Joyce, D.C.; Yin, S.; Willson, P.D.; Parnham, K.B.; Glick, B.

    1996-06-01

    CdZnTe pad detectors with a novel geometry and approximately 1 mm{sup 2} pad sizes are being developed. These detectors have been specially designed for high energy resolution up to 300 keV energies. The contacts are produced through a unique technique developed by eV Products to achieve high reliability low resistance coupling to the substrate. A ceramic carrier is developed for low capacitance coupling of the detectors to NOVA`s FEENA chip. The detectors have been tested using the ultra low noise single and 3-channel amplifiers developed by eV Products. The CdZnTe detectors are tested for dark current. The charge energy resolutions and collection times are also measured using natural radiation sources. The measured detector parameters and the test results are showing that linear pad arrays can have good uniformity and excellent application potential for imaging x-rays and gamma-rays.

  5. Hard x-ray response of pixellated CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Abbene, L.; Del Sordo, S.; Caroli, E.; Gerardi, G.; Raso, G.; Caccia, S.; Bertuccio, G.

    2009-06-01

    In recent years, the development of cadmium zinc telluride (CdZnTe) detectors for x-ray and gamma ray spectrometry has grown rapidly. The good room temperature performance and the high spatial resolution of pixellated CdZnTe detectors make them very attractive in space-borne x-ray astronomy, mainly as focal plane detectors for the new generation of hard x-ray focusing telescopes. In this work, we investigated on the spectroscopic performance of two pixellated CdZnTe detectors coupled with a custom low noise and low power readout application specific integrated circuit (ASIC). The detectors (10×10×1 and 10×10×2 mm3 single crystals) have an anode layout based on an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 μm BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) and characterized by low power consumption (0.5 mW/channel) and low noise (150-500 electrons rms). The spectroscopic results point out the good energy resolution of both detectors at room temperature [5.8% full width at half maximum (FWHM) at 59.5 keV for the 1 mm thick detector; 5.5% FWHM at 59.5 keV for the 2 mm thick detector) and low tailing in the measured spectra, confirming the single charge carrier sensing properties of the CdZnTe detectors equipped with a pixellated anode layout. Temperature measurements show optimum performance of the system (detector and electronics) at T =10 °C and performance degradation at lower temperatures. The detectors and the ASIC were developed by our collaboration as two small focal plane detector prototypes for hard x-ray multilayer telescopes operating in the 20-70 keV energy range.

  6. Hard x-ray response of pixellated CdZnTe detectors

    SciTech Connect

    Abbene, L.; Caccia, S.; Bertuccio, G.

    2009-06-15

    In recent years, the development of cadmium zinc telluride (CdZnTe) detectors for x-ray and gamma ray spectrometry has grown rapidly. The good room temperature performance and the high spatial resolution of pixellated CdZnTe detectors make them very attractive in space-borne x-ray astronomy, mainly as focal plane detectors for the new generation of hard x-ray focusing telescopes. In this work, we investigated on the spectroscopic performance of two pixellated CdZnTe detectors coupled with a custom low noise and low power readout application specific integrated circuit (ASIC). The detectors (10x10x1 and 10x10x2 mm{sup 3} single crystals) have an anode layout based on an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 mum BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) and characterized by low power consumption (0.5 mW/channel) and low noise (150-500 electrons rms). The spectroscopic results point out the good energy resolution of both detectors at room temperature [5.8% full width at half maximum (FWHM) at 59.5 keV for the 1 mm thick detector; 5.5% FWHM at 59.5 keV for the 2 mm thick detector) and low tailing in the measured spectra, confirming the single charge carrier sensing properties of the CdZnTe detectors equipped with a pixellated anode layout. Temperature measurements show optimum performance of the system (detector and electronics) at T=10 deg.C and performance degradation at lower temperatures. The detectors and the ASIC were developed by our collaboration as two small focal plane detector prototypes for hard x-ray multilayer telescopes operating in the 20-70 keV energy range.

  7. Arrays of Encapsulated CdZnTe Gamma-Ray Detectors for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Ianakiev, K. D.; Prettyman, T. H.; Reedy, R. C.; Smith, M. K.; Sweet, M. R.

    2000-01-01

    Recent results from encapsulated multi-element CdZnTe room-temperature semiconductor gamma-ray detectors are presented. Our multi-element-array design is a good low-mass and low-power candidate for elemental mapping on future planetary missions.

  8. The Effect of Twin Boundaries on the Spectroscopic Performance of CdZnTe Detectors

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.; Stahle, C. M.; Roth, D.; Babu, S.; Tueller, Jack; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Most single grains in cadmium zinc telluride (CdZnTe) grown by the high-pressure Bridgman (HPB) technique contain multiple twin boundaries. As a consequence, twin boundaries are one of the most common macroscopic material defects found in large area (400 to 700 sq mm) CdZnTe specimens obtained from HPB ingots. Due to the prevalence of twin boundaries, understanding their effect on detector performance is key to the material selection process. Twin boundaries in several 2 mm thick large area specimens were first, documented using infrared transmission imaging. These specimens were then fabricated into either 2 mm pixel or planar detectors in order to examine the effect of the twin boundaries on detector performance. Preliminary results show that twin boundaries, which are decorated with tellurium inclusions, produce a reduction in detector efficiency and a degradation in resolution. The extent of the degradation appears to be a function of the density of tellurium inclusions.

  9. De-polarization of a CdZnTe radiation detector by pulsed infrared light

    SciTech Connect

    Dědič, V. Franc, J.; Rejhon, M.; Grill, R.; Zázvorka, J.; Sellin, P. J.

    2015-07-20

    This work is focused on a detailed study of pulsed mode infrared light induced depolarization of CdZnTe detectors operating at high photon fluxes. This depolarizing effect is a result of the decrease of positive space charge that is caused by the trapping of photogenerated holes at a deep level. The reduction in positive space charge is due to the optical transition of electrons from a valence band to the deep level due to additional infrared illumination. In this paper, we present the results of pulse mode infrared depolarization, by which it is possible to keep the detector in the depolarized state during its operation. The demonstrated mechanism represents a promising way to increase the charge collection efficiency of CdZnTe X-ray detectors operating at high photon fluxes.

  10. Surface Passivation of CdZnTe Detector by Hydrogen Peroxide Solution Etching

    NASA Technical Reports Server (NTRS)

    Hayes, M.; Chen, H.; Chattopadhyay, K.; Burger, A.; James, R. B.

    1998-01-01

    The spectral resolution of room temperature nuclear radiation detectors such as CdZnTe is usually limited by the presence of conducting surface species that increase the surface leakage current. Studies have shown that the leakage current can be reduced by proper surface preparation. In this study, we try to optimize the performance of CdZnTe detector by etching the detector with hydrogen peroxide solution as function of concentration and etching time. The passivation effect that hydrogen peroxide introduces have been investigated by current-voltage (I-V) measurement on both parallel strips and metal-semiconductor-metal configurations. The improvements on the spectral response of Fe-55 and 241Am due to hydrogen peroxide treatment are presented and discussed.

  11. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    NASA Astrophysics Data System (ADS)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-07-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cm×15 cm detection matrix of 2304 CdTe detector elements, 2.83 mm×2.83 mm×2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an

  12. Characterization of a large CdZnTe coplanar quad-grid semiconductor detector

    NASA Astrophysics Data System (ADS)

    Ebert, J.; Gehre, D.; Gößling, C.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Kröninger, K.; Nitsch, C.; Oldorf, C.; Quante, T.; Rajek, S.; Rebber, H.; Rohatsch, K.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Timm, J.; Wonsak, B.; Zatschler, S.; Zuber, K.

    2016-01-01

    The COBRA collaboration aims to search for neutrinoless double beta-decay of 116Cd. A demonstrator setup with 64 CdZnTe semiconductor detectors, each with a volume of 1 cm3, is currently being operated at the LNGS underground laboratory in Italy. This paper reports on the characterization of a large 2 × 2 × 1.5cm3 CdZnTe detector with a new coplanar-grid design for applications in γ-ray spectroscopy and low-background operation. Several studies of electric properties as well as of the spectrometric performance, like energy response and resolution, are conducted. Furthermore, measurements including investigating the operational stability and a possibility to identify multiple-scattered photons are presented.

  13. CdZnTe position-sensitive drift detectors with thicknesses up to 5 cm

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Chen, E.; Cheng, S.; Cui, Y.; Gul, R.; Gallagher, R.; Dedic, V.; De Geronimo, G.; Ocampo Giraldo, L.; Fried, J.; Hossain, A.; MacKenzie, J. M.; Sellin, P.; Taherion, S.; Vernon, E.; Yang, G.; El-hanany, U.; James, R. B.

    2016-02-01

    We investigated the feasibility of long-drift-time CdZnTe (CZT) gamma-ray detectors, fabricated from CZT material produced by Redlen Technologies. CZT crystals with cross-section areas of 5 × 5 mm2 and 6 × 6 mm2 and thicknesses of 20-, 30-, 40-, and 50-mm were configured as 3D position-sensitive drift detectors and were read out using a front-end ASIC. By correcting the electron charge losses caused by defects in the crystals, we demonstrated high performance for relatively thick detectors fabricated from unselected CZT material.

  14. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  15. Growth of CdZnTe Crystals for Radiation Detector Applications by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    Advances in Cadmium Zinc Telluride (Cd(sub 1-x)Zn(sub x)Te) growth techniques are needed for the production of large-scale arrays of gamma and x-ray astronomy. The research objective is to develop crystal growth recipes and techniques to obtain large, high quality CdZnTe single crystal with reduced defects, such as charge trapping, twinning, and tellurium precipitates, which degrade the performance of CdZnTe and, at the same time, to increase the yield of usable material from the CdZnTe ingot. A low gravity material experiment, "Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment", will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). One section of the flight experiment is the melt growth of CdZnTe ternary compounds. This talk will focus on the ground-based studies on the growth of Cd(sub 0.80)Zn(sub 0.20)Te crystals for radiation detector applications by directional solidification. In this investigation, we have improved the properties that are most critical for the detector applications (electrical properties and crystalline quality): a) Electrical resistivity: use high purity starting materials (with reproducible impurity levels) and controlled Cd over pressure during growth to reproducibly balance the impurity levels and Cd vacancy concentration b) Crystalline quality: use ultra-clean growth ampoule (no wetting after growth), optimized thermal profile and ampoule design, as well as a technique for supercool reduction to growth large single crystal with high crystalline quality

  16. Preliminary Performance of CdZnTe Imaging Detector Prototypes

    NASA Technical Reports Server (NTRS)

    Ramsey, B.; Sharma, D. P.; Meisner, J.; Gostilo, V.; Ivanov, V.; Loupilov, A.; Sokolov, A.; Sipila, H.

    1999-01-01

    The promise of good energy and spatial resolution coupled with high efficiency and near-room-temperature operation has fuelled a large International effort to develop Cadmium-Zinc-Telluride (CdZnTe) for the hard-x-ray region. We present here preliminary results from our development of small-pixel imaging arrays fabricated on 5x5x1-mm and 5x5x2-mm spectroscopy and discriminator-grade material. Each array has 16 (4x4) 0.65-mm gold readout pads on a 0.75-mm pitch, with each pad connected to a discrete preamplifier via a pulse-welded gold wire. Each array is mounted on a 3-stage Peltier cooler and housed in an ion-pump-evacuated housing which also contains a hybrid micro-assembly for the 16 channels of electronics. We have investigated the energy resolution and approximate photopeak efficiency for each pixel at several energies and have used an ultra-fine beam x-ray generator to probe the performance at the pixel boundaries. Both arrays gave similar results, and at an optimum temperature of -20 C we achieved between 2 and 3% FWHM energy resolution at 60 keV and around 15% at 5.9 keV. We found that all the charge was contained within 1 pixel until very close to the pixels edge, where it would start to be shared with its neighbor. Even between pixels, all the charge would be appropriately shared with no apparently loss of efficiency or resolution. Full details of these measurements will be presented, together with their implications for future imaging-spectroscopy applications.

  17. A CdZnTe slot-scanned detector for digital mammography.

    PubMed

    Mainprize, James G; Ford, Nancy L; Yin, Shi; Gordon, Eli E; Hamilton, William J; Tümer, Tümay O; Yaffe, Martin J

    2002-12-01

    A new high-resolution detector has been developed for use in a slot-scanned digital mammography system. The detector is a hybrid device that consists of a CCD operating in time-delay integration mode that is bonded to a 150-microm-thick CdZnTe photoconductor array. The CCD was designed with a detector element pitch of 50 microm. Two devices were evaluated with differing crystalline quality. Incomplete charge collection was a source of reduction in DQE. This occurs in both devices due to characteristically low mobility-lifetime products for CdZnTe, with the greatest losses demonstrated by the multicrystalline sample. The mobility-lifetime products for the multicrystalline device were found to be 2.4 x 10(-4) and 4.0 x 10(-7) cm2/V for electrons and holes, respectively. The device constructed with higher quality single crystal CdZnTe demonstrated mobility-lifetime products of 1.0 x 10(-4) and 4.4 x 10(-6) cm2/V for electrons and holes. The MTF and DQE for the device were measured at several exposures and results were compared to predictions from a linear systems model of signal and noise propagation. The MTF at a spatial frequency of 10 mm(-1) exceeded 0.18 and 0.56 along the scan and slot directions, respectively. Scanning motion and CCD design limited the resolution along the scan direction. For an x-ray beam from a tungsten target tube with 40 microm molybdenum filtration operated at 26 kV, the single crystal device demonstrated a DQE(0) of 0.70 +/- 0.02 at 7.1 x 10(-6) C/kg (27 mR) exposure to the detector, despite its relatively poor charge collection efficiency.

  18. Results from a Prototype Multi-Element CdZnTe Gamma-Ray Detector for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Browne, M. C.; Ianakiev, K. D.; Prettyman, T. H.; Reedy, R. C.

    2001-01-01

    We present high energy results for a 2 x 2 x 2 array of eight 10 mm x 10 mm x 5 mm coplanar grid CdZnTe detectors. We conclude that such an array can provide a room-temperature detector with good resolution and efficiency for planetary missions. Additional information is contained in the original extended abstract.

  19. HAND-HELD GAMMA-RAY SPECTROMETER BASED ON HIGH-EFFICIENCY FRISCH-RING CdZnTe DETECTORS.

    SciTech Connect

    CUI,Y.

    2007-05-01

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution, el% FWHM at 662 keV, and good efficiency for detecting gamma rays. This technique facilitates the application of CdZnTe materials for high efficiency gamma-ray detection. A hand-held gamma-ray spectrometer based on Frisch-ring detectors is being designed at Brookhaven National Laboratory. It employs an 8x8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so that detection efficiency is significantly improved. By using the front-end ASICs developed at BNL, this spectrometer has a small profile and high energy resolution. The spectrometer includes signal processing circuit, digitization and storage circuit, high-voltage module, and USB interface. In this paper, we introduce the details of the system structure and report our test results with it.

  20. Hand-Held Gamma-Ray Spectrometer Based on High-Efficiency Frisch-Ring Cdznte Detectors

    SciTech Connect

    Cui, Y.; Bolotnikov, A; Camarda, G; Hossain, A; James, R; DeGeronimo, G; Fried, J; O'Connor, P; Kargar, A; et. al.

    2008-01-01

    Frisch-ring CdZnTe detectors have demonstrated both good energy resolution, <1% FWHM at 662 keV, and good efficiency in detecting gamma rays, highlighting the strong potential of CdZnTe materials for such applications. We are designing a hand-held gamma-ray spectrometer based on Frisch-ring detectors at Brookhaven National Laboratory. It employs an 8 times 8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so greatly improving detection efficiency. By using the front-end application-specific integrated circuits (ASICs) developed at BNL, this spectrometer has a small profile and high energy-resolution. It includes a signal processing circuit, digitization and storage circuits, a high-voltage module, and a universal serial bus (USB) interface. In this paper, we detail the system's structure and report the results of our tests with it.

  1. Investigation of the limitations of the highly pixilated CdZnTe detector for PET applications

    PubMed Central

    Komarov, Sergey; Yin, Yongzhi; Wu, Heyu; Wen, Jie; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are investigating the feasibility of a high resolution positron emission tomography (PET) insert device based on the CdZnTe detector with 350 μm anode pixel pitch to be integrated into a conventional animal PET scanner to improve its image resolution. In this paper, we have used a simplified version of the multi pixel CdZnTe planar detector, 5 mm thick with 9 anode pixels only. This simplified 9 anode pixel structure makes it possible to carry out experiments without a complete application-specific integrated circuits readout system that is still under development. Special attention was paid to the double pixel (or charge sharing) detections. The following characteristics were obtained in experiment: energy resolution full-width-at-half-maximum (FWHM) is 7% for single pixel and 9% for double pixel photoelectric detections of 511 keV gammas; timing resolution (FWHM) from the anode signals is 30 ns for single pixel and 35 ns for double pixel detections (for photoelectric interactions only the corresponding values are 20 and 25 ns); position resolution is 350 μm in x,y-plane and ~0.4 mm in depth-of-interaction. The experimental measurements were accompanied by Monte Carlo (MC) simulations to find a limitation imposed by spatial charge distribution. Results from MC simulations suggest the limitation of the intrinsic spatial resolution of the CdZnTe detector for 511 keV photoelectric interactions is 170 μm. The interpixel interpolation cannot recover the resolution beyond the limit mentioned above for photoelectric interactions. However, it is possible to achieve higher spatial resolution using interpolation for Compton scattered events. Energy and timing resolution of the proposed 350 μm anode pixel pitch detector is no better than 0.6% FWHM at 511 keV, and 2 ns FWHM, respectively. These MC results should be used as a guide to understand the performance limits of the pixelated CdZnTe detector due to the underlying detection processes, with the understanding of

  2. Progress in the Development of CdZnTe Unipolar Detectors for Different Anode Geometries and Data Corrections

    PubMed Central

    Zhang, Qiushi; Zhang, Congzhe; Lu, Yanye; Yang, Kun; Ren, Qiushi

    2013-01-01

    CdZnTe detectors have been under development for the past two decades, providing good stopping power for gamma rays, lightweight camera heads and improved energy resolution. However, the performance of this type of detector is limited primarily by incomplete charge collection problems resulting from charge carriers trapping. This paper is a review of the progress in the development of CdZnTe unipolar detectors with some data correction techniques for improving performance of the detectors. We will first briefly review the relevant theories. Thereafter, two aspects of the techniques for overcoming the hole trapping issue are summarized, including irradiation direction configuration and pulse shape correction methods. CdZnTe detectors of different geometries are discussed in detail, covering the principal of the electrode geometry design, the design and performance characteristics, some detector prototypes development and special correction techniques to improve the energy resolution. Finally, the state of art development of 3-D position sensing and Compton imaging technique are also discussed. Spectroscopic performance of CdZnTe semiconductor detector will be greatly improved even to approach the statistical limit on energy resolution with the combination of some of these techniques. PMID:23429509

  3. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE PAGES

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sources usingmore » a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  4. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    SciTech Connect

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; Camarda, Giuseppe; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Utpal, Roy; Yang, Ge; James, Ralph

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sources using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.

  5. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    SciTech Connect

    HOSSAIN, A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices for gamma spectroscopy. Sample preparation and results are discussed. The researachers demonstrated various bulk defects (e.g., dislocations and sub-grain boundaries) and surface defects, and examined their effects on the performance of detectors. A comparison study was made between two chemical etchants to produce non-conductive smooth surfaces. A mixture of bromine and hydrogen peroxide proved more effective than conventional bromine etchant. Both energy resolution and detection efficiency of CZT planar detectors were noticeably increased after processing the detector crystals using improved chemical etchant and processing methods.

  6. Charge sharing in common-grid pixelated CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Kim, Jae Cheon; Anderson, Stephen E.; Kaye, Willy; Zhang, Feng; Zhu, Yuefeng; Kaye, Sonal Joshi; He, Zhong

    2011-10-01

    The charge sharing effect in pixelated CdZnTe (CZT) detectors with a common anode steering grid has been studied. The impact on energy resolution of weighting potential cross-talk and ballistic deficit due to cathode signal shaping has been investigated. A detailed system modeling package considering charge induction, electronic noise, pulse shaping, and ASIC triggering procedures has been developed to study the characteristics of common-grid CZT detectors coupled to the VAS_UM/TAT4 ASIC. Besides an actual common-grid CZT detector coupled to VAS_UM/TAT4 ASIC, a prototype digital read-out system has been developed to better understand the nature of the charge sharing effect.

  7. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    PubMed Central

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-01-01

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5×105 and 8×106 photons per mm2 per second. It was observed that polarization occurs at an X-ray flux higher than 3×106 mm−2·s−1. Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect. PMID:27690024

  8. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays.

    PubMed

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-09-27

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5 × 10 5 and 8 × 10 6 photons per mm 2 per second. It was observed that polarization occurs at an X-ray flux higher than 3 × 10 6 mm - 2 ·s - 1 . Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect.

  9. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications

    PubMed Central

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476

  10. Preliminary results from a novel CdZnTe linear pad detector array x-ray imaging system

    SciTech Connect

    Peng, J.; Tuemer, T.O.; Petrini, B.M.; Kravis, S.D.; Yin, S.; Parnham, K.B.; Glick, B.; Willson, P.D.

    1996-12-31

    The excellent energy-resolution and short charge collection time, especially the possibility of room temperature operation, make CdZnTe semiconductor detectors an excellent candidate for x-ray imaging and spectroscopic application in nuclear physics. Because of these characteristics, CdZnTe pad detectors with a novel geometry and approximately 1 mm{sup 2} pad area have been developed. These pad type linear arrays are new and important for many scanning type applications using a wide energy range from about 10 to 300 keV energies. A prototype x-ray imaging system has been developed consisting of a state-of-the-art pad type linear array of CdZnTe detectors manufactured by eV Products and low noise readout electronics developed by NOVA R and D, Inc. A series of measurements on the temperature dependence of the performance of CdZnTe linear pad detector arrays has been performed at NOVA R and D, Inc. The changes in dark (leakage) current against temperature have been studied. High resolution x-ray spectra has been obtained using {sup 57}Co source at different temperatures. A low noise front-end electronics ASIC chip for reading out the detector array was developed that can achieve fast data acquisition with dual energy imaging capability. Several prototype CdZnTe pad detector arrays are placed next to each other to form an approximately 30 cm long linear array. This array is used to make preliminary dual energy scanned images of complex objects using a 90 kV x-ray generator. Some of the images will be presented. The results show that the system is excellent for applications in industrial and medical imaging.

  11. Characterization of detector grade CdZnTe material from Redlen Technologies

    SciTech Connect

    Duff, Martine C.; Burger, Arnold; Groza, Michael; Buliga, Vladimir; Bradley, John P.; Dai, Zurong R.; Teslich, Nick; Black, David R.; Awadalla, Salah A.; Mackenzie, Jason; Chen, Henry

    2008-10-24

    CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. This large band gap material shows great promise for use as a gamma radiation spectrometer. Historically, the performance of CZT has typically been adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity) and secondary phases (SP). The synthesis of CZT material has improved greatly with the primary performance limitation being attributed to mainly SP. In this presentation, we describe the extensive characterization of detector grade material that has been treated with post growth annealing to remove the SPs. Some of the analytical methods used in this study included polarized, cross polarized and transmission IR imaging, I-V curves measurements, synchrotron X-ray topography and electron microscopy.

  12. Charge-sensitive front-end electronics with operational amplifiers for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Berthel, M.; Lange, B.; Kirschke, T.; Enghardt, W.; Kaever, P.

    2016-09-01

    Cadmium zinc telluride (CdZnTe, CZT) radiation detectors are suitable for a variety of applications, due to their high spatial resolution and spectroscopic energy performance at room temperature. However, state-of-the-art detector systems require high-performance readout electronics. Though an application-specific integrated circuit (ASIC) is an adequate solution for the readout, requirements of high dynamic range and high throughput are not available in any commercial circuit. Consequently, the present study develops the analog front-end electronics with operational amplifiers for an 8×8 pixelated CZT detector. For this purpose, we modeled an electrical equivalent circuit of the CZT detector with the associated charge-sensitive amplifier (CSA). Based on a detailed network analysis, the circuit design is completed by numerical values for various features such as ballistic deficit, charge-to-voltage gain, rise time, and noise level. A verification of the performance is carried out by synthetic detector signals and a pixel detector. The experimental results with the pixel detector assembly and a 22Na radioactive source emphasize the depth dependence of the measured energy. After pulse processing with depth correction based on the fit of the weighting potential, the energy resolution is 2.2% (FWHM) for the 511 keV photopeak.

  13. Influence of infrared stimulation on spectroscopy characteristics of co-planar grid CdZnTe detectors

    SciTech Connect

    Fjodorov, V.; Ivanov, V.; Loutchanski, A.

    2015-07-01

    It was previously found that illumination with monochromatic infrared (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe detectors at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe detectors as well as results of further studies of planar and quasi-hemispherical detectors are presented. Coplanar-grid detectors of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity and direction of IR illumination on the detector's characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar detectors at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical detectors. It is due with optimization of charge collection conditions in the quasi-hemispherical detectors under IT stimulation. (authors)

  14. Control of electric field in CdZnTe radiation detectors by above-bandgap light

    SciTech Connect

    Franc, J.; Dědič, V.; Rejhon, M.; Zázvorka, J.; Praus, P.; Touš, J.; Sellin, P. J.

    2015-04-28

    We have studied the possibility of above bandgap light induced depolarization of CdZnTe planar radiation detector operating under high flux of X-rays by Pockels effect measurements. In this contribution, we show a similar influence of X-rays at 80 kVp and LED with a wavelength of 910 nm irradiating the cathode on polarization of the detector due to an accumulation of a positive space charge of trapped photo-generated holes. We have observed the depolarization of the detector under simultaneous cathode-site illumination with excitation LED at 910 nm and depolarization above bandgap LED at 640 nm caused by trapping of drifting photo-generated electrons. Although the detector current is quite high during this depolarization, we have observed that it decreases relatively fast to its initial value after switching off the depolarizing light. In order to get detailed information about physical processes present during polarization and depolarization and, moreover, about associated deep levels, we have performed the Pockels effect infrared spectral scanning measurements of the detector without illumination and under illumination in polarized and optically depolarized states.

  15. Experimental study of double-{beta} decay modes using a CdZnTe detector array

    SciTech Connect

    Dawson, J. V.; Goessling, C.; Koettig, T.; Muenstermann, D.; Rajek, S.; Schulz, O.; Janutta, B.; Zuber, K.; Junker, M.; Reeve, C.; Wilson, J. R.

    2009-08-15

    An array of sixteen 1 cm{sup 3} CdZnTe semiconductor detectors was operated at the Gran Sasso Underground Laboratory (LNGS) to further investigate the feasibility of double-{beta} decay searches with such devices. As one of the double-{beta} decay experiments with the highest granularity the 4x4 array accumulated an overall exposure of 18 kg days. The setup and performance of the array is described. Half-life limits for various double-{beta} decay modes of Cd, Zn, and Te isotopes are obtained. No signal has been found, but several limits beyond 10{sup 20} years have been performed. They are an order of magnitude better than those obtained with this technology before and comparable to most other experimental approaches for the isotopes under investigation. An improved limit for the {beta}{sup +}/EC decay of {sup 120}Te is given.

  16. Analytical model for event reconstruction in coplanar grid CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Fritts, Matthew; Durst, Jürgen; Göpfert, Thomas; Wester, Thomas; Zuber, Kai

    2013-04-01

    Coplanar-grid (CPG) particle detectors were designed for materials such as CdZnTe (CZT) in which charge carriers of only one sign have acceptable transport properties. The presence of two independent anode signals allows for a reconstruction of deposited energy based on the difference between the two signals, and a reconstruction of the interaction depth based on the ratio of the amplitudes of the sum and difference of the signals. Energy resolution is greatly improved by modifying the difference signal with an empirically determined weighting factor to correct for the effects of electron trapping. This paper introduces a modified interaction depth reconstruction formula which corrects for electron trapping utilizing the same weighting factor used for energy reconstruction. The improvement of this depth reconstruction over simpler formulas is demonstrated. Further corrections due to the contribution of hole transport to the signals are discussed.

  17. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    SciTech Connect

    Abdullah, J.; Yahya, R.

    2007-05-09

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented.

  18. Effect of ZnTe and CdZnTe Alloys at the Back Contact of 1-μm-Thick CdTe Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    2002-05-01

    N2-doped ZnTe was introduced onto 1-μm-thick CdTe absorbers in order to reduce the carrier recombination at the back contact of CdS/CdTe/C/Ag configuration solar cells. ZnTe films were grown by molecular beam epitaxy (MBE) on GaAs and Corning glass substrates to investigate the characteristics of the films. Epitaxial growth of ZnTe was realized on GaAs substrates and a hole concentration of 8 × 1018 cm-3 with a resistivity of 0.045 Ω \\cdotcm was achieved as a result of nitrogen doping. In contrast, polycrystalline ZnTe films were grown on Corning glass and CdTe thin films. Dark and photoconductivity of ZnTe films increased to 1.43 × 10-5 S/cm and 1.41 × 10-4 S/cm, respectively, while the Zn to Te ratio was decreased to 0.25 during MBE growth. These ZnTe films with different thicknesses were inserted into close-spaced sublimation (CSS)-grown 1-μm-thick CdTe solar cells. A conversion efficiency of 8.31% (Voc: 0.74 V, Jsc: 22.98 mA/cm2, FF: 0.49, area: 0.5 cm2) was achieved for a 0.2-μm-thick ZnTe layer with a cell configuration of CdS/CdTe/ZnTe/Cu-doped-C/Ag. Furthermore, to overcome the problem of possible recombination loss in the interface layer of CdTe and ZnTe, the intermediate ternary CdZnTe is investigated. The compositional factor in Cd1-xZnxTe:N alloy is varied and the dependence of the conductivity is evaluated. For instance, Cd0.5Zn0.5Te:N, with dark and photoconductivity of 2.13 × 10-6 and 2.9 × 10-5 S/cm, respectively, is inserted at the back contact of a 1-μm-thick CdTe solar cell. A conversion efficiency of 7.46% (Voc: 0.68 V, Jsc: 22.60 mA/cm2, FF: 0.49, area: 0.086 cm2) was achieved as the primary result for a 0.2-μm-thick Cd0.5Zn0.5Te:N layer with the cell configuration of CdS/CdTe/Cd0.5Zn0.5Te:N/Au.

  19. Detector Performance of Ammonium-Sulfide-Passivated CdZnTe and CdMnTe Materials

    SciTech Connect

    Kim, K.H.; Bolotnikov, A.E.; Camarda, G.S.; Marchini, L.; Yang, G.; Hossain, A.; Cui, Y.; Xu, L.; and James, R.B.

    2010-08-01

    Dark currents, including those in the surface and bulk, are the leading source of electronic noise in X-ray and gamma detectors, and are responsible for degrading a detector's energy resolution. The detector material itself determines the bulk leakage current; however, the surface leakage current is controllable by depositing appropriate passivation layers. In previous research, we demonstrated the effectiveness of surface passivation in CZT (CdZnTe) and CMT (CdMnTe) materials using ammonium sulfide and ammonium fluoride. In this research, we measured the effect of such passivation on the surface states of these materials, and on the performances of detectors made from them.

  20. Characterization of detector-grade CdZnTe crystals grown by traveling heater method (THM)

    NASA Astrophysics Data System (ADS)

    Awadalla, S. A.; Mackenzie, J.; Chen, H.; Redden, B.; Bindley, G.; Duff, M. C.; Burger, A.; Groza, M.; Buliga, V.; Bradley, J. P.; Dai, Z. R.; Teslich, N.; Black, D. R.

    2010-02-01

    This work focuses on the 3. Resultsanddiscussioncharacterization of 10×10×10 mm 3 THM-grown CdZnTe detector-grade crystals that have been post-growth annealed to remove the secondary phases (SPs). All three detectors showed an average energy resolution of ˜1.63% for a small guarded pixel with 3.5 mm diameter, measured using 137Cs—662 keV with an average peak-to-Compton ratio of 2.7. The characterization showed vestiges of SPs and micro-twins present in some of the crystals indicating that the SPs prior to annealing were large and had size in the range of 100-500 μm. The various detectable structural features, such as micron twins, strains and sub-micron level of Te inclusions seemed to have little or no influence in the radiation spectrometer performance of the detectors; this is possibly because they are either having low density or electrically inactive.

  1. Cumulative effects of Te precipitates in CdZnTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Carini, G. A.; Cui, Y.; Li, L.; James, R. B.

    2007-02-01

    High-quality radiation detector-grade CdZnTe material is free from large-scale defects, such as grain boundaries, twins, and large Te or Cd inclusions (>50 μm), although it usually contains high concentrations of uniformly distributed Te inclusions and precipitates, typically of ˜20-μm-diameter size or smaller. We address the effects of the small-size Te precipitates on charge collection in CZT detectors, the significance of which is not yet well characterized. The strong correlation that we earlier found between the high-resolution X-ray maps and IR images proved that even small Te precipitates can trap substantial fractions of charge from the electron cloud. In this work, we modeled the transport of an electron cloud across idealized CZT devices containing Te precipitates to demonstrate that their cumulative effect can explain the degradation of energy resolution and the detection efficiency losses observed in actual CZT devices. Due to lack of experimental data on how the Te precipitates interact with an electron cloud, we developed a simplified (phenomenological) model based on the geometrical aspects of the problem. Despite its simplicity, the model correctly reproduced many experimental facts and gave quantitative predictions on the extent to which the presence of Te precipitates and inclusions can be tolerated. The broadening of the electron cloud due to repulsion and diffusion is at the core of the problem, making even low concentrations of small precipitates important in the device's performance.

  2. CHARACTERIZATION OF PD IMPURITIES AND TWIN BOUNDARY DEFECTS IN DETECTOR GRADE CDZNTE CRYSTALS

    SciTech Connect

    Duff, M.

    2011-06-22

    Synthetic CdZnTe or ''CZT'' crystals are highly suitable for {gamma}-spectrometers operating at the room temperature. Secondary phases (SP) in CZT are known to inhibit detector performance, particularly when they are present in large numbers or dimensions. These SP may exist as voids or composites of non-cubic phase metallic Te layers with bodies of polycrystalline and amorphous CZT material and voids. Defects associated with crystal twining may also influence detector performance in CZT. Using transmission electron microscopy, we identify two types of defects that are on the nano scale. The first defect consists of 40 nm diameter metallic Pd/Te bodies on the grain boundaries of Te-rich composites. Although the nano-Pd/Te bodies around these composites may be unique to the growth source of this CZT material, noble metal impurities like these may contribute to SP formation in CZT. The second defect type consists of atom-scale grain boundary dislocations. Specifically, these involve inclined ''finite-sized'' planar defects or interfaces between layers of atoms that are associated with twins. Finite-sized twins may be responsible for the subtle but observable striations that can be seen with optical birefringence imaging and synchrotron X-ray topographic imaging.

  3. Signal modeling of charge sharing effect in simple pixelated CdZnTe detector

    NASA Astrophysics Data System (ADS)

    Kim, Jae Cheon; Kaye, William R.; He, Zhong

    2014-05-01

    In order to study the energy resolution degradation in 3D position-sensitive pixelated CdZnTe (CZT) detectors, a detailed detector system modeling package has been developed and used to analyze the detector performance. A 20 × 20 × 15 mm3 CZT crystal with an 11 × 11 simple-pixel anode array and a 1.72 mm pixel pitch was modeled. The VAS UM/TAT4 Application Specific Integrated Circuitry (ASIC) was used for signal read-out. Components of the simulation package include gamma-ray interactions with the CZT crystal, charge induction, electronic noise, pulse shaping, and ASIC triggering procedures. The charge induction model considers charge drift, trapping, diffusion, and sharing between pixels. This system model is used to determine the effects of electron cloud sharing, weighting potential non-uniformity, and weighting potential cross-talk which produce non-uniform signal responses for different gamma-ray interaction positions and ultimately degrade energy resolution. The effect of the decreased weighting potential underneath the gap between pixels on the total pulse amplitude of events has been studied. The transient signals induced by electron clouds collected near the gap between pixels may generate false signals, and the measured amplitude can be even greater than the photopeak. As the number of pixels that collect charge increases, the probability of side-neighbor events due to charge sharing significantly increases. If side-neighbor events are not corrected appropriately, the energy resolution of pixelated CZT detectors in multiple-pixel events degrades rapidly.

  4. Position-sensitive CdTe detector using improved crystal growth method

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The feasibility of developing a position-sensitive CdTe detector array for astronomical observations in the hard X-ray, soft gamma ray region is demonstrated. In principle, it was possible to improve the resolution capability for imaging measurements in this region by orders of magnitude over what is now possible through the use of CdTe detector arrays. The objective was to show that CdTe crystals of the quality, size and uniformity required for this application can be obtained with a new high pressure growth technique. The approach was to fabricate, characterize and analyze a 100 element square array and several single-element detectors using crystals from the new growth process. Results show that detectors fabricated from transversely sliced, 7 cm diameter wafers of CdTe exhibit efficient counting capability and a high degree of uniformity over their entire areas. A 100 element square array of 1 sq mm detectors was fabricated and operated.

  5. Use of high-granularity position sensing to correct response non-uniformities of CdZnTe detectors

    SciTech Connect

    Bolotnikov, A. E. Camarda, G. S.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Marshall, M.; Roy, U.; Vernon, E.; Yang, G.; James, R. B.; Lee, K.; Petryk, M.

    2014-06-30

    CdZnTe (CZT) is a promising medium for room-temperature gamma-ray detectors. However, the low production yield of acceptable quality crystals hampers the use of CZT detectors for gamma-ray spectroscopy. Significant efforts have been directed towards improving quality of CZT crystals to make them generally available for radiation detectors. Another way to address this problem is to implement detector designs that would allow for more accurate and predictable correction of the charge loss associated with crystal defects. In this work, we demonstrate that high-granularity position-sensitive detectors can significantly improve the performance of CZT detectors fabricated from CZT crystals with wider acceptance boundaries, leading to an increase of their availability and expected decrease in cost.

  6. Influence of the thickness of a crystal on the electrical characteristics of Cd(Zn)Te detectors

    SciTech Connect

    Sklyarchuk, V.; Fochuk, p.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O. F.; Bolotnikov, A. E.; James, R. B.

    2015-08-01

    We studied the electrical characteristics of Cd(Zn)Te detectors with rectifying contacts and varying thicknesses, and established that their geometrical dimensions affect the measured electrical properties. We found that the maximum value of the operating-bias voltage and the electric field in the detector for acceptable values of the dark current can be achieved when the crystal has an optimum thickness. This finding is due to the combined effect of generation-recombination in the space-charge region and space-charge limited currents (SCLC).

  7. Point Defects in Pb-, Bi-, and In-Doped CdZnTe Detectors: Deep-Level Transient Spectroscopy (DLTS) Measurements

    NASA Astrophysics Data System (ADS)

    Gul, R.; Keeter, K.; Rodriguez, R.; Bolotnikov, A. E.; Hossain, A.; Camarda, G. S.; Kim, K. H.; Yang, G.; Cui, Y.; Carcelen, V.; Franc, J.; Li, Z.; James, R. B.

    2012-03-01

    We studied, by current deep-level transient spectroscopy (I-DLTS), point defects induced in CdZnTe detectors by three dopants: Pb, Bi, and In. Pb-doped CdZnTe detectors have a new acceptor trap at around 0.48 eV. The absence of a VCd trap suggests that all Cd vacancies are compensated by Pb interstitials after they form a deep-acceptor complex [[PbCd]+-V{Cd/2-}]-. Bi-doped CdZnTe detectors had two distinct traps: a shallow trap at around 36 meV and a deep donor trap at around 0.82 eV. In detectors doped with In, we noted three well-known traps: two acceptor levels at around 0.18 eV (A-centers) and 0.31 eV (VCd), and a deep trap at around 1.1 eV.

  8. Development of CDZNTE Detectors for Low-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1999-01-01

    Under this grant the UC Berkeley PI, K. Hurley, joined a Goddard-led effort to develop large area, multi-pixel Cadmium-Zinc-Telluride (CdZnTe, or CZT) detectors for gamma-ray astronomy. His task was to advise the project of new developments in the area of cosmic gamma-ray bursts, in order to focus the detector development effort on the construction of an instrument which could be deployed on a spacecraft to localize and measure the energy spectra of bursts with good angular and energy resolution, respectively. UC Berkeley had no hardware role in this proposal. The result of this effort was the production, at Goddard, of five CZT prototype modules. A proposal was written for SWIFT, a MIDEX mission to study cosmic gamma-ray bursts. One experiment aboard SWIFT is the Burst Arcminute Telescope (BAT), which consists of a 5200 sq cm hard X-ray detector and a coded mask. The detector comprises 256 CZT modules, each containing 128 4 x 4 x 2 mm CZT detectors. Each detector is read out using an ASIC. The angular resolution achieved with this mask/array combination is 22 arcminutes, and a strong gamma-ray burst can be localized to an accuracy of 4 arcminutes in under 10 seconds. The energy resolution is typically 5 keV FWHM at 60 keV, and the energy range is 10 - 150 keV. The BAT views 2 steradians, and its sensitivity is such that the instrument can detect 350 gamma-ray burst/year, localizing 320 of them to better than 4 arcminute accuracy. The BAT concept therefore met the science goals for gamma-ray bursts. The UCB effort in the SWIFT proposal included the scientific objectives for gamma-ray bursts, and the assembly of a team of optical and radio observers who would use the BAT data to perform rapid multi-wavelength searches for the counterparts to bursts. This proposal was submitted to NASA and peer-reviewed. In January 1999 it was one of five such proposals selected for a Phase A study. This study was completed in June, and SWIFT was formally presented to NASA in

  9. An effect of the networks of the subgrain boundaries on spectral responses of thick CdZnTe detectors

    SciTech Connect

    Bolotnikov, A.; Butcher, J.; Camarda, G.; Cui, Y.; Egarievwe, S.; Fochuk, P.; Gul,R.; Hamade, M.; Hossain, A.; Kim, K.; Kopach,O.; Petryk, M.; Raghothamachar, B.; Yang, G.; and James, R.B.

    2011-08-12

    CdZnTe (CZT) crystals used for nuclear-radiation detectors often contain high concentrations of subgrain boundaries and networks of poligonized dislocations that can significantly degrade the performance of semiconductor devices. These defects exist in all commercial CZT materials, regardless of their growth techniques and their vendor. We describe our new results from examining such detectors using IR transmission microscopy and white X-ray beam diffraction topography. We emphasize the roles on the devices performances of networks of subgrain boundaries with low dislocation densities, such as poligonized dislocations and mosaic structures. Specifically, we evaluated their effects on the gamma-ray responses of thick, >10 mm, CZT detectors. Our findings set the lower limit on the energy resolution of CZT detectors containing dense networks of subgrain boundaries, and walls of dislocations.

  10. Accumulative dose response of CdZnTe detectors to 14.1 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Han, He-tong; Li, Gang; Lu, Yi

    2017-03-01

    The accumulative dose response of CdZnTe (CZT) detectors to 14.1 MeV neutrons is discussed experimentally in this paper. The Cockcroft-Walton Accelerator is used to obtain a steady neutron beam of 14.1 MeV neutrons. A pulsed X-ray source is used to test the response parameters of the neutron-exposed CZT detectors under the pulse mode. The irradiation time (hours) is shorter relative to the time scales (years) where annealing effects occur. Time and linearity response is analyzed to evaluate the maximum dose rate of the CZT detectors and the pulse shape. The result shows that the experimental CZT detectors maintain stable response behaviors, while the maximum dose rate and the total accumulative dose are less than 106 neutrons/(cm2·s) and 1010 neutrons/cm2, respectively.

  11. Polycrystalline CdZnTe thick films for low energy x-ray: system evaluation.

    PubMed

    Yuk, Sunwoo; Park, Shin-Woong; Yi, Yun

    2006-01-01

    The X-ray response of polycrystalline-CdZnTe was measured by signal-to-noise (S/N) analysis. The CdZnTe material has optimal properties in a solid-state X-ray detector, and much research has focused on single crystal CdZnTe with a small-sized, silicon readout device. However, it would be difficult to apply CdTe or CdZnTe single crystal to large area, flat panel detectors, such as those used for radiography and mammography. As an alternative of single crystal CdZnTe, we have grown thick, polycrystalline CdZnTe films of high resistivity (>5 x 10(9) Ohm cm) using the thermal evaporation method on carbon substrate. A high signal-to-noise value has a direct impact on the performance of CdZnTe X-ray detectors. Important image parameters, such as dynamic range and detective quantum efficiency, rely on the signal and noise characteristics of the system. In this paper, we analyzed the properties of the X-ray detector and obtained images of the X-ray detector using the data acquisition system. The X-ray detector used the Cd1-xZnxTe (x=0.04), which used carbon substrate and gold as the electrode. The detector design is planar and 32 mm x 10 mm in size, and it has a 1.75mm x 1mm pixel electrode size and a detector thickness of 150 microm.

  12. Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Musiienko, Artem; Grill, Roman; Hlídek, Pavel; Moravec, Pavel; Belas, Eduard; Zázvorka, Jakub; Korcsmáros, Gabriel; Franc, Jan; Vasylchenko, Igor

    2017-01-01

    High resistive CdTe and CdZnTe single crystals were measured by photo-Hall effect spectroscopy (PHES) and photoluminescence spectroscopy (PL) with the aim of discovering the position of deep levels (DLs) in the band gap. Illumination in the range of 0.65-1.77 eV, room temperature, and DC electrical measurements were used in the case of PHES. Low temperature (4 K) photoluminescence spectra were recorded in the spectral range above 0.47 eV. Eight samples, both n-type and p-type, were studied and typical shapes of spectra were collected, compared and interpreted for both spectroscopy methods. It was shown that a simple single-level model of PHES often fails in the interpretation of DLs distant from the midgap. Eight DLs with the energy E c - 0.65 eV, E c - 0.8 eV, E c - 0.9 eV, E c - (1.10-1.15) eV, E v + 0.70 eV, E v + 0.85 eV, E v + 1.0 eV, and E c - 1.25 eV were interpreted. A memory effect characterized by a relaxation time of about 60 s was observed at the 0.8 eV level and allowed us to determine the 1.7 × 10-17 cm2 capture cross-section of electrons on this level. It is argued that PHES is a convenient complementary method to identify and characterize DLs, including DLs inaccessible by thermal emission techniques. DLs observed by PHES were consistently verified by PL.

  13. Electronics System for the GammaTracker Handheld CdZnTe Detector

    SciTech Connect

    Myjak, Mitchell J.; Morris, Scott J.; Slaugh, Ryan W.; McCann, Jason M.; Kirihara, Leslie J.; Rohrer, John S.; Burghard, Brion J.; Seifert, Carolyn E.

    2007-12-31

    We are currently developing a handheld radioisotope identifier containing eighteen position-sensitive CdZnTe crystals. In addition to isotope identification, the device performs basic Compton imaging to determine the location of suspected sources. This paper gives an overview of the electronics system we have designed for this instrument. We use specialized application-specific integrated circuits to preprocess the outputs of each CdZnTe crystal. A low-power microprocessor running Windows CE drives the user interface and implements the isotope identification and directionality computations. Finally, we use a field-programmable gate array to perform the computationally intensive imaging tasks in real time.

  14. The use of Schottky CdTe detectors for high-energy astronomy: application to the detection plane of the instrument SVOM/ECLAIRs

    NASA Astrophysics Data System (ADS)

    Nasser, G.; Godet, O.; Atteia, J.-L.; Amoros, C.; Barret, D.; Bordon, S.; Cordier, B.; Gevin, O.; Gonzalez, F.; Houret, B.; Lacombe, K.; Mandrou, P.; Marty, W.; Mercier, K.; Pons, R.; Rambaud, D.; Ramon, P.; Rouaix, G.; Waegebaert, V.

    2014-07-01

    Ohmic CdZnTe and CdTe detectors have been successfully used in high-energy missions such as IBIS on-board INTEGRAL and the Swift-BAT in the past two decades. Such detectors provide very good quantum efficiency in the hard X-ray band. For the future generation of hard X-ray coded mask detectors, a higher sensitivity will be required. A way to achieve this is to increase the effective area of the pixilated detection plane, to change the mask pattern and/or the properties of the semi-conductors paving the detection plane. For the future Chinese-French Gamma-ray burst mission SVOM, the GRB trigger camera ECLAIRs will make use of a new type of high-energy detectors, the Schottky CdTe detectors. Such detectors, when reversely biased, are known to present very low leakage current, resulting in lower values of the low-energy threshold (down to 4 keV or less) than for previous missions (i.e. > 10 keV for the Swift-BAT and INTEGRAL/IBIS). Such low values will enable ECLAIRs with a moderate geometrical area of 1024 cm2 and a low-energy threshold of 4 keV to be more sensitive to high-redshift GRBs (emitting mainly in X-rays) than the Swift-BAT with a higher effective area and low-energy threshold. However, the spectral performance of such detectors are known to degrade over time, once polarized, due to the polarization effect that strongly depends on the temperature and the bias voltage applied to the detectors. In this paper, we present an intensive study of the properties of Schottky CdTe detectors as used on SVOM/ECLAIRs such as I-V characteristics, polarization effect, activation energy and low temperature annealing effects. We discuss the implications of these measurements on the use of this type of detectors in future high-energy instruments.

  15. High-resolution CdTe detectors with application to various fields (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Takeda, Shin'ichiro; Orita, Tadashi; Arai, Yasuo; Sugawara, Hirotaka; Tomaru, Ryota; Katsuragawa, Miho; Sato, Goro; Watanabe, Shin; Ikeda, Hirokazu; Takahashi, Tadayuki; Furenlid, Lars R.; Barber, H. Bradford

    2016-10-01

    High-quality CdTe semiconductor detectors with both fine position resolution and high energy resolution hold great promise to improve measurement in various hard X-ray and gamma-ray imaging fields. ISAS/JAXA has been developing CdTe imaging detectors to meet scientific demands in latest celestial observation and severe environmental limitation (power consumption, vibration, radiation) in space for over 15 years. The energy resolution of imaging detectors with a CdTe Schottky diode of In/CdTe/Pt or Al/CdTe/Pt contact is a highlight of our development. We can extremely reduce a leakage current of devises, meaning it allows us to supply higher bias voltage to collect charges. The 3.2cm-wide and 0.75mm-thick CdTe double-sided strip detector with a strip pitch of 250 µm has been successfully established and was mounted in the latest Japanese X-ray satellite. The energy resolution measured in the test on ground was 2.1 keV (FWHM) at 59.5 keV. The detector with much finer resolution of 60 µm is ready, and it was actually used in the FOXSI rocket mission to observe hard X-ray from the sun. In this talk, we will focus on our research activities to apply space sensor technologies to such various imaging fields as medical imaging. Recent development of CdTe detectors, imaging module with pinhole and coded-mask collimators, and experimental study of response to hard X-rays and gamma-rays are presented. The talk also includes research of the Compton camera which has a configuration of accumulated Si and CdTe imaging detectors.

  16. Novel ZnO:Al contacts to CdZnTe for X- and gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Mundle, R. M.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Pradhan, A. K.; James, R. B.

    2016-05-01

    CdZnTe (CZT) has made a significant impact as a material for room-temperature nuclear-radiation detectors due to its potential impact in applications related to nonproliferation, homeland security, medical imaging, and gamma-ray telescopes. In all such applications, common metals, such as gold, platinum and indium, have been used as electrodes for fabricating the detectors. Because of the large mismatch in the thermal-expansion coefficient between the metal contacts and CZT, the contacts can undergo stress and mechanical degradation, which is the main cause for device instability over the long term. Here, we report for the first time on our use of Al-doped ZnO as the preferred electrode for such detectors. The material was selected because of its better contact properties compared to those of the metals commonly used today. Comparisons were conducted for the detector properties using different contacts, and improvements in the performances of ZnO:Al-coated detectors are described in this paper. These studies show that Al:ZnO contacts to CZT radiation detectors offer the potential of becoming a transformative replacement for the common metallic contacts due to the dramatic improvements in the performance of detectors and improved long-term stability.

  17. Novel ZnO:Al contacts to CdZnTe for X- and gamma-ray detectors

    PubMed Central

    Roy, U. N.; Mundle, R. M.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Pradhan, A. K.; James, R. B.

    2016-01-01

    CdZnTe (CZT) has made a significant impact as a material for room-temperature nuclear-radiation detectors due to its potential impact in applications related to nonproliferation, homeland security, medical imaging, and gamma-ray telescopes. In all such applications, common metals, such as gold, platinum and indium, have been used as electrodes for fabricating the detectors. Because of the large mismatch in the thermal-expansion coefficient between the metal contacts and CZT, the contacts can undergo stress and mechanical degradation, which is the main cause for device instability over the long term. Here, we report for the first time on our use of Al-doped ZnO as the preferred electrode for such detectors. The material was selected because of its better contact properties compared to those of the metals commonly used today. Comparisons were conducted for the detector properties using different contacts, and improvements in the performances of ZnO:Al-coated detectors are described in this paper. These studies show that Al:ZnO contacts to CZT radiation detectors offer the potential of becoming a transformative replacement for the common metallic contacts due to the dramatic improvements in the performance of detectors and improved long-term stability. PMID:27216387

  18. Simulation of active-edge pixelated CdTe radiation detectors

    NASA Astrophysics Data System (ADS)

    Duarte, D. D.; Lipp, J. D.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  19. EFFECTIVENESS OF ELECTROSTATIC SHIELDING AND ELECTRONIC SUBTRACTION TO CORRECT FOR THE HOLE TRAPPING IN CDZNTE SEMICONDUCTOR DETECTORS.

    SciTech Connect

    BOLOTNIKOV,A.E.; CAMARDA, G.S.; HOSSAIN, A.; CUI, Y.; JAMES, R.B.

    2007-08-26

    CdZnTe (CZT) is a very promising material for nuclear-radiation detectors. CZT detectors operate at ambient temperatures and offer high detection efficiency and excellent energy resolution, placing them ahead of high-purity Ge for those applications where cryogenic cooling is problematic. The progress achieved in CZT detectors over the past decade is founded on the developments of robust detector designs and readout electronics, both of which helped to overcome the effects of carrier trapping. Because the holes have low mobility, only electrons can be used to generate signals in thick CZT detectors, so one must account for the variation of the output signal versus the locations of the interaction points. To obtain high spectral resolution, the detector's design should provide a means to eliminate this dependence throughout the entire volume of the device. In reality, the sensitive volume of any ionization detector invariably has two regions. In the first, adjacent to the collecting electrode, the amplitude of the output signal rapidly increases almost to its maximum as the interaction point is located farther from the anode; in the rest of the volume, the output signal remains nearly constant. Thus, the quality of CZT detector designs can be characterized based on the magnitude of the signals variations in the drift region and the ratio between the volumes of the driR and induction regions. The former determines the ''geometrical'' width of the photopeak i.e., the line width that affects the total energy resolution and is attributed to the device's geometry when all other factors are neglected. The latter determines the photopeak efficiency and the area under the continuum in the pulse-height spectra. In this work, we describe our findings from systematizing different designs of CZT detectors and evaluating their performance based on these two criteria.

  20. Detection of electron and hole traps in CdZnTe radiation detectors by thermoelectric emission spectroscopy and thermally stimulated conductivity

    SciTech Connect

    E. Y. Lee; B. A. Brunett; R. W. Olsen; J. M. Van Scyoc III; H. Hermon; R. B. James

    1998-06-18

    The electrical properties of CdZnTe radiation detectors are largely determined by electron and hole traps in this material. The traps, in addition to degrading the detector performance, can function as dopants and determine the resistivity of the material. Thermoelectric emission spectroscopy and thermally stimulated conductivity are used to detect these traps in a commercially available spectrometer-grade CdZnTe detector, and the electrical resistivity is measured as a function of temperature. A deep electron trap having an energy of 695 meV and cross section of 8 x 10{sup {minus}16}cm{sup 2} is detected and three hole traps having energies of 70 {+-} 20 meV, 105 {+-} 30 meV and 694 {+-} 162 meV are detected. A simple model based on these traps explains quantitatively all the data, including the electrical properties at room temperature and also their temperature dependence.

  1. Design and performances of a low-noise and radiation-hardened readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Bo, Gan; Tingcun, Wei; Wu, Gao; Yongcai, Hu

    2016-06-01

    In this paper, we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit (ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications. The readout channel is comprised of a charge sensitive amplifier, a CR-RC shaping amplifier, an analog output buffer, a fast shaper, and a discriminator. An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 × 2.2 mm2. The input energy range is from 5 to 350 keV. For this 8-channel prototype ASIC, the measured electrical characteristics are as follows: the overall gain of the readout channel is 210 V/pC, the linearity error is less than 2%, the crosstalk is less than 0.36%, The equivalent noise charge of a typical channel is 52.9 e- at zero farad plus 8.2 e- per picofarad, and the power consumption is less than 2.4 mW/channel. Through the measurement together with a CdZnTe detector, the energy resolution is 5.9% at the 59.5-keV line under the irradiation of the radioactive source 241Am. The radiation effect experiments show that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad(Si). Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (Nos. 11475136, 11575144, 61176094), and the Shaanxi Natural Science Foundation of China (No. 2015JM1016).

  2. High-Efficiency CdZnTe Position-Sensitive VFG Gamma-Ray Detectors for Safeguards Applications

    SciTech Connect

    Bolotnikov, Aleksey E.; James, Ralph B.; Cui, Y.; De Geronimo, G.; Vernon, E.; Camarda, G. S.; Hossain, A.; Yang, G.; Indusi, J.; Boyer, Brian

    2015-09-30

    The goal of this project is to incorporate a Cadmium-Zinc-Telluride (CdZnTe or CZT) detector (with 1% or better resolution) into a bench-top prototype for isotope identification and related safeguards applications. The bench-top system is based on a 2x2 array of 6x6x20 mm3 position-sensitive virtual Frisch-grid (VFG) CZT detectors. The key features of the array are that it allows for the use of average-grade CZT material with a moderate content of defects, and yet it provides high energy resolution, 1% FWHM at 662 keV, large effective area, and low-power consumption. The development of this type of 3D detector and new instruments incorporating them is motivated by the high cost and low availability of large, > 1 cm3, CZT crystals suitable for making multi-pixel detectors with acceptable energy resolution and efficiency.

  3. Experimental study of {sup 113}Cd {beta} decay using CdZnTe detectors

    SciTech Connect

    Goessling, C.; Kiel, H.; Muenstermann, D.; Oehl, S.; Junker, M.; Zuber, K.

    2005-12-15

    A search for the fourfold forbidden {beta} decay of {sup 113}Cd has been performed with CdZnTe semiconductors. With 0.86 kg {center_dot} d of statistics a half-life for the decay of T{sub 1/2}=[8.2{+-}0.2(stat.){sub -1.0}{sup +0.2}(sys.)]x10{sup 15} yr has been obtained. This is in good agreement with published values. A comparison of the spectral shape with the one given on the Table of Isotopes Web page shows a severe deviation.

  4. Effects of Chemomechanical Polishing on CdZnTe X-ray and Gamma-Ray Detectors

    NASA Astrophysics Data System (ADS)

    Egarievwe, Stephen U.; Hossain, Anwar; Okwechime, Ifechukwude O.; Gul, Rubi; James, Ralph B.

    2015-09-01

    Mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine-methanol-ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers after mechanical polishing, viz. bromine-methanol-ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene-glycol solution. We used x-ray photoelectron spectroscopy (XPS), current-voltage ( I- V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3 d 5/2O2 and 76.7% for Te 3 d 3/2O2) compared with the HBr-based solution (27.6% for Te 3 d 5/2O2 and 35.8% for Te 3 d 3/2O2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better performance of 7.15% full-width at half-maximum (FWHM) compared with 7.59% FWHM for the HBr

  5. Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma-ray detectors

    SciTech Connect

    Egarievwe, Stephen E.; Hossain, Anwar; Okwechime, Ifechukwude O.; Gul, Rubi; James, Ralph B.

    2015-06-23

    Here, mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine–methanol–ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers after mechanical polishing, viz. bromine–methanol–ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene–glycol solution. We used x-ray photoelectron spectroscopy (XPS), current–voltage (I–V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3d5/2O2 and 76.7% for Te 3d3/2O2) compared with the HBr-based solution (27.6% for Te 3d5/2O2 and 35.8% for Te 3d3/2O2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better

  6. Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma-ray detectors

    DOE PAGES

    Egarievwe, Stephen E.; Hossain, Anwar; Okwechime, Ifechukwude O.; ...

    2015-06-23

    Here, mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine–methanol–ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers aftermore » mechanical polishing, viz. bromine–methanol–ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene–glycol solution. We used x-ray photoelectron spectroscopy (XPS), current–voltage (I–V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3d5/2O2 and 76.7% for Te 3d3/2O2) compared with the HBr-based solution (27.6% for Te 3d5/2O2 and 35.8% for Te 3d3/2O2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better performance of 7.15% full-width at half-maximum (FWHM) compared with 7.59% FWHM

  7. Al-doped ZnO contact to CdZnTe for x- and gamma-ray detector applications

    NASA Astrophysics Data System (ADS)

    Roy, U. N.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Mundle, R. M.; Pradhan, A. K.; James, R. B.

    2016-06-01

    The poor adhesion of common metals to CdZnTe (CZT)/CdTe surfaces has been a long-standing challenge for radiation detector applications. In this present work, we explored the use of an alternative electrode, viz., Al-doped ZnO (AZO) as a replacement to common metallic contacts. ZnO offers several advantages over the latter, such as having a higher hardness, a close match of the coefficients of thermal expansion for CZT and ZnO, and better adhesion to the surface of CZT due to the contact layer being an oxide. The AZO/CZT contact was investigated via high spatial-resolution X-ray response mapping for a planar detector at the micron level. The durability of the device was investigated by acquiring I-V measurements over an 18-month period, and good long-term stability was observed. We have demonstrated that the AZO/CZT/AZO virtual-Frisch-grid device performs fairly well, with comparable or better characteristics than that for the same detector fabricated with gold contacts.

  8. Development of a Spectral Model Based on Charge Transport for the Swift/BAT 32K CdZnTe Detector Array

    NASA Technical Reports Server (NTRS)

    Sato, Goro; Parsons, Ann; Hillinger, Derek; Suzuki, Masaya; Takahashi, Tadayuki; Tashiro, Makoto; Nakazawa, Kazuhiro; Okada, Yuu; Takahashi, Hiromitsu; Watanabe, Shin

    2005-01-01

    The properties of 32K CdZnTe (4 x 4 sq mm large, 2 mm thick) detectors have been studied in the pre-flight calibration of the Burst Alert Telescope (BAT) on-board the Swift Gamma-ray Burst Explorer (scheduled for launch in November 2004). In order to understand the energy response of the BAT CdZnTe array, we first quantify the mobility-lifetime (mu tau) products of carriers in individual CdZnTe detectors, which produce a position dependency in the charge induction efficiency and results in a low energy tail in the energy spectrum. Based on a new method utilizing (57)Co spectra obtained at different bias voltages, the mu tau for electrons ranges from 5.0 x 10(exp -4) to 1.0 x 10(exp -2) sq cm/V while the mu tau for holes ranges from 1.3 x 10(exp -5 to 1.8 x 10(exp -4) sq cm/V. We find that this wide distribution of mu tau products explains the large diversity in spectral shapes between CdZnTe detectors well. We also find that the variation of mu tau products can be attributed to the difference of crystal ingots or manufacturing harness. We utilize the 32K sets of extracted mu tau products to develop a spectral model of the detector. In combination with Monte Carlo simulations, we can construct a spectral model for any photon energy or any incident angle.

  9. Vapor phase epitaxy growth of CdTe epilayers for RT x-ray detectors

    NASA Astrophysics Data System (ADS)

    Lovergine, Nico; Mancini, A. M.; Prete, P.; Cola, Adriano; Tapfer, Leander

    2000-11-01

    We report on the growth of thick CdTe layers on ZnTe/(100) GaAs hybrid substrates by the novel H2 transport vapor phase epitaxy (H2T-VPE) method. High crystalline quality (100)-oriented CdTe single crystal epilayers can be fabricated under atmospheric pressure and at growth temperatures (TD) in the 600 - 800 degree Celsius interval. Double crystal X-ray diffraction measurements performed on epilayers thicker than 30 micrometer show CdTe (400) peaks with FWHM < 59 arcsec. Samples grown under optimized conditions exhibit mirror-like surfaces. Nominally undoped epilayers grown < 650 degrees Celsius are p-type and low resistive, but they turn n-type above 650 degrees Celsius, as a result of donor (likely Ga) diffusion from the substrate. RT resistivities ((rho) ) approximately 106 (Omega) (DOT)cm are obtained for 675 degrees Celsius < TD < 700 degrees Celsius, but (rho) decreases for higher temperatures and thinner samples. Layers grown under these conditions show RT electron concentrations in the 1014 - 1011 cm-3 range. The detection capability of H2T-VPE grown CdTe is demonstrated by time- of-flight measurements performed at RT on Au/n-CdTe/n+- GaAs diode structures under reverse bias conditions. The present results show the potentials of H2T-VPE for the growth of detector-grade CdTe.

  10. Local polarization phenomena in In-doped CdTe x-ray detector arrays

    SciTech Connect

    Sato, Toshiyuki; Sato, Kenji; Ishida, Shinichiro; Kiri, Motosada; Hirooka, Megumi; Yamada, Masayoshi; Kanamori, Hitoshi

    1995-10-01

    Local polarization phenomena have been studied in detector arrays with the detector element size of 500 {micro}m x 500 {micro}m, which are fabricated from high-resistivity In-doped CdTe crystals grown by the vertical Bridgman technique. It has been found for the first time that a polarization effect, which is characterized by a progressive decrease of the pulse counting rate with increasing photon fluence, strongly depends on the detector elements, that is, the portion of crystals used. The influence of several parameters, such as the applied electric field strength, time, and temperature, on this local polarization effect is also investigated. From the photoluminescence measurements of the inhomogeneity of In dopant, it is concluded that the local polarization effect observed here originates from a deep level associated with In dopant in CdTe crystals.

  11. Using the TOF method to measure the electron lifetime in long-drift CdZnTe detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Chen, Eric; Cui, Yonggang; Gul, Rubi; Dedic, Václav; De Geronimo, Gianluigi; Fried, Jack; Hossain, Anwar; MacKenzie, Jason M.; Sellin, Paul; Taherion, Saeid; Vernon, Emerson; Yang, Ge; El-hanany, Uri; James, Ralph B.

    2016-09-01

    The traditional method for electron lifetime measurements of CdZnTe (CZT) detectors relies on using the Hecht equation. The procedure involves measuring the dependence of the detector response on the applied bias and applying the Hecht equation to evaluate the mu-tau product, which in turn can be converted into the carrier lifetime if the mobility is known. Despite general acceptance of this technique, which is very convenient for comparative testing of different CZT materials, the assumption of a constant electric field inside a detector is unjustified. In the Hecht equation, this assumption means that the drift time would be a linear function of the drift distance. This condition is rarely fulfilled in practice at low applied biases where the Hecht equation is most sensitive to the mu-tau product. As a result, researchers usually take measurements at relatively high biases, which work well in the case of the low mu-tau material, <10-3 cm2/V, but give significantly underestimated values for the case of high mu-tau crystals. In this work, we applied the time-of-flight (TOF) technique to measure the electron lifetimes in long-drift-length (3 cm) standard-grade CZT detectors produced by Redlen Technologies. The TOF-based techniques are traditionally used for monitoring the electronegative impurity concentrations in noble gas detectors by measuring the electron lifetimes. We found the electron mu-tau product of tested crystals is in the range 0.1-0.2 cm2/V, which is an order of the magnitude higher than any value previously reported for CZT material. In this work, we reported the measurement procedure and the results. We will also discuss the applicability criteria of the Hecht equation for measuring the electron lifetime in high mu-tau product CZT.

  12. Characterization of a pixelated CdTe Timepix detector operated in ToT mode

    NASA Astrophysics Data System (ADS)

    Billoud, T.; Leroy, C.; Papadatos, C.; Pichotka, M.; Pospisil, S.; Roux, J. S.

    2017-01-01

    A 1 mm thick CdTe sensor bump-bonded to a Timepix readout chip operating in Time-over-Threshold (ToT) mode has been characterized in view of possible applications in particle and medical physics. The CdTe sensor layer was segmented into 256 × 256 pixels, with a pixel pitch of 55 μm. This CdTe Timepix device, of ohmic contact type, has been exposed to alpha-particles and photons from an 241Am source, photons from a 137Cs source, and protons of different energies (0.8–10 MeV) delivered by the University of Montreal Tandem Accelerator. The device was irradiated on the negatively biased backside electrode. An X-ray per-pixel calibration commonly used for this type of detector was done and its accuracy and resolution were assessed and compared to those of a 300 μm thick silicon Timepix device. The electron mobility-lifetime product (μeτe) of CdTe for protons of low energy has been obtained from the Hecht equation. Possible polarization effects have been also investigated. Finally, information about the homogeneity of the detector was obtained from X-ray irradiation.

  13. A method to improve spectral resolution in planar semiconductor gamma-ray detectors

    SciTech Connect

    Keele, B.D.; Addleman, R.S.; Troyer, G.L.

    1995-05-01

    This paper describes an empirically derived algorithm to compensate for charge trapping in CdTe, CdZnTe, and other planar semiconductor detectors. The method is demonstrated to be an improvement over available systems and application to experimental data is shown.

  14. Energy and coincidence time resolution measurements of CdTe detectors for PET.

    PubMed

    Ariño, G; Chmeissani, M; De Lorenzo, G; Puigdengoles, C; Cabruja, E; Calderón, Y; Kolstein, M; Macias-Montero, J G; Martinez, R; Mikhaylova, E; Uzun, D

    2013-02-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at -8°C with an applied bias voltage of -1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration.

  15. Energy and coincidence time resolution measurements of CdTe detectors for PET

    PubMed Central

    Ariño, G.; Chmeissani, M.; De Lorenzo, G.; Puigdengoles, C.; Cabruja, E.; Calderón, Y.; Kolstein, M.; Macias-Montero, J.G.; Martinez, R.; Mikhaylova, E.; Uzun, D.

    2013-01-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at −8°C with an applied bias voltage of −1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration. PMID:23750177

  16. Energy and coincidence time resolution measurements of CdTe detectors for PET

    NASA Astrophysics Data System (ADS)

    Ariño, G.; Chmeissani, M.; De Lorenzo, G.; Puigdengoles, C.; Cabruja, E.; Calderón, Y.; Kolstein, M.; Macias-Montero, J. G.; Martinez, R.; Mikhaylova, E.; Uzun, D.

    2013-02-01

    We report on the characterization of 2 mm thick CdTe diode detector with Schottky contacts to be employed in a novel conceptual design of PET scanner. Results at -8°C with an applied bias voltage of -1000 V/mm show a 1.2% FWHM energy resolution at 511 keV. Coincidence time resolution has been measured by triggering on the preamplifier output signal to improve the timing resolution of the detector. Results at the same bias and temperature conditions show a FWHM of 6 ns with a minimum acceptance energy of 500 keV. These results show that pixelated CdTe Schottky diode is an excellent candidate for the development of next generation nuclear medical imaging devices such as PET, Compton gamma cameras, and especially PET-MRI hybrid systems when used in a magnetic field immune configuration.

  17. Preliminary test results of a new high-energy-resolution silicon and CdZnTe pixel detectors for application to x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Sushkov, V. V.; Hamilton, William J.; Hurley, Kevin; Maeding, Dale G.; Ogelman, Hakki; Paulos, Robert J.; Puetter, Richard C.; Tumer, Tumay O.; Zweerink, Jeffrey

    1999-10-01

    New, high spatial resolution CdZnTe (CZT) and silicon (Si) pixel detectors are highly suitable for x-ray astronomy. These detectors are planned for use in wide field of view, imaging x-ray, and low energy gamma-ray all-sky monitor (AXGAM) in a future space mission. The high stopping power of CZT detectors combined with low-noise front-end readout makes possible an order of magnitude improvement in spatial and energy resolution in x-ray detection. The AXGAM instrument will be built in the form of a fine coded aperture placed over two-dimensional, high spatial resolution and low energy threshold CZT pixel detector array. The preliminary result of CZT and silicon pixel detector test with low-noise readout electronics system are presented. These detectors may also be used with or without modification for medical and industrial imaging.

  18. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    SciTech Connect

    Gan, Bo; Wei, Tingcun; Gao, Wu; Liu, Hui; Hu, Yann

    2015-07-01

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of the whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a power

  19. Development of new CdZnTe detectors for room-temperature high-flux radiation measurements.

    PubMed

    Abbene, Leonardo; Gerardi, Gaetano; Raso, Giuseppe; Principato, Fabio; Zambelli, Nicola; Benassi, Giacomo; Bettelli, Manuele; Zappettini, Andrea

    2017-03-01

    Recently, CdZnTe (CZT) detectors have been widely proposed and developed for room-temperature X-ray spectroscopy even at high fluxes, and great efforts have been made on both the device and the crystal growth technologies. In this work, the performance of new travelling-heater-method (THM)-grown CZT detectors, recently developed at IMEM-CNR Parma, Italy, is presented. Thick planar detectors (3 mm thick) with gold electroless contacts were realised, with a planar cathode covering the detector surface (4.1 mm × 4.1 mm) and a central anode (2 mm × 2 mm) surrounded by a guard-ring electrode. The detectors, characterized by low leakage currents at room temperature (4.7 nA cm(-2) at 1000 V cm(-1)), allow good room-temperature operation even at high bias voltages (>7000 V cm(-1)). At low rates (200 counts s(-1)), the detectors exhibit an energy resolution around 4% FWHM at 59.5 keV ((241)Am source) up to 2200 V, by using commercial front-end electronics (A250F/NF charge-sensitive preamplifier, Amptek, USA; nominal equivalent noise charge of 100 electrons RMS). At high rates (1 Mcounts s(-1)), the detectors, coupled to a custom-designed digital pulse processing electronics developed at DiFC of University of Palermo (Italy), show low spectroscopic degradations: energy resolution values of 8% and 9.7% FWHM at 59.5 keV ((241)Am source) were measured, with throughputs of 0.4% and 60% at 1 Mcounts s(-1), respectively. An energy resolution of 7.7% FWHM at 122.1 keV ((57)Co source) with a throughput of 50% was obtained at 550 kcounts s(-1) (energy resolution of 3.2% at low rate). These activities are in the framework of an Italian research project on the development of energy-resolved photon-counting systems for high-flux energy-resolved X-ray imaging.

  20. A 12-bit 1 MS/s SAR-ADC for multi-channel CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Wei, Liu; Tingcun, Wei; Bo, Li; Panjie, Guo; Yongcai, Hu

    2015-04-01

    This paper presents a low power, area-efficient and radiation-hardened 12-bit 1 MS/s successive approximation register (SAR) analog-to-digital converter (ADC) for multi-channel CdZnTe (CZT) detector applications. In order to improve the SAR-ADC's accuracy, a novel comparator is proposed in which the offset voltage is self-calibrated and also a new architecture for the unit capacitor array is proposed to reduce the capacitance mismatches in the charge-redistribution DAC. The ability to radiation-harden the SAR-ADC is enhanced through circuit and layout design technologies. The prototype chip was fabricated using a TSMC 0.35 μm 2P4M CMOS process. At a 3.3/5 V power supply and a sampling rate of 1 MS/s, the proposed SAR-ADC achieves a peak signal to noise and distortion ratio (SINAD) of 67.64 dB and consumes only 10 mW power. The core of the prototype chip occupies an active area of 1180 × 1080 μm2. Project supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development (No. 2011YQ040082).

  1. Imaging detector development for nuclear astrophysics using pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Álvarez, J. M.; Gálvez, J. L.; Hernanz, M.; Isern, J.; Llopis, M.; Lozano, M.; Pellegrini, G.; Chmeissani, M.

    2010-11-01

    The concept of focusing telescopes in the energy range of lines of astrophysical interest (i.e., of energies around 1 MeV) should allow to reach unprecedented sensitivities, essential to perform detailed studies of cosmic explosions and cosmic accelerators. Our research and development activities aim to study a detector suited for the focal plane of a γ-ray telescope mission. A CdTe/CdZnTe detector operating at room temperature, that combines high detection efficiency with good spatial and spectral resolution is being studied in recent years as a focal plane detector, with the interesting option of also operating as a Compton telescope monitor. We present the current status of the design and development of a γ-ray imaging spectrometer in the MeV range, for nuclear astrophysics, consisting of a stack of CdTe pixel detectors with increasing thicknesses. We have developed an initial prototype based on CdTe ohmic detector. The detector has 11×11 pixels, with a pixel pitch of 1 mm and a thickness of 2 mm. Each pixel is stud bonded to a fanout board and routed to an front end ASIC to measure pulse height and rise time information for each incident γ-ray photon. First measurements of a 133Ba and 241Am source are reported here.

  2. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  3. Defect measurements of CdZnTe detectors using I-DLTS, TCT, I-V, C-V and γ-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Gul, R.; Li, Z.; Rodriguez, R.; Keeter, K.; Bolotnikov, A.; James, R.

    2008-08-01

    In this work we measured the crystal defect levels and tested the performance of CdZnTe detectors by diverse methodologies, viz., Current Deep Level Transient Spectroscopy (I-DLTS), Transient Current Technique (TCT), Current and Capacitance versus Voltage measurements (I-V and C-V), and gamma-ray spectroscopy. Two important characteristics of I-DLTS technique for advancing this research are (1) it is applicable for high-resistivity materials (>106 Ω-cm), and, (2) the minimum temperature for measurements can be as low as 10 K. Such low-temperature capability is excellent for obtaining measurements at shallow levels. We acquired CdZnTe crystals grown by different techniques from two different vendors and characterized them for point defects and their response to photons. I-DLTS studies encompassed measuring the parameters of the defects, such as the energy levels in the band gap, the carrier capture cross-sections and their densities. The current induced by the laser-generated carriers and the charge collected (or number of electrons collected) were obtained using TCT that also provides the transport properties, such as the carrier life time and mobility of the detectors under study. The detector's electrical characteristics were explored, and its performance tested using I-V, C-V and gamma-ray spectroscopy.

  4. Imaging and spectroscopic performance studies of pixellated CdTe Timepix detector

    NASA Astrophysics Data System (ADS)

    Maneuski, D.; Astromskas, V.; Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Marchal, J.; O'Shea, V.; Stewart, G.; Tartoni, N.; Wilhelm, H.; Wraight, K.; Zain, R. M.

    2012-01-01

    In this work the results on imaging and spectroscopic performances of 14 × 14 × 1 mm CdTe detectors with 55 × 55 μm and 110 × 110 μm pixel pitch bump-bonded to a Timepix chip are presented. The performance of the 110 × 110 μm pixel detector was evaluated at the extreme conditions beam line I15 of the Diamond Light Source. The energy of X-rays was set between 25 and 77 keV. The beam was collimated through the edge slits to 20 μm FWHM incident in the middle of the pixel. The detector was operated in the time-over-threshold mode, allowing direct energy measurement. Energy in the neighbouring pixels was summed for spectra reconstruction. Energy resolution at 77 keV was found to be ΔE/E = 3.9%. Comparative imaging and energy resolution studies were carried out between two pixel size detectors with a fluorescence target X-ray tube and radioactive sources. The 110 × 110 μm pixel detector exhibited systematically better energy resolution in comparison to 55 × 55 μm. An imaging performance of 55 × 55 μm pixellated CdTe detector was assessed using the Modulation Transfer Function (MTF) technique and compared to the larger pixel. A considerable degradation in MTF was observed for bias voltages below -300 V. Significant room for improvement of the detector performance was identified both for imaging and spectroscopy and is discussed.

  5. Study of the effect of the stress on CdTe nuclear detectors

    SciTech Connect

    Ayoub, M.; Radley, I.; Mullins, J. T.; Hage-Ali, M.

    2013-09-14

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given.

  6. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    PubMed

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18)F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8.

  7. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    PubMed Central

    Calderón, Y.; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 104 Bq source activities with equal efficiency and is completely saturated at 109 Bq. The efficiency of the system is evaluated using a simulated 18F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8. PMID:24932209

  8. A low-noise 64-channel front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Gan, B.; Wei, T.; Gao, W.; Liu, H.; Hu, Y.

    2016-04-01

    In this paper, we report on the recent development of a 64-channel low-noise front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems. The readout channel is comprised of a charge sensitive amplifier, a leakage current compensation circuit, a CR-RC shaper, two S-K filters, an inverse proportional amplifier, a peak-detect-and-hold circuit, a discriminator and trigger logic, a time sequence control circuit and a driving buffer. The readout ASIC is implemented in TSMC 0.35 μm mixed-signal CMOS technology, the die size of the prototype chip is 2.7 mm×8.0 mm. The overall gain of the readout channel is 200 mV/fC, the power consumption is less than 8 mW/channel, the linearity error is less than 1%, the inconsistency among the channels is less than 2.86%, and the equivalent noise charge of a typical channel is 66 e- at zero farad plus 14 e- per picofarad. By connecting this readout ASIC to an 8×8 pixel CdZnTe detector, we obtained an energy spectrum, the energy resolution of which is 4.5% at the 59.5 keV line of 241Am source.

  9. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    NASA Astrophysics Data System (ADS)

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  10. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs.

    PubMed

    De Lorenzo, G; Chmeissani, M; Uzun, D; Kolstein, M; Ozsahin, I; Mikhaylova, E; Arce, P; Cañadas, M; Ariño, G; Calderón, Y

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  11. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    PubMed Central

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events. PMID:23750176

  12. Primary study on the contact degradation mechanism of CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Sang, Wenbin; Wei, Jin; Qi, Zhang; Wanwan, Li; Jiahua, Min; Jianyong, Teng; Yongbiao, Qian

    2004-07-01

    The metal-CdZnTe (CZT) interface plays a vital role in determining the contact characteristics, which is often the dominant factor influencing detector performance. The effects of the degradation of the interfacial layer between the metal contact layer and CZT surface on the mechanical and electrical properties have been investigated in this paper. The interfacial thermal stresses were simulated using 3-D finite element method (FEM). The results indicate that the maximum thermal stress is concentrated on the midst of the electrode and the magnitude of the stress produced by the different electrode materials in order is Al>Au>Pt>In. The adhesion forces between the metal contact layer and CZT surface were measured by using a Dage PC2400 Micro tester with the shear-off-method. The inter-diffusion between the metal contact layer and CZT was identified using the Anger depth profiles. The experimental results indicate that the electroless Au electrode on p-type high resistivity CZT is of smaller interfacial adhesion strength, but of better ohmicity than the sputtered Au. In addition, the aging effects on the contact characteristics of the detector were also examined.

  13. Observation of solar flare hard x-ray spectra using CdTe detectors

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Tsuneta, S.; Tamura, T.; Kumagai, K.; Katsukawa, Y.; Kubo, M.; Sakamoto, Y.; Yamagami, T.; Saito, Y.; Mori, K.

    We present the design and flight results of a balloon-borne hard X-ray detector system for observing high-resolution spectra of solar flares. The instrument is designed to achieve a 3 keV energy resolution over the energy range of 15-120 keV. The instrument uses sixteen 10 × 10 × 0.5 mm cadmium telluride (CdTe) detectors with indium electrodes that act as Schottky barriers to minimize leak current and allow a high bias voltage. Pre-flight tests confirmed that all detectors exceeded the target 3 keV resolution. The pressurized detector vessel uses a low-density (0.1 g/cm^2) CFRP/Rohacell window. The detectors are passively shielded by 2 mm of lead, and field of view is constrained with a graded-Z collimator. The vertical angle of the detectors are fixed at 45 degrees, and the azimuth angle of the entire gondola is controlled using a signal from a sun position sensor. Specially developed electronics accumulate a 128 channel spectrum for each detector, which is read through telemetry every 0.54 seconds. These detectors need to be cooled down to 0 degrees C for optimal performance; due to weight constraints this was achieved purely by radiative cooling, using the detector enclosure surface as a radiator and by placing shields that minimize radiative heat input from the sun and earth while maximizing heat loss to the sky. The first flight of the instrument took place on August 29, 2001 and while no major flares were observed, we succeeded in detecting a small brightening (microflare). Detector temperature of -13 degrees C was achieved, and all systems performed as expected. The instrument was recovered successfully after the flight and a second flight is planned for May 2002.

  14. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    NASA Astrophysics Data System (ADS)

    Barbes, Damien; Tabary, Joachim; Paulus, Caroline; Hazemann, Jean-Louis; Verger, Loïck

    2017-03-01

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  15. Large dynamic range 64-channel ASIC for CZT or CdTe detectors

    NASA Astrophysics Data System (ADS)

    Glasser, F.; Villard, P.; Rostaing, J. P.; Accensi, M.; Baffert, N.; Girard, J. L.

    2003-08-01

    We present a customized 64-channel ASIC, named ALIX, developed in a 0.8 μm CMOS technology. This circuit is dedicated to measure charges from semi-conductor X-ray detectors like Cadmium Zinc Telluride (CZT) or Cadmium Telluride CdTe. The specificity of ALIX is to be able to measure charges over a very large dynamic range (from 10 fC to 3 nC), and to store eight measurements in a very short time (from every 250 ns to a few ms). Up to eight images are stored inside the ASIC and each image can be read out in 64 μs. A new acquisition sequence can then be started. Two analog readouts are available, one for the X-ray signal and one for the offset and afterglow measurement in case of pulsed X-rays. The outputs are converted into digital values by two off-chip 14 bits Analog-to-Digital Converters (ADC). A first version of ALIX has been tested with CZT and CdTe detectors under high-energy pulsed X-ray photons (20 MeV, 60 ns pulses every 250 ns). We will present the different results of linearity and signal-to-noise ratio. A second version of ALIX has been designed with some corrections. Electrical tests performed on 85 ASICS showed that the corrections were successful. We are now able to integrate them behind a 64×32 pixels 1 mm pitch CZT detector. Such an ASIC could also be used for strip detectors where a large dynamic range and a fast response are necessary.

  16. Final Report: A CdZnTe detector for MRI-compatible SPECT Systems

    SciTech Connect

    Meng, Ling-Jian

    2012-12-27

    The key objective of this project is to develop the enabling technology for future MRI-compatible nuclear (e.g. SPECT) imaging system, and to demonstrate the feasibility of performing simultaneous MR and SPECT imaging studies of the same object. During the past three years, we have developed (a) a MRI-compatible ultrahigh resolution gamma ray detector and associated readout electronics, (b) a theoretical approach for modeling the effect of strong magnetic field on SPECT image quality, and (c) a maximum-likelihood (ML) based reconstruction routine with correction for the MR-induced distortion. With this support, we have also constructed a four-head MR-compatible SPECT system and tested the system inside a 3-T clinical MR-scanner located on UI campus. The experimental results obtained with this system have clearly demonstrated that sub-500um spatial resolution can be achieved with a SPECT system operated inside a 3-T MRI scanner. During the past three years, we have accomplished most of the major objectives outlined in the original proposal. These research efforts have laid out a solid foundation the development of future MR-compatible SPECT systems for both pre-clinical and clinical imaging applications.

  17. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    NASA Astrophysics Data System (ADS)

    Gimenez, E. N.; Astromskas, V.; Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N.

    2016-07-01

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e- collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system.

  18. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  19. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  20. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    NASA Astrophysics Data System (ADS)

    Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.

    2016-12-01

    Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.

  1. Linearity enhancement design of a 16-channel low-noise front-end readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Zeng, Huiming; Wei, Tingcun; Wang, Jia

    2017-03-01

    A 16-channel front-end readout application-specific integrated circuit (ASIC) with linearity enhancement design for cadmium zinc telluride (CdZnTe) detectors is presented in this paper. The resistors in the slow shaper are realized using a high-Z circuit to obtain constant resistance value instead of using only a metal-oxide-semiconductor (MOS) transistor, thus the shaping time of the slow shaper can be kept constant for different amounts of input energies. As a result, the linearity of conversion gain is improved significantly. The ASIC was designed and fabricated in a 0.35 μm CMOS process with a die size of 2.60 mm×3.53 mm. The tested results show that a typical channel provides an equivalent noise charge (ENC) of 109.7e-+16.3e-/pF with a power consumption of 4 mW and achieves a conversion gain of 87 mV/fC with a nonlinearity of <0.4%. The linearity of conversion gain is improved by at least 86.6% as compared with the traditional approaches using the same front-end readout architecture and manufacture process. Moreover, the inconsistency among channels is <0.3%. An energy resolution of 2.975 keV (FWHM) for gamma rays of 59.5 keV was measured by connecting the ASIC to a 5 mm×5 mm ×2 mm CdZnTe detector at room temperature. The front-end readout ASIC presented in this paper achieves an outstanding linearity performance without compromising the noise, power consumption, and chip size performances.

  2. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers.

    PubMed

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-21

    The most obvious problem in obtaining spectral information with energy-resolving photon counting detectors in clinical computed tomography (CT) is the huge x-ray flux present in conventional CT systems. At high tube voltages (e.g. 140 kVp), despite the beam shaper, this flux can be close to 10⁹ Mcps mm⁻² in the direct beam or in regions behind the object, which are close to the direct beam. Without accepting the drawbacks of truncated reconstruction, i.e. estimating missing direct-beam projection data, a photon-counting energy-resolving detector has to be able to deal with such high count rates. Sub-structuring pixels into sub-pixels is not enough to reduce the count rate per pixel to values that today's direct converting Cd[Zn]Te material can cope with (≤ 10 Mcps in an optimistic view). Below 300 µm pixel pitch, x-ray cross-talk (Compton scatter and K-escape) and the effect of charge diffusion between pixels are problematic. By organising the detector in several different layers, the count rate can be further reduced. However this alone does not limit the count rates to the required level, since the high stopping power of the material becomes a disadvantage in the layered approach: a simple absorption calculation for 300 µm pixel pitch shows that the required layer thickness of below 10 Mcps/pixel for the top layers in the direct beam is significantly below 100 µm. In a horizontal multi-layer detector, such thin layers are very difficult to manufacture due to the brittleness of Cd[Zn]Te. In a vertical configuration (also called edge-on illumination (Ludqvist et al 2001 IEEE Trans. Nucl. Sci. 48 1530-6, Roessl et al 2008 IEEE NSS-MIC-RTSD 2008, Conf. Rec. Talk NM2-3)), bonding of the readout electronics (with pixel pitches below 100 µm) is not straightforward although it has already been done successfully (Pellegrini et al 2004 IEEE NSS MIC 2004 pp 2104-9). Obviously, for the top detector layers, materials with lower stopping power would be advantageous

  3. Imaging of Ra-223 with a small-pixel CdTe detector

    NASA Astrophysics Data System (ADS)

    Scuffham, J. W.; Pani, S.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.; Cernik, R. J.

    2015-01-01

    Ra-223 Dichloride (Xofigo™) is a promising new radiopharmaceutical offering survival benefit and palliation of painful bone metastases in patients with hormone-refractory prostate cancer [1]. The response to radionuclide therapy and toxicity are directly linked to the absorbed radiation doses to the tumour and organs at risk respectively. Accurate dosimetry necessitates quantitative imaging of the biodistribution and kinetics of the radiopharmaceutical. Although primarily an alpha-emitter, Ra-223 also has some low-abundance X-ray and gamma emissions, which enable imaging of the biodistribution in the patient. However, the low spectral resolution of conventional gamma camera detectors makes in-vivo imaging of Ra-223 challenging. In this work, we present spectra and image data of anthropomorphic phantoms containing Ra-223 acquired with a small-pixel CdTe detector (HEXITEC) [2] with a pinhole collimator. Comparison is made with similar data acquired using a clinical gamma camera. The results demonstrate the advantages of the solid state detector in terms of scatter rejection and quantitative accuracy of the images. However, optimised collimation is needed in order for the sensitivity to rival current clinical systems. As different dosage levels and administration regimens for this drug are explored in current clinical trials, there is a clear need to develop improved imaging technologies that will enable personalised treatments to be designed for patients.

  4. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    SciTech Connect

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; De Geronimo, G.; Eger, J.; Emerick, A.; Fried, J.; Hossain, A.; Roy, U.; Salwen, C.; Soldner, S.; Vernon, E.; Yang, G.; James, R. B.

    2015-09-06

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm3 pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.

  5. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; De Geronimo, G.; Eger, J.; Emerick, A.; Fried, J.; Hossain, A.; Roy, U.; Salwen, C.; Soldner, S.; Vernon, E.; Yang, G.; James, R. B.

    2016-01-01

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm3 pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixel sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.

  6. Use of high-granularity CdZnTe pixelated detectors to correct response non-uniformities caused by defects in crystals

    DOE PAGES

    Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; ...

    2015-09-06

    Following our successful demonstration of the position-sensitive virtual Frisch-grid detectors, we investigated the feasibility of using high-granularity position sensing to correct response non-uniformities caused by the crystal defects in CdZnTe (CZT) pixelated detectors. The development of high-granularity detectors able to correct response non-uniformities on a scale comparable to the size of electron clouds opens the opportunity of using unselected off-the-shelf CZT material, whilst still assuring high spectral resolution for the majority of the detectors fabricated from an ingot. Here, we present the results from testing 3D position-sensitive 15×15×10 mm3 pixelated detectors, fabricated with conventional pixel patterns with progressively smaller pixelmore » sizes: 1.4, 0.8, and 0.5 mm. We employed the readout system based on the H3D front-end multi-channel ASIC developed by BNL's Instrumentation Division in collaboration with the University of Michigan. We use the sharing of electron clouds among several adjacent pixels to measure locations of interaction points with sub-pixel resolution. By using the detectors with small-pixel sizes and a high probability of the charge-sharing events, we were able to improve their spectral resolutions in comparison to the baseline levels, measured for the 1.4-mm pixel size detectors with small fractions of charge-sharing events. These results demonstrate that further enhancement of the performance of CZT pixelated detectors and reduction of costs are possible by using high spatial-resolution position information of interaction points to correct the small-scale response non-uniformities caused by crystal defects present in most devices.« less

  7. Drift time variations in CdZnTe detectors measured with alpha-particles: Their correlation with the detector’s responses

    SciTech Connect

    Bolotnikov A. E.; Butcher, J.; Hamade, M.; Petryk, M.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Hossain, A.; Kim, K.; Yang, G.; and James, R.

    2012-05-14

    Homogeneity of properties related to material crystallinity is a critical parameter for achieving high-performance CdZnTe (CZT) radiation detectors. Unfortunately, this requirement is not always satisfied in today's commercial CZT material due to high concentrations of extended defects, in particular subgrain boundaries, which are believed to be part of the causes hampering the energy resolution and efficiency of CZT detectors. In the past, the effects of subgrain boundaries have been studied in Si, Ge and other semiconductors. It was demonstrated that subgrain boundaries tend to accumulate secondary phases and impurities causing inhomogeneous distributions of trapping centers. It was also demonstrated that subgrain boundaries result in local perturbations of the electric field, which affect the carrier transport and other properties of semiconductor devices. The subgrain boundaries in CZT material likely behave in a similar way, which makes them responsible for variations in the electron drift time and carrier trapping in CZT detectors. In this work, we employed the transient current technique to measure variations in the electron drift time and related the variations to the device performances and subgrain boundaries, whose presence in the crystals were confirmed with white beam X-ray diffraction topography and infrared transmission microscopy.

  8. Possible use of CdTe detectors in kVp monitoring of diagnostic x-ray tubes

    PubMed Central

    Krmar, M.; Bucalović, N.; Baucal, M.; Jovančević, N.

    2010-01-01

    It has been suggested that kVp of diagnostic X-ray devices (or maximal energy of x-ray photon spectra) should be monitored routinely; however a standardized noninvasive technique has yet to be developed and proposed. It is well known that the integral number of Compton scattered photons and the intensities of fluorescent x-ray lines registered after irradiation of some material by an x-ray beam are a function of the maximal beam energy. CdTe detectors have sufficient energy resolution to distinguish individual x-ray fluorescence lines and high efficiency for the photon energies in the diagnostic region. Our initial measurements have demonstrated that the different ratios of the integral number of Compton scattered photons and intensities of K and L fluorescent lines detected by CdTe detector are sensitive function of maximal photon energy and could be successfully applied for kVp monitoring. PMID:21037976

  9. Development of a CdTe pixel detector with a window comparator ASIC for high energy X-ray applications

    NASA Astrophysics Data System (ADS)

    Hirono, T.; Toyokawa, H.; Furukawa, Y.; Honma, T.; Ikeda, H.; Kawase, M.; Koganezawa, T.; Ohata, T.; Sato, M.; Sato, G.; Takagaki, M.; Takahashi, T.; Watanabe, S.

    2011-09-01

    We have developed a photon-counting-type CdTe pixel detector (SP8-01). SP8-01 was designed as a prototype of a high-energy X-ray imaging detector for experiments using synchrotron radiation. SP8-01 has a CdTe sensor of 500 μm thickness, which has an absorption efficiency of almost 100% up to 50 keV and 45% even at 100 keV. A full-custom application specific integrated circuit (ASIC) was designed as a readout circuit of SP8-01, which is equipped with a window-type discriminator. The upper discriminator realizes a low-background measurement, because X-ray beams from the monochromator contain higher-order components beside the fundamental X-rays in general. ASIC chips were fabricated with a TSMC 0.25 μm CMOS process, and CdTe sensors were bump-bonded to the ASIC chips by a gold-stud bonding technique. Beam tests were performed at SPring-8. SP8-01 detected X-rays up to 120 keV. The capability of SP8-01 as an imaging detector for high-energy X-ray synchrotron radiation was evaluated with its performance characteristics.

  10. Use of the drift-time method to measure the electron lifetime in long-drift-length CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Camarda, G. S.; Chen, E.; Gul, R.; Dedic, V.; De Geronimo, G.; Fried, J.; Hossain, A.; MacKenzie, J. M.; Ocampo, L.; Sellin, P.; Taherion, S.; Vernon, E.; Yang, G.; El-Hanany, U.; James, R. B.

    2016-09-01

    The traditional method for electron lifetime measurements of CdZnTe (CZT) detectors relies on using the Hecht equation. The procedure involves measuring the dependence of the detector response on the applied bias to evaluate the μτ product, which in turn can be converted into the carrier lifetime. Despite general acceptance of this technique, which is very convenient for comparative testing of different CZT materials, the assumption of a constant electric field inside a detector is unjustified. In the Hecht equation, this assumption means that the drift time would be a linear function of the distance. This condition is not fulfilled in practice at low applied biases, where the Hecht equation is most sensitive to the μτ product. As a result, researchers usually take measurements at relatively high biases, which work well in the case of the low μτ-product material, <10-3 cm2/V, but give significantly underestimated values for the case of high μτ-product crystals. In this work, we applied the drift-time method to measure the electron lifetimes in long-drift-length (4 cm) standard-grade CZT detectors produced by the Redlen Technologies. We found that the electron μτ product of tested crystals is in the range 0.1-0.2 cm2/V, which is an order of the magnitude higher than any value previously reported for a CZT material. In comparison, using the Hecht equation fitting, we obtained μτ = 2.3 × 10-2 cm2/V for a 2-mm thin planar detector fabricated from the same CZT material.

  11. Development of a simplified simulation model for performance characterization of a pixellated CdZnTe multimodality imaging system.

    PubMed

    Guerra, P; Santos, A; Darambara, D G

    2008-02-21

    Current requirements of molecular imaging lead to the complete integration of complementary modalities in a single hybrid imaging system to correlate function and structure. Among the various existing detector technologies, which can be implemented to integrate nuclear modalities (PET and/or single-photon emission computed tomography with x-rays (CT) and most probably with MR, pixellated wide bandgap room temperature semiconductor detectors, such as CdZnTe and/or CdTe, are promising candidates. This paper deals with the development of a simplified simulation model for pixellated semiconductor radiation detectors, as a first step towards the performance characterization of a multimodality imaging system based on CdZnTe. In particular, this work presents a simple computational model, based on a 1D approximate solution of the Schockley-Ramo theorem, and its integration into the Geant4 application for tomographic emission (GATE) platform in order to perform accurately and, therefore, improve the simulations of pixellated detectors in different configurations with a simultaneous cathode and anode pixel readout. The model presented here is successfully validated against an existing detailed finite element simulator, the multi-geometry simulation code, with respect to the charge induced at the anode, taking into consideration interpixel charge sharing and crosstalk, and to the detector charge induction efficiency. As a final point, the model provides estimated energy spectra and time resolution for (57)Co and (18)F sources obtained with the GATE code after the incorporation of the proposed model.

  12. X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: Energy, temperature and high flux effects

    NASA Astrophysics Data System (ADS)

    Abbene, L.; Gerardi, G.; Turturici, A. A.; Raso, G.; Benassi, G.; Bettelli, M.; Zambelli, N.; Zappettini, A.; Principato, F.

    2016-11-01

    Nowadays, CdZnTe (CZT) is one of the key materials for the development of room temperature X-ray and gamma ray detectors and great efforts have been made on both the device and the crystal growth technologies. In this work, we present the results of spectroscopic investigations on new boron oxide encapsulated vertical Bridgman (B-VB) grown CZT detectors, recently developed at IMEM-CNR Parma, Italy. Several detectors, with the same electrode layout (gold electroless contacts) and different thicknesses (1 and 2.5 mm), were realized: the cathode is a planar electrode covering the detector surface (4.1×4.1 mm2), while the anode is a central electrode (2×2 mm2) surrounded by a guard-ring electrode. The detectors are characterized by electron mobility-lifetime product (μeτe) values ranging between 0.6 and 1·10-3 cm2/V and by low leakage currents at room temperature and at high bias voltages (38 nA/cm2 at 10000 V/cm). The spectroscopic response of the detectors to monochromatic X-ray and gamma ray sources (109Cd, 241Am and 57Co), at different temperatures and fluxes (up to 1 Mcps), was measured taking into account the mitigation of the effects of incomplete charge collection, pile-up and high flux radiation induced polarization phenomena. A custom-designed digital readout electronics, developed at DiFC of University of Palermo (Italy), able to perform a fine pulse shape and height analysis even at high fluxes, was used. At low rates (200 cps) and at room temperature (T=25 °C), the detectors exhibit an energy resolution FWHM around 4% at 59.5 keV, for comparison an energy resolution of 3% was measured with Al/CdTe/Pt detectors by using the same electronics (A250F/NF charge sensitive preamplifier, Amptek, USA; nominal ENC of 100 electrons RMS). At high rates (750 kcps), energy resolution values of 7% and 9% were measured, with throughputs of 2% and 60% respectively. No radiation polarization phenomena were observed at room temperature up to 1 Mcps (241Am source, 60 ke

  13. Characterization of a module with pixelated CdTe detectors for possible PET, PEM and compton camera applications

    NASA Astrophysics Data System (ADS)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Puigdengoles, C.; Martínez, R.; Cabruja, E.

    2014-05-01

    We present the measurement of the energy resolution and the impact of charge sharing for a pixel CdTe detector. This detector will be used in a novel conceptual design for diagnostic systems in the field of nuclear medicine such as positron emission tomography (PET), positron emission mammography (PEM) and Compton camera. The detector dimensions are 10 mm × 10 mm × 2 mm and with a pixel pitch of 1 mm × 1 mm. The pixel CdTe detector is a Schottky diode and it was tested at a bias of -1000 V. The VATAGP7.1 frontend ASIC was used for the readout of the pixel detector and the corresponding single channel electronic noise was found to be σ < 2 keV for all the pixels. We have achieved an energy resolution, FWHM/Epeak, of 7.1%, 4.5% and 0.98% for 59.5, 122 and 511 keV respectively. The study of the charge sharing shows that 16% of the events deposit part of their energy in the adjacent pixel.

  14. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors.

    PubMed

    Cassol, F; Portal, L; Graber-Bolis, J; Perez-Ponce, H; Dupont, M; Kronland, C; Boursier, Y; Blanc, N; Bompard, F; Boudet, N; Buton, C; Clémens, J C; Dawiec, A; Debarbieux, F; Delpierre, P; Hustache, S; Vigeolas, E; Morel, C

    2015-07-21

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images.

  15. Estimation of mammary gland composition using CdTe series detector developed for photon-counting mammography

    NASA Astrophysics Data System (ADS)

    Ihori, Akiko; Okamoto, Chizuru; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Nakajima, Ai; Kato, Misa; Kodera, Yoshie

    2016-03-01

    Energy resolved photon-counting mammography is a new technology, which counts the number of photons that passes through an object, and presents it as a pixel value in an image of the object. Silicon semiconductor detectors are currently used in commercial mammography. However, the disadvantage of silicon is the low absorption efficiency for high X-ray energies. A cadmium telluride (CdTe) series detector has a high absorption efficiency over a wide energy range. In this study, we proposed a method to estimate the composition of the mammary gland using a CdTe series detector as a photon-counting detector. The fact that the detection rate of breast cancer in mammography is affected by mammary gland composition is now widely accepted. Assessment of composition of the mammary gland has important implications. An important advantage of our proposed technique is its ability to discriminate photons using three energy bins. We designed the CdTe series detector system using the MATLAB simulation software. The phantom contains nine regions with the ratio of glandular tissue and adipose varying in increments of 10%. The attenuation coefficient for each bin's energy was calculated from the number of input and output photons possessed by each. The evaluation results obtained by plotting the attenuation coefficient μ in a three-dimensional (3D) scatter plot show that the plots had a regular composition order congruent with that of the mammary gland. Consequently, we believe that our proposed method can be used to estimate the composition of the mammary gland.

  16. Discrimination between normal breast tissue and tumor tissue using CdTe series detector developed for photon-counting mammography

    NASA Astrophysics Data System (ADS)

    Okamoto, Chizuru; Ihori, Akiko; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Kato, Misa; Nakajima, Ai; Kodera, Yoshie

    2016-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) series photon-counting detector, having high absorption efficiency over a wide energy range. In a previous study, we showed that the use of high X-ray energy in digital mammography is useful from the viewpoint of exposure dose and image quality. In addition, the CdTe series detector can acquire X-ray spectrum information following transmission through a subject. This study focused on the tissue composition identified using spectral information obtained by a new photon-counting detector. Normal breast tissue consists entirely of adipose and glandular tissues. However, it is very difficult to find tumor tissue in the region of glandular tissue via a conventional mammogram, especially in dense breast because the attenuation coefficients of glandular tissue and tumor tissue are very close. As a fundamental examination, we considered a simulation phantom and showed the difference between normal breast tissue and tumor tissue of various thicknesses in a three-dimensional (3D) scatter plot. We were able to discriminate between both types of tissues. In addition, there was a tendency for the distribution to depend on the thickness of the tumor tissue. Thinner tumor tissues were shown to be closer in appearance to normal breast tissue. This study also demonstrated that the difference between these tissues could be made obvious by using a CdTe series detector. We believe that this differentiation is important, and therefore, expect this technology to be applied to new tumor detection systems in the future.

  17. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    NASA Astrophysics Data System (ADS)

    Ryu, Hyun-Ju; Lee, Young-Jin; Lee, Seung-Wan; Cho, Hyo-Min; Choi, Yu-Na; Kim, Hee-Joung

    2012-07-01

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radiopharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small-animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  18. Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors

    NASA Astrophysics Data System (ADS)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-01-01

    Stellar explosions are astrophysical phenomena of great importance and interest. Instruments with high sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators. In order to achieve the needed performance, a hard-X and gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. We present a detector module which consists of a single CdTe crystal of 12.5 × 12.5mm 2 and 2mm thick with a planar cathode and with the anode segmented in an 11x11 pixel array with a pixel pitch of 1 mm attached to the readout chip. Two possible detector module configurations are considered: the so-called Planar Transverse Field (PTF) and the Parallel Planar Field (PPF). The combination of several modules in PTF or PPF configuration will achieve the desired performance of the imaging detector. The sum energy resolution of all pixels of the CdTe module measured at 122 keV and 356 keV is 3.8% and 2% respectively, in the following operating conditions: PPF irradiation, bias voltage -500 V and temperature -10̂ C.

  19. Compensation and trapping in CdZnTe radiation detectors studied by thermoelectric emission spectroscopy, thermally stimulated conductivity, and current-voltage measurements

    SciTech Connect

    Ralph B. James

    2000-01-07

    In today's commercially available counter-select-grade CdZnTe crystals for radiation detector applications, the thermal ionization energies of the traps and their types, whether electron or hole traps, were measured. The measurements were successfully done using thermoelectric emission spectroscopy (TEES) and thermally stimulated conductivity (TSC). For reliability, the electrical contacts to the sample were found to be very important and, instead of Au Schottky contacts, In Ohmic contacts had to be used. For the filling of the traps, photoexcitation was done at zero bias, at 20K and at wavelengths which gave the maximum bulk photoexcitation for the sample. Between the temperature range from 20 to 400 K, the TSC current was found to be on the order of {approximately} 10,000 times or even larger than the TEES current, in agreement with theory, but only TEES could resolve the trap type and was sensitive to the deep traps. Large concentration of hole traps at 0.1 and 0.6 eV were observed and smaller contraction of electron traps at 0.4 eV was seen. These deep traps cause compensation in the material and also cause trapping that degrades the radiation detection measurement.

  20. Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics

    NASA Astrophysics Data System (ADS)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Pellegrini, G.; Lozano, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2017-03-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of nova and supernova explosions in X and gamma rays, with the use of space missions such as INTEGRAL, XMM-Newton and Swift. We have been also involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes, such as GRI, DUAL and e-ASTROGAM. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs). In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm, with a pixel pitch of 1mm x 1mm. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. An ohmic CdTe pixel detector has been characterised by means of 57Co, 133Ba and 22Na sources. Based on this, its spectroscopic performance and the influence of charge sharing is reported here. The pixel study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the pixel size selection.

  1. High-sensitivity brain SPECT system using cadmium telluride (CdTe) semiconductor detector and 4-pixel matched collimator

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara

    2013-11-01

    For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, ‘4-PMC’ indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, 99mTc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.

  2. Development of a pixelated CdTe detector module for a hard-x and gamma-ray imaging spectrometer application

    NASA Astrophysics Data System (ADS)

    Galvèz, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-07-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of novae and supernovae in X and gamma-rays, with the use of space missions. We have also been involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae and Classical Novae. In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm with a pixel pitch of 1mm x 1mm. Two kinds of CdTe pixel detectors with different contacts have been tested: ohmic and Schottky. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout VATAGP7.1 ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. The study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the detector design. We will report on the spectroscopy characterisation of the CdTe detector module as well as the study of charge sharing.

  3. Charge-sharing observations with a CdTe pixel detector irradiated with a 57Co source

    NASA Astrophysics Data System (ADS)

    Maiorino, M.; Pellegrini, G.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Martinez, R.; Lozano, M.; Puigdengoles, C.; Ullan, M.

    2006-07-01

    Charge sharing is a limiting factor of detector spatial resolution and contrast in photon counting imaging devices because multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although this topic has been debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, we look at the importance of charge sharing in CdTe pixel detectors by exposing such a device to a low-activity (37 kBq) 57Co source, whose main emission line is at 122 keV.The detectors used are 1 mm thick with a pixel pitch of 55 μm. These detectors are bump-bonded to Medipix2 photon-counting chips. This study gives an insight of the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  4. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    DOE PAGES

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; ...

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore » of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  5. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    SciTech Connect

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Guiseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.

  6. Dynamic defectoscopy with flat panel and CdTe Timepix X-ray detectors combined with an optical camera

    NASA Astrophysics Data System (ADS)

    Vavrik, D.; Fauler, A.; Fiederle, M.; Jandejsek, I.; Jakubek, M.; Turecek, D.; Zwerger, A.

    2013-04-01

    Damage of gradually loaded ductile materials involves a number of physical processes which are highly nonlinear and have different intensity and extent. Dynamic defectoscopy (i.e. defectoscopy of time changing damage processes) combining an X-ray/optical imaging system is proposed for online visualization and analysis of the complex behaviour of such materials. A large area flat panel detector with rather long read out time is used for overall observation of slow damage processes. On the other hand, a semiconductor CdTe Timepix detector with small active area allows following the rapid damage processes occurring in the final phase of specimen failure. Optical imaging of the specimen surface was utilized for analysing the specimen deformations.

  7. Thin-film CdTe detector for microdosimetric study of radiation dose enhancement at gold-tissue interface.

    PubMed

    Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael

    2016-09-01

    Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of the dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three-micron thick thin-film CdTe photodetectors were fabricated in our lab. One-, ten- or one hundred-micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high-dose-rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5 μm from the interface were 42.6±10.8, 137.0±11.9, and 203.0±15.4, respectively. The corresponding MC modeled PDEs were 38.1±1., 164±1, and 249±1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold-tissue interface was successfully measured using an in-house-built, high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. PACS number(s): 29.40.Wk, 73.50.Pz, 87.53.Jw, 87.55.K.

  8. Thin-film CdTe detector for microdosimetric study of radiation dose enhancement at gold-tissue interface.

    PubMed

    Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael

    2016-09-08

    Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three-micron thick thin-film CdTe photodetectors were fabricated in our lab. One-, ten- or one hundred-micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high-dose-rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5μm from the interface were 42.6 ± 10.8 , 137.0 ± 11.9, and 203.0 ± 15.4, respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1, and 249 ± 1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold-tissue interface was successfully measured using an in-house-built, high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation.

  9. Novel Surface Preparation and Contacts for CdZnTe Nuclear Radiation Detectors Using Patterned Films of Semiconductors and Insulators

    NASA Astrophysics Data System (ADS)

    Burger, Arnold; Groza, Michael; Conway, Adam; Payne, Steve

    2013-04-01

    The semiconductor Cadmium Zinc Telluride (CZT) has emerged as the material of choice for room temperature detection of X-rays and gamma-rays. The detectors will cover the energy range from 30 keV to several MeV, and will achieve excellent 662 keV energy resolution. The development of high resolution gamma ray detectors based on CZT is dependent on low electronic noise levels. One common source of noise is the surface leakage current, which limits the performance of advanced readout schemes such as the coplanar grid and pixelated architectures with steering grids. Excessive bulk leakage current can result from one of several surface effects: leaky native oxides, unsatisfied bonds, and surface damage. We propose to fabricate and test oriented [111] CZT crystals with thicknesses up to 1.5 cm with an innovative detection technique based on co-planar or other electron only transport designs using plasma processing, thin film sputtering, chemical passivation and wet etching techniques. Compared to conventional pixel detectors, the proposed contact configuration needs lower power consumption and a lower cost. The detector design can be used for building very low-cost handheld radiation detection devices.

  10. OPTIMIZATION OF VIRTUAL FRISCH-GRID CdZnTe DETECTOR DESIGNS FOR IMAGING AND SPECTROSCOPY OF GAMMA RAYS.

    SciTech Connect

    BOLOTNIKOV,A.E.; ABDUL-JABBAR, N.M.; BABALOLA, S.; CAMARDA, G.S.; CUI, Y.; HOSSAIN, A.; JACKSON, E.; JACKSON, H.; JAMES, J.R.; LURYI, A.L.; JAMES, R.B.

    2007-08-21

    In the past, various virtual Frisch-grid designs have been proposed for cadmium zinc telluride (CZT) and other compound semiconductor detectors. These include three-terminal, semi-spherical, CAPture, Frisch-ring, capacitive Frisch-grid and pixel devices (along with their modifications). Among them, the Frisch-grid design employing a non-contacting ring extended over the entire side surfaces of parallelepiped-shaped CZT crystals is the most promising. The defect-free parallelepiped-shaped crystals with typical dimensions of 5x5{approx}12 mm3 are easy to produce and can be arranged into large arrays used for imaging and gamma-ray spectroscopy. In this paper, we report on further advances of the virtual Frisch-grid detector design for the parallelepiped-shaped CZT crystals. Both the experimental testing and modeling results are described.

  11. Development of High Resolution Mirrors and Cd-Zn-Te Detectors for Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Speegle, Chet O.; Gaskin, Jessica; Sharma, Dharma; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    We describe the fabrication and implementation of a high-resolution conical, grazing- incidence, hard X-ray (20-70 keV) telescope. When flown aboard stratospheric balloons, these mirrors are used to image cosmic sources such as supernovae, neutron stars, and quasars. The fabrication process involves generating super-polished mandrels, mirror shell electroforming, and mirror testing. The cylindrical mandrels consist of two conical segments; each segment is approximately 305 mm long. These mandrels are first, precision ground to within approx. 1.0 micron straightness along each conical segment and then lapped and polished to less than 0.5 micron straightness. Each mandrel segment is the super-polished to an average surface roughness of approx. 3.25 angstrom rms. By mirror shell replication, this combination of good figure and low surface roughness has enabled us to achieve 15 arcsec, confirmed by X-ray measurements in the Marshall Space Flight Center 102 meter test facility. To image the focused X-rays requires a focal plane detector with appropriate spatial resolution. For 15 arcsec optics of 6 meter focal length, this resolution must be around 200 microns. In addition, the detector must have a high efficiency, relatively high energy resolution, and low background. We are currently developing Cadmium-Zinc-Telluride fine-pixel detectors for this purpose. The detectors under study consist of a 16x16 pixel array with a pixel pitch of 300 microns and are 1 mm and 2 mm thick. At 60 keV, the measured energy resolution is around 2%.

  12. Comparing performances of a CdTe X-ray spectroscopic detector and an X-ray dual-energy sandwich detector

    NASA Astrophysics Data System (ADS)

    Gorecki, A.; Brambilla, A.; Moulin, V.; Gaborieau, E.; Radisson, P.; Verger, L.

    2013-11-01

    Multi-energy (ME) detectors are becoming a serious alternative to classical dual-energy sandwich (DE-S) detectors for X-ray applications such as medical imaging or explosive detection. They can use the full X-ray spectrum of irradiated materials, rather than disposing only of low and high energy measurements, which may be mixed. In this article, we intend to compare both simulated and real industrial detection systems, operating at a high count rate, independently of the dimensions of the measurements and independently of any signal processing methods. Simulations or prototypes of similar detectors have already been compared (see [1] for instance), but never independently of estimation methods and never with real detectors. We have simulated both an ME detector made of CdTe - based on the characteristics of the MultiX ME100 and - a DE-S detector - based on the characteristics of the Detection Technology's X-Card 1.5-64DE model. These detectors were compared to a perfect spectroscopic detector and an optimal DE-S detector. For comparison purposes, two approaches were investigated. The first approach addresses how to distinguise signals, while the second relates to identifying materials. Performance criteria were defined and comparisons were made over a range of material thicknesses and with different photon statistics. Experimental measurements in a specific configuration were acquired to checks simulations. Results showed good agreement between the ME simulation and the ME100 detector. Both criteria seem to be equivalent, and the ME detector performs 3.5 times better than the DE-S detector with same photon statistics based on simulations and experimental measurements. Regardless of the photon statistics ME detectors appeared more efficient than DE-S detectors for all material thicknesses between 1 and 9 cm when measuring plastics with an attenuation signature close that of explosive materials. This translates into an improved false detection rate (FDR): DE

  13. Design and optimization of an analog filter with a CdTe detector for X-ray fluorescence applications

    NASA Astrophysics Data System (ADS)

    Choi, Hyojeong; Kim, Hui Su; Kim, Young Soo; Ha, Jang Ho; Chai, Jong-Seo

    2016-10-01

    An analog pre-filter circuit for digital pulse processing is designed and optimized for X-ray fluorescence (XRF) applications to replace traditional analog shaping amplifiers. To optimize the pre-filter performance, we characterized noise electrons as a function of the input pulse rise time and decay time of the output pulse by using the full width at half maximum. In addition, gamma-ray energy measurements at room temperature showed that the commercially available CdTe Schottky-type radiation detector with our newly designed and optimized pre-filter circuit exhibited full widths at half maxima of 4.97 (Ba-133, at 53 keV) and 5.56 keV (Am-241, at 59.5 keV), respectively.

  14. Characterization of paraffin based breast tissue equivalent phantom using a CdTe detector pulse height analysis.

    PubMed

    Cubukcu, Solen; Yücel, Haluk

    2016-12-01

    In this study, paraffin was selected as a base material and mixed with different amounts of CaSO4·2H2O and H3BO3 compounds in order to mimic breast tissue. Slab phantoms were produced with suitable mixture ratios of the additives in the melted paraffin. Subsequently, these were characterized in terms of first half-value layer (HVL) in the mammographic X-ray range using a pulse-height spectroscopic analysis with a CdTe detector. Irradiations were performed in the energy range of 23-35 kVp under broad beam conditions from Mo/Mo and Mo/Rh target/filter combinations. X-ray spectra were acquired with a CdTe detector without and with phantom material interposition in increments of 1 cm thickness and then evaluated to obtain the transmission data. The net integral areas of the spectra for the slabs were used to plot the transmission curves and these curves were fitted to the Archer model function. The results obtained for the slabs were compared with those of standard mammographic phantoms such as CIRS BR series phantoms and polymethylmethacrylate plates (PMMA). From the evaluated transmission curves, the mass attenuation coefficients and HVLs of some mixtures are close to those of the commercially available standard mammography phantoms. Results indicated that when a suitable proportion of H3BO3 and CaSO4·2H2O is added to the paraffin, the resulting material may be a good candidate for a breast tissue equivalent phantom.

  15. Influence of accelerated crucible rotation on defect distribution and detector characteristics of melt grown CdZnTe (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Swain, Santosh; McCoy, Jedidiah; Lynn, Kelvin

    2016-09-01

    Non-stoichiometry related extended defects in CdTe/CZT, such as tellurium inclusions and precipitates are known to be detrimental bulk defects in detector grade cadmium zinc telluride. In our attempt to minimize the size of tellurium inclusions we have employed accelerated crucible rotation technique in modified vertical Bridgman growth configuration. Acceleration and deceleration rate as high as 900 rpm2 was successfully applied during superheated melt mixing and growth. By comparing growths with and without ACRT under otherwise identical growth conditions, it was observed that the average inclusion size reduced by more than 50 percent due to ACRT. Additionally, we will discuss the effect of forced melt convection on the axial zinc and dopant segregation profile. Electrical characterization, spectrometric performance and purity analysis of the grown crystals will be presented.

  16. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    NASA Astrophysics Data System (ADS)

    Gul, R.; Roy, U. N.; James, R. B.

    2017-03-01

    In this research, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτe) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trapping and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (VCd-) were identified as a dominant trap. The VCd- were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at Ev + 0.36 eV and Ev + 1.1 eV, Ec + 76 meV and Ev + 0.61 eV, Ev + 36 meV and Ev + 0.86 eV, Ev + 0.52 eV and Ec + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (Nt), and capture cross-section (σ) and hence trapping (tt) and de-trapping (tdt) times. The dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.

  17. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior.

    PubMed

    Lee, Jeong Seok; Kang, Dong-Goo; Jin, Seung Oh; Kim, Insoo; Lee, Soo Yeol

    2016-04-11

    Fast and accurate energy calibration of photon counting spectral detectors (PCSDs) is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM) CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components.

  18. Development of CdTe pixel detectors combined with an aluminum Schottky diode sensor and photon-counting ASICs

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Saji, C.; Kawase, M.; Wu, S.; Furukawa, Y.; Kajiwara, K.; Sato, M.; Hirono, T.; Shiro, A.; Shobu, T.; Suenaga, A.; Ikeda, H.

    2017-01-01

    We have been developing CdTe pixel detectors combined with a Schottky diode sensor and photon-counting ASICs. The hybrid pixel detector was designed with a pixel size of 200 μ m by 200 μm and an area of 19 mm by 20 mm or 38.2 mm by 40.2 mm. The photon-counting ASIC, SP8-04F10K, has a preamplifier, a shaper, 3-level window-type discriminators and a 24-bits counter in each pixel. The single-chip detector with 100 by 95 pixels successfully operated with a photon-counting mode selecting X-ray energy with the window comparator and stable operation was realized at 20 degrees C. We have performed a feasibility study for a white X-ray microbeam experiment. Laue diffraction patterns were measured during the scan of the irradiated position in a silicon steel sample. The grain boundaries were identified by using the differentials between adjacent images at each position.

  19. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  20. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E. Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hossain, A.; Mahler, G.; Maritato, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.; Hodges, D.; Lee, W.; Petryk, M.

    2015-07-15

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  1. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    SciTech Connect

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; Cherches, C.; Cui, Y.; De Geronimo, G.; Fried, J.; Hodges, D.; Hossain, A.; Lee, W.; Mahler, G.; Maritato, M.; Petryk, M.; Roy, U.; Salwen, C.; Vernon, E.; Yang, G.; James, R. B.

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  2. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE PAGES

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; ...

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics.more » The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  3. Fine-pitch CdTe detector for hard X-ray imaging and spectroscopy of the Sun with the FOXSI rocket experiment

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shin-nosuke; Katsuragawa, Miho; Watanabe, Shin; Uchida, Yuusuke; Takeda, Shin'ichiro; Takahashi, Tadayuki; Saito, Shinya; Glesener, Lindsay; Buitrago-Casas, Juan Camilo; Krucker, Säm.; Christe, Steven

    2016-07-01

    We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4 to 15 keV using the new technique of HXR focusing optics. The focal plane detector requires <100μm position resolution (to take advantage of the angular resolution of the optics) and ≈1 keV energy resolution (full width at half maximum (FWHM)) for spectroscopy down to 4 keV, with moderate cooling (>-30°C). Double-sided silicon strip detectors were used for the first FOXSI flight in 2012 to meet these criteria. To improve the detectors' efficiency (66% at 15 keV for the silicon detectors) and position resolution of 75 μm for the second launch, we fabricated double-sided CdTe strip detectors with a position resolution of 60 μm and almost 100% efficiency for the FOXSI energy range. The sensitive area is 7.67 mm × 7.67 mm, corresponding to the field of view of 791'' × 791''. An energy resolution of 1 keV (FWHM) and low-energy threshold of ≈4 keV were achieved in laboratory calibrations. The second launch of FOXSI was performed on 11 December 2014, and images from the Sun were successfully obtained with the CdTe detector. Therefore, we successfully demonstrated the detector concept and the usefulness of this technique for future HXR observations of the Sun.

  4. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications

    PubMed Central

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-01-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 μW. In acquisition mode, the total power consumption of every pixel is 200 μW. An equivalent noise charge (ENC) of 160 e−RMS at maximum gain and negative polarity conditions has been measured at room temperature. PMID:26744545

  5. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-10-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to digital converter (ADC), configuration registers, and a 4-state digital controller. For every detected photon, the pixel electronics provides the energy deposited in the detector with 10-bit resolution, and a fast trigger signal for time stamp. The ASIC contains the 16-pixel matrix electronics, a digital controller, five global voltage references, a TDC, a temperature sensor, and a band-gap based current reference. The ASIC has been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and occupies an area of 5.3 mm × 6.8 mm. The TDC shows a resolution of 95.5 ps, a precision of 600 ps at full width half maximum (FWHM), and a power consumption of 130 μW. In acquisition mode, the total power consumption of every pixel is 200 μW. An equivalent noise charge (ENC) of 160 e(-)RMS at maximum gain and negative polarity conditions has been measured at room temperature.

  6. Simulation of the expected performance of a seamless scanner for brain PET based on highly pixelated CdTe detectors.

    PubMed

    Mikhaylova, Ekaterina; De Lorenzo, Gianluca; Chmeissani, Mokhtar; Kolstein, Machiel; Cañadas, Mario; Arce, Pedro; Calderón, Yonatan; Uzun, Dilber; Ariño, Gerard; Macias-Montero, José Gabriel; Martinez, Ricardo; Puigdengoles, Carles; Cabruja, Enric

    2014-02-01

    The aim of this work is the evaluation of the design for a nonconventional PET scanner, the voxel imaging PET (VIP), based on pixelated room-temperature CdTe detectors yielding a true 3-D impact point with a density of 450 channels/cm(3), for a total 6 336 000 channels in a seamless ring shaped volume. The system is simulated and evaluated following the prescriptions of the NEMA NU 2-2001 and the NEMA NU 4-2008 standards. Results show that the excellent energy resolution of the CdTe detectors (1.6% for 511 keV photons), together with the small voxel pitch (1 × 1 × 2 mm(3)), and the crack-free ring geometry, give the design the potential to overcome the current limitations of PET scanners and to approach the intrinsic image resolution limits set by physics. The VIP is expected to reach a competitive sensitivity and a superior signal purity with respect to values commonly quoted for state-of-the-art scintillating crystal PETs. The system can provide 14 cps/kBq with a scatter fraction of 3.95% and 21 cps/kBq with a scatter fraction of 0.73% according to NEMA NU 2-2001 and NEMA NU 4-2008, respectively. The calculated NEC curve has a peak value of 122 kcps at 5.3 kBq/mL for NEMA NU 2-2001 and 908 kcps at 1.6 MBq/mL for NEMA NU 4-2008. The proposed scanner can achieve an image resolution of ~ 1 mm full-width at half-maximum in all directions. The virtually noise-free data sample leads to direct positive impact on the quality of the reconstructed images. As a consequence, high-quality high-resolution images can be obtained with significantly lower number of events compared to conventional scanners. Overall, simulation results suggest the VIP scanner can be operated either at normal dose for fast scanning and high patient throughput, or at low dose to decrease the patient radioactivity exposure. The design evaluation presented in this work is driving the development and the optimization of a fully operative prototype to prove the feasibility of the VIP concept.

  7. Simulation of the Expected Performance of a Seamless Scanner for Brain PET Based on Highly Pixelated CdTe Detectors

    PubMed Central

    Mikhaylova, Ekaterina; De Lorenzo, Gianluca; Chmeissani, Mokhtar; Kolstein, Machiel; Cañadas, Mario; Arce, Pedro; Calderón, Yonatan; Uzun, Dilber; Ariño, Gerard; Macias-Montero, José Gabriel; Martinez, Ricardo; Puigdengoles, Carles; Cabruja, Enric

    2014-01-01

    The aim of this work is the evaluation of the design for a nonconventional PET scanner, the voxel imaging PET (VIP), based on pixelated room-temperature CdTe detectors yielding a true 3-D impact point with a density of 450 channels cm3, for a total 6 336 000 channels in a seamless ring shaped volume. The system is simulated and evaluated following the prescriptions of the NEMA NU 2-2001 and the NEMA NU 4-2008 standards. Results show that the excellent energy resolution of the CdTe detectors (1.6% for 511 keV photons), together with the small voxel pitch (1×1×2 mm3), and the crack-free ring geometry, give the design the potential to overcome the current limitations of PET scanners and to approach the intrinsic image resolution limits set by physics. The VIP is expected to reach a competitive sensitivity and a superior signal purity with respect to values commonly quoted for state-of-the-art scintillating crystal PETs. The system can provide 14 cps/kBq with a scatter fraction of 3.95% and 21 cps/kBq with a scatter fraction of 0.73% according to NEMA NU 2-2001 and NEMA NU 4-2008, respectively. The calculated NEC curve has a peak value of 122 kcps at 5.3 kBq/mL for NEMA NU 2-2001 and 908 kcps at 1.6 MBq/mL for NEMA NU 4-2008. The proposed scanner can achieve an image resolution of ~ 1 mm full-width at half-maximum in all directions. The virtually noise-free data sample leads to direct positive impact on the quality of the reconstructed images. As a consequence, high-quality high-resolution images can be obtained with significantly lower number of events compared to conventional scanners. Overall, simulation results suggest the VIP scanner can be operated either at normal dose for fast scanning and high patient throughput, or at low dose to decrease the patient radioactivity exposure. The design evaluation presented in this work is driving the development and the optimization of a fully operative prototype to prove the feasibility of the VIP concept. PMID:24108750

  8. Interface chemistry of CdZnTe films studied by a peel-off approach

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Xu, Haitao; Zhang, Yuelu; Ji, Huanhuan; Xu, Run; Huang, Jian; Zhang, Jijun; Liang, Xiaoyan; Tang, Ke; Wang, Linjun

    2016-12-01

    CdZnTe films with thickness above 50 μm were deposited at temperatures of 200-500 °C by Close Space Sublimation method. A peel-off approach has been adopted to study the interface chemistry of CdZnTe thick films. For all the CdZnTe films, the scanning electron microscopy images show the small and round-like grains formed at interface in contrast to the large ordered grains at surface. For CdZnTe films grown at a low substrate temperature of 200 °C, the interface layer between CdZnTe and substrate is mixed with Te and CdTe, as evidenced by X-ray diffraction, Raman and X-ray photoelectron spectroscopy results. The thickness of the interface layer can be estimated to be 84 nm by depth profile using X-ray photoelectron spectroscopy. In contrast, a thin interface layer less than 14 nm is found at a high substrate temperature of 500 °C. The limited reaction of Te2 and Cd (Zn) to CdZnTe at a low growth temperature is responsible for the formation of the thick interface layer and a slow deposition rate at the nucleation stage.

  9. Portable γ- and X-ray analyzers based on CdTe p-i-n detectors

    NASA Astrophysics Data System (ADS)

    Khusainov, A. K.; Antonova, T. A.; Bahlanov, S. V.; Derbin, A. V.; Ivanov, V. V.; Lysenko, V. V.; Morozov, F.; Mouratov, V. G.; Muratova, V. N.; Petukhov, Y. A.; Pirogov, A. M.; Polytsia, O. P.; Saveliev, V. D.; Solovei, V. A.; Yegorov, K. A.; Zhucov, M. P.

    1999-06-01

    Several portable instruments are designed using previously reported CdTe detector technology. These can be divided into three groups according to their energy ranges: (1) 3-30 keV XRF analyzers, (2) 5-120 keV wide range XRF analyzers and (3) γ-ray spectrometers for operation up to 1500 keV. These instruments are used to inspect several hundreds of samples in situ during a working day in applications such as a metal alloy verification at customs control. Heavy metals are identified through a 3-100 mm thick package with these instruments. Surface contamination by heavy metals (for example toxins such as Hg, Th and Pb in housing environmental control), the determination of Pb concentration in gasoline, geophysical control in mining, or nuclear material control are other applications. The weight of these XRF probes is about 1 kg and two electronic designs are used: one with embedded computer and another based on a standard portable PC. The instruments have good precision and high productivity for measurements in situ. The detection limit of Ce is about 0.03% when measured in the presence of 10% barium for 15 s. The detection limit when measuring K-shell X-ray of heavy metals contamination is about 0.1 mg/cm 2 for 15 s. Two types of probes for γ-spectrometry with small and large (>30 mm 3) detector volumes provide both high- and low-activity of nuclear fuel analysis. The maximum distance between the probes and electronics unit is 20 m. The γ-spectrometers are equipped with electronics to correct signal distortion due to slow carrier effects. This allows the instrument to achieve an energy resolution of about 2.5 keV at 662 keV. Several modes to process spectra are possible including semiquantitative and total real-shape fitting.

  10. Development of a 32-detector CdTe matrix for the SVOM ECLAIRs x/gamma camera: tests results of first flight models

    NASA Astrophysics Data System (ADS)

    Lacombe, K.; Dezalay, J.-P.; Houret, B.; Amoros, C.; Atteia, J.-L.; Aubaret, K.; Billot, M.; Bordon, S.; Cordier, B.; Delaigue, S.; Galliano, M.; Gevin, O.; Godet, O.; Gonzalez, F.; Guillemot, Ph.; Limousin, O.; Mercier, K.; Nasser, G.; Pons, R.; Rambaud, D.; Ramon, P.; Waegebaert, V.

    2016-07-01

    ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate gamma-ray bursts in near real time in the 4 - 150 keV energy band in a large field of view. The design of ECLAIRs has been driven by the objective to reach an unprecedented low-energy threshold of 4 keV. The detection plane is an assembly of 6400 Schottky CdTe detectors of size 4x4x1 mm3, biased from -200V to -500V and operated at -20°C. The low-energy threshold is achieved thanks to an innovative hybrid module composed of a thick film ceramic holding 32 CdTe detectors ("Detectors Ceramics"), associated to an HTCC ceramic housing a low-noise 32-channel ASIC ("ASIC Ceramics"). We manage the coupling between Detectors Ceramics and ASIC Ceramics in order to achieve the best performance and ensure the uniformity of the detection plane. In this paper, we describe the complete hybrid XRDPIX, of which 50 flight models have been manufactured by the SAGEM company. Afterwards, we show test results obtained on Detectors Ceramics, on ASIC Ceramics and on the modules once assembled. Then, we compare and confront detectors leakage currents and ASIC ENC with the energy threshold values and FWHM measured on XRDPIX modules at the temperature of -20°C by using a calibrated radioactive source of 241Am. Finally, we study the homogeneity of the spectral properties of the 32-detector hybrid matrices and we conclude on general performance of more than 1000 detection channels which may reach the lowenergy threshold of 4 keV required for the future ECLAIRs space camera.

  11. Gamma ray detector modules

    NASA Technical Reports Server (NTRS)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  12. Spectroscopy of low energy solar neutrinos using CdTe detectors

    NASA Astrophysics Data System (ADS)

    Zuber, K.

    2003-10-01

    The usage of a large amount of CdTe(CdZnTe) semiconductor detectors for solar neutrino spectroscopy in the low energy region is investigated. Several different coincidence signals can be formed on five different isotopes to measure the 7Be neutrino line at 862 keV in real-time. The most promising one is the usage of 116Cd resulting in 227 SNU. The presence of 125Te permits even the real-time detection of pp-neutrinos. A possible antineutrino flux above 713 keV might be detected by capture on 106Cd.

  13. Energy-windowed, pixellated X-ray diffraction using the Pixirad CdTe detector

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Bellazzini, R.; Minuti, M.; Brez, A.; Pinchera, M.; Spandre, G.; Moss, R.; Speller, R. D.

    2017-01-01

    X-ray diffraction (XRD) is a powerful tool for material identification. In order to interpret XRD data, knowledge is required of the scattering angles and energies of X-rays which interact with the sample. By using a pixellated, energy-resolving detector, this knowledge can be gained when using a spectrum of unfiltered X-rays, and without the need to collimate the scattered radiation. Here we present results of XRD measurements taken with the Pixirad detector and a laboratory-based X-ray source. The cadmium telluride sensor allows energy windows to be selected, and the 62 μm pixel pitch enables accurate spatial information to be preserved for XRD measurements, in addition to the ability to take high resolution radiographic images. Diffraction data are presented for a variety of samples to demonstrate the capability of the technique for materials discrimination in laboratory, security and pharmaceutical environments. Distinct diffraction patterns were obtained, from which details on the molecular structures of the items under study were determined.

  14. Continued Development of Small-Pixel CZT and CdTe Detectors for Future High-Angular-Resolution Hard X-ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric

    The Nuclear Spectroscopic Telescope Array (NuSTAR) Small Explorer Mission was launched in June 2012 and has demonstrated the technical feasibility and high scientific impact of hard X-ray astronomy. We propose to continue our current R&D program to develop finely pixelated semiconductor detectors and the associated readout electronics for the focal plane of a NuSTAR follow-up mission. The detector-ASIC (Application Specific Integrated Circuit) package will be ideally matched to the new generation of low-cost, low-mass X-ray mirrors which achieve an order of magnitude better angular resolution than the NuSTAR mirrors. As part of this program, the Washington University group will optimize the contacts of 2x2 cm^2 footprint Cadmium Zinc Telluride (CZT) and Cadmium Telluride (CdTe) detectors contacted with 100x116 hexagonal pixels at a next-neighbor pitch of 200 microns. The Brookhaven National Laboratory group will design, fabricate, and test the next generation of the HEXID ASIC matched to the new X-ray mirrors and the detectors, providing a low-power 100x116 channel ASIC with extremely low readout noise (i.e. with a root mean square noise of 13 electrons). The detectors will be tested with radioactive sources and in the focal plane of high-angular-resolution X-ray mirrors at the X-ray beam facilities at the Goddard and Marshall Space Flight Centers.

  15. Determination of 235U enrichment with a large volume CZT detector

    NASA Astrophysics Data System (ADS)

    Mortreau, Patricia; Berndt, Reinhard

    2006-01-01

    Room-temperature CdZnTe and CdTe detectors have been routinely used in the field of Nuclear Safeguards for many years [Ivanov et al., Development of large volume hemispheric CdZnTe detectors for use in safeguards applications, ESARDA European Safeguards Research and Development Association, Le Corum, Montpellier, France, 1997, p. 447; Czock and Arlt, Nucl. Instr. and Meth. A 458 (2001) 175; Arlt et al., Nucl. Instr. and Meth. A 428 (1999) 127; Lebrun et al., Nucl. Instr. and Meth. A 448 (2000) 598; Aparo et al., Development and implementation of compact gamma spectrometers for spent fuel measurements, in: Proceedings, 21st Annual ESARDA, 1999; Arlt and Rudsquist, Nucl. Instr. and Meth. A 380 (1996) 455; Khusainov et al., High resolution pin type CdTe detectors for the verification of nuclear material, in: Proceedings, 17th Annual ESARDA European Safeguards Research and Development Association, 1995; Mortreau and Berndt, Nucl. Instr. and Meth. A 458 (2001) 183; Ruhter et al., UCRL-JC-130548, 1998; Abbas et al., Nucl. Instr. and Meth. A 405 (1998) 153; Ruhter and Gunnink, Nucl. Instr. and Meth. A 353 (1994) 716]. Due to their performance and small size, they are ideal detectors for hand-held applications such as verification of spent and fresh fuel, U/Pu attribute tests as well as for the determination of 235U enrichment. The hemispherical CdZnTe type produced by RITEC (Riga, Latvia) [Ivanov et al., 1997] is the most widely used detector in the field of inspection. With volumes ranging from 2 to 1500 mm 3, their spectral performance is such that the use of electronic processing to correct the pulse shape is not required. This paper reports on the work carried out with a large volume (15×15×7.5 mm 3) and high efficiency hemispherical CdZnTe detector for the determination of 235U enrichment. The measurements were made with certified uranium samples whose enrichment ranging from 0.31% to 92.42%, cover the whole range of in-field measurement conditions. The interposed

  16. Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe

    NASA Astrophysics Data System (ADS)

    Wanwan, Li; Zechun, Cao; Bin, Zhang; Feng, Zhan; Hongtao, Liu; Wenbin, Sang; Jiahua, Min; Kang, Sun

    2006-06-01

    In order to meet the requirements for the device design of radiation detectors, CdZnTe (or Cd 1-xZn xTe) crystals grown by Vertical Bridgman Method often need subsequent annealing to increase their resistivity. The nature of this treatment is a diffusion process. Thus, it is meaningful to relate the change of resistivity to the diffusion parameters. A model correlating resistivity and conduction type of CdZnTe with the main diffusion parameter—diffusion coefficient—is put forward in this paper. Combining the model with the analysis of our experimental data, DCd=1.464×10 -10, 1.085×10 -11 and 4.167×10 -13 cm 2/s are the values of Cd self-diffusion coefficient in Cd 0.9Zn 0.1Te at 1073, 973 and 873 K, respectively. The data coincide closely with the Cd self-diffusion coefficient in CdTe provided by different authors [E.D. Jones, N.M. Stewart, Self-diffusion of cadmium in cadmium telluride, J. Crystal Growth 84 (1987) 289-294; P.M. Borsenberger, D.A. Stevenson, J. Phys. Chem. Solids 29 (1968) 1277; R.C. Whelan, D. Shaw, in: D.G. Thomas (Ed.), II -VI Semiconductor Compounds, Benjamin, New York, 1967, p. 451]. With the data, the effects of annealing time on the change of resistivity and conduction type for Cd 0.9Zn 0.1Te wafers, which are annealed in saturated Cd vapor at 1073, 973 and 873 K, were simulated, and good consistency was found. This work suggests an alternative way to obtain the diffusion coefficient in semiconductor materials and also enables ones to analyze the diffusion process quantitatively and predict the annealing results.

  17. A noninvasive dose estimation system for clinical BNCT based on PG-SPECT--conceptual study and fundamental experiments using HPGe and CdTe semiconductor detectors.

    PubMed

    Kobayashi, T; Sakurai, Y; Ishikawa, M

    2000-09-01

    A noninvasive method for measuring the absorbed dose distribution during the administration of clinical boron neutron capture therapy (BNCT) using an online three-dimensional (3D) imaging system is presented. This system is designed to provide more accurate information for treatment planning and dosimetry. The single-photon emission computed tomography (SPECT) technique is combined with prompt gamma-ray analysis (PGA) to provide an ideal dose estimation system for BNCT. This system is termed PG-SPECT. The fundamental feasibility of the PG-SPECT system for BNCT is confirmed under the following conditions: (1) a voxel size of 1 x 1 x 1 cm3, comparable to the spatial resolution of our standard dosimetric technique using gold wire activation, where data are available for every 5-10 mm of wire length; (2) a reaction rate of 10B(n,alpha)7Li within the measurement volume is greater than 1.1 x l0(6) interactions/cm3/s, corresponding to a thermal neutron flux of 5 x 10(8) n/cm2/s and a 10B concentration of greater than 10 ppm for the deepest part of the tumor volume under typical BNCT clinical conditions; (3) statistical uncertainty of the count rate for 10B(n,alpha)7Li prompt gamma rays is 10% or less. The desirable characteristics of a detector for the PG-SPECT system were determined by basic experiments using both HPGe and CdTe semiconductor detectors. The CdTe semiconductor detector has the greatest potential for this system because of its compactness and simplicity of maintenance.

  18. Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Antier, S.; Ferrando, P.; Limousin, O.; Caroli, E.; Curado da Silva, R. M.; Blondel, C.; Chipaux, R.; Honkimaki, V.; Horeau, B.; Laurent, P.; Maia, J. M.; Meuris, A.; Del Sordo, S.; Stephen, J. B.

    2015-06-01

    Since the initial exploration of the X- and soft γ-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars, black holes, and Active Galactic Nuclei are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical processes in these high energy sources, allowing the discrimination between competing models which may otherwise all be consistent with other types of measurement. This is why most of the projects for the next generation of space missions covering the few tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability, in this energy range, is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The compact hard X-ray imaging spectrometer module, developed in CEA with the generic name of "Caliste" module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility (ESRF). These results, obtained at 200 and 300 keV, demonstrate the capability of these modules to detect Compton events and to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. For example, applying an optimized selection to our data set, equivalent to select 90° Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78 ± 0.06 in the 200-300 keV range. The polarization angle and fraction are derived with accuracies of approximately 1° and 5 % respectively for both CdZnTe and CdTe crystals. The

  19. SYNCHROTRON X-RAY BASED CHARACTERIZATION OF CDZNTE CRYSTALS

    SciTech Connect

    Duff, M

    2006-09-28

    Synthetic CdZnTe or 'CZT' crystals can be used for the room temperature-based detection of {gamma}-radiation. Structural/morphological heterogeneities within CZT, such as twinning, inclusions, and polycrystallinity can affect detector performance. We used a synchrotron-based X-ray technique, specifically extended X-ray absorption fine-structure (EXAFS) spectroscopy, to determine whether there are differences on a local structural level between intact CZT of high and low radiation detector performance. These studies were complemented by data on radiation detector performance and transmission IR imaging. The EXAFS studies revealed no detectable local structural differences between the two types of CZT materials.

  20. [Development of an experimental apparatus for energy calibration of a CdTe detector by means of diagnostic X-ray equipment].

    PubMed

    Fukuda, Ikuma; Hayashi, Hiroaki; Takegami, Kazuki; Konishi, Yuki

    2013-09-01

    Diagnostic X-ray equipment was used to develop an experimental apparatus for calibrating a CdTe detector. Powder-type samples were irradiated with collimated X-rays. On excitation of the atoms, characteristic X-rays were emitted. We prepared Nb2O5, SnO2, La2O3, Gd2O3, and WO3 metal oxide samples. Experiments using the diagnostic X-ray equipment were carried out to verify the practicality of our apparatus. First, we verified that the collimators involving the apparatus worked well. Second, the X-ray spectra were measured using the prepared samples. Finally, we analyzed the spectra, which indicated that the energy calibration curve had been obtained at an accuracy of ±0.06 keV. The developed apparatus could be used conveniently, suggesting it to be useful for the practical training of beginners and researchers.

  1. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  2. Characterization of CdTe sensors with Schottky contacts coupled to charge-integrating pixel array detectors for X-ray science

    NASA Astrophysics Data System (ADS)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Ruff, J. P. C.; Gruner, S. M.

    2016-12-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we present characterizations of CdTe sensors hybridized with two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods < 150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128 × 128 pixel array with (150 μm)2 pixels.

  3. Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe force microscopy.

    PubMed

    Gu, Yaxu; Jie, Wanqi; Li, Linglong; Xu, Yadong; Yang, Yaodong; Ren, Jie; Zha, Gangqiang; Wang, Tao; Xu, Lingyan; He, Yihui; Xi, Shouzhi

    2016-09-01

    To understand the effects of tellurium (Te) inclusions on the device performance of CdZnTe radiation detectors, the perturbation of the electrical field in and around Te inclusions was studied in CdZnTe single crystals via Kelvin probe force microscopy (KPFM). Te inclusions were proved to act as lower potential centers with respect to surrounding CdZnTe matrix. Based on the KPFM results, the energy band diagram at the Te/CdZnTe interface was established, and the bias-dependent effects of Te inclusion on carrier transportation is discussed.

  4. Semiconductor detectors for soft γ-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Lebrun, François

    2006-07-01

    The study of γ-ray bursts, compact objects, nucleosynthesis and supernova remnants triggers the most interest today in the soft γ-ray domain. These topics have various experimental requirements with emphasis either on imaging or on spectroscopy. Recent progress has shown the great potential of semiconductor detectors for both applications at the expense of classical scintillators such as NaI or CsI. They also gave insight into their long-term in-orbit behaviour. Room temperature semiconductor detectors, particularly CdTe and CdZnTe, are confirmed as the best choice for imaging applications. As illustrated by the INTEGRAL/ISGRI camera, the CdTe stability is better than expected; its internal background is comparable to that of scintillators, and the spectroscopic degradation in space is slow with a lifetime of about 40 years on an eccentric orbit. Cooled germanium detectors offer the best energy resolution but degrade more rapidly under the cosmic-ray irradiation. However, the INTEGRAL/SPI spectrometer has demonstrated that periodic in-orbit annealings, allowing for a full recovery of the energy resolution, can maintain the spectroscopic performance over several years. Most future projects, focussing on coded mask or Compton telescopes, will take advantage of the semiconductor technology, particularly that related to the ambient temperature detectors.

  5. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    PubMed

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μW from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e(-) RMS at room temperature.

  6. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners

    PubMed Central

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-01-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event’s time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μW from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e− RMS at room temperature. PMID:24187382

  7. Developing fine-pixel CdTe detectors for the next generation of high-resolution hard x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Christe, Steven

    Over the past decade, the NASA Marshall Space Flight Center (MSFC) has been improving the angular resolution of hard X-ray (HXR; 20 "70 keV) optics to the point that we now routinely manufacture optics modules with an angular resolution of 20 arcsec Half Power Diameter (HDP), almost three times the performance of NuSTAR optics (Ramsey et al. 2013; Gubarev et al. 2013a; Atkins et al. 2013). New techniques are currently being developed to provide even higher angular resolution. High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For the HERO mirrors, where the HPD is 26 arcsec over a 6-m focal length converts to 750 μm, the optimum pixel size is around 250 μm. At a 10-m focal length these detectors can support a 16 arcsec HPD. Of course, the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage (Ramsey 2001). The ability to handle high counting rates is also desirable for efficient calibration. A collaboration between Goddard Space Flight Center (GSFC), MSFC, and Rutherford Appleton Laboratory (RAL) in the UK is developing precisely such detectors under an ongoing, funded APRA program (FY2015 to FY2017). The detectors use the RALdeveloped Application Specific Integrated Circuit (ASIC) dubbed HEXITEC, for High Energy X-Ray Imaging Technology. These HEXITEC ASICs can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) to create a fine (250 μm pitch) HXR detector (Jones et al. 2009; Seller et al. 2011). The objectives of this funded effort are to develop and test a HEXITEC

  8. [Measurement of response function of CdTe detector using diagnostic X-ray equipment and evaluation of Monte Carlo simulation code].

    PubMed

    Okino, Hiroki; Hayashi, Hiroaki; Nakagawa, Kohei; Takegami, Kazuki

    2014-12-01

    An X-ray spectrum measured with CdTe detector has to be corrected with response function, because the spectrum is composed of full energy peaks (FEP) and escape peaks (EP). Recently, various simulation codes were developed, and using them the response functions can be calculated easily. The aim of this study is to propose a new method for measuring the response function and to compare it with the calculated value by the Monte Carlo simulation code. In this study, characteristic X-rays were used for measuring the response function. These X-rays were produced by the irradiation of diagnostic X-rays with metallic atoms. In the measured spectrum, there was a background contamination, which was caused by the Compton scattering of the irradiated X-ray in the sample material. Therefore, we thought of a new experimental methodology to reduce this background. The experimentally derived spectrum was analyzed and then the ratios of EP divided by FEP (EP/FEP) were calculated to compare the simulated values. In this article, we showed the property of the measured response functions and the analysis accuracy of the EP/FEP, and we indicated that the values calculated by Monte Carlo simulation code could be evaluated by using our method.

  9. Measurements of Ultra-Fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors

    NASA Astrophysics Data System (ADS)

    Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.

    2017-03-01

    Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.

  10. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  11. Experimental study of the response of CZT and CdTe detectors of various thicknesses in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Tan, J. W.; Cai, L.; Meng, L. J.

    2011-10-01

    In this paper, we used a combined experimental and Monte Carlo simulation approach to investigate the detailed charge collection process within thick CdTe/CZT detectors operated inside a strong magnetic field. As one of the key objectives, we quantitatively assessed the effect of the Lorenz force on the migration of charge carriers inside the detector bulk. This information would allow an accurate modeling of the detector's response to gamma ray interactions and therefore help to compensate for the event-positioning error induced by the strong magnetic field. In this study, a pixilated ERPC detector with 350 μm square pixels was set on a non-magnetic gantry and operated inside a 3 T Siemens MRI scanner. Multiple studies, with similar geometries, were performed using the same detector setup with and without the presence of the magnetic field to investigate the effect on the charge collection behavior from the strong magnetic field. The experimental results were used to validate the Monte Carlo simulation package that models both photon transportation and charge collection process inside the detector.

  12. A Monte Carlo simulation study of an improved K-edge log-subtraction X-ray imaging using a photon counting CdTe detector

    NASA Astrophysics Data System (ADS)

    Lee, Youngjin; Lee, Amy Candy; Kim, Hee-Joung

    2016-09-01

    Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on

  13. Purification of CdZnTe by Electromigration

    SciTech Connect

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 lm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. Furthermore, a CZT detector fabricated from the middle portion of the electromigrated CZT boule showed an improved mobility-lifetime product of 0.91 10-2 cm2 /V, compared to that of 1.4 10-3 cm2 /V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.

  14. Purification of CdZnTe by Electromigration

    DOE PAGES

    Kim, K.; Kim, Sangsu; Hong, Jinki; ...

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 lm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. Furthermore, a CZT detector fabricated from the middle portion of themore » electromigrated CZT boule showed an improved mobility-lifetime product of 0.91 10-2 cm2 /V, compared to that of 1.4 10-3 cm2 /V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.« less

  15. Purification of CdZnTe by electromigration

    SciTech Connect

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 μm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. A CZT detector fabricated from the middle portion of the electro-migrated CZT boule showed an improved mobility-lifetime product of 0.91 × 10{sup −2} cm{sup 2}/V, compared with that of 1.4 × 10{sup −3} cm{sup 2}/V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.

  16. Purification of CdZnTe by electromigration

    NASA Astrophysics Data System (ADS)

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-01

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 μm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. A CZT detector fabricated from the middle portion of the electro-migrated CZT boule showed an improved mobility-lifetime product of 0.91 × 10-2 cm2/V, compared with that of 1.4 × 10-3 cm2/V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.

  17. CdZnTe gamma ray spectrometer for orbital planetary missions

    SciTech Connect

    Feldman, W. C.; Storms, S. A.; Fuller, K. R.; Moss, C. E.; Browne, M. C.; Lawrence, David J. ,; Ianakiev, K. D.; Prettyman, T. H.

    2001-01-01

    Knowledge of surface elemental composition is needed to understand the formation and evolution of planetary bodies. Gamma rays and neutrons produced by the interaction of galactic cosmic rays with surface materials can be detected from orbit and analyzed to determine composition. Using gamma ray spectroscopy, major rock forming elements such as Fe, Ti, Al, Si, Mg, and Ca can be detected. The accuracy of elemental abundance is limited by the resolution of the spectrometer. For space missions, scintillators such as BGO and NaI(Tl) have been used for gamma ray spectroscopy. New planetary science missions are being planned to explore Mars, Mercury, the asteroid belt, and the outer planets. Significant improvements in the pulse height resolution relative to scintillation detectors can be made using CdZnTe, a new room temperature detector technology. For an orbiting instrument, a CdZnTe detector at least 16 cm{sup 3} in size is needed. A 4 x 4 array of 1-cm{sup 3} coplanar grid detectors can be manufactured that meets requirements for resolution and counting efficiency. The array will shielded from gamma rays produced in the spacecraft by a BGO detector. By improving pulse height resolution by a factor of three at low energy, the CdZnTe detector will be able to make accurate measurements of elements that are currently difficult to measure using scintillation technology. The BGO shield will provide adequate suppression of gamma rays originating in the spacecraft, enabling the gamma ray spectrometer to be mounted on the deck of a spacecraft. To test this concept, we are constructing a flight qualified, prototype CdZnTe detector array. The prototype consists of a 2 x 2 array of coplanar grid detectors. We will present the results of mechanical and electronic testing and radiation damage tests, and the performance of the array for gamma ray spectroscopy.

  18. Design of epitaxial CdTe solar cells on InSb substrates

    DOE PAGES

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-11-01

    Epitaxial CdTe has been shown by others to have a radiative recombination rate approaching unity, high carrier concentration, and low defect density. It has, therefore, become an attractive candidate for high-efficiency solar cells, perhaps becoming competitive with GaAs. The choice of substrate is a key design feature for epitaxial CdTe solar cells, and several possibilities (CdTe, Si, GaAs, and InSb) have been investigated by others. All have challenges, and these have generally been addressed through the addition of intermediate layers between the substrate and CdTe absorber. InSb is an attractive substrate choice for CdTe devices, because it has a closemore » lattice match with CdTe, it has low resistivity, and it is easy to contact. However, the valence-band alignment between InSb and p-type CdTe, which can both impede hole current and enhance forward electron current, is not favorable. Three strategies to address the band-offset problem are investigated by numerical simulation: heavy doping of the back part of the CdTe layer, incorporation of an intermediate CdMgTe or CdZnTe layer, and the formation of an InSb tunnel junction. Lastly, wach of these strategies is predicted to be helpful for higher cell performance, but a combination of the first two should be most effective.« less

  19. Design of epitaxial CdTe solar cells on InSb substrates

    SciTech Connect

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-11-01

    Epitaxial CdTe has been shown by others to have a radiative recombination rate approaching unity, high carrier concentration, and low defect density. It has, therefore, become an attractive candidate for high-efficiency solar cells, perhaps becoming competitive with GaAs. The choice of substrate is a key design feature for epitaxial CdTe solar cells, and several possibilities (CdTe, Si, GaAs, and InSb) have been investigated by others. All have challenges, and these have generally been addressed through the addition of intermediate layers between the substrate and CdTe absorber. InSb is an attractive substrate choice for CdTe devices, because it has a close lattice match with CdTe, it has low resistivity, and it is easy to contact. However, the valence-band alignment between InSb and p-type CdTe, which can both impede hole current and enhance forward electron current, is not favorable. Three strategies to address the band-offset problem are investigated by numerical simulation: heavy doping of the back part of the CdTe layer, incorporation of an intermediate CdMgTe or CdZnTe layer, and the formation of an InSb tunnel junction. Lastly, wach of these strategies is predicted to be helpful for higher cell performance, but a combination of the first two should be most effective.

  20. Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime

    SciTech Connect

    Duenow, Joel N.; Burst, James M.; Albin, David S.; Reese, Matthew O.; Jensen, Soren A.; Johnston, Steven W.; Kuciauskas, Darius; Swain, Santosh K.; Ablekim, Tursun; Lynn, Kelvin G.; Fahrenbruch, Alan L.; Metzger, Wyatt K.

    2016-11-01

    We investigate the correlation of bulk CdTe and CdZnTe material properties with experimental open-circuit voltage (Voc) through fabrication and characterization of diverse single-crystal solar cells with different dopants. Several distinct crystal types reach Voc >900 mV. Correlations are in general agreement with Voc limits modeled from bulk minority-carrier lifetime and hole concentration.

  1. Development of a (Hg, Cd)Te photodiode detector, Phase 2. [for 10.6 micron spectral region

    NASA Technical Reports Server (NTRS)

    1972-01-01

    High speed sensitive (Hg,Cd)Te photodiode detectors operating in the 77 to 90 K temperature range have been developed for the 10.6 micron spectral region. P-N junctions formed by impurity (gold) diffusion in p-type (Hg, Cd) Te have been investigated. It is shown that the bandwidth and quantum efficiency of a diode are a constant for a fixed ratio of mobility/lifetime ratio of minority carriers. The minority carrier mobility and lifetime uniquely determine the bandwidth and quantum efficiency and indicate the shallow n on p (Hg,Cd) Te diodes are preferable as high performance, high frequency devices.

  2. Using a CdTe detector for 125Te Mössbauer Spectroscopy: Application to the f-factor in Mg3TeO6

    NASA Astrophysics Data System (ADS)

    Bargholtz, Chr; Blomquist, J.; Fumero, E.; Mårtensson, L.; Einarsson, L.; Wäppling, R.

    2000-09-01

    An apparatus for Mössbauer spectroscopy has been developed with a cadmium telluride (CdTe) γ-ray detector. Complete data regarding γ-ray energy, source velocity, temperature and real time are stored for off-line analysis. The apparatus has been used to study the spectrum of 125Te in Mg 3TeO 6 at room temperature. The 35.5 keV transition of 125Te in Mg 3TeO 6 was found to have a recoil-free fraction f=0.392(5) corresponding to a Debye temperature θ=352(3) K.

  3. ADVANCED READOUT ELECTRONICS FOR MULTIELEMENT CdZnTe SENSORS.

    SciTech Connect

    DE GERONIMO,G.; O CONNOR,P.; KANDASAMY,A.; GROSHOLZ,J.

    2002-07-08

    A generation of high performance front-end and read-out ASICs customized for highly segmented CdZnTe sensors is presented. The ASICs, developed in a multi-year effort at Brookhaven National Laboratory, are targeted to a wide range of applications including medical, safeguards/security, industrial, research, and spectroscopy. The front-end multichannel ASICs provide high accuracy low noise preamplification and filtering of signals, with versions for small and large area CdZnTe elements. They implement a high order unipolar or bipolar shaper, an innovative low noise continuous reset system with self-adapting capability to the wide range of detector leakage currents, a new system for stabilizing the output baseline and high output driving capability. The general-purpose versions include programmable gain and peaking time. The read-out multichannel ASICs provide fully data driven high accuracy amplitude and time measurements, multiplexing and time domain derandomization of the shaped pulses. They implement a fast arbitration scheme and an array of innovative two-phase offset-free rail-to-rail analog peak detectors for buffering and absorption of input rate fluctuations, thus greatly relaxing the rate requirement on the external ADC. Pulse amplitude, hit timing, pulse risetime, and channel address per processed pulse are available at the output in correspondence of an external readout request. Prototype chips have been fabricated in 0.5 and 0.35 {micro}m CMOS and tested. Design concepts and experimental results are discussed.

  4. Strong mechanical adhesion of gold electroless contacts on CdZnTe deposited by alcoholic solutions

    NASA Astrophysics Data System (ADS)

    Benassi, G.; Nasi, L.; Bettelli, M.; Zambelli, N.; Calestani, D.; Zappettini, A.

    2017-02-01

    CdZnTe crystals are nowadays employed as X-ray detectors for a number of applications, such as medical imaging, security, and environmental monitoring. One of the main difficulties connected with CdZnTe-based detector processing is the poor contact adhesion that affect bonding procedures and device long term stability. We have shown that it is possible to obtain mechanically stable contacts by common electroless deposition using alcoholic solutions instead of water solutions. The contacts show blocking current-voltage characteristic that is required for obtaining spectroscopic detectors. Nanoscale-resolved chemical analysis indicated that the improved mechanical adhesion is due to a better control of the stoichiometry of the CdZnTe layer below the contact.

  5. a New Method for the Growth of CdTe Crystals for RT X-Ray Photon Detectors in the 1-100 keV Range

    NASA Astrophysics Data System (ADS)

    Lovergine, N.; Mancini, A. M.; Cola, A.; Prete, P.; Mazzer, M.; Quaranta, F.; Tapfer, L.

    2000-12-01

    We report on the growth of thick CdTe layers on ZnTe/(100)GaAs hybrid substrates by the novel H2 transport vapour phase epitaxy (H2T-VPE) method. High crystalline quality (100)-oriented CdTe single crystal epilayers can be fabricated under atmospheric pressure and at growth temperatures (TD) in the 600-800°C interval. Double crystal X-ray diffraction measurements performed on epilayers thicker than 30 μm show CdTe (400) peaks with FWHM<59 arcsec. CdTe samples grown under optimised conditions have mirror-like surfaces. Epilayers grown below 650°C are p-type and low resistive, but they turn n-type above 650°C, likely as a result of donor diffusion from the substrate. RT resistivities (ρ) ~ 106 Ω·cm are obtained for 675°C < TD < 700°C, but ρ decreases for higher temperatures and thinner samples. Layers grown under these conditions show RT electron concentrations in the 1014-1011 cm-3 range. The detection capability of H2T-VPE grown CdTe is demonstrated by the results of time-of-flight measurements performed at RT on Au/n-CdTe/n+-GaAs diode structures under reverse bias conditions.

  6. Comparison of gamma-ray detectors: Scintillators, scintillating fibers, and semiconductors

    SciTech Connect

    Moss, C.E.

    1994-12-31

    New scintillators that have advantages relative to NaI(Tl) and BGO include GSO, LSO, YAP, and BaF{sub 2}. GSO, for example, is very radiation hard, and BaF{sub 2} is very fast. Scintillating fibers, which allow good spatial resolution and complex geometries, have been used extensively in high energy physics, but they can also be used at lower energies. Semiconductors such as germanium, silicon, CdTe, CdZnTe, and HgI{sub 2} can provide good resolution. The proliferation of types has made selection of a gamma-ray detector for a particular application difficult. The authors compare the different types and give examples of choices that have been made for laboratory experiments, portable instruments, and space applications.

  7. High Efficiency Single Crystal CdTe Solar Cells: November 19, 2009 - January 31, 2011

    SciTech Connect

    Carmody, M.; Gilmore, A.

    2011-05-01

    The goal of the program was to develop single crystal CdTe-based top cells grown on Si solar cells as a platform for the subsequent manufacture of high efficiency tandem cells for CPV applications. The keys to both the single junction and the tandem junction cell architectures are the ability to grow high quality single-crystal CdTe and CdZnTe layers on p-type Si substrates, to dope the CdTe and CdZnTe controllably, both n and p-type, and to make low resistance ohmic front and back contacts. EPIR demonstrated the consistent MBE growth of CdTe/Si and CdZnTe/Si having high crystalline quality despite very large lattice mismatches; epitaxial CdTe/Si and CdZnTe/Si consistently showed state-of-the-art electron mobilities and good hole mobilities; bulk minority carrier recombination lifetimes of unintentionally p-doped CdTe and CdZnTe grown by MBE on Si were demonstrated to be consistently of order 100 ns or longer; desired n- and p-doping levels were achieved; solar cell series specific resistances <10 ?-cm2 were achieved; A single-junction solar cell having a state-of-the-art value of Voc and a unverified 16.4% efficiency was fabricated from CdZnTe having a 1.80 eV bandgap, ideal for the top junction in a tandem cell with a Si bottom junction.

  8. Depth of interaction and bias voltage depenence of the spectral response in a pixellated CdTe detector operating in time-over-threshold mode subjected to monochromatic X-rays

    NASA Astrophysics Data System (ADS)

    Fröjdh, E.; Fröjdh, C.; Gimenez, E. N.; Maneuski, D.; Marchal, J.; Norlin, B.; O'Shea, V.; Stewart, G.; Wilhelm, H.; Modh Zain, R.; Thungström, G.

    2012-03-01

    High stopping power is one of the most important figures of merit for X-ray detectors. CdTe is a promising material but suffers from: material defects, non-ideal charge transport and long range X-ray fluorescence. Those factors reduce the image quality and deteriorate spectral information. In this project we used a monochromatic pencil beam collimated through a 20μm pinhole to measure the detector spectral response in dependance on the depth of interaction. The sensor was a 1mm thick CdTe detector with a pixel pitch of 110μm, bump bonded to a Timepix readout chip operating in Time-Over-Threshold mode. The measurements were carried out at the Extreme Conditions beamline I15 of the Diamond Light Source. The beam was entering the sensor at an angle of \\texttildelow20 degrees to the surface and then passed through \\texttildelow25 pixels before leaving through the bottom of the sensor. The photon energy was tuned to 77keV giving a variation in the beam intensity of about three orders of magnitude along the beam path. Spectra in Time-over-Threshold (ToT) mode were recorded showing each individual interaction. The bias voltage was varied between -30V and -300V to investigate how the electric field affected the spectral information. For this setup it is worth noticing the large impact of fluorescence. At -300V the photo peak and escape peak are of similar height. For high bias voltages the spectra remains clear throughout the whole depth but for lower voltages as -50V, only the bottom part of the sensor carries spectral information. This is an effect of the low hole mobility and the longer range the electrons have to travel in a low field.

  9. Spectrum reconstruction method based on the detector response model calibrated by x-ray fluorescence.

    PubMed

    Li, Ruizhe; Li, Liang; Chen, Zhiqiang

    2017-02-07

    Accurate estimation of distortion-free spectra is important but difficult in various applications, especially for spectral computed tomography. Two key problems must be solved to reconstruct the incident spectrum. One is the acquisition of the detector energy response. It can be calculated by Monte Carlo simulation, which requires detailed modeling of the detector system and a high computational power. It can also be acquired by establishing a parametric response model and be calibrated using monochromatic x-ray sources, such as synchrotron sources or radioactive isotopes. However, these monochromatic sources are difficult to obtain. Inspired by x-ray fluorescence (XRF) spectrum modeling, we propose a feasible method to obtain the detector energy response based on an optimized parametric model for CdZnTe or CdTe detectors. The other key problem is the reconstruction of the incident spectrum with the detector response. Directly obtaining an accurate solution from noisy data is difficult because the reconstruction problem is severely ill-posed. Different from the existing spectrum stripping method, a maximum likelihood-expectation maximization iterative algorithm is developed based on the Poisson noise model of the system. Simulation and experiment results show that our method is effective for spectrum reconstruction and markedly increases the accuracy of XRF spectra compared with the spectrum stripping method. The applicability of the proposed method is discussed, and promising results are presented.

  10. Spectrum reconstruction method based on the detector response model calibrated by x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Ruizhe; Li, Liang; Chen, Zhiqiang

    2017-02-01

    Accurate estimation of distortion-free spectra is important but difficult in various applications, especially for spectral computed tomography. Two key problems must be solved to reconstruct the incident spectrum. One is the acquisition of the detector energy response. It can be calculated by Monte Carlo simulation, which requires detailed modeling of the detector system and a high computational power. It can also be acquired by establishing a parametric response model and be calibrated using monochromatic x-ray sources, such as synchrotron sources or radioactive isotopes. However, these monochromatic sources are difficult to obtain. Inspired by x-ray fluorescence (XRF) spectrum modeling, we propose a feasible method to obtain the detector energy response based on an optimized parametric model for CdZnTe or CdTe detectors. The other key problem is the reconstruction of the incident spectrum with the detector response. Directly obtaining an accurate solution from noisy data is difficult because the reconstruction problem is severely ill-posed. Different from the existing spectrum stripping method, a maximum likelihood-expectation maximization iterative algorithm is developed based on the Poisson noise model of the system. Simulation and experiment results show that our method is effective for spectrum reconstruction and markedly increases the accuracy of XRF spectra compared with the spectrum stripping method. The applicability of the proposed method is discussed, and promising results are presented.

  11. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    SciTech Connect

    Zappettini, A.; Zambelli, N.; Benassi, G.; Calestani, D.; Pavesi, M.

    2014-06-23

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  12. Imaging X-ray detector front-end with high dynamic range: IDeF-X HD

    NASA Astrophysics Data System (ADS)

    Gevin, O.; Lemaire, O.; Lugiez, F.; Michalowska, A.; Baron, P.; Limousin, O.; Delagnes, E.

    2012-12-01

    Presented circuit, IDeF-X HD (Imaging Detector Front-end) is a member of the IDeF-X ASICs family for space applications. It has been optimized for a half millimeter pitch CdTe or CdZnTe pixelated detector arranged in 16×16 array. It is aimed to operate in the hard X-ray range from few keV up to 250 keV or more. The ASIC has been realized in AMS 0.35 μm CMOS process. The IDeF-X HD is a 32 channel analog front-end with self-triggering capability. The architecture of the analog channel includes a chain of charge sensitive amplifier with continuous reset system and non-stationary noise suppressor, adjustable gain stage, pole-zero cancellation stage, adjustable shaping time low pass filter, baseline holder and peak detector with discriminator. The power consumption of the IDeF-X HD is 800 μW per channel. With the in-channel variable gain stage the nominal 250 keV dynamic range of the ASIC can be extended up to 1 MeV anticipating future applications using thick sensors. Measuring the noise performance without a detector at the input with minimized leakage current (programmable) at the input, we achieved ENC of 33 electrons rms at 10.7 μs peak time. Measurements with CdTe detector show good energy resolution FWHM of 1.1 keV at 60 keV and 4.3 keV at 662 keV with detection threshold below 4 keV. In addition, an absolute temperature sensor has been integrated with resolution of 1.5 °C.

  13. Study of asymmetries of Cd(Zn)Te devices investigated using photo-induced current transient spectroscopy, Rutherford backscattering, surface photo-voltage spectroscopy, and gamma ray spectroscopies

    SciTech Connect

    Crocco, J.; Bensalah, H.; Zheng, Q.; Dieguez, E.; Corregidor, V.; Avles, E.; Castaldini, A.; Fraboni, B.; Cavalcoli, D.; Cavallini, A.; Vela, O.

    2012-10-01

    Despite these recent advancements in preparing the surface of Cd(Zn)Te devices for detector applications, large asymmetries in the electronic properties of planar Cd(Zn)Te detectors are common. Furthermore, for the development of patterned electrode geometries, selection of each electrode surface is crucial for minimizing dark current in the device. This investigation presented here has been carried out with three objectives. Each objective is oriented towards establishing reliable methods for the selection of the anode and cathode surfaces independent of the crystallographic orientation. The objectives of this study are (i) investigate how the asymmetry in I-V characteristics of Cd(Zn)Te devices may be associated with the TeO2 interfacial layer using Rutherford backscattering to study the structure at the Au-Cd(Zn)Te interface, (ii) develop an understanding of how the concentration of the active traps in Cd(Zn)Te varies with the external bias, and (iii) propose non-destructive methods for selection of the anode and cathode which are independent of crystallographic orientation. The spectroscopic methods employed in this investigation include Rutherford backscattering spectroscopy, photo-induced current transient spectroscopy, and surface photo-voltage spectroscopy, as well as gamma ray spectroscopy to demonstrate the influence on detector properties.

  14. Crystal Growth of CdTe by Gradient Freeze in Universal Multizone Crystallizator (UMC)

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Lehoczky, S. L.; Li, C.; Knuteson, D.; Raghothamachar, B.; Dudley, M.; Szoke, J.; Barczy, P.

    2004-01-01

    In the case of unsealed melt growth of an array of II-VI compounds, namely, CdTe, CdZnTe and ZnSe, there is a tremendous amount of experimental data describing the correlations between melt conditions and crystal quality. The results imply that the crystallinity quality can be improved if the melt was markedly superheated or long-time held before growth. It is speculated that after high superheating the associated complex dissociate and the spontaneous nucleation is retarded. In this study, crystals of CdTe were grown from melts which have undergone different thermal history by the unseeded gradient freeze method using the Universal Multizone Crystallizator (UMC). The effects of melt conditions on the quality of grown crystal were studied by various characterization techniques, including Synchrotron White Beam X-ray Topography (SWSXT), infrared microscopy, chemical analysis by glow discharge mass spectroscopy (GDMS), electrical conductivity and Hall measurements.

  15. Gamma-Ray Detectors: From Homeland Security to the Cosmos (443rd Brookhaven Lecture)

    SciTech Connect

    Bolotnikov, Aleksey

    2008-12-03

    Many radiation detectors are first developed for homeland security or industrial applications. Scientists, however, are continuously realizing new roles that these detectors can play in high-energy physics and astrophysics experiments. On Wednesday, December 3, join presenter Aleksey Bolotnikov, a physicist in the Nonproliferation and National Security Department (NNSD) and a co-inventor of the cadmium-zinc-telluride Frisch-ring (CdZnTe) detector, for the 443rd Brookhaven Lecture, entitled Gamma-Ray Detectors: From Homeland Security to the Cosmos. In his lecture, Bolotnikov will highlight two primary radiation-detector technologies: CdZnTe detectors and fluid-Xeon (Xe) detectors.

  16. Applications of CdTe to nuclear medicine. Final report

    SciTech Connect

    Entine, G.

    1985-05-07

    Uses of cadmium telluride (CdTe) nuclear detectors in medicine are briefly described. They include surgical probes and a system for measuring cerebral blood flow in the intensive care unit. Other uses include nuclear dentistry, x-ray exposure control, cardiology, diabetes, and the testing of new pharmaceuticals. (ACR)

  17. Analysis of Etched CdZnTe Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-09-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  18. Pixellated Cd(Zn)Te high-energy X-ray instrument

    NASA Astrophysics Data System (ADS)

    Seller, P.; Bell, S.; Cernik, R. J.; Christodoulou, C.; Egan, C. K.; Gaskin, J. A.; Jacques, S.; Pani, S.; Ramsey, B. D.; Reid, C.; Sellin, P. J.; Scuffham, J. W.; Speller, R. D.; Wilson, M. D.; Veale, M. C.

    2011-12-01

    We have developed a pixellated high energy X-ray detector instrument to be used in a variety of imaging applications. The instrument consists of either a Cadmium Zinc Telluride or Cadmium Telluride (Cd(Zn)Te) detector bump-bonded to a large area ASIC and packaged with a high performance data acquisition system. The 80 by 80 pixels each of 250 μm by 250 μm give better than 1 keV FWHM energy resolution at 59.5 keV and 1.5 keV FWHM at 141 keV, at the same time providing a high speed imaging performance. This system uses a relatively simple wire-bonded interconnection scheme but this is being upgraded to allow multiple modules to be used with very small dead space. The readout system and the novel interconnect technology is described and how the system is performing in several target applications.

  19. Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.

    2014-09-01

    We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.

  20. Pixellated Cd(Zn)Te high-energy X-ray instrument

    PubMed Central

    Seller, P.; Bell, S.; Cernik, R.J.; Christodoulou, C.; Egan, C.K.; Gaskin, J.A.; Jacques, S.; Pani, S.; Ramsey, B.D.; Reid, C.; Sellin, P.J.; Scuffham, J.W.; Speller, R.D.; Wilson, M.D.; Veale, M.C.

    2012-01-01

    We have developed a pixellated high energy X-ray detector instrument to be used in a variety of imaging applications. The instrument consists of either a Cadmium Zinc Telluride or Cadmium Telluride (Cd(Zn)Te) detector bump-bonded to a large area ASIC and packaged with a high performance data acquisition system. The 80 by 80 pixels each of 250 μm by 250 μm give better than 1 keV FWHM energy resolution at 59.5 keV and 1.5 keV FWHM at 141 keV, at the same time providing a high speed imaging performance. This system uses a relatively simple wire-bonded interconnection scheme but this is being upgraded to allow multiple modules to be used with very small dead space. The readout system and the novel interconnect technology is described and how the system is performing in several target applications. PMID:22737179

  1. Effect of charge trapping on effective carrier lifetime in compound semiconductors: High resistivity CdZnTe

    SciTech Connect

    Kamieniecki, Emil

    2014-11-21

    The dominant problem limiting the energy resolution of compound semiconductor based radiation detectors is the trapping of charge carriers. The charge trapping affects energy resolution through the carrier lifetime more than through the mobility. Conventionally, the effective carrier lifetime is determined using a 2-step process based on measurement of the mobility-lifetime product (μτ) and determining drift mobility using time-of-flight measurements. This approach requires fabrication of contacts on the sample. A new RF-based pulse rise-time method, which replaces this 2-step process with a single non-contact direct measurement, is discussed. The application of the RF method is illustrated with high-resistivity detector-grade CdZnTe crystals. The carrier lifetime in the measured CdZnTe, depending on the quality of the crystals, was between about 5 μs and 8 μs. These values are in good agreement with the results obtained using conventional 2-step approach. While the effective carrier lifetime determined from the initial portion of the photoresponse transient combines both recombination and trapping in a manner similar to the conventional 2-step approach, both the conventional and the non-contact RF methods offer only indirect evaluation of the effect of charge trapping in the semiconductors used in radiation detectors. Since degradation of detector resolution is associated not with trapping but essentially with detrapping of carriers, and, in particular, detrapping of holes in n-type semiconductors, it is concluded that evaluation of recombination and detrapping during photoresponse decay is better suited for evaluation of compound semiconductors used in radiation detectors. Furthermore, based on previously reported data, it is concluded that photoresponse decay in high resistivity CdZnTe at room temperature is dominated by detrapping of carriers from the states associated with one type of point defect and by recombination of carriers at one type of

  2. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  3. Simulation of charge transport in pixelated CdTe

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  4. Simulation of charge transport in pixelated CdTe

    PubMed Central

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-01-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points. PMID:25729404

  5. Simulation of charge transport in pixelated CdTe.

    PubMed

    Kolstein, M; Ariño, G; Chmeissani, M; De Lorenzo, G

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 10(6)). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm(3) using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  6. HPVB AND HPVZM SHAPED GROWTH OF CDZNTE, CDSE AND ZNSE CRYSTALS.

    SciTech Connect

    KOLESNIKOV,N.N.; JAMES,R.B.; BERZIGIAROVA,N.S.; KULAKOV,M.P.

    2002-07-07

    High-pressure Bridgman (HPVB) and vertical zone melting (HPVZM) growth processes have been applied for the manufacturing of Cd{sub 1-x}Zn{sub x}Te (x = 0.04-0.2), CdSe and ZnSe crystal tapes with sizes up to 120 x 120 x 12 mm. The influences of the technological parameters describing the growth processes on the crystal quality and some selected material properties are discussed. The dependence of the inclusion (bubbles) content on the deviation from melt stoichiometry is determined. A method for growing plates with low content of inclusions is described. High-resistivity crystal tapes of undoped CdZnTe (10{sup 10} Ohm x cm), CdSe (10{sup 11} Ohm x cm) and ZnSe (>10{sup 11} Ohm x cm) were prepared. The possibility of tape growth on oriented seeds is shown for the example of CdSe. The primary differences between HPVB and HPVZM results are described. The main HPVZM advantage for II-VI compound crystal growth is the possibility of obtaining crystals with more stoichiometric composition or with a controlled deviation from stoichiometry. Hence, HPVZM is preferable for growing high-resistivity II-VI crystals with low inclusion content and possibly with better transport properties. Keywords for this report are: Crystal growth, shaped crystal growth, ZnSe, CdSe, CdZnTe, CZT, HPVB, Bridgman, HPVZM, zone melting, radiation detectors.

  7. SU-E-T-231: Measurements of Gold Nanoparticle-Mediated Proton Dose Enhancement Due to Particle-Induced X-Ray Emission and Activation Products Using Radiochromic Films and CdTe Detector

    SciTech Connect

    Cho, J; Cho, S; Manohar, N; Krishnan, S

    2014-06-01

    Purpose: There have been several reports of enhanced cell-killing and tumor regression when tumor cells and mouse tumors were loaded with gold nanoparticles (GNPs) prior to proton irradiation. While particle-induced xray emission (PIXE), Auger electrons, secondary electrons, free radicals, and biological effects have been suggested as potential mechanisms responsible for the observed GNP-mediated dose enhancement/radiosensitization, there is a lack of quantitative analysis regarding the contribution from each mechanism. Here, we report our experimental effort to quantify some of these effects. Methods: 5-cm-long cylindrical plastic vials were filled with 1.8 mL of either water or water mixed with cylindrical GNPs at the same gold concentration (0.3 mg Au/g) as used in previous animal studies. A piece of EBT2 radiochromic film (30-µm active-layer sandwiched between 80/175-µm outer-layers) was inserted along the long axis of each vial and used to measure dose enhancement due to PIXE from GNPs. Vials were placed at center-of-modulation (COM) and 3-cm up-/down-stream from COM and irradiated with 5 different doses (2–10 Gy) using 10-cm-SOBP 160-MeV protons. After irradiation, films were cleaned and read to determine the delivered dose. A vial containing spherical GNPs (20 mg Au/g) was also irradiated, and gamma-rays from activation products were measured using a cadmium-telluride (CdTe) detector. Results: Film measurements showed no significant dose enhancement beyond the experimental uncertainty (∼2%). There was a detectable activation product from GNPs, but it appeared to contribute to dose enhancement minimally (<0.01%). Conclusion: Considering the composition of EBT2 film, it can be inferred that gold characteristic x-rays from PIXE and their secondary electrons make insignificant contribution to dose enhancement. The current investigation also suggests negligible dose enhancement due to activation products. Thus, previously-reported GNP-mediated proton dose

  8. Development activities of a CdTe/CdZnTe pixel detector for gamma-ray spectrometry with imaging and polarimetry capability in astrophysics

    NASA Astrophysics Data System (ADS)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; Álvarez, L.; La Torre, M.; Caroli, E.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2013-05-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV, in collaboration with other research institutes. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN).Cadmium Telluride (CdTe) and Cadmium Zinc Telluride (CdZnTe) are very attractive materials for gamma-ray detection, since they have already demonstrated their great performance onboard current space missions, such as IBIS/INTEGRAL and BAT/SWIFT, and future projects like ASIM onboard the ISS. However, the energy coverage of these instruments is limited up to a few hundred keV, and there has not been yet a dedicated instrument for polarimetry.Our research and development activities aim to study a gamma-ray imaging spectrometer in the MeV range based on CdTe detectors, suited either for the focal plane of a focusing mission or as a calorimeter for a Compton camera. In addition, our undergoing detector design is proposed as the baseline for the payload of a balloon-borne experiment dedicated to hard X- and soft gamma-ray polarimetry, currently under study and called CμSP (CZT μ-Spectrometer Polarimeter). Other research institutes such as INAF-IASF, DTU Space, LIP, INEM/CNR, CEA, are involved in this proposal. We will report on the main features of the prototype we are developing at the Institute of Space Sciences, a gamma-ray detector with imaging and polarimetry capabilities in order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution driven by the science.

  9. Focal Plane Array Technology for IR Detectors

    DTIC Science & Technology

    1996-06-01

    Bulk Crystals CdTe, CdSe , CdS, CdO, ZnTe, Cd(SSe) Continue: (HgCd)Te, (CdZn)Te Crystal growth: Vertical Bridgman Method (VBM), Horizontal Bridgman ...Method (HBM), Vertical Zone Melting (VZM), Vapour Phase Transport Method (VPTM), Travelling Heater Method (THM) Continue: Bridgman Growth from Melt of...growth of (HgCd)Te, is shown in Figs.2.1-2.2. Our Bridgman growth from melt of constant composition (BGCC) is based on a demand to ensure melt of

  10. Optical and electrical study of CdZnTe surfaces passivated by KOH and NH4F solutions

    NASA Astrophysics Data System (ADS)

    Zázvorka, J.; Franc, J.; Statelov, M.; Pekárek, J.; Veis, M.; Moravec, P.; Mašek, K.

    2016-12-01

    Performance of CdZnTe-based detectors is highly related to surface preparation. Mechanical polishing, chemical etching and passivation are routinely employed for this purpose. However, the relation between these processes and the detector performance in terms of underlying physical phenomena has not been fully explained. The dynamics and properties of CdZnTe surface oxide layers, created by passivation with KOH and NH4F/H2O2 solutions, were studied by optical ellipsometry and X-ray photoelectron spectroscopy (XPS). Thicknesses and growth rates of the surface oxide layers differed for each of the passivation methods. Leakage currents which influence the final spectral resolution of the detector were measured simultaneously with ellipsometry. Results of both optical and electrical investigation showed the same trends in the time evolution and correlated to each other. NH4F/H2O2 passivation showed to be a method which produces the most desirable properties of the surface oxide layer.

  11. X-ray Topography to Characterize Surface Damage on CdZnTe Crystals

    SciTech Connect

    Black, David; Woicik, Joseph; Duff, Martine C.; Hunter, Douglas B.; Burger, Arnold; Groza, Michael

    2008-12-05

    Synthetic CdZnTe or 'CZT' crystals can be used for room temperature detection of {gamma}-radiation. Structural/morphological heterogeneities within CZT, such as twinning, secondary phases (often referred to as inclusions or precipitates), and poly-crystallinity can affect detector performance. As part of a broader study using synchrotron radiation techniques to correlate detector performance to microstructure, x-ray topography (XRT) has been used to characterize CZT crystals. We have found that CZT crystals almost always have a variety of residual surface damage, which interferes with our ability to observe the underlying microstructure for purposes of crystal quality evaluation. Specific structures are identifiable as resulting from fabrication processes and from handling and shipping of sample crystals. Etching was found to remove this damage; however, our studies have shown that the radiation detector performance of the etched surfaces was inferior to the as-polished surface due to higher surface currents which result in more peak tailing and less energy resolution. We have not fully investigated the effects of the various types of inducible damage on radiation detector performance.

  12. Thermal conductivity studies of CdZnTe with varying Te excess

    SciTech Connect

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin; Babalola, Stephen; Ohmes, Martin F.; Stowe, A. C.

    2016-08-28

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated by modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.

  13. Thermal conductivity studies of CdZnTe with varying Te excess

    DOE PAGES

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin; ...

    2016-08-28

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less

  14. Thermal conductivity studies of CdZnTe with varying Te excess

    NASA Astrophysics Data System (ADS)

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin; Babalola, Stephen; Ohmes, Martin F.; Stowe, A. C.

    2016-09-01

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated by modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Further, the thermal conductivity decreased with increasing Te concentration.

  15. CDTE CERAMICS BASED ON COMPRESSION OF NANOCRYSTAL POWDER.

    SciTech Connect

    KOLESNIKOV, N.N.; BORISENKO, E.B.; BORISENKO, D.N.; JAMES, R.B.; KVEDER, V.V.; GARTMAN, V.K.; GNESIN, G.A.

    2005-07-01

    Wide-gap II-VI semiconductor crystalline materials are conventionally used in laser optics, light emitting devices, and nuclear detectors. The advances made in the studies of nanocrystals and in the associated technologies have created great interest in the design of semiconductor devices based on these new materials. The objectives of this work are to study the microstructure and the properties of the new material produced through CdTe nanopowder compression and to consider the prospects of its use in the design of ionizing-radiation detectors and in laser optics. Highly dense material produced of 7-10 nm CdTe particles under pressure of 20-600 MPa at temperatures from 20 to 200 C was analyzed using x-ray diffractometry, texture analysis; light and scanning electron microscopy, and optical spectrophotometry. The mechanical and electrical properties of the compacted material were measured and compared with similar characteristics of the conventionally grown single crystals. Phase transformation from metastable to stable crystal structure caused by deformation was observed in the material. Sharp crystallographic texture {l_brace}001{r_brace} that apparently affects specific mechanical, electrical and optical characteristics of compacted CdTe was observed. The specific resistivity calculated from the linear current-voltage characteristics was about 10{sup 10} Ohm x cm, which is a promisingly high value regarding the possibility of using this material in the design of semiconductor radiation detectors. The optical spectra show that the transmittance in the infrared region is sufficient to consider the prospects of possible applications of CdTe ceramics in laser optics.

  16. Correlation Between Bulk Material Defects and Spectroscopic Response in Cadmium Zinc Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.

    1999-01-01

    One of the critical challenges for large area cadmium zinc telluride (CdZnTe) detector arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, infrared transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar detector. The two techniques have been used to develop a correlation between bulk defect type and detector performance. The correlation allows for the use of infrared imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe detector arrays.

  17. SCAPS Modeling for Degradation of Ultrathin CdTe Films: Materials Interdiffusion

    NASA Astrophysics Data System (ADS)

    Houshmand, Mohammad; Zandi, M. Hossein; Gorji, Nima E.

    2015-09-01

    Ultrathin film solar cells based on CdS/CdTe ( d CdTe ≤ 1 µm) suffer from two main issues: incomplete photo absorption and high degradation rate. The former is cured by light-trapping techniques, whereas the latter is a matter of fabrication details. Interdiffusion of the material components and formation of subsequent interlayers at the front/back region can change the optical/electrical properties and performance/stability of the device. We model the degradation of the ultrathin CdTe film devices considering the material interdiffusion and interlayers formation: CdTeS, CdZnTe, Cu x Te (i.e., Te/Cu bilayer), and oxide interlayers (i.e., CdTeO3). The diffusion rate of the materials is considered separately and the reactions that change the interlayer's properties are studied. Additionally, a back contact of single-walled carbon nanotube showed a higher stability than the metallic contacts. A new time-dependent approach is applied to simulate the degradation rate due to formation of any interlayer. It is shown that the materials interdiffusion causes a defect increment under thermal stress and illumination. The metallic back contact accelerates the degradation, whereas single-walled carbon nanotubes show the highest stability. A SCAPS simulator was used because of its ability in defining the properties of the back contact and metastabilities at the interface layers. The properties of the layers were taken from the experimental data reported in the literature.

  18. Ionizing Radiation Detector

    DOEpatents

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-11-18

    A CdZnTe (CZT) crystal provided with a native CdO dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals is disclosed. A two step process is provided for forming the dielectric coating which includes etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water after attaching electrical contacts to the crystal surface.

  19. Edge effects in a small pixel CdTe for X-ray imaging

    NASA Astrophysics Data System (ADS)

    Duarte, D. D.; Bell, S. J.; Lipp, J.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.; Kachkanov, V.; Sawhney, K. J. S.

    2013-10-01

    Large area detectors capable of operating with high detection efficiency at energies above 30 keV are required in many contemporary X-ray imaging applications. The properties of high Z compound semiconductors, such as CdTe, make them ideally suitable to these applications. The STFC Rutherford Appleton Laboratory has developed a small pixel CdTe detector with 80 × 80 pixels on a 250 μm pitch. Historically, these detectors have included a 200 μm wide guard band around the pixelated anode to reduce the effect of defects in the crystal edge. The latest version of the detector ASIC is capable of four-side butting that allows the tiling of N × N flat panel arrays. To limit the dead space between modules to the width of one pixel, edgeless detector geometries have been developed where the active volume of the detector extends to the physical edge of the crystal. The spectroscopic performance of an edgeless CdTe detector bump bonded to the HEXITEC ASIC was tested with sealed radiation sources and compared with a monochromatic X-ray micro-beam mapping measurements made at the Diamond Light Source, U.K. The average energy resolution at 59.54 keV of bulk and edge pixels was 1.23 keV and 1.58 keV, respectively. 87% of the edge pixels present fully spectroscopic performance demonstrating that edgeless CdTe detectors are a promising technology for the production of large panel radiation detectors for X-ray imaging.

  20. K-edge EXAFS and XANES studies of Cu in CdTe thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xiangxin; Gupta, Akhlesh; Compaan, Alvin D.; Leyarovska, Nadia; Terry, Jeff

    2002-03-01

    Copper has been identified as a very important dopant element in CdTe thin-film solar cells. Cu is a deep acceptor in CdTe and is commonly used to obtain a heavily doped, low resistance back contact to polycrystalline CdTe. Cu also helps to increase the open circuit voltage of the cell. However, Cu is also a fast diffuser in CdTe, especially along grain boundaries, and can accumulate at the CdS/CdTe junction. It is suspected of leading to cell performance degradation in some cases. The present study is designed to help identify the lattice location of the Cu in CdTe. Cu K-edge, x-ray absorption (XAS) measurements were conducted on Cu in thin films of CdTe. Experiments were performed at the MR-CAT beamline at the Advanced Photon Source. The 3 mm CdTe layers were magnetron sputtered onto fused silica substrates. Some films were diffused with Cu from a 200 Å layer of evaporated Cu. XAS spectra were collected in fluorescence geometry with a 13 elements Ge detector. Quantitative fluorescence spectroscopy measurements were also performed. Details of the Cu environment and possible changes with time will be reported.

  1. CdTe devices and method of manufacturing same

    DOEpatents

    Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew

    2015-09-29

    A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.

  2. Applications of CdTe to nuclear medicine. Annual report, February 1, 1979-January 31, 1980

    SciTech Connect

    Entine, G

    1980-01-01

    The application of CdTe gamma detectors in nuclear medicine is reported on. An internal probe was developed which can be inserted into the heart to measure the efficiency of various radiopharmaceuticals in the treatment of heart attacks. A second application is an array of detectors which is light enough to be worn by ambulatory patients and can measure the change in cardiac output over an eight hour period during heart attack treatment. The instrument includes an on board tape recorder. (ACR)

  3. PHOTOINDUCED CURRENTS IN CDZNTE CRYSTALS AS A FUNCTION OF ILLUMINATION WAVELENGTH

    SciTech Connect

    Teague, L.; Washington, A.; Duff, M.

    2012-04-23

    We report variations in the currents of CdZnTe semiconductor crystals during exposure to a series of light emitting diodes of various wavelengths ranging from 470 to 950 nm. The changes in the steady-state current of one CdZnTe crystal with and without illumination along with the time dependence of the illumination effects are discussed. Analysis of the de-trapping and transient bulk currents during and after optical excitation yield insight into the behaviour of charge traps within the crystal. Similar behaviour is observed for illumination of a second CdZnTe crystal suggesting that the overall illumination effects are not crystal dependent.

  4. Photo-induced currents in CdZnTe crystals as a function of illumination wavelength

    NASA Astrophysics Data System (ADS)

    Teague, L. C.; L, Washington A., II; Duff, M. C.; Groza, M.; Buliga, V.; Burger, A.

    2012-03-01

    We report variations in the currents of CdZnTe semiconductor crystals during exposure to a series of light emitting diodes of various wavelengths ranging from 470 to 950 nm. The changes in the steady-state current of one CdZnTe crystal with and without illumination along with the time dependence of the illumination effects are discussed. Analysis of the de-trapping and transient bulk currents during and after optical excitation yield insight into the behaviour of charge traps within the crystal. Similar behaviour is observed for illumination of a second CdZnTe crystal suggesting that the overall illumination effects are not crystal dependent.

  5. Evaluation of a multistage CdZnTe Compton camera for prompt γ imaging for proton therapy

    NASA Astrophysics Data System (ADS)

    McCleskey, M.; Kaye, W.; Mackin, D. S.; Beddar, S.; He, Z.; Polf, J. C.

    2015-06-01

    A new detector system, Polaris J from H3D, has been evaluated for its potential application as a Compton camera (CC) imaging device for prompt γ rays (PGs) emitted during proton radiation therapy (RT) for the purpose of dose range verification. This detector system consists of four independent CdZnTe detector stages and a coincidence module, allowing the user to construct a Compton camera in different geometrical configurations and to accept both double and triple scatter events. Energy resolution for the 662 keV line from 137Cs was found to be 9.7 keV FWHM. The raw absolute efficiencies for double and triple scatter events were 2.2 ×10-5 and 5.8 ×10-7, respectively, for γs from a 60Co source. The position resolution for the reconstruction of a point source from the measured CC data was about 2 mm. Overall, due to the low efficiency of the Polaris J CC, the current system was deemed not viable for imaging PGs emitted during proton RT treatment delivery. However, using a validated Monte Carlo model of the CC, we found that by increasing the size of the detectors and placing them in a two stage configuration, the efficiency could be increased to a level to make PG imaging possible during proton RT.

  6. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  7. Recent developments in semiconductor gamma-ray detectors

    SciTech Connect

    Luke, Paul N.; Amman, Mark; Tindall, Craig; Lee, Julie S.

    2003-10-28

    The successful development of lithium-drifted Ge detectors in the 1960's marked the beginning of the significant use of semiconductor crystals for direct detection and spectroscopy of gamma rays. In the 1970's, high-purity Ge became available, which enabled the production of complex detectors and multi-detector systems. In the following decades, the technology of semiconductor gamma-ray detectors continued to advance, with significant developments not only in Ge detectors but also in Si detectors and room-temperature compound-semiconductor detectors. In recent years, our group at Lawrence Berkeley National Laboratory has developed a variety of gamma ray detectors based on these semiconductor materials. Examples include Ge strip detectors, lithium-drifted Si strip detectors, and coplanar-grid CdZnTe detectors. These advances provide new capabilities in the measurement of gamma rays, such as the ability to perform imaging and the realization of highly compact spectroscopy systems.

  8. CdTe quantum dots for an application in the life sciences

    NASA Astrophysics Data System (ADS)

    Thi Dieu Thuy, Ung; Toan, Pham Song; Chi, Tran Thi Kim; Duy Khang, Dinh; Quang Liem, Nguyen

    2010-12-01

    This report highlights the results of the preparation of semiconductor CdTe quantum dots (QDs) in the aqueous phase. The small size of a few nm and a very high luminescence quantum yield exceeding 60% of these materials make them promisingly applicable to bio-medicine labeling. Their strong, two-photon excitation luminescence is also a good characteristic for biolabeling without interference with the cell fluorescence. The primary results for the pH-sensitive CdTe QDs are presented in that fluorescence of CdTe QDs was used as a proton sensor to detect proton flux driven by adenosine triphosphate (ATP) synthesis in chromatophores. In other words, these QDs could work as pH-sensitive detectors. Therefore, the system of CdTe QDs on chromatophores prepared from the cells of Rhodospirillum rubrum and the antibodies against the beta-subunit of F0F1-ATPase could be a sensitive detector for the avian influenza virus subtype A/H5N1.

  9. The Effect of the Wall Contact and Post-Growth Cool-Down on Defects in CdTe Crystals Grown by 'Contactless' Physical Vapour Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Grasza, K.; Durose, K.; Halliday, D. P.; Boyall, N. M.; Dudley, M.; Raghothamachar, B.; Cai, L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of cadmium telluride crystals grown by physical vapor transport without contact with the ampoule walls and cooled at different rates were characterized using synchrotron X-ray topography, photoluminescence, and chemical etching. Strain from sticking to silica glass and its effect on the dislocation density is shown. It was found that very fast cool-down increases dislocation density by at least one order of magnitude. None of the samples had random dislocation distributions but coarse clumping of dislocations on the scale of more than 100 microns was more prevalent in slowly cooled crystals. Photoluminescence revealed that slow cooling favored the donor-acceptor luminescence involving complex A centers. This was diminished in fast cooled material; and effect presumed to be due to dislocation gettering. Fast cooling also enhanced the formation of shallow acceptors. Implications for Bridgman growth of CdTe and the vapor growth of CdZnTe are discussed briefly.

  10. Radiation detection with CdTe quantum dots in sol-gel glass and polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Manickaraj, Kavin; Wagner, Brent K.; Kang, Zhitao

    2013-05-01

    Optically based radiation detectors in various fields of science still suffer from low resolution, sensitivity and efficiency that restrict their overall performance. Quantum dots (QD) are well-suited for such detectors due to their unique optical properties. CdTe QDs show fast luminescence decay times, high conversion efficiencies, and have band gaps strongly dependent on the particle radius. Since QD particle sizes are well below the wavelengths of their emissions, they remain optically transparent when incorporated in both polymer and sol-gel based silica glass due to negligible optical scattering. In addition, as these composite materials can greatly improve the mechanical robustness of alpha-particle detectors, conventionally known to have delicate components, CdTe QDs show high promise for radiation sensing applications. These properties are especially advantageous for alpha-particle and potentially neutron detection. In this work, CdTe QD-based glass or polymer matrix nanocomposites were synthesized for use as alpha-particle detection scintillators.. The fast photo-response and decay times provide excellent time resolution. The radiation responses of such nanocomposites in polymer or glass matrices were investigated.

  11. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  12. Colloidal CdTe Nano Crystals Synthesis and Characterization

    DTIC Science & Technology

    2008-09-01

    spectrum of CdTe nano crystals grown at different times.............................3 Figure 3. Luminescence spectrum of CdTe nano crystals after 30 and...500 600 700 800 900 1000 Wavelength in Nanometers Ab so rb an ce 15 Minutes 30 Minutes 45 Minutes 60 Minutes Figure 2. Absorption spectrum of CdTe ...nano crystals grown at different times. The luminescence spectrum of the CdTe nano crystals synthesized 30 minutes and 45 minutes after injection of

  13. Growth and characterization of CdTe, Mn(x)Cd(1-x)Te, Zn(x)Cd(1-x)Te, and CdSe(y)Te(1-y) crystals

    NASA Astrophysics Data System (ADS)

    Lay, K. Y.; Giles-Taylor, N. C.; Schetzina, J. F.; Bachmann, K. J.

    1986-05-01

    Structures and growth characteristics of crystals based on the Cd-Te lattice, which are potentially useful in infrared radiation detectors, are described. Single crystals of CdTe, Mn(x)Cd(1-x)Te, and CdSe(y)Te(1-y) have been grown by the vertical Bridgman method and those of Zn(x)Cd(1-l)Te by zone leveling. Photoluminescence (PL) spectra were used to determine the quality and uniformity of composition. From the probing of small areas, allowed by this PL characterization technique, the uniform incorporation of Mn, Zn, and Se into the CdTe lattice was determined.

  14. Growth and characterization of CdTe, Mn(x)Cd(1-x)Te, Zn(x)Cd(1-x)Te, and CdSe(y)Te(1-y) crystals

    SciTech Connect

    Lay, K.Y.; Giles-Taylor, N.C.; Schetzina, J.F.; Bachmann, K.J.

    1986-05-01

    Structures and growth characteristics of crystals based on the Cd-Te lattice, which are potentially useful in infrared radiation detectors, are described. Single crystals of CdTe, Mn(x)Cd(1-x)Te, and CdSe(y)Te(1-y) have been grown by the vertical Bridgman method and those of Zn(x)Cd(1-l)Te by zone leveling. Photoluminescence (PL) spectra were used to determine the quality and uniformity of composition. From the probing of small areas, allowed by this PL characterization technique, the uniform incorporation of Mn, Zn, and Se into the CdTe lattice was determined. 15 references.

  15. Medipix2 based CdTe microprobe for dental imaging

    NASA Astrophysics Data System (ADS)

    Vykydal, Z.; Fauler, A.; Fiederle, M.; Jakubek, J.; Svestkova, M.; Zwerger, A.

    2011-12-01

    Medical imaging devices and techniques are demanded to provide high resolution and low dose images of samples or patients. Hybrid semiconductor single photon counting devices together with suitable sensor materials and advanced techniques of image reconstruction fulfil these requirements. In particular cases such as the direct observation of dental implants also the size of the imaging device itself plays a critical role. This work presents the comparison of 2D radiographs of tooth provided by a standard commercial dental imaging system (Gendex 765DC X-ray tube with VisualiX scintillation detector) and two Medipix2 USB Lite detectors one equipped with a Si sensor (300 μm thick) and one with a CdTe sensor (1 mm thick). Single photon counting capability of the Medipix2 device allows virtually unlimited dynamic range of the images and thus increases the contrast significantly. The dimensions of the whole USB Lite device are only 15 mm × 60 mm of which 25% consists of the sensitive area. Detector of this compact size can be used directly inside the patients' mouth.

  16. CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor.

    PubMed

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2016-01-15

    A sensitive chemiluminescence (CL) sensor based on chemiluminescence resonance energy transfer (CRET) in CdTe quantum dots@luminol (CdTe QDs@luminol) nanomaterials combined with chitosan/graphene oxide-magnetite-molecularly imprinted polymer (Cs/GM-MIP) for sensing chrysoidine was developed. CdTe QDs@luminol was designed to not only amplify the signal of CL but also reduce luminol consumption in the detection of chrysoidine. On the basis of the abundant hydroxy and amino, Cs and graphene oxide were introduced into the GM-MIP to improve the adsorption ability. The adsorption capacities of chrysoidine by both Cs/GM-MIP and non-imprinted polymer (Cs/GM-NIP) were investigated, and the CdTe QDs@luminol and Cs/GM-MIP were characterized by UV-vis, FTIR, SEM and TEM. The proposed sensor can detect chrysoidine within a linear range of 1.0×10(-7) - 1.0×10(-5) mol/L with a detection limit of 3.2×10(-8) mol/L (3δ) due to considerable chemiluminescence signal enhancement of the CdTe quantum dots@luminol detector and the high selectivity of the Cs/GM-MIP system. Under the optimal conditions of CL, the CdTe QDs@luminol-Cs/GM-MIP-CL sensor was used for chrysoidine determination in samples with satisfactory recoveries in the range of 90-107%.

  17. CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor

    NASA Astrophysics Data System (ADS)

    Duan, Huimin; Li, Leilei; Wang, Xiaojiao; Wang, Yanhui; Li, Jianbo; Luo, Chuannan

    2016-01-01

    A sensitive chemiluminescence (CL) sensor based on chemiluminescence resonance energy transfer (CRET) in CdTe quantum dots@luminol (CdTe QDs@luminol) nanomaterials combined with chitosan/graphene oxide-magnetite-molecularly imprinted polymer (Cs/GM-MIP) for sensing chrysoidine was developed. CdTe QDs@luminol was designed to not only amplify the signal of CL but also reduce luminol consumption in the detection of chrysoidine. On the basis of the abundant hydroxy and amino, Cs and graphene oxide were introduced into the GM-MIP to improve the adsorption ability. The adsorption capacities of chrysoidine by both Cs/GM-MIP and non-imprinted polymer (Cs/GM-NIP) were investigated, and the CdTe QDs@luminol and Cs/GM-MIP were characterized by UV-vis, FTIR, SEM and TEM. The proposed sensor can detect chrysoidine within a linear range of 1.0 × 10- 7 - 1.0 × 10- 5 mol/L with a detection limit of 3.2 × 10- 8 mol/L (3δ) due to considerable chemiluminescence signal enhancement of the CdTe quantum dots@luminol detector and the high selectivity of the Cs/GM-MIP system. Under the optimal conditions of CL, the CdTe QDs@luminol-Cs/GM-MIP-CL sensor was used for chrysoidine determination in samples with satisfactory recoveries in the range of 90-107%.

  18. Characterization of HgCdTe Films Grown on Large-Area CdZnTe Substrates by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Arkun, F. Erdem; Edwall, Dennis D.; Ellsworth, Jon; Douglas, Sheri; Zandian, Majid; Carmody, Michael

    2017-03-01

    Recent advances in growth of Hg1-x Cd x Te films on large-area (7 cm × 7.5 cm) CdZnTe (CZT) substrates is presented. Growth of Hg1-x Cd x Te with good uniformity on large-area wafers is achieved using a Riber 412 molecular beam epitaxy (MBE) tool designed for growth of Hg1-x Cd x Te compounds. The reactor is equipped with conventional CdTe, Te, and Hg sources for achieving uniform exposure of the wafer during growth. The composition of the Hg1-x Cd x Te compound is controlled in situ by employing a closed-loop spectral ellipsometry technique to achieve a cutoff wavelength (λ co) of 14 μm at 78 K. We present data on the thickness and composition uniformity of films grown for large-format focal-plane array applications. The composition and thickness nonuniformity are determined to be <1% over the area of a 7 cm × 7.5 cm wafer. The films are further characterized by Fourier-transform infrared spectroscopy, optical microscopy, and Hall measurements. Additionally, defect maps show the spatial distribution of defects generated during the epitaxial growth of the Hg1-x Cd x Te films. Microdefect densities are in the low 103 cm-2 range, and void defects are below 500 cm-2. Dislocation densities less than 5 × 105 cm-2 are routinely achieved for Hg1-x Cd x Te films grown on CZT substrates. HgCdTe 4k × 4k focal-plane arrays with 15 μm pitch for astronomical wide-area infrared imagers have been produced using the recently developed MBE growth process at Teledyne Imaging Sensors.

  19. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging

  20. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    SciTech Connect

    Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold; Berding, Martha; Burger, Arnold

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  1. Characterization of coplanar grid CZT detectors with highly collimated x-ray beam

    NASA Astrophysics Data System (ADS)

    Carini, Gabriella A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Wright, Gomez W.; De Geronimo, Gianluigi; Siddons, D. P.; James, Ralph B.

    2004-10-01

    CdZnTe detectors demonstrated great potentials for detection of gamma radiation. However, energy resolution of CdZnTe detectors is significantly affected by uncollected holes which have low mobility and short lifetime. To overcome this deleterious effects upon energy resolution special detector designs have to be implemented. The most practical of them are the small pixel effect device, the co-planar grid device, and the virtual Frisch-grid device. We routinely use a highly collimated high-intensity X-ray beams provided by National Synchrotron Light Source (NSLS) facility at Brookhaven National Laboratory to study of CdZnTe material and performances of the different types of devices on the micron-scale. This powerful tool allows us to evaluate electronic properties of the material, device performance, uniformity of the detector responses, effects related to the device's contact pattern and electric field distribution, etc. In particular, in this paper we present new results obtained from the performance studies of 15 x 15 x 7.5 mm3 coplanar-grid devices coupled to readout ASIC. We observed the effect of the strip contacts comprising the grids on the energy resolution of the coplanar-grid device.

  2. Relationship between the cathodoluminescence emission and resistivity in In doped CdZnTe crystals

    SciTech Connect

    Rodriguez-Fernandez, J.; Carcelen, V.; Dieguez, E.; Hidalgo, P.; Piqueras, J.; Vijayan, N.; Sochinskii, N. V.; Perez, J. M.

    2009-08-15

    Cadmium zinc telluride, CdZnTe, bulk single crystals doped with 10{sup 19} at./cm{sup 3} of indium in the initial melt were grown by vertical Bridgman technique. The samples were investigated by energy dispersive spectroscopy, cathodoluminiscence (CL), and current-voltage behavior at room temperature. The results shows that Cd and Te vacancy concentration depend on the indium and zinc concentrations. CL measurements indicate a relationship between radiative centers associated to Cd and Te vacancies and resistivity values.

  3. Radiation Testing of IR Detectors for WFC3

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Waczynski, A.; Johnson, S. D.; Marshall, P.; Marshall, C.; Foltz, R.; Kimble, R. A.

    2005-12-01

    The near-IR channel of Wide Field Camera 3, an instrument being developed for installation onto the Hubble Space Telescope, employs a Rockwell Scientific Company 1K x 1K HgCdTe detector array hybridized to a Hawaii-1R multiplexer. Radiation testing of test detectors showed that the WFC3 detectors do not exhibit a post-SAA glow of the sort seen in the NICMOS detectors. However, an anomalously high background was observed during the irradiation in the proton beam. This background goes away promptly when the beam is turned off. Subsequent testing and analysis revealed that the background arises due to emission of photons from within the CdZnTe detector substrate at the blue transmission edge of the substrate material. Further testing of devices with the substrate removed show no excess background signal. These results lead to a recommendation that the CdZnTe substrate material should be removed for space applications which require the ability to detect faint objects.

  4. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-01-01

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

  5. Cross-Sectional Study of Macrodefects in MBE Dual-Band HgCdTe on CdZnTe

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Lofgreen, D. D.; Jones, K. A.; Peterson, J. M.; Radford, W. A.; Benson, J. D.; Johnson, S. M.

    2013-11-01

    HgCdTe dual-band mid-wave infrared/long-wave infrared focal-plane arrays on CdZnTe are a key component in advanced electrooptic sensor applications. Molecular beam epitaxy (MBE) has been used successfully for growth of dual-band layers on larger CdZnTe substrates. However, the macrodefect density, which is known to reduce the pixel operability and its run-to-run variation, is larger when compared with layers grown on Si substrate. This paper reports the macrodefect density versus size signature of a well-optimized MBE dual-band growth and a cross-sectional study of a macrodefect that represents the most prevalent class using focused ion beam, scanning transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The results show that the macrodefect originates from a void, which in turn is associated with a pit on the CdZnTe substrate.

  6. Deep electronic levels in high-pressure Bridgman Cd{sub 1-x}Zn{sub x}Te

    SciTech Connect

    Szeles, C.; Shan, Y.Y.; Lynn, K.G.; Eissler, E.E.

    1995-12-01

    The behavior of deep electronic levels was studied as a function of Zn concentration in CdZnTe crystals grown by the high-pressure Bridgman technique using thermoelectric effect spectroscopy. A significant increase of the thermal ionization energies of hole traps was observed with the increasing Zn content of the ternary compound. The effect explains the stronger hole trapping and the resulting much shorter hole lifetime usually observed in CdZnTe as compared to CdTe. The behavior also suggests increased carrier recombination and explains the strong deterioration of electron collection in detectors fabricated from CdZnTe of high Zn concentration.

  7. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    SciTech Connect

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caraco, Corradina; Aloj, Luigi; Lastoria, Secondo

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter

  8. CdTe imaging device driven by current integration mode (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Aoki, Toru; Koike, Akifumi; Okunoyama, Takaharu; Morii, Hisashi; Takagi, Katsuyuki; Nishizawa, Junichi

    2016-09-01

    We have developed the current integration mode CdTe imaging device with 100fps movie mode. The pixel pitch is 100um, and detector size is about 50mm x 45 mm with 4-CdTe-ASIC units and 1mm thick-CdTe. The data correction algorithms were developed and installed in FPGA and MPU with real time collection. We can find clear image with high contrast as direct conversion, for example, pipe-edge thickness detection, penetration image and movie of mechanical watch and so on. We can observe detail connection in printed circuit board by using rotation movie mode. Also it has high sensitivity in high energy region, so we can apply to get real-time movie in operation. We will show the demonstration movie and detail of this detector.

  9. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, R.E.; Long, M.O.; Drinkard, W.F. Jr.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base. 3 figs.

  10. Recycling of CdTe photovoltaic waste

    DOEpatents

    Goozner, Robert E.; Long, Mark O.; Drinkard, Jr., William F.

    1999-04-27

    A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

  11. Issues Involving Infrared Detector Material Systems

    DTIC Science & Technology

    2006-09-28

    on the ferroelectric properties of thin film ferroelectric (211) Si substrate 1 1 1 1 Area 2 CdTe SiOx (211) Si substrate (110) direction 7 PZT...to develop textured template for growth of epitaxial thin film ferroelectric (TFFE) IR detectors on polyimide coated Si. The commercial TFFE has a...due to limitation of characterization capability on small sample spot on our ARL collaborator side. This project also involved a strong educational

  12. Array of virtual Frisch-grid CZT detectors with common cathode readout and pulse-height correction

    SciTech Connect

    Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Egarievwe, E.U.; Fochuk, P.M.; Fuerstnau, M.; Gul, R.; Hossain, A.; Jones, F.; Kim, K.; Kopach, O.V.; Taggart, R.; Yang, G.; Ye, Z.; Xu, L.; and James, R.B.

    2010-08-01

    We present our new results from testing 15-mm-long virtual Frisch-grid CdZnTe detectors with a common-cathode readout for correcting pulse-height distortions. The array employs parallelepiped-shaped CdZnTe (CZT) detectors of a large geometrical aspect ratio, with two planar contacts on the top and bottom surfaces (anode and cathode) and an additional shielding electrode on the crystal's sides to create the virtual Frisch-grid effect. We optimized the geometry of the device and improved its spectral response. We found that reducing to 5 mm the length of the shielding electrode placed next to the anode had no adverse effects on the device's performance. At the same time, this allowed corrections for electron loss by reading the cathode signals to obtain depth information.

  13. Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In

    SciTech Connect

    Xu, Lingyan; Jie, Wanqi Zha, Gangqiang Feng, Tao; Wang, Ning; Xi, Shouzhi; Fu, Xu; Zhang, Wenlong; Xu, Yadong; Wang, Tao

    2014-06-09

    The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminated crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.

  14. The HEXITEC hard x-ray pixelated CdTe imager for fast solar observations

    NASA Astrophysics Data System (ADS)

    Baumgartner, Wayne H.; Christe, Steven D.; Ryan, Daniel F.; Inglis, Andrew R.; Shih, Albert Y.; Gregory, Kyle; Wilson, Matt; Seller, Paul; Gaskin, Jessica; Wilson-Hodge, Colleen

    2016-08-01

    There is an increasing demand in solar and astrophysics for high resolution X-ray spectroscopic imaging. Such observations would present ground breaking opportunities to study the poorly understood high energy processes in our solar system and beyond, such as solar flares, X-ray binaries, and active galactic nuclei. However, such observations require a new breed of solid state detectors sensitive to high energy X-rays with fine independent pixels to sub-sample the point spread function (PSF) of the X-ray optics. For solar observations in particular, they must also be capable of handling very high count rates as photon fluxes from solar flares often cause pile up and saturation in present generation detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new cadmium telluride (CdTe) detector system, called HEXITEC (High Energy X-ray Imaging Technology). It is an 8080 array of 250 μm independent pixels sensitive in the 2-200 keV band and capable of a high full frame read out rate of 10 kHz. HEXITEC provides the smallest independently read out CdTe pixels currently available, and are well matched to the few arcsecond PSF produced by current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space borne hard X-ray focusing telescopes. We show the latest results on HEXITEC's imaging capability, energy resolution, high read out rate, and reveal it to be ideal for such future instruments.

  15. Zinc segregation in CdZnTe grown under Cd/Zn partial pressure control

    NASA Astrophysics Data System (ADS)

    Azoulay, M.; Rotter, S.; Gafni, G.; Tenne, R.; Roth, M.

    1992-02-01

    CdZnTe crystals have been grown by the modified vertical gradient freeze (VGF) method. Growth atmosphere control has been introduced to compensate for the Zn depletion in the melt during solidification. The axial Zn concentration in the grown crystals is found to be uniform within ±3%, as evaluated by X-ray diffraction and electron microprobe analysis. The radial segregation of Zn is minimal and does not exceed the experimental error due to the nearly planar interface achieved. Zinc microsegregation has been studied as well and is discussed in terms of the temporal variations of the solute concentration at the growth interface.

  16. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    SciTech Connect

    Rousset, J.-G. Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W.

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  17. The Effect of Subbandgap Illumination on the Bulk Resistivity of CdZnTe

    SciTech Connect

    Wright, Jonathan S.; Washington II, Aaron L.; Duff, Martine C.; Burger, Arnold; Groza, Michael; Matei, Liviu; Buliga, Vladimir

    2013-08-24

    The variation in bulk resistivity during infrared (IR) illumination above 950 nm of state-of-the-art CdZnTe (CZT) crystals grown using the traveling heating method or the modified Bridgman method is documented. The change in steady-state current with and without illumination is also evaluated. The influence of secondary phases (SP) on current-voltage (I-V) characteristics is discussed using IR transmission microscopy to determine the defect concentration within the crystal bulk. SP present within the CZT are connected to the existence of deep, IR-excitable traps within the bandgap.

  18. Simulation of Electric Field in Semi Insulating Au/CdTe/Au Detector under Flux

    SciTech Connect

    Franc, J.; James, R.; Grill, R.; Kubat, J.; Belas, E.; Hoschl, P.; Moravec, P.; Praus, P.

    2009-08-02

    We report our simulations on the profile of the electric field in semi insulating CdTe and CdZnTe with Au contacts under radiation flux. The type of the space charge and electric field distribution in the Au/CdTe/Au structure is at high fluxes result of a combined influence of charge formed due to band bending at the electrodes and from photo generated carriers, which are trapped at deep levels. Simultaneous solution of drift-diffusion and Poisson equations is used for the calculation. We show, that the space charge originating from trapped photo-carriers starts to dominate at fluxes 10{sup 15}-10{sup 16}cm{sup -2}s{sup -1}, when the influence of contacts starts to be negligible.

  19. CdTe Photovoltaic Devices for Solar Cell Applications

    DTIC Science & Technology

    2011-12-01

    falls between the end points of HgTe (Eg= -0.3 eV) and CdTe (Eg =1.5 eV). Because of its bandgap tunability with the Cd composition, Hg1-xCdxTe alloy...a bandgap energy that falls between the end points of HgTe (Eg= -0.3 eV) and CdTe (Eg =1.5 eV). Because of its bandgap tunability with the Cd ...theoretical efficiency of CdTe . These include removing recombination centers in the grain boundaries, improving crystal quality, and increasing doping

  20. Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christian

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  1. Process Development for High Voc CdTe Solar Cells

    SciTech Connect

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  2. Measurements on semiconductor and scintillator detectors at the Advanced Light Source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.; Vanier, Peter E.

    2016-09-01

    During the transition period between closure of Beamline X27B at BNL's NSLS and the opening of Beamline MID at NSLS-II, we began operation of LBNL's ALS Beamline 3.3.2 to carry out our radiation detection materials RD. Measurements performed at this Beamline include, X-ray Detector Response Mapping and White Beam X-ray Diffraction Topography (WBXDT), among others. We will introduce the capabilities of the Beamline and present the most recent results obtained on CdZnTe and scintillators. The goal of the studies on CdZnTe is to understand the origin and effects of subgrain boundaries and help to visualize the presence of a higher concentration of impurities, which might be responsible for the deterioration of the energy resolution and response uniformity in the vicinity of the sub-grain boundaries. The results obtained in the second year of measurements will be presented.

  3. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    SciTech Connect

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  4. CdTe Solar Cells: The Role of Copper

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christain

    2014-06-06

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  5. Interaction of porphyrins with CdTe quantum dots.

    PubMed

    Zhang, Xing; Liu, Zhongxin; Ma, Lun; Hossu, Marius; Chen, Wei

    2011-05-13

    Porphyrins may be used as photosensitizers for photodynamic therapy, photocatalysts for organic pollutant dissociation, agents for medical imaging and diagnostics, applications in luminescence and electronics. The detection of porphyrins is significantly important and here the interaction of protoporphyrin-IX (PPIX) with CdTe quantum dots was studied. It was observed that the luminescence of CdTe quantum dots was quenched dramatically in the presence of PPIX. When CdTe quantum dots were embedded into silica layers, almost no quenching by PPIX was observed. This indicates that PPIX may interact and alter CdTe quantum dots and thus quench their luminescence. The oxidation of the stabilizers such as thioglycolic acid (TGA) as well as the nanoparticles by the singlet oxygen generated from PPIX is most likely responsible for the luminescence quenching. The quenching of quantum dot luminescence by porphyrins may provide a new method for photosensitizer detection.

  6. Spatial Distribution of Dopant Incorporation in CdTe

    SciTech Connect

    Guthrey, Harvey; Moseley, John; Colegrove, Eric; Burst, James; Albin, David; Metzger, Wyatt; Al-Jassim, Mowafak

    2016-11-21

    In this work we use state-of-the-art cathodoluminescence (CL) spectrum imaging that provides spectrum-per-pixel mapping of the CL emission to examine how dopant elements are incorporated into CdTe. Emission spectra and intensity are used to monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on theoretical modeling. Our results show that grain boundaries play a role in the incorporation of dopants in CdTe, whether intrinsic or extrinsic. This type of analysis is crucial for providing feedback to design different processing schedules that optimize dopant incorporation in CdTe photovoltaic material, which has struggled to reach high carrier concentration values. Here, we present results on CdTe films exposed to copper, phosphorus, and intrinsic doping treatments.

  7. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    SciTech Connect

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Dragica, Vasileska; Ringhofer, Christian

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  8. Characterization of the metal-semiconductor interface of gold contacts on CdZnTe formed by electroless deposition

    NASA Astrophysics Data System (ADS)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2015-06-01

    Fully spectroscopic x/γ-ray imaging is now possible thanks to advances in the growth of wide-bandgap semiconductors. One of the most promising materials is cadmium zinc telluride (CdZnTe or CZT), which has been demonstrated in homeland security, medical imaging, astrophysics and industrial analysis applications. These applications have demanding energy and spatial resolution requirements that are not always met by the metal contacts deposited on the CdZnTe. To improve the contacts, the interface formed between metal and semiconductor during contact deposition must be better understood. Gold has a work function closely matching that of high resistivity CdZnTe and is a popular choice of contact metal. Gold contacts are often formed by electroless deposition however this forms a complex interface. The prior CdZnTe surface preparation, such as mechanical or chemo-mechanical polishing, and electroless deposition parameters, such as gold chloride solution temperature, play important roles in the formation of the interface and are the subject of the presented work. Techniques such as focused ion beam (FIB) cross section imaging, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and current  -  voltage (I-V) analysis have been used to characterize the interface. It has been found that the electroless reaction depends on the surface preparation and for chemo-mechanically polished (1 1 1) CdZnTe, it also depends on the A/B face identity. Where the deposition occurred at elevated temperature, the deposited contacts were found to produce a greater leakage current and suffered from increased subsurface voiding due to the formation of cadmium chloride.

  9. Shuttle Mission STS-50: Orbital Processing of High-Quality CdTe Compound Semiconductors Experiment: Final Flight Sample Characterization Report

    NASA Technical Reports Server (NTRS)

    Larson, David J.; Casagrande, Luis G.; DiMarzio, Don; Alexander, J. Iwan D.; Carlson, Fred; Lee, Taipo; Dudley, Michael; Raghathamachar, Balaji

    1998-01-01

    The Orbital Processing of High-Quality Doped and Alloyed CdTe Compound Semiconductors program was initiated to investigate, quantitatively, the influences of gravitationally dependent phenomena on the growth and quality of bulk compound semiconductors. The objective was to improve crystal quality (both structural and compositional) and to better understand and control the variables within the crystal growth production process. The empirical effort entailed the development of a terrestrial (one-g) experiment baseline for quantitative comparison with microgravity (mu-g) results. This effort was supported by the development of high-fidelity process models of heat transfer, fluid flow and solute redistribution, and thermo-mechanical stress occurring in the furnace, safety cartridge, ampoule, and crystal throughout the melting, seeding, crystal growth, and post-solidification processing. In addition, the sensitivity of the orbital experiments was analyzed with respect to the residual microgravity (mu-g) environment, both steady state and g-jitter. CdZnTe crystals were grown in one-g and in mu-g. Crystals processed terrestrially were grown at the NASA Ground Control Experiments Laboratory (GCEL) and at Grumman Aerospace Corporation (now Northrop Grumman Corporation). Two mu-g crystals were grown in the Crystal Growth Furnace (CGF) during the First United States Microgravity Laboratory Mission (USML-1), STS-50, June 24 - July 9, 1992.

  10. Strategies for recycling CdTe photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Eberspacher, Chris; Gay, Charles F.; Moskowitz, Paul D.

    1994-12-01

    Recycling end-of-life cadmium telluride (CdTe) photovoltaic (PV) modules may enhance the competitive advantage of CdTe PV in the marketplace, but the experiences of industries with comparable Environmental, Health and Safety (EH&S) challenges suggest that collection and recycling costs can impose significant economic burdens. Customer cooperation and pending changes to US Federal law may improve recycling economics.

  11. CdTe Photovoltaics for Sustainable Electricity Generation

    NASA Astrophysics Data System (ADS)

    Munshi, Amit; Sampath, Walajabad

    2016-09-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  12. High-quality CdTe films from nanoparticle precursors

    SciTech Connect

    Schulz, D.L.; Pehnt, M.; Urgiles, E.

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  13. CdTe Based Hard X-ray Imager Technology For Space Borne Missions

    NASA Astrophysics Data System (ADS)

    Limousin, Olivier; Delagnes, E.; Laurent, P.; Lugiez, F.; Gevin, O.; Meuris, A.

    2009-01-01

    CEA Saclay has recently developed an innovative technology for CdTe based Pixelated Hard X-Ray Imagers with high spectral performance and high timing resolution for efficient background rejection when the camera is coupled to an active veto shield. This development has been done in a R&D program supported by CNES (French National Space Agency) and has been optimized towards the Simbol-X mission requirements. In the latter telescope, the hard X-Ray imager is 64 cm² and is equipped with 625µm pitch pixels (16384 independent channels) operating at -40°C in the range of 4 to 80 keV. The camera we demonstrate in this paper consists of a mosaic of 64 independent cameras, divided in 8 independent sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique 1 cm² component, juxtaposable on its four sides. Recently, promising results have been obtained from the first micro-camera prototypes called Caliste 64 and will be presented to illustrate the capabilities of the device as well as the expected performance of an instrument based on it. The modular design of Caliste enables to consider extended developments toward IXO type mission, according to its specific scientific requirements.

  14. Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte carlo simulation studies

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Park, Su-Jin; Lee, Seung-Wan; Kim, Dae-Hong; Kim, Ye-Seul; Kim, Hee-Joung

    2013-05-01

    The photon counting detector based on cadmium telluride (CdTe) or cadmium zinc telluride (CZT) is a promising imaging modality that provides many benefits compared to conventional scintillation detectors. By using a pinhole collimator with the photon counting detector, we were able to improve both the spatial resolution and the sensitivity. The purpose of this study was to evaluate the photon counting and conventional scintillation detectors in a pinhole single-photon emission computed tomography (SPECT) system. We designed five pinhole SPECT systems of two types: one type with a CdTe photon counting detector and the other with a conventional NaI(Tl) scintillation detector. We conducted simulation studies and evaluated imaging performance. The results demonstrated that the spatial resolution of the CdTe photon counting detector was 0.38 mm, with a sensitivity 1.40 times greater than that of a conventional NaI(Tl) scintillation detector for the same detector thickness. Also, the average scatter fractions of the CdTe photon counting and the conventional NaI(Tl) scintillation detectors were 1.93% and 2.44%, respectively. In conclusion, we successfully evaluated various pinhole SPECT systems for small animal imaging.

  15. CdTe Thin Film Solar Cells and Modules Tutorial; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Albin, David S.

    2015-06-13

    This is a tutorial presented at the 42nd IEEE Photovoltaics Specialists Conference to cover the introduction, background, and updates on CdTe cell and module technology, including CdTe cell and module structure and fabrication.

  16. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode

    NASA Astrophysics Data System (ADS)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Kolstein, M.; Puigdengoles, C.; García, J.; Cabruja, E.

    2014-12-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a 241Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain the mobility for each charge carrier. The Hecht equation has been employed to evaluate the lifetime. The measured values for μτe/h (mobility-lifetime product) are in agreement with earlier published data.

  17. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode

    PubMed Central

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Kolstein, M.; Puigdengoles, C.; García, J.; Cabruja, E.

    2014-01-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a 241Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain the mobility for each charge carrier. The Hecht equation has been employed to evaluate the lifetime. The measured values for μτe/h (mobility-lifetime product) are in agreement with earlier published data. PMID:25729405

  18. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode.

    PubMed

    Ariño-Estrada, G; Chmeissani, M; de Lorenzo, G; Kolstein, M; Puigdengoles, C; García, J; Cabruja, E

    2014-12-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a (241)Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain the mobility for each charge carrier. The Hecht equation has been employed to evaluate the lifetime. The measured values for μτe/h (mobility-lifetime product) are in agreement with earlier published data.

  19. ART-XC/SRG: status of the x-ray focal plane detector development

    NASA Astrophysics Data System (ADS)

    Levin, Vasily; Pavlinsky, Mikhail; Akimov, Valeriy; Kuznetsova, Maria; Rotin, Alexey; Krivchenko, Alexander; Lapshov, Igor; Oleinikov, Vladimir

    2014-07-01

    The Russian Space Research Institute (IKI) has developed CdTe detectors for the focal plane of the ART-XC/SRG instrument. The CdTe crystal has dimensions about 30 × 30 × 1 mm. Top and bottom sides of the detector each contain 48 strips and a guard ring. The ASIC VA64TA1 is connected to the CdTe crystal by AC-coupling for both DSSD sides. This approach allows one to have the same ground level for both electronic parts and to operate detectors with different leakage currents without reconfiguration of the VA64TA1 chips. One CdTe crystal and two ASICs are integrated with thermal sensors and Peltier cooler in a big hybrid integrated circuit. This detector is hermetically sealed by a cover with beryllium window. For ground testing the detector volume is filled with dry nitrogen. Peltier cooler is used during ground tests only. Together with the hermetic case package it allows us to operate the detector at low temperature during all ART-XC telescope development tests. When in space, the detector cooling will be provided by a radiator and heat pipes. Polarization rate temperature and voltage dependences as well as splitting charges between electrodes are being studied. IKI manufactured dozen X-ray cameras with detectors and supporting electronics for EM, QM and flight model of the ART-XC telescope. Spectroscopic and imaging performances of the detectors were tested on the IKI's X-Ray Calibration Facility. Current status of the focal plane detector development and testing will be presented.

  20. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Erkoç, Şakir

    2017-04-01

    Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.

  1. Test of Prototype Detector for Retrospective Neutron Dosimetry of Reactor Internals and Vessel

    NASA Astrophysics Data System (ADS)

    Hayashi, Katsumi; Nemezawa, Shigeki; Kubota, Isamu; Hayashi, Haruhisa

    2009-08-01

    A prototype detector for simple and non-destructive retrospective neutron dosimetry was made. A Cadmium Telluride (CdTe) detector was used as a detector to measure the nuclides 54Mn, 58Co, and 60Co that were generated in reactor internals and vessels. The detector is surrounded by a tungsten collimator which shields background gamma-rays and detects gamma-rays originating from the measuring point. Neutron fluence is calculated using the pre-calculated response, measuring time, decay time and reactor power history. The applicability of this detector was tested by measuring parts of irradiated reactor internals.

  2. Shockley-Read-Hall lifetimes in CdTe

    SciTech Connect

    Buurma, C.; Sivananthan, S.; Krishnamurthy, S.

    2014-07-07

    A combination of first principles electronic structure calculations, Green's function method, and empirical tight-binding Hamiltonian method is used to evaluate the minority carrier lifetimes of CdTe due to recombination via native point defects in CdTe. For defect energy levels near mid-gap, our calculated value of the Shockley-Read-Hall capture cross section for both electrons and holes is ~10⁻¹³ cm², which is considerably different from the most commonly employed values. We further find that minority carrier lifetimes in doped CdTe are affected more by defect levels closer to the Fermi level than those in the mid-gap.

  3. Recent advances in thin film CdTe solar cells

    SciTech Connect

    Ferekides, C.S.; Ceekala, V.; Dugan, K.; Killian, L.; Oman, D.; Swaminathan, R.; Morel, D.

    1996-01-01

    CdTe thin film solar cells have been fabricated on a variety of glass substrates (borosilicate and soda lime). The CdS films were deposited to a thickness of 500{endash}2000 A by the chemical bath deposition (CBD), rf sputtering, or close spaced sublimation (CSS) processes. The CdTe films were deposited by CSS in the temperature range of 450{endash}625{degree}C. The main objective of this work is to fabricate high efficiency solar cells using processes that can meet low cost manufacturing requirements. In an attempt to enhance the blue response of the CdTe cells, ZnS films have also been prepared (CBD, rf sputtering, CSS) as an alternative window layer to CdS. Device behavior has been found to be consistent with a recombination model. {copyright} {ital 1996 American Institute of Physics.}

  4. Resetting the Defect Chemistry in CdTe

    SciTech Connect

    Metzger, Wyatt K.; Burst, James; Albin, David; Colegrove, Eric; Moseley, John; Duenow, Joel; Farrell, Stuart; Moutinho, Helio; Reese, Matt; Johnston, Steve; Barnes, Teresa; Perkins, Craig; Guthrey, Harvey; Al-Jassim, Mowafak

    2015-06-14

    CdTe cell efficiencies have increased from 17% to 21% in the past three years and now rival polycrystalline Si [1]. Research is now targeting 25% to displace Si, attain costs less than 40 cents/W, and reach grid parity. Recent efficiency gains have come largely from greater photocurrent. There is still headroom to lower costs and improve performance by increasing open-circuit voltage (Voc) and fill factor. Record-efficiency CdTe cells have been limited to Voc <; 880 mV, whereas GaAs can attain Voc of 1.10 V with a slightly smaller bandgap [2,3]. To overcome this barrier, we seek to understand and increase lifetime and carrier concentration in CdTe. In polycrystalline structures, lifetime can be limited by interface and grain-boundary recombination, and attaining high carrier concentration is complicated by morphology.

  5. Advances in CdTe R&D at NREL

    SciTech Connect

    Wu, X.; Zhou, J.; Keane, J. C.; Dhere, R. G.; Albin, D. S.; Gessert, T. A.; DeHart, C.; Duda, A.; Ward, J. J.; Yan, Y.; Teeter, G.; Levi, D. H.; Asher, S.; Perkins, C.; Moutinho, H. R.; To, B.

    2005-11-01

    This paper summarizes the following R&D accomplishments at National Renewable Energy Laboratory (NREL): (1) Developed several novel materials and world-record high-efficiency CdTe solar cell, (2) Developed "one heat-up step" manufacturing processes, and (3) Demonstrated 13.9% transparent CdTe cell and 15.3% CdTe/CIS polycrystalline tandem solar cell. Cadmium telluride has been well recognized as a promising photovoltaic material for thin-film solar cells because of its near-optimum bandgap of ~1.5 eV and its high absorption coefficient. Impressive results have been achieved in the past few years for polycrystalline CdTe thin-film solar cells at NREL. In this paper, we summarize some recent R&D activities at NREL.

  6. Development and performance of a gamma-ray imaging detector

    NASA Astrophysics Data System (ADS)

    Gálvez, J. L.; Hernanz, M.; Álvarez, J. M.; La Torre, M.; Álvarez, L.; Karelin, D.; Lozano, M.; Pellegrini, G.; Ullán, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2012-09-01

    In the last few years we have been working on feasibility studies of future instruments in the gamma-ray range, from several keV up to a few MeV. The innovative concept of focusing gamma-ray telescopes in this energy range, should allow reaching unprecedented sensitivities and angular resolution, thanks to the decoupling of collecting area and detector volume. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs), Pulsars, Active Galactic Nuclei (AGN). In order to achieve the needed performance, a gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. In order to fulfill the combined requirement of high detection efficiency with good spatial and energy resolution, an initial prototype of a gamma-ray imaging detector based on CdTe pixel detectors is being developed. It consists of a stack of several layers of CdTe detectors with increasing thickness, in order to enhance the gamma-ray absorption in the Compton regime. A CdTe module detector lies in a 11 x 11 pixel detector with a pixel pitch of 1mm attached to the readout chip. Each pixel is bump bonded to a fan-out board made of alumina (Al2O3) substrate and routed to the corresponding input channel of the readout ASIC to measure pixel position and pulse height for each incident gamma-ray photon. We will report the main features of the gamma-ray imaging detector performance such as the energy resolution for a set of radiation sources at different operating temperatures.

  7. Development of a CZT drift ring detector for X and γ ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Boothman, V.; Veeramani, P.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2015-04-01

    CdTe and CZT detectors are considered better choices for high energy γ and X-ray spectroscopy in comparison to Si and HPGe detectors due to their good quantum efficiency and room temperature operation. The performance limitations in CdTe and CZT detectors are mainly associated with poor hole transport and trapping phenomena. Among many techniques that can be used to eliminate the effect of the poor charge transport properties of holes in CdTe and CZT material, the drift ring technique shows promising results. In this work, the performance of a 2.3 mm thick CZT drift ring detector is investigated. Spatially resolved measurements were carried out with an X-ray microbeam (25 and 75 keV) at the Diamond Light Source synchrotron to study the response uniformity and extent of the active area. Higher energy photon irradiation was also carried out at up to 662 keV using different radioisotopes to complement the microbeam data. Different biasing schemes were investigated in terms of biasing the cathode rear electrode (bulk field) and the ring electrodes (lateral fields). The results show that increasing the bulk field with fixed-ratio ring biases and lateral fields with fixed bulk fields increase the active area of the device significantly, which contrasts with previous studies in CdTe, where only an increasing lateral field resulted in an improvement of device performance. This difference is attributed to the larger thickness of the CZT device reported here.

  8. Electrical properties of single CdTe nanowires.

    PubMed

    Matei, Elena; Florica, Camelia; Costas, Andreea; Toimil-Molares, María Eugenia; Enculescu, Ionut

    2015-01-01

    Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were performed on these individual nanowires. The influence of a bottom gate was investigated and it was found that surface passivation leads to improved transport properties.

  9. Electrical properties of single CdTe nanowires

    PubMed Central

    Matei, Elena; Florica, Camelia; Costas, Andreea; Toimil-Molares, María Eugenia

    2015-01-01

    Summary Ion track, nanoporous membranes were employed as templates for the preparation of CdTe nanowires. For this purpose, electrochemical deposition from a bath containing Cd and Te ions was employed. This process leads to high aspect ratio CdTe nanowires, which were harvested and placed on a substrate with lithographically patterned, interdigitated electrodes. Focused ion beam-induced metallization was used to produce individual nanowires with electrical contacts and electrical measurements were performed on these individual nanowires. The influence of a bottom gate was investigated and it was found that surface passivation leads to improved transport properties. PMID:25821685

  10. Optical measurements for excitation of CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Vladescu, Marian; Feies, Valentin; Schiopu, Paul; Craciun, Alexandru; Grosu, Neculai; Manea, Adrian

    2016-12-01

    The paper presents the experimental results obtained using a laboratory setup installation for fluorescence excitation of CdTe QDs used as biomarkers for clinical diagnostics. Quantum Dots (QDs) made of Cadmium Telluride (CdTe), are highly fluorescent and they are used as robust biomarkers. Generally, QDs are referred to as the zero-dimensional colloidal crystals that possess strong size dependence and multi-colored luminescence properties. Along with its intrinsic features, such as sharp and symmetric emission, photo-stability and high quantum yields, QDs play a vital role in various applications, namely the identification of the chemical moieties, clinical diagnostics, optoelectronics, bio-imaging and bio-sensing1.

  11. Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-10-01

    The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.

  12. THE EFFECT OF VARIOUS DETECTOR GEOMETRIES ON THE PERFORMANCE OF CZT USING ONE CRYSTAL

    SciTech Connect

    Washington, A.; Duff, M.; Teague, L.

    2011-06-21

    CdZnTe (CZT) continues to be a major thrust interest mainly due to its potential application as a room temperature radiation detector. The performance of CZT detectors is directly related to the charge collection ability which can be affected by the configuration of the electrical contact. The charge collection efficiency is determined in part by the specific geometry of the anode contact which serves as the readout electrode. In this report, contact geometries including single pixel, planar, coplanar, and dual anode will be systematically explored by comparing the performance efficiencies of the detector using both low and high energy gamma rays. To help eliminate the effect of crystal quality variations, the contact geometries were fabricated on the same crystal detector with minimal polishing between contact placements.

  13. A comparison of emerging gamma detector technologies for airborne radiation monitoring

    NASA Astrophysics Data System (ADS)

    Bell, S. J.; Aitken-Smith, P.; Beeke, S.; Collins, S. M.; Regan, P. H.; Shearman, R.

    2016-10-01

    This paper presents a comparison of new and emerging gamma detector technologies that have the potential to improve in-situ dose and radioactivity-in-air measurements for national monitoring networks. Five detectors were chosen for investigation; LaBr3(Ce), CeBr3, SiPM-CsI(Tl), Cd(Zn)Te and electromechanically-cooled HPGe. These detectors represent the full range of the price-performance matrix. Comparisons have been made of energy resolution, detection efficiency and minimum detectable activity by exposing each detector to a mixed radionuclide source drop-deposited across a filter. Other factors, such as internal radioactivity, linearity, size and cost have also been considered.

  14. Radiative and interfacial recombination in CdTe heterostructures

    SciTech Connect

    Swartz, C. H. Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H.; Zaunbrecher, K. N.

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  15. TFTR alpha extraction and measurement: Development and testing of advanced alpha detectors: Final report

    SciTech Connect

    Wehring, B.W.

    1988-02-15

    Advanced alpha-particle detectors made of heavy elements were investigated as alternatives to silicon surface-barrier detectors for the ''foil-neutralization technique'' of alpha-particle diagnostics in fusion reactors with high neutron backgrounds. From an extensive literature review, it was decided that HgI/sub 2/ would make a more suitable detector for alpha-particle diagnostics than other heavy element detectors such as CdTe. Thus, HgI/sub 2/ detectors were designed and fabricated. Experimental tests were performed to determine detector characteristics and detector responses to alpha particles. Radiation noise measurements were also performed using the North Carolina State University PULSTAR nuclear reactor for both the HgI/sub 2/ detectors and commercial Si(Au) surface barrier detectors. 15 refs., 1 fig.

  16. Two-dimensional CdTe photon counting imager for hard x-ray

    NASA Astrophysics Data System (ADS)

    Aoki, Toru; Morii, Hisashi; Ohashi, Gosuke; Tomita, Yasuhiro; Hatanaka, Yoshinori

    2006-08-01

    Two dimension real-time radiation imaging device for the hard ray with photon-counting type CdTe radiation detector was researched and developed. It is a device with the 35×35 arranged 1225 pixels including a virtual pixel in pixel pitch 1/10-inch pitch. All pixels are independently connected by original ASIC, and it has the energy distinction ability with five energy thresholds. The desecrated CdTe diodes were adopted in the photoelectric conversion elements by using eight ASIC of original development with maximum count rate 2Mcps / pixel and 5 energy distinction thresholds in this prototype. This prototype is a portable type device that can be the room temperature operation, it is possible to connect it with the laptop computer as a camera device of two dimension type to be able to take move of a real-time scene (an actual frame rate depends on signal conditioning PC) via USB2.0. The imaging area is about 3.5-inch corner. This time, it has been understood to be able to detect slight information that has tended to be overlooked up to now because it is possible to take picture of Am241, Co57, and Cs137 simultaneously, to try the animation taking picture that distinguishes three isotopes, and to set the best range of each at the same time as being able to distinguish these three kinds by the energy distinction clearly. It characterizes in corresponding to an incidence rate at the X-ray tube level, and it corresponds to taking picture of the animation of the penetration image that uses X rays.

  17. Electrostatic assembles and optical properties of Au CdTe QDs and Ag/Au CdTe QDs

    NASA Astrophysics Data System (ADS)

    Yang, Dongzhi; Wang, Wenxing; Chen, Qifan; Huang, Yuping; Xu, Shukun

    2008-09-01

    Au-CdTe and Ag/Au-CdTe assembles were firstly investigated through the static interaction between positively charged cysteamine-stabilized CdTe quantum dots (QDs) and negatively charged Au or core/shell Ag/Au nano-particles (NCs). The CdTe QDs synthesized in aqueous solution were capped with cysteamine which endowed them positive charges on the surface. Both Au and Ag/Au NCs were prepared through reducing precursors with gallic acid obtained from the hydrolysis of natural plant poly-phenols and favored negative charges on the surface of NCs. The fluorescence spectra of CdTe QDs exhibited strong quenching with the increase of added Au or Ag/Au NCs. Railey resonance scattering spectra of Au or Ag/Au NCs increased firstly and decreased latter with the concentration of CdTe QDs, accompanied with the solution color changing from red to purple and colorless at last. Experimental results on the effects of gallic acid, chloroauric acid tetrahydrate and other reagents demonstrated the static interaction occurred between QDs and NCs. This finding reveals the possibilities to design and control optical process and electromagnetic coupling in hybrid structures.

  18. Growth of CdZnTe Crystals the Bridgman Technique with Controlled Overpressures of Cd

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hu; Lehoczky, S. L.

    2008-01-01

    Cd(1-x)Zn(x)Te crystals with x = 0.15 and 0.20, were grown in this study by closed-ampoule directional solidification (Bridgman) technique with a controlled Cd overpressure. The growth ampoule was made of quartz with inner diameter from 20 to 40 mm and a tapered length of 2.5 cm at the growth tip. Both unseeded and seeded growths were performed with total material charges up to 400 g. After the loading of starting CdZnTe material, a typical amount of 2 g of Cd was also loaded inside a Cd reservoir basket, which was attached beneath the seal-off cup. The ampoule was sealed off under a vacuum below lxl0(exp -5) Torr. The sealed ampoule was placed inside a 4-zone Bridgman furnace - a Cd reservoir zone with a heat-pipe furnace liner on the top, followed by a hot zone, a booster heating zone and a cold zone at the bottom. The Cd zone was typically 300 to 400 C below the hot zone setting. High resistivity material has been obtained without any intentional dopants but has been reproducibly obtained with In doping. The crystalline and the electrical properties of the crystals will be reported.

  19. Direct Measurement of Mammographic X-Ray Spectra with a Digital CdTe Detection System

    PubMed Central

    Abbene, Leonardo; Gerardi, Gaetano; Principato, Fabio; Sordo, Stefano Del; Raso, Giuseppe

    2012-01-01

    In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate X-ray spectroscopy in mammography (1–30 keV). The DPP system performs a height and shape analysis of the detector pulses, sampled and digitized by a 14-bit, 100 MHz ADC. We show the results of the characterization of the detection system both at low and high photon counting rates by using monoenergetic X-ray sources and a nonclinical X-ray tube. The detection system exhibits excellent performance up to 830 kcps with an energy resolution of 4.5% FWHM at 22.1 keV. Direct measurements of clinical molybdenum X-ray spectra were carried out by using a pinhole collimator and a custom alignment device. A comparison with the attenuation curves and the half value layer values, obtained from the measured and simulated spectra, from an ionization chamber and from a solid state dosimeter, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research, calibration of dosimeters and advanced quality controls in mammography. PMID:22969406

  20. Radiation detectors: needs and prospects

    SciTech Connect

    Armantrout, G.A.

    1981-01-01

    Important applications for x- and ..gamma..-ray spectroscopy are found in prospecting, materials characterization, environmental monitoring, the life sciences, and nuclear physics. The specific requirements vary for each application with varying degrees of emphasis on either spectrometer resolution, detection efficiency, or both. Since no one spectrometer is ideally suited to this wide range of needs, compromises are usually required. Gas and scintillation spectrometers have reached a level of maturity, and recent interest has concentrated on semiconductor spectrometers. Germanium detectors are showing continuing refinement and are the spectrometers of choice for high resolution applications. The new high-Z semiconductors, such as CdTe and HgI/sub 2/, have shown steady improvement but are limited in both resolution and size and will likely be used only in applications which require their unique properties.

  1. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    DOE PAGES

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; ...

    2016-01-25

    In this study, Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance ptype doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu willmore » prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.« less

  2. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    SciTech Connect

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Metzger, Wyatt; Wei, Su -Huai

    2016-01-25

    In this study, Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance ptype doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  3. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    PubMed Central

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established. PMID:22754325

  4. Characterization of CdTe films deposited at various bath temperatures and concentrations using electrophoretic deposition.

    PubMed

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  5. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    SciTech Connect

    Yang, Ji-Hui; Park, Ji-Sang; Metzger, Wyatt; Yin, Wan-Jian; Wei, Su-Huai

    2016-01-28

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  6. Band gap of CdTe and Cd{sub 0.9}Zn{sub 0.1}Te crystals

    SciTech Connect

    Kosyachenko, L. A. Sklyarchuk, V. M.; Sklyarchuk, O. V.; Maslyanchuk, O. L.

    2011-10-15

    The band gap E{sub g} of the CdTe and Cd{sub 0.9}Zn{sub 0.1}Te crystals and its temperature dependence are determined by optical methods. This is motivated by considerable contradictoriness of the published data, which hampers the interpretation and calculation of characteristics of detectors of X-ray and {gamma} radiation based on these materials (E{sub g} = 1.39-1.54 and 1.51-1.6 eV for CdTe and Cd{sub 0.9}Zn{sub 0.1}Te, respectively). The used procedure of determination of E{sub g} is analyzed from the viewpoint of the influence of the factors leading to inaccuracies in determination of its value. The measurements are performed for well-purified high-quality samples. The acquired data for CdTe (E{sub g} = 1.47-1.48 eV) and Cd{sub 0.9}Zn{sub 0.1}Te (E{sub g} = 1.52-1.53 eV) at room temperature substantially narrow the range of accurate determination of E{sub g}.

  7. Modification of solid state CdZnTe (CZT) radiation detectors with high sensitivity or high resolution operation

    DOEpatents

    Washington, II, Aaron L; Duff, Martine C; Teague, Lucile C; Burger, Arnold; Groza, Michael

    2014-11-11

    An apparatus and process is provided to illustrate the manipulation of the internal electric field of CZT using multiple wavelength light illumination on the crystal surface at RT. The control of the internal electric field is shown through the polarization in the IR transmission image under illumination as a result of the Pockels effect.

  8. Choice of Substrate Material for Epitaxial CdTe Solar Cells

    SciTech Connect

    Song, Tao; Kanevce, Ana; Sites, James R.

    2015-06-14

    Epitaxial CdTe with high quality, low defect density, and high carrier concentration should in principle yield high-efficiency photovoltaic devices. However, insufficient effort has been given to explore the choice of substrate for high-efficiency epitaxial CdTe solar cells. In this paper, we use numerical simulations to investigate three crystalline substrates: silicon (Si), InSb, and CdTe each substrate material are generally discussed.

  9. Imaging performance comparison between a LaBr{sub 3}:Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera

    SciTech Connect

    Russo, P.; Mettivier, G.; Pani, R.; Pellegrini, R.; Cinti, M. N.; Bennati, P.

    2009-04-15

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr{sub 3}:Ce scintillator continuous crystal (49x49x5 mm{sup 3}) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14x14x1 mm{sup 3}) with 256x256 square pixels and a pitch of 55 {mu}m, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 {mu}m, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  10. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  11. Electrical properties of Au/CdZnTe/Au detectors grown by the boron oxide encapsulated Vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Turturici, A. A.; Abbene, L.; Gerardi, G.; Benassi, G.; Bettelli, M.; Calestani, D.; Zambelli, N.; Raso, G.; Zappettini, A.; Principato, F.

    2016-09-01

    In this work we report on the results of electrical characterization of new CdZnTe detectors grown by the Boron oxide encapsulated Vertical Bridgman technique (B-VB), currently produced at IMEM-CNR (Parma, Italy). The detectors, with gold electroless contacts, have different thicknesses (1 and 2.5 mm) and the same electrode layout, characterized by a central anode surrounded by a guard-ring electrode. Investigations on the charge transport mechanisms and the electrical contact properties, through the modeling of the measured current-voltage (I-V) curves, were performed. Generally, the detectors are characterized by low leakage currents at high bias voltages even at room temperature: 34 nA/cm2 (T=25 °C) at 10,000 V/cm, making them very attractive for high flux X-ray measurements, where high bias voltage operation is required. The Au/CdZnTe barrier heights of the devices were estimated by using the interfacial layer-thermionic-diffusion (ITD) model in the reverse bias voltage range. Comparisons with CdZnTe detectors, grown by Traveling Heater Method (THM) and characterized by the same electrode layout, deposition technique and resistivity, were also performed.

  12. Hg1-xCdxTe vapor deposition on CdZnTe substrates by Closed Space Sublimation technique

    NASA Astrophysics Data System (ADS)

    Rubio, Sandra; Sochinskii, Nikolai V.; Repiso, Eva; Tsybrii, Zinoviia; Sizov, Fiodor; Plaza, Jose Luis; Diéguez, Ernesto

    2017-01-01

    Closed Space Sublimation (CSS) technique has been studied to deposit Hg1-xCdxTe polycrystalline films on CdZnTe substrates at the improved pressure-temperature conditions. The experimental results on film characterization suggest that the CSS optimal conditions are the argon atmospheric pressure (1013 mbar) and the deposition temperature in the range of 500-550 °C. These conditions provide macro-defect free Hg1-xCdxTe films with the uniform size and surface distribution of polycrystals.

  13. Background measurements from balloon-born imaging CZT detectors

    NASA Astrophysics Data System (ADS)

    Jenkins, Jonathan A.; Narita, Tomohiko; Grindlay, Jonathan E.; Bloser, Peter F.; Stahle, Carl M.; Parker, Bradford H.; Barthelmy, Scott D.

    2003-03-01

    We report detector characteristics and background measurements from two prototype imaging CdZnTe (CZT) detectors flown on a scientific balloon payload in May 2001. The detectors are both platinum-contact 10 mm × 10 mm × 5 mm CZT crystals, each with a 4 × 4 array of pixels tiling the anode. One is made from IMARAD horizontal Bridgman CZT, the other from eV Products high-pressure Bridgman CZT. Both detectors were mounted side-by-side in a flip-chip configuration and read out by a 32-channel IDE VA/TA ASIC preamp/shaper. We enclosed the detectors in the same 40o field-of-view collimator used in our previously-reported September 2000 flight. I-V curves for the detectors are diode-like, and we find that the platinum contacts adhere significantly better to the CZT surfaces than gold to previosu detectors. The detectors and instrumentation performed well in a 20-hour balloon flight on 23/24 May 2001. Although we discovered a significant instrumental background component in flight, it was possible to measure and subtract this component from the spectra. The resulting IMARAD detector background spectrum reaches ~5×10-3 counts cm-2s-1keV-1 at 100 keV and has a power-law index of ~2 at hgih energies. The eV Products detector has a similar spectrum, although there is more uncertainty in the enregy scale because of calibration complications.

  14. Review of Photovoltaic Energy Production Using CdTe Thin-Film Modules: Extended Abstract Preprint

    SciTech Connect

    Gessert, T. A.

    2008-09-01

    CdTe has near-optimum bandgap, excellent deposition traits, and leads other technologies in commercial PV module production volume. Better understanding materials properties will accelerate deployment.

  15. Effects of CdTe growth conditions and techniques on the efficiency limiting defects and mechanisms in CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Rohatgi, A.; Chou, H. C.; Jokerst, N. M.; Thomas, E. W.; Ferekides, C.; Kamra, S.; Feng, Z. C.; Dugan, K. M.

    1996-01-01

    CdTe solar cells were fabricated by depositing CdTe films on CdS/SnO2/glass substrates using close-spaced sublimation (CSS) and metalorganic chemical vapor deposition (MOCVD). Te/Cd mole ratio was varied in the range of 0.02 to 6 in the MOCVD growth ambient in an attempt to vary the native defect concentration. Polycrystalline CdTe layers grown by MOCVD and CSS both showed average grain size of about 2 μm. However, the CdTe films grown by CSS were found to be less faceted and more dense compared to the CdTe grown by MOCVD. CdTe growth techniques and conditions had a significant impact on the electrical characteristics of the cells. The CdTe solar cells grown by MOCVD in the Te-rich growth condition and by the CSS technique gave high cell efficiencies of 11.5% and 12.4%, respectively, compared to 6.6% efficient MOCVD cells grown in Cd-rich conditions. This large difference in efficiency is explained on the basis of (a) XRD measurements which showed a higher degree of atomic interdiffusion at the CdS/CdTe interface in high performance devices, (b) Raman measurements which endorsed more uniform and preferred grain orientation by revealing a sharp CdTe TO mode in the high efficiency cells, and (c) carrier transport mechanism which switched from tunneling/interface recombination to depletion region recombination in the high efficiency cells. In this study, Cu/Au layers were evaporated on CdTe for the back contact. Lower efficiency of the Te-rich MOCVD cells, compared to the CSS cells, was attributed to contact related additional loss mechanisms, such as Cd pile-up near Cu/CdTe interface which can give rise to Cd-vacancy defects in the bulk, and higher Cu concentration in the CdTe layer which can cause shunts in the device. Finally, SIMS measurements on the CdTe films of different crystallinity and grain size confirmed that grain boundaries are the main conduits for Cu migration into the CdTe film. Thus larger CdTe grain size or lower grain boundary area per unit volume

  16. Development of EXITE3, Imaging Detectors and a Long Duration Balloon Gondola

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In this Report we summarize the work conducted for the EXITE program under grant NAG5-5103. This grant supported the ongoing EXITE program at Harvard for the development of imaging hard x-ray detectors and telescopes over the 3 year period 1997-2000 with a one year extension to 2001 to transition to the next SR&T grant in this program. Work was conducted in three major parts: analysis of the EXITE2 balloon flight data (from our May 1997 flight); development of pixellated imaging Cd-Zn-Te detector arrays and readout systems for the proposed EXITE3 detector and telescope; and development of systems for a Long Duration Balloon (LDB) gondola. Progress on all three major aspects of this research is summarized for each of the years of this grant.

  17. Design and Performance of the Soft Gamma-ray Detector for the NeXT mission

    SciTech Connect

    Tajima, Hiroyasu; Kamae, T.; Madejski, G.; Mitani, T.; Nakazawa, K.; Tanaka, T.; Takahashi, T.; Watanabe, S.; Fukazawa, Y.; Ikagawa, T.; Kataoka, J.; Kokubun, M.; Makishima, K.; Terada, Y.; Nomachi, M.; Tashiro, M.; /SLAC /Sagamihara, Inst. Space Astron. Sci. /Tokyo U. /Hiroshima U. /Tokyo Inst. Tech. /Wako, RIKEN /Osaka U. /Saitama U.

    2006-04-19

    The Soft Gamma-ray Detector (SGD) on board the NeXT (Japanese future high energy astrophysics mission) is a Compton telescope with narrow field of view (FOV), which utilizes Compton kinematics to enhance its background rejection capabilities. It is realized as a hybrid semiconductor gamma-ray detector which consists of silicon and CdTe (cadmium telluride) detectors. It can detect photons in a wide energy band (0.05-1 MeV) at a background level of 5 x 10{sup -7} counts/s/cm{sup 2}/keV; the silicon layers are required to improve the performance at a lower energy band (<0.3 MeV). Excellent energy resolution is the key feature of the SGD, allowing it to achieve both high angular resolution and good background rejection capability. An additional capability of the SGD, its ability to measure gamma-ray polarization, opens up a new window to study properties of astronomical objects. We will present the development of key technologies to realize the SGD: high quality CdTe, low noise front-end ASIC and bump bonding technology. Energy resolutions of 1.7 keV (FWHM) for CdTe pixel detectors and 1.1 keV for Si strip detectors have been measured. We also present the validation of Monte Carlo simulation used to evaluate the performance of the SGD.

  18. Design and performance of soft gamma-ray detector for NeXT mission

    SciTech Connect

    Tajima, H.; Kamae, T.; Madejski, G.; Takahashi, T.; Nakazawa, K.; Watanabe, S.; Mitani, T.; Tanaka, T.; Fukazawa, Y.; Kataoka, J.; Ikagawa, T.; Kokubun, M.; Makishima, K.; Terada, Y.; Nomachi, M.; Tashiro, M.; /Saitama U.

    2005-05-04

    The Soft Gamma-ray Detector (SGD) on board NeXT (Japanese future high energy astrophysics mission) is a Compton telescope with narrow field of view, which utilizes Compton kinematics to enhance its background rejection capabilities. It is realized as a hybrid semiconductor gamma-ray detector which consists of silicon and Cadmium Telluride (CdTe) detectors. It can detect photons in an energy band 0.05-1 MeV at a background level of 5 x 10{sup -7} counts/s/cm{sup 2}/keV; the silicon layers are required to improve the performance at a lower energy band (<0.3 MeV). Excellent energy resolution is the key feature of the SGD to achieve both high angular resolution and good background rejection capability. Its ability to measure gamma-ray polarization opens up a new window to study gamma-ray emission in the universe. We will present the development of key technologies to realize the SGD; high quality CdTe, low noise front-end VLSI and bump bonding technology. Energy resolutions of 1.7 keV (FWHM) for CdTe pixel detectors and 1.1 keV for silicon strip detectors have been measured. We also present the validation of Monte Carlo simulation used to evaluate the performance of the SGD.

  19. Low cost sprayed CdTe solar cell research

    NASA Astrophysics Data System (ADS)

    Squillante, M.; Turcotte, R.; Lis, S.; Serreze, H. B.; Entine, G.

    1980-06-01

    Experiments were carried out to optimize the conditions of the chemical reaction and the physical parameters of the spray process in order to produce high quality CdTe thin films. Films containing 95% or more of CdTe were produced by the reaction of (MH4) 2TeO4 with cadmium salts in the presence of a reducing agent. The physical quality of the films improved so that recent ones have been smoother and more uniform. Furthermore, photoconductive effects were observed in many of the films. This progress is partly due to the removal of oxygen by an efficient purge of the spray box and partly due to an increased understanding and control of the spray pyrolysis process.

  20. An NMR quantum computer of the semiconductor CdTe

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Goto, A.; Hashi, K.; Ohki, S.

    2002-12-01

    We propose a method to implement a quantum computer by solid-state NMR. We can use the J-coupling for the quantum gate in CdTe. Both Cd and Te have two isotopes with spin 1/2, then we can have 4-qubits. The decoherence by dipole interaction may be minimized by preparing the isotope superlattice grown in the order of— 111Cd- 123Te- 113Cd- 125Te—in the [111] direction and by applying the magnetic field in the direction of [100], the magic angle of the dipole interaction. The optical pumping technique can be used in CdTe to make the initialization of the qubits.

  1. Phosphorus Doping of Polycrystalline CdTe by Diffusion

    SciTech Connect

    Colegrove, Eric; Albin, David S.; Guthrey, Harvey; Harvey, Steve; Burst, James; Moutinho, Helio; Farrell, Stuart; Al-Jassim, Mowafak; Metzger, Wyatt K.

    2015-06-14

    Phosphorus diffusion in single crystal and polycrystalline CdTe material is explored using various methods. Dynamic secondary ion mass spectroscopy (SIMS) is used to determine 1D P diffusion profiles. A 2D diffusion model is used to determine the expected cross-sectional distribution of P in CdTe after diffusion anneals. Time of flight SIMS and cross-sectional cathodoluminescence corroborates expected P distributions. Devices fabricated with diffused P exhibit hole concentrations up to low 1015 cm-3, however a subsequent activation anneal enabled hole concentrations greater than 1016 cm-3. CdCl2 treatments and Cu based contacts were also explored in conjunction with the P doping process.

  2. CdTe nanoparticles synthesized by laser ablation

    SciTech Connect

    Semaltianos, N. G.; Logothetidis, S.; Perrie, W.; Romani, S.; Potter, R. J.; Dearden, G.; Watkins, K. G.; Sharp, M.

    2009-07-20

    Nanoparticle generation by laser ablation of a solid target in a liquid environment is an easy, fast, and 'green' method for a large scale production of nanomaterials with tailored properties. In this letter we report the synthesis of CdTe nanoparticles by femtosecond laser [387 nm, 180 fs, 1 kHz, pulse energy=6 {mu}J (fluence=1.7 J/cm{sup 2})] ablation of the target material. Nanoparticles with diameters from {approx}2 up to {approx}25 nm were observed to be formed in the colloidal solution. Their size distribution follows the log-normal function with a statistical median diameter of {approx_equal}7.1 nm. Their crystal structure is the same as that of the bulk material (cubic zincblende) and they are slightly Cd-rich (Cd:Te percentage ratio {approx}1:0.9). Photoluminescence emission from the produced nanoparticles was detected in the deep red ({approx}652 nm)

  3. Dependence of CdTe response of bias history

    SciTech Connect

    Sites, J.R.; Sasala, R.A.; Eisgruber, I.L.

    1995-11-01

    Several time-dependent effect have been observed in CdTe cells and modules in recent years. Some appear to be related to degradation at the back contact, some to changes in temperature at the thin-film junction, and some to the bias history of the cell or module. Back-contact difficulties only occur in some cases, and the other two effects are reversible. Nevertheless, confusion in data interpretation can arise when these effects are not characterized. This confusion can be particularly acute when more than one time-dependent effect occurs during the same measurement cycle. The purpose of this presentation is to help categorize time-dependent effects in CdTe and other thin-film cells to elucidate those related to bias history, and to note differences between cell and module analysis.

  4. Native defects in MBE-grown CdTe

    SciTech Connect

    Olender, Karolina; Wosinski, Tadeusz; Makosa, Andrzej; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2013-12-04

    Deep-level traps in both n- and p-type CdTe layers, grown by molecular-beam epitaxy on GaAs substrates, have been investigated by means of deep-level transient spectroscopy (DLTS). Four of the traps revealed in the DLTS spectra, which displayed exponential kinetics for capture of charge carriers into the trap states, have been assigned to native point defects: Cd interstitial, Cd vacancy, Te antisite defect and a complex formed of the Te antisite and Cd vacancy. Three further traps, displaying logarithmic capture kinetics, have been ascribed to electron states of treading dislocations generated at the mismatched interface with the substrate and propagated through the CdTe layer.

  5. X-ray detector physics and applications; Proceedings of the Meeting, San Diego, CA, July 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor)

    1993-01-01

    Recent developments in X-ray and hard X-ray imaging detector, high-intensity sources, hard X-ray imaging optics, calibration, and detection technologies are discussed. Particular attention is given to a high-MTF X-ray image intensifier, application of monolithic CdZnTe linear solid state ionization detectors for X-ray imaging, magnetic response of high-Tc superconductors to X-ray radiation and detection of X-rays, laboratory soft X-ray source with foil target, detection of explosive materials using nuclear radiation, energy response of astronomical CCD X-ray detectors, calibration techniques for high-flux X-ray detectors, fabrication of grazing-incidence optics using flow-polishing techniques, and numerical simulations for capillary-based X-ray optics. (No individual items are abstracted in this volume)

  6. Optical modeling of graphene contacted CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  7. Challenges in p-type Doping of CdTe

    NASA Astrophysics Data System (ADS)

    McCoy, Jedidiah; Swain, Santosh; Lynn, Kelvin

    We have made progress in defect identification of arsenic and phosphorous doped CdTe to understand the self-compensation mechanism which will help improve minority bulk carrier lifetime and net acceptor density. Combining previous measurements of un-doped CdTe, we performed a systematic comparison of defects between different types of crystals and confirmed the defects impacting the doping efficiency. CdTe bulk crystals have been grown via vertical Bridgman based melt growth technique with varying arsenic and phosphorous dopant schemes to attain p-type material. Furnace temperature profiles were varied to influence dopant solubility. Large carrier densities have been reproducibly obtained from these boules indicating successful incorporation of dopants into the lattice. However, these values are orders of magnitude lower than theoretical solubility values. Infrared Microscopy has revealed a plethora of geometrically abnormal second phase defects and X-ray Fluorescence has been used to identify the elemental composition of these defects. We believe that dopants become incorporated into these second phase defects as Cd compounds which act to inhibit dopant solubility in the lattice.

  8. Spin relaxation of electrons in bulk CdTe

    NASA Astrophysics Data System (ADS)

    Sprinzl, Daniel; Nahalkova, Petra; Kunc, Jan; Maly, Petr; Horodysky, Petr; Grill, Roman; Belas, Eduard; Franc, Jan; Nemec, Petr

    2007-03-01

    We report on the measurements of the spin relaxation time T1 of photo-excited electrons in bulk CdTe. The carrier dynamics were investigated by transient absorption experiments using 80 fs circularly polarized laser pulses at sample temperatures from 20 to 300 K. We studied both p and n type doped CdTe samples, which were prepared in the form of thin platelets from the crystals grown by the modified Bridgman method. The obtained results are compared with the spin relaxation times reported for other semiconductors with the same crystal structure (e.g., GaAs [1]). Finally, the relative contributions of the D'yakonov-Perel, Elliott-Yafet, Bir-Aronov-Pikus, and other mechanisms to the measured spin relaxation times in CdTe are discussed. This work was supported by the Grant Agency of the Czech Republic (grant 202/03/H003), by the Ministry of Education of the Czech Republic in the framework of the research centre LC510 and the research plan MSM 0021620834. [1] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).

  9. CdTe Feedstock Development and Validation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00280

    SciTech Connect

    Albin, D.

    2011-05-01

    The goal of this work was to evaluate different CdTe feedstock formulations (feedstock provided by Redlen) to determine if they would significantly improve CdTe performance with ancillary benefits associated with whether changes in feedstock would affect CdTe cell processing and possibly reliability of cells. Feedstock also included attempts to intentionally dope the CdTe with pre-selected elements.

  10. Single-Crystal CdTe Homojunction Structures for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Su, Peng-Yu; Dahal, Rajendra; Wang, Gwo-Ching; Zhang, Shengbai; Lu, Toh-Ming; Bhat, Ishwara B.

    2015-09-01

    We report two different CdTe homojunction solar cell structures. Single-crystal CdTe homojunction solar cells were grown on GaAs single-crystal substrates by metalorganic chemical vapor deposition. Arsenic and iodine were used as dopants for p-type and n-type CdTe, respectively. Another homojunction solar cell structure was fabricated by growing n-type CdTe directly on bulk p-type CdTe single-crystal substrates. The electrical properties of the different layers were characterized by Hall measurements. When arsine was used as arsenic source, the highest hole concentration was ~6 × 1016 cm-3 and the activation efficiency was ~3%. Very abrupt arsenic doping profiles were observed by secondary ion mass spectrometry. For n-type CdTe with a growth temperature of 250°C and a high Cd/Te ratio the electron concentration was ~4.5 × 1016 cm-3. Because of the 300 nm thick n-type CdTe layer, the short circuit current of the solar cell grown on the bulk CdTe substrate was less than 10 mA/cm2. The open circuit voltage of the device was 0.86 V. According to a prediction based on measurement of short circuit current density ( J sc) as a function of open circuit voltage ( V oc), an open circuit voltage of 0.92 V could be achieved by growing CdTe solar cells on bulk CdTe substrates.

  11. CZT Virtual Frisch-grid Detector: Principles and Applications

    SciTech Connect

    Cui,Y.; Bolotnikov, A.; Camarda, G.; Hossain, A.; James, R. B.

    2009-03-24

    Cadmium Zinc Telluride (CdZnTe or CZT) is a very attractive material for using as room-temperature semiconductor detectors, because it has a wide bandgap and a high atomic number. However, due to the material's poor hole mobility, several special techniques were developed to ensure its suitability for radiation detection. Among them, the virtual Frisch-grid CZT detector is an attractive option, having a simple configuration, yet delivering an outstanding spectral performance. The goal of our group in Brookhaven National Laboratory (BNL) is to improve the performance of Frisch-ring CZT detectors; most recently, that effort focused on the non-contacting Frisch-ring detector, allowing us to build an inexpensive, large-volume detector array with high energy-resolution and a large effective area. In this paper, the principles of virtual Frisch-grid detectors are described, especially BNL's innovative improvements. The potential applications of virtual Frisch-grid detectors are discussed, and as an example, a hand-held gamma-ray spectrometer using a CZT virtual Frischgrid detector array is introduced, which is a self-contained device with a radiation detector, readout circuit, communication circuit, and high-voltage supply. It has good energy resolution of 1.4% (FWHM of 662-keV peak) with a total detection volume of {approx}20 cm{sup 3}. Such a portable inexpensive device can be used widely in nonproliferation applications, non-destructive detection, radiation imaging, and for homeland security. Extended systems based on the same technology have potential applications in industrial- and nuclear-medical-imaging.

  12. RADIATION DETECTOR

    DOEpatents

    Wilson, H.N.; Glass, F.M.

    1960-05-10

    A radiation detector of the type is described wherein a condenser is directly connected to the electrodes for the purpose of performing the dual function of a guard ring and to provide capacitance coupling for resetting the detector system.

  13. Spectroscopic studies on the interaction between CdTe nanoparticles and lysozyme

    NASA Astrophysics Data System (ADS)

    Wu, Yun-Li; He, Fei; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2008-12-01

    Nanoparticles of cadmium telluride (CdTe) coated with thioglycolic acid (TGA) were prepared in the water phase. The interaction between CdTe nanoparticles (NPs) and lysozyme (Lyz) was investigated by fluorescence and circular dichroism (CD) spectroscopy at pH 7.40. It was proved that the fluorescence quenching of Lyz by CdTe NPs was mainly a result of the formation of CdTe-Lyz complex. By the fluorescence quenching results, the Stern-Volmer quenching constant ( KSV), binding constant ( Ka) and binding sites ( n) were calculated. The binding distance ( r) between Lyz (the donor) and CdTe NPs (the acceptor) was obtained according to fluorescence resonance energy transfer (FRET). Gradual addition of CdTe NPs to the solution of Lyz led to a marked increase in fluorescence polarization ( P) of Lyz, which indicated that CdTe NPs were located in a restricted environment of Lyz. The effect of CdTe NPs on the conformation of Lyz has been analyzed by means of synchronous fluorescence spectra and CD spectra, which provided the evidence that the secondary structure of Lyz has been changed by the interaction of CdTe NPs with Lyz.

  14. Fractal features of CdTe thin films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hosseinpanahi, Fayegh; Raoufi, Davood; Ranjbarghanei, Khadijeh; Karimi, Bayan; Babaei, Reza; Hasani, Ebrahim

    2015-12-01

    Cadmium telluride (CdTe) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature (RT). The film deposition was performed for 5, 10, and 15 min at power of 30 W with a frequency of 13.56 MHz. The crystal structure of the prepared CdTe thin films was studied by X-ray diffraction (XRD) technique. XRD analyses indicate that the CdTe films are polycrystalline, having zinc blende structure of CdTe irrespective of their deposition time. All CdTe films showed a preferred orientation along (1 1 1) crystalline plane. The surface morphology characterization of the films was studied using atomic force microscopy (AFM). The quantitative AFM characterization shows that the RMS surface roughness of the prepared CdTe thin films increases with increasing the deposition time. The detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe thin films have multifractal nature. The complexity, roughness of the CdTe thin films and strength of the multifractality increase as deposition time increases.

  15. Metalorganic Vapor Phase Epitaxial Growth of (211)B CdTe on Nanopatterned (211)Si

    DTIC Science & Technology

    2012-05-15

    SUBJECT TERMS CdTe Epitaxy, Molecular Transfer Lithography, Dislocation Reduction Shashidhar Shintri*,1, , Sunil Rao2, , Charles Schaper3, , Witold...2012) / DOI 10.1002/pssc.201100653 Metalorganic vapor phase epitaxial growth of (211)B CdTe on nanopatterned (211)Si Shashidhar Shintri*,1, Sunil

  16. The High Energy Detector of Simbol-X

    SciTech Connect

    Meuris, A.; Limousin, O.; Blondel, C.; Le Mer, I.; Pinsard, F.; Cara, C.; Goetschy, A.; Martignac, J.; Laurent, P.; Chipaux, R.; Rio, Y.; Fontignie, J.; Horeau, B.; Ferrando, P.; Lugiez, F.; Gevin, O.; Tauzin, G.; Herve, S.; Authier, M.

    2009-05-11

    The High Energy Detector (HED) is one of the three detection units on board the Simbol-X detector spacecraft. It is placed below the Low Energy Detector so as to collect focused photons in the energy range from 8 to 80 keV. It consists of a mosaic of 64 independent cameras, divided in 8 sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique component. The status of the HED design will be reported. The promising results obtained from the first micro-camera prototypes called Caliste 64 and Caliste 256 will be presented to illustrate the expected performance of the instrument.

  17. The High Energy Detector of Simbol-X

    NASA Astrophysics Data System (ADS)

    Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Le Mer, I.; Pinsard, F.; Cara, C.; Goetschy, A.; Martignac, J.; Tauzin, G.; Hervé, S.; Laurent, P.; Chipaux, R.; Rio, Y.; Fontignie, J.; Horeau, B.; Authier, M.; Ferrando, P.

    2009-05-01

    The High Energy Detector (HED) is one of the three detection units on board the Simbol-X detector spacecraft. It is placed below the Low Energy Detector so as to collect focused photons in the energy range from 8 to 80 keV. It consists of a mosaic of 64 independent cameras, divided in 8 sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique component. The status of the HED design will be reported. The promising results obtained from the first micro-camera prototypes called Caliste 64 and Caliste 256 will be presented to illustrate the expected performance of the instrument.

  18. NREL Collaboration Breaks 1-Volt Barrier in CdTe Solar Technology

    SciTech Connect

    2016-05-01

    NREL scientists have worked with Washington State University and the University of Tennessee to improve the maximum voltage available from CdTe solar cells. Changes in dopants, stoichiometry, interface design, and defect chemistry improved the CdTe conductivity and carrier lifetime by orders of magnitude, thus enabling CdTe solar cells with open-circuit voltages exceeding 1 volt for the first time. Values of current density and fill factor for CdTe solar cells are already at high levels, but sub-par voltages has been a barrier to improved efficiencies. With voltages pushed beyond 1 volt, CdTe cells have a path to produce electricity at costs less than fossil fuels.

  19. Health and environmental hazards of CdTe photovoltaic module production, use and decommissioning

    NASA Astrophysics Data System (ADS)

    Moskowitz, P. D.; Steinberger, H.; Thumm, W.

    Health and environmental (H&E) risks presented by CdTe photovoltaic module production, use and decommissioning have been reviewed and discussed by several authors. Several H&E concerns exist. The estimated risks are based on extrapolations of toxicity, environmental mobility, and bioavailability data for other inorganic cadmium compounds. Little information, however, is available about CdTe itself. In response to the increased interest in CdTe, Brookhaven National Laboratory (BNL) has been engaged in a cooperative research program with the National Institute of Environmental Health Sciences (NIEHS), the Fraunhofer Institute for Solid State Technology (IFT), and the GSF Institute of Chemical Ecology to develop fundamental toxicological and environmental data for CdTe. This paper describes the results of these studies, and their potential implications with respect to the H&E hazards presented by CdTe module production, use and decommissioning.

  20. Health and environmental hazards of CdTe photovoltaic module production, use and decommissioning

    SciTech Connect

    Moskowitz, P.D.; Steinberger, H.; Thumm, W.

    1995-02-01

    Health and environmental (H&E) risks presented by CdTe photovoltaic module production, use and decommissioning have been reviewed and discussed by several authors. Several H&E concerns exit. The estimated risks are based on extrapolations of toxicity, environmental mobility, and bioavailability data for other inorganic cadmium compounds. Little information, however, is available about CdTe itself. In response to the increased interest in CdTe, Brookhaven National Laboratory (BNL) has been engaged in a cooperative research program with the National Institute of Environmental Health Sciences (NIEHS), the Fraunhofer Institute for Solid State Technology (IFT), and the GSF Institute of Chemical Ecology to develop fundamental toxicological and environmental data for CdTe. This paper describes the results of these studies, and their potential implications with respect to the H&E hazards presented by CdTe module production, use and decommissioning.

  1. Aqueous phase synthesis of CdTe quantum dots for biophotonics.

    PubMed

    Yong, Ken-Tye; Law, Wing-Cheung; Roy, Indrajit; Jing, Zhu; Huang, Huijie; Swihart, Mark T; Prasad, Paras N

    2011-01-01

    Over the past few years, CdTe quantum dots have been demonstrated as powerful probes for biophotonics applications. The aqueous phase synthesis technique remains the best approach to make high quality CdTe QDs in a single-pot process. CdTe QDs prepared directly in the aqueous phase can have quantum yield as high as 80%. In addition, the surface of CdTe QDs prepared using the aqueous phase technique is functionalized with reactive groups that enable them to be directly conjugated with specific ligands for targeted delivery and sensing. In this contribution, we review recent progress in fabricating aqueous CdTe QDs and exploiting their optical properties in novel approaches to biomedical imaging and sensing applications.

  2. Results of ground tests and calibration of x-ray focal plane detectors for ART-XC/SRG instrument

    NASA Astrophysics Data System (ADS)

    Levin, Vasily; Pavlinsky, Mikhail; Akimov, Valery; Kuznetsova, Maria; Rotin, Alexey; Krivchenko, Aleksandr; Lapshov, Igor; Oleynikov, Vladimir

    2016-07-01

    The Russian Space Research Institute (IKI) has developed seven flight models and three spare models of the X-ray detectors for the ART-XC/SRG telescope. Each detector situated in the focal plane of ART-XC X-ray optics and includes CdTe die, front-end electronics, data processing, storage and telemetry units. In the Space Research Institute performed a vibration, thermal cycling and thermal vacuum tests of X-ray detectors. During this tests have been studied the leakage current stability, polarization rate, spectroscopic and imaging performance in the working temperature range. The current status of the X-ray detectors development and testing presented.

  3. Development of gamma-ray detector for lunar and planetary landing mission

    NASA Astrophysics Data System (ADS)

    Mitani, Takefumi; Inoue, Yousuke; Kobayashi, Shingo; Iijima, Yuichi; Takashima, Takeshi

    For a study of the origin and eveolution of a planet, its chemical composition holds an important information. The abundances of certain elements with different condensation temperature and with various types of geochemical behavior can provide valuable information for its history. Gamma-ray lines from the planet are generally used to determine the chemical composition of a planet without atmosphere. These gamma-ray lines are produded by the decay of nat-ural radionuclides or nuclear-reactions between planetary material and galactic cosmic rays. Abundance of elements is determined by measuring the intensity of gamma-ray lines specific to each element. From a orbital remote-sensing observation, global distribution of elements is acquired but its spatial resolution is limited, sim 10s km, because of difficulty of collimation of gamma-rays. Therefore in-situ gamma-ray observation is necessary to measure the elemental abundances in meter-scale topography. To survey the gamma-ray flux, a gamma-ray detec-tor aboard a rover on a planet is desired. Because of its limited electrical power and weight resources, we are developing small gamma-ray detector using a Cadmium Telluride (CdTe) semiconductor. CdTe has been regarded as a promising semiconductor material for gamma-ray detector because of such features as room temperature operation and large band-gap energy. The high atomic number of the materials gives a high absorption efficiency. On the surface of the moon, CdTe must be used in high temperature condition without any cooling system. Since CdTe spectral performance above room temperature is not established, we have examined the detector property in detail up to 40 degrees Celsius. Based on the results, we design total observation system and estimate the sensitivity of specific elements. Here we present the development status of gamma-ray detector system and the sensitivty estimate for the lunar observation.

  4. Spatial Pileup Considerations for Pixellated Gamma -ray Detectors

    PubMed Central

    Furenlid, L.R.; Clarkson, E.; Marks, D.G.; Barrett, H.H.

    2015-01-01

    High-spatial-resolution solid-state detectors being developed for gamma-ray applications benefit from having pixel dimensions substantially smaller than detector slab thickness. This leads to an enhanced possibility of charge partially spreading to neighboring pixels as a result of diffusion (and secondary photon emission) transverse to the drift direction. An undesirable consequence is the effective magnification of the event “size“ and the spatial overlap issues which result when two photons are absorbed in close proximity within the integration time of the detector/readout system. In this work, we develop the general statistics of spatial pileup in imaging systems and apply the results to detectors we are developing based on pixellated cadmium zinc telluride (CdZnTe) and a multiplexing application-specific integrated circuit (ASIC) readout. We consider the limitations imposed on total count rate capacity and explore in detail the consequences for the LISTMODE data-acquisition strategy. Algorithms are proposed for identifying and, where possible, resolving overlapping events by maximum-likelihood estimation. The efficacy and noise tolerance of these algorithms will be tested with a combination of simulated and experimental data in future work. PMID:26568675

  5. Influence of EDTA{sup 2-} on the hydrothermal synthesis of CdTe nanocrystallites

    SciTech Connect

    Gong Haibo; Hao Xiaopeng; Xu Xiangang

    2011-12-15

    Transformation from Te nanorods to CdTe nanoparticles was achieved with the assistance of EDTA as a ligand under hydrothermal conditions. Experimental results showed that at the beginning of reaction Te nucleated and grew into nanorods. With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. Finally, nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were obtained. The effects of EDTA on the morphology and formation of CdTe nanoparticles were discussed in consideration of the strong ligand-effect of EDTA, which greatly decreased the concentration of Cd{sup 2+}. Furthermore, the possible formation process of CdTe nanoparticles from Te nanorods was further proposed. The crystal structure and morphology of the products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). - Graphical Abstract: Firstly, Te nucleated and grew into nanorods in the presence of EDTA{sup 2-}. Then CdTe nucleus began to emerge on Te nanorods and finally monodispersed CdTe nanoparticles were obtained. Highlights: Black-Right-Pointing-Pointer EDTA serves as a strong ligand with Cd{sup 2+}. Black-Right-Pointing-Pointer The existence of EDTA constrains the nucleation of CdTe and promotes the formation of Te nanorods. Black-Right-Pointing-Pointer With the proceeding of reaction, CdTe nucleus began to emerge on the surface, especially on the tips of Te nanorods. Black-Right-Pointing-Pointer Nearly monodispersed hexagonal CdTe nanoparticles with diameters of about 200 nm were finally obtained.

  6. Imaging performance of the hybrid pixel detectors XPAD3-S

    NASA Astrophysics Data System (ADS)

    Brunner, F. Cassol; Clemens, J. C.; Hemmer, C.; Morel, C.

    2009-03-01

    Hybrid pixel detectors, originally developed for tracking particles in high-energy physics experiments, have recently been used in material sciences and macromolecular crystallography. Their capability to count single photons and to apply a threshold on the photon energy suggests that they could be optimal digital x-ray detectors in low energy beams such as for small animal computed tomography (CT). To investigate this issue, we have studied the imaging performance of photon counting hybrid pixel detectors based on the XPAD3-S chip. Two detectors are considered, connected either to a Si or to a CdTe sensor, the latter being of interest for its higher efficiency. Both a standard 'International Electrotechnical Commission' (IEC) mammography beam and a beam used for mouse CT results published in the literature are employed. The detector stability, linearity and noise are investigated as a function of the dose for several imaging exposures (~0.1-400 µGy). The perfect linearity of both detectors is confirmed, but an increase in internal noise for counting statistics higher than ~5000 photons has been found, corresponding to exposures above ~110 µGy and ~50 µGy for the Si and CdTe sensors, respectively. The noise power spectrum (NPS), the modulation transfer function (MTF) and the detective quantum efficiency (DQE) are then measured for two energy threshold configurations (5 keV and 18 keV) and three doses (~3, 30 and 300 µGy), in order to obtain a complete estimation of the detector performances. In general, the CdTe sensor shows a clear superiority with a maximal DQE(0) of ~1, thanks to its high efficiency (~100%). The DQE of the Si sensor is more dependent on the radiation quality, due to the energy dependence of its efficiency its maximum is ~0.4 with respect to the softer radiation. Finally, we compare the XPAD3-S DQE with published curves of other digital devices in a similar radiation condition. The XPAD3-S/CdTe detector appears to be the best with the highest

  7. Degradation and capacitance: voltage hysteresis in CdTe devices

    NASA Astrophysics Data System (ADS)

    Albin, D. S.; Dhere, R. G.; Glynn, S. C.; del Cueto, J. A.; Metzger, W. K.

    2009-08-01

    CdS/CdTe photovoltaic solar cells were made on two different transparent conducting oxide (TCO) structures in order to identify differences in fabrication, performance, and reliability. In one set of cells, chemical vapor deposition (CVD) was used to deposit a bi-layer TCO on Corning 7059 borosilicate glass consisting of a F-doped, conductive tin-oxide (cSnO2) layer capped by an insulating (undoped), buffer (iSnO2) layer. In the other set, a more advanced bi-layer structure consisting of sputtered cadmium stannate (Cd2SnO4; CTO) as the conducting layer and zinc stannate (Zn2SnO4; ZTO) as the buffer layer was used. CTO/ZTO substrates yielded higher performance devices however performance uniformity was worse due to possible strain effects associated with TCO layer fabrication. Cells using the SnO2-based structure were only slightly lower in performance, but exhibited considerably greater performance uniformity. When subjected to accelerated lifetime testing (ALT) at 85 - 100 °C under 1-sun illumination and open-circuit bias, more degradation was observed in CdTe cells deposited on the CTO/ZTO substrates. Considerable C-V hysteresis, defined as the depletion width difference between reverse and forward direction scans, was observed in all Cu-doped CdTe cells. These same effects can also be observed in thin-film modules. Hysteresis was observed to increase with increasing stress and degradation. The mechanism for hysteresis is discussed in terms of both an ionic-drift model and one involving majority carrier emission in the space-charge region (SCR). The increased generation of hysteresis observed in CdTe cells deposited on CTO/ZTO substrates suggests potential decomposition of these latter oxides when subjected to stress testing.

  8. Synthesis and Properties of CdTe Films

    DTIC Science & Technology

    1988-06-20

    34Growth and Characterization of CdTe, Mn.Cdl.,Te, ZnxCdl.iTe, and CdSe Tel.y Crystals", K.Y. Lay, N.C. Giles-Taylor, K.J. Bachmann, and J.F. Schet.Jna, J...Characterization of High Quality, Low Defect, Subgrain Free Cadmium Telluride by a Modified Horizontal Bridgman Technique", W.P. Allred, A.A. Khan, C.J. Johnson, N.C...Characterization of High Quality, Low Defect, Subgrain Free Cadmium Telluride by a Modified Horizontal Bridgman Technique", W.P. Allred, A.A. Khan, C.J

  9. High-Efficiency, Commercial Ready CdTe Solar Cells

    SciTech Connect

    Sites, James R.

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  10. Study of tellurium precipitates in CdTe crystals

    NASA Technical Reports Server (NTRS)

    Jayatirtha, H. N.; Henderson, D. O.; Burger, A.; Volz, M. P.

    1993-01-01

    The effect of tellurium precipitates was studied in medium resistivity (10 exp 3-10 exp 6 ohm cm) undoped and Cl-doped CdTe using differential scanning calorimetry (DSC) and mid-infrared spectroscopy and the results were correlated with near-infrared microscopy photographs. When present in a significant quantity (about 0.25 wt pct), we show that Te precipitates are detectable using DSC measurements. In the mid-infrared, the contribution of the absorption by free-carriers is negligible, and therefore, the effect of the Te precipitates in these crystals can be considered uncoupled from the effects of Cd vacancies.

  11. Metal Contacts to Cadmium Telluride (CdTe).

    DTIC Science & Technology

    1987-10-01

    WILLIAMS, I.M. DHARMADASA, M.H. PATTERSON’, C. MAANI** and N.M. FORSYTH Physics Deparment, University College, PO Box 78, Cardiff, UK Received 10 June 1985...North-Holland Physics Publishing Division) -43- 324 R. H. Williams et al. / Metal contacts to InP and CdTe considerations of local charge neutrality near...support. References Ill L.J. Brillson. Surface Sci. Rept. 2 (1982) 123. 121 R.H. Williams. Proc. 17th Intern. Conf. on the Physics of Semiconductors

  12. Te Inclusions in CZT Detectors: New Method for Correcting Their Adverse Effects

    SciTech Connect

    Bolotnikov, A.E.; Babalola, S.; Camarda, G.S.; Cui, Y.; Egarievwe, S.U.; Hawrami, R.; Hossain, A.; Yang, G.; James, R.B.

    2009-10-25

    Both Te inclusions and point defects can trap the charge carriers generated by ionizing particles in CdZnTe (CZT) detectors. The amount of charge trapped by point defects is proportional to the carriers’ drift time and can be corrected electronically. In the case of Te inclusions, the charge loss depends upon their random locations with respect to the electron cloud. Consequently, inclusions introduce fluctuations in the charge signals, which cannot be easily corrected. In this paper, we describe direct measurements of the cumulative effect of Te inclusions and its influence on the response of CZT detectors of different thicknesses and different sizes and concentrations of Te inclusions. We also discuss a means of partially correcting their adverse effects.

  13. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  14. Investigation of dislocation migration in substrate-grade CdZnTe crystals during post-annealing

    NASA Astrophysics Data System (ADS)

    Jia, Ningbo; Xu, Yadong; Guo, Rongrong; Gu, Yaxu; Fu, Xu; Wang, Yuhan; Jie, Wanqi

    2017-01-01

    The migration of dislocations in substrate-grade CdZnTe (CZT) single crystals during temperature gradient annealing under Cd/Zn vapor has been investigated. The etch pit density (EPD) and configuration of dislocations have been evaluated before and after annealing in CZT crystals with and without Cd-rich second phase (Cd-SP) particles, respectively. After Cd/Zn overpressure annealing, dislocation reduction in CZT crystals was observed. However, dislocation walls with 120° intervals along <211> crystalline direction were observed in the both types of CZT crystals. The formation of these dislocation walls can be attributed to the reaction of <110> dislocations. Moreover, it is considered that the release of the restored stress during annealing act as the domain driving force for dislocation migration, by comparing the variation of dislocation configuration in CZT crystals with and without Cd-SP particles.

  15. Smoke Detector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo, Fire Chief Jay Stout of Safety Harbor, Florida, is explaining to young Richard Davis the workings of the Honeywell smoke and fire detector which probably saved Richard's life and that of his teen-age brother. Alerted by the detector's warning, the pair were able to escape their burning home. The detector in the Davis home was one of 1,500 installed in Safety Harbor residences in a cooperative program conducted by the city and Honeywell Inc.

  16. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil.

    PubMed

    Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R; Buecheler, Stephan; Tiwari, Ayodhya N

    2013-01-01

    Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.

  17. Effects of Various RF Powers on CdTe Thin Film Growth Using RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Alibakhshi, Mohammad; Ghorannevis, Zohreh

    2016-09-01

    Cadmium telluride (CdTe) film was deposited using the magnetron sputtering system onto a glass substrate at various deposition times and radio frequency (RF) powers. Ar gas was used to generate plasma to sputter the CdTe atoms from CdTe target. Effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD) analysis showed that the films exhibited polycrystalline nature of CdTe structure with the (111) orientation as the most prominent peak. Optimum condition to grow the CdTe film was obtained and it was found that increasing the deposition time and RF power increases the crystallinity of the films. From the profilometer and XRD data's, the thicknesses and crystal sizes of the CdTe films increased at the higher RF power and the longer deposition time, which results in affecting the band gap as well. From atomic force microscopy (AFM) analysis we found that roughnesses of the films depend on the deposition time and is independent of the RF power.

  18. Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil

    NASA Astrophysics Data System (ADS)

    Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M.; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R.; Buecheler, Stephan; Tiwari, Ayodhya N.

    2013-08-01

    Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.

  19. Direct charge sharing observation in single-photon-counting pixel detector

    NASA Astrophysics Data System (ADS)

    Pellegrini, G.; Maiorino, M.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Lozano, M.; Martinez, R.; Puigdengoles, C.; Ullan, M.

    2007-04-01

    In photon-counting imaging devices, charge sharing can limit the detector spatial resolution and contrast, as multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, the importance of charge sharing in pixellated CdTe and silicon detectors is studied by exposing imaging devices to different low activity sources. These devices are made of Si and CdTe pixel detector bump-bonded to Medipix2 single-photon-counting chips with a 55 μm pixel pitch. We will show how charge sharing affects the spatial detector resolution depending on incident particle type (alpha, beta and gamma), detector bias voltage and read-out chip threshold. This study will give an insight on the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  20. Polarimetric analysis of a CdZnTe spectro-imager under multi-pixel irradiation conditions

    NASA Astrophysics Data System (ADS)

    Pinto, M.; da Silva, R. M. Curado; Maia, J. M.; Simões, N.; Marques, J.; Pereira, L.; Trindade, A. M. F.; Caroli, E.; Auricchio, N.; Stephen, J. B.; Gonçalves, P.

    2016-12-01

    So far, polarimetry in high-energy astrophysics has been insufficiently explored due to the complexity of the required detection, electronic and signal processing systems. However, its importance is today largely recognized by the astrophysical community, therefore the next generation of high-energy space instruments will certainly provide polarimetric observations, contemporaneously with spectroscopy and imaging. We have been participating in high-energy observatory proposals submitted to ESA Cosmic Vision calls, such as GRI (Gamma-Ray Imager), DUAL and ASTROGAM, where the main instrument was a spectro-imager with polarimetric capabilities. More recently, the H2020 AHEAD project was launched with the objective to promote more coherent and mature future high-energy space mission proposals. In this context of high-energy proposal development, we have tested a CdZnTe detection plane prototype polarimeter under a partially polarized gamma-ray beam generated from an aluminum target irradiated by a 22Na (511 keV) radioactive source. The polarized beam cross section was 1 cm2, allowing the irradiation of a wide multi-pixelated area where all the pixels operate simultaneously as a scatterer and as an absorber. The methods implemented to analyze such multi-pixel irradiation are similar to those required to analyze a spectro-imager polarimeter operating in space, since celestial source photons should irradiate its full pixilated area. Correction methods to mitigate systematic errors inherent to CdZnTe and to the experimental conditions were also implemented. The polarization level ( 40%) and the polarization angle (precision of ±5° up to ±9°) obtained under multi-pixel irradiation conditions are presented and compared with simulated data.

  1. Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials

    DTIC Science & Technology

    2015-04-09

    2010 14-Mar-2013 Approved for Public Release; Distribution Unlimited Final Report: Metalorganic Vapor Phase Epitaxial Reactor for the Deposition of...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Epitaxial reactor , MOCVD, Infrared Materials, CdTe and...Final Report: Metalorganic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials Report Title A fully automated

  2. Growth and characterization of CdTe on GaAs/Si substrates

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, G.; Nouhi, A.; Liu, J.

    1988-01-01

    Epitaxial CdTe has been grown on both (100) GaAs/Si and (111) GaAs/Si substrates. A combination of molecular beam epitaxy and metal organic chemical vapor deposition have been employed to achieve this growth. The GaAs layers are grown in Si substrates by molecular beam epitaxy, followed by the growth of CdTe on GaAs/Si substra by metalorganic chemical vapor deposition. X-ray diffraction, photoluminescence, and scanning electron microscopy have been used to characterize the CdTe films.

  3. Emitter Choice for Epitaxial CdTe Solar Cells

    SciTech Connect

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-11-21

    High-quality epitaxial CdTe layers with low defect density and high carrier concentration have been demonstrated by several research groups. Nevertheless, one primary challenge for high-performance epitaxial CdTe solar cells is how to choose a suitable emitter partner for the junction formation. The numerical simulations show that a type I heterojunction with small conduction band offset (0.1 eV = ..delta..Ec = 0.3 eV) is necessary to maintain a good cell efficiency even with large interface recombination. Otherwise, a small 'cliff' can assist interface recombination causing smaller Voc, and a large 'spike' (..delta..Ec = 0.4 eV) can impede the photo current and lead to a reduction of JSC and FF. Among the three possible emitters, CdS, CdMgTe, and MgZnO, CdMgTe (with ~30% Mg) and MgZnO (with ~ 20% Mg) are likely to be a better choice since their type-I junction can tolerate a larger density of interface defects.

  4. Advanced CdTe Photovoltaic Technology: September 2007 - March 2009

    SciTech Connect

    Barth, K.

    2011-05-01

    During the last eighteen months, Abound Solar (formerly AVA Solar) has enjoyed significant success under the SAI program. During this time, a fully automated manufacturing line has been developed, fabricated and commissioned in Longmont, Colorado. The facility is fully integrated, converting glass and semiconductor materials into complete modules beneath its roof. At capacity, a glass panel will enter the factory every 10 seconds and emerge as a completed module two hours later. This facility is currently undergoing trials in preparation for large volume production of 120 x 60 cm thin film CdTe modules. Preceding the development of the large volume manufacturing capability, Abound Solar demonstrated long duration processing with excellent materials utilization for the manufacture of high efficiency 42 cm square modules. Abound Solar prototype modules have been measured with over 9% aperture area efficiency by NREL. Abound Solar demonstrated the ability to produce modules at industry leading low costs to NREL representatives. Costing models show manufacturing costs below $1/Watt and capital equipment costs below $1.50 per watt of annual manufacturing capacity. Under this SAI program, Abound Solar supported a significant research and development program at Colorado State University. The CSU team continues to make progress on device and materials analysis. Modeling for increased device performance and the effects of processing conditions on properties of CdTe PV were investigated.

  5. Preparation and properties of evaporated CdTe films

    NASA Astrophysics Data System (ADS)

    Bube, R. H.; Fahrenbruch, A. L.; Chien, K. F.

    1987-07-01

    Previous work on evaporated CdTe films for photovoltaics showed no clear path to successful p-type doping of CdTe during deposition. Post-deposition annealing of the films in various ambients thus was examined as a means of doping. Anneals were done in Te, Cd, P, and As vapors and in vacuum, air and Ar, all of which showed large effects on series resistance and diode parameters. With As, series resistance values of In/p-CdTe/graphite structures decreased markedly. This decrease was due to a decrease in grain boundary and/or back contact barrier height, and thus was due to large increases in mobility; the carrier density was not altered substantially. Although the series-resistance decreases were substantial, the diode characteristics became worse. The decreases were not observed when CdS/CdTe cells were fabricated on Te vapor-annealed films. Preparation of ZnO films by reactive evaporation yielded promising results. Deposition of p-ZnTe films by hot-wall vapor evaporation, using conventional techniques, yielded acceptable specimens.

  6. ISGRI: a CdTe array imager for INTEGRAL

    NASA Astrophysics Data System (ADS)

    Lebrun, Francois; Blondel, Claire; Fondeur, Irene; Goldwurm, Andrea; Laurent, Phillipe; Leray, Jean P.

    1996-10-01

    The INTEGRAL soft gamma-ray imager (ISGRI) is a large and thin CdTe array. Operating at room temperature, this gamma camera covers the lower part (below 200 keV) of the energy domain (20 keV - 10 MeV) of the imager on board the INTEGRAL Satellite (IBIS). The ASIC's front-end electronics features particularly a low noise preamplifier, allowing a threshold below 20 keV and a pulse rise-time measurement which permits a charge loss correction. The charge loss correction and its performances are presented as well as the results of various studies on CdTe thermal behavior and radiation hardness. At higher energy (above 200 keV) ISGRI will operate in conjunction with PICsIT, the IBIS CsI gamma camera. A selection among the events in coincidence performed on the basis of the Compton scattering properties reduces strongly the background. This allows an improvement of the sensitivity and permits short term imaging and spectral studies (high energy pulsars) which otherwise would not have fit within the IBIS telemetry allocation.

  7. Crystallisation of CdTe and related materials

    NASA Astrophysics Data System (ADS)

    Fiederle, M.; Benz, K. W.; Duffar, T.; Launay, J. C.; Roosen, G.; Dieguez, E.; Zanotti, L.

    2005-10-01

    Cadmium telluride (CdTe) and related compounds are promising materials for radiation sensors and photorefractive devices. Their commercial use is still limited owing to the problems in growing them. This MAP project is a close collaboration of scientists and industry to improve the growth of these materials and to demonstrate the potential for different applications. The activities concentrate on growth from the melt using "dewetting". The phenomenon of dewetting had been observed in various experiments under microgravity and it has an enormous influence on the quality of the material. The theoretical understanding of this mechanism opened the possibility of dewetting not only under microgravity but also on Earth by controlling pressure. Remarkable results have been achieved by dewetting growth on Earth, showing an improvement in crystal quality. The goal is to establish dewetting growth for industrial production under terrestrial conditions. This will be achieved by a combination of experiments under microgravity (STS-95, Foton-M2, International Space Station), a laboratory research programme, building a theory of the dewetting mechanism and close collaboration with industry partners to develop CdTe-Based devices. Important milestones include the first CdTe crystal grown by dewetting on Earth and the development of CdTe-based devices.

  8. Dawn's Gamma Ray and Neutron Detector

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Feldman, William C.; McSween, Harry Y.; Dingler, Robert D.; Enemark, Donald C.; Patrick, Douglas E.; Storms, Steven A.; Hendricks, John S.; Morgenthaler, Jeffery P.; Pitman, Karly M.; Reedy, Robert C.

    2011-12-01

    The NASA Dawn Mission will determine the surface composition of 4 Vesta and 1 Ceres, providing constraints on their formation and thermal evolution. The payload includes a Gamma Ray and Neutron Detector (GRaND), which will map the surface elemental composition at regional spatial scales. Target elements include the constituents of silicate and oxide minerals, ices, and the products of volcanic exhalation and aqueous alteration. At Vesta, GRaND will map the mixing ratio of end-members of the howardite, diogenite, and eucrite (HED) meteorites, determine relative proportions of plagioclase and mafic minerals, and search for compositions not well sampled by the meteorite collection. The large south polar impact basin may provide an opportunity to determine the composition of Vesta’s mantle and lower crust. At Ceres, GRaND will provide chemical information needed to test different models of Ceres’ origin and thermal and aqueous evolution. GRaND is also sensitive to hydrogen layering and can determine the equivalent H2O/OH content of near-surface hydrous minerals as well as the depth and water abundance of an ice table, which may provide information about the state of water in the interior of Ceres. Here, we document the design and performance of GRaND with sufficient detail to interpret flight data archived in the Planetary Data System, including two new sensor designs: an array of CdZnTe semiconductors for gamma ray spectroscopy, and a loaded-plastic phosphor sandwich for neutron spectroscopy. An overview of operations and a description of data acquired from launch up to Vesta approach is provided, including annealing of the CdZnTe sensors to remove radiation damage accrued during cruise. The instrument is calibrated using data acquired on the ground and in flight during a close flyby of Mars. Results of Mars flyby show that GRaND has ample sensitivity to meet science objectives at Vesta and Ceres. Strategies for data analysis are described and prospective results

  9. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  10. Facile preparation of highly luminescent CdTe quantum dots within hyperbranched poly(amidoamine)s and their application in bio-imaging

    PubMed Central

    2014-01-01

    A new strategy for facile preparation of highly luminescent CdTe quantum dots (QDs) within amine-terminated hyperbranched poly(amidoamine)s (HPAMAM) was proposed in this paper. CdTe precursors were first prepared by adding NaHTe to aqueous Cd2+ chelated by 3-mercaptopropionic sodium (MPA-Na), and then HPAMAM was introduced to stabilize the CdTe precursors. After microwave irradiation, highly fluorescent and stable CdTe QDs stabilized by MPA-Na and HPAMAM were obtained. The CdTe QDs showed a high quantum yield (QY) up to 58%. By preparing CdTe QDs within HPAMAM, the biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs can be combined, endowing the CdTe QDs with biocompatibility. The resulting CdTe QDs can be directly used in biomedical fields, and their potential application in bio-imaging was investigated. PMID:24624925

  11. Measurement of radon progenies using the Timepix detector.

    PubMed

    Bulanek, Boris; Jilek, Karel; Cermak, Pavel

    2014-07-01

    After an introduction of Timepix detector, results of these detectors with silicon and cadmium telluride detection layer in assessment of activity of short-lived radon decay products are presented. They were collected on an open-face filter by means of one-grab sampling method from the NRPI radon chamber. Activity of short-lived radon decay products was estimated from measured alpha decays of 218,214Po. The results indicate very good agreement between the use of both Timepix detectors and an NRPI reference instrument, continuous monitor Fritra 4. Low-level detection limit for EEC was estimated to be 41 Bq m(-3) for silicon detection layer and 184 Bq m(-3) for CdTe detection layer, respectively.

  12. Infrared Attenuation Spectrum of Bulk High-Resistivity CdZnTe Single Crystal in Transparent Wavelength Region Between Electronic and Lattice Absorptions

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Kaji, Sayumi; Ikeda, Yuji; Kobayashi, Naoto; Sukegawa, Takashi; Nakagawa, Takao; Kataza, Hirokazu; Kondo, Sohei; Yasui, Chikako; Nakanishi, Kenshi; Kawakita, Hideyo

    2017-01-01

    We report measurement of the internal attenuation coefficient, α _{att}, of a bulk high-resistivity cadmium zinc telluride (CdZnTe) single crystal at wavelength, λ = 0.84-26 μm, to the unprecedentedly low level of α _{att} ˜ 0.001 cm^{-1}. This measurement reveals the spectral behavior for small attenuation in the infrared transparent region between the electronic and lattice absorptions. This result is essential for application of CdZnTe as an infrared transmitting material. Comparing the attenuation spectrum with model spectra obtained on the basis of Mie theory, we find that sub-micrometer-sized Te particles (inclusions) with a number density of approximately 10^{7.5-9} cm^{-3} are the principal source of the small attenuation observed at λ = 0.9-13 μm. In addition, we determine α _{att} = (7.7 ± 1.9) × 10^{-4} cm^{-1} at λ = 10.6 μm, which is valuable for CO_2 laser applications. Higher transparency can be achieved by reducing the number of inclusions rather than the number of precipitates. This study also demonstrates that high-accuracy measurement of CdZnTe infrared transmittance is a useful approach to investigating the number density of sub-micrometer-sized Te particles that cannot be identified via infrared microscopy.

  13. Caliste 64, a new CdTe micro-camera for hard X-ray spectro-imaging

    NASA Astrophysics Data System (ADS)

    Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Pinsard, F.; Vassal, M. C.; Soufflet, F.; Le Mer, I.

    2009-10-01

    In the frame of the Simbol-X mission of hard X-ray astrophysics, a prototype of micro-camera with 64 pixels called Caliste 64 has been designed and several samples have been tested. The device integrates ultra-low-noise IDeF-X V1.1 ASICs from CEA and a 1 cm 2 Al Schottky CdTe detector from Acrorad because of its high uniformity and spectroscopic performance. The process of hybridization, mastered by the 3D Plus company, respects space applications standards. The camera is a spectro-imager with time-tagging capability. Each photon interacting in the semiconductor is tagged with a time, a position and an energy. Time resolution is better than 100 ns rms for energy deposits greater than 20 keV, taking into account electronic noise and technological dispersal of the front-end electronics. The spectrum summed across the 64 pixels results in an energy resolution of 664 eV fwhm at 13.94 keV and 842 eV fwhm at 59.54 keV, when the detector is cooled down to -10 °C and biased at -500 V.

  14. Dynamic Curvature and Stress Studies for MBE CdTe on Si and GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Jaime Vasquez, M.; Lennon, C. M.; Nozaki, C.; Almeida, L. A.; Pellegrino, J.; Arias, J.; Taylor, C.; Wissman, B.

    2015-09-01

    Infrared focal plane arrays (IRFPA) based on HgCdTe semiconductor alloys have been shown to be ideal for tactical and strategic applications. High density (>1 M pixel), high operability HgCdTe detectors on large area, low-cost composite substrates, such as CdTe-buffered Si or GaAs, are envisioned for next-generation IRFPAs. Thermal expansion mismatch is among various material parameters that govern the structural properties of the final detector layer. It has previously been shown that thermal expansion mismatch plays the dominant role in the residual stress characteristics of these heteroepitaxial structures (Jacobs et al. in J Electron Mater 37:1480, 2008). The wafer curvature (bowing) resulting from residual stress, is a likely source of problems that may occur during subsequent processing. This includes cracking of the film and substrate during post-growth annealing processes or even certain characterization techniques. In this work, we examine dynamic curvature and stress during molecular beam epitaxy (MBE), of CdTe on Si and GaAs substrates. The effect of temperature changes on wafer curvature throughout the growth sequence is documented using a multi-beam optical sensor developed by K-Space Associates. This monitoring technique makes possible the study of growth sequences which employ annealing schemes and/or interlayers to influence the final residual stress state of the heteroepitaxial structures.

  15. Gaseous Detectors

    NASA Astrophysics Data System (ADS)

    Titov, Maxim

    Since long time, the compelling scientific goals of future high-energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements - the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel prize in physics in 1992. Since that time radiation detection and imaging with fast gaseous detectors, capable of economically covering large detection volumes with low mass budget, have been playing an important role in many fields of physics. Advances in photolithography and microprocessing techniques in the chip industry during the past decade triggered a major transition in the field of gas detectors from wire structures to Micro-Pattern Gas Detector (MPGD) concepts, revolutionizing cell-size limitations for many gas detector applications. The high radiation resistance and excellent spatial and time resolution make them an invaluable tool to confront future detector challenges at the next generation of colliders. The design of the new micro-pattern devices appears suitable for industrial production. Novel structures where MPGDs are directly coupled to the CMOS pixel readout represent an exciting field allowing timing and charge measurements as well as precise spatial information in 3D. Originally developed for the high-energy physics, MPGD applications have expanded to nuclear physics, photon detection, astroparticle and neutrino physics, neutron detection, and medical imaging.

  16. Enhanced Specificity of Multiplex Polymerase Chain Reaction via CdTe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Liang, Gaofeng; Ma, Chao; Zhu, Yanliang; Li, Shuchun; Shao, Youhua; Wang, Yong; Xiao, Zhongdang

    2011-12-01

    Nanoparticles were recently reported to be able to improve both efficiency and specificity in polymerase chain reaction (PCR). Here, CdTe QDs were introduced into multi-PCR systems. It was found that an appropriate concentration of CdTe QDs could enhance the performance of multi-PCR by reducing the formation of nonspecific products in the complex system, but an excessive amount of CdTe QDs could suppress the PCR. The effects of QDs on PCR can be reversed by increasing the polymerase concentration or by adding bovine serum albumin (BSA). The mechanisms underlying these effects were also discussed. The results indicated that CdTe QDs could be used to optimize the amplification products of the PCR, especially in the multi-PCR system with different primers annealing temperatures, which is of great significance for molecular diagnosis.

  17. First-Principles Study of Back Contact Effects on CdTe Thin Film Solar Cells

    SciTech Connect

    Du, Mao-Hua

    2009-01-01

    Forming a chemically stable low-resistance back contact for CdTe thin-film solar cells is critically important to the cell performance. This paper reports theoretical study of the effects of the back-contact material, Sb{sub 2}Te{sub 3}, on the performance of the CdTe solar cells. First-principles calculations show that Sb impurities in p-type CdTe are donors and can diffuse with low diffusion barrier. There properties are clearly detrimental to the solar-cell performance. The Sb segregation into the grain boundaries may be required to explain the good efficiencies for the CdTe solar cells with Sb{sub 2}Te{sub 3} back contacts.

  18. Experimental results from Al/p-CdTe/Pt X-ray detectors

    NASA Astrophysics Data System (ADS)

    Abbene, L.; Gerardi, G.; Turturici, A. A.; Del Sordo, S.; Principato, F.

    2013-12-01

    Recently, Al/CdTe/Pt detectors have been proposed for the development of high resolution X-ray spectrometers. Due to the low leakage currents, these detectors allow high electric fields and the pixellization of anodes with the possibility to realize single charge carrier sensing detectors. In this work, we report on the results of electrical and spectroscopic investigations on CdTe diode detectors with Al/CdTe/Pt electrode configuration (4.1×4.1×0.75 and 4.1×4.1×2 mm3). The detectors are characterized by very low leakage currents in the reverse bias operation: 0.3 nA at 25 °C and 2.4 pA at -25 °C under a bias voltage of -1000 V. The spectroscopic performance of the detectors at both low and high photon counting rates were also investigated with a focus on the minimization of time instability, generally termed as polarization, looking for the optimum bias voltage and temperature. Good time stability, during a long-term operation of 10 h, was observed for both detectors at -25 °C and by using an electric field of 5000 V/cm. The 2 mm thick detector exhibited good energy resolution of 6.1%, 2.5% and 2.0% (FWHM) at 22.1 keV, 59.5 and 122.1 keV, respectively. Performance enhancements were obtained by using digital pulse processing techniques, especially at high photon counting rates (300 kcps). The 2 mm thick detector, after a digital pulse shape correction (PSC), is characterized by similar performance to the thin detector ones, opening up to the use of thick CdTe detectors without excessive performance degradations. This work was carried out in the framework of the development of portable X-ray spectrometers for both laboratory research and medical applications.

  19. Orbital Processing of High-Quality Zn-Alloyed CdTe Compound Semiconductors

    NASA Technical Reports Server (NTRS)

    Larson, David J., Jr.; Dudley, M.; Raghothamachar, B.; Alexander, J. I. D.; Carlson, F. M.; Gillies, D.; Volz, M.; Ritter, T. M.; DiMarzio, D.

    1999-01-01

    The objective of this research is to investigate the influences of gravitationally-dependent phenomena (hydrostatic and buoyant) on the growth and quality of doped and alloyed Cadmium-Zinc-Telluride (CdZnTe) crystals grown by the modified seeded Bridgman-Stockbarger technique. It is hypothesized that the damping of the gravitationally-dependent buoyancy convection will substantially enhance chemical homogeneity and the near-elimination of hydrostatic pressure will enable significant reduction in defect (dislocations and twins) density.

  20. Growth and fabrication method of CdTe and its performance as a radiation detector

    NASA Astrophysics Data System (ADS)

    Park, Soojeong; Kim, Hyojin; Kim, Dojin

    2015-01-01

    We report the nitrogen-monoxide (NO) gas-sensing properties of transparent p-type copper-oxide (CuO) nanorod arrays synthesized by using the hydrothermal method with a CuO nanoparticle seed layer deposited on a glass substrate via sputtering process. We synthesized polycrystalline CuO nanorods measuring 200 to 300 nm in length and 20 to 30 nm in diameter for three controlled molarity ratios of 1:1, 1:2 and 1:4 between copper nitrate trihydrate [Cu(NO2)2·3H2O] and hexamethylenetetramine (C6H12N4). The crystal structures and morphologies of the synthesized CuO nanorod arrays were examined using grazing incidence X-ray diffraction and scanning electron microscopy. The gas-sensing measurements for NO gas in dry air indicated that the CuO nanorodarray-based gas sensors synthesized under hydrothermal condition at a molarity ratio of 1:2 showed the best gas sensing response to NO gas. These CuO nanorod-array gas sensors exhibited a highly sensitive response to NO gas, with a maximum sensitivity of about 650% for 10 ppm NO in dry air at an operating temperature of 100 ℃. These transparent p-type CuO nanorod-array gas sensors have shown a reversible and reliable response to NO gas over a range of operating temperatures. These results indicate certain potential use of p-type oxide semiconductor CuO nanorods as sensing materials for several types of gas sensors, including p — n junction gas sensors.

  1. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  2. Oxygen Incorporation During Fabrication of Substrate CdTe Photovoltaic Devices: Preprint

    SciTech Connect

    Duenow, J. N.; Dhere, R. G.; Kuciauskas, D.; Li, J. V.; Pankow, J. W.; DeHart, C. M.; Gessert, T. A.

    2012-06-01

    Recently, CdTe photovoltaic (PV) devices fabricated in the nonstandard substrate configuration have attracted increasing interest because of their potential compatibility with flexible substrates such as metal foils and polymer films. This compatibility could lead to the suitability of CdTe for roll-to-roll processing and building-integrated PV. Currently, however, the efficiencies of substrate CdTe devices reported in the literature are significantly lower ({approx}6%-8%) than those of high-performance superstrate devices ({approx}17%) because of significantly lower open-circuit voltage (Voc) and fill factor (FF). In our recent device development efforts, we have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. Here, we investigate how oxygen incorporation in the CdTe deposition, CdCl2 heat treatment, CdS deposition, and post-deposition heat treatment affect device characteristics through their effects on the junction. By adjusting whether oxygen is incorporated during these processing steps, we have achieved Voc values greater than 860 mV and efficiencies greater than 10%.

  3. Study of Cu-related Defect States in Single-crystal CdTe

    NASA Astrophysics Data System (ADS)

    Corwine, Caroline; Sites, James; Gessert, Timothy; Metzger, Wyatt; Dippo, Pat; Duda, Anna

    2003-10-01

    We have studied single-crystal CdTe using low-temperature photoluminescence (PL) in an effort to understand the effects of copper on the deep levels, as well as the effect of a bromine methanol (BrMe) etch on subsequent copper diffusion into CdTe. In present polycrystalline CdS/CdTe solar cell technology, the use of a back contact that contains Cu is necessary to produce high-efficiency cells. However, it is not generally understood why Cu is necessary for these devices to function well. In order to obtain further advances in the efficiencies of these solar cells, it is important to know how the back contact process may affect the defect states in CdTe. PL is one tool used to study defect states. However, before PL can be used effectively for polycrystalline CdTe solar cells, relevant spectral features first must be interpreted for single-crystal CdTe. All PL in this study was taken at 4.5 K. We report on PL peaks at 1.40 and 1.45 eV, which are seen only after Cu is diffused into single-crystal CdTe.

  4. Phosphorus Diffusion Mechanisms and Deep Incorporation in Polycrystalline and Single-Crystalline CdTe

    SciTech Connect

    Colegrove, Eric; Harvey, Steven P.; Yang, Ji-Hui; Burst, James M.; Albin, David S.; Wei, Su-Huai; Metzger, Wyatt K.

    2016-05-01

    A key challenge in cadmium telluride (CdTe) semiconductors is obtaining stable and high hole density. Group I elements substituting Cd can form ideal acceptors but easily self-compensate and diffuse quickly. For example, CdTe photovoltaics have relied on copper as a dopant, but copper creates stability problems and hole density that has not exceeded 1015 cm-3. If hole density can be increased beyond 10^16 cm-3, CdTe solar technology can exceed multicrystalline silicon and provide levelized costs of electricity below conventional energy sources. Group V elements substituting Te offer a solution, but are very difficult to incorporate. Using time-of-flight secondary-ion mass spectrometry, we examine bulk and grain boundary (GB) diffusion of phosphorous (P) in CdTe in Cd-rich conditions. We find that in addition to slow bulk diffusion and fast GB diffusion, there is a fast bulk diffusion component that enables deep P incorporation in CdTe. Detailed first-principles calculations indicate the slow bulk diffusion component is caused by substitutional P diffusion through the Te sublattice, whereas the fast bulk diffusion component is caused by P diffusing through interstitial lattice sites following the combination of a kick-out step and two rotation steps. The latter is limited in magnitude by high formation energy, but is sufficient to manipulate P incorporation. In addition to an increased physical understanding, this result opens up new experimental possibilities for Group V doping in CdTe materials.

  5. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole.

    PubMed

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-15

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL(-1) (3.4 ng mL(-1)) and the quantitative determination range was 0-2.8 μg mL(-1) with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.

  6. Glutathione-capped CdTe nanocrystals as probe for the determination of fenbendazole

    NASA Astrophysics Data System (ADS)

    Li, Qin; Tan, Xuanping; Li, Jin; Pan, Li; Liu, Xiaorong

    2015-04-01

    Water-soluble glutathione (GSH)-capped CdTe quantum dots (QDs) were synthesized. In pH 7.1 PBS buffer solution, the interaction between GSH-capped CdTe QDs and fenbendazole (FBZ) was investigated by spectroscopic methods, including fluorescence spectroscopy, ultraviolet-visible absorption spectroscopy, and resonance Rayleigh scattering (RRS) spectroscopy. In GSH-capped CdTe QDs solution, the addition of FBZ results in the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs. And the quenching intensity (enhanced RRS intensity) was proportional to the concentration of FBZ in a certain range. Investigation of the interaction mechanism, proved that the fluorescence quenching and RRS enhancement of GSH-capped CdTe QDs by FBZ is the result of electrostatic attraction. Based on the quenching of fluorescence (enhancement of RRS) of GSH-capped CdTe QDs by FBZ, a novel, simple, rapid and specific method for FBZ determination was proposed. The detection limit for FBZ was 42 ng mL-1 (3.4 ng mL-1) and the quantitative determination range was 0-2.8 μg mL-1 with a correlation of 0.9985 (0.9979). The method has been applied to detect FBZ in real simples and with satisfactory results.

  7. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  8. Development of a stacked detector system for the x-ray range and its possible applications

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier; Meuris, Aline; Pürckhauer, Sabina; Santangelo, Andrea; Schanz, Thomas; Tenzer, Christoph

    2014-07-01

    We have constructed a stacked detector system operating in the X-ray range from 0.5 keV to 250 keV that consists of a Si-based 64×64 DePFET-Matrix in front of a CdTe hybrid detector called Caliste-64. The setup is operated under laboratory conditions that approximate the expected environment of a space-borne observatory. The DePFET detector is an active pixel matrix that provides high count-rate capabilities with a near Fanolimited spectral resolution at energies up to 15 keV. The Caliste-64 hard X-ray camera consists of a 1mm thick CdTe crystal combined with very compact integrated readout electronics, constituting a high performance spectro-imager with event-triggered time-tagging capability in the energy range between 2 keV and 200 keV. In this combined geometry the DePFET detector works as the Low Energy Detector (LED) while the Caliste-64 - as the High Energy Detector (HED) - detects predominantly the high energetic photons that have passed the LED. In addition to the individual optimization of both detectors, we use the setup to test and optimize the performance of the combined detector system. Side-effects like X-ray fluorescence photons, electrical crosstalk, and mutual heating have negative impacts on the data quality and will be investigated. Besides the primary application as a combined imaging detector system with high sensitivity across a broad energy range, additional applications become feasible. Via the analysis of coincident events in both detectors we can estimate the capabilities of the setup to be used as a Compton camera and as an X-ray polarimeter - both desirable functionalities for use in the lab as well as for future X-ray missions.

  9. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  10. Development of portable CdZnTe spectrometers for remote sensing of signatures from nuclear materials

    NASA Astrophysics Data System (ADS)

    Burger, Arnold; Groza, Michael; Cui, Yunlong; Roy, Utpal N.; Hillman, Damian; Guo, Mike; Li, Longxia; Wright, Gomez W.; James, Ralph B.

    2005-03-01

    Room temperature cadmium zinc telluride (CZT) gamma-ray spectrometers are being developed for a number for years for medical, space and national security applications where high sensitivity, low operating power and compactness are indispensable. The technology has matured now to the point where large volume (several cubic centimeters) and high energy resolution (approximately 1% at 660 eV) of gamma photons, are becoming available for their incorporation into portable systems for remote sensing of signatures from nuclear materials. The straightforward approach of utilizing a planar CZT device has been excluded due to the incomplete collection arising from the trapping of holes and causing broadening of spectral lines at energies above 80 keV, to unacceptable levels of performance. Solutions are being pursued by developing devices aimed at processing the signal produced primarily by electrons and practically insensitive to the contribution of holes, and recent progress has been made in the areas of material growth as well as electrode and electronics design. Present materials challenges are in the growth of CZT boules from which large, oriented single crystal pieces can be cut to fabricate such sizable detectors. Since virtually all the detector grade CZT boules consist of several grains, the cost of a large, single crystal section is still high. Co-planar detectors, capacitive Frisch-grid detectors and devices taking advantage of the small pixel effect, are configurations with a range of requirements in crystallinity and defect content and involve variable degrees of complexity in the fabrication, surface passivation and signal processing. These devices have been demonstrated by several research groups and will be discussed in terms of their sensitivity and availability.

  11. Intruder Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The shadowy prowler is attempting a break-in, unaware that his presence has already been detected and reported by the device in the lower left corner of the photo. It is part of a three-element ntruder Detecti on System developed by NASA's Ames Research Center from technology acquired in the Apollo lunar exploration program. Apollo astronauts left behind on the moon small portable seismic (shock) detectors to record subsurface vibrations and transmit to Earth data on the moon's density and thickness. A similar seismic detector is the key component of the lntruder Detection System. Encased in a stainless steel tube, the detector is implanted in the ground outside the facility being protected-home, bank, industrial or other facilities. The vibration-sensing detector picks up the footstep of anyone within a preset range. The detector is connected by cable to the transmitter, which relays the warning to a portable radio receiver. The radio alerts plant guards or home occupants by emitting an audible tone burst for each footstep.

  12. Pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Haller, Eugene E.; Beeman, Jeffrey; Hansen, William L.; Hubbard, G. Scott; Mcmurray, Robert E., Jr.

    1990-01-01

    The multi-agency, long-term Global Change programs, and specifically NASA's Earth Observing system, will require some new and advanced photon detector technology which must be specifically tailored for long-term stability, broad spectral range, cooling constraints, and other parameters. Whereas MCT and GaAs alloy based photovoltaic detectors and detector arrays reach most impressive results to wavelengths as long as 12 microns when cooled to below 70 K, other materials, such as ferroelectrics and pyroelectrics, appear to offer special opportunities beyond 12 microns and above 70 K. These materials have found very broad use in a wide variety of room temperature applications. Little is known about these classes of materials at sub-room temperatures and no photon detector results have been reported. From the limited information available, researchers conclude that the room temperature values of D asterisk greater than or equal to 10(exp 9) cm Hz(exp 1/2)/W may be improved by one to two orders of magnitude upon cooling to temperatures around 70 K. Improvements of up to one order of magnitude appear feasible for temperatures achievable by passive cooling. The flat detector response over a wavelength range reaching from the visible to beyond 50 microns, which is an intrinsic advantage of bolometric devices, makes for easy calibration. The fact that these materials have been developed for reduced temperature applications makes ferro- and pyroelectric materials most attractive candidates for serious exploration.

  13. Geant4 simulations of STIX Caliste-SO detector's response to solar X-ray radiation

    NASA Astrophysics Data System (ADS)

    Barylak, Jaromir; Barylak, Aleksandra; Mrozek, Tomasz; Steślicki, Marek; Podgórski, Piotr; Netzel, Henryka

    Spectrometer/Telescope for Imaging X-rays (STIX) is a part of Solar Orbiter (SO) science payload. SO will be launched in October 2018, and after three years of cruise phase, it will reach orbit with perihelion distance of 0.3 a.u. STIX is a Fourier imager equipped with pairs of grids that comprise the flare hard X-ray tomograph. Similar imager types were already used in the past (eq. RHESSI, Yohkoh/HXT), but STIX will incorporate Moiré modulation and a new type of pixelized detectors with CdTe sensor. We developed a method of modeling these detectors' response matrix (DRM) using the Geant4 simulations of X-ray photons interactions with CdTe crystals. Taking into account known detector effects (Fano noise, hole tailing etc.) we modeled the resulting spectra with high accuracy. Comparison of Caliste-SO laboratory measurements of 241Am decay spectrum with our results shows a very good agreement. The modeling based on the Geant4 simulations significantly improves our understanding of detector response to X-ray photons. Developed methodology gives opportunity for detailed simulation of whole instrument response with complicated geometry and secondary radiation from cosmic ray particles taken into account. Moreover, we are developing the Geant4 simulations of aging effects which decrease detector's performance.

  14. FOXSI: Properties of optics and detectors for hard-X rays

    NASA Astrophysics Data System (ADS)

    Camilo Buitrago-Casas, Juan; Glesener, Lindsay; Christe, Steven; Krucker, Sam; Ishikawa, Shin-nosuke; Foster, Natalie

    2015-04-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a state-of-the-art direct focusing X-ray telescope designed to observe the Sun. This experiment completed its second flight onboard a sounding rocket last December 11, 2014 from the White Sands Missile Range in New Mexico. The optics use a set of iridium-coated nickel/cobalt mirrors made using a replication technique based on an electroformed perfect polished surface. Since this technique creates full shells that no need to be co-aligned with other segments, an angular resolution of up to ~5 arcsec is gotten. The FOXSI focal plane consists of seven double-sided strip detectors. Five Silicon and 2 CdTe detectors were used during the second flight.We present on various properties of Wolter-I optics that are applicable to solar HXR observation, including ray-tracing simulations of the single-bounce (“ghost ray”) patterns from sources outside the field of view and angular resolution for different source angles and effective area measurements of the FOXSI optics. We also present the detectors calibration results, paying attention to energy resolution (~0.5 keV), energy thresholds (~4-15 keV for Silicon and ~4-20 keV for CdTe detectors), and spatial coherence of these values over the entire detector.

  15. MAMA Detector

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  16. PHASE DETECTOR

    DOEpatents

    Kippenhan, D.O.

    1959-09-01

    A phase detector circuit is described for use at very high frequencies of the order of 50 megacycles. The detector circuit includes a pair of rectifiers inverted relative to each other. One voltage to be compared is applied to the two rectifiers in phase opposition and the other voltage to be compared is commonly applied to the two rectifiers. The two result:ng d-c voltages derived from the rectifiers are combined in phase opposition to produce a single d-c voltage having amplitude and polarity characteristics dependent upon the phase relation between the signals to be compared. Principal novelty resides in the employment of a half-wave transmission line to derive the phase opposing signals from the first voltage to be compared for application to the two rectifiers in place of the transformer commonly utilized for such purpose in phase detector circuits for operation at lower frequency.

  17. van der Waals epitaxy of CdTe thin film on graphene

    NASA Astrophysics Data System (ADS)

    Mohanty, Dibyajyoti; Xie, Weiyu; Wang, Yiping; Lu, Zonghuan; Shi, Jian; Zhang, Shengbai; Wang, Gwo-Ching; Lu, Toh-Ming; Bhat, Ishwara B.

    2016-10-01

    van der Waals epitaxy (vdWE) facilitates the epitaxial growth of materials having a large lattice mismatch with the substrate. Although vdWE of two-dimensional (2D) materials on 2D materials have been extensively studied, the vdWE for three-dimensional (3D) materials on 2D substrates remains a challenge. It is perceived that a 2D substrate passes little information to dictate the 3D growth. In this article, we demonstrated the vdWE growth of the CdTe(111) thin film on a graphene buffered SiO2/Si substrate using metalorganic chemical vapor deposition technique, despite a 46% large lattice mismatch between CdTe and graphene and a symmetry change from cubic to hexagonal. Our CdTe films produce a very narrow X-ray rocking curve, and the X-ray pole figure analysis showed 12 CdTe (111) peaks at a chi angle of 70°. This was attributed to two sets of parallel epitaxy of CdTe on graphene with a 30° relative orientation giving rise to a 12-fold symmetry in the pole figure. First-principles calculations reveal that, despite the relatively small energy differences, the graphene buffer layer does pass epitaxial information to CdTe as the parallel epitaxy, obtained in the experiment, is energetically favored. The work paves a way for the growth of high quality CdTe film on a large area as well as on the amorphous substrates.

  18. HPVB and HPVZM shaped growth of CdZnTe, CdSe, and ZnSe crystals

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Nikolai N.; James, Ralph B.; Berzigiarova, Nadejda S.; Kulakov, Mihail P.

    2003-01-01

    High-pressure Bridgman (HPVB) and vertical zone melting (HPVZM) growth has been applied for manufacturing Cd1-xZnxTe (x = 0.04 - 0.2), CdSe and ZnSe crystal tapes with sizes up to 120×120×12 mm. The influence of the technological parameters of the growth process on the crystal quality and some properties is discussed. The dependence of the inclusion (bubbles) content on deviation from the melt stoichiometry is determined. The method for growing plates with low content of the inclusions is described. High-resistivity crystal tapes of undoped CdZnTe (1010 Ohm×cm), CdSe (1011 Ohm×cm) and ZnSe (>1011 Ohm×cm) were prepared. Possibility of the tape growth on the oriented seed is shown on example of CdSe. The difference between HPVB and HPVZM results is described. Main HPVZM advantage for II-VI compound crystal growth is possibility of obtaining crystals with stoichiometric composition or with controlled deviation from stoichiometry. Hence HPVZM is preferable for growing high-resistivity II-VI crystals with low inclusion content.

  19. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  20. Microwave detector

    SciTech Connect

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1986-12-02

    A detector is described for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations, the detector comprising: a B-dot loop linking the magnetic field of the microwave pulse; a biased ferrite, that produces a magnetization field flux that links the B-dot loop. The ferrite is positioned within the B-dot loop so that the magnetic field of the microwave pulse interacts with the ferrite and thereby participates in the formation of the magnetization field flux; and high-frequency insensitive means for measuring electric voltage or current induced in the B-dot loop.

  1. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  2. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  3. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  4. Method and apparatus for electron-only radiation detectors from semiconductor materials

    SciTech Connect

    2000-05-30

    A system is disclosed for obtaining improved resolution in room temperature semiconductor radiation detectors such as CdZnTe and HgI{sub 2}, which exhibit significant hole-trapping. A electrical reference plane is established about the perimeter of a semiconductor crystal and disposed intermediately between two oppositely biased end electrodes. The intermediate reference plane comprises a narrow strip of wire in electrical contact with the surface of the crystal, biased at a potential between the end electrode potentials and serving as an auxiliary electrical reference for a chosen electrode--typically the collector electrode for the more mobile charge carrier. This arrangement eliminates the interfering effects of the less mobile carriers as these are gathered by their electrode collector.

  5. Vertex detectors

    SciTech Connect

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10{sup {minus}13} s, among them the {tau} lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation.

  6. Monte Carlo Simulations of Background Spectra in Integral Imager Detectors

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Dietz, K. L.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    Predictions of the expected gamma-ray backgrounds in the ISGRI (CdTe) and PiCsIT (Csl) detectors on INTEGRAL due to cosmic-ray interactions and the diffuse gamma-ray background have been made using a coupled set of Monte Carlo radiation transport codes (HETC, FLUKA, EGS4, and MORSE) and a detailed, 3-D mass model of the spacecraft and detector assemblies. The simulations include both the prompt background component from induced hadronic and electromagnetic cascades and the delayed component due to emissions from induced radioactivity. Background spectra have been obtained with and without the use of active (BGO) shielding and charged particle rejection to evaluate the effectiveness of anticoincidence counting on background rejection.

  7. Emitter/absorber interface of CdTe solar cells

    SciTech Connect

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-17

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted to yield higher

  8. Emitter/absorber interface of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-01

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a "spike," creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔEC ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a "cliff" (ΔEC < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔEC of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔEC. These materials are predicted to yield higher voltages and would therefore be

  9. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions.

    PubMed

    Miao, Yanping; Yang, Ping; Zhao, Jie; Du, Yingying; He, Haiyan; Liu, Yunshi

    2015-06-01

    CdTe quantum dots (QDs) were synthesized by 3-mercaptopropionic acid (MPA) and thioglycollic acid (TGA) as capping agents. It is confirmed that TGA and MPA molecules were attached on the surface of the QDs using Fourier transform infrared (FT-IR) spectra. The movement of the QDs in agarose gel electrophoresis indicated that MPA-capped CdTe QDs had small hydrodynamic diameter. The photoluminescence (PL) intensity of TGA-capped QDs is higher than that of MPA-capped QDs at same QD concentration because of the surface passivation of TGA. To systemically investigate the photodegradation, CdTe QDs with various PL peak wavelengths were dispersed in phosphate buffered saline (PBS) and Tris-borate-ethylenediaminetetraacetic acid (TBE) buffer solutions. It was found that the PL intensity of the QDs in PBS decreased with time. The PL peak wavelengths of the QDs in PBS solutions remained unchanged. As for TGA-capped CdTe QDs, the results of PL peak wavelengths in TBE buffer solutions indicated that S(2-) released by TGA attached to Cd(2+) and formed CdS-like clusters layer on the surface of aqueous CdTe QDs. In addition, the number of TGA on the CdTe QDs surface was more than that of MPA. When the QDs were added to buffer solutions, agents were removed from the surface of CdTe QDs, which decreased the passivation of agents thus resulted in photodegradation of CdTe QDs in buffer solutions.

  10. Investigation of High-Voltage Photovoltaic Effect and Piezoeffect in Thin CdTe Films Depending on Their State,

    DTIC Science & Technology

    The article studies the dependence of the high-voltage photovoltaic effect (HVPVE) and piezoeffect on the state of the thin CdTe film crystalline ... structures . The properties of the macro- and microstructure of thin CdTe films with different polarities of the HVPVE are established. The change of

  11. {CdTe(111) B}/{Si(100) } structure grown by metalorganic vapor phase epitaxy with Te adsorption and annealing

    NASA Astrophysics Data System (ADS)

    Nishino, Hironori; Nishijima, Yoshito

    1996-10-01

    We studied the crystal structure of CdTe(111)B layers directly grown on Si(100) by MOVPE using a new pre-growth process, which includes a metalorganic Te adsorption and an annealing process. In this paper, we discussed the CdTe structure from the three aspects of antiphase, twinning and tilt. We investigated the dependence of the antiphase content in CdTe(111)B on the anneal temperature and the Si misorientation angle. From the results, we assume that the origin of the antiphase formation is the difference in the arrangement of adsorbed Te atoms. Te arrangement leading to antiphase formation occurs on Si terraces away from steps at relatively low temperatures. We reduced most of the twinning in epilayers by optimizing the {VI}/{II} ratio. We think the remaining twinning was confined to near the interface and it nucleated from the Te arrangement on terraces. We found that the Si(100)-CdTe(111) tilt was much smaller than that expected from the well-known Nagai model. We propose that a negative tilt is induced to reduce the lateral mismatch. To adjust the lateral distance of unit cells, 30 CdTe lattices match to 31 Si lattices. CdTe(111)B planes are inclined to reduce the remaining mismatch between two lattices. This initial tilt also causes wider CdTe terraces. We modified Nagai's tilting model for this reconstructed CdTe surface. The total tilt angle is defined by these two tilting mechanisms.

  12. Blanket and Patterned Growth of CdTe on (211)Si Substrates by Metal-Organic Vapor Phase Epitaxy

    DTIC Science & Technology

    2012-05-15

    Vapor Deposition, Epitaxial Lateral Overgrowth, Selective Epitaxy, CdTe Ishwara B. Bhat*,1, , Sunil R. Rao1, , Shashidhar Shintri2, , Randolph N...growth of CdTe on (211)Si substrates by metal- organic vapor phase epitaxy Ishwara B. Bhat*,1, Sunil R. Rao1, Shashidhar Shintri2, and Randolph N

  13. The growth of high quality CdTe on GaAs by molecular beam epitaxy

    SciTech Connect

    Reno, J.L.; Carr, M.J.; Gourley, P.L. )

    1990-03-01

    We have grown CdTe (111) on oriented and misoriented GaAs (100) and have characterized the layers by photoluminescence microscopy (PLM) and transmission electron microscopy (TEM). Photoluminescence microscopy showed a totally different type of defect structure for the oriented substrate than for the misoriented substrates. The CdTe grown on the misoriented substrates exhibited only threading dislocations. The CdTe grown on oriented GaAs showed fewer threading dislocations but exhibited a random structure of loops. The loop structure observed by PLM has been identified by TEM as the boundary between twinned crystallites which extend from the CdTe/GaAs interface to the CdTe surface. When viewed along the growth axis, these boundaries between the columnar twins appear as loops and segments. Surface roughness of the GaAs substrate contributes to the initial growth of twinned material. This leads to competitive growth between the twins and the creation of the observed columnar twins. We present for the first time the growth of CdTe on patterned GaAs substrates. By growing on oriented GaAs(100) substrates that had been patterned prior to growth with 12 {mu}m mesas, it is possible to grow material on the mesa top that is twin free and has a low dislocation density.

  14. A Simple Sb2Te3 Back-Contact Process for CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Siepchen, B.; Späth, B.; Drost, C.; Krishnakumar, V.; Kraft, C.; Winkler, M.; König, J.; Bartholomé, K.; Peng, S.

    2015-10-01

    CdTe solar technology has proved to be a cost-efficient solution for energy production. Formation of the back contact is an important and critical step in preparing high-efficiency, stable CdTe solar cells. In this paper we report a simple CdTe solar cell (Sb2Te3) back contact-formation process. The CdS and CdTe layers were deposited by close-space sublimation. After CdCl2 annealing treatment, the CdTe surface was etched by use of a mixture of nitric and phosphoric acids to obtain a Te-rich surface. Elemental Sb was sputtered on the etched surface and successive post-annealing treatment induced Sb2Te3 alloy formation. Structural characterization by x-ray diffraction analysis confirmed formation of the Sb2Te3 phase. The performance of solar cells with nanoalloyed Sb2Te3 back contacts was comparable with that of reference solar cells prepared with sputtered Sb2Te3 back contact from a compound sputter target.

  15. Caractérisation temporelle et spectrale de la photoluminescence de boîtes quantiques de CdZnTe

    NASA Astrophysics Data System (ADS)

    Brimont, C.; Cronenberger, S.; Crégut, O.; Gallart, M.; Hönerlage, B.; Gilliot, P.

    2006-10-01

    Nous étudions la relaxation des paires électron-trou dans des échantillons de boîtes quantiques auto-assemblées de CdZnTe riches en cadmium incluses dans un puits quantique riche en zinc. Dans ce type de système, le couplage électron-phonon LO est le principal mécanisme responsable de la relaxation d'énergie des porteurs. Nous mesurons cette relaxation par photoluminescence résolue en temps, en fonction de l'intensité et de l'énergie de photon de l'excitation.

  16. Radiometric and dosimetric characteristics of HgI/sub 2/ detectors

    SciTech Connect

    Zaletin, V.M.; Krivozubov, O.V.; Torlin, M.A.; Fomin, V.I.

    1988-04-01

    The characteristics of HgI/sub 2/ detectors in x-ray and gamma detection in applications to radiometric and dosimetric monitoring and as portable instruments for such purposes was considered. Blocks with mosaic and sandwich structures were prepared and tested against each other and, for comparative purposes, against CdTe detectors for relative sensitivities at various gamma-quanta energies. Sensitivity dependencies on gamma radiation energy were plotted for the detector materials and structures as were current dependencies on the dose rate of x rays. Results indicated that the mercury iodide detectors could be used in radiometric and dosimetric measurements at gamma quantum energies up to and in excess of 1000 KeV.

  17. Caliste-SO, a CdTe based spectrometer for bright solar event observations in hard X-rays

    NASA Astrophysics Data System (ADS)

    Meuris, A.; Limousin, O.; Gevin, O.; Blondel, C.; Martignac, J.; Vassal, M.-C.; Soufflet, F.; Fiant, N.; Bednarzik, M.; Stutz, S.; Grimm, O.; Commichau, V.

    2015-07-01

    Caliste-SO is a CdTe hybrid detector designed to be used as a spectrometer for a hard X-ray Fourier telescope. The imaging technique was implemented in the Yohkoh satellite in 1991 and the RHESSI satellite in 2002 to achieve arc-second angular resolution images of solar flares with spectroscopic capabilities. The next generation of such instruments will be the Spectrometer Telescope Imaging X-rays (STIX) on-board the Solar Orbiter mission adopted by the European Space Agency in 2011 for launch in 2017. The design and performance of Caliste-SO allows both high spectral resolution and high count rate measurements from 4 to 150 keV with limited demands on spacecraft resources such as mass, power and volume (critical for interplanetary missions). The paper reports on the flight production of the Caliste-SO devices for STIX, describing the test facilities built-up in Switzerland and France. It illustrates some results obtained with the first production samples that will be mounted in the STIX engineering model.

  18. Recombination by grain-boundary type in CdTe

    SciTech Connect

    Moseley, John Ahrenkiel, Richard K.; Metzger, Wyatt K.; Moutinho, Helio R.; Guthrey, Harvey L.; Al-Jassim, Mowafak M.; Paudel, Naba; Yan, Yanfa

    2015-07-14

    We conducted cathodoluminescence (CL) spectrum imaging and electron backscatter diffraction on the same microscopic areas of CdTe thin films to correlate grain-boundary (GB) recombination by GB “type.” We examined misorientation-based GB types, including coincident site lattice (CSL) Σ = 3, other-CSL (Σ = 5–49), and general GBs (Σ > 49), which make up ∼47%–48%, ∼6%–8%, and ∼44%–47%, respectively, of the GB length at the film back surfaces. Statistically averaged CL total intensities were calculated for each GB type from sample sizes of ≥97 GBs per type and were compared to the average grain-interior CL intensity. We find that only ∼16%–18% of Σ = 3 GBs are active non-radiative recombination centers. In contrast, all other-CSL and general GBs are observed to be strong non-radiative centers and, interestingly, these GB types have about the same CL intensity. Both as-deposited and CdCl{sub 2}-treated films were studied. The CdCl{sub 2} treatment reduces non-radiative recombination at both other-CSL and general GBs, but GBs are still recombination centers after the CdCl{sub 2} treatment.

  19. Ion implantation of CdTe single crystals

    NASA Astrophysics Data System (ADS)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2016-12-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (1017 1/cm2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  20. Characterization of CdZnTe co-doped with indium and lead

    NASA Astrophysics Data System (ADS)

    Zaman, Yasir; Jie, Wanqi; Wang, Tao; He, Yihui; Xu, Lingyan; Guo, Rongrong; Xu, Yadong; Zha, Gangqiang

    2015-01-01

    Indium and lead co-doped Cd0.9Zn0.1Te (CZT:(In,Pb)) were characterized by using I-V measurement, thermally stimulated current (TSC) spectroscopy and time-of-flight (TOF). The concentration of doping level of In and Pb was 10 ppm and 2 ppm, respectively. I-V curves showed that CZT:(In,Pb) possessed the resistivity as high as 1.8×1010 Ω cm, and the mobility (μ) of about 868 cm2/V s, which is considered acceptable for detector's fabrication. However, the carrier life time (τ) was only 9.44×10-7 s. Therefore, the μτ (mobility life time product) value was low. TSC results showed thirteen different trap levels, which were much more than that in Indium doped CZT crystal. Several special traps associated with lead were found, which might be the reason for the low carrier life time.

  1. Spectrum-per-Pixel Cathodoluminescence Imaging of CdTe Thin-Film Bevels

    SciTech Connect

    Moseley, John; Al-Jassim, Mowafak M.; Burst, James; Guthrey, Harvey L.; Metzger, Wyatt K.

    2016-11-21

    We conduct T=6 K cathodoluminescence (CL) spectrum imaging with a nano-scale electron beam on beveled surfaces of CdTe thin-films at different critical stages of standard CdTe device fabrication. The through-thickness total CL intensity profiles are consistent with a reduction in grain boundary recombination due to the CdCl2 treatment. Color-coded maps of the low-temperature luminescence transition energies reveal that CdTe thin films have remarkably non-uniform opto-electronic properties, which depend strongly on sample processing history. The grain-to-grain S content in the interdiffused CdTe/CdS region is estimated from a sample size of thirty-five grains, and the S content in adjacent grains varies significantly in CdCl2-treated samples. A low-temperature luminescence model is developed to interpret spectral behavior at grain boundaries and grain interiors.

  2. Turn-on electrochemiluminescence sensing of Cd2+ based on CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Song, Honglei; Yang, Miao; Fan, Xinxin; Wang, Haiyan

    2014-12-01

    A simple and sensitive method for the detection of cadmium ion was proposed based on the electrochemiluminescence (ECL) of thioglycolic acid capped-CdTe quantum dots (CdTe QDs). The ECL of CdTe QDs was firstly quenched by introduction of S2- and was restored due to following addition of Cd2+, on the basis of which, a "turn-on" ECL method for the detection of Cd2+ was demonstrated. The ECL of CdTe QDs exhibited linear response toward Cd2+ concentration in the range from 6.3 nM to 3.4 μM (R = 0.999) with a detection limit of 2.1 nM. The proposed assay was simple, sensitive, selective, and practicable in real water samples.

  3. On the formation of polytypes in CdTe thin films

    NASA Astrophysics Data System (ADS)

    Tiwari, Brajesh Kumar; Srivastava, O. N.

    1981-08-01

    The single crystal films of CdTe have been found to exhibit polytypism. Three different polytypic series have been found to result in the films prepared from the as supplied and the homogenized CdTe fluxes. The polytypes are formed when the as grown amorphous films get crystallized on electron beam pulse annealing in the electron microscope. The polytypes which are the first known polytypes of CdTe correspond to (i) 2H, 3C, 5H, 6H, 6R, 15R, (ii) 2H', 4H', 5H', and (iii) 2H''. A feasible mechanism for the polytype formation has been suggested. This is based on the interaction between the constant energy surface and the Brilllouin zone leading to a reduction in the electronic energy.

  4. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  5. Role of polycrystallinity in CdTe and CuInSe2 photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Sites, J. R.

    The polycrystalline nature of thin-film CdTe and CuInSe2 solar cells continues to be a major factor in several individual losses that limit overall cell efficiency. This report describes progress in the quantitative separation of these losses, including both measurement and analysis procedures. It also applies these techniques to several individual cells to help document the overall progress with CdTe and CuInSe2 cells. Notably, CdTe cells from Photon Energy have reduced window photocurrent losses to 1 mA/Cm(exp 2); those from the University of South Florida have achieved a maximum power voltage of 693 mV; and CuInSe2 cells from International Solar Electric Technology have shown a hole density as high as 7 x 10(exp 16) cm(exp -3), implying a significant reduction in compensation.

  6. Advances in the In-House CdTe Research Activities at NREL

    SciTech Connect

    Gessert, T.; Wu, X.; Dhere, R.; Moutinho, H.; Smith, S.; Romero, M.; Zhou, J.; Duda, A.; Corwine, C.

    2005-01-01

    NREL in-house CdTe research activities have impacted a broad range of recent program priorities. Studies aimed at industrially relevant applications have produced new materials and processes that enhance the performance of devices based on commercial materials (e.g., soda-lime glass, SnO2:F). Preliminary tests of the effectiveness of these novel components using large-scale processes have been encouraging. Similarly, electro- and nano-probe techniques have been developed and used to study the evolution and function of CdTe grain boundaries. Finally, cathodoluminescence (CL) and photoluminescence (PL) studies on single-crystal samples have yielded improved understanding of how various processes may combine to produce important defects in CdTe films.

  7. Controlled optical properties of water-soluble CdTe nanocrystals via anion exchange.

    PubMed

    Li, Jing; Jia, Jianguang; Lin, Yuan; Zhou, Xiaowen

    2016-02-01

    We report a study on anion exchange reaction of CdTe nanocrystals with S(2-) in aqueous solution under ambient condition. We found that the optical properties of CdTe nanocrystals can be well tuned by controlling the reaction conditions, in which the reaction temperature is crucially important. At low reaction temperature, the product nanocrystals showed blue-shifts in both absorption and PL spectra, while the photoluminescence quantum yield (PLQY) was significantly enhanced. When anion exchanges were carried out at higher reaction temperature, on the other hand, obvious red shifts in absorption and PL spectra accompanied by a fast increase followed by gradual decrease in PLQY were observed. On variation of S(2-) concentration, it was found that the overall kinetics of Te(2-) for S(2-) exchanges depends also on [S(2-)] when anion exchanges were performed at higher temperature. A possible mechanism for anion exchanges in CdTe NCs was proposed.

  8. CdTe quantum dots and YAG hybrid phosphors for white light-emitting diodes.

    PubMed

    Yin, Yanchun; Wang, Rongfang; Zhou, Liya

    2014-09-01

    CdTe quantum dots, 3.28 nm in size, were synthesized using a one-step method in an aqueous medium. The CdTe quantum dots were successfully employed as hybrid phosphors for white light-emitting diode (LED) devices by combining them with yellow-emitting YAG:Ce phosphor. The color-rendering index value and International Commission on illumination coordinates for hybrid phosphor white LEDs were 75 and (x = 0.30, y = 0.29), respectively. Compared with conventional phosphors, semiconductor quantum dots have larger band gap energy and broader absorption features, and can be excited more efficiently by optical pumping sources. The results confirmed that the high color-rendering index value of the white LED was due to the CdTe quantum dots introduced in the hybrid phosphor system.

  9. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  10. Neutron detector

    DOEpatents

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  11. Angle detector

    NASA Technical Reports Server (NTRS)

    Parra, G. T. (Inventor)

    1978-01-01

    An angle detector for determining a transducer's angular disposition to a capacitive pickup element is described. The transducer comprises a pendulum mounted inductive element moving past the capacitive pickup element. The capacitive pickup element divides the inductive element into two parts L sub 1 and L sub 2 which form the arms of one side of an a-c bridge. Two networks R sub 1 and R sub 2 having a plurality of binary weighted resistors and an equal number of digitally controlled switches for removing resistors from the networks form the arms of the other side of the a-c bridge. A binary counter, controlled by a phase detector, balances the bridge by adjusting the resistance of R sub 1 and R sub 2. The binary output of the counter is representative of the angle.

  12. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  13. Studies on optoelectronic properties of DC reactive magnetron sputtered CdTe thin films

    SciTech Connect

    Kumar, B. Rajesh; Hymavathi, B.; Rao, T. Subba

    2014-01-28

    Cadmium telluride continues to be a leading candidate for the development of cost effective photovoltaics for terrestrial applications. In the present work two individual metallic targets of Cd and Te were used for the deposition of CdTe thin films on mica substrates from room temperature to 300 °C by DC reactive magnetron sputtering method. XRD patterns of CdTe thin films deposited on mica substrates exhibit peaks at 2θ = 27.7°, 46.1° and 54.6°, which corresponds to reflection on (1 1 1), (2 2 0) and (3 1 1) planes of CdTe cubic structure. The intensities of XRD patterns increases with the increase of substrate temperature upto 150 °C and then it decreases at higher substrate temperatures. The conductivity of CdTe thin films measured from four probe method increases with the increase of substrate temperature. The activation energies (ΔE) are found to be decrease with the increase of substrate temperature. The optical transmittance spectra of CdTe thin films deposited on mica have a clear interference pattern in the longer wavelength region. The films have good transparency (T > 85 %) exhibiting interference pattern in the spectral region between 1200 – 2500 nm. The optical band gap of CdTe thin films are found to be in the range of 1.48 – 1.57. The refractive index, n decreases with the increase of wavelength, λ. The value of n and k increases with the increase of substrate temperature.

  14. Phosphorus Diffusion Mechanisms and Deep Incorporation in Polycrystalline and Single-Crystalline CdTe

    NASA Astrophysics Data System (ADS)

    Colegrove, Eric; Harvey, Steven P.; Yang, Ji-Hui; Burst, James M.; Albin, David S.; Wei, Su-Huai; Metzger, Wyatt K.

    2016-05-01

    A key challenge in cadmium-telluride (CdTe) semiconductors is obtaining stable and high hole density. Group-I elements substituting Cd can form acceptors but easily self-compensate and diffuse quickly. For example, CdTe photovoltaics have relied on copper as a dopant, but this creates stability problems and hole density that has not exceeded 1015 cm-3 . If hole density can be increased beyond 1016 cm-3 , CdTe solar technology can exceed multicrystalline silicon performance and provide levelized costs of electricity below conventional energy sources. Group-V elements substituting Te offer a solution, but they are very difficult to incorporate. Using time-of-flight secondary-ion mass spectrometry, we examine bulk and grain-boundary diffusion of phosphorus (P) in CdTe in Cd-rich conditions. We find that in addition to slow bulk diffusion and fast grain-boundary diffusion, there is a critical fast bulk-diffusion component that enables deep P incorporation in CdTe. Detailed first-principle calculations indicate the slow bulk-diffusion component is caused by substitutional P diffusion through the Te sublattice, whereas the fast bulk-diffusion component is caused by P diffusing through interstitial lattice sites following the combination of a kick-out step and two rotation steps. The latter is limited in magnitude by high formation energy, but is sufficient to manipulate P incorporation. In addition to an increased physical understanding, these results open up experimental possibilities for group-V doping in CdTe applications.

  15. Development of Substrate Structure CdTe Photovoltaic Devices with Performance Exceeding 10%: Preprint

    SciTech Connect

    Dhere, R. G.; Duenow, J. N.; DeHart, C. M.; Li, J. V.; Kuciauskas, D.; Gessert, T. A.

    2012-08-01

    Most work on CdTe-based solar cells has focused on devices with a superstrate structure. This focus is due to the early success of the superstrate structure in producing high-efficiency cells, problems of suitable ohmic contacts for lightly doped CdTe, and the simplicity of the structure for manufacturing. The development of the CdCl2 heat treatment boosted CdTe technology and perpetuated the use of the superstrate structure. However, despite the beneficial attributes of the superstrate structure, devices with a substrate structure are attractive both commercially and scientifically. The substrate structure eliminates the need for transparent superstrates and thus allows the use of flexible metal and possibly plastic substrates. From a scientific perspective, it allows better control in forming the junction and direct access to the junction for detailed analysis. Research on such devices has been limited. The efficiency of these devices has been limited to around 8% due to low open-circuit voltage (Voc) and fill factor. In this paper, we present our recent device development efforts at NREL on substrate-structure CdTe devices. We have found that processing parameters required to fabricate high-efficiency substrate CdTe PV devices differ from those necessary for traditional superstrate CdTe devices. We have worked on a variety of contact materials including Cu-doped ZnTe and CuxTe. We will present a comparative analysis of the performance of these contacts. In addition, we have studied the influence of fabrication parameters on junction properties. We will present an overview of our development work, which has led to CdTe devices with Voc values of more than 860 mV and NREL-confirmed efficiencies approaching 11%.

  16. Hard X-ray and γ-ray detectors for the NeXT mission

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Makishima, Kazuo; Fukazawa, Yasushi; Kokubun, Motohide; Nakazawa, Kazuhiro; Nomachi, Masaharu; Tajima, Hiroyasu; Tashiro, Makoto; Terada, Yukikatsu

    2004-02-01

    When compared with X-ray astronomy, the γ-ray astronomy, especially in the energy band from 10 keV to several MeV, is still immature and significant improvements should be done to obtain sensitivity comparable to that achieved in the energy band below 10 keV. In order to fill this "sensitivity gap", the NeXT (New X-ray Telescope) mission has been proposed as a successor of the Astro-E2 mission. The high-energy response of the super mirror will enable us to perform first sensitive imaging observation up to 80 keV. One idea for the focal plane detector is to combine a fully depleted X-ray imaging device (soft X-ray detector) and a pixelated CdTe (cadmium telluride) detector. In the soft γ-ray band upto ˜1 MeV, a narrow field-of-view Compton γ-ray telescope utilizing several tens of layers of thin Si or CdTe detector has been proposed to obtain much higher sensitivity than present instruments.

  17. Characterizing Recombination in CdTe Solar Cells with Time-Resolved Photoluminescence: Preprint

    SciTech Connect

    Metzger, W. K.; Romero, M. J.; Dippo, P.; Young, M.

    2006-05-01

    Time-resolved photoluminescence (TRPL) computer simulations demonstrate that under certain experimental conditions it is possible to assess recombination in CdTe solar cells in spite of the junction. This is supported by experimental findings that open-circuit voltage (Voc) is dependent on lifetime in a manner consistent with device theory. Measurements on inverted structures show that the CdCl2 treatment significantly reduces recombination in the CdTe layer without S diffusion. However, S diffusion is required for lifetimes comparable to those observed in high-efficiency solar cells. The results indicate that substrate solar cells can be fabricated with recombination lifetimes similar to superstrate cells.

  18. Correlated analysis of 2 MeV proton-induced radiation damage in CdZnTe crystals using photoluminescence and thermally stimulated current techniques

    NASA Astrophysics Data System (ADS)

    Gu, Yaxu; Jie, Wanqi; Rong, Caicai; Wang, Yuhan; Xu, Lingyan; Xu, Yadong; Lv, Haoyan; Shen, Hao; Du, Guanghua; Fu, Xu; Guo, Na; Zha, Gangqiang; Wang, Tao

    2016-11-01

    Radiation damage induced by 2 MeV protons in CdZnTe crystals has been studied by means of photoluminescence (PL) and thermally stimulated current (TSC) techniques. A notable quenching of PL intensity is observed in the regions irradiated with a fluence of 6 × 1013 p/cm2, suggesting the increase of non-radiative recombination centers. Moreover, the intensity of emission peak Dcomplex centered at 1.48 eV dominates in the PL spectrum obtained from irradiated regions, ascribed to the increase of interstitial dislocation loops and A centers. The intensity of TSC spectra in irradiated regions decreases compared to the virgin regions, resulting from the charge collection inefficiency caused by proton-induced recombination centers. By comparing the intensity of identified traps obtained from numerical fitting using simultaneous multiple peak analysis (SIMPA) method, it suggests that proton irradiation under such dose can introduce high density of dislocation and A-centers in CdZnTe crystals, consistent with PL results.

  19. X-Ray Photoemission Analysis of Chemically Treated CdZnTe Semiconductor Surfaces

    NASA Astrophysics Data System (ADS)

    Nelson, Art; Vazquez, Daniel; Bliss, Ann; Evans, Cheryl; Ferreira, Jim; Nikoloc, Rebecca; Payne, Steve

    2007-03-01

    Device-grade Cd(1-x)ZnxTe was subjected to various chemical treatments commonly used in device fabrication to determine the resulting microscopic surface composition/morphology and the effect on contact formation. Br-MeOH (2% Br), N2H4, NH4F/H2O2, and (NH4)2S solutions were used to modify the surface chemistry of the Cd(1-x)ZnxTe crystals. Scanning electron microscopy was used to evaluate the resultant surface morphology. Angle-resolved high-resolution photoemission measurements on the valence band electronic structure and Zn 2p, Cd 3d, Te 3d, O 1s core lines were used to evaluate the chemistry of the chemically treated surfaces. Metal overlayers were then deposited on these chemically treated surfaces and the I-V characteristics were measured. The measurements were correlated to understand the effect of interface chemistry on the electronic structure at these interfaces with the goal of optimizing the metal/Cd(1-x)ZnxTe Schottky barrier for radiation detector devices. This work was performed under the auspices of the U.S. Dept. of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  20. Linear and non-linear optical properties of capped CdTe nanocrystals prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Tan, G. L.; Yang, Q.; Hömmerich, U.; Seo, J. T.; Temple, D.

    2004-12-01

    CdTe nanocrystals were prepared by mechanical alloying the elemental Cd and Te powders. The formation of CdTe with a single cubic phase after 20 h of ball milling was confirmed by X-ray diffraction (XRD). The surface of as-milled CdTe nanoparticles was then capped with polarization TOP/TOPO or (Na3PO4)n organic ligand, which resulted in colorful dispersion solution with optical absorption peaks located at 573 nm and 525 nm, respectively. The third-order non-linearity, namely, the non-linear refraction and two-photon absorption (TPA) coefficient, of the capped CdTe dispersion samples were evaluated using Z-scan technique. The fitting of Z-scan experimental data with a special equation demonstrated that the capped CdTe nanocrystals possess large third-order susceptibilities at resonant wavelength. The non-linear figure of merit (γ/β) for 20 h as-milled CdTe nanocrystals after capping with TOP/TOPO was determined to be ∼ -2 × 10-5 m, which is nearly 215 times larger than the value reported for bulk CdTe crystals.

  1. CdTe quantum dot-based fluorescent probes for selective detection of Hg (II): The effect of particle size

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Zhao, Zhu-Jun; Li, Jian-Jun; Zhao, Jun-Wu

    2017-04-01

    Mercury ions-induced fluorescence quenching properties of CdTe quantum dots (QDs) have been studied using the fluorescence spectroscopic techniques. By using the hydrothermal method, the CdTe QDs with different particles sizes from 1.98 to 3.68 nm have been prepared, and the corresponding fluorescence emission wavelength is changed from 518 to 620 nm. The fluorescence of QDs is enhanced after linking Bovine serum albumin (BSA) onto the surface of the QDs. Experimental results show that the fluorescence intensity of BSA-coated CdTe QDs could be effectively quenched when Hg2 + react with BSA-coated CdTe QDs. Interestingly, both the sensing sensitivity and selectivity of this fluorescence probe could be improved when the particle size of the QDs decreases. Thus the BSA-coated CdTe QDs with green fluorescence emission have better advantages than the BSA-coated CdTe QDs with red fluorescence for Hg2 + detection. Interference experiment results indicate that the influence from other metal ions could be neglected in the detection, and the Hg2 + could be specifically detected. By using this BSA-coated CdTe QDs-based fluorescence probe, the Hg2 + could be detected with an ultra-low detection limit of nanomole level, and the linear range spans a scope from 0.001 to 1 μmol/L.

  2. Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel

    2015-12-01

    Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.

  3. (135)Xe measurements with a two-element CZT-based radioxenon detector for nuclear explosion monitoring.

    PubMed

    Ranjbar, Lily; Farsoni, Abi T; Becker, Eric M

    2017-04-01

    Measurement of elevated concentrations of xenon radioisotopes ((131m)Xe, (133m)Xe, (133)Xe and (135)Xe) in the atmosphere has been shown to be a very powerful method for verifying whether or not a detected explosion is nuclear in nature. These isotopes are among the few with enough mobility and with half-lives long enough to make their detection at long distances realistic. Existing radioxenon detection systems used by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) suffer from problems such as complexity, need for high maintenance and memory effect. To study the response of CdZnTe (CZT) detectors to xenon radioisotopes and investigate whether it is capable of mitigating the aforementioned issues with the current radioxenon detection systems, a prototype detector utilizing two coplanar CZT detectors was built and tested at Oregon State University. The detection system measures xenon radioisotopes through beta-gamma coincidence technique by detecting coincidence events between the two detectors. In this paper, we introduce the detector design and report our measurement results with radioactive lab sources and (135)Xe produced in the OSU TRIGA reactor. Minimum Detectable Concentration (MDC) for (135)Xe was calculated to be 1.47 ± 0.05 mBq/m(3).

  4. Quantifying electron-phonon coupling in CdTe1-xSex nanocrystals via coherent phonon manipulation

    NASA Astrophysics Data System (ADS)

    Spann, B. T.; Xu, X.

    2014-08-01

    We employ ultrafast transient absorption spectroscopy with temporal pulse shaping to manipulate coherent phonon excitation and quantify the strength of electron-phonon coupling in CdTe1-xSex nanocrystals (NCs). Raman active CdSe and CdTe longitudinal optical phonon (LO) modes are excited and probed in the time domain. By temporally controlling pump pulse pairs to coherently excite and cancel coherent phonons in the CdTe1-xSex NCs, we estimate the relative amount of optical energy that is coupled to the coherent CdSe LO mode.

  5. Long Carrier Lifetimes in Large-Grain Polycrystalline CdTe Without CdCl2

    SciTech Connect

    Jensen, Soren A.; Burst, James M.; Duenow, Joel N.; Guthrey, Harvey L.; Moseley, John; Moutinho, Helio R.; Johnston, Steve W.; Kanevce, Ana; Al-Jassim, Mowafak M.; Metzger, Wyatt K.

    2016-06-27

    For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.

  6. Interfacial charge transfer between CdTe quantum dots and Gram negative vs. Gram positive bacteria.

    SciTech Connect

    Dumas, E.; Gao, C.; Suffern, D.; Bradforth, S. E.; Dimitrejevic, N. M.; Nadeau, J. L.; McGill Univ.; Univ. of Southern California

    2010-01-01

    Oxidative toxicity of semiconductor and metal nanomaterials to cells has been well established. However, it may result from many different mechanisms, some requiring direct cell contact and others resulting from the diffusion of reactive species in solution. Published results are contradictory due to differences in particle preparation, bacterial strain, and experimental conditions. It has been recently found that C{sub 60} nanoparticles can cause direct oxidative damage to bacterial proteins and membranes, including causing a loss of cell membrane potential (depolarization). However, this did not correlate with toxicity. In this study we perform a similar analysis using fluorescent CdTe quantum dots, adapting our tools to make use of the particles fluorescence. We find that two Gram positive strains show direct electron transfer to CdTe, resulting in changes in CdTe fluorescence lifetimes. These two strains also show changes in membrane potential upon nanoparticle binding. Two Gram negative strains do not show these effects - nevertheless, they are over 10-fold more sensitive to CdTe than the Gram positives. We find subtoxic levels of Cd{sup 2+} release from the particles upon irradiation of the particles, but significant production of hydroxyl radicals, suggesting that the latter is a major source of toxicity. These results help establish mechanisms of toxicity and also provide caveats for use of certain reporter dyes with fluorescent nanoparticles which will be of use to anyone performing these assays. The findings also suggest future avenues of inquiry into electron transfer processes between nanomaterials and bacteria.

  7. Transparent Ohmic Contacts for Solution-Processed, Ultrathin CdTe Solar Cells

    SciTech Connect

    Kurley, J. Matthew; Panthani, Matthew G.; Crisp, Ryan W.; Nanayakkara, Sanjini U.; Pach, Gregory F.; Reese, Matthew O.; Hudson, Margaret H.; Dolzhnikov, Dmitriy S.; Tanygin, Vadim; Luther, Joseph M.; Talapin, Dmitri V.

    2016-12-19

    Recently, solution-processing became a viable route for depositing CdTe for use in photovoltaics. Ultrathin (~500 nm) solar cells have been made using colloidal CdTe nanocrystals with efficiencies exceeding 12% power conversion efficiency (PCE) demonstrated by using very simple device stacks. Further progress requires an effective method for extracting charge carriers generated during light harvesting. Here, we explored solution-based methods for creating transparent Ohmic contacts to the solution-deposited CdTe absorber layer and demonstrated molecular and nanocrystal approaches to Ohmic hole-extracting contacts at the ITO/CdTe interface. We used scanning Kelvin probe microscopy to further show how the above approaches improved carrier collection by reducing the potential drop under reverse bias across the ITO/CdTe interface. Other methods, such as spin-coating CdTe/A2CdTe2 (A = Na, K, Cs, N2H5), can be used in conjunction with current/light soaking to improve PCE further.

  8. Static atomic displacements in a CdTe epitaxial layer on a GaAs substrate

    NASA Astrophysics Data System (ADS)

    Horning, R. D.; Staudenmann, J.-L.

    1987-05-01

    A (001)CdTe epitaxial layer on a (001)GaAs substrate was studied by x-ray diffraction between 10 and 360 K. The CdTe growth took place at 380 °C in a vertical gas flow metalorganic chemical vapor deposition reactor. Lattice parameters and integrated intensities of both the substrate and the epitaxial layer using the (00l) and (hhh) Bragg reflections reveal three important features. Firstly, the GaAs substrate does not exhibit severe strain after deposition and it is as perfect as a bulk GaAs. Secondly, the CdTe unit cell distorts tetragonally with a⊥>a∥ below 300 K. The decay of the (00l) reflection intensities as a function of the temperature yields a Debye temperature of 142 K, the same value as for bulk CdTe. Thirdly, a temperature-dependent isotropic static displacement of the Cd and the Te atoms is introduced to account for the anomalous behavior of the (hhh) intensities.

  9. Static atomic displacements in a CdTe epitaxial layer on a GaAs substrate

    SciTech Connect

    Horning, R.D.; Staudenmann, J.

    1987-05-25

    A (001)CdTe epitaxial layer on a (001)GaAs substrate was studied by x-ray diffraction between 10 and 360 K. The CdTe growth took place at 380 /sup 0/C in a vertical gas flow metalorganic chemical vapor deposition reactor. Lattice parameters and integrated intensities of both the substrate and the epitaxial layer using the (00l) and (hhh) Bragg reflections reveal three important features. Firstly, the GaAs substrate does not exhibit severe strain after deposition and it is as perfect as a bulk GaAs. Secondly, the CdTe unit cell distorts tetragonally with a/sub perpendicular/>a/sub parallel/ below 300 K. The decay of the (00l) reflection intensities as a function of the temperature yields a Debye temperature of 142 K, the same value as for bulk CdTe. Thirdly, a temperature-dependent isotropic static displacement of the Cd and the Te atoms is introduced to account for the anomalous behavior of the (hhh) intensities.

  10. Preparation of bioconjugates of CdTe nanocrystals for cancer marker detection

    NASA Astrophysics Data System (ADS)

    Hu, Fengqin; Ran, Yuliang; Zhou, Zhuan; Gao, Mingyuan

    2006-06-01

    Highly fluorescent CdTe quantum dots (Q-dots) stabilized by 3-mercaptopropionic acid (MPA) were prepared by an aqueous solution approach and used as fluorescent labels in detecting a cancer marker, carcinoembryonic antigen (CEA), expressed on human colon carcinoma cell line LS 180. Nonspecific adsorptions of CdTe Q-dots on carcinoma cells were observed and effectively eliminated by replacing MPA with a thiolated PEG (poly(ethylene glycol), Mn = 750) synthesized according to literature. It was unexpectedly found out that the PEG-coated CdTe Q-dots exhibited very strong and specific affinity to anti-CEA monoclonal antibody rch 24 (rch 24 mAb). The resultant CdTe-(rch 24 mAb) conjugates were successfully used in detections of CEA expressed on the surface of cell line LS 180. Further experiments demonstrated that the fluorescent CdTe Q-dots exhibited much better photostability and a brighter fluorescence than FITC, which consequently led to a higher efficiency in the cancer marker detection.

  11. Spray Deposition of High Quality CuInSe2 and CdTe Films: Preprint

    SciTech Connect

    Curtis, C. J.; van Hest, M.; Miedaner, A.; Leisch, J.; Hersh, P.; Nekuda, J.; Ginley, D. S.

    2008-05-01

    A number of different ink and deposition approaches have been used for the deposition of CuInSe2 (CIS), Cu(In,Ga)Se2 (CIGS), and CdTe films. For CIS and CIGS, soluble precursors containing Cu, In, and Ga have been developed and used in two ways to produce CIS films. In the first, In-containing precursor films were sprayed on Mo-coated glass substrates and converted by rapid thermal processing (RTP) to In2Se3. Then a Cu-containing film was sprayed down on top of the In2Se3 and the stacked films were again thermally processed to give CIS. In the second approach, the Cu-, In-, and Ga-containing inks were combined in the proper ratio to produce a mixed Cu-In-Ga ink that was sprayed on substrates and thermally processed to give CIGS films directly. For CdTe deposition, ink consisting of CdTe nanoparticles dispersed in methanol was prepared and used to spray precursor films. Annealing these precursor films in the presence of CdCl2 produced large-grained CdTe films. The films were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Optimized spray and processing conditions are crucial to obtain dense, crystalline films.

  12. Basic physics of phototransport as manifested in thin films of In-doped CdTe

    NASA Astrophysics Data System (ADS)

    Balberg, I.; Dover, Y.; Savir, E.; von Huth, P.

    2010-11-01

    Recognizing the interesting effects associated with deep centers in II-VI semiconductors, we reveal the recombination centers map in In-doped CdTe thin films by introducing a systematic and comprehensive phototransport spectroscopy method. The method is more reliable than previous phototransport methods as it is based on a stringent self-consistency of the temperature dependencies of four phototransport properties with a given model. This limits the number of scenarios and narrows the parameter space that can account for the experimental data. We suggest that the deep centers that can account for the data in the studied CdTe system lie both above and below the Fermi level, and that their special distribution can account for some of the “exotic” or “puzzling” phenomena observed in n -type CdTe. However, the main purpose of this work is to use the analysis of the In-doped CdTe system as a vehicle for a quantitative comprehensive test of the qualitative physical-analytic ideas of Rose that have guided numerous studies of phototransport in semiconductors. Introducing here the concept of the “center of gravity” of the density of states distribution further extends these basic ideas.

  13. Long carrier lifetimes in large-grain polycrystalline CdTe without CdCl2

    NASA Astrophysics Data System (ADS)

    Jensen, S. A.; Burst, J. M.; Duenow, J. N.; Guthrey, H. L.; Moseley, J.; Moutinho, H. R.; Johnston, S. W.; Kanevce, A.; Al-Jassim, M. M.; Metzger, W. K.

    2016-06-01

    For decades, polycrystalline CdTe thin films for solar applications have been restricted to grain sizes of microns or less whereas other semiconductors such as silicon and perovskites have produced devices with grains ranging from less than a micron to more than 1 mm. Because the lifetimes in as-deposited polycrystalline CdTe films are typically limited to less than a few hundred picoseconds, a CdCl2 treatment is generally used to improve the lifetime; but this treatment may limit the achievable hole density by compensation. Here, we establish methods to produce CdTe films with grain sizes ranging from hundreds of nanometers to several hundred microns by close-spaced sublimation at industrial manufacturing growth rates. Two-photon excitation photoluminescence spectroscopy shows a positive correlation of lifetime with grain size. Large-grain, as-deposited CdTe exhibits lifetimes exceeding 10 ns without Cl, S, O, or Cu. This uncompensated material allows dopants such as P to achieve a hole density of 1016 cm-3, which is an order of magnitude higher than standard CdCl2-treated devices, without compromising the lifetime.

  14. Application of Lithium Chloride Dopant in Fabrication of CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Xu, Hang; Zeng, Guanggen; Feng, Lianghuan; Wu, Lili; Liu, Cai; Ren, Shengqiang; Li, Kang; Li, Bing; Li, Wei; Wang, Wenwu; Zhang, Jingquan

    2017-02-01

    We report use of lithium chloride (LiCl) as a non-Cd dopant to deal with the environmental issues associated with use of traditional CdCl2 dopant in CdTe solar cells. It has been found that, after LiCl treatment, device performance parameters including external quantum efficiency and conversion efficiency were improved considerably, being comparable to those of a counterpart treated with CdCl2. The optimal efficiency of 9.58% was obtained at 405°C, and V oc as high as ˜737.3 mV was obtained at 385°C. Thorough study of the properties of the CdTe film treated by LiCl by x-ray diffraction analysis, scanning electron microscopy, x-ray photoelectron spectroscopy, and secondary-ion mass spectroscopy further verified the feasibility of posttreatment with nontoxic LiCl for fabrication of CdTe photovoltaic devices. The doping level of p-type CdTe thin film was improved by lithium. This represents a nontoxic approach for fabrication of commercial CdS/CdTe thin-film solar cells with better performance.

  15. Nanoscale Imaging of Band Gap and Defects in Polycrystalline CdTe Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Zhitenev, Nikolai; Yoon, Yohan; Chae, Jungseok; Katzenmeyer, Aaron; Yoon, Heayoung; An, Sangmin; Shumacher, Joshua; Centrone, Andrea

    To further increase the power efficiency of polycrystalline thin film photovoltaic (PV) technology, a detailed understanding of microstructural properties of the devices is required. In this work, we investigate the microstructure of CdTe PV devices using two optical spectroscopies. Sub-micron thickness lamella samples were cut out from a PV device, either in cross-section or in-plane, by focused ion beam. The first technique is the photothermal induced resonance (PTIR) used to obtain absorption spectra over a broad range of wavelengths. In PTIR, a wavelength tunable pulsed laser is combined with an atomic force microscope to detect the local thermal expansion of lamella CdTe sample induced by light absorption. The second technique based on a near-field scanning optical microscope maps the local absorption at fixed near-IR wavelengths with energies at or below CdTe band-gap energy. The variation of the band gap throughout the CdTe absorber determined from PTIR spectra is ~ 20 meV. Both techniques detect strong spatial variation of shallow defects over different grains. The spatial distribution of mid-gap defects appears to be more uniform. The resolution, the sensitivity and the applicability of these two approaches are compared.

  16. Synthesis and enhanced fluorescence of Ag doped CdTe semiconductor quantum dots.

    PubMed

    Ding, Si-Jing; Liang, Shan; Nan, Fan; Liu, Xiao-Li; Wang, Jia-Hong; Zhou, Li; Yu, Xue-Feng; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-02-07

    Doping with intentional impurities is an intriguing way to tune the properties of semiconductor nanocrystals. However, the synthesis of some specific doped semiconductor nanocrystals remains a challenge and the doping mechanism in this strongly confined system is still not clearly understood. In this work, we report, for the first time, the synthesis of stable and water-soluble Ag-doped CdTe semiconductor quantum dots (SQDs) via a facile aqueous approach. Experimental characterization demonstrated the efficient doping of the Ag impurities into the CdTe SQDs with an appropriate reaction time. By doping 0.3% Ag impurities, the Stokes shift is decreased by 120 meV, the fluorescence intensity is enhanced more than 3 times, the radiative rate is enhanced 4.2 times, and the non-radiative rate is efficiently suppressed. These observations reveal that the fluorescence enhancement in Ag-doped CdTe SQDs is mainly attributed to the minimization of surface defects, filling of the trap states, and the enhancement of the radiative rate by the silver dopants. Our results suggest that the silver doping is an efficient method for tuning the optical properties of the CdTe SQDs.

  17. Investigation of deep level defects in CdTe thin films

    SciTech Connect

    Shankar, H.; Castaldini, A.; Dauksta, E.; Medvid, A.; Cavallini, A.

    2014-02-21

    In the past few years, a large body of work has been dedicated to CdTe thin film semiconductors, as the electronic and optical properties of CdTe nanostructures make them desirable for photovoltaic applications. The performance of semiconductor devices is greatly influenced by the deep levels. Knowledge of parameters of deep levels present in as-grown materials and the identification of their origin is the key factor in the development of photovoltaic device performance. Photo Induced Current Transient Spectroscopy technique (PICTS) has proven to be a very powerful method for the study of deep levels enabling us to identify the type of traps, their activation energy and apparent capture cross section. In the present work, we report the effect of growth parameters and LASER irradiation intensity on the photo-electric and transport properties of CdTe thin films prepared by Close-Space Sublimation method using SiC electrical heating element. CdTe thin films were grown at three different source temperatures (630, 650 and 700 °C). The grown films were irradiated with Nd:YAG LASER and characterized by Photo-Induced Current Transient Spectroscopy, Photocurrent measurementand Current Voltage measurements. The defect levels are found to be significantly influenced by the growth temperature.

  18. Novel synthesis of β-cyclodextrin functionalized CdTe quantum dots as luminescent probes

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Feng; Zhou, Min; Chang, Yan-Ping; Ren, Cui-Ling; Chen, Hong-Li; Chen, Xing-Guo

    2012-12-01

    A novel, inexpensive procedure for the preparation of highly fluorescent and water-soluble CdTe quantum dots (QDs) using β-cyclodextrin (β-CD) as surface-coating agents was fabricated through the substitution reaction at the C-6 position of mono-6-deoxy-6-(p-tolylsulfonyl)-cyclodextrin (6-TsO-β-CD) by the sbnd NH2 of (3-aminopropyl)triethoxysilane-coated CdTe QDs (APTES/CdTe QDs) under mild conditions. X-ray powder diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), ultraviolet and visible (UV-vis) spectrophotometer, and fluorescence (FL) spectrophotometer were used to characterize the obtained nanoparticles, which proved that the CdTe QDs have been effectively modified by β-CD. The quantum yields (QYs) of CdTe QDs, APTES/CdTe QDs and β-CD/APTES/CdTe QDs in water comparative to Rhodamine 6G were about 17%, 12%, and 9%, respectively. A pair of isomer o,p'-DDT and p,p'-DDT was chosen as the template molecules to evaluate the molecular recognition properties of β-CD/APTES/CdTe QDs. The results revealed that β-CD/APTES/CdTe QDs simultaneously possessed unique optical properties of QDs and excellent molecules recognition ability of β-CD through combining their individual distinct advantages.

  19. Semiconductor detector developments for high energy space astronomy

    NASA Astrophysics Data System (ADS)

    Meuris, A.

    2014-05-01

    The rise of high energy astrophysics and solar physics in the 20th century is linked to the development of space telescopes; since the 1960s they have given access to the X-ray and gamma-ray sky, revealing the most violent phenomena in the Universe. Research and developments in imaging concepts and sensing materials haven't stopped since yet to improve the sensitivity of the X-ray and gamma-ray observatories. The paper proposes an overview of instrument realizations and focuses on the innovative detection techniques and technologies for applications from 0.1 keV to 10 MeV energy range. Solid-state detectors are prominent solutions for space instrumentation because of their excellent imaging and spectroscopic capabilities with limited volume and power resources. Various detection concepts based on semiconductors (Compton camera, Cd(Zn)Te pixel hybrids, DePFET active pixel sensors) are under design or fabrication for the near-future missions like Astro-H, BepiColombo, Solar Orbiter. New technologies on sensing materials, front-end electronics, interconnect processes are under study for the next generation of instruments to push back our knowledge of star and galaxy formation and evolution.

  20. Oscillator detector

    SciTech Connect

    Potter, B.M.

    1980-05-13

    An alien liquid detector employs a monitoring element and an oscillatory electronic circuit for maintaining the temperature of the monitoring element substantially above ambient temperature. The output wave form, eg., frequency of oscillation or wave shape, of the oscillatory circuit depends upon the temperaturedependent electrical characteristic of the monitoring element. A predetermined change in the output waveform allows water to be discriminated from another liquid, eg., oil. Features of the invention employing two thermistors in two oscillatory circuits include positioning one thermistor for contact with water and the other thermistor above the oil-water interface to detect a layer of oil if present. Unique oscillatory circuit arrangements are shown that achieve effective thermistor action with an economy of parts and energizing power. These include an operational amplifier employed in an astable multivibrator circuit, a discrete transistor-powered tank circuit, and use of an integrated circuit chip.

  1. Cathodic stripping synthesis and cytotoxity studies of glutathione-capped CdTe quantum dots.

    PubMed

    Ge, Cunwang; Zhao, Yu; Hui, Jie; Zhang, Tianyi; Miao, Wujian; Yu, Wei

    2011-08-01

    A cathodic stripping of Te precursor in the presence of Cd2+ and biocompatible glutathione (GSH) was reported for facile synthesis of lowly cytotoxic and highly luminescent CdTe quantum dots (QDs) in aqueous solution. The photoluminescence, electrogenerated chemiluminescence (ECL), toxicity, and cyto-osmosis of the QDs were evaluated to reveal their potential bio-applications. The morphology and composition of as-prepared QDs were investigated by HRTEM and powder XRD spectroscopy, which indicated that the QDs consisted of a CdTe core coated with a CdS shell. The obtained CdTe/CdS core/shell QDs possessed good crystallinity, narrow monodispersity and long-term stability. These QDs showed high fluorescence quantum yields of 49% to 63% over a broad spectral range of 540-650 nm. Efficient and stable ECL of QDs was observed on the anodic potential region upon the electrode potential cycled between 1.5 and -2.0 V versus Ag/AgCl. Furthermore, human liver cancer HepG2 cells were chosen as model cells for toxicity assay of QDs. Effects of the concentration, size, and incubation time of CdTe QDs capped with GSH or mercaptoacetic acid (MAA) on the cell metabolic viability and cyto-osmosis were evaluated. GSH-capped CdTe QDs could infiltrate cytomembrane and karyothecas, and were less cytotoxic than MAA-capped ones under the same experimental conditions. The reported CdTe QDs could be good candidates of fluorescent and ECL probes for biosensing and cell imaging.

  2. Development of a low-noise, 4th-order readout ASIC for CdZnTe detectors in gamma spectrometer applications

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Su, Lin; Wei, Xiaomin; Zheng, Ran; Hu, Yann

    2016-09-01

    This paper presents an ASIC readout circuit development, which aims to achieve low noise. In order to compensate the leakage current and improve gain, a dual-stage CSA has been utilized. A 4th-order high-linearity shaper is proposed to obtain a Semi-Gaussian wave and further decrease the noise induced by the leakage current. The ASIC has been designed and fabricated in a standard commercial 2P4M 0.35 μm CMOS process. Die area of one channel is about 1190 μm×147 μm. The input charge range is 1.8 fC. The peaking time can be adjusted from 1 μs to 3 μs. Measured ENC is about 55e- (rms) at input capacitor of 0 F. The gain is 271 mV/fC at the peaking time of 1 μs.

  3. Trends in the design of front-end systems for room temperature solid state detectors

    SciTech Connect

    Manfredi, Pier F.; Re, Valerio

    2003-10-07

    The paper discusses the present trends in the design of low-noise front-end systems for room temperature semiconductor detectors. The technological advancement provided by submicron CMOS and BiCMOS processes is examined from several points of view. The noise performances are a fundamental issue in most detector applications and suitable attention is devoted to them for the purpose of judging whether or not the present processes supersede the solutions featuring a field-effect transistor as a front-end element. However, other considerations are also important in judging how well a monolithic technology suits the front-end design. Among them, the way a technology lends itself to the realization of additional functions, for instance, the charge reset in a charge-sensitive loop or the time-variant filters featuring the special weighting functions that may be requested in some applications of CdTe or CZT detectors.

  4. Development of an ASIC for Si/CdTe detectors in a radioactive substance visualizing system

    NASA Astrophysics Data System (ADS)

    Harayama, Atsushi; Takeda, Shin`ichiro; Sato, Goro; Ikeda, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki

    2014-11-01

    We report on the recent development of a 64-channel analog front-end ASIC for a new gamma-ray imaging system designed to visualize radioactive substances. The imaging system employs a novel Compton camera which consists of silicon (Si) and cadmium telluride (CdTe) detectors. The ASIC is intended for the readout of pixel/pad detectors utilizing Si/CdTe as detector materials, and covers a dynamic range up to 1.4 MeV. The readout chip consists of 64 identical signal channels and was implemented with X-FAB 0.35 μm CMOS technology. Each channel contains a charge-sensitive amplifier, a pole-zero cancellation circuit, a low-pass filter, a comparator, and a sample-hold circuit, along with a Wilkinson-type A-to-D converter. We observed an equivalent noise charge of 500 e- and a noise slope of 5 e-/pF (r.m.s.) with a power consumption of 2.1 mW per channel. The chip works well when connected to Schottky CdTe diodes, and delivers spectra with good energy resolution, such as 12 keV (FWHM) at 662 keV and 24 keV (FWHM) at 1.33 MeV.

  5. In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers

    PubMed Central

    2014-01-01

    A new strategy for in situ preparation of highly fluorescent CdTe quantum dots (QDs) with 3-mercaptopropionic acid (MPA) and hyperbranched poly(amidoamine)s (HPAMAM) as co-stabilizers was proposed in this paper. MPA and HPAMAM were added in turn to coordinate Cd2+. After adding NaHTe and further microwave irradiation, fluorescent CdTe QDs stabilized by MPA and HPAMAM were obtained. Such a strategy avoids the aftertreatment of thiol-stabilized QDs in their bioapplication and provides an opportunity for direct biomedical use of QDs due to the existence of biocompatible HPAMAM. The resulting CdTe QDs combine the mechanical, biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs together. PMID:24636234

  6. Thin film CdTe solar cells with an absorber layer thickness in micro- and sub-micrometer scale

    NASA Astrophysics Data System (ADS)

    Bai, Zhizhong; Yang, Jun; Wang, Deliang

    2011-10-01

    CdTe thin film solar cell with an absorber layer as thin as 0.5 μm was fabricated. An efficiency of 7.9% was obtained for a 1-μm-thick CdTe solar cell. An increased intensity of deep recombination states in the band gap, which was responsible for the reduced open-circuit voltage and fill factor for ultra-thin solar cells, was induced due to the not-well-developed polycrystalline CdTe microstructure and the CdS/CdTe heterojunction and the presence of Cu in the back contact. The experimental results presented in this study demonstrated that 1-μm-thick absorber layer is thick enough to fabricate CdTe solar cell with a decent efficiency.

  7. Magnetron sputtering based direct fabrication of three dimensional CdTe hierarchical nanotrees exhibiting stable superhydrophobic property

    NASA Astrophysics Data System (ADS)

    Luo, Bingwei; Deng, Yuan; Wang, Yao; Shi, Yongming; Cao, Lili; Zhu, Wei

    2013-09-01

    Three dimensional CdTe hierarchical nanotrees are initially prepared by a simple one-step magnetron sputtering method without any templates or additives. The CdTe hierarchical nanotrees are constructed by the spear-like vertical trunks and horizontal branches with the diameters of about 100 nm at bottom and became cuspidal on the top. The particular nanostructure imparts these materials superhydrophobic property, and this property can be preserved after placing in air for 90 days, and is stable even after the ultraviolet light and X-ray irradiation, respectively. This study provides a simple strategy to achieve superhydrophobic properties for CdTe materials at lower temperature, which opens a new potential for CdTe solar cell with self-cleaning property.

  8. A computational study on the energy bandgap engineering in performance enhancement of CdTe thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ali, Ameen M.; Rahman, K. S.; Ali, Lamya M.; Akhtaruzzaman, M.; Sopian, K.; Radiman, S.; Amin, N.

    In this study, photovoltaic properties of CdTe thin film in the configuration of n-SnO2/n-CdS/p-CdTe/p-CdTe:Te/metal have been studied by numerical simulation software named ;Analysis of Microelectronic and Photonic Structure; (AMPS-1D). A modified structure for CdTe thin film solar cell has been proposed by numerical analysis with the insertion of a back contact buffer layer (CdTe:Te). This layer can serve as a barrier that will decelerate the copper diffusion in CdTe solar cell. Four estimated energy bandgap relations versus the Tellurium (Te) concentrations and the (CdTe:Te) layer thickness have been examined thoroughly during simulation. Correlation between energy bandgap with the CdTe thin film solar cell performance has also been established.

  9. Modeling Cu Migration in CdTe Solar Cells Under Device-Processing and Long-Term Stability Conditions: Preprint

    SciTech Connect

    Teeter, G.; Asher, S.

    2008-05-01

    An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe photovoltaic devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.

  10. One-Dimensional Reaction-Diffusion Simulation of Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christain

    2014-06-13

    In this work, we report on developing 1D reaction-diffusion solver to understand the kinetics of p-type doping formation in CdTe absorbers and to shine some light on underlying causes of metastabilities observed in CdTe PV devices. Evolution of intrinsic and Cu-related defects in CdTe solar cell has been studied in time-space domain self-consistently with free carrier transport and Poisson equation. Resulting device performance was simulated as a function of Cu diffusion anneal time showing pronounced effect the evolution of associated acceptor and donor states can cause on device characteristics. Although 1D simulation has intrinsic limitations when applied to poly-crystalline films, the results suggest strong potential of the approach in better understanding of the performance and metastabilities of CdTe photovoltaic device.

  11. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  12. Correlations of Capacitance-Voltage Hysteresis with Thin-Film CdTe Solar Cell Performance During Accelerated Lifetime Testing

    SciTech Connect

    Albin, D.; del Cueto, J.

    2011-03-01

    In this paper we present the correlation of CdTe solar cell performance with capacitance-voltage hysteresis, defined presently as the difference in capacitance measured at zero-volt bias when collecting such data with different pre-measurement bias conditions. These correlations were obtained on CdTe cells stressed under conditions of 1-sun illumination, open-circuit bias, and an acceleration temperature of approximately 100 degrees C.

  13. Interface Characterization of Single-Crystal CdTe Solar Cells With VOC > 950 mV

    SciTech Connect

    Burst, James M.; Duenow, Joel N.; Kanevce, Ana; Moutinho, Helio R.; Jiang, Chun Sheng; Al-Jassim, Mowafak M.; Reese, Matthew Owen; Albin, David S.; Aguiar, Jeffrey A.; Colegrove, Eric; Ablekim, Tursun; Swain, Santosh K.; Lynn, Kelvin G.; Kuciauskas, Darius; Barnes, Teresa M.; Metzger, Wyatt K.

    2016-11-01

    Advancing CdTe solar cell efficiency requires improving the open-circuit voltage (VOC) above 900 mV. This requires long carrier lifetime, high hole density, and high-quality interfaces, where the interface recombination velocity is less than about 104 cm/s. Using CdTe single crystals as a model system, we report on CdTe/CdS electrical and structural interface properties in devices that produce open-circuit voltage exceeding 950 mV.

  14. Process Development for High Voc CdTe Solar Cells: Phase I, Annual Technical Report, October 2005 - September 2006

    SciTech Connect

    Ferekides, C. S.; Morel, D. L.

    2007-04-01

    The focus of this project is the open-circuit voltage of the CdTe thin-film solar cell. CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, but the efficiency of the CdTe solar cell has been stagnant for the last few years. At the manufacturing front, the CdTe technology is fast paced and moving forward with U.S.-based First Solar LLC leading the world in CdTe module production. To support the industry efforts and continue the advancement of this technology, it will be necessary to continue improvements in solar cell efficiency. A closer look at the state-of-the-art performance levels puts the three solar cell efficiency parameters of short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) in the 24-26 mA/cm2, 844?850 mV, and 74%-76% ranges respectively. During the late 1090s, efforts to improve cell efficiency were primarily concerned with increasing JSC, simply by using thinner CdS window layers to enhance the blue response (<510 nm) of the CdTe cell. These efforts led to underscoring the important role 'buffers' (or high-resistivity transparent films) play in CdTe cells. The use of transparent bi-layers (low-p/high-p) as the front contact is becoming a 'standard' feature of the CdTe cell.

  15. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice.

    PubMed

    Li, Xiaohui; Yang, Xiangrong; Yuwen, Lihui; Yang, Wenjing; Weng, Lixing; Teng, Zhaogang; Wang, Lianhui

    2016-07-01

    Fluorescent quantum dots (QDs) are highly promising nanomaterials for various biological and biomedical applications because of their unique optical properties, such as robust photostability, strong photoluminescence, and size-tunable fluorescence. Several studies have reported the in vivo toxicity of QDs, but their effects on the male reproduction system have not been examined. In this study, we investigated the reproductive toxicity of cadmium telluride (CdTe) QDs at a high dose of 2.0 nmol per mouse and a low dose of 0.2 nmol per mouse. Body weight measurements demonstrated there was no overt toxicity for both dose at day 90 after exposure, but the high dose CdTe affected body weight up to 15 days after exposure. CdTe QDs accumulated in the testes and damaged the tissue structure for both doses on day 90. Meanwhile, either of two CdTe QDs treatments did not significantly affect the quantity of sperm, but the high dose CdTe significantly decreased the quality of sperm on day 60. The serum levels of three major sex hormones were also perturbed by CdTe QDs treatment. However, the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those mated with untreated male mice. These results suggest that CdTe QDs can cause testes toxicity in a dose-dependent manner. The low dose of CdTe QDs is relatively safe for the reproductive system of male mice. Our preliminary result enables better understanding of the reproductive toxicity induced by cadmium-containing QDs and provides insight into the safe use of these nanoparticles in biological and environmental systems.

  16. 3D Lifetime Tomography Reveals How CdCl2 Improves Recombination Throughout CdTe Solar Cells.

    PubMed

    Barnard, Edward S; Ursprung, Benedikt; Colegrove, Eric; Moutinho, Helio R; Borys, Nicholas J; Hardin, Brian E; Peters, Craig H; Metzger, Wyatt K; Schuck, P James

    2017-01-01

    Using two-photon tomography, carrier lifetimes are mapped in polycrystalline CdTe photovoltaic devices. These 3D maps probe subsurface carrier dynamics that are inaccessible with traditional optical techniques. They reveal that CdCl2 treatment of CdTe solar cells suppresses nonradiative recombination and enhances carrier lifetimes throughout the film with substantial improvements particularly near subsurface grain boundaries and the critical buried p-n junction.

  17. 3D Lifetime Tomography Reveals How CdCl 2 Improves Recombination Throughout CdTe Solar Cells

    SciTech Connect

    Barnard, Edward S.; Ursprung, Benedikt; Colegrove, Eric; Moutinho, Helio R.; Borys, Nicholas J.; Hardin, Brian E.; Peters, Craig H.; Metzger, Wyatt K.; Schuck, P. James

    2016-11-15

    Using two-photon tomography, carrier lifetimes are mapped in polycrystalline CdTe photovoltaic devices. These 3D maps probe subsurface carrier dynamics that are inaccessible with traditional optical techniques. They reveal that CdCl2 treatment of CdTe solar cells suppresses nonradiative recombination and enhances carrier lifetimes throughout the film with substantial improvements particularly near subsurface grain boundaries and the critical buried p-n junction.

  18. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  19. Liver Toxicity of Cadmium Telluride Quantum Dots (CdTe QDs) Due to Oxidative Stress in Vitro and in Vivo

    PubMed Central

    Zhang, Ting; Hu, Yuanyuan; Tang, Meng; Kong, Lu; Ying, Jiali; Wu, Tianshu; Xue, Yuying; Pu, Yuepu

    2015-01-01

    With the applications of quantum dots (QDs) expanding, many studies have described the potential adverse effects of QDs, yet little attention has been paid to potential toxicity of QDs in the liver. The aim of this study was to investigate the effects of cadmium telluride (CdTe) QDs in mice and murine hepatoma cells alpha mouse liver 12 (AML 12). CdTe QDs administration significantly increased the level of lipid peroxides marker malondialdehyde (MDA) in the livers of treated mice. Furthermore, CdTe QDs caused cytotoxicity in AML 12 cells in a dose- and time-dependent manner, which was likely mediated through the generation of reactive oxygen species (ROS) and the induction of apoptosis. An increase in ROS generation with a concomitant increase in the gene expression of the tumor suppressor gene p53, the pro-apoptotic gene Bcl-2 and a decrease in the anti-apoptosis gene Bax, suggested that a mitochondria mediated pathway was involved in CdTe QDs’ induced apoptosis. Finally, we showed that NF-E2-related factor 2 (Nrf2) deficiency blocked induced oxidative stress to protect cells from injury induced by CdTe QDs. These findings provide insights into the regulatory mechanisms involved in the activation of Nrf2 signaling that confers protection against CdTe QDs-induced apoptosis in hepatocytes. PMID:26404244

  20. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.