Sample records for cdznte-based gamma camera

  1. Optimal configuration of a low-dose breast-specific gamma camera based on semiconductor CdZnTe pixelated detectors

    NASA Astrophysics Data System (ADS)

    Genocchi, B.; Pickford Scienti, O.; Darambara, DG

    2017-05-01

    Breast cancer is one of the most frequent tumours in women. During the ‘90s, the introduction of screening programmes allowed the detection of cancer before the palpable stage, reducing its mortality up to 50%. About 50% of the women aged between 30 and 50 years present dense breast parenchyma. This percentage decreases to 30% for women between 50 to 80 years. In these women, mammography has a sensitivity of around 30%, and small tumours are covered by the dense parenchyma and missed in the mammogram. Interestingly, breast-specific gamma-cameras based on semiconductor CdZnTe detectors have shown to be of great interest to early diagnosis. Infact, due to the high energy, spatial resolution, and high sensitivity of CdZnTe, molecular breast imaging has been shown to have a sensitivity of about 90% independently of the breast parenchyma. The aim of this work is to determine the optimal combination of the detector pixel size, hole shape, and collimator material in a low dose dual head breast specific gamma camera based on a CdZnTe pixelated detector at 140 keV, in order to achieve high count rate, and the best possible image spatial resolution. The optimal combination has been studied by modeling the system using the Monte Carlo code GATE. Six different pixel sizes from 0.85 mm to 1.6 mm, two hole shapes, hexagonal and square, and two different collimator materials, lead and tungsten were considered. It was demonstrated that the camera achieved higher count rates, and better signal-to-noise ratio when equipped with square hole, and large pixels (> 1.3 mm). In these configurations, the spatial resolution was worse than using small pixel sizes (< 1.3 mm), but remained under 3.6 mm in all cases.

  2. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  3. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE PAGES

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  4. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras.

    PubMed

    Bolotnikov, A E; Ackley, K; Camarda, G S; Cherches, C; Cui, Y; De Geronimo, G; Fried, J; Hodges, D; Hossain, A; Lee, W; Mahler, G; Maritato, M; Petryk, M; Roy, U; Salwen, C; Vernon, E; Yang, G; James, R B

    2015-07-01

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm(3) detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays' performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.

  5. An array of virtual Frisch-grid CdZnTe detectors and a front-end application-specific integrated circuit for large-area position-sensitive gamma-ray cameras

    DOE PAGES

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.; ...

    2015-07-28

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  6. Progress in the Development of CdZnTe Unipolar Detectors for Different Anode Geometries and Data Corrections

    PubMed Central

    Zhang, Qiushi; Zhang, Congzhe; Lu, Yanye; Yang, Kun; Ren, Qiushi

    2013-01-01

    CdZnTe detectors have been under development for the past two decades, providing good stopping power for gamma rays, lightweight camera heads and improved energy resolution. However, the performance of this type of detector is limited primarily by incomplete charge collection problems resulting from charge carriers trapping. This paper is a review of the progress in the development of CdZnTe unipolar detectors with some data correction techniques for improving performance of the detectors. We will first briefly review the relevant theories. Thereafter, two aspects of the techniques for overcoming the hole trapping issue are summarized, including irradiation direction configuration and pulse shape correction methods. CdZnTe detectors of different geometries are discussed in detail, covering the principal of the electrode geometry design, the design and performance characteristics, some detector prototypes development and special correction techniques to improve the energy resolution. Finally, the state of art development of 3-D position sensing and Compton imaging technique are also discussed. Spectroscopic performance of CdZnTe semiconductor detector will be greatly improved even to approach the statistical limit on energy resolution with the combination of some of these techniques. PMID:23429509

  7. High-Energy 3D Calorimeter for Use in Gamma-Ray Astronomy Based on Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors

    NASA Technical Reports Server (NTRS)

    Moiseev, A.; Bolotnikov, A.; DeGeronimo, G.; Hays, E.; James, R.; Thompson, D.; Vernon, E.

    2017-01-01

    We will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from approximately 100 keV to 20 - 50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5 x 5 to 7 x 7 mm2 and length of 2 - 4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., greater than 1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of gamma rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of gamma ray lines from nuclear decays.

  8. Affordable CZT SPECT with dose-time minimization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hugg, James W.; Harris, Brian W.; Radley, Ian

    2017-03-01

    PURPOSE Pixelated CdZnTe (CZT) detector arrays are used in molecular imaging applications that can enable precision medicine, including small-animal SPECT, cardiac SPECT, molecular breast imaging (MBI), and general purpose SPECT. The interplay of gamma camera, collimator, gantry motion, and image reconstruction determines image quality and dose-time-FOV tradeoffs. Both dose and exam time can be minimized without compromising diagnostic content. METHODS Integration of pixelated CZT detectors with advanced ASICs and readout electronics improves system performance. Because historically CZT was expensive, the first clinical applications were limited to small FOV. Radiation doses were initially high and exam times long. Advances have significantly improved efficiency of CZT-based molecular imaging systems and the cost has steadily declined. We have built a general purpose SPECT system using our 40 cm x 53 cm CZT gamma camera with 2 mm pixel pitch and characterized system performance. RESULTS Compared to NaI scintillator gamma cameras: intrinsic spatial resolution improved from 3.8 mm to 2.0 mm; energy resolution improved from 9.8% to <4 % at 140 keV; maximum count rate is <1.5 times higher; non-detection camera edges are reduced 3-fold. Scattered photons are greatly reduced in the photopeak energy window; image contrast is improved; and the optimal FOV is increased to the entire camera area. CONCLUSION Continual improvements in CZT detector arrays for molecular imaging, coupled with optimal collimator and image reconstruction, result in minimized dose and exam time. With CZT cost improving, affordable whole-body CZT general purpose SPECT is expected to enable precision medicine applications.

  9. Compact CdZnTe-based gamma camera for prostate cancer imaging

    NASA Astrophysics Data System (ADS)

    Cui, Yonggang; Lall, Terry; Tsui, Benjamin; Yu, Jianhua; Mahler, George; Bolotnikov, Aleksey; Vaska, Paul; De Geronimo, Gianluigi; O'Connor, Paul; Meinken, George; Joyal, John; Barrett, John; Camarda, Giuseppe; Hossain, Anwar; Kim, Ki Hyun; Yang, Ge; Pomper, Marty; Cho, Steve; Weisman, Ken; Seo, Youngho; Babich, John; LaFrance, Norman; James, Ralph B.

    2011-06-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high falsepositive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integratedcircuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera have been completed. The results show better than 6-mm resolution at a distance of 1 cm. Details of the test results are discussed in this paper.

  10. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    PubMed Central

    Sordo, Stefano Del; Abbene, Leonardo; Caroli, Ezio; Mancini, Anna Maria; Zappettini, Andrea; Ubertini, Pietro

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors. PMID:22412323

  11. Analysis of Te and TeO 2 on CdZnTe Nuclear Detectors Treated with Hydrogen Bromide and Ammonium-Based Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.

    Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less

  12. Analysis of Te and TeO 2 on CdZnTe Nuclear Detectors Treated with Hydrogen Bromide and Ammonium-Based Solutions

    DOE PAGES

    Drabo, Mebougna L.; Egarievwe, Stephen U.; Okwechime, Ifechukwude O.; ...

    2017-04-30

    Surface defects caused during cutting and polishing in the fabrication of cadmium zinc telluride (CdZnTe) nuclear detectors limit their spectral performance. Chemical treatments are often used to remove surface damages and defects. In this paper, we present the analysis of Te and TeO 2 species on the surfaces of CdZnTe nuclear detectors treated with hydrogen bromide and ammonium-based solutions. The CdZnTe wafers were chemo-mechanically polished in a mixture of hydrogen bromide in hydrogen peroxide and ethylene glycol, followed by a chemical passivation in a mixture of ammonium fluoride and hydrogen peroxide solution. X-ray photoelectron spectroscopy showed significant conversion of Temore » to TeO 2, thus producing a more chemically stable surface. The resistivity of the CdZnTe samples is in the order of 1010 ohms-cm. The current for a given applied voltage increased following the passivation and decreased after a 3-hour period. Results from spectral response measurements showed that the 59.5-keV gamma-peak of Am-241 was stable under the same channel for the surface treatment processes.« less

  13. Applications of Digitized 3-D Position-Sensitive CdZnTe Spectrometers for National Security and Nuclear Nonproliferation

    NASA Astrophysics Data System (ADS)

    Streicher, Michael W.

    A nuclear weapon detonation remains one of the gravest threats to the global community. Although the likelihood of a nuclear event remains small, the economic and political ramifications of an event are vast. The surest way to reduce the probability of an incident is to account for the special nuclear materials (SNM) which can be used to produce a nuclear weapon. Materials which can be used to manufacture a radiological dispersion device ("dirty bomb") must also be monitored. Rapidly-deployable, commercially-available, room-temperature imaging gamma-ray spectrometers are improving the ability of authorities to intelligently and quickly respond to threats. New electronics which digitally-sample the radiation-induced signals in CdZnTe detectors have expanded the capabilities of these sensors. This thesis explores national security applications where digital readout of CdZnTe detectors significantly enhances capabilities. Radioactive sources can be detected more quickly using digitally-sampled CdZnTe detector due to the improved energy resolution. The excellent energy resolution also improves the accuracy of measurements of uranium enrichment and allows users to measure plutonium grade. Small differences in the recorded gamma-ray energy spectrum can be used to estimate the effective atomic number and mass thickness of materials shielding SNM sources. Improved position resolution of gamma-ray interactions through digital readout allows high resolution gamma-ray images of SNM revealing information about the source configuration. CdZnTe sensors can detect the presence of neutrons, indirectly, through measurement of gamma rays released during capture of thermal neutrons by Cd-113 or inelastic scattering with any constituent nuclei. Fast neutrons, such as those released following fission, can be directly detected through elastic scattering interactions in the detector. Neutrons are a strong indicator of fissile material, and the background neutron rate is much lower than the gamma-ray background rate. Neutrons can more easily penetrate shielding materials as well which can greatly aid in the detection of shielded SNM. Digital CdZnTe readout enables the sensors to maintain excellent energy resolution at high count rates. Pulse pile-up and preamplifier decay can be monitored and corrected for on an event-by-event basis limiting energy resolution degradation in dose rates higher than 100 mR/hr. Finally, new iterations of the digital electronics have enhanced gamma-ray detection capabilities at high photon energies. Currently, gamma rays with energy up to 4.4 MeV have been detected. High-energy photon detection is critical for many proposed active interrogation systems.

  14. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    NASA Astrophysics Data System (ADS)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton accelerators have also been performed and are currently under analysis.

  15. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    NASA Astrophysics Data System (ADS)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-07-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cm×15 cm detection matrix of 2304 CdTe detector elements, 2.83 mm×2.83 mm×2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an infarct in intensive care units, as well as in neurology to detect the grade of a cerebral vascular insult, in pregnancy to detect a pulmonary capillary embolism, or in presurgical oncology to identify sentinel lymph nodes. The physical tests and the clinical imaging capabilities of the experimental device which have been performed by IPB (France) and SHC (Hungary), agree with the expected performances better than those of a cardiac conventional γ- camera except for dynamic studies.

  16. Arrays of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors: Results From a $$4\\times 4$$ Array Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.

    Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less

  17. Arrays of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors: Results From a $$4\\times 4$$ Array Prototype

    DOE PAGES

    Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-08-22

    Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less

  18. Fast Neutron Detection Using Pixelated CdZnTe Spectrometers

    NASA Astrophysics Data System (ADS)

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; Brown, Steven; Kiff, Scott; He, Zhong

    2017-07-01

    Fast neutrons are an important signature of special nuclear materials (SNMs). They have a low natural background rate and readily penetrate high atomic number materials that easily shield gamma-ray signatures. Therefore, they provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the small signals from these recoils. In this paper, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9-keV X-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.

  19. Polarimetric performance of a Laue lens gamma-ray CdZnTe focal plane prototype

    NASA Astrophysics Data System (ADS)

    Curado da Silva, R. M.; Caroli, E.; Stephen, J. B.; Pisa, A.; Auricchio, N.; Del Sordo, S.; Frontera, F.; Honkimäki, V.; Schiavone, F.; Donati, A.; Trindade, A. M. F.; Ventura, G.

    2008-10-01

    A gamma-ray telescope mission concept [gamma ray imager (GRI)] based on Laue focusing techniques has been proposed in reply to the European Space Agency call for mission ideas within the framework of the next decade planning (Cosmic Vision 2015-2025). In order to optimize the design of a focal plane for this satellite mission, a CdZnTe detector prototype has been tested at the European Synchrotron Radiation Facility under an ~100% polarized gamma-ray beam. The spectroscopic, imaging, and timing performances were studied and in particular its potential as a polarimeter was evaluated. Polarization has been recognized as being a very important observational parameter in high energy astrophysics (>100 keV) and therefore this capability has been specifically included as part of the GRI mission proposal. The prototype detector tested was a 5 mm thick CdZnTe array with an 11×11 active pixel matrix (pixel area of 2.5×2.5 mm2). The detector was irradiated by a monochromatic linearly polarized beam with a spot diameter of about 0.5 mm over the energy range between 150 and 750 keV. Polarimetric Q factors of 0.35 and double event relative detection efficiency of 20% were obtained. Further measurements were performed with a copper Laue monochromator crystal placed between the beam and the detector prototype. In this configuration we have demonstrated that a polarized beam does not change its polarization level and direction after undergoing a small angle (<1°) Laue diffraction inside a crystal.

  20. SU-F-J-200: An Improved Method for Event Selection in Compton Camera Imaging for Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackin, D; Beddar, S; Polf, J

    2016-06-15

    Purpose: The uncertainty in the beam range in particle therapy limits the conformality of the dose distributions. Compton scatter cameras (CC), which measure the prompt gamma rays produced by nuclear interactions in the patient tissue, can reduce this uncertainty by producing 3D images confirming the particle beam range and dose delivery. However, the high intensity and short time windows of the particle beams limit the number of gammas detected. We attempt to address this problem by developing a method for filtering gamma ray scattering events from the background by applying the known gamma ray spectrum. Methods: We used a 4more » stage Compton camera to record in list mode the energy deposition and scatter positions of gammas from a Co-60 source. Each CC stage contained a 4×4 array of CdZnTe crystal. To produce images, we used a back-projection algorithm and four filtering Methods: basic, energy windowing, delta energy (ΔE), or delta scattering angle (Δθ). Basic filtering requires events to be physically consistent. Energy windowing requires event energy to fall within a defined range. ΔE filtering selects events with the minimum difference between the measured and a known gamma energy (1.17 and 1.33 MeV for Co-60). Δθ filtering selects events with the minimum difference between the measured scattering angle and the angle corresponding to a known gamma energy. Results: Energy window filtering reduced the FWHM from 197.8 mm for basic filtering to 78.3 mm. ΔE and Δθ filtering achieved the best results, FWHMs of 64.3 and 55.6 mm, respectively. In general, Δθ filtering selected events with scattering angles < 40°, while ΔE filtering selected events with angles > 60°. Conclusion: Filtering CC events improved the quality and resolution of the corresponding images. ΔE and Δθ filtering produced similar results but each favored different events.« less

  1. Fast Neutron Detection using Pixelated CdZnTe Spectrometers

    DOE PAGES

    Streicher, Michael; Goodman, David; Zhu, Yuefeng; ...

    2017-05-29

    One important important signature of special nuclear materials (SNM) are fast neutrons. Fast neutrons have a low natural background rate and readily penetrate high atomic number materials which easily shield gamma-ray signatures. Thus, fast neutrons provide a complementary signal to gamma rays for detecting shielded SNM. Scattering kinematics dictate that a large nucleus (such as Cd or Te) will recoil with small kinetic energy after an elastic collision with a fast neutron. Charge carrier recombination and quenching further reduce the recorded energy deposited. Thus, the energy threshold of CdZnTe detectors must be very low in order to sense the smallmore » signals from these recoils. Here, the threshold was reduced to less than 5 keVee to demonstrate that the 5.9 keV x-ray line from 55Fe could be separated from electronic noise. Elastic scattering neutron interactions were observed as small energy depositions (less than 20 keVee) using digitally-sampled pulse waveforms from pixelated CdZnTe detectors. Characteristic gamma-ray lines from inelastic neutron scattering were also observed.« less

  2. HRTEM Analysis of Crystallographic Defects in CdZnTe Single Crystal

    NASA Astrophysics Data System (ADS)

    Yasar, Bengisu; Ergunt, Yasin; Kabukcuoglu, Merve Pinar; Parlak, Mehmet; Turan, Rasit; Kalay, Yunus Eren

    2018-01-01

    In recent years, CdZnTe has attracted much attention due to its superior electrical and structural properties for room-temperature operable gamma and x-ray detectors. However, CdZnTe (CZT) material has often suffered from crystallographic defects encountered during the growth and post-growth processes. The identification and structural characterization of these defects is crucial to synthesize defect-free CdZnTe single crystals. In this study, Cd0.95 Zn0.05 Te single crystals were grown using a three-zone vertical Bridgman system. The single crystallinity of the material was ensured by using x-ray diffraction measurements. High-resolution electron microscopy (HRTEM) was used to characterize the nano-scale defects on the CdZnTe matrix. The linear defects oriented along the ⟨211⟩ direction were examined by transmission electron microscopy (TEM) and the corresponding HRTEM image simulations were performed by using a quantitative scanning TEM simulation package.

  3. Development of a Spectral Model Based on Charge Transport for the Swift/BAT 32K CdZnTe Detector Array

    NASA Technical Reports Server (NTRS)

    Sato, Goro; Parsons, Ann; Hillinger, Derek; Suzuki, Masaya; Takahashi, Tadayuki; Tashiro, Makoto; Nakazawa, Kazuhiro; Okada, Yuu; Takahashi, Hiromitsu; Watanabe, Shin

    2005-01-01

    The properties of 32K CdZnTe (4 x 4 sq mm large, 2 mm thick) detectors have been studied in the pre-flight calibration of the Burst Alert Telescope (BAT) on-board the Swift Gamma-ray Burst Explorer (scheduled for launch in November 2004). In order to understand the energy response of the BAT CdZnTe array, we first quantify the mobility-lifetime (mu tau) products of carriers in individual CdZnTe detectors, which produce a position dependency in the charge induction efficiency and results in a low energy tail in the energy spectrum. Based on a new method utilizing (57)Co spectra obtained at different bias voltages, the mu tau for electrons ranges from 5.0 x 10(exp -4) to 1.0 x 10(exp -2) sq cm/V while the mu tau for holes ranges from 1.3 x 10(exp -5 to 1.8 x 10(exp -4) sq cm/V. We find that this wide distribution of mu tau products explains the large diversity in spectral shapes between CdZnTe detectors well. We also find that the variation of mu tau products can be attributed to the difference of crystal ingots or manufacturing harness. We utilize the 32K sets of extracted mu tau products to develop a spectral model of the detector. In combination with Monte Carlo simulations, we can construct a spectral model for any photon energy or any incident angle.

  4. Pulse shaping system research of CdZnTe radiation detector for high energy x-ray diagnostic

    NASA Astrophysics Data System (ADS)

    Li, Miao; Zhao, Mingkun; Ding, Keyu; Zhou, Shousen; Zhou, Benjie

    2018-02-01

    As one of the typical wide band-gap semiconductor materials, the CdZnTe material has high detection efficiency and excellent energy resolution for the hard X-ray and the Gamma ray. The generated signal of the CdZnTe detector needs to be transformed to the pseudo-Gaussian pulse with a small impulse-width to remove noise and improve the energy resolution by the following nuclear spectrometry data acquisition system. In this paper, the multi-stage pseudo-Gaussian shaping-filter has been investigated based on the nuclear electronic principle. The optimized circuit parameters were also obtained based on the analysis of the characteristics of the pseudo-Gaussian shaping-filter in our following simulations. Based on the simulation results, the falling-time of the output pulse was decreased and faster response time can be obtained with decreasing shaping-time τs-k. And the undershoot was also removed when the ratio of input resistors was set to 1 to 2.5. Moreover, a two stage sallen-key Gaussian shaping-filter was designed and fabricated by using a low-noise voltage feedback operation amplifier LMH6628. A detection experiment platform had been built by using the precise pulse generator CAKE831 as the imitated radiation pulse which was equivalent signal of the semiconductor CdZnTe detector. Experiment results show that the output pulse of the two stage pseudo-Gaussian shaping filter has minimum 200ns pulse width (FWHM), and the output pulse of each stage was well consistent with the simulation results. Based on the performance in our experiment, this multi-stage pseudo-Gaussian shaping-filter can reduce the event-lost caused by pile-up in the CdZnTe semiconductor detector and improve the energy resolution effectively.

  5. Instrumentation effects on U and Pu CBNM standards spectra quality measured on a 500 mm3 CdZnTe and a 2×2 inch LaBr3 detectors

    NASA Astrophysics Data System (ADS)

    Meleshenkovskii, I.; Borella, A.; Van der Meer, K.; Bruggeman, M.; Pauly, N.; Labeau, P. E.; Schillebeeckx, P.

    2018-01-01

    Nowadays, there is interest in developing gamma-ray measuring devices based on the room temperature operated medium resolution detectors such as semiconductor detectors of the CdZnTe type and scintillators of the LaBr3 type. This is true also for safeguards applications and the International Atomic Energy Agency (IAEA) has launched a project devoted to the assessment of medium resolution gamma-ray spectroscopy for the verification of the isotopic composition of U and Pu bearing samples. This project is carried out within the Non-Destructive Assay Working Group of the European Safeguards Research and Development Association (ESARDA). In this study we analyze medium resolution spectra of U and Pu standards with the aim to develop an isotopic composition determination algorithm, particularly suited for these types of detectors. We show how the peak shape of a CdZnTe detector is influenced by the instrumentation parameters. The experimental setup consisted of a 500 mm3 CdZnTe detector, a 2×2 inch LaBr3 detector, two types of measurement instrumentation - an analogue one and a digital one, and a set of certified samples - a 207Bi point source and U and Pu CBNM standards. The results of our measurements indicate that the lowest contribution to the peak asymmetry and thus the smallest impact on the resolution of the 500 mm3 CdZnTe detector was achieved with the digital MCA. Analysis of acquired spectra allowed to reject poor quality measurement runs and produce summed spectra files with the least impact of instrumentation instabilities. This work is preliminary to further studies concerning the development of an isotopic composition determination algorithm particularly suited for CZT and LaBr3 detectors for safeguards applications.

  6. Results from a Prototype Multi-Element CdZnTe Gamma-Ray Detector for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Browne, M. C.; Ianakiev, K. D.; Prettyman, T. H.; Reedy, R. C.

    2001-01-01

    We present high energy results for a 2 x 2 x 2 array of eight 10 mm x 10 mm x 5 mm coplanar grid CdZnTe detectors. We conclude that such an array can provide a room-temperature detector with good resolution and efficiency for planetary missions. Additional information is contained in the original extended abstract.

  7. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications.

    PubMed

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2013-02-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μ m resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μ m pitch pixels (250 μ m anode pixels with 100 μ m gap) and coplanar cathode. Charge sharing among the pixels of a 350 μ m pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μ m pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μ m pitch detector biased at -1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications.

  8. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications

    PubMed Central

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476

  9. Gamma-Ray Detectors: From Homeland Security to the Cosmos (443rd Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, Aleksey

    2008-12-03

    Many radiation detectors are first developed for homeland security or industrial applications. Scientists, however, are continuously realizing new roles that these detectors can play in high-energy physics and astrophysics experiments. On Wednesday, December 3, join presenter Aleksey Bolotnikov, a physicist in the Nonproliferation and National Security Department (NNSD) and a co-inventor of the cadmium-zinc-telluride Frisch-ring (CdZnTe) detector, for the 443rd Brookhaven Lecture, entitled Gamma-Ray Detectors: From Homeland Security to the Cosmos. In his lecture, Bolotnikov will highlight two primary radiation-detector technologies: CdZnTe detectors and fluid-Xeon (Xe) detectors.

  10. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  11. High-energy 3D calorimeter for use in gamma-ray astronomy based on position-sensitive virtual Frisch-grid CdZnTe detectors

    DOE PAGES

    Moiseev, Alexander; Bolotnikov, A.; DeGeronimo, G.; ...

    2017-12-19

    Here, we will present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frisch-grid CdZnTe (hereafter CZT) detectors. This calorimeter aims to measure photons with energies from ~100 keV to 20–50 MeV . The expected energy resolution at 662 keV is better than 1% FWHM, and the photon interaction position-measurement accuracy is better than 1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section from 5×5 to 7×7 mm 2 and length of 2–4 cm. The bars are arranged in modules of 4×4 bars, and the modules themselves canmore » be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., >1 cm). Also, it allows us to use the standard (unselected) grade crystals, while achieving the energy resolution of the premium detectors and thus substantially reducing the cost of the instrument. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ-rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons (like a focal plane detector in a Compton camera). Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays.« less

  12. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    NASA Astrophysics Data System (ADS)

    Abdullah, J.; Yahya, R.

    2007-05-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented.

  13. Effects of chemo-mechanical polishing on CdZnTe X-ray and gamma-ray detectors

    DOE PAGES

    Egarievwe, Stephen E.; Hossain, Anwar; Okwechime, Ifechukwude O.; ...

    2015-06-23

    Here, mechanically polishing cadmium zinc telluride (CdZnTe) wafers for x-ray and gamma-ray detectors often is inadequate in removing surface defects caused by cutting them from the ingots. Fabrication-induced defects, such as surface roughness, dangling bonds, and nonstoichiometric surfaces, often are reduced through polishing and etching the surface. In our earlier studies of mechanical polishing with alumina powder, etching with hydrogen bromide in hydrogen peroxide solution, and chemomechanical polishing with bromine–methanol–ethylene glycol solution, we found that the chemomechanical polishing process produced the least surface leakage current. In this research, we focused on using two chemicals to chemomechanically polish CdZnTe wafers aftermore » mechanical polishing, viz. bromine–methanol–ethylene glycol (BME) solution, and hydrogen bromide (HBr) in a hydrogen peroxide and ethylene–glycol solution. We used x-ray photoelectron spectroscopy (XPS), current–voltage (I–V) measurements, and Am-241 spectral response measurements to characterize and compare the effects of each solution. The results show that the HBr-based solution produced lower leakage current than the BME solution. Results from using the same chemomechanical polishing solution on two samples confirmed that the surface treatment affects the measured bulk current (a combination of bulk and surface currents). XPS results indicate that the tellurium oxide to tellurium peak ratios for the mechanical polishing process were reduced significantly by chemomechanical polishing using the BME solution (78.9% for Te 3d 5/2O 2 and 76.7% for Te 3d 3/2O 2) compared with the HBr-based solution (27.6% for Te 3d 5/2O 2 and 35.8% for Te 3d 3/2O 2). Spectral response measurements showed that the 59.5-keV peak of Am-241 remained under the same channel number for all three CdZnTe samples. While the BME-based solution gave a better performance of 7.15% full-width at half-maximum (FWHM) compared with 7.59% FWHM for the HBr-based solution, the latter showed a smaller variation in performance of 0.39% FWHM over 7 days compared with 0.69% for the BME-based solution.« less

  14. Design and Performance Testing of a Linear Array of Position-Sensitive Virtual Frisch-Grid CdZnTe Detectors for Uranium Enrichment Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocampo, Luis

    Abstract— Arrays of position-sensitive virtual Frisch-grid CdZnTe (CZT) detectors with enhanced energy resolution have been proposed for spectroscopy and imaging of gamma-ray sources in different applications. The flexibility of the array design, which can employ CZT crystals with thicknesses up to several centimeters in the direction of electron drift, allows for integration into different kinds of field-portable instruments. These can include small hand-held devices, compact gamma cameras and large field-of-view imaging systems. In this work, we present results for a small linear array of such detectors optimized for the low-energy region, 50-400 keV gamma-rays, which is principally intended for incorporationmore » into hand-held instruments. There are many potential application areas for such instruments, including uranium enrichment measurements, storage monitoring, dosimetry and other safeguards-related tasks that can benefit from compactness and isotope-identification capability. The array described here provides a relatively large area with a minimum number of readout channels, which potentially allows the developers to avoid using an ASIC-based electronic readout by substituting it with hybrid preamplifiers followed by digitizers. The array prototype consists of six (5x5.7x25 mm3) CZT detectors positioned in a line facing the source to achieve a maximum exposure area (~10 cm2). Each detector is furnished with 5 mm-wide charge-sensing pads placed near the anode. The pad signals are converted into X-Y coordinates for each interaction event, which are combined with the cathode signals (for determining the Z coordinates) to give 3D positional information for all interaction points. This information is used to correct the response non-uniformity caused by material inhomogeneity, which therefore allows the usage of standard-grade (unselected) CZT crystals, while achieving high-resolution spectroscopic performance for the instrument. In this presentation we describe the design of the array, the results from detailed laboratory tests, and preliminary results from measurements taken during a field test.« less

  15. Growth of CdZnTe Crystals for Radiation Detector Applications by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    Advances in Cadmium Zinc Telluride (Cd(sub 1-x)Zn(sub x)Te) growth techniques are needed for the production of large-scale arrays of gamma and x-ray astronomy. The research objective is to develop crystal growth recipes and techniques to obtain large, high quality CdZnTe single crystal with reduced defects, such as charge trapping, twinning, and tellurium precipitates, which degrade the performance of CdZnTe and, at the same time, to increase the yield of usable material from the CdZnTe ingot. A low gravity material experiment, "Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment", will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). One section of the flight experiment is the melt growth of CdZnTe ternary compounds. This talk will focus on the ground-based studies on the growth of Cd(sub 0.80)Zn(sub 0.20)Te crystals for radiation detector applications by directional solidification. In this investigation, we have improved the properties that are most critical for the detector applications (electrical properties and crystalline quality): a) Electrical resistivity: use high purity starting materials (with reproducible impurity levels) and controlled Cd over pressure during growth to reproducibly balance the impurity levels and Cd vacancy concentration b) Crystalline quality: use ultra-clean growth ampoule (no wetting after growth), optimized thermal profile and ampoule design, as well as a technique for supercool reduction to growth large single crystal with high crystalline quality

  16. Thermodynamics of post-growth annealing of cadmium zinc telluride nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Adams, Aaron Lee

    Nuclear Radiation Detectors are used for detecting, tracking, and identifying radioactive materials which emit high-energy gamma and X-rays. The use of Cadmium Zinc Telluride (CdZnTe) detectors is particularly attractive because of the detector's ability to operate at room temperature and measure the energy spectra of gamma-ray sources with a high resolution, typically less than 1% at 662 keV. While CdZnTe detectors are acceptable imperfections in the crystals limit their full market potential. One of the major imperfections are Tellurium inclusions generated during the crystal growth process by the retrograde solubility of Tellurium and Tellurium-rich melt trapped at the growth interface. Tellurium inclusions trap charge carriers generated by gamma and X-ray photons and thus reduce the portion of generated charge carriers that reach the electrodes for collection and conversion into a readable signal which is representative of the ionizing radiation's energy and intensity. One approach in resolving this problem is post-growth annealing which has the potential of removing the Tellurium inclusions and associated impurities. The goal of this project is to use experimental techniques to study the thermodynamics of Tellurium inclusion migration in post-growth annealing of CdZnTe nuclear detectors with the temperature gradient zone migration (TGZM) technique. Systematic experiments will be carried out to provide adequate thermodynamic data that will inform the engineering community of the optimum annealing parameters. Additionally, multivariable correlations that involve the Tellurium diffusion coefficient, annealing parameters, and CdZnTe properties will be analyzed. The experimental approach will involve systematic annealing experiments (in Cd vapor overpressure) on different sizes of CdZnTe crystals at varying temperature gradients ranging from 0 to 60°C/mm (used to migrate the Tellurium inclusion to one side of the crystal), and at annealing temperatures ranging from 500 to 800°C. The characterization techniques that will be used to quantify the effects of the post-growth annealing experiments include: 1) 3D infrared transmission microscopy to measure the size, distribution, and concentration of Tellurium inclusions; 2) current-voltage measurements to determine the effect of post-growth annealing on the resistivity of CdZnTe crystals; and 3) X-ray diffraction topography, available at the National Synchrotron Light Source (NSLS) facilities at Brookhaven National Laboratory (BNL), to measure the correlation between device performance and annealing conditions

  17. Performance Evaluation of 98 CZT Sensors for Their Use in Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Dedek, Nicolas; Speller, Robert D.; Spendley, Paul; Horrocks, Julie A.

    2008-10-01

    98 SPEAR sensors from eV Products have been evaluated for their use in a portable Compton camera. The sensors have a 5 mm times 5 mm times 5 mm CdZnTe crystal and are provided together with a preamplifier. The energy resolution was studied in detail for all sensors and was found to be 6% on average at 59.5 keV and 3% on average at 662 keV. The standard deviations of the corresponding energy resolution distributions are remarkably small (0.6% at 59.5 keV, 0.7% at 662 keV) and reflect the uniformity of the sensor characteristics. For a possible outside use the temperature dependence of the sensor performances was investigated for temperatures between 15 and 45 deg Celsius. A linear shift in calibration with temperature was observed. The energy resolution at low energies (81 keV) was found to deteriorate exponentially with temperature, while it stayed constant at higher energies (356 keV). A Compton camera built of these sensors was simulated. To obtain realistic energy spectra a suitable detector response function was implemented. To investigate the angular resolution of the camera a 137Cs point source was simulated. Reconstructed images of the point source were compared for perfect and realistic energy and position resolutions. The angular resolution of the camera was found to be better than 10 deg.

  18. Reduction of surface leakage current by surface passivation of CdZn Te and other materials using hyperthermal oxygen atoms

    DOEpatents

    Hoffbauer, Mark A.; Prettyman, Thomas H.

    2001-01-01

    Reduction of surface leakage current by surface passivation of Cd.sub.1-x Zn.sub.x Te and other materials using hyperthermal oxygen atoms. Surface effects are important in the performance of CdZnTe room-temperature radiation detectors used as spectrometers since the dark current is often dominated by surface leakage. A process using high-kinetic-energy, neutral oxygen atoms (.about.3 eV) to treat the surface of CdZnTe detectors at or near ambient temperatures is described. Improvements in detector performance include significantly reduced leakage current which results in lower detector noise and greater energy resolution for radiation measurements of gamma- and X-rays, thereby increasing the accuracy and sensitivity of measurements of radionuclides having complex gamma-ray spectra, including special nuclear materials.

  19. Characterisation of Redlen high-flux CdZnTe

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Veale, M. C.; Wilson, M. D.; Seller, P.; Schneider, A.; Iniewski, K.

    2017-12-01

    CdZnTe is a promising material for the current generation of free electron laser light sources and future laser-driven γ-ray sources which require detectors capable of high flux imaging at X-ray and γ-ray energies (> 10 keV) . However, at high fluxes CdZnTe has been shown to polarise due to hole trapping, leading to poor performance. Novel Redlen CdZnTe material with improved hole transport properties has been designed for high flux applications. Small pixel CdZnTe detectors were fabricated by Redlen Technologies and flip-chip bonded to PIXIE ASICs. An XIA Digital Gamma Finder PIXIE-16 system was used to digitise each of the nine analogue signals with a timing resolution of 10 ns. Pulse shape analysis was used to extract the rise times and amplitude of signals. These were measured as a function of applied bias voltage and used to calculate the mobility (μ) and mobility-lifetime (μτ) of electrons and holes in the material for three identical detectors. The measured values of the transport properties of electrons in the high-flux-capable material was lower than previously reported for Redlen CdZnTe material (μeτe ~ 1 × 10-3 cm2V-1 and μe ~ 1000 cm2V-1s-1) while the hole transport properties were found to have improved (μhτh ~ 3 × 10-4 cm2V-1 and μh ~ 100 cm2V-1s-1).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Ackley, K.; Camarda, G. S.

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe detectors coupled to a front-end readout application-specific integrated circuit (ASIC) for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6 × 6 × 15 mm{sup 3} detectors grouped into 3 × 3 sub-arrays of 2 × 2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We presentmore » the results from testing two fully assembled modules and readout electronics. The further enhancement of the arrays’ performance and reduction of their cost are possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E.; Ackley, K.; Camarda, G. S.

    We developed a robust and low-cost array of virtual Frisch-grid CdZnTe (CZT) detectors coupled to a front-end readout ASIC for spectroscopy and imaging of gamma rays. The array operates as a self-reliant detector module. It is comprised of 36 close-packed 6x6x15 mm 3 detectors grouped into 3x3 sub-arrays of 2x2 detectors with the common cathodes. The front-end analog ASIC accommodates up to 36 anode and 9 cathode inputs. Several detector modules can be integrated into a single- or multi-layer unit operating as a Compton or a coded-aperture camera. We present the results from testing two fully assembled modules and readoutmore » electronics. The further enhancement of the arrays’ performance and reduction of their cost are made possible by using position-sensitive virtual Frisch-grid detectors, which allow for accurate corrections of the response of material non-uniformities caused by crystal defects.« less

  2. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated.more » Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.« less

  3. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    NASA Astrophysics Data System (ADS)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  4. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    NASA Astrophysics Data System (ADS)

    Ocampo Giraldo, L.; Bolotnikov, A. E.; Camarda, G. S.; De Geronimo, G.; Fried, J.; Gul, R.; Hodges, D.; Hossain, A.; Ünlü, K.; Vernon, E.; Yang, G.; James, R. B.

    2018-03-01

    We evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enabling use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 μm (650 nm) to scan over a selected 3 × 3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.

  5. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    DOE PAGES

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-12-18

    Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less

  6. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.

    Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less

  7. Advantages of semiconductor CZT for medical imaging

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Parnham, Kevin; Sundal, Bjorn; Maehlum, Gunnar; Chowdhury, Samir; Meier, Dirk; Vandehei, Thor; Szawlowski, Marek; Patt, Bradley E.

    2007-09-01

    Cadmium zinc telluride (CdZnTe, or CZT) is a room-temperature semiconductor radiation detector that has been developed in recent years for a variety of applications. CZT has been investigated for many potential uses in medical imaging, especially in the field of single photon emission computed tomography (SPECT). CZT can also be used in positron emission tomography (PET) as well as photon-counting and integration-mode x-ray radiography and computed tomography (CT). The principal advantages of CZT are 1) direct conversion of x-ray or gamma-ray energy into electron-hole pairs; 2) energy resolution; 3) high spatial resolution and hence high space-bandwidth product; 4) room temperature operation, stable performance, high density, and small volume; 5) depth-of-interaction (DOI) available through signal processing. These advantages will be described in detail with examples from our own CZT systems. The ability to operate at room temperature, combined with DOI and very small pixels, make the use of multiple, stationary CZT "mini-gamma cameras" a realistic alternative to today's large Anger-type cameras that require motion to obtain tomographic sampling. The compatibility of CZT with Magnetic Resonance Imaging (MRI)-fields is demonstrated for a new type of multi-modality medical imaging, namely SPECT/MRI. For pre-clinical (i.e., laboratory animal) imaging, the advantages of CZT lie in spatial and energy resolution, small volume, automated quality control, and the potential for DOI for parallax removal in pinhole imaging. For clinical imaging, the imaging of radiographically dense breasts with CZT enables scatter rejection and hence improved contrast. Examples of clinical breast images with a dual-head CZT system are shown.

  8. [Results of testing of MINISKAN mobile gamma-ray camera and specific features of its design].

    PubMed

    Utkin, V M; Kumakhov, M A; Blinov, N N; Korsunskiĭ, V N; Fomin, D K; Kolesnikova, N V; Tultaev, A V; Nazarov, A A; Tararukhina, O B

    2007-01-01

    The main results of engineering, biomedical, and clinical testing of MINISKAN mobile gamma-ray camera are presented. Specific features of the camera hardware and software, as well as the main technical specifications, are described. The gamma-ray camera implements a new technology based on reconstructive tomography, aperture encoding, and digital processing of signals.

  9. Real time wide area radiation surveillance system (REWARD) based on 3d silicon and (CD,ZN)Te for neutron and gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Disch, C.

    2014-09-01

    Mobile surveillance systems are used to find lost radioactive sources and possible nuclear threats in urban areas. The REWARD collaboration [1] aims to develop such a complete radiation monitoring system that can be installed in mobile or stationary setups across a wide area. The scenarios include nuclear terrorism threats, lost radioactive sources, radioactive contamination and nuclear accidents. This paper will show the performance capabilities of the REWARD system in different scnarios. The results include both Monte Carlo simulations as well as neutron and gamma-ray detection performances in terms of efficiency and nuclide identification. The outcomes of several radiation mapping survey with the entire REWARD system will also be presented.

  10. Recent Improvement of Measurement Instrumentation to Supervise Nuclear Operations and to Contribute Input Data to 3D Simulation Code - 13289

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahe, Charly; Chabal, Caroline

    2013-07-01

    The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, themore » radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is used to quantify the activity of hot spots and can also then be entered in 3D models of nuclear plants to simulate intervention scenarios. Recent developments and results will be presented regarding this. Finally, thanks to a large amount of feedback, the interest of using complementary measurements will be discussed. In fact, the recent use of 3D simulation codes requires very accurate knowledge of nuclear plant radiological data. The use of coupled devices such as imaging devices, (gamma and alpha cameras), gamma spectrometry, dose rate mapping, collimated / un-collimated measurements and many other physical values gives an approach to the radiological knowledge of a process or plant with the lowest possible uncertainty. In line with this, the paper will conclude with the future developments and trials that could be assessed in that field of application. (authors)« less

  11. Investigation of the limitations of the highly pixilated CdZnTe detector for PET applications

    PubMed Central

    Komarov, Sergey; Yin, Yongzhi; Wu, Heyu; Wen, Jie; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are investigating the feasibility of a high resolution positron emission tomography (PET) insert device based on the CdZnTe detector with 350 μm anode pixel pitch to be integrated into a conventional animal PET scanner to improve its image resolution. In this paper, we have used a simplified version of the multi pixel CdZnTe planar detector, 5 mm thick with 9 anode pixels only. This simplified 9 anode pixel structure makes it possible to carry out experiments without a complete application-specific integrated circuits readout system that is still under development. Special attention was paid to the double pixel (or charge sharing) detections. The following characteristics were obtained in experiment: energy resolution full-width-at-half-maximum (FWHM) is 7% for single pixel and 9% for double pixel photoelectric detections of 511 keV gammas; timing resolution (FWHM) from the anode signals is 30 ns for single pixel and 35 ns for double pixel detections (for photoelectric interactions only the corresponding values are 20 and 25 ns); position resolution is 350 μm in x,y-plane and ~0.4 mm in depth-of-interaction. The experimental measurements were accompanied by Monte Carlo (MC) simulations to find a limitation imposed by spatial charge distribution. Results from MC simulations suggest the limitation of the intrinsic spatial resolution of the CdZnTe detector for 511 keV photoelectric interactions is 170 μm. The interpixel interpolation cannot recover the resolution beyond the limit mentioned above for photoelectric interactions. However, it is possible to achieve higher spatial resolution using interpolation for Compton scattered events. Energy and timing resolution of the proposed 350 μm anode pixel pitch detector is no better than 0.6% FWHM at 511 keV, and 2 ns FWHM, respectively. These MC results should be used as a guide to understand the performance limits of the pixelated CdZnTe detector due to the underlying detection processes, with the understanding of the inherent limitations of MC methods. PMID:23079763

  12. Investigation of the limitations of the highly pixilated CdZnTe detector for PET applications.

    PubMed

    Komarov, Sergey; Yin, Yongzhi; Wu, Heyu; Wen, Jie; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2012-11-21

    We are investigating the feasibility of a high resolution positron emission tomography (PET) insert device based on the CdZnTe detector with 350 µm anode pixel pitch to be integrated into a conventional animal PET scanner to improve its image resolution. In this paper, we have used a simplified version of the multi pixel CdZnTe planar detector, 5 mm thick with 9 anode pixels only. This simplified 9 anode pixel structure makes it possible to carry out experiments without a complete application-specific integrated circuits readout system that is still under development. Special attention was paid to the double pixel (or charge sharing) detections. The following characteristics were obtained in experiment: energy resolution full-width-at-half-maximum (FWHM) is 7% for single pixel and 9% for double pixel photoelectric detections of 511 keV gammas; timing resolution (FWHM) from the anode signals is 30 ns for single pixel and 35 ns for double pixel detections (for photoelectric interactions only the corresponding values are 20 and 25 ns); position resolution is 350 µm in x,y-plane and ∼0.4 mm in depth-of-interaction. The experimental measurements were accompanied by Monte Carlo (MC) simulations to find a limitation imposed by spatial charge distribution. Results from MC simulations suggest the limitation of the intrinsic spatial resolution of the CdZnTe detector for 511 keV photoelectric interactions is 170 µm. The interpixel interpolation cannot recover the resolution beyond the limit mentioned above for photoelectric interactions. However, it is possible to achieve higher spatial resolution using interpolation for Compton scattered events. Energy and timing resolution of the proposed 350 µm anode pixel pitch detector is no better than 0.6% FWHM at 511 keV, and 2 ns FWHM, respectively. These MC results should be used as a guide to understand the performance limits of the pixelated CdZnTe detector due to the underlying detection processes, with the understanding of the inherent limitations of MC methods.

  13. Influence of infrared stimulation on spectroscopy characteristics of co-planar grid CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fjodorov, V.; Ivanov, V.; Loutchanski, A.

    It was previously found that illumination with monochromatic infrared (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe detectors at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe detectors as well as results of further studies of planar and quasi-hemispherical detectors are presented. Coplanar-grid detectors of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity andmore » direction of IR illumination on the detector's characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar detectors at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical detectors. It is due with optimization of charge collection conditions in the quasi-hemispherical detectors under IT stimulation. (authors)« less

  14. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy

    PubMed Central

    Peterson, S W; Robertson, D; Polf, J

    2011-01-01

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10−6 to 10−3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy. PMID:21048295

  15. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    PubMed Central

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  16. Online gamma-camera imaging of 103Pd seeds (OGIPS) for permanent breast seed implantation

    NASA Astrophysics Data System (ADS)

    Ravi, Ananth; Caldwell, Curtis B.; Keller, Brian M.; Reznik, Alla; Pignol, Jean-Philippe

    2007-09-01

    Permanent brachytherapy seed implantation is being investigated as a mode of accelerated partial breast irradiation for early stage breast cancer patients. Currently, the seeds are poorly visualized during the procedure making it difficult to perform a real-time correction of the implantation if required. The objective was to determine if a customized gamma-camera can accurately localize the seeds during implantation. Monte Carlo simulations of a CZT based gamma-camera were used to assess whether images of suitable quality could be derived by detecting the 21 keV photons emitted from 74 MBq 103Pd brachytherapy seeds. A hexagonal parallel hole collimator with a hole length of 38 mm, hole diameter of 1.2 mm and 0.2 mm septa, was modeled. The design of the gamma-camera was evaluated on a realistic model of the breast and three layers of the seed distribution (55 seeds) based on a pre-implantation CT treatment plan. The Monte Carlo simulations showed that the gamma-camera was able to localize the seeds with a maximum error of 2.0 mm, using only two views and 20 s of imaging. A gamma-camera can potentially be used as an intra-procedural image guidance system for quality assurance for permanent breast seed implantation.

  17. Hard x-ray response of a CdZnTe ring-drift detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, A.; Hartog, R. den; Quarati, F.

    We present the results of an experimental study of a special type of CdZnTe detector of hard x and {gamma} rays--A-drift detector. The device consists of a double ring electrode structure surrounding a central point anode with a guard plane surrounding the outer anode ring. The detector can be operated in two distinctively different modes of charge collection--pseudohemispherical and pseudodrift. We study the detector response profiles obtained by scanning the focused x-ray beam over the whole detector area, specifically the variations in count rate, peak position, and energy resolution for x rays from 10 to 100 keV. In addition, atmore » 662 keV the energy resolution was shown to be 4.8 keV, more than a factor of 2 better than for CdZnTe coplanar grid detectors. To interpret the experimental data, we derive an analytical expression for the spatial distribution of the electric field inside the detector and neglecting carrier diffusion, and identify carrier collection patterns for both modes of operation within the drift model approximation. We show that this model provides a good understanding of measured profiles.« less

  18. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Gangqiang; Yang, Jian; Xu, Lingyan

    2014-01-28

    Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance canmore » be explained using the deep trap model.« less

  19. Polarimetric analysis of a CdZnTe spectro-imager under multi-pixel irradiation conditions

    NASA Astrophysics Data System (ADS)

    Pinto, M.; da Silva, R. M. Curado; Maia, J. M.; Simões, N.; Marques, J.; Pereira, L.; Trindade, A. M. F.; Caroli, E.; Auricchio, N.; Stephen, J. B.; Gonçalves, P.

    2016-12-01

    So far, polarimetry in high-energy astrophysics has been insufficiently explored due to the complexity of the required detection, electronic and signal processing systems. However, its importance is today largely recognized by the astrophysical community, therefore the next generation of high-energy space instruments will certainly provide polarimetric observations, contemporaneously with spectroscopy and imaging. We have been participating in high-energy observatory proposals submitted to ESA Cosmic Vision calls, such as GRI (Gamma-Ray Imager), DUAL and ASTROGAM, where the main instrument was a spectro-imager with polarimetric capabilities. More recently, the H2020 AHEAD project was launched with the objective to promote more coherent and mature future high-energy space mission proposals. In this context of high-energy proposal development, we have tested a CdZnTe detection plane prototype polarimeter under a partially polarized gamma-ray beam generated from an aluminum target irradiated by a 22Na (511 keV) radioactive source. The polarized beam cross section was 1 cm2, allowing the irradiation of a wide multi-pixelated area where all the pixels operate simultaneously as a scatterer and as an absorber. The methods implemented to analyze such multi-pixel irradiation are similar to those required to analyze a spectro-imager polarimeter operating in space, since celestial source photons should irradiate its full pixilated area. Correction methods to mitigate systematic errors inherent to CdZnTe and to the experimental conditions were also implemented. The polarization level ( 40%) and the polarization angle (precision of ±5° up to ±9°) obtained under multi-pixel irradiation conditions are presented and compared with simulated data.

  20. Suppression of alpha-induced lateral surface events in the COBRA experiment using CdZnTe detectors with an instrumented guard-ring electrode

    NASA Astrophysics Data System (ADS)

    Arling, J.-H.; Gerhardt, M.; Gößling, C.; Gehre, D.; Klingenberg, R.; Kröninger, K.; Nitsch, C.; Quante, T.; Rohatsch, K.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Zatschler, S.; Zuber, K.

    2017-11-01

    The COBRA collaboration searches for neutrinoless double beta-decay (0νββ-decay) using CdZnTe semiconductor detectors with a coplanar-grid readout and a surrounding guard-ring structure. The operation of the COBRA demonstrator at the Gran Sasso underground laboratory (LNGS) indicates that alpha-induced lateral surface events are the dominant source of background events. By instrumenting the guard-ring electrode it is possible to suppress this type of background. In laboratory measurements this method achieved a suppression factor of alpha-induced lateral surface events of 5300+2660-1380, while retaining (85.3 ±0.1%) of gamma events occurring in the entire detector volume. This suppression is superior to the pulse-shape analysis methods used so far in COBRA by three orders of magnitude.

  1. Developments in mercuric iodide gamma ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Beyerle, A.G.; Dolin, R.C.

    A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented. 2 refs., 7 figs.

  2. Characterization of CdTe and (CdZn)Te detectors with different metal contacts

    NASA Astrophysics Data System (ADS)

    Pekárek, J.; Belas, E.; Grill, R.; Uxa, Å.; James, R. B.

    2013-09-01

    In the present work we studied an influence of different types of surface etching and surface passivation of high resistivity CdZnTe-based semiconductor detector material. The aim was to find the optimal conditions to improve the properties of metal-semiconductor contact. The main effort was to reduce the leakage current and thus get better X-ray and gamma-ray spectrum, i.e. to create a detector operating at room temperature based on this semiconductor material with sufficient energy resolution and the maximum charge collection efficiency. Individual surface treatments were characterized by I-V characteristics, spectral analysis and by determination of the profile of the internal electric field.

  3. Investigation to optimize the energy resolution and efficiency of cadmium(zinc)telluride for photon measurements

    NASA Astrophysics Data System (ADS)

    Kim, Hadong

    While the investigations of the Cd(Zn)Te characteristics were completed, a new method to make arbitrary anode shapes, without the troublesome shadow mask technique, was found. With this technique, the two-anode geometry Cd(Zn)Te detector was introduced and tested. The semiconductor performance of the two-anode geometry detectors for the incoming gamma rays of 241Am, 57Co, and 137Cs were compared to the responses of the planar device. The very promising photon energy resolutions of 9.3 and 5.4% FWHM were obtained with the two-anode geometry detector for the gamma rays energies of 122 keV and 662 keV, respectively, while no discernible full energy peaks were apparent with the planar detector. Several simulation programs that are very easy to handle were developed as useful tools for investigating the complicated gamma ray pulse height distributions, which were due to the energy deposition events inside the semiconductors. Comparisons to the known values and with the results from other application programs, validated the information obtained from the simulation programs, which were developed during this research effort. A graphical user interface (GUI) was designed for the user's convenience in order to enter the required input parameters for the specific requirements of each simulation programs. The idealized noise free spectra for the planar detector and for the small pixel geometry detector were successfully obtained by applying Monte Carlo techniques.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemaire, H.; Barat, E.; Carrel, F.

    In this work, we tested Maximum likelihood expectation-maximization (MLEM) algorithms optimized for gamma imaging applications on two recent coded mask gamma cameras. We respectively took advantage of the characteristics of the GAMPIX and Caliste HD-based gamma cameras: noise reduction thanks to mask/anti-mask procedure but limited energy resolution for GAMPIX, high energy resolution for Caliste HD. One of our short-term perspectives is the test of MAPEM algorithms integrating specific prior values for the data to reconstruct adapted to the gamma imaging topic. (authors)

  5. Novel ZnO:Al contacts to CdZnTe for X- and gamma-ray detectors

    PubMed Central

    Roy, U. N.; Mundle, R. M.; Camarda, G. S.; Cui, Y.; Gul, R.; Hossain, A.; Yang, G.; Pradhan, A. K.; James, R. B.

    2016-01-01

    CdZnTe (CZT) has made a significant impact as a material for room-temperature nuclear-radiation detectors due to its potential impact in applications related to nonproliferation, homeland security, medical imaging, and gamma-ray telescopes. In all such applications, common metals, such as gold, platinum and indium, have been used as electrodes for fabricating the detectors. Because of the large mismatch in the thermal-expansion coefficient between the metal contacts and CZT, the contacts can undergo stress and mechanical degradation, which is the main cause for device instability over the long term. Here, we report for the first time on our use of Al-doped ZnO as the preferred electrode for such detectors. The material was selected because of its better contact properties compared to those of the metals commonly used today. Comparisons were conducted for the detector properties using different contacts, and improvements in the performances of ZnO:Al-coated detectors are described in this paper. These studies show that Al:ZnO contacts to CZT radiation detectors offer the potential of becoming a transformative replacement for the common metallic contacts due to the dramatic improvements in the performance of detectors and improved long-term stability. PMID:27216387

  6. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  7. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features portable and mobile capabilities for easy handling and on-site applications at remote locations where hospital facilities are not available.

  8. Quality controls for gamma cameras and PET cameras: development of a free open-source ImageJ program

    NASA Astrophysics Data System (ADS)

    Carlier, Thomas; Ferrer, Ludovic; Berruchon, Jean B.; Cuissard, Regis; Martineau, Adeline; Loonis, Pierre; Couturier, Olivier

    2005-04-01

    Acquisition data and treatments for quality controls of gamma cameras and Positron Emission Tomography (PET) cameras are commonly performed with dedicated program packages, which are running only on manufactured computers and differ from each other, depending on camera company and program versions. The aim of this work was to develop a free open-source program (written in JAVA language) to analyze data for quality control of gamma cameras and PET cameras. The program is based on the free application software ImageJ and can be easily loaded on any computer operating system (OS) and thus on any type of computer in every nuclear medicine department. Based on standard parameters of quality control, this program includes 1) for gamma camera: a rotation center control (extracted from the American Association of Physics in Medicine, AAPM, norms) and two uniformity controls (extracted from the Institute of Physics and Engineering in Medicine, IPEM, and National Electronic Manufacturers Association, NEMA, norms). 2) For PET systems, three quality controls recently defined by the French Medical Physicist Society (SFPM), i.e. spatial resolution and uniformity in a reconstructed slice and scatter fraction, are included. The determination of spatial resolution (thanks to the Point Spread Function, PSF, acquisition) allows to compute the Modulation Transfer Function (MTF) in both modalities of cameras. All the control functions are included in a tool box which is a free ImageJ plugin and could be soon downloaded from Internet. Besides, this program offers the possibility to save on HTML format the uniformity quality control results and a warning can be set to automatically inform users in case of abnormal results. The architecture of the program allows users to easily add any other specific quality control program. Finally, this toolkit is an easy and robust tool to perform quality control on gamma cameras and PET cameras based on standard computation parameters, is free, run on any type of computer and will soon be downloadable from the net (http://rsb.info.nih.gov/ij/plugins or http://nucleartoolkit.free.fr).

  9. An evolution of technologies and applications of gamma imagers in the nuclear cycle industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, R. A.; Carrel, F.; Menaa, N.

    The tracking of radiation contamination and distribution has become a high priority in the nuclear cycle industry in order to respect the ALARA principle which is a main challenge during decontamination and dismantling activities. To support this need, AREVA/CANBERRA and CEA LIST have been actively carrying out research and development on a gamma-radiation imager. In this paper we will present the new generation of gamma camera, called GAMPIX. This system is based on the Timepix chip, hybridized with a CdTe substrate. A coded mask could be used in order to increase the sensitivity of the camera. Moreover, due to themore » USB connection with a standard computer, this gamma camera is immediately operational and user-friendly. The final system is a very compact gamma camera (global weight is less than 1 kg without any shielding) which could be used as a hand-held device for radioprotection purposes. In this article, we present the main characteristics of this new generation of gamma camera and we expose experimental results obtained during in situ measurements. Even though we present preliminary results the final product is under industrialization phase to address various applications specifications. (authors)« less

  10. Blocking contacts for N-type cadmium zinc telluride

    NASA Technical Reports Server (NTRS)

    Stahle, Carl M. (Inventor); Parker, Bradford H. (Inventor); Babu, Sachidananda R. (Inventor)

    2012-01-01

    A process for applying blocking contacts on an n-type CdZnTe specimen includes cleaning the CdZnTe specimen; etching the CdZnTe specimen; chemically surface treating the CdZnTe specimen; and depositing blocking metal on at least one of a cathode surface and an anode surface of the CdZnTe specimen.

  11. Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope

    NASA Astrophysics Data System (ADS)

    Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Pinsard, F.; Blondel, C.; Le Mer, I.; Delagnes, E.; Vassal, M. C.; Soufflet, F.; Bocage, R.

    2008-07-01

    In the frame of the hard X-ray Simbol-X observatory, a joint CNES-ASI space mission to be flown in 2014, a prototype of miniature Cd(Zn)Te camera equipped with 64 pixels has been designed. The device, called Caliste 64, is a spectro-imager with high resolution event time-tagging capability. Caliste 64 integrates a Cd(Zn)Te semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analog readout channels. This 1 × 1 × 2 cm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of Caliste 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs, perpendicular to the detection plane. We achieved good noise performances, with a mean Equivalent Noise Charge of ~65 electrons rms over the 64 channels. Time resolution is better than 70 ns rms for energy deposits greater than 50 keV, taking into account electronic noise and technological dispersal, which enables to reject background by anticoincidence with very low probability of error. For the first prototypes, we chose CdTe detectors equipped with Al-Ti-Au Schottky barrier contacts because of their very low dark current and excellent spectroscopic performances. So far, three Caliste 64 cameras have been realized and tested. When the crystal is cooled down to -10°C, the sum spectrum built with the 64 pixels of a Caliste 64 sample results in a spectral resolution of 664 eV FWHM at 13.94 keV and 841 eV FWHM at 59.54 keV.

  12. Development and characterization of a round hand-held silicon photomultiplier based gamma camera for intraoperative imaging

    PubMed Central

    Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.

    2017-01-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345

  13. CdZnTe detector for hard x-ray and low energy gamma-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Natalucci, L.; Alvarez, J. M.; Barriere, N.; Caroli, E.; Curado da Silva, R. M.; Del Sordo, S.; Di Cosimo, S.; Frutti, M.; Hernanz, M.; Lozano, M.; Quadrini, E.; Pellegrini, G.; Stephen, J. B.; Ubertini, P.; Uslenghi, M. C.; Zoglauer, A.

    2008-07-01

    The science drivers for a new generation soft gamma-ray mission are naturally focused on the detailed study of the acceleration mechanisms in a variety of cosmic sources. Through the development of high energy optics in the energy energy range 0.05-1 MeV it will be possible to achieve a sensitivity about two orders of magnitude better than the currently operating gamma-ray telescopes. This will open a window for deep studies of many classes of sources: from Galactic X-ray binaries to magnetars, from supernova remnants to Galaxy clusters, from AGNs (Seyfert, blazars, QSO) to the determination of the origin of the hard X-/gamma-ray cosmic background, from the study of antimatter to that of the dark matter. In order to achieve the needed performance, a detector with mm spatial resolution and very high peak efficiency is needed. The instrumental characteristics of this device could eventually allow to detect polarization in a number of objects including pulsars, GRBs and bright AGNs. In this work we focus on the characteristics of the focal plane detector, based on CZT or CdTe semiconductor sensors arranged in multiple planes and viewed by a side detector to enhance gamma-ray absorption in the Compton regime. We report the preliminary results of an optimization study based on simulations and laboratory tests, as prosecution of the former design studies of the GRI mission which constitute the heritage of this activity.

  14. A novel fully integrated handheld gamma camera

    NASA Astrophysics Data System (ADS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  15. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  16. Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope

    NASA Astrophysics Data System (ADS)

    Limousin, O.; Meuris, A.; Lugiez, F.; Gevin, Olivier; Pinsard, F.; Blondel, C.; Le Mer, I.; Delagnes, E.; Vassal, M. C.; Soufflet, F.; Bocage, R.; Penquer, A.; Billot, M.

    2017-11-01

    In the frame of the hard X-ray Simbol-X observatory, a joint CNES-ASI space mission to be flown in 2014, a prototype of miniature Cd(Zn)Te camera equipped with 64 pixels has been designed. The device, called Caliste 64, is a spectro-imager with high resolution event timetagging capability. Caliste 64 integrates a Cd(Zn)Te semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analog readout channels. This 1 × 1 × 2 cm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of Caliste 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs, perpendicular to the detection plane. We achieved good noise performances, with a mean Equivalent Noise Charge of 65 electrons rms over the 64 channels. For the first prototypes, we chose Pt//CdTe//Al/Ti/Au Schottky detectors because of their very low dark current and excellent spectroscopic performances. Recently a Caliste 64 prototype has been also equipped with a 2 mm thick Au//CdZnTe//Au detector. This paper presents the performances of these four prototypes and demonstrates spectral performances better than 1 keV fwhm at 59.54 keV when the samples are moderately cooled down to -10°C.

  17. Space instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.

    1999-02-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  18. Prompt gamma imaging of proton pencil beams at clinical dose rate

    NASA Astrophysics Data System (ADS)

    Perali, I.; Celani, A.; Bombelli, L.; Fiorini, C.; Camera, F.; Clementel, E.; Henrotin, S.; Janssens, G.; Prieels, D.; Roellinghoff, F.; Smeets, J.; Stichelbaut, F.; Vander Stappen, F.

    2014-10-01

    In this work, we present experimental results of a prompt gamma camera for real-time proton beam range verification. The detection system features a pixelated Cerium doped lutetium based scintillation crystal, coupled to Silicon PhotoMultiplier arrays, read out by dedicated electronics. The prompt gamma camera uses a knife-edge slit collimator to produce a 1D projection of the beam path in the target on the scintillation detector. We designed the detector to provide high counting statistics and high photo-detection efficiency for prompt gamma rays of several MeV. The slit design favours the counting statistics and could be advantageous in terms of simplicity, reduced cost and limited footprint. We present the description of the realized gamma camera, as well as the results of the characterization of the camera itself in terms of imaging performance. We also present the results of experiments in which a polymethyl methacrylate phantom was irradiated with proton pencil beams in a proton therapy center. A tungsten slit collimator was used and prompt gamma rays were acquired in the 3-6 MeV energy range. The acquisitions were performed with the beam operated at 100 MeV, 160 MeV and 230 MeV, with beam currents at the nozzle exit of several nA. Measured prompt gamma profiles are consistent with the simulations and we reached a precision (2σ) in shift retrieval of 4 mm with 0.5 × 108, 1.4 × 108 and 3.4 × 108 protons at 100, 160 and 230 MeV, respectively. We conclude that the acquisition of prompt gamma profiles for in vivo range verification of proton beam with the developed gamma camera and a slit collimator is feasible in clinical conditions. The compact design of the camera allows its integration in a proton therapy treatment room and further studies will be undertaken to validate the use of this detection system during treatment of real patients.

  19. A data acquisition and control system for high-speed gamma-ray tomography

    NASA Astrophysics Data System (ADS)

    Hjertaker, B. T.; Maad, R.; Schuster, E.; Almås, O. A.; Johansen, G. A.

    2008-09-01

    A data acquisition and control system (DACS) for high-speed gamma-ray tomography based on the USB (Universal Serial Bus) and Ethernet communication protocols has been designed and implemented. The high-speed gamma-ray tomograph comprises five 500 mCi 241Am gamma-ray sources, each at a principal energy of 59.5 keV, which corresponds to five detector modules, each consisting of 17 CdZnTe detectors. The DACS design is based on Microchip's PIC18F4550 and PIC18F4620 microcontrollers, which facilitates an USB 2.0 interface protocol and an Ethernet (IEEE 802.3) interface protocol, respectively. By implementing the USB- and Ethernet-based DACS, a sufficiently high data acquisition rate is obtained and no dedicated hardware installation is required for the data acquisition computer, assuming that it is already equipped with a standard USB and/or Ethernet port. The API (Application Programming Interface) for the DACS is founded on the National Instrument's LabVIEW® graphical development tool, which provides a simple and robust foundation for further application software developments for the tomograph. The data acquisition interval, i.e. the integration time, of the high-speed gamma-ray tomograph is user selectable and is a function of the statistical measurement accuracy required for the specific application. The bandwidth of the DACS is 85 kBytes s-1 for the USB communication protocol and 28 kBytes s-1 for the Ethernet protocol. When using the iterative least square technique reconstruction algorithm with a 1 ms integration time, the USB-based DACS provides an online image update rate of 38 Hz, i.e. 38 frames per second, whereas 31 Hz for the Ethernet-based DACS. The off-line image update rate (storage to disk) for the USB-based DACS is 278 Hz using a 1 ms integration time. Initial characterization of the high-speed gamma-ray tomograph using the DACS on polypropylene phantoms is presented in the paper.

  20. Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade.

    PubMed

    Rigamonti, D; Muraro, A; Nocente, M; Perseo, V; Boltruczyk, G; Fernandes, A; Figueiredo, J; Giacomelli, L; Gorini, G; Gosk, M; Kiptily, V; Korolczuk, S; Mianowski, S; Murari, A; Pereira, R C; Cippo, E P; Zychor, I; Tardocchi, M

    2016-11-01

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr 3 crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at E γ = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.

  1. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Swanson, Drew E.; Reich, Carey; Abbas, Ali; Shimpi, Tushar; Liu, Hanxiao; Ponce, Fernando A.; Walls, John M.; Zhang, Yong-Hang; Metzger, Wyatt K.; Sampath, W. S.; Holman, Zachary C.

    2018-05-01

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.

  2. A novel Compton camera design featuring a rear-panel shield for substantial noise reduction in gamma-ray images

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.

    2014-12-01

    After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.

  3. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.

    PubMed

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-02-03

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

  4. Performance of the prototype LaBr{sub 3} spectrometer developed for the JET gamma-ray camera upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigamonti, D., E-mail: davide.rigamonti@mib.infn.it; Nocente, M.; Gorini, G.

    2016-11-15

    In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr{sub 3} crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution ofmore » 5.5% at E{sub γ} = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas.« less

  5. SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlka, R; Kappadath, S; Mawlawi, O

    2016-06-15

    Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray inmore » the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.« less

  6. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    NASA Astrophysics Data System (ADS)

    Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.

    2017-07-01

    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

  7. Experimental comparison of high-density scintillators for EMCCD-based gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Heemskerk, Jan W. T.; Kreuger, Rob; Goorden, Marlies C.; Korevaar, Marc A. N.; Salvador, Samuel; Seeley, Zachary M.; Cherepy, Nerine J.; van der Kolk, Erik; Payne, Stephen A.; Dorenbos, Pieter; Beekman, Freek J.

    2012-07-01

    Detection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events. This method allows for the use of scintillator materials with relatively long decay times of a few milliseconds, not previously considered for use in photon-counting gamma cameras, opening up an unexplored range of dense scintillators. In this paper, we test CdWO4 and transparent polycrystalline ceramics of Lu2O3:Eu and (Gd,Lu)2O3:Eu as alternatives to currently used CsI:Tl in order to improve the performance of EMCCD-based gamma cameras. The tested scintillators were selected for their significantly larger cross-sections at 140 keV (99mTc) compared to CsI:Tl combined with moderate to good light yield. A performance comparison based on gamma camera spatial and energy resolution was done with all tested scintillators having equal (66%) interaction probability at 140 keV. CdWO4, Lu2O3:Eu and (Gd,Lu)2O3:Eu all result in a significantly improved spatial resolution over CsI:Tl, albeit at the cost of reduced energy resolution. Lu2O3:Eu transparent ceramic gives the best spatial resolution: 65 µm full-width-at-half-maximum (FWHM) compared to 147 µm FWHM for CsI:Tl. In conclusion, these ‘slow’ dense scintillators open up new possibilities for improving the spatial resolution of EMCCD-based scintillation cameras.

  8. Lymphoscintigraphy

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  9. Hepatobiliary

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  10. CdCl2 Passivation of Polycrystalline CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, Wyatt K; Swanson, Drew; Reich, Carey

    As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extendingmore » Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, quantum efficiency, photoluminescence, transmission electron microscopy, and energy-dispersive X-ray spectroscopy clearly reveals that during passivation, Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior; however, the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between the layers create additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.« less

  11. General Nuclear Medicine

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  12. Strong mechanical adhesion of gold electroless contacts on CdZnTe deposited by alcoholic solutions

    NASA Astrophysics Data System (ADS)

    Benassi, G.; Nasi, L.; Bettelli, M.; Zambelli, N.; Calestani, D.; Zappettini, A.

    2017-02-01

    CdZnTe crystals are nowadays employed as X-ray detectors for a number of applications, such as medical imaging, security, and environmental monitoring. One of the main difficulties connected with CdZnTe-based detector processing is the poor contact adhesion that affect bonding procedures and device long term stability. We have shown that it is possible to obtain mechanically stable contacts by common electroless deposition using alcoholic solutions instead of water solutions. The contacts show blocking current-voltage characteristic that is required for obtaining spectroscopic detectors. Nanoscale-resolved chemical analysis indicated that the improved mechanical adhesion is due to a better control of the stoichiometry of the CdZnTe layer below the contact.

  13. Linearity enhancement design of a 16-channel low-noise front-end readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Zeng, Huiming; Wei, Tingcun; Wang, Jia

    2017-03-01

    A 16-channel front-end readout application-specific integrated circuit (ASIC) with linearity enhancement design for cadmium zinc telluride (CdZnTe) detectors is presented in this paper. The resistors in the slow shaper are realized using a high-Z circuit to obtain constant resistance value instead of using only a metal-oxide-semiconductor (MOS) transistor, thus the shaping time of the slow shaper can be kept constant for different amounts of input energies. As a result, the linearity of conversion gain is improved significantly. The ASIC was designed and fabricated in a 0.35 μm CMOS process with a die size of 2.60 mm×3.53 mm. The tested results show that a typical channel provides an equivalent noise charge (ENC) of 109.7e-+16.3e-/pF with a power consumption of 4 mW and achieves a conversion gain of 87 mV/fC with a nonlinearity of <0.4%. The linearity of conversion gain is improved by at least 86.6% as compared with the traditional approaches using the same front-end readout architecture and manufacture process. Moreover, the inconsistency among channels is <0.3%. An energy resolution of 2.975 keV (FWHM) for gamma rays of 59.5 keV was measured by connecting the ASIC to a 5 mm×5 mm ×2 mm CdZnTe detector at room temperature. The front-end readout ASIC presented in this paper achieves an outstanding linearity performance without compromising the noise, power consumption, and chip size performances.

  14. SU-C-201-03: Coded Aperture Gamma-Ray Imaging Using Pixelated Semiconductor Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, S; Kaye, W; Jaworski, J

    2015-06-15

    Purpose: Improved localization of gamma-ray emissions from radiotracers is essential to the progress of nuclear medicine. Polaris is a portable, room-temperature operated gamma-ray imaging spectrometer composed of two 3×3 arrays of thick CdZnTe (CZT) detectors, which detect gammas between 30keV and 3MeV with energy resolution of <1% FWHM at 662keV. Compton imaging is used to map out source distributions in 4-pi space; however, is only effective above 300keV where Compton scatter is dominant. This work extends imaging to photoelectric energies (<300keV) using coded aperture imaging (CAI), which is essential for localization of Tc-99m (140keV). Methods: CAI, similar to the pinholemore » camera, relies on an attenuating mask, with open/closed elements, placed between the source and position-sensitive detectors. Partial attenuation of the source results in a “shadow” or count distribution that closely matches a portion of the mask pattern. Ideally, each source direction corresponds to a unique count distribution. Using backprojection reconstruction, the source direction is determined within the field of view. The knowledge of 3D position of interaction results in improved image quality. Results: Using a single array of detectors, a coded aperture mask, and multiple Co-57 (122keV) point sources, image reconstruction is performed in real-time, on an event-by-event basis, resulting in images with an angular resolution of ∼6 degrees. Although material nonuniformities contribute to image degradation, the superposition of images from individual detectors results in improved SNR. CAI was integrated with Compton imaging for a seamless transition between energy regimes. Conclusion: For the first time, CAI has been applied to thick, 3D position sensitive CZT detectors. Real-time, combined CAI and Compton imaging is performed using two 3×3 detector arrays, resulting in a source distribution in space. This system has been commercialized by H3D, Inc. and is being acquired for various applications worldwide, including proton therapy imaging R&D.« less

  15. Skeletal Scintigraphy (Bone Scan)

    MedlinePlus

    ... The special camera and imaging techniques used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, A. E., E-mail: bolotnik@bnl.gov; Camarda, G. S.; Cui, Y.

    We investigated the feasibility of long-drift-time CdZnTe (CZT) gamma-ray detectors, fabricated from CZT material produced by Redlen Technologies. CZT crystals with cross-section areas of 5 × 5 mm{sup 2} and 6 × 6 mm{sup 2} and thicknesses of 20-, 30-, 40-, and 50-mm were configured as 3D position-sensitive drift detectors and were read out using a front-end ASIC. By correcting the electron charge losses caused by defects in the crystals, we demonstrated high performance for relatively thick detectors fabricated from unselected CZT material.

  17. Analysis of Etched CdZnTe Substrates

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Lennon, C. M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2016-09-01

    State-of-the-art as-received (112)B CdZnTe substrates have been examined for surface impurity contamination and polishing residue. Two 4 cm × 4 cm and one 6 cm × 6 cm (112)B state-of-the-art as-received CdZnTe wafers were analyzed. A maximum surface impurity concentration of Al = 1.7 × 1015 atoms cm-2, Si = 3.7 × 1013 atoms cm-2, Cl = 3.12 × 1015 atoms cm-2, S = 1.7 × 1014 atoms cm-2, P = 1.1 × 1014 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 1.2 × 1014 atoms cm-2, and Cu = 4 × 1012 atoms cm-2 was observed on the as-received CdZnTe wafers. CdZnTe particulates and residual SiO2 polishing grit were observed on the surface of the as-received (112)B CdZnTe substrates. The polishing grit/CdZnTe particulate density on CdZnTe wafers was observed to vary across a 6 cm × 6 cm wafer from ˜4 × 107 cm-2 to 2.5 × 108 cm-2. The surface impurity and damage layer of the (112)B CdZnTe wafers dictate that a molecular beam epitaxy (MBE) preparation etch is required. The contamination for one 4 cm × 4 cm and one 6 cm × 6 cm CdZnTe wafer after a standard MBE Br:methanol preparation etch procedure was also analyzed. A maximum surface impurity concentration of Al = 2.4 × 1015 atoms cm-2, Si = 4.0 × 1013 atoms cm-2, Cl = 7.5 × 1013 atoms cm-2, S = 4.4 × 1013 atoms cm-2, P = 9.8 × 1013 atoms cm-2, Fe = 1.0 × 1013 atoms cm-2, Br = 2.9 × 1014 atoms cm-2, and Cu = 5.2 × 1012 atoms cm-2 was observed on the MBE preparation-etched CdZnTe wafers. The MBE preparation-etched surface contamination consists of Cd(Zn)Te particles/flakes. No residual SiO2 polishing grit was observed on the (112)B surface.

  18. Dual mode stereotactic localization method and application

    DOEpatents

    Keppel, Cynthia E.; Barbosa, Fernando Jorge; Majewski, Stanislaw

    2002-01-01

    The invention described herein combines the structural digital X-ray image provided by conventional stereotactic core biopsy instruments with the additional functional metabolic gamma imaging obtained with a dedicated compact gamma imaging mini-camera. Before the procedure, the patient is injected with an appropriate radiopharmaceutical. The radiopharmaceutical uptake distribution within the breast under compression in a conventional examination table expressed by the intensity of gamma emissions is obtained for comparison (co-registration) with the digital mammography (X-ray) image. This dual modality mode of operation greatly increases the functionality of existing stereotactic biopsy devices by yielding a much smaller number of false positives than would be produced using X-ray images alone. The ability to obtain both the X-ray mammographic image and the nuclear-based medicine gamma image using a single device is made possible largely through the use of a novel, small and movable gamma imaging camera that permits its incorporation into the same table or system as that currently utilized to obtain X-ray based mammographic images for localization of lesions.

  19. Commissioning of a new SeHCAT detector and comparison with an uncollimated gamma camera.

    PubMed

    Taylor, Jonathan C; Hillel, Philip G; Himsworth, John M

    2014-10-01

    Measurements of SeHCAT (tauroselcholic [75selenium] acid) retention have been used to diagnose bile acid malabsorption for a number of years. In current UK practice the vast majority of centres calculate uptake using an uncollimated gamma camera. Because of ever-increasing demands on gamma camera time, a new 'probe' detector was designed, assembled and commissioned. To validate the system, nine patients were scanned at day 0 and day 7 with both the new probe detector and an uncollimated gamma camera. Commissioning results were largely in line with expectations. Spatial resolution (full-width 95% of maximum) at 1 m was 36.6 cm, the background count rate was 24.7 cps and sensitivity at 1 m was 720.8 cps/MBq. The patient comparison study showed a mean absolute difference in retention measurements of 0.8% between the probe and uncollimated gamma camera, and SD of ± 1.8%. The study demonstrated that it is possible to create a simple, reproducible SeHCAT measurement system using a commercially available scintillation detector. Retention results from the probe closely agreed with those from the uncollimated gamma camera.

  20. Development of a high sensitivity pinhole type gamma camera using semiconductors for low dose rate fields

    NASA Astrophysics Data System (ADS)

    Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo

    2018-06-01

    We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.

  1. Development and calibration of a new gamma camera detector using large square Photomultiplier Tubes

    NASA Astrophysics Data System (ADS)

    Zeraatkar, N.; Sajedi, S.; Teimourian Fard, B.; Kaviani, S.; Akbarzadeh, A.; Farahani, M. H.; Sarkar, S.; Ay, M. R.

    2017-09-01

    Large area scintillation detectors applied in gamma cameras as well as Single Photon Computed Tomography (SPECT) systems, have a major role in in-vivo functional imaging. Most of the gamma detectors utilize hexagonal arrangement of Photomultiplier Tubes (PMTs). In this work we applied large square-shaped PMTs with row/column arrangement and positioning. The Use of large square PMTs reduces dead zones in the detector surface. However, the conventional center of gravity method for positioning may not introduce an acceptable result. Hence, the digital correlated signal enhancement (CSE) algorithm was optimized to obtain better linearity and spatial resolution in the developed detector. The performance of the developed detector was evaluated based on NEMA-NU1-2007 standard. The acquired images using this method showed acceptable uniformity and linearity comparing to three commercial gamma cameras. Also the intrinsic and extrinsic spatial resolutions with low-energy high-resolution (LEHR) collimator at 10 cm from surface of the detector were 3.7 mm and 7.5 mm, respectively. The energy resolution of the camera was measured 9.5%. The performance evaluation demonstrated that the developed detector maintains image quality with a reduced number of used PMTs relative to the detection area.

  2. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM).

    PubMed

    Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, François; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagrà, Roberto; Bucerius, Jan; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Übleis, Christopher; Hacker, Marcus

    2016-12-01

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims 1) to identify the main acquisitions protocols; 2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally 3) to determine the impact of CZT on radiation exposure.

  3. Dawn's Gamma Ray and Neutron Detector

    NASA Astrophysics Data System (ADS)

    Prettyman, Thomas H.; Feldman, William C.; McSween, Harry Y.; Dingler, Robert D.; Enemark, Donald C.; Patrick, Douglas E.; Storms, Steven A.; Hendricks, John S.; Morgenthaler, Jeffery P.; Pitman, Karly M.; Reedy, Robert C.

    2011-12-01

    The NASA Dawn Mission will determine the surface composition of 4 Vesta and 1 Ceres, providing constraints on their formation and thermal evolution. The payload includes a Gamma Ray and Neutron Detector (GRaND), which will map the surface elemental composition at regional spatial scales. Target elements include the constituents of silicate and oxide minerals, ices, and the products of volcanic exhalation and aqueous alteration. At Vesta, GRaND will map the mixing ratio of end-members of the howardite, diogenite, and eucrite (HED) meteorites, determine relative proportions of plagioclase and mafic minerals, and search for compositions not well sampled by the meteorite collection. The large south polar impact basin may provide an opportunity to determine the composition of Vesta’s mantle and lower crust. At Ceres, GRaND will provide chemical information needed to test different models of Ceres’ origin and thermal and aqueous evolution. GRaND is also sensitive to hydrogen layering and can determine the equivalent H2O/OH content of near-surface hydrous minerals as well as the depth and water abundance of an ice table, which may provide information about the state of water in the interior of Ceres. Here, we document the design and performance of GRaND with sufficient detail to interpret flight data archived in the Planetary Data System, including two new sensor designs: an array of CdZnTe semiconductors for gamma ray spectroscopy, and a loaded-plastic phosphor sandwich for neutron spectroscopy. An overview of operations and a description of data acquired from launch up to Vesta approach is provided, including annealing of the CdZnTe sensors to remove radiation damage accrued during cruise. The instrument is calibrated using data acquired on the ground and in flight during a close flyby of Mars. Results of Mars flyby show that GRaND has ample sensitivity to meet science objectives at Vesta and Ceres. Strategies for data analysis are described and prospective results for Vesta are presented for different operational scenarios and compositional models.

  4. Characterization and Applications of a CdZnTe-Based Gamma-Ray Imager

    NASA Astrophysics Data System (ADS)

    Galloway, Michelle Lee

    Detection of electromagnetic radiation in the form of gamma rays provides a means to discover the presence of nuclear sources and the occurrence of highly-energetic events that occur in our terrestrial and astrophysical environment. The highly penetrative nature of gamma rays allows for probing into objects and regions that are obscured at other wavelengths. The detection and imaging of gamma rays relies upon an understanding of the ways in which these high-energy photons interact with matter. The applications of gamma-ray detection and imaging are numerous. Astrophysical observation of gamma rays expands our understanding of the Universe in which we live. Terrestrial detection and imaging of gamma rays enable environmental monitoring of radioactivity. This allows for identification and localization of nuclear materials to prevent illicit trafficking and to ultimately protect against harmful acts. This dissertation focusses on the development and characterization of a gamma-ray detection and imaging instrument and explores its capabilities for the aforementioned applications. The High Efficiency Multimode Imager, HEMI, is a prototype instrument that is based on Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The detectors are arranged in a two-planar configuration to allow for both Compton and coded-aperture imaging. HEMI was initially developed as a prototype instrument to demonstrate its capabilities for nuclear threat detection, spectroscopy, and imaging. The 96-detector instrument was developed and fully characterized within the laboratory environment, yielding a system energy resolution of 2.4% FWHM at 662 keV, an angular resolution of 9.5 deg. FWHM at 662 keV in Compton mode, and a 10.6 deg. angular resolution in coded aperture mode. After event cuts, the effective area for Compton imaging of the 662 keV photopeak is 0.1 cm 22. Imaging of point sources in both Compton and coded aperture modes have been demonstrated. The minimum detectable activity of a 137Cs at a 20 m distance with 20 seconds of observation time is estimated to be ˜0.2 mCi in spectral mode and ˜20 mCi in Compton imaging mode. These performance parameters fulfilled the requirements of the nuclear security program. Following the Fukushima Dai-ichi Nuclear Power Plant accident of March, 2011, efficient methods to assess levels of radioactive contamination over large areas are needed to aid in clean-up efforts. Although a field study was not initially intended for the HEMI prototype, its portability, low mass, and low power requirements made it a good candidate to test Compton imaging from an aerial platform. The instrument was brought to Japan in August, 2013, allowing for the first test of a Compton imager from a helicopter. The instrument and detectors proved reliable and performed well under high temperature, high humidity, and vibrations. Single-detector hit energy resolutions ranged from 2.5 - 2.8% FWHM at 662 keV. The field testing of the HEMI instrument in Fukushima revealed areas of higher activity of cesium among a diffuse background through aerial-based countrate mapping and through ground measurements. Although the Compton reconstructed events were dominated by random coincidences, preliminary Compton imaging results are promising. A future mission in medium-energy gamma-ray astrophysics would allow for many scientific advancements, e.g., a possible explanation for the excess positron emission from the Galactic Center, a better understanding of nucleosynthesis and explosion mechanisms in Type Ia supernovae, and a look at the physical forces at play in compact objects such as black holes and neutron stars. A next-generation telescope requires good energy resolution, good angular resolution, and high sensitivity in order to achieve these objectives. Large-volume CdZnTe detectors are an attractive candidate for a future instrument because of their good absorption, simple design, and minimal or no cooling requirements. Using the benchmarked HEMI CdZnTe detectors, a Compton telescope with a passive coded mask was designed and simulated with the goal of creating a very sensitive instrument that is capable of high angular resolution. The simulated telescope showed achievable energy resolutions of 1.68% FWHM at 511 keV and 1.11% at 1809 keV, on-axis angular resolutions in Compton mode of 2.63 deg. FWHM at 511 keV and 1.30 deg. FWHM at 1809 keV, and is capable of resolving sources to at least 0.2 deg. at lower energies with the use of the coded mask. An initial assessment of the instrument yields an effective area of 183 cm 2 at 511 keV and an anticipated all-sky sensitivity of 3.6 x 10 -6 photons/cm2/s for a broadened 511 keV source over a 2 year observation time. Additionally, combining a coded mask with a Compton imager to improve point source localization for positron detection has been demonstrated. (Abstract shortened by UMI.)

  5. Development of an all-in-one gamma camera/CCD system for safeguard verification

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Il; An, Su Jung; Chung, Yong Hyun; Kwak, Sung-Woo

    2014-12-01

    For the purpose of monitoring and verifying efforts at safeguarding radioactive materials in various fields, a new all-in-one gamma camera/charged coupled device (CCD) system was developed. This combined system consists of a gamma camera, which gathers energy and position information on gamma-ray sources, and a CCD camera, which identifies the specific location in a monitored area. Therefore, 2-D image information and quantitative information regarding gamma-ray sources can be obtained using fused images. A gamma camera consists of a diverging collimator, a 22 × 22 array CsI(Na) pixelated scintillation crystal with a pixel size of 2 × 2 × 6 mm3 and Hamamatsu H8500 position-sensitive photomultiplier tube (PSPMT). The Basler scA640-70gc CCD camera, which delivers 70 frames per second at video graphics array (VGA) resolution, was employed. Performance testing was performed using a Co-57 point source 30 cm from the detector. The measured spatial resolution and sensitivity were 4.77 mm full width at half maximum (FWHM) and 7.78 cps/MBq, respectively. The energy resolution was 18% at 122 keV. These results demonstrate that the combined system has considerable potential for radiation monitoring.

  6. A Spherical Active Coded Aperture for 4π Gamma-ray Imaging

    DOE PAGES

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...

    2017-09-22

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  7. Effect of chemical etching on the surface roughness of CdZnTe and CdMnTe gamma radiation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain,A.; Babalola, S.; Bolotnikov, A.E.

    2008-08-11

    Generally, mechanical polishing is performed to diminish the cutting damage followed by chemical etching to remove the remaining damage on crystal surfaces. In this paper, we detail the findings from our study of the effects of various chemical treatments on the roughness of crystal surfaces. We prepared several CdZnTe (CZT) and CdMnTe (CMT) crystals by mechanical polishing with 5 {micro}m and/or lower grits of Al{sub 2}O{sub 3} abrasive papers including final polishing with 0.05-{micro}m particle size alumina powder and then etched them for different periods with a 2%, 5% Bromine-Methanol (B-M) solution, and also with an E-solution (HNO{sub 3}:H{sub 2}O:Cr{submore » 2}O{sub 7}). The material removal rate (etching rate) from the crystals was found to be 10 {micro}m, 30 {micro}m, and 15 {micro}m per minute, respectively. The roughness of the resulting surfaces was determined by the Atomic Force Microscopy (AFM) to identify the most efficient surface processing method by combining mechanical and chemical polishing.« less

  8. Study on the mechanism of using IR illumination to improve the carrier transport performance of CdZnTe detector

    NASA Astrophysics Data System (ADS)

    Mao, Yifei; Zhang, Jijun; Lin, Liwen; Lai, Jianming; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Wang, Linjun

    2018-04-01

    Different wavelength IR light (770-1150 nm) was used to evaluate the effect of IR light on the carrier transport performance of CdZnTe detector. The effective mobility-lifetime product (μτ*) of CdZnTe achieved 10-2 cm2 V-1 when the IR wavelength was in the range of 820-920 nm, but decreased to 1 × 10-4 cm2 V-1 when the wavelength was longer than 920 nm. The mechanism about how IR light affecting the carrier transport property of CdZnTe detector was analyzed with Shockley-Read-Hall model. The defect of doubly ionized Cd vacancy ([VCd]2-) was found to be the main factor that assist IR light affecting the μτ of CdZnTe detector. The photoconductive experiment under 770-1150 nm IR illumination was carried out, and three kinds of photocurrent curve were detected and analyzed by solving the Hecht equation. The experiments demonstrated the effect of [VCd]2- defect on the carrier transport property of CdZnTe detector under IR illumination.

  9. Color reproduction software for a digital still camera

    NASA Astrophysics Data System (ADS)

    Lee, Bong S.; Park, Du-Sik; Nam, Byung D.

    1998-04-01

    We have developed a color reproduction software for a digital still camera. The image taken by the camera was colorimetrically reproduced on the monitor after characterizing the camera and the monitor, and color matching between two devices. The reproduction was performed at three levels; level processing, gamma correction, and color transformation. The image contrast was increased after the level processing adjusting the level of dark and bright portions of the image. The relationship between the level processed digital values and the measured luminance values of test gray samples was calculated, and the gamma of the camera was obtained. The method for getting the unknown monitor gamma was proposed. As a result, the level processed values were adjusted by the look-up table created by the camera and the monitor gamma correction. For a color transformation matrix for the camera, 3 by 3 or 3 by 4 matrix was used, which was calculated by the regression between the gamma corrected values and the measured tristimulus values of each test color samples the various reproduced images were displayed on the dialogue box implemented in our software, which were generated according to four illuminations for the camera and three color temperatures for the monitor. An user can easily choose he best reproduced image comparing each others.

  10. Continued development of room temperature semiconductor nuclear detectors

    NASA Astrophysics Data System (ADS)

    Kim, Hadong; Cirignano, Leonard; Churilov, Alexei; Ciampi, Guido; Kargar, Alireza; Higgins, William; O'Dougherty, Patrick; Kim, Suyoung; Squillante, Michael R.; Shah, Kanai

    2010-08-01

    Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma ray spectroscopy due to several promising properties. Due to recent advances in material processing, electron mobility-lifetime product of TlBr is close to Cd(Zn)Te's value which allowed us to fabricate large working detectors. We were also able to fabricate and obtain spectroscopic results from TlBr Capacitive Frisch Grid detector and orthogonal strip detectors. In this paper we report on our recent TlBr and related ternary detector results and preliminary results from Cinnabar (HgS) detectors.

  11. CdZnTe Background Measurements at Balloon Altitudes with PoRTIA

    NASA Technical Reports Server (NTRS)

    Parsons, A.; Barthelmy, S.; Bartlett, L.; Gehrels, N.; Naya, J.; Stahle, C. M.; Tueller, J.; Teegarden, B.

    2003-01-01

    Measurements of the CdZnTe internal background at balloon altitudes are essential to determine which physical processes make the most important background contributions. We present results from CdZnTe background measurements made by PoRTIA, a small CdZnTe balloon instrument that was flown three times in three different shielding configurations. PoRTIA was passively shielded during its first flight from Palestine, Texas and actively shielded as a piggyback instrument on the GRIS balloon experiment during its second and third flights from Alice Springs, Australia, using the thick GRIS Nal anticoincidence shield. A significant CdZnTe background reduction was achieved during the third flight with PoRTIA placed completely inside the GRIS shield and blocking crystal, and thus completely surrounded by 15 cm of Nal. A unique balloon altitude background data set is provided by CdZnTe and Ge detectors simultaneously surrounded by the same thick anticoincidence shield; the presence of a single coxial Ge detector inside the shield next to PoRTIA allowed a measurement of the ambient neutron flux inside the shield throughout the flight. These neutrons interact with the detector material to produce isomeric states of the Cd, Zn and Te nuclei that radiatively decay; calculations are presented that indicate that these decays may explain most of the fully shielded CdZnTe background.

  12. Prompt-gamma monitoring in hadrontherapy: A review

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Dauvergne, D.; Létang, J. M.; Testa, É.

    2018-01-01

    Secondary radiation emission induced by nuclear reactions is correlated to the path of ions in matter. Therefore, such penetrating radiation can be used for in vivo control of hadrontherapy treatments, for which the primary beam is absorbed inside the patient. Among secondary radiations, prompt-gamma rays were proposed for real-time verification of ion range. Such a verification is a desired condition to reduce uncertainties in treatment planning. For more than a decade, efforts have been undertaken worldwide to promote prompt-gamma-based devices to be used in clinical conditions. Dedicated cameras are necessary to overcome the challenges of a broad- and high-energy distribution, a large background, high instantaneous count rates, and compatibility constraints with patient irradiation. Several types of prompt-gamma imaging devices have been proposed, that are either physically-collimated or electronically collimated (Compton cameras). Clinical tests are now undergoing. Meanwhile, other methods than direct prompt-gamma imaging were proposed, that are based on specific counting using either time-of-flight or photon energy measurements. In the present article, we make a review and discuss the state of the art for all techniques using prompt-gamma detection to improve the quality assurance in hadrontherapy.

  13. Studies on a silicon-photomultiplier-based camera for Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Arcaro, C.; Corti, D.; De Angelis, A.; Doro, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Tescaro, D.

    2017-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) represent a class of instruments which are dedicated to the ground-based observation of cosmic VHE gamma ray emission based on the detection of the Cherenkov radiation produced in the interaction of gamma rays with the Earth atmosphere. One of the key elements of such instruments is a pixelized focal-plane camera consisting of photodetectors. To date, photomultiplier tubes (PMTs) have been the common choice given their high photon detection efficiency (PDE) and fast time response. Recently, silicon photomultipliers (SiPMs) are emerging as an alternative. This rapidly evolving technology has strong potential to become superior to that based on PMTs in terms of PDE, which would further improve the sensitivity of IACTs, and see a price reduction per square millimeter of detector area. We are working to develop a SiPM-based module for the focal-plane cameras of the MAGIC telescopes to probe this technology for IACTs with large focal plane cameras of an area of few square meters. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall MAGIC camera design using ray tracing simulations. We further present a comparative study of the overall light throughput based on Monte Carlo simulations and considering the properties of the major hardware elements of an IACT.

  14. Performance evaluation for pinhole collimators of small gamma camera by MTF and NNPS analysis: Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Kim, Hyunduk; Cha, Bo Kyung; Kim, Jong Yul; Cho, Gyuseong; Chung, Yong Hyun; Yun, Jong-Il

    2009-06-01

    Presently, the gamma camera system is widely used in various medical diagnostic, industrial and environmental fields. Hence, the quantitative and effective evaluation of its imaging performance is essential for design and quality assurance. The National Electrical Manufacturers Association (NEMA) standards for gamma camera evaluation are insufficient to perform sensitive evaluation. In this study, modulation transfer function (MTF) and normalized noise power spectrum (NNPS) will be suggested to evaluate the performance of small gamma camera with changeable pinhole collimators using Monte Carlo simulation. We simulated the system with a cylinder and a disk source, and seven different pinhole collimators from 1- to 4-mm-diameter pinhole with lead. The MTF and NNPS data were obtained from output images and were compared with full-width at half-maximum (FWHM), sensitivity and differential uniformity. In the result, we found that MTF and NNPS are effective and novel standards to evaluate imaging performance of gamma cameras instead of conventional NEMA standards.

  15. A fast algorithm for computer aided collimation gamma camera (CACAO)

    NASA Astrophysics Data System (ADS)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Franck, D.; Pihet, P.; Ballongue, P.

    2000-08-01

    The computer aided collimation gamma camera is aimed at breaking down the resolution sensitivity trade-off of the conventional parallel hole collimator. It uses larger and longer holes, having an added linear movement at the acquisition sequence. A dedicated algorithm including shift and sum, deconvolution, parabolic filtering and rotation is described. Examples of reconstruction are given. This work shows that a simple and fast algorithm, based on a diagonal dominant approximation of the problem can be derived. Its gives a practical solution to the CACAO reconstruction problem.

  16. Evaluation of ZnO:Al as a contact material to CdZnTe for radiation detector applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Roy, Utpal N.; Camarda, Giuseppe S.; Cui, Yonggang; Gul, Rubi; Hossain, Anwar; Yang, Ge; James, Ralph B.; Pradhan, Aswini K.; Mundle, Rajeh

    2016-09-01

    Aluminum (Al) doped ZnO with very high Al concentration acts as metal regarding its electrical conductivity. ZnO offers many advantages over the commonly-known metals being used today as electrode materials for nuclear detector fabrication. Often, the common metals show poor adhesion to CdZnTe or CdTe surfaces and have a tendency to peel off. In addition, there is a large mismatch of the coefficients of thermal expansion (CTE) between the metals and underlying CdZnTe, which is one of the reasons for mechanical degradation of the contact. In contrast ZnO has a close match of the CTE with CdZnTe and possesses 8-20 times higher hardness than the commonly-used metals. In this presentation, we will explore and discuss the properties of CdZnTe detectors with ZnO:Al contacts.

  17. Low Temperature Photoluminescence Characterization of Orbitally Grown CdZnTe

    NASA Technical Reports Server (NTRS)

    Ritter, Timothy M.; Larson, D. J.

    1998-01-01

    The II-VI ternary alloy CdZnTe is a technologically important material because of its use as a lattice matched substrate for HgCdTe based devices. The increasingly stringent requirements on performance that must be met by such large area infrared detectors also necessitates a higher quality substrate. Such substrate material is typically grown using the Bridgman technique. Due to the nature of bulk semiconductor growth, gravitationally dependent phenomena can adversely affect crystalline quality. The most direct way to alleviate this problem is by crystal growth in a reduced gravity environment. Since it requires hours, even days, to grow a high quality crystal, an orbiting space shuttle or space station provides a superb platform on which to conduct such research. For well over ten years NASA has been studying the effects of microgravity semiconductor crystal growth. This paper reports the results of photoluminescence characterization performed on an arbitrary grown CdZnTe bulk crystal.

  18. Application of imaging to the atmospheric Cherenkov technique

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K.; Gorham, P. W.; Hillas, A. M.; Lamb, R. C.; Liebing, D. F.; Mackeown, P. K.; Porter, N. A.; Stenger, V. J.

    1985-01-01

    Turver and Weekes proposed using a system of phototubes in the focal plane of a large reflector to give an air Cherenkov camera for gamma ray astronomy. Preliminary results with a 19 element camera have been reported previously. In 1983 the camera was increased to 37 pixels; it has now been routinely operated for two years. A brief physical description of the camera, its mode of operation, and the data reduction procedures are presented. The Monte Carlo simultations on which these are based on also reviewed.

  19. OPTIMIZATION OF VIRTUAL FRISCH-GRID CdZnTe DETECTOR DESIGNS FOR IMAGING AND SPECTROSCOPY OF GAMMA RAYS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOLOTNIKOV,A.E.; ABDUL-JABBAR, N.M.; BABALOLA, S.

    2007-08-21

    In the past, various virtual Frisch-grid designs have been proposed for cadmium zinc telluride (CZT) and other compound semiconductor detectors. These include three-terminal, semi-spherical, CAPture, Frisch-ring, capacitive Frisch-grid and pixel devices (along with their modifications). Among them, the Frisch-grid design employing a non-contacting ring extended over the entire side surfaces of parallelepiped-shaped CZT crystals is the most promising. The defect-free parallelepiped-shaped crystals with typical dimensions of 5x5{approx}12 mm3 are easy to produce and can be arranged into large arrays used for imaging and gamma-ray spectroscopy. In this paper, we report on further advances of the virtual Frisch-grid detector design formore » the parallelepiped-shaped CZT crystals. Both the experimental testing and modeling results are described.« less

  20. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S [Ypsilanti, MI; Rojeski, Ronald A [Pleasanton, CA

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  1. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ogata, Yoshimune; Hatazawa, Jun

    2016-09-01

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively 3 mm FWHM and 10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two modalities.

  2. Development of a Quasi-monoenergetic 6 MeV Gamma Facility at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nowicki, Suzanne F.; Hunter, Stanley D.; Parsons, Ann M.

    2012-01-01

    The 6 MeV Gamma Facility has been developed at NASA Goddard Space Flight Center (GSFC) to allow in-house characterization and testing of a wide range of gamma-ray instruments such as pixelated CdZnTe detectors for planetary science and Compton and pair-production imaging telescopes for astrophysics. The 6 MeV Gamma Facility utilizes a circulating flow of water irradiated by 14 MeV neutrons to produce gamma rays via neutron capture on oxygen (O-16(n,p)N-16 yields O-16* yields O-16 + gamma). The facility provides a low cost, in-house source of 2.742, 6.129 and 7.117 MeV gamma rays, near the lower energy range of most accelerators and well above the 2.614 MeV line from the Th-228 decay chain, the highest energy gamma ray available from a natural radionuclide. The 7.13 s half-life of the N-16 decay allows the water to be irradiated on one side of a large granite block and pumped to the opposite side to decay. Separating the irradiation and decay regions allows for shielding material, the granite block, to be placed between them, thus reducing the low-energy gamma-ray continuum. Comparison between high purity germanium (HPGe) spectra from the facility and a manufactured source, Pu-238/C-13, shows that the low-energy continuum from the facility is reduced by a factor approx. 30 and the gamma-ray rate is approx.100 times higher at 6.129 MeV.

  3. Gate simulation of Compton Ar-Xe gamma-camera for radionuclide imaging in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Dubov, L. Yu; Belyaev, V. N.; Berdnikova, A. K.; Bolozdynia, A. I.; Akmalova, Yu A.; Shtotsky, Yu V.

    2017-01-01

    Computer simulations of cylindrical Compton Ar-Xe gamma camera are described in the current report. Detection efficiency of cylindrical Ar-Xe Compton camera with internal diameter of 40 cm is estimated as1-3%that is 10-100 times higher than collimated Anger’s camera. It is shown that cylindrical Compton camera can image Tc-99m radiotracer distribution with uniform spatial resolution of 20 mm through the whole field of view.

  4. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  5. The gamma-ray Cherenkov telescope for the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Tibaldo, L.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view ≳ 8° and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.

  6. Improved neutron-gamma discrimination for a {sup 6}Li-glass neutron detector using digital signal analysis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C. L., E-mail: wangc@ornl.gov; Riedel, R. A.

    2016-01-15

    A {sup 6}Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at Spallation Neutron Source. Traditional Pulse-Height Analysis (PHA) for Neutron-Gamma Discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 10{sup 4}. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, six digital signal analysis methods of individual waveforms acquired from photomultiplier tubes were proposed using (i) charge integration, (ii) pulse-amplitude histograms, (iii) power spectrum analysis combined with the maximum pulse-amplitude, (iv) two event parameters (a{sub 1}, b{submore » 0}) obtained from a Wiener filter, (v) an effective amplitude (m) obtained from an adaptive least-mean-square filter, and (vi) a cross-correlation coefficient between individual and reference waveforms. The NGD ratios are about 70 times those from the traditional PHA method. Our results indicate the NGD capabilities of neutron Anger cameras based on GS20 scintillators can be significantly improved with digital signal analysis methods.« less

  7. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics

    PubMed Central

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D.; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-01-01

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics. PMID:28155870

  8. Sentinel node detection in early breast cancer with intraoperative portable gamma camera: UK experience.

    PubMed

    Ghosh, Debashis; Michalopoulos, Nikolaos V; Davidson, Timothy; Wickham, Fred; Williams, Norman R; Keshtgar, Mohammed R

    2017-04-01

    Access to nuclear medicine department for sentinel node imaging remains an issue in number of hospitals in the UK and many parts of the world. Sentinella ® is a portable imaging camera used intra-operatively to produce real time visual localisation of sentinel lymph nodes. Sentinella ® was tested in a controlled laboratory environment at our centre and we report our experience on the first use of this technology from UK. Moreover, preoperative scintigrams of the axilla were obtained in 144 patients undergoing sentinel node biopsy using conventional gamma camera. Sentinella ® scans were done intra-operatively to correlate with the pre-operative scintigram and to determine presence of any residual hot node after the axilla was deemed to be clear based on the silence of the hand held gamma probe. Sentinella ® detected significantly more nodes compared with CGC (p < 0.0001). Sentinella ® picked up extra nodes in 5/144 cases after the axilla was found silent using hand held gamma probe. In 2/144 cases, extra nodes detected by Sentinella ® confirmed presence of tumour cells that led to a complete axillary clearance. Sentinella ® is a reliable technique for intra-operative localisation of radioactive nodes. It provides increased nodal visualisation rates compared to static scintigram imaging and proves to be an important tool for harvesting all hot sentinel nodes. This portable gamma camera can definitely replace the use of conventional lymphoscintigrams saving time and money both for patients and the health system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Progress towards a semiconductor Compton camera for prompt gamma imaging during proton beam therapy for range and dose verification

    NASA Astrophysics Data System (ADS)

    Gutierrez, A.; Baker, C.; Boston, H.; Chung, S.; Judson, D. S.; Kacperek, A.; Le Crom, B.; Moss, R.; Royle, G.; Speller, R.; Boston, A. J.

    2018-01-01

    The main objective of this work is to test a new semiconductor Compton camera for prompt gamma imaging. Our device is composed of three active layers: a Si(Li) detector as a scatterer and two high purity Germanium detectors as absorbers of high-energy gamma rays. We performed Monte Carlo simulations using the Geant4 toolkit to characterise the expected gamma field during proton beam therapy and have made experimental measurements of the gamma spectrum with a 60 MeV passive scattering beam irradiating a phantom. In this proceeding, we describe the status of the Compton camera and present the first preliminary measurements with radioactive sources and their corresponding reconstructed images.

  10. "Stereo Compton cameras" for the 3-D localization of radioisotopes

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Kishimoto, A.; Ohsuka, S.; Nakamura, S.; Adachi, S.; Hirayanagi, M.; Uchiyama, T.; Ishikawa, Y.; Kato, T.

    2014-11-01

    The Compton camera is a viable and convenient tool used to visualize the distribution of radioactive isotopes that emit gamma rays. After the nuclear disaster in Fukushima in 2011, there is a particularly urgent need to develop "gamma cameras", which can visualize the distribution of such radioisotopes. In response, we propose a portable Compton camera, which comprises 3-D position-sensitive GAGG scintillators coupled with thin monolithic MPPC arrays. The pulse-height ratio of two MPPC-arrays allocated at both ends of the scintillator block determines the depth of interaction (DOI), which dramatically improves the position resolution of the scintillation detectors. We report on the detailed optimization of the detector design, based on Geant4 simulation. The results indicate that detection efficiency reaches up to 0.54%, or more than 10 times that of other cameras being tested in Fukushima, along with a moderate angular resolution of 8.1° (FWHM). By applying the triangular surveying method, we also propose a new concept for the stereo measurement of gamma rays by using two Compton cameras, thus enabling the 3-D positional measurement of radioactive isotopes for the first time. From one point source simulation data, we ensured that the source position and the distance to the same could be determined typically to within 2 meters' accuracy and we also confirmed that more than two sources are clearly separated by the event selection from two point sources of simulation data.

  11. Material efficiency studies for a Compton camera designed to measure characteristic prompt gamma rays emitted during proton beam radiotherapy

    PubMed Central

    Robertson, Daniel; Polf, Jerimy C; Peterson, Steve W; Gillin, Michael T; Beddar, Sam

    2011-01-01

    Prompt gamma rays emitted from biological tissues during proton irradiation carry dosimetric and spectroscopic information that can assist with treatment verification and provide an indication of the biological response of the irradiated tissues. Compton cameras are capable of determining the origin and energy of gamma rays. However, prompt gamma monitoring during proton therapy requires new Compton camera designs that perform well at the high gamma energies produced when tissues are bombarded with therapeutic protons. In this study we optimize the materials and geometry of a three-stage Compton camera for prompt gamma detection and calculate the theoretical efficiency of such a detector. The materials evaluated in this study include germanium, bismuth germanate (BGO), NaI, xenon, silicon and lanthanum bromide (LaBr3). For each material, the dimensions of each detector stage were optimized to produce the maximum number of relevant interactions. These results were used to predict the efficiency of various multi-material cameras. The theoretical detection efficiencies of the most promising multi-material cameras were then calculated for the photons emitted from a tissue-equivalent phantom irradiated by therapeutic proton beams ranging from 50 to 250 MeV. The optimized detector stages had a lateral extent of 10 × 10 cm2 with the thickness of the initial two stages dependent on the detector material. The thickness of the third stage was fixed at 10 cm regardless of material. The most efficient single-material cameras were composed of germanium (3 cm) and BGO (2.5 cm). These cameras exhibited efficiencies of 1.15 × 10−4 and 9.58 × 10−5 per incident proton, respectively. The most efficient multi-material camera design consisted of two initial stages of germanium (3 cm) and a final stage of BGO, resulting in a theoretical efficiency of 1.26 × 10−4 per incident proton. PMID:21508442

  12. Fast Pb-glass neutron-to-light converter for ICF (Inertial Confinement Fusion) target burn history measurements

    NASA Astrophysics Data System (ADS)

    Lerche, R. A.; Cable, M. D.; Phillion, D. W.

    1990-09-01

    We are developing a streak camera based instrument to diagnose the fusion reaction rate (burn history) within laser-driven ICF targets filled with D-T fuel. Recently, we attempted measurements using the 16.7 MeV gamma ray emitted in the T(d,gamma)He(5) fusion reaction. Pb glass which has a large cross section for pair production acts as a gamma-ray-to-light converter. Gamma rays interact within the glass to form electron-positron pairs that produce large amounts (1000 photons/gamma ray) of prompt (less than 10 ps) Cerenkov light as they slow down. In our experimental instrument, an f/10 Cassegrain telescope optically couples light produced within the converter to a streak camera having 20-ps resolution. Experiments using high-yield (10(exp 13) D-T neutrons), direct-drive targets at Nova produced good signals with widths of 200 ps. Time-of-flight measurements show the signals to be induced by neutrons rather than gamma rays. The Pb glass appears to act as a fast neutron-to-light converter. We continue to study the interactions process and the possibility of using the 16.7 MeV gamma rays for burn time measurements.

  13. Low Power, Room Temperature Systems for the Detection and Identification of Radionuclides from Atmospheric Nuclear Test

    DTIC Science & Technology

    2013-07-01

    3 2.0 TELLURIUM ANTISITES IN CdZnTe ...........................................................................•. 4 3.0 EFFECTS OF...five journals, reported in eleven presentations, and printed in four conference proceedings. 3 2.0 TELLURIUM ANTISITES IN CdZnTe 1. M. Ch~ S...Terterian, D. Ting, R.B. James, J.C. Erickson, R W. Yao, T.T. Lam. M. Szawlowski, and R. Sczeboitz, " Tellurium Antisites in CdZnTe," SPIE Proceedings

  14. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan

    2014-05-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.

  15. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    PubMed Central

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-01-01

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5×105 and 8×106 photons per mm2 per second. It was observed that polarization occurs at an X-ray flux higher than 3×106 mm−2·s−1. Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect. PMID:27690024

  16. A comparison between the use of a shadow shield whole body counter and an uncollimated gamma camera ain the assessment of the seven-day retention of SeHCAT.

    PubMed

    Hames, T K; Condon, B R; Fleming, J S; Phillips, G; Holdstock, G; Smith, C L; Howlett, P J; Ackery, D

    1984-07-01

    We have compared the 7-day retention of the radioisotope bile salt analogue SeHCAT (75Se-23-selena-25-homotaurocholate), by whole body counting and by uncollimated gamma camera measurement, in phantoms and in 25 patients with inflammatory bowel disease. The results correlate with a linear correlation coefficient of 0.96. An uncollimated gamma camera can be used to assess bile acid malabsorption when a whole body radioactivity monitor is not available.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemley, James; Furey, Michael

    The BNL Microelectronics group has designed a series of custom ASICs in CMOS technol­ogy for use with Cadmium-Zink-Telluride (CdZnTe) radiation detectors, primarily in the field of nuclear spectroscopy. An increased demand for CdZnTe based detection systems that can operate in high flux X-ray inspection equipment makes it necessary to develop a new type of signal processing ASIC, one which can achieve moderate energy resolution at very high count rate. This work covers the development of a high-rate, low power ASIC that classifies events into one of five energy windows at rates up to 2 MHz/channel.

  18. CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.

    1995-05-01

    Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.

  19. Slant-hole collimator, dual mode sterotactic localization method

    DOEpatents

    Weisenberger, Andrew G.

    2002-01-01

    The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.

  20. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera.

    PubMed

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi; Uchida, Kenji; Igarashi, Yuko; Yokoyama, Tsuyoshi; Takahashi, Masaki; Shiba, Chie; Yoshimura, Mana; Tokuuye, Koichi; Yamashina, Akira

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest (99m)Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time.

  1. SU-F-J-182: Investigation of Systems for Improved Accuracy in Clinical Y-90 Percent Delivered Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBeth, R; Elder, D; Kesner, A

    2016-06-15

    Purpose: Y-90 Selective Internal Radiation Therapy (SIRT) is used to treat liver tumors, and by nature has variability in the percent of the intended dose that is actually delivered. To determine the quality of the administration, pre and post activity measurements are taken, and used to infer percent delivered. Vendor specifications indicate the use of an ion chamber to take these measurements. In our work, we investigated the accuracy of ion chambers, and compared them to other detector systems. Methods: We have built phantoms, phantom holders, and protocols, which allow us to measure our Y90 doses with varying apparatuses: amore » dose calibrator, a Geiger-counter, an ion chamber, a crystal based thyroid probe, and a gamma camera. We have set up a system that has enabled us to gather data by measuring clinical Y90 doses as they are used in the clinic using all of the instrumental methods. Five initial doses (25 measurements/acquisitions) have been taken at the time of this abstract submission. Results: Our initial results show that measurements acquired using scintillation based detectors (thyroid probe and gamma camera) correlate better with the gold standard (i.e. the dose calibrator). Pearson correlations between the dose calibrator measurements and the GM counter, Ion chamber, thyroid probe, and gamma camera were found to be 0.88, 0.83, 0.98, 0.99, respectively. More acquisitions and analysis are planned to determine the precision of the systems, as well as optimal energy window settings. Conclusion: It is likely that current standard practice can be improved using scintillation crystal based detectors. Such systems are more sensitive, can integrate signal, and can use energy discrimination. Furthermore, phantoms can be built to integrate with probe and gamma camera systems that are robust and provide reproducibility. Future work will include expanded acquisition and analysis.« less

  2. Investigations of Au-198 as radiotracer in laboratory porous media using gamma camera: a preliminary study

    NASA Astrophysics Data System (ADS)

    Othman, N.; Kamal, W. H. B. Wan; Yusof, N. H.; Engku Chik, E. M. F.; Yunos, M. A. S.; Adnan, M. A. K.; Shari, M. R.

    2018-01-01

    Preliminary experiment has been carried out using irradiated Au-198 as radiotracer inside the laboratory porous media. The objectives are to check the compatibility of Au-198 as the radiotracer inside the porous media as well as to provide insights of fluid hydrodynamics inside the media using gamma camera.198Au is gamma emitter isotope with half-life of 2.7 days and energy of 0.41 MeV (99%). The porous media consists of fine sandstone with grain size 850μm, lubricant as the mimic of original oil in plant (OOIP) or trapped oil and a layer of cement on top of the rig as the bed rock. Gamma camera is arranged next to the porous media in order to capture the movement of radiotracer which has been set to 1minute per frame. Initially, the gold wire which has isotope of 197Au was irradiated inside the rotary rack of Reactor Triga PUSPATI (RTP) to produce 198Au. RTP is located in Nuclear Malaysia, Bangi has energy of 750kW and neutron flux of 5 × 102 n/cm2/s. 198Au, which is in liquid form, is injected inside the porous media and monitored and recorded by gamma camera. The gamma camera gives a quantitative determination of local fluid saturations over the area of observation.

  3. Performance and field tests of a handheld Compton camera using 3-D position-sensitive scintillators coupled to multi-pixel photon counter arrays

    NASA Astrophysics Data System (ADS)

    Kishimoto, A.; Kataoka, J.; Nishiyama, T.; Fujita, T.; Takeuchi, K.; Okochi, H.; Ogata, H.; Kuroshima, H.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Adachi, S.; Uchiyama, T.; Suzuki, H.

    2014-11-01

    After the nuclear disaster in Fukushima, radiation decontamination has become particularly urgent. To help identify radiation hotspots and ensure effective decontamination operation, we have developed a novel Compton camera based on Ce-doped Gd3Al2Ga3O12 scintillators and multi-pixel photon counter (MPPC) arrays. Even though its sensitivity is several times better than that of other cameras being tested in Fukushima, we introduce a depth-of-interaction (DOI) method to further improve the angular resolution. For gamma rays, the DOI information, in addition to 2-D position, is obtained by measuring the pulse-height ratio of the MPPC arrays coupled to ends of the scintillator. We present the detailed performance and results of various field tests conducted in Fukushima with the prototype 2-D and DOI Compton cameras. Moreover, we demonstrate stereo measurement of gamma rays that enables measurement of not only direction but also approximate distance to radioactive hotspots.

  4. A high-speed digital camera system for the observation of rapid H-alpha fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.

    1989-01-01

    Researchers developed a prototype digital camera system for obtaining H-alpha images of solar flares with 0.1 s time resolution. They intend to operate this system in conjunction with SMM's Hard X Ray Burst Spectrometer, with x ray instruments which will be available on the Gamma Ray Observatory and eventually with the Gamma Ray Imaging Device (GRID), and with the High Resolution Gamma-Ray and Hard X Ray Spectrometer (HIREGS) which are being developed for the Max '91 program. The digital camera has recently proven to be successful as a one camera system operating in the blue wing of H-alpha during the first Max '91 campaign. Construction and procurement of a second and possibly a third camera for simultaneous observations at other wavelengths are underway as are analyses of the campaign data.

  5. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  6. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Wakely, S.; Williams, D.; Camera Electronics Working Group; AGIS Collaboration

    2008-03-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off studies of these design concepts.

  7. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  8. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  9. Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Barnowski, Ross Wegner

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including general search and mapping scenarios with several point gamma-ray sources over the range of energies relevant for Compton imaging. More specific imaging scenarios are also addressed, including directed search and object interrogation scenarios. Finally, the volumetric image quality is quantitatively investigated with respect to the number of Compton events acquired during a measurement, the list-mode uncertainty of the Compton cone data, and the uncertainty in the pose estimate from the real-time tracking algorithm. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractability of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  10. Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells

    NASA Astrophysics Data System (ADS)

    Chander, Subhash; Dhaka, M. S.

    2016-10-01

    The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.

  11. Thermal conductivity studies of CdZnTe with varying Te excess

    DOE PAGES

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin; ...

    2016-08-28

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less

  12. Thermal conductivity studies of CdZnTe with varying Te excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Maxx; Bennett, Brittany; Giltnane, Dustin

    Cadmium Zine Telluride (CZT) has been extensively studied as a room temperature semiconductor gamma radiation detector. CZT continues to show promise as a bulk and pixelated gamma spectrometer with less than one percent energy resolution; however the fabrication costs are high. Improved yields of high quality, large CZT spectroscopy grade crystals must be achieved. CZT is grown by the Traveling Heater Method (THM) with a Te overpressure to account for vaporization losses. This procedure creates Te rich zones. During growth, boules will often cleave limiting the number of harvestable crystals. As a result, crystal growth parameter optimization was evaluated bymore » modeling the heat flow within the system. Interestingly, Cadmium Telluride (CdTe) is used as a thermal conductivity surrogate in the absence of a thorough study of the CZT thermal properties. The current study has measured the thermal conductivity of CZT pressed powders with varying Te concentrations from 50-100% over 25-800°C to understand the variation in this parameter from CdTe. Cd0.9Zn0.1Te1.0 is the base CZT (designated 50%). CZT exhibits a thermal conductivity of nearly 1 W/mK, an order of magnitude greater than CdTe. Lastly, the thermal conductivity decreased with increasing Te concentration.« less

  13. Portable gamma camera guidance in sentinel lymph node biopsy: prospective observational study of consecutive cases.

    PubMed

    Peral Rubio, F; de La Riva, P; Moreno-Ramírez, D; Ferrándiz-Pulido, L

    2015-06-01

    Sentinel lymph node biopsy is the most important tool available for node staging in patients with melanoma. To analyze sentinel lymph node detection and dissection with radio guidance from a portable gamma camera. To assess the number of complications attributable to this biopsy technique. Prospective observational study of a consecutive series of patients undergoing radioguided sentinel lymph node biopsy. We analyzed agreement between nodes detected by presurgical lymphography, those detected by the gamma camera, and those finally dissected. A total of 29 patients (17 women [62.5%] and 12 men [37.5%]) were enrolled. The mean age was 52.6 years (range, 26-82 years). The sentinel node was dissected from all patients; secondary nodes were dissected from some. In 16 cases (55.2%), there was agreement between the number of nodes detected by lymphography, those detected by the gamma camera, and those finally dissected. The only complications observed were seromas (3.64%). No cases of wound dehiscence, infection, hematoma, or hemorrhage were observed. Portable gamma-camera radio guidance may be of use in improving the detection and dissection of sentinel lymph nodes and may also reduce complications. These goals are essential in a procedure whose purpose is melanoma staging. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  14. Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.

    PubMed

    Wong, W H; Li, H; Uribe, J; Baghaei, H; Wang, Y; Yokoyama, S

    2001-04-01

    Higher count-rate gamma cameras than are currently used are needed if the technology is to fulfill its promise in positron coincidence imaging, radionuclide therapy dosimetry imaging, and cardiac first-pass imaging. The present single-crystal design coupled with conventional detector electronics and the traditional Anger-positioning algorithm hinder higher count-rate imaging because of the pileup of gamma-ray signals in the detector and electronics. At an interaction rate of 2 million events per second, the fraction of nonpileup events is < 20% of the total incident events. Hence, the recovery of pileup events can significantly increase the count-rate capability, increase the yield of imaging photons, and minimize image artifacts associated with pileups. A new technology to significantly enhance the performance of gamma cameras in this area is introduced. We introduce a new electronic design called high-yield-pileup-event-recovery (HYPER) electronics for processing the detector signal in gamma cameras so that the individual gamma energies and positions of pileup events, including multiple pileups, can be resolved and recovered despite the mixing of signals. To illustrate the feasibility of the design concept, we have developed a small gamma-camera prototype with the HYPER-Anger electronics. The camera has a 10 x 10 x 1 cm NaI(Tl) crystal with four photomultipliers. Hot-spot and line sources with very high 99mTc activities were imaged. The phantoms were imaged continuously from 60,000 to 3,500,000 counts per second to illustrate the efficacy of the method as a function of counting rates. At 2-3 million events per second, all phantoms were imaged with little distortion, pileup, and dead-time loss. At these counting rates, multiple pileup events (> or = 3 events piling together) were the predominate occurrences, and the HYPER circuit functioned well to resolve and recover these events. The full width at half maximum of the line-spread function at 3,000,000 counts per second was 1.6 times that at 60,000 counts per second. This feasibility study showed that the HYPER electronic concept works; it can significantly increase the count-rate capability and dose efficiency of gamma cameras. In a larger clinical camera, multiple HYPER-Anger circuits may be implemented to further improve the imaging counting rates that we have shown by multiple times. This technology would facilitate the use of gamma cameras for radionuclide therapy dosimetry imaging, cardiac first-pass imaging, and positron coincidence imaging and the simultaneous acquisition of transmission and emission data using different isotopes with less cross-contamination between transmission and emission data.

  15. Simulation based evaluation of the designs of the Advanced Gamma-ray Imageing System (AGIS)

    NASA Astrophysics Data System (ADS)

    Bugaev, Slava; Buckley, James; Digel, Seth; Funk, Stephen; Konopelko, Alex; Krawczynski, Henric; Lebohec, Steohan; Maier, Gernot; Vassiliev, Vladimir

    2009-05-01

    The AGIS project under design study, is a large array of imaging atmospheric Cherenkov telescopes for gamma-rays astronomy between 40GeV and 100 TeV. In this paper we present the ongoing simulation effort to model the considered design approaches as a function of the main parameters such as array geometry, telescope optics and camera design in such a way the gamma ray observation capabilities can be optimized against the overall project cost.

  16. Design and performance tests of the calorimetric tract of a Compton Camera for small-animals imaging

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Baldazzi, G.; Battistella, A.; Bello, M.; Bollini, D.; Bonvicini, V.; Fontana, C. L.; Gennaro, G.; Moschini, G.; Navarria, F.; Rashevsky, A.; Uzunov, N.; Zampa, G.; Zampa, N.; Vacchi, A.

    2011-02-01

    The bio-distribution and targeting capability of pharmaceuticals may be assessed in small animals by imaging gamma-rays emitted from radio-isotope markers. Detectors that exploit the Compton concept allow higher gamma-ray efficiency compared to conventional Anger cameras employing collimators, and feature sub-millimeter spatial resolution and compact geometry. We are developing a Compton Camera that has to address several requirements: the high rates typical of the Compton concept; detection of gamma-rays of different energies that may range from 140 keV ( 99 mTc) to 511 keV ( β+ emitters); presence of gamma and beta radiation with energies up to 2 MeV in case of 188Re. The camera consists of a thin position-sensitive Tracker that scatters the gamma ray, and a second position-sensitive detection system to totally absorb the energy of the scattered photons (Calorimeter). In this paper we present the design and discuss the realization of the calorimetric tract, including the choice of scintillator crystal, pixel size, and detector geometry. Simulations of the gamma-ray trajectories from source to detectors have helped to assess the accuracy of the system and decide on camera design. Crystals of different materials, such as LaBr 3 GSO and YAP, and of different size, in continuous or segmented geometry, have been optically coupled to a multi-anode Hamamatsu H8500 detector, allowing measurements of spatial resolution and efficiency.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Oleg P.; Semin, Ilya A.; Potapov, Victor N.

    Gamma-ray imaging is the most important way to identify unknown gamma-ray emitting objects in decommissioning, security, overcoming accidents. Over the past two decades a system for producing of gamma images in these conditions became more or less portable devices. But in recent years these systems have become the hand-held devices. This is very important, especially in emergency situations, and measurements for safety reasons. We describe the first integrated hand-held instrument for emergency and security applications. The device is based on the coded aperture image formation, position sensitive gamma-ray (X-ray) detector Medipix2 (detectors produces by X-ray Imaging Europe) and tablet computer.more » The development was aimed at creating a very low weight system with high angular resolution. We present some sample gamma-ray images by camera. Main estimated parameters of the system are the following. The field of view video channel ∼ 490 deg. The field of view gamma channel ∼ 300 deg. The sensitivity of the system with a hexagonal mask for the source of Cs-137 (Eg = 662 keV), is in units of dose D ∼ 100 mR. This option is less then order of magnitude worse than for the heavy, non-hand-held systems (e.g., gamma-camera Cartogam, by Canberra.) The angular resolution of the gamma channel for the sources of Cs-137 (Eg = 662 keV) is about 1.20 deg. (authors)« less

  18. COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    EPA Science Inventory



    COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    T Martonen1 and J Schroeter2

    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711 USA and 2Curriculum in Toxicology, Unive...

  19. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  20. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  1. 21 CFR 892.1100 - Scintillation (gamma) camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...

  2. Tumor dosimetry for I-131 trastuzumab therapy in a Her2+ NCI N87 xenograft mouse model using the Siemens SYMBIA E gamma camera with a pinhole collimator

    NASA Astrophysics Data System (ADS)

    Lee, Young Sub; Kim, Jin Su; Deuk Cho, Kyung; Kang, Joo Hyun; Moo Lim, Sang

    2015-07-01

    We performed imaging and therapy using I-131 trastuzumab and a pinhole collimator attached to a conventional gamma camera for human use in a mouse model. The conventional clinical gamma camera with a 2-mm radius-sized pinhole collimator was used for monitoring the animal model after administration of I-131 trastuzumab The highest and lowest radiation-received organs were osteogenic cells (0.349 mSv/MBq) and skin (0.137 mSv/MBq), respectively. The mean coefficients of variation (%CV) of the effective dose equivalent and effective dose were 0.091 and 0.093 mSv/MBq respectively. We showed the feasibility of the pinholeattached conventional gamma camera for human use for the assessment of dosimetry. Mouse dosimetry and prediction of human dosimetry could be used to provide data for the safety and efficacy of newly developed therapeutic schemes.

  3. A small field of view camera for hybrid gamma and optical imaging

    NASA Astrophysics Data System (ADS)

    Lees, J. E.; Bugby, S. L.; Bhatia, B. S.; Jambi, L. K.; Alqahtani, M. S.; McKnight, W. R.; Ng, A. H.; Perkins, A. C.

    2014-12-01

    The development of compact low profile gamma-ray detectors has allowed the production of small field of view, hand held imaging devices for use at the patient bedside and in operating theatres. The combination of an optical and a gamma camera, in a co-aligned configuration, offers high spatial resolution multi-modal imaging giving a superimposed scintigraphic and optical image. This innovative introduction of hybrid imaging offers new possibilities for assisting surgeons in localising the site of uptake in procedures such as sentinel node detection. Recent improvements to the camera system along with results of phantom and clinical imaging are reported.

  4. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M; Spiro, A; Vogel, R

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an arraymore » of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.« less

  5. Comparison of experimental results of a Quad-CZT array detector, a NaI(Tl), a LaBr3(Ce), and a HPGe for safeguards applications

    NASA Astrophysics Data System (ADS)

    Kwak, S.-W.; Choi, J.; Park, S. S.; Ahn, S. H.; Park, J. S.; Chung, H.

    2017-11-01

    A compound semiconductor detector, CdTe (or CdZnTe), has been used in various areas including nuclear safeguards applications. To address its critical drawback, low detection efficiency, which leads to a long measurement time, a Quad-CZT array-based gamma-ray spectrometer in our previous study has been developed by combining four individual CZT detectors. We have re-designed the developed Quad-CZT array system to make it more simple and compact for a hand-held gamma-ray detector. The objective of this paper aims to compare the improved Quad-CZT array system with the traditional gamma-ray spectrometers (NaI(Tl), LaBr3(Ce), HPGe); these detectors currently have been the most commonly used for verification of nuclear materials. Nuclear materials in different physical forms in a nuclear facility of Korea were measured by the Quad-CZT array system and the existing gamma-ray detectors. For measurements of UO2 pellets and powders, and fresh fuel rods, the Quad-CZT array system turned out to be superior to the NaI(Tl) and LaBr3(Ce). For measurements of UF6 cylinders with a thick wall, the Quad-CZT array system and HPGe gave similar accuracy under the same measurement time. From the results of the field tests conducted, we can conclude that the improved Quad-CZT array system would be used as an alternative to HPGes and scintillation detectors for the purpose of increasing effectivenss and efficiency of safeguards applications. This is the first paper employing a multi-element CZT array detector for measurement of nuclear materials—particularly uranium in a UF6 cylinder—in a real nuclear facility. The present work also suggests that the multi-CZT array system described in this study would be one promising method to address a serious weakness of CZT-based radiation detection.

  6. Development of an LYSO based gamma camera for positron and scinti-mammography

    NASA Astrophysics Data System (ADS)

    Liang, H.-C.; Jan, M.-L.; Lin, W.-C.; Yu, S.-F.; Su, J.-L.; Shen, L.-H.

    2009-08-01

    In this research, characteristics of combination of PSPMTs (position sensitive photo-multiplier tube) to form a larger detection area is studied. A home-made linear divider circuit was built for merging signals and readout. Borosilicate glasses were chosen for the scintillation light sharing in the crossover region. Deterioration effect caused by the light guide was understood. The influences of light guide and crossover region on the separable crystal size were evaluated. According to the test results, a gamma camera with a crystal block of 90 × 90 mm2 covered area, composed of 2 mm LYSO crystal pixels, was designed and fabricated. Measured performances showed that this camera worked fine in both 511 keV and lower energy gammas. The light loss behaviour within the crossover region was analyzed and realized. Through count rate measurements, the 176Lu nature background didn't show severe influence on the single photon imaging and exhibited an amount of less than 1/3 of all the events acquired. These results show that with using light sharing techniques, combination of multiple PSPMTs in both X and Y directions to build a large area imaging detector is capable to be achieved. Also this camera design is feasible to keep both the abilities for positron and single photon breast imaging applications. Separable crystal size is 2 mm with 2 mm thick glass applied for the light sharing in current status.

  7. NEUTRON RADIATION DAMAGE IN CCD CAMERAS AT JOINT EUROPEAN TORUS (JET).

    PubMed

    Milocco, Alberto; Conroy, Sean; Popovichev, Sergey; Sergienko, Gennady; Huber, Alexander

    2017-10-26

    The neutron and gamma radiations in large fusion reactors are responsible for damage to charged couple device (CCD) cameras deployed for applied diagnostics. Based on the ASTM guide E722-09, the 'equivalent 1 MeV neutron fluence in silicon' was calculated for a set of CCD cameras at the Joint European Torus. Such evaluations would be useful to good practice in the operation of the video systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The GCT camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Bose, R.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Buckley, J.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Laporte, P.; Leach, S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Minaya, I. A.; Mohrmann, L.; Molyneux, P.; Moore, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayede, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Varner, G.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-12-01

    The Gamma Cherenkov Telescope (GCT) is one of the designs proposed for the Small Sized Telescope (SST) section of the Cherenkov Telescope Array (CTA). The GCT uses dual-mirror optics, resulting in a compact telescope with good image quality and a large field of view with a smaller, more economical, camera than is achievable with conventional single mirror solutions. The photon counting GCT camera is designed to record the flashes of atmospheric Cherenkov light from gamma and cosmic ray initiated cascades, which last only a few tens of nanoseconds. The GCT optics require that the camera detectors follow a convex surface with a radius of curvature of 1 m and a diameter of 35 cm, which is approximated by tiling the focal plane with 32 modules. The first camera prototype is equipped with multi-anode photomultipliers, each comprising an 8×8 array of 6×6 mm2 pixels to provide the required angular scale, adding up to 2048 pixels in total. Detector signals are shaped, amplified and digitised by electronics based on custom ASICs that provide digitisation at 1 GSample/s. The camera is self-triggering, retaining images where the focal plane light distribution matches predefined spatial and temporal criteria. The electronics are housed in the liquid-cooled, sealed camera enclosure. LED flashers at the corners of the focal plane provide a calibration source via reflection from the secondary mirror. The first GCT camera prototype underwent preliminary laboratory tests last year. In November 2015, the camera was installed on a prototype GCT telescope (SST-GATE) in Paris and was used to successfully record the first Cherenkov light of any CTA prototype, and the first Cherenkov light seen with such a dual-mirror optical system. A second full-camera prototype based on Silicon Photomultipliers is under construction. Up to 35 GCTs are envisaged for CTA.

  9. Simulation study of the second-generation MR-compatible SPECT system based on the inverted compound-eye gamma camera design

    NASA Astrophysics Data System (ADS)

    Lai, Xiaochun; Meng, Ling-Jian

    2018-02-01

    In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.

  10. Novel methods for estimating 3D distributions of radioactive isotopes in materials

    NASA Astrophysics Data System (ADS)

    Iwamoto, Y.; Kataoka, J.; Kishimoto, A.; Nishiyama, T.; Taya, T.; Okochi, H.; Ogata, H.; Yamamoto, S.

    2016-09-01

    In recent years, various gamma-ray visualization techniques, or gamma cameras, have been proposed. These techniques are extremely effective for identifying "hot spots" or regions where radioactive isotopes are accumulated. Examples of such would be nuclear-disaster-affected areas such as Fukushima or the vicinity of nuclear reactors. However, the images acquired with a gamma camera do not include distance information between radioactive isotopes and the camera, and hence are "degenerated" in the direction of the isotopes. Moreover, depth information in the images is lost when the isotopes are embedded in materials, such as water, sand, and concrete. Here, we propose two methods of obtaining depth information of radioactive isotopes embedded in materials by comparing (1) their spectra and (2) images of incident gamma rays scattered by the materials and direct gamma rays. In the first method, the spectra of radioactive isotopes and the ratios of scattered to direct gamma rays are obtained. We verify experimentally that the ratio increases with increasing depth, as predicted by simulations. Although the method using energy spectra has been studied for a long time, an advantage of our method is the use of low-energy (50-150 keV) photons as scattered gamma rays. In the second method, the spatial extent of images obtained for direct and scattered gamma rays is compared. By performing detailed Monte Carlo simulations using Geant4, we verify that the spatial extent of the position where gamma rays are scattered increases with increasing depth. To demonstrate this, we are developing various gamma cameras to compare low-energy (scattered) gamma-ray images with fully photo-absorbed gamma-ray images. We also demonstrate that the 3D reconstruction of isotopes/hotspots is possible with our proposed methods. These methods have potential applications in the medical fields, and in severe environments such as the nuclear-disaster-affected areas in Fukushima.

  11. A versatile calibration procedure for portable coded aperture gamma cameras and RGB-D sensors

    NASA Astrophysics Data System (ADS)

    Paradiso, V.; Crivellaro, A.; Amgarou, K.; de Lanaute, N. Blanc; Fua, P.; Liénard, E.

    2018-04-01

    The present paper proposes a versatile procedure for the geometrical calibration of coded aperture gamma cameras and RGB-D depth sensors, using only one radioactive point source and a simple experimental set-up. Calibration data is then used for accurately aligning radiation images retrieved by means of the γ-camera with the respective depth images computed with the RGB-D sensor. The system resulting from such a combination is thus able to retrieve, automatically, the distance of radioactive hotspots by means of pixel-wise mapping between gamma and depth images. This procedure is of great interest for a wide number of applications, ranging from precise automatic estimation of the shape and distance of radioactive objects to Augmented Reality systems. Incidentally, the corresponding results validated the choice of a perspective design model for a coded aperture γ-camera.

  12. MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halama, J.

    2016-06-15

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less

  13. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.

    2018-03-01

    In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.

  14. Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo

    2018-02-01

    We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.

  15. Thermal Neutron Tomography for Cultural Heritage at INR

    NASA Astrophysics Data System (ADS)

    Dinca, Marin; Mandescu, Dragos

    The neutron and gamma imaging facility placed at the tangential channel of the TRIGA-ACPR from INR was used for tomography investigations on a test object with good results and shortly followed its involvement for tomography investigations on prehistoric statues of clay from the Arges County Museum. This activity was performed in connection with a research contract with IAEA with title ;The neutron and gamma imaging method combined with neutron-based analytical methods for cultural heritage research;, in the frame of a current CRP, that helps curators to reveal the internal structure and composition of the objects. The detector system has been developed based on two interchangeable scintillators, one for thermal neutrons and the other one for gamma radiations, a mirror of float glass coated with aluminum and two interchangeable CCD cameras. Experiments of tomography imaging for two prehistoric statues of clay with CCD STARLIGHT XPRESS SXV-H9 camera with XD-4 type image intensifier are presented in this paper. The tomography reconstructions with Octopus software have shown the potential of good results even for 100 projections/1800. This was a good opportunity for the dissemination of the investigation methods based on neutrons for cultural heritage and beyond this area.

  16. Comparison of the surfaces and interfaces formed for sputter and electroless deposited gold contacts on CdZnTe

    NASA Astrophysics Data System (ADS)

    Bell, Steven J.; Baker, Mark A.; Duarte, Diana D.; Schneider, Andreas; Seller, Paul; Sellin, Paul J.; Veale, Matthew C.; Wilson, Matthew D.

    2018-01-01

    Cadmium zinc telluride (CdZnTe) is a leading sensor material for spectroscopic X/γ-ray imaging in the fields of homeland security, medical imaging, industrial analysis and astrophysics. The metal-semiconductor interface formed during contact deposition is of fundamental importance to the spectroscopic performance of the detector and is primarily determined by the deposition method. A multi-technique analysis of the metal-semiconductor interface formed by sputter and electroless deposition of gold onto (111) aligned CdZnTe is presented. Focused ion beam (FIB) cross section imaging, X-ray photoelectron spectroscopy (XPS) depth profiling and current-voltage (IV) analysis have been applied to determine the structural, chemical and electronic properties of the gold contacts. In a novel approach, principal component analysis has been employed on the XPS depth profiles to extract detailed chemical state information from different depths within the profile. It was found that electroless deposition forms a complicated, graded interface comprised of tellurium oxide, gold/gold telluride particulates, and cadmium chloride. This compared with a sharp transition from surface gold to bulk CdZnTe observed for the interface formed by sputter deposition. The electronic (IV) response for the detector with electroless deposited contacts was symmetric, but was asymmetric for the detector with sputtered gold contacts. This is due to the electroless deposition degrading the difference between the Cd- and Te-faces of the CdZnTe (111) crystal, whilst these differences are maintained for the sputter deposited gold contacts. This work represents an important step in the optimisation of the metal-semiconductor interface which currently is a limiting factor in the development of high resolution CdZnTe detectors.

  17. Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon

    NASA Astrophysics Data System (ADS)

    Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly

    Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.

  18. Mini gamma camera, camera system and method of use

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.

    2001-01-01

    A gamma camera comprising essentially and in order from the front outer or gamma ray impinging surface: 1) a collimator, 2) a scintillator layer, 3) a light guide, 4) an array of position sensitive, high resolution photomultiplier tubes, and 5) printed circuitry for receipt of the output of the photomultipliers. There is also described, a system wherein the output supplied by the high resolution, position sensitive photomultipiler tubes is communicated to: a) a digitizer and b) a computer where it is processed using advanced image processing techniques and a specific algorithm to calculate the center of gravity of any abnormality observed during imaging, and c) optional image display and telecommunications ports.

  19. Dual-modality imaging with a ultrasound-gamma device for oncology

    NASA Astrophysics Data System (ADS)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  20. Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.

    PubMed

    Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias

    2016-12-01

    Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined with LM-EM reconstruction as a prime candidate for the wider introduction of SPECT imaging with flexible mini gamma cameras in the clinical practice.

  1. IR observations in gamma-ray blazars

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.

    1997-01-01

    The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.

  2. Gamma-ray imaging system for real-time measurements in nuclear waste characterisation

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Albiol Colomer, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganés Nieto, J. L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodríguez, P.; Pérez Magán, D. L.

    2018-03-01

    A compact, portable and large field-of-view gamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.

  3. Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the RATIR Camera

    NASA Technical Reports Server (NTRS)

    Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Klein, Christopher R.; Butler, Nathaniel R.; Bloom, Josh; de Diego, Jos A.; Simn Farah, Alejandro D.; Gehrels, Neil A.; Georgiev, Leonid; hide

    2012-01-01

    The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.

  4. Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration

    2010-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.

  5. Slit-Slat Collimator Equipped Gamma Camera for Whole-Mouse SPECT-CT Imaging

    NASA Astrophysics Data System (ADS)

    Cao, Liji; Peter, Jörg

    2012-06-01

    A slit-slat collimator is developed for a gamma camera intended for small-animal imaging (mice). The tungsten housing of a roof-shaped collimator forms a slit opening, and the slats are made of lead foils separated by sparse polyurethane material. Alignment of the collimator with the camera's pixelated crystal is performed by adjusting a micrometer screw while monitoring a Co-57 point source for maximum signal intensity. For SPECT, the collimator forms a cylindrical field-of-view enabling whole mouse imaging with transaxial magnification and constant on-axis sensitivity over the entire axial direction. As the gamma camera is part of a multimodal imaging system incorporating also x-ray CT, five parameters corresponding to the geometric displacements of the collimator as well as to the mechanical co-alignment between the gamma camera and the CT subsystem are estimated by means of bimodal calibration sources. To illustrate the performance of the slit-slat collimator and to compare its performance to a single pinhole collimator, a Derenzo phantom study is performed. Transaxial resolution along the entire long axis is comparable to a pinhole collimator of same pinhole diameter. Axial resolution of the slit-slat collimator is comparable to that of a parallel beam collimator. Additionally, data from an in-vivo mouse study are presented.

  6. A mechanism for dynamic lateral polarization in CdZnTe under high flux x-ray irradiation

    NASA Astrophysics Data System (ADS)

    Bale, Derek S.; Soldner, Stephen A.; Szeles, Csaba

    2008-02-01

    It has been observed that pixillated CdZnTe detectors fabricated from crystals with low hole transport properties (μhτh<10-5cm2V-1) experience a dynamic lateral polarization when exposed to a high flux of x-rays. In this effect, counts are transferred from pixels near the edge of the irradiated region to pixels in the interior. In this letter, we propose a mechanism capable of explaining the observed dynamical effect. The mechanism is based on a transverse electric field that is generated due to space charge that builds within the material. This transverse field, in turn, is responsible for the altered carrier trajectories toward the center of the irradiated region.

  7. Characterization of Etch Pit Formation via the Everson-Etching Method on CdZnTe Crystal Surfaces from the Bulk to the Nano-Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teague, L.; Duff, M.; Cadieux, J.

    2010-09-24

    A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.

  8. Improved neutron-gamma discrimination for a 6Li-glass neutron detector using digital signal analysis methods

    DOE PAGES

    Wang, Cai -Lin; Riedel, Richard A.

    2016-01-14

    A 6Li-glass scintillator (GS20) based neutron Anger camera was developed for time-of-flight single-crystal diffraction instruments at SNS. Traditional pulse-height analysis (PHA) for neutron-gamma discrimination (NGD) resulted in the neutron-gamma efficiency ratio (defined as NGD ratio) on the order of 10 4. The NGD ratios of Anger cameras need to be improved for broader applications including neutron reflectometers. For this purpose, five digital signal analysis methods of individual waveforms from PMTs were proposed using: i). pulse-amplitude histogram; ii). power spectrum analysis combined with the maximum pulse amplitude; iii). two event parameters (a 1, b 0) obtained from Wiener filter; iv). anmore » effective amplitude (m) obtained from an adaptive least-mean-square (LMS) filter; and v). a cross-correlation (CC) coefficient between an individual waveform and a reference. The NGD ratios can be 1-102 times those from traditional PHA method. A brighter scintillator GS2 has better NGD ratio than GS20, but lower neutron detection efficiency. The ultimate NGD ratio is related to the ambient, high-energy background events. Moreover, our results indicate the NGD capability of neutron Anger cameras can be improved using digital signal analysis methods and brighter neutron scintillators.« less

  9. SU-C-9A-02: Structured Noise Index as An Automated Quality Control for Nuclear Medicine: A Two Year Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, J; Christianson, O; Samei, E

    Purpose: Flood-field uniformity evaluation is an essential element in the assessment of nuclear medicine (NM) gamma cameras. It serves as the central element of the quality control (QC) program, acquired and analyzed on a daily basis prior to clinical imaging. Uniformity images are traditionally analyzed using pixel value-based metrics which often fail to capture subtle structure and patterns caused by changes in gamma camera performance requiring additional visual inspection which is subjective and time demanding. The goal of this project was to develop and implement a robust QC metrology for NM that is effective in identifying non-uniformity issues, reporting issuesmore » in a timely manner for efficient correction prior to clinical involvement, all incorporated into an automated effortless workflow, and to characterize the program over a two year period. Methods: A new quantitative uniformity analysis metric was developed based on 2D noise power spectrum metrology and confirmed based on expert observer visual analysis. The metric, termed Structured Noise Index (SNI) was then integrated into an automated program to analyze, archive, and report on daily NM QC uniformity images. The effectiveness of the program was evaluated over a period of 2 years. Results: The SNI metric successfully identified visually apparent non-uniformities overlooked by the pixel valuebased analysis methods. Implementation of the program has resulted in nonuniformity identification in about 12% of daily flood images. In addition, due to the vigilance of staff response, the percentage of days exceeding trigger value shows a decline over time. Conclusion: The SNI provides a robust quantification of the NM performance of gamma camera uniformity. It operates seamlessly across a fleet of multiple camera models. The automated process provides effective workflow within the NM spectra between physicist, technologist, and clinical engineer. The reliability of this process has made it the preferred platform for NM uniformity analysis.« less

  10. Effect of electron transport properties on unipolar CdZnTe radiation detectors: LUND, SpectrumPlus, and Coplanar Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph B. James

    2000-01-07

    Device simulations of (1) the laterally-contacted-unipolar-nuclear detector (LUND), (2) the SpectrumPlus, (3) and the coplanar grid made of Cd{sub 0.9}Zn{sub 0.1}Te (CZT) were performed for {sup 137}Cs irradiation by 662.15 keV gamma-rays. Realistic and controlled simulations of the gamma-ray interactions with the CZT material were done using the MCNP4B2 Monte Carlo program, and the detector responses were simulated using the Sandia three-dimensional multielectrode simulation program (SandTMSP). The simulations were done for the best and the worst expected carrier nobilities and lifetimes of currently commercially available CZT materials for radiation detector applications. For the simulated unipolar devices, the active device volumesmore » were relatively large and the energy resolutions were fairly good, but these performance characteristics were found to be very sensitive to the materials properties. The internal electric fields, the weighting potentials, and the charge induced efficiency maps were calculated to give insights into the operation of these devices.« less

  11. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  12. Producibility improvements suggested by a validated process model of seeded CdZnTe vertical Bridgman growth

    NASA Astrophysics Data System (ADS)

    Larson, David J., Jr.; Casagrande, Louis G.; Di Marzio, Don; Levy, Alan; Carlson, Frederick M.; Lee, Taipao; Black, David R.; Wu, Jun; Dudley, Michael

    1994-07-01

    We have successfully validated theoretical models of seeded vertical Bridgman-Stockbarger CdZnTe crystal growth and post-solidification processing, using in-situ thermal monitoring and innovative material characterization techniques. The models predict the thermal gradients, interface shape, fluid flow and solute redistribution during solidification, as well as the distributions of accumulated excess stress that causes defect generation and redistribution. Data from the furnace and ampoule wall have validated predictions from the thermal model. Results are compared to predictions of the thermal and thermo-solutal models. We explain the measured initial, change-of-rate, and terminal compositional transients as well as the macrosegregation. Macro and micro-defect distributions have been imaged on CdZnTe wafers from 40 mm diameter boules. Superposition of topographic defect images and predicted excess stress patterns suggests the origin of some frequently encountered defects, particularly on a macro scale, to result from the applied and accumulated stress fields and the anisotropic nature of the CdZnTe crystal. Implications of these findings with respect to producibility are discussed.

  13. [Evaluation of crossing calibration of (123)I-MIBG H/M ration, with the IDW scatter correction method, on different gamma camera systems].

    PubMed

    Kittaka, Daisuke; Takase, Tadashi; Akiyama, Masayuki; Nakazawa, Yasuo; Shinozuka, Akira; Shirai, Muneaki

    2011-01-01

    (123)I-MIBG Heart-to-Mediastinum activity ratio (H/M) is commonly used as an indicator of relative myocardial (123)I-MIBG uptake. H/M ratios reflect myocardial sympathetic nerve function, therefore it is a useful parameter to assess regional myocardial sympathetic denervation in various cardiac diseases. However, H/M ratio values differ by site, gamma camera system, position and size of region of interest (ROI), and collimator. In addition to these factors, 529 keV scatter component may also affect (123)I-MIBG H/M ratio. In this study, we examined whether the H/M ratio shows correlation between two different gamma camera systems and that sought for H/M ratio calculation formula. Moreover, we assessed the feasibility of (123)I Dual Window (IDW) method, which is a scatter correction method, and compared H/M ratios with and without IDW method. H/M ratio displayed a good correlation between two gamma camera systems. Additionally, we were able to create a new H/M calculation formula. These results indicated that the IDW method is a useful scatter correction method for calculating (123)I-MIBG H/M ratios.

  14. MBE Growth of HgCdTe on Large-Area Si and CdZnTe Wafers for SWIR, MWIR and LWIR Detection

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Franklin, J. A.; Vang, T.; Smith, E. P. G.; Wehner, J. G. A.; Kasai, I.; Bangs, J. W.; Johnson, S. M.

    2008-09-01

    Molecular beam epitaxy (MBE) growth of HgCdTe on large-size Si (211) and CdZnTe (211)B substrates is critical to meet the demands of extremely uniform and highly functional third-generation infrared (IR) focal-panel arrays (FPAs). We have described here the importance of wafer maps of HgCdTe thickness, composition, and the macrodefects across the wafer not only to qualify material properties against design specifications but also to diagnose and classify the MBE-growth-related issues on large-area wafers. The paper presents HgCdTe growth with exceptionally uniform composition and thickness and record low macrodefect density on large Si wafers up to 6-in in diameter for the detection of short-wave (SW), mid-wave (MW), and long-wave (LW) IR radiation. We have also proposed a cost-effective approach to use the growth of HgCdTe on low-cost Si substrates to isolate the growth- and substrate-related problems that one occasionally comes across with the CdZnTe substrates and tune the growth parameters such as growth rate, cutoff wavelength ( λ cutoff) and doping parameters before proceeding with the growth on costly large-area CdZnTe substrates. In this way, we demonstrated HgCdTe growth on large CdZnTe substrates of size 7 cm × 7 cm with excellent uniformity and low macrodefect density.

  15. A Method to Estimate the Atomic Number and Mass Thickness of Intervening Materials in Uranium and Plutonium Gamma-Ray Spectroscopy Measurements

    NASA Astrophysics Data System (ADS)

    Streicher, Michael; Brown, Steven; Zhu, Yuefeng; Goodman, David; He, Zhong

    2016-10-01

    To accurately characterize shielded special nuclear materials (SNM) using passive gamma-ray spectroscopy measurement techniques, the effective atomic number and the thickness of shielding materials must be measured. Intervening materials between the source and detector may affect the estimated source isotopics (uranium enrichment and plutonium grade) for techniques which rely on raw count rates or photopeak ratios of gamma-ray lines separated in energy. Furthermore, knowledge of the surrounding materials can provide insight regarding the configuration of a device containing SNM. The described method was developed using spectra recorded using high energy resolution CdZnTe detectors, but can be expanded to any gamma-ray spectrometers with energy resolution of better than 1% FWHM at 662 keV. The effective atomic number, Z, and mass thickness of the intervening shielding material are identified by comparing the relative attenuation of different gamma-ray lines and estimating the proportion of Compton scattering interactions to photoelectric absorptions within the shield. While characteristic Kα x-rays can be used to identify shielding materials made of high Z elements, this method can be applied to all shielding materials. This algorithm has adequately estimated the effective atomic number for shields made of iron, aluminum, and polyethylene surrounding uranium samples using experimental data. The mass thicknesses of shielding materials have been estimated with a standard error of less than 1.3 g/cm2 for iron shields up to 2.5 cm thick. The effective atomic number was accurately estimated to 26 ± 5 for all iron thicknesses.

  16. Operating performance of the gamma-ray Cherenkov telescope: An end-to-end Schwarzschild-Couder telescope prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; De Franco, A.; Laporte, P.; White, R.; Greenshaw, T.; Sol, H.; Abchiche, A.; Allan, D.; Amans, J. P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J. J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M.; De Frondat, F.; Dumas, D.; Ernenwein, J. P.; Fasola, G.; Funk, S.; Gaudemard, J.; Graham, J. A.; Gironnet, J.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J. M.; Jégouzo, I.; Jogler, T.; Kawashima, T.; Kraus, M.; Lapington, J. S.; Lefaucheur, J.; Markoff, S.; Melse, T.; Morhrmann, L.; Molnyeux, P.; Nolan, S. J.; Okumura, A.; Parsons, R. D.; Ross, D.; Rowell, G.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; Watson, J.; Yamane, N.; Zech, A.; Zink, A.; CTA Consortium

    2017-02-01

    The Cherenkov Telescope Array (CTA) consortium aims to build the next-generation ground-based very-high-energy gamma-ray observatory. The array will feature different sizes of telescopes allowing it to cover a wide gamma-ray energy band from about 20 GeV to above 100 TeV. The highest energies, above 5 TeV, will be covered by a large number of Small-Sized Telescopes (SSTs) with a field-of-view of around 9°. The Gamma-ray Cherenkov Telescope (GCT), based on Schwarzschild-Couder dual-mirror optics, is one of the three proposed SST designs. The GCT is described in this contribution and the first images of Cherenkov showers obtained using the telescope and its camera are presented. These were obtained in November 2015 in Meudon,

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  18. Surface Passivation of CdZnTe Detector by Hydrogen Peroxide Solution Etching

    NASA Technical Reports Server (NTRS)

    Hayes, M.; Chen, H.; Chattopadhyay, K.; Burger, A.; James, R. B.

    1998-01-01

    The spectral resolution of room temperature nuclear radiation detectors such as CdZnTe is usually limited by the presence of conducting surface species that increase the surface leakage current. Studies have shown that the leakage current can be reduced by proper surface preparation. In this study, we try to optimize the performance of CdZnTe detector by etching the detector with hydrogen peroxide solution as function of concentration and etching time. The passivation effect that hydrogen peroxide introduces have been investigated by current-voltage (I-V) measurement on both parallel strips and metal-semiconductor-metal configurations. The improvements on the spectral response of Fe-55 and 241Am due to hydrogen peroxide treatment are presented and discussed.

  19. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    NASA Astrophysics Data System (ADS)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  20. Application of gamma imaging techniques for the characterisation of position sensitive gamma detectors

    NASA Astrophysics Data System (ADS)

    Habermann, T.; Didierjean, F.; Duchêne, G.; Filliger, M.; Gerl, J.; Kojouharov, I.; Li, G.; Pietralla, N.; Schaffner, H.; Sigward, M.-H.

    2017-11-01

    A device to characterize position-sensitive germanium detectors has been implemented at GSI. The main component of this so called scanning table is a gamma camera that is capable of producing online 2D images of the scanned detector by means of a PET technique. To calibrate the gamma camera Compton imaging is employed. The 2D data can be processed further offline to obtain depth information. Of main interest is the response of the scanned detector in terms of the digitized pulse shapes from the preamplifier. This is an important input for pulse-shape analysis algorithms as they are in use for gamma tracking arrays in gamma spectroscopy. To validate the scanning table, a comparison of its results with a second scanning table implemented at the IPHC Strasbourg is envisaged. For this purpose a pixelated germanium detector has been scanned.

  1. [Evaluation of the efficacy of sentinel node detection in breast cancer: chronological course and influence of the incorporation of an intra-operative portable gamma camera].

    PubMed

    Goñi Gironés, E; Vicente García, F; Serra Arbeloa, P; Estébanez Estébanez, C; Calvo Benito, A; Rodrigo Rincón, I; Camarero Salazar, A; Martínez Lozano, M E

    2013-01-01

    To define the sentinel node identification rate in breast cancer, the chronological evolution of this parameter and the influence of the introduction of a portable gamma camera. A retrospective study was conducted using a prospective database of 754 patients who had undergone a sentinel lymph node biopsy between January 2003 and December 2011. The technique was mixed in the starting period and subsequently was performed with radiotracer intra-peritumorally administered the day before of the surgery. Until October 2009, excision of the sentinel node was guided by a probe. After that date, a portable gamma camera was introduced for intrasurgical detection. The SN was biopsied in 725 out of the 754 patients studied. The resulting technique global effectiveness was 96.2%. In accordance with the year of the surgical intervention, the identification percentage was 93.5% in 2003, 88.7% in 2004, 94.3% in 2005, 95.7% in 2006, 93.3% in 2007, 98.8% in 2008, 97.1% in 2009 and 99.1% in 2010 and 2011. There was a significant difference in the proportion of identification before and after the incorporation of the portable gamma camera of 4.6% (95% CI of the difference 2-7.2%, P = 0.0037). The percentage of global identification exceeds the recommended level following the current guidelines. Chronologically, the improvement for this parameter during the study period has been observed. These data suggest that the incorporation of a portable gamma camera had an important role. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  2. Review: comparison of PET rubidium-82 with conventional SPECT myocardial perfusion imaging

    PubMed Central

    Ghotbi, Adam A; Kjær, Andreas; Hasbak, Philip

    2014-01-01

    Nuclear cardiology has for many years been focused on gamma camera technology. With ever improving cameras and software applications, this modality has developed into an important assessment tool for ischaemic heart disease. However, the development of new perfusion tracers has been scarce. While cardiac positron emission tomography (PET) so far largely has been limited to centres with on-site cyclotron, recent developments with generator produced perfusion tracers such as rubidium-82, as well as an increasing number of PET scanners installed, may enable a larger patient flow that may supersede that of gamma camera myocardial perfusion imaging. PMID:24028171

  3. Concept of a photon-counting camera based on a diffraction-addressed Gray-code mask

    NASA Astrophysics Data System (ADS)

    Morel, Sébastien

    2004-09-01

    A new concept of photon counting camera for fast and low-light-level imaging applications is introduced. The possible spectrum covered by this camera ranges from visible light to gamma rays, depending on the device used to transform an incoming photon into a burst of visible photons (photo-event spot) localized in an (x,y) image plane. It is actually an evolution of the existing "PAPA" (Precision Analog Photon Address) Camera that was designed for visible photons. This improvement comes from a simplified optics. The new camera transforms, by diffraction, each photo-event spot from an image intensifier or a scintillator into a cross-shaped pattern, which is projected onto a specific Gray code mask. The photo-event position is then extracted from the signal given by an array of avalanche photodiodes (or photomultiplier tubes, alternatively) downstream of the mask. After a detailed explanation of this camera concept that we have called "DIAMICON" (DIffraction Addressed Mask ICONographer), we briefly discuss about technical solutions to build such a camera.

  4. Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition

    NASA Astrophysics Data System (ADS)

    Bell, S. J.; Baker, M. A.; Duarte, D. D.; Schneider, A.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.

    2017-06-01

    Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts.

  5. The spatial resolution of a rotating gamma camera tomographic facility.

    PubMed

    Webb, S; Flower, M A; Ott, R J; Leach, M O; Inamdar, R

    1983-12-01

    An important feature determining the spatial resolution in transverse sections reconstructed by convolution and back-projection is the frequency filter corresponding to the convolution kernel. Equations have been derived giving the theoretical spatial resolution, for a perfect detector and noise-free data, using four filter functions. Experiments have shown that physical constraints will always limit the resolution that can be achieved with a given system. The experiments indicate that the region of the frequency spectrum between KN/2 and KN where KN is the Nyquist frequency does not contribute significantly to resolution. In order to investigate the physical effect of these filter functions, the spatial resolution of reconstructed images obtained with a GE 400T rotating gamma camera has been measured. The results obtained serve as an aid to choosing appropriate reconstruction filters for use with a rotating gamma camera system.

  6. Acquisition of gamma camera and physiological data by computer.

    PubMed

    Hack, S N; Chang, M; Line, B R; Cooper, J A; Robeson, G H

    1986-11-01

    We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable.

  7. Gamma ray imager on the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  8. Gamma ray imager on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Cooper, C. M.; Taussig, D.; ...

    2016-04-13

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1- 60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. In conclusion, first measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  9. The upgrade of the H.E.S.S. cameras

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; Naurois, Mathieu de; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-12-01

    The High Energy Stereoscopic System (HESS) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in the Khomas highland in Namibia. It was built to detect Very High Energy (VHE > 100 GeV) cosmic gamma rays. Since 2003, HESS has discovered the majority of the known astrophysical VHE gamma-ray sources, opening a new observational window on the extreme non-thermal processes at work in our universe. HESS consists of four 12-m diameter Cherenkov telescopes (CT1-4), which started data taking in 2002, and a larger 28-m telescope (CT5), built in 2012, which lowers the energy threshold of the array to 30 GeV . The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Only the PMTs and their HV supplies have been kept from the original cameras. Novel technical solutions have been introduced, which will find their way into some of the Cherenkov cameras foreseen for the next-generation Cherenkov Telescope Array (CTA) observatory. In particular, the camera readout system is the first large-scale system based on the analog memory chip NECTAr, which was designed for CTA cameras. The camera control subsystems and the control software framework also pursue an innovative design, exploiting cutting-edge hardware and software solutions which excel in performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 have been upgraded in fall 2016. Together they will assure continuous operation of HESS at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded HESS camera.

  10. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    PubMed

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Characterization of a small CsI(Na)-WSF-SiPM gamma camera prototype using 99mTc

    NASA Astrophysics Data System (ADS)

    Castro, I. F.; Soares, A. J.; Moutinho, L. M.; Ferreira, M. A.; Ferreira, R.; Combo, A.; Muchacho, F.; Veloso, J. F. C. A.

    2013-03-01

    A small field of view gamma camera is being developed, aiming for applications in scintimammography, sentinel lymph node detection or small animal imaging and research. The proposed wavelength-shifting fibre (WSF) gamma camera consists of two perpendicular sets of WSFs covering both sides of a CsI(Na) crystal, such that the fibres positioned at the bottom of the crystal provide the x coordinate and the ones on top the y coordinate of the gamma photon interaction point. The 2D position is given by highly sensitive photodetectors reading out each WSF and the energy information is provided by PMTs that cover the full detector area. This concept has the advantage of using N+N instead of N × N photodetectors to cover an identical imaging area, and is being applied using for the first time SiPMs. Previous studies carried out with 57Co have proved the feasibility of this concept using SiPM readout. In this work, we present experimental results from true 2D image acquisitions with a 10+10 SiPMs prototype, i.e. 10 × 10 mm2, using a parallel-hole collimator and different samples filled with 99mTc solution. The performance of the small prototype in these conditions is evaluated through the characterization of different gamma camera parameters, such as energy and spatial resolution. Ongoing advances towards a larger prototype of 100+100 SiPMs (10 × 10 cm2) are also presented.

  12. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.

    2008-12-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  13. Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Dauvergne, D.; Freud, N.; Krimmer, J.; Letang, J. M.; Ray, C.; Roellinghoff, F.; Testa, E.

    2014-12-01

    Hadrontherapy is an innovative radiation therapy modality for which one of the main key advantages is the target conformality allowed by the physical properties of ion species. However, in order to maximise the exploitation of its potentialities, online monitoring is required in order to assert the treatment quality, namely monitoring devices relying on the detection of secondary radiations. Herein is presented a method based on Monte Carlo simulations to optimise a multi-slit collimated camera employing time-of-flight selection of prompt-gamma rays to be used in a clinical scenario. In addition, an analytical tool is developed based on the Monte Carlo data to predict the expected precision for a given geometrical configuration. Such a method follows the clinical workflow requirements to simultaneously have a solution that is relatively accurate and fast. Two different camera designs are proposed, considering different endpoints based on the trade-off between camera detection efficiency and spatial resolution to be used in a proton therapy treatment with active dose delivery and assuming a homogeneous target.

  14. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  15. Zn influence on the plasticity of Cdo{0.96}Zn{0.04}Te

    NASA Astrophysics Data System (ADS)

    Imhoff, D.; Zozime, A.; Triboulet, R.

    1991-11-01

    Compression tests were performed on CdTe and Cd{0.96}Zn{0.04}Te to elucidate the mechanism through which Zn inhibits dislocation formation and motion during CdTe crystal growth, thus leading to a decreasing of the dislocation density. Uniaxial deformation experiments performed with CdTe and CdZnTe at constant strain rate within a wide temperature range (0. 14;T_m le T le 0.87;T_m,;T_m = 1 365; K), have revealed a strong hardening effect of Zn within the whole temperature range. They also showed in CdZnTe a Portevin Le Chatelier effect between 770 K and 920 K confirmed by static strain aging experiments. Critical resolved shear stress (C.R.S.S.) values at T = 195; K and static strain aging results with CdZnTe point to size effect as the dominant interaction between Zn and dislocations. Thermal activation parameters were estimated in both materials. La déformation plastique a été utilisée comme approche des mécanismes par lesquels le zinc entrave le mouvement des dislocations au cours du processus de croissance cristalline de CdTe massif, réduisant ainsi la densité de dislocations. Les expériences de compression uniaxiale à vitesse constante, réalisées dans CdTe et CdZnTe entre 0,14 T_f et 0,87 T_f ont montré que le zinc est responsable d'un fort durcissement sur tout le domaine de températures étudié. Les expériences de déformation dans CdZnTe ont mis en évidence un phénomène du type Portevin Le Chatelier entre 770 K et 920 K, confirmé par des expériences de vieillissement statique. Les valeurs de scission critique tau_c à 195 K et les résultats des expériences de vieillissement statique dans CdZnTe sont compatibles avec un effet de taille dominant pour les interactions Zndislocations. Les paramètres d'activation thermique ont été estimés dans les deux matériaux.

  16. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels

    NASA Astrophysics Data System (ADS)

    Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.

    2013-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.

  17. Performance Test Data Analysis of Scintillation Cameras

    NASA Astrophysics Data System (ADS)

    Demirkaya, Omer; Mazrou, Refaat Al

    2007-10-01

    In this paper, we present a set of image analysis tools to calculate the performance parameters of gamma camera systems from test data acquired according to the National Electrical Manufacturers Association NU 1-2001 guidelines. The calculation methods are either completely automated or require minimal user interaction; minimizing potential human errors. The developed methods are robust with respect to varying conditions under which these tests may be performed. The core algorithms have been validated for accuracy. They have been extensively tested on images acquired by the gamma cameras from different vendors. All the algorithms are incorporated into a graphical user interface that provides a convenient way to process the data and report the results. The entire application has been developed in MATLAB programming environment and is compiled to run as a stand-alone program. The developed image analysis tools provide an automated, convenient and accurate means to calculate the performance parameters of gamma cameras and SPECT systems. The developed application is available upon request for personal or non-commercial uses. The results of this study have been partially presented in Society of Nuclear Medicine Annual meeting as an InfoSNM presentation.

  18. Assessment of right ventricular function with nonimaging first pass ventriculography and comparison of results with gamma camera studies.

    PubMed

    Zhang, Z; Liu, X J; Liu, Y Z; Lu, P; Crawley, J C; Lahiri, A

    1990-08-01

    A new technique has been developed for measuring right ventricular function by nonimaging first pass ventriculography. The right ventricular ejection fraction (RVEF) obtained by non-imaging first pass ventriculography was compared with that obtained by gamma camera first pass and equilibrium ventriculography. The data has demonstrated that the correlation of RVEFs obtained by the nonimaging nuclear cardiac probe and by gamma camera first pass ventriculography in 15 subjects was comparable (r = 0.93). There was also a good correlation between RVEFs obtained by the nonimaging nuclear probe and by equilibrium gated blood pool studies in 33 subjects (r = 0.89). RVEF was significantly reduced in 15 patients with right ventricular and/or inferior myocardial infarction compared to normal subjects (28 +/- 9% v. 45 +/- 9%). The data suggests that nonimaging probes may be used for assessing right ventricular function accurately.

  19. Soft gamma-ray detector for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Mori, Kunishiro; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamada, Shinya; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2012-09-01

    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60-600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.

  20. Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.

    PubMed

    Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F

    1980-01-01

    Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.

  1. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  2. Compton camera study for high efficiency SPECT and benchmark with Anger system

    NASA Astrophysics Data System (ADS)

    Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.

    2017-12-01

    Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application for SPECT if compared to present commercial Anger systems, with particular focus on dose delivered to the patient, examination time, and spatial uncertainties.

  3. Effect of Te inclusions in CdZnTe crystals at different temperatures

    NASA Astrophysics Data System (ADS)

    Hossain, A.; Bolotnikov, A. E.; Camarda, G. S.; Gul, R.; Kim, K.-H.; Cui, Y.; Yang, G.; Xu, L.; James, R. B.

    2011-02-01

    CdZnTe crystals often exhibit nonuniformities due to the presence of Te inclusions and dislocations. High concentrations of such defects in these crystals generally entail severe charge-trapping, a major problem in ensuring the device's satisfactory performance. In this study, we employed a high-intensity, high-spatial-resolution synchrotron x-ray beam as the ideal tool to generate charges by focusing it over the large Te inclusions, and then observing the carrier's response at room- and at low-temperatures. A high spatial 5-μm resolution raster scan revealed the fine details of the presence of extended defects, like Te inclusions and dislocations in the CdZnTe crystals. A noticeable change was observed in the efficiency of electron charge collection at low temperature (1 °C), but it was hardly altered at room-temperature.

  4. Neutron Imaging Camera

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley; deNolfo, G. A.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    The Neutron Imaging Camera (NIC) is based on the Three-dimensional Track Imager (3DTI) technology developed at GSFC for gamma-ray astrophysics applications. The 3-DTI, a large volume time-projection chamber, provides accurate, approximately 0.4 mm resolution, 3-D tracking of charged particles. The incident direction of fast neutrons, En > 0.5 MeV, are reconstructed from the momenta and energies of the proton and triton fragments resulting from (sup 3)He(n,p) (sup 3)H interactions in the 3-DTI volume. The performance of the NIC from laboratory and accelerator tests is presented.

  5. Development of a Compton camera for medical applications based on silicon strip and scintillation detectors

    NASA Astrophysics Data System (ADS)

    Krimmer, J.; Ley, J.-L.; Abellan, C.; Cachemiche, J.-P.; Caponetto, L.; Chen, X.; Dahoumane, M.; Dauvergne, D.; Freud, N.; Joly, B.; Lambert, D.; Lestand, L.; Létang, J. M.; Magne, M.; Mathez, H.; Maxim, V.; Montarou, G.; Morel, C.; Pinto, M.; Ray, C.; Reithinger, V.; Testa, E.; Zoccarato, Y.

    2015-07-01

    A Compton camera is being developed for the purpose of ion-range monitoring during hadrontherapy via the detection of prompt-gamma rays. The system consists of a scintillating fiber beam tagging hodoscope, a stack of double sided silicon strip detectors (90×90×2 mm3, 2×64 strips) as scatter detectors, as well as bismuth germanate (BGO) scintillation detectors (38×35×30 mm3, 100 blocks) as absorbers. The individual components will be described, together with the status of their characterization.

  6. Camera Development for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Moncada, Roberto Jose

    2017-01-01

    With the Cherenkov Telescope Array (CTA), the very-high-energy gamma-ray universe, between 30 GeV and 300 TeV, will be probed at an unprecedented resolution, allowing deeper studies of known gamma-ray emitters and the possible discovery of new ones. This exciting project could also confirm the particle nature of dark matter by looking for the gamma rays produced by self-annihilating weakly interacting massive particles (WIMPs). The telescopes will use the imaging atmospheric Cherenkov technique (IACT) to record Cherenkov photons that are produced by the gamma-ray induced extensive air shower. One telescope design features dual-mirror Schwarzschild-Couder (SC) optics that allows the light to be finely focused on the high-resolution silicon photomultipliers of the camera modules starting from a 9.5-meter primary mirror. Each camera module will consist of a focal plane module and front-end electronics, and will have four TeV Array Readout with GSa/s Sampling and Event Trigger (TARGET) chips, giving them 64 parallel input channels. The TARGET chip has a self-trigger functionality for readout that can be used in higher logic across camera modules as well as across individual telescopes, which will each have 177 camera modules. There will be two sites, one in the northern and the other in the southern hemisphere, for full sky coverage, each spanning at least one square kilometer. A prototype SC telescope is currently under construction at the Fred Lawrence Whipple Observatory in Arizona. This work was supported by the National Science Foundation's REU program through NSF award AST-1560016.

  7. Numerical methods for industrial vertical Bridgman growth of (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Lin, K.; Boschert, S.; Dold, P.; Benz, K. W.; Kriessl, O.; Schmidt, A.; Siebert, K. G.; Dziuk, G.

    2002-04-01

    This paper presents efficient numerical methods—the "inverse modeling" method and the adaptive finite element method—for optimizing the heat transport as well as for investigating the heat and mass transport under the influence of convection during crystal growth, especially near the liquid/solid interface. These methods have been applied to industrial Bridgman-furnaces for the growth of 65-75 mm diameter (Cd,Zn)Te crystals.

  8. SeHCAT retention values as measured with a collimated and an uncollimated gamma camera: a method comparison study.

    PubMed

    Wright, James W; Lovell, Lesley A; Gemmell, Howard G; McKiddie, Fergus; Staff, Roger T

    2013-07-01

    TauroH-23-(Se) selena-25-homocholic acid retention values are used in the diagnosis of bile acid malabsorption. The standard method for measuring values is with an uncollimated gamma camera, which can create some logistic difficulties, with other background sources of activity, which are irrelevant when a collimator is used, becoming significant. In this study we compare the retention values obtained with a collimated and an uncollimated gamma camera in phantoms and in 23 patients. Bland-Altman plots were created using the data, which showed a mean bias in retention of 0.10% in the phantom study and 0.55% in the patient study between methods. A Wilcoxon signed-rank test with the null hypothesis of zero median difference between uncollimated and collimated methods was not statistically significant to P values less than 0.05 in the patient and phantom studies. In the patient study, on using a fixed boundary of retention (10%) between positive and negative status, the status of one patient was changed from negative (12%) to positive (9%). We conclude that measurement of retention with a collimated gamma camera is similar but not identical to that of uncollimated values. The clinical significance of this shift is unclear, as the threshold of significance and the method of integrating this measure with other clinical factors into management remain unclear.

  9. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  10. The Advanced Gamma-ray Imaging System (AGIS): Telescope Mechanical Designs

    NASA Astrophysics Data System (ADS)

    Guarino, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Horan, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Wagner, R.; Woods, M.; Vassiliev, V.

    2008-04-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 40 GeV-100 TeV is based on an array of sim 100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvements of AGIS sensitivity, angular resolution and reliability of operation impose demanding technological and cost requirements on the design of IACTs. The relatively inexpensive Davies-Cotton telescope design has been used in ground-based gamma-ray astronomy for almost fifty years and is an excellent option. We are also exploring alternative designs and in this submission we focus on the recent mechanical design of a two-mirror telescope with a Schwarzschild-Couder (SC) optical system. The mechanical structure provides support points for mirrors and camera. The design was driven by the requirement of minimizing the deflections of the mirror support structures. The structure is also designed to be able to slew in elevation and azimuth at 10 degrees/sec.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Andrew J.; Fast, James E.; Fulsom, Bryan G.

    For many nuclear material safeguards inspections, spectroscopic gamma detectors are required which can achieve high event rates (in excess of 10^6 s^-1) while maintaining very good energy resolution for discrimination of neighboring gamma signatures in complex backgrounds. Such spectra can be useful for non-destructive assay (NDA) of spent nuclear fuel with long cooling times, which contains many potentially useful low-rate gamma lines, e.g., Cs-134, in the presence of a few dominating gamma lines, such as Cs-137. Detectors in use typically sacrifice energy resolution for count rate, e.g., LaBr3, or visa versa, e.g., CdZnTe. In contrast, we anticipate that beginning withmore » a detector with high energy resolution, e.g., high-purity germanium (HPGe), and adapting the data acquisition for high throughput will be able to achieve the goals of the ideal detector. In this work, we present quantification of Cs-134 and Cs-137 activities, useful for fuel burn-up quantification, in fuel that has been cooling for 22.3 years. A segmented, planar HPGe detector is used for this inspection, which has been adapted for a high-rate throughput in excess of 500k counts/s. Using a very-high-statistic spectrum of 2.4*10^11 counts, isotope activities can be determined with very low statistical uncertainty. However, it is determined that systematic uncertainties dominate in such a data set, e.g., the uncertainty in the pulse line shape. This spectrum offers a unique opportunity to quantify this uncertainty and subsequently determine required counting times for given precision on values of interest.« less

  12. System of Programmed Modules for Measuring Photographs with a Gamma-Telescope

    NASA Technical Reports Server (NTRS)

    Averin, S. A.; Veselova, G. V.; Navasardyan, G. V.

    1978-01-01

    Physical experiments using tracking cameras resulted in hundreds of thousands of stereo photographs of events being received. To process such a large volume of information, automatic and semiautomatic measuring systems are required. At the Institute of Space Research of the Academy of Science of the USSR, a system for processing film information from the spark gamma-telescope was developed. The system is based on a BPS-75 projector in line with the minicomputer Elektronika 1001. The report describes this system. The various computer programs available to the operators are discussed.

  13. Gallbladder radionuclide scan (image)

    MedlinePlus

    ... gallbladder radionuclide scan is performed by injecting a tracer (radioactive chemical) into the bloodstream. A gamma camera ... detect the gamma rays being emitted from the tracer, and the image of where the tracer is ...

  14. Liver phantom for quality control and training in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Lima Ferreira, Fernanda Carla; Souza, Divanizia do Nascimento

    2011-10-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256×256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  15. Characteristics of depth-sensing coplanar grid CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    He, Zhong; Sturm, Ben W.

    2005-12-01

    The latest depth-sensing coplanar grid CdZnTe detectors have been tested. Two of these have dimensions 1.5×1.5×1.0 cm 3 and one is a cylindrical detector with 1.5 cm diameter and 1.0 cm length, all of them using the third-generation coplanar anode design. Energy resolutions of 2.0% and 2.4% FWHM at 662 keV γ-ray energies were obtained. Detector performance has been observed experimentally as a function of depth of the γ-ray interaction, and as a function of radial position near the anode surface. The measured results show the improvement of the third-generation anode design. Material uniformity of CdZnTe crystals manufactured by eV Products have been directly observed and compared on two 1.5×1.5×1.0 cm 3 detectors.

  16. Correlation Between Bulk Material Defects and Spectroscopic Response in Cadmium Zinc Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.

    1999-01-01

    One of the critical challenges for large area cadmium zinc telluride (CdZnTe) detector arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, infrared transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar detector. The two techniques have been used to develop a correlation between bulk defect type and detector performance. The correlation allows for the use of infrared imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe detector arrays.

  17. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations

    NASA Astrophysics Data System (ADS)

    Kurban, Mustafa; Erkoç, Şakir

    2017-04-01

    Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.

  18. The Use of Gamma-Ray Imaging to Improve Portal Monitor Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, Klaus-Peter; Collins, Jeff; Fabris, Lorenzo

    2008-01-01

    We have constructed a prototype, rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. Our Roadside Tracker uses automated target acquisition and tracking (TAT) software to identify and track vehicles in visible light images. The field of view of the visible camera overlaps with and is calibrated to that of a one-dimensional gamma-ray imager. The TAT code passes information on when vehicles enter and exit the system field of view and when they cross gamma-ray pixel boundaries. Based on this in-formation, the gamma-ray imager "harvests"more » the gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. In this fashion we are able to generate vehicle-specific radiation signatures and avoid source confusion problems that plague nonimaging approaches to the same problem.« less

  19. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Gao, W.; Liu, H.; Gan, B.; Hu, Y.

    2014-05-01

    In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e- to 180,000e-, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e- at zero farad plus 5.4 e- per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel.

  20. Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.

    2014-09-01

    We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.

  1. Background simulations of the wide-field coded-mask camera for X-/Gamma-ray of the French-Chinese mission SVOM

    NASA Astrophysics Data System (ADS)

    Godet, Olivier; Barret, Didier; Paul, Jacques; Sizun, Patrick; Mandrou, Pierre; Cordier, Bertrand

    SVOM (Space Variable Object Monitor) is a French-Chinese mission dedicated to the study of high-redshift GRBs, which is expected to be launched in 2012. The anti-Sun pointing strategy of SVOM along with a strong and integrated ground segment consisting of two wide-field robotic telescopes covering the near-IR and optical will optimise the ground-based GRB follow-ups by the largest telescopes and thus the measurements of spectroscopic redshifts. The central instrument of the science payload will be an innovative wide-field coded-mask camera for X- /Gamma-rays (4-250 keV) responsible for triggering and localising GRBs with an accuracy better than 10 arc-minutes. Such an instrument will be background-dominated so it is essential to estimate the background level expected once in orbit during the early phase of the instrument design in order to ensure good science performance. We present our Monte-Carlo simulator enabling us to compute the background spectrum taking into account the mass model of the camera and the main components of the space environment encountered in orbit by the satellite. From that computation, we show that the current design of the camera CXG will be more sensitive to high-redshift GRBs than the Swift-BAT thanks to its low-energy threshold of 4 keV.

  2. The added value of a portable gamma camera for intraoperative detection of sentinel lymph node in squamous cell carcinoma of the oral cavity: A case report.

    PubMed

    Mayoral, M; Paredes, P; Sieira, R; Vidal-Sicart, S; Marti, C; Pons, F

    2014-01-01

    The use of sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity is still subject to debate although some studies have reported its feasibility. The main reason for this debate is probably due to the high false-negative rate for floor-of-mouth tumors per se. We report the case of a 54-year-old man with a T1N0 floor-of-mouth squamous cell carcinoma who underwent the sentinel lymph node procedure. Lymphoscintigraphy and SPECT/CT imaging were performed for lymphatic mapping with a conventional gamma camera. Sentinel lymph nodes were identified at right Ib, left IIa and Ia levels. However, these sentinel lymph nodes were difficult to detect intraoperatively with a gamma probe owing to the activity originating from the injection site. The use of a portable gamma camera made it possible to localize and excise all the sentinel lymph nodes. This case demonstrates the usefulness of this tool to improve sentinel lymph node detecting in floor-of-mouth tumors, especially those close to the injection area. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  3. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; AGIS Photodetector Group; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Tajima, H.; Williams, D.

    2008-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfill this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to less than 0.05 deg, i.e. two to three times smaller than the pixel size of current IACT cameras. With finer pixelation and the plan to deploy on the order of 100 telescopes in the AGIS array, the channel count will exceed 1,000,000 imaging pixels. High uniformity and long mean time-to-failure will be important aspects of a successful photodetector technology choice. Here we present alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Results from laboratory testing of MAPMTs and SiPMs are presented along with results from the first incorporation of these devices in cameras on test bed Cherenkov telescopes.

  4. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.

    2015-07-01

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (< 0.5 mm) permits monitoring the pharmacokinetics of labeled gene constructs in vivo in small animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.

  5. Post-Growth Annealing of Bridgman-grown CdZnTe and CdMnTe Crystals for Room-temperature Nuclear Radiation Detectors

    DOE PAGES

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander; ...

    2015-02-11

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an ordermore » of 10 2. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10 -5 mbar, we observed the diffusion of Te from the sample, causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10 -5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 µm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on certain conditions.« less

  6. Development of a low-noise, 4th-order readout ASIC for CdZnTe detectors in gamma spectrometer applications

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Su, Lin; Wei, Xiaomin; Zheng, Ran; Hu, Yann

    2016-09-01

    This paper presents an ASIC readout circuit development, which aims to achieve low noise. In order to compensate the leakage current and improve gain, a dual-stage CSA has been utilized. A 4th-order high-linearity shaper is proposed to obtain a Semi-Gaussian wave and further decrease the noise induced by the leakage current. The ASIC has been designed and fabricated in a standard commercial 2P4M 0.35 μm CMOS process. Die area of one channel is about 1190 μm×147 μm. The input charge range is 1.8 fC. The peaking time can be adjusted from 1 μs to 3 μs. Measured ENC is about 55e- (rms) at input capacitor of 0 F. The gain is 271 mV/fC at the peaking time of 1 μs.

  7. Preparation of indium tin oxide contact to n-CdZnTe gamma-ray detector

    NASA Astrophysics Data System (ADS)

    Li, Leqi; Xu, Yadong; Zhang, Binbin; Wang, Aoqiu; Dong, Jiangpeng; Yu, Hui; Jie, Wanqi

    2018-03-01

    The nonmetal electrode material Indium Tin Oxide (ITO) has advantages of excellent conductivity, higher adhesion, and interface stability, showing potential to replace the metallic contacts for fabrication of CdZnTe (CZT) X/γ-ray detectors. In this work, high quality ITO electrodes for n-type CZT crystals were prepared by magnetron sputtering under a sputtering power of 75 W and a sputtering pressure of 0.6 Pa. A low dark current of ˜1 nA is achieved for the 5 × 5 × 2 mm3 ITO/CZT/ITO planar device under 100 V bias. The characteristics of Schottky contact are presented in the room temperature I-V curves, which are similar to those of the Au contact detectors. Based on the thermoelectric emission theory, the contact barrier and resistance of ITO electrodes are evaluated to be 0.902-0.939 eV and 0.87-3.56 × 108 Ω, respectively, which are consistent with the values of the Au electrodes. The ITO/CZT/ITO structure detector exhibits a superior energy resolution of 6.5% illuminated by the uncollimated 241Am @59.5 keV γ-ray source, which is comparable to the CZT detector with Au electrodes.

  8. Estimation of bone mineral content using gamma camera: A real possibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, L.M.; Hoory, S.; Bandyopadhyay, D.

    1985-05-01

    Osteopenia and Osteoporosis are the diseases related to loss of bone minerals. At present, dual photon absorptiometry using a dedicated specially built scanner along with a very high source of Gd-153 is being used as a diagnostic tool for the early detection of bone loss. The present study was undertaken to explore the possibility that gamma cameras which are widely available in all Nuclear Medicine departments could be used successfully to evaluate bone mineral content. A Siemens LFOV gamma camera equipped with a converging collimator was used for this purpose. A fixed source (100 mCi) of Gd-153 was placed atmore » the focal point of the collimator. A series of calcium chloride solutions of varying concentrations in plastic vials were placed near the center of the collimator and imaged both in air and water. Both 44 Kev and 100 Kev images were digitized in 128 x 128 matrices and processed in a CD and A Delta system attached to a VAX 11-750 computer. Uniformity corrections for each field of view were applied and the attenuation coefficients of calcium chloride for both peaks of Gd-153 were evaluated. In addition, due to the high count rate, corrections for the dead time losses were also found to be essential. An excellent concordance between the estimated Calcium contents and that actually present were obtained by this technic. In conclusion, use of gamma camera for the routine evaluation of Osteoporosis appears to be highly promising and worth pursuing.« less

  9. A gamma beam profile imager for ELI-NP Gamma Beam System

    NASA Astrophysics Data System (ADS)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  10. Highlights of recent results from the VERITAS gamma-ray observatory

    NASA Astrophysics Data System (ADS)

    Fortson, Lucy; VERITAS Collaboration

    2016-05-01

    VERITAS is a major ground-based gamma-ray observatory comprising an array of four 12 meter air Cherenkov telescopes operating at the Fred Lawrence Whipple Observatory near Tucson, Arizona. Data taking has continued from 2007 with a major camera upgrade completed in 2012 resulting in the current sensitivity to very-high-energy (VHE) gamma rays between 85 GeV and 30 TeV. VERITAS has detected 54 sources (half of which have been discoveries) leading to many significant contributions to the field of VHE astronomy. These proceedings highlight some of the more recent VERITAS results from the blazar and galactic observing programs as well as measurements of the cosmic-ray electron spectrum, constraints on dark matter and a follow-up program for astrophysical neutrinos.

  11. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).

  12. Pre-Clinical and Clinical Evaluation of High Resolution, Mobile Gamma Camera and Positron Imaging Devices

    DTIC Science & Technology

    2007-11-01

    accuracy. FPGA ADC data acquisition is controlled by distributed Java -based software. Java -based server application sits on each of the acquisition...JNI ( Java Native Interface) is used to allow Java indirect control of the USB driver. Fig. 5. Photograph of mobile electronics rack...supplies with the monitor and keyboard. The server application on each of these machines is controlled by a remote client Java -based application

  13. Applications of iQID cameras

    NASA Astrophysics Data System (ADS)

    Han, Ling; Miller, Brian W.; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2017-09-01

    iQID is an intensified quantum imaging detector developed in the Center for Gamma-Ray Imaging (CGRI). Originally called BazookaSPECT, iQID was designed for high-resolution gamma-ray imaging and preclinical gamma-ray single-photon emission computed tomography (SPECT). With the use of a columnar scintillator, an image intensifier and modern CCD/CMOS sensors, iQID cameras features outstanding intrinsic spatial resolution. In recent years, many advances have been achieved that greatly boost the performance of iQID, broadening its applications to cover nuclear and particle imaging for preclinical, clinical and homeland security settings. This paper presents an overview of the recent advances of iQID technology and its applications in preclinical and clinical scintigraphy, preclinical SPECT, particle imaging (alpha, neutron, beta, and fission fragment), and digital autoradiography.

  14. Compound semiconductor detectors for X-ray astronomy: Spectroscopic measurements and material characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bavdaz, M.; Kraft, S.; Peacock, A.

    1998-12-31

    The use of some specific compound semiconductors in the fabrication of high energy X-ray detectors shows significant potential for X-ray astrophysics space missions. The authors are currently investigating three high purity crystals--CdZnTe, GaAs and TlBr--as the basis for future hard X-ray detectors (above 10 keV). In this paper the authors present the first results on CdZnTe and GaAs based detectors and evaluate the factors currently still constraining the performance. Energy resolutions (FWHM) of 0.9 keV and 1.1 keV at 14 keV and 60 keV, respectively, have been obtained with an epitaxial GaAs detector, while 0.7 keV and 1.5 keV FWHMmore » were measured at the same energies with a CdZnTe detector. Based on these results it is clear, that the next generation of X-ray astrophysics missions now in the planning phase may well consider extending the photon energy range up to {approximately} 100 keV by use of efficient detectors with reasonable spectroscopic capabilities.« less

  15. Live-monitoring of Te inclusions laser-induced thermo-diffusion and annealing in CdZnTe crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zappettini, A.; Zambelli, N.; Benassi, G.

    2014-06-23

    The presence of Te inclusions is one of the main factors limiting performances of CdZnTe crystals as X-ray detectors. We show that by means of infrared laser radiation it is possible to move and anneal tellurium inclusions exploiting a thermo-diffusion mechanism. The process is studied live during irradiation by means of an optical microscope equipment. Experimental conditions, and, in particular, energy laser fluence, for annealing inclusions of different dimensions are determined.

  16. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin`ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Atsushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2014-11-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60-600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0-2.0 keV (FWHM) at 60 keV and 1.6-2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.

  17. Single photon emission tomography in neurological studies: Instrumentation and clinical applications

    NASA Astrophysics Data System (ADS)

    Nikkinen, Paivi Helena

    One triple head and two single head gamma camera systems were used for single photon emission tomography (SPET) imaging of both patients and brain phantoms. Studies with an anatomical brain phantom were performed for evaluation of reconstruction and correction methods in brain perfusion SPET studies. The use of the triple head gamma camera system resulted in a significant increase in image contrast and resolution. This was mainly due to better imaging geometry and the use of a high resolution collimator. The conventional Chang attenuation correction was found suitable for the brain perfusion studies. In the brain perfusion studies region of interest (ROI) based semiquantitation methods were used. A ROI map based on anatomical areas was used in 70 elderly persons (age range 55-85 years) without neurological diseases and in patients suffering from encephalitis or having had a cardiac arrest. Semiquantitative reference values are presented. For the 14 patients with encephalitis the right-to-left side differences were calculated. Defect volume indexes were calculated for 64 patients with brain infarcts. For the 30 cardiac arrest patients the defect percentages and the anteroposterior ratios were used for semiquantitation. It is concluded that different semiquantitation methods are needed for the various patient groups. Age-related reference values will improve the interpretation of SPET data. For validation of the basal ganglia receptor studies measurements were performed using a cylindrical and an anatomical striatal phantom. In these measurements conventional and transmission imaging based non-uniform attenuation corrections were compared. A calibration curve was calculated for the determination of the specific receptor uptake ratio. In the phantom studies using the triple head camera the uptake ratio obtained from simultaneous transmission-emission protocol (STEP) acquisition and iterative reconstruction was closest to the true activity ratio. Conventional acquisition and uniform Chang attenuation correction gave 40% lower values. The effect of dual window scatter correction was also measured. In conventional reconstruction dual window scatter correction increased the uptake ratios when using a single head camera, but when using the triple head camera this correction did not have a significant effect on the ratios. Semiquantitative values for striatal 123I-labelled β-carbomethoxy-3β- (4-iodophenyl)tropane (123I-βCIT) dopamine transporter uptake in 20 adults (mean age 52 +/- 15 years) are presented. The mean basal ganglia to cerebellum ratio was 6.5 +/- 0.9 and the mean caudatus to putamen ratio was 1.2. The registration of brain SPET and magnetic resonance (MR) studies provides the necessary anatomical information for determination of the ROIs. A procedure for registration and simultaneous display of brain SPET and MR images based on six external skin markers is presented. The usefulness of this method was demonstrated in selected patients. The registration accuracy was determined for single and triple head gamma camera systems using brain phantom and simulation studies. The registration residual for three internal test markers was calculated using 4 to 13 external markers in the registration. For 6 external markers, as used in the registration in the patient studies, the mean RMS residuals of the test markers for the single head camera and the triple head camera were 3.5 mm and 3.2 mm, respectively. According to the simulation studies the largest inaccuracy is due mainly to the spatial resolution of SPET. The use of six markers, as in the patient studies, is adequate for accurate registration.

  18. Evaluation of a gamma camera system for the RITS-6 accelerator using the self-magnetic pinch diode

    NASA Astrophysics Data System (ADS)

    Webb, Timothy J.; Kiefer, Mark L.; Gignac, Raymond; Baker, Stuart A.

    2015-08-01

    The self-magnetic pinch (SMP) diode is an intense radiographic source fielded on the Radiographic Integrated Test Stand (RITS-6) accelerator at Sandia National Laboratories in Albuquerque, NM. The accelerator is an inductive voltage adder (IVA) that can operate from 2-10 MV with currents up to 160 kA (at 7 MV). The SMP diode consists of an annular cathode separated from a flat anode, holding the bremsstrahlung conversion target, by a vacuum gap. Until recently the primary imaging diagnostic utilized image plates (storage phosphors) which has generally low DQE at these photon energies along with other problems. The benefits of using image plates include a high-dynamic range, good spatial resolution, and ease of use. A scintillator-based X-ray imaging system or "gamma camera" has been fielded in front of RITS and the SMP diode which has been able to provide vastly superior images in terms of signal-to-noise with similar resolution and acceptable dynamic range.

  19. Characterization of detector-systems based on CeBr3, LaBr3, SrI2 and CdZnTe for the use as dosemeters

    NASA Astrophysics Data System (ADS)

    Kessler, P.; Behnke, B.; Dombrowski, H.; Neumaier, S.

    2017-11-01

    For the upgrade of existing dosimetric early warning networks in Europe spectrometric detectors based on CeBr3, LaBr3, SrI2, and CdZnTe are investigated as possible substitutes for the current detector generation which is mainly based on gas filled detectors. The additional information on the nuclide vector which can be derived from the spectra of γ-radiation is highly useful for an appropriate response in case of a nuclear or radiological accident. The measured γ-spectra will be converted into ambient dose equivalent H* (10) using a method where the spectrum is subdivided into multiple energy bands. For each band the conversion coefficients from count rate to dose rate is determined. The derivation of these conversion coefficients is explained in this work. Both experimental and simulative approaches are investigated using quasi-mono-energetic γ-sources and synthetic spectra from Monte-Carlo simulations to determine the conversion coefficients for each detector type. Finally, precision of the obtained characterization is checked by irradiation of the detectors in different well-known photon fields with traceable dose rates.

  20. SHOK—The First Russian Wide-Field Optical Camera in Space

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Gorbovskoy, E. S.; Kornilov, V. G.; Panasyuk, M. I.; Amelushkin, A. M.; Petrov, V. L.; Yashin, I. V.; Svertilov, S. I.; Vedenkin, N. N.

    2018-02-01

    Onboard the spacecraft Lomonosov is established two fast, fixed, very wide-field cameras SHOK. The main goal of this experiment is the observation of GRB optical emission before, synchronously, and after the gamma-ray emission. The field of view of each of the cameras is placed in the gamma-ray burst detection area of other devices located onboard the "Lomonosov" spacecraft. SHOK provides measurements of optical emissions with a magnitude limit of ˜ 9-10m on a single frame with an exposure of 0.2 seconds. The device is designed for continuous sky monitoring at optical wavelengths in the very wide field of view (1000 square degrees each camera), detection and localization of fast time-varying (transient) optical sources on the celestial sphere, including provisional and synchronous time recording of optical emissions from the gamma-ray burst error boxes, detected by the BDRG device and implemented by a control signal (alert trigger) from the BDRG. The Lomonosov spacecraft has two identical devices, SHOK1 and SHOK2. The core of each SHOK device is a fast-speed 11-Megapixel CCD. Each of the SHOK devices represents a monoblock, consisting of a node observations of optical emission, the electronics node, elements of the mechanical construction, and the body.

  1. Purification of CdZnTe by electromigration

    NASA Astrophysics Data System (ADS)

    Kim, K.; Kim, Sangsu; Hong, Jinki; Lee, Jinseo; Hong, Taekwon; Bolotnikov, A. E.; Camarda, G. S.; James, R. B.

    2015-04-01

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 μm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. A CZT detector fabricated from the middle portion of the electro-migrated CZT boule showed an improved mobility-lifetime product of 0.91 × 10-2 cm2/V, compared with that of 1.4 × 10-3 cm2/V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.

  2. Purification of CdZnTe by Electromigration

    DOE PAGES

    Kim, K.; Kim, Sangsu; Hong, Jinki; ...

    2015-04-14

    Electro-migration of ionized/electrically active impurities in CdZnTe (CZT) was successfully demonstrated at elevated temperature with an electric field of 20 V/mm. Copper, which exists in positively charged states, electro-migrated at a speed of 15 lm/h in an electric field of 20 V/mm. A notable variation in impurity concentration along the growth direction with the segregation tendency of the impurities was observed in an electro-migrated CZT boule. Notably, both Ga and Fe, which exist in positively charged states, exhibited the opposite distribution to that of their segregation tendency in Cd(Zn)Te. Furthermore, a CZT detector fabricated from the middle portion of themore » electromigrated CZT boule showed an improved mobility-lifetime product of 0.91 10 -2 cm 2 /V, compared to that of 1.4 10 -3 cm 2 /V, observed in an as-grown (non-electro-migrated) CZT detector. The optimum radiation detector material would have minimum concentration of deep traps required for compensation.« less

  3. The Effect of Twin Boundaries on the Spectroscopic Performance of CdZnTe Detectors

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.; Stahle, C. M.; Roth, D.; Babu, S.; Tueller, Jack; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Most single grains in cadmium zinc telluride (CdZnTe) grown by the high-pressure Bridgman (HPB) technique contain multiple twin boundaries. As a consequence, twin boundaries are one of the most common macroscopic material defects found in large area (400 to 700 sq mm) CdZnTe specimens obtained from HPB ingots. Due to the prevalence of twin boundaries, understanding their effect on detector performance is key to the material selection process. Twin boundaries in several 2 mm thick large area specimens were first, documented using infrared transmission imaging. These specimens were then fabricated into either 2 mm pixel or planar detectors in order to examine the effect of the twin boundaries on detector performance. Preliminary results show that twin boundaries, which are decorated with tellurium inclusions, produce a reduction in detector efficiency and a degradation in resolution. The extent of the degradation appears to be a function of the density of tellurium inclusions.

  4. Gamma Ray Burst Optical Counterpart Search Experiment (GROCSE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.S.; Ables, E.; Bionta, R.M.

    GROCSE (Gamma-Ray Optical Counterpart Search Experiments) is a system of automated telescopes that search for simultaneous optical activity associated with gamma ray bursts in response to real-time burst notifications provided by the BATSE/BACODINE network. The first generation system, GROCSE 1, is sensitive down to Mv {approximately} 8.5 and requires an average of 12 seconds to obtain the first images of the gamma ray burst error box defined by the BACODINE trigger. The collaboration is now constructing a second generation system which has a 4 second slewing time and can reach Mv {approximately} 14 with a 5 second exposure. GROCSE 2more » consists of 4 cameras on a single mount. Each camera views the night sky through a commercial Canon lens (f/1.8, focal length 200 mm) and utilizes a 2K x 2K Loral CCD. Light weight and low noise custom readout electronics were designed and fabricated for these CCDs. The total field of view of the 4 cameras is 17.6 x 17.6 {degree}. GROCSE II will be operated by the end of 1995. In this paper, the authors present an overview of the GROCSE system and the results of measurements with a GROCSE 2 prototype unit.« less

  5. Characterization and commissioning of the SST-1M camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Bilnik, W.; Błocki, J.; Bogacz, L.; Borkowski, J.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Medina Miranda, L. D.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Rajda, P.; Rameez, M.; Schioppa, E., Jr.; Schovanek, P.; Seweryn, K.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.

    2017-02-01

    The Cherenkov Telescope Array (CTA), the next generation very high energy gamma-rays observatory, will consist of three types of telescopes: large (LST), medium (MST) and small (SST) size telescopes. The SSTs are dedicated to the observation of gamma-rays with energy between a few TeV and a few hundreds of TeV. The SST array is expected to have 70 telescopes of different designs. The single-mirror small size telescope (SST-1 M) is one of the proposed telescope designs under consideration for the SST array. It will be equipped with a 4 m diameter segmented mirror dish and with an innovative camera based on silicon photomultipliers (SiPMs). The challenge is not only to build a telescope with exceptional performance but to do it foreseeing its mass production. To address both of these challenges, the camera adopts innovative solutions both for the optical system and readout. The Photo-Detection Plane (PDP) of the camera is composed of 1296 pixels, each made of a hollow, hexagonal light guide coupled to a hexagonal SiPM designed by the University of Geneva and Hamamatsu. As no commercial ASIC would satisfy the CTA requirements when coupled to such a large sensor, dedicated preamplifier electronics have been designed. The readout electronics also use an innovative approach in gamma-ray astronomy by adopting a fully digital approach. All signals coming from the PDP are digitized in a 250 MHz Fast ADC and stored in ring buffers waiting for a trigger decision to send them to the pre-processing server where calibration and higher level triggers will decide whether the data are stored. The latest generation of FPGAs is used to achieve high data rates and also to exploit all the flexibility of the system. As an example each event can be flagged according to its trigger pattern. All of these features have been demonstrated in laboratory measurements on realistic elements and the results of these measurements will be presented in this contribution.

  6. A panoramic coded aperture gamma camera for radioactive hotspots localization

    NASA Astrophysics Data System (ADS)

    Paradiso, V.; Amgarou, K.; Blanc De Lanaute, N.; Schoepff, V.; Amoyal, G.; Mahe, C.; Beltramello, O.; Liénard, E.

    2017-11-01

    A known disadvantage of the coded aperture imaging approach is its limited field-of-view (FOV), which often results insufficient when analysing complex dismantling scenes such as post-accidental scenarios, where multiple measurements are needed to fully characterize the scene. In order to overcome this limitation, a panoramic coded aperture γ-camera prototype has been developed. The system is based on a 1 mm thick CdTe detector directly bump-bonded to a Timepix readout chip, developed by the Medipix2 collaboration (256 × 256 pixels, 55 μm pitch, 14.08 × 14.08 mm2 sensitive area). A MURA pattern coded aperture is used, allowing for background subtraction without the use of heavy shielding. Such system is then combined with a USB color camera. The output of each measurement is a semi-spherical image covering a FOV of 360 degrees horizontally and 80 degrees vertically, rendered in spherical coordinates (θ,phi). The geometrical shapes of the radiation-emitting objects are preserved by first registering and stitching the optical images captured by the prototype, and applying, subsequently, the same transformations to their corresponding radiation images. Panoramic gamma images generated by using the technique proposed in this paper are described and discussed, along with the main experimental results obtained in laboratories campaigns.

  7. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.

    PubMed

    Matovic, Milovan; Jankovic, Milica; Barjaktarovic, Marko; Jeremic, Marija

    2017-01-01

    After radioiodine therapy of differentiated thyroid cancer (DTC) patients, whole body scintigraphy (WBS) is standard procedure before releasing the patient from the hospital. A common problem is the precise localization of regions where the iod-avide tissue is located. Sometimes is practically impossible to perform precise topographic localization of such regions. In order to face this problem, we have developed a low-cost Vision-Fusion system for web-camera image acquisition simultaneously with routine scintigraphic whole body acquisition including the algorithm for fusion of images given from both cameras. For image acquisition in the gamma part of the spectra we used e.cam dual head gamma camera (Siemens, Erlangen, Germany) in WBS modality, with matrix size of 256×1024 pixels and bed speed of 6cm/min, equipped with high energy collimator. For optical image acquisition in visible part of spectra we have used web-camera model C905 (Logitech, USA) with Carl Zeiss® optics, native resolution 1600×1200 pixels, 34 o field of view, 30g weight, with autofocus option turned "off" and auto white balance turned "on". Web camera is connected to upper head of gamma camera (GC) by a holder of lightweight aluminum rod and a plexiglas adapter. Our own Vision-Fusion software for image acquisition and coregistration was developed using NI LabVIEW programming environment 2015 (National Instruments, Texas, USA) and two additional LabVIEW modules: NI Vision Acquisition Software (VAS) and NI Vision Development Module (VDM). Vision acquisition software enables communication and control between laptop computer and web-camera. Vision development module is image processing library used for image preprocessing and fusion. Software starts the web-camera image acquisition before starting image acquisition on GC and stops it when GC completes the acquisition. Web-camera is in continuous acquisition mode with frame rate f depending on speed of patient bed movement v (f=v/∆ cm , where ∆ cm is a displacement step that can be changed in Settings option of Vision-Fusion software; by default, ∆ cm is set to 1cm corresponding to ∆ p =15 pixels). All images captured while patient's bed is moving are processed. Movement of patient's bed is checked using cross-correlation of two successive images. After each image capturing, algorithm extracts the central region of interest (ROI) of the image, with the same width as captured image (1600 pixels) and the height that is equal to the ∆ p displacement in pixels. All extracted central ROI are placed next to each other in the overall whole-body image. Stacking of narrow central ROI introduces negligible distortion in the overall whole-body image. The first step for fusion of the scintigram and the optical image was determination of spatial transformation between them. We have made an experiment with two markers (point radioactivity sources of 99m Tc pertechnetate 1MBq) visible in both images (WBS and optical) to find transformation of coordinates between images. The distance between point markers is used for spatial coregistration of the gamma and optical images. At the end of coregistration process, gamma image is rescaled in spatial domain and added to the optical image (green or red channel, amplification changeable from user interface). We tested our system for 10 patients with DTC who received radioiodine therapy (8 women and two men, with average age of 50.10±12.26 years). Five patients received 5.55Gbq, three 3.70GBq and two 1.85GBq. Whole-body scintigraphy and optical image acquisition were performed 72 hours after application of radioiodine therapy. Based on our first results during clinical testing of our system, we can conclude that our system can improve diagnostic possibility of whole body scintigraphy to detect thyroid remnant tissue in patients with DTC after radioiodine therapy.

  8. Study on the Spatial Resolution of Single and Multiple Coincidences Compton Camera

    NASA Astrophysics Data System (ADS)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2012-10-01

    In this paper we study the image resolution that can be obtained from the Multiple Coincidences Compton Camera (MCCC). The principle of MCCC is based on a simultaneous acquisition of several gamma-rays emitted in cascade from a single nucleus. Contrary to a standard Compton camera, MCCC can theoretically provide the exact location of a radioactive source (based only on the identification of the intersection point of three cones created by a single decay), without complicated tomographic reconstruction. However, practical implementation of the MCCC approach encounters several problems, such as low detection sensitivities result in very low probability of coincident triple gamma-ray detection, which is necessary for the source localization. It is also important to evaluate how the detection uncertainties (finite energy and spatial resolution) influence identification of the intersection of three cones, thus the resulting image quality. In this study we investigate how the spatial resolution of the reconstructed images using the triple-cone reconstruction (TCR) approach compares to images reconstructed from the same data using standard iterative method based on single-cone. Results show, that FWHM for the point source reconstructed with TCR was 20-30% higher than the one obtained from the standard iterative reconstruction based on expectation maximization (EM) algorithm and conventional single-cone Compton imaging. Finite energy and spatial resolutions of the MCCC detectors lead to errors in conical surfaces definitions (“thick” conical surfaces) which only amplify in image reconstruction when intersection of three cones is being sought. Our investigations show that, in spite of being conceptually appealing, the identification of triple cone intersection constitutes yet another restriction of the multiple coincidence approach which limits the image resolution that can be obtained with MCCC and TCR algorithm.

  9. A new variable parallel holes collimator for scintigraphic device with validation method based on Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Trinci, G.; Massari, R.; Scandellari, M.; Boccalini, S.; Costantini, S.; Di Sero, R.; Basso, A.; Sala, R.; Scopinaro, F.; Soluri, A.

    2010-09-01

    The aim of this work is to show a new scintigraphic device able to change automatically the length of its collimator in order to adapt the spatial resolution value to gamma source distance. This patented technique replaces the need for collimator change that standard gamma cameras still feature. Monte Carlo simulations represent the best tool in searching new technological solutions for such an innovative collimation structure. They also provide a valid analysis on response of gamma cameras performances as well as on advantages and limits of this new solution. Specifically, Monte Carlo simulations are realized with GEANT4 (GEometry ANd Tracking) framework and the specific simulation object is a collimation method based on separate blocks that can be brought closer and farther, in order to reach and maintain specific spatial resolution values for all source-detector distances. To verify the accuracy and the faithfulness of these simulations, we have realized experimental measurements with identical setup and conditions. This confirms the power of the simulation as an extremely useful tool, especially where new technological solutions need to be studied, tested and analyzed before their practical realization. The final aim of this new collimation system is the improvement of the SPECT techniques, with the real control of the spatial resolution value during tomographic acquisitions. This principle did allow us to simulate a tomographic acquisition of two capillaries of radioactive solution, in order to verify the possibility to clearly distinguish them.

  10. Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera.

    PubMed

    Koide, Ayako; Kataoka, Jun; Masuda, Takamitsu; Mochizuki, Saku; Taya, Takanori; Sueoka, Koki; Tagawa, Leo; Fujieda, Kazuya; Maruhashi, Takuya; Kurihara, Takuya; Inaniwa, Taku

    2018-05-25

    Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12 C* or 11 B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12 C(p,p) 12 C*.

  11. Resistivity dependence on Zn concentration in semi-insulating (Cd,Zn)Te

    NASA Astrophysics Data System (ADS)

    Fiederle, Michael; Fauler, Alex; Babentsov, Vladimir N.; Franc, Jan; Benz, Klaus Werner

    2003-01-01

    The resistivity dependence on Zn concentration had been investigated in semi-insulating (Cd,Zn)Te crystals grown by the vertical Bridgman method. A coorelation between the zinc concentration and the resistivity distribution could be found. The obtained resistivity was in the interval of 2 ×109-1010 Ω cm as expected from the model of compensation. The main deep compensating levels detected by Photo Induced Current Transient Spectroscopy (PICTS) were at 0.64 +/- 0.02 eV and close the middle of the band gap at 0.80 +/- 0.02 eV.

  12. Geometrical Characteristics of Cd-Rich Inclusion Defects in CdZnTe Materials

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Sheng, Fengfeng; Yang, Jianrong

    2017-08-01

    The geometrical characteristics of Cd-rich inclusion defects in CdZnTe crystals have been investigated by infrared transmission (IRT) microscopy and chemical etching methods, revealing that they are composed of a Cd-rich inclusion core zone with high dislocation density and defect extension belts. Based on the experimental results, the orientation and shape of these belts were determined, showing that their extension directions in three-dimensional (3-D) space are along <211> crystal orientation. To explain the observed IRT images of Cd-rich inclusion defects, a 3-D model with plate-shaped structure for dislocation extension belts is proposed. Greyscale IRT images of dislocation extension belts thus depend on their absorption layer thickness. Assuming that defects can be discerned by IRT microscopy only when their absorption layer thickness is greater than twice that of the plate-shaped dislocation extension belts, this 3-D defect model can rationalize the IRT images of Cd-rich inclusion defects.

  13. Measurement of total-body cobalt-57 vitamin B12 absorption with a gamma camera.

    PubMed

    Cardarelli, J A; Slingerland, D W; Burrows, B A; Miller, A

    1985-08-01

    Previously described techniques for the measurement of the absorption of [57Co]vitamin B12 by total-body counting have required an iron room equipped with scanning or multiple detectors. The present study uses simplifying modifications which make the technique more available and include the use of static geometry, the measurement of body thickness to correct for attenuation, a simple formula to convert the capsule-in-air count to a 100% absorption count, and finally the use of an adequately shielded gamma camera obviating the need of an iron room.

  14. AIRWAY IDENTIFICATION WITHIN PLANAR GAMMA CAMERA IMAGES USING COMPUTER MODELS OF LUNG MORPHOLOGY

    EPA Science Inventory

    The quantification of inhaled aerosols could be improved if a more comprehensive assessment of their spatial distribution patterns among lung airways were obtained. A common technique for quantifying particle deposition in human lungs is with planar gamma scintigraphy. However, t...

  15. Evaluation of Timepix3 based CdTe photon counting detector for fully spectroscopic small animal SPECT imaging

    NASA Astrophysics Data System (ADS)

    Trojanova, E.; Jakubek, J.; Turecek, D.; Sykora, V.; Francova, P.; Kolarova, V.; Sefc, L.

    2018-01-01

    The imaging method of SPECT (Single Photon Emission Computed Tomography) is used in nuclear medicine for diagnostics of various diseases or organs malfunctions. The distribution of medically injected, inhaled, or ingested radionuclides (radiotracers) in the patient body is imaged using gamma-ray sensitive camera with suitable imaging collimator. The 3D image is then calculated by combining many images taken from different observation angles. Most of SPECT systems use scintillator based cameras. These cameras do not provide good energy resolution and do not allow efficient suppression of unwanted signals such as those caused by Compton scattering. The main goal of this work is evaluation of Timepix3 detector properties for SPECT method for functional imaging of small animals during preclinical studies. Advantageous Timepix3 properties such as energy and spatial resolution are exploited for significant image quality improvement. Preliminary measurements were performed on specially prepared plastic phantom with cavities filled by radioisotopes and then repeated with in vivo mouse sample.

  16. Development of an intraoperative gamma camera based on a 256-pixel mercuric iodide detector array

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; Tornai, M. P.; Iwanczyk, J. S.; Levin, C. S.; Hoffman, E. J.

    1997-06-01

    A 256-element mercuric iodide (HgI/sub 2/) detector array has been developed which is intended for use as an intraoperative gamma camera (IOGC). The camera is specifically designed for use in imaging gamma-emitting radiopharmaceuticals (such as 99m-Tc labeled Sestamibi) incorporated into brain tumors in the intraoperative surgical environment. The system is intended to improve the success of tumor removal surgeries by allowing more complete removal of subclinical tumor cells without removal of excessive normal tissue. The use of HgI/sub 2/ detector arrays in this application facilitates construction of an imaging head that is very compact and has a high SNR. The detector is configured as a cross-grid array. Pixel dimensions are 1.25 mm squares separated by 0.25 mm. The overall dimension of the detector is 23.75 mm on a side. The detector thickness is 1 mm which corresponds to over 60% stopping at 140 keV. The array has good uniformity with average energy resolution of 5.2/spl plusmn/2.9% FWHM at 140 keV (best resolution was 1.9% FWHM). Response uniformity (/spl plusmn//spl sigma/) was 7.9%. A study utilizing realistic tumor phantoms (uptake ratio varied from 2:1 to 100:1) in background (1 mCi/l) was conducted. SNRs for the reasonably achievable uptake ratio of 50:1 were 5.61 /spl sigma/ with 1 cm of background depth ("normal tissue") and 2.74 /spl sigma/ with 4 cm of background for a 6.3 /spl mu/l tumor phantom (/spl sim/270 nCi at the time of the measurement).

  17. Tissue-equivalent TL sheet dosimetry system for X- and gamma-ray dose mapping.

    PubMed

    Nariyama, N; Konnai, A; Ohnishi, S; Odano, N; Yamaji, A; Ozasa, N; Ishikawa, Y

    2006-01-01

    To measure dose distribution for X- and gamma rays simply and accurately, a tissue-equivalent thermoluminescent (TL) sheet-type dosemeter and reader system were developed. The TL sheet is composed of LiF:Mg,Cu,P and ETFE polymer, and the thickness is 0.2 mm. For the TL reading, a square heating plate, 20 cm on each side, was developed, and the temperature distribution was measured with an infrared thermal imaging camera. As a result, linearity within 2% and the homogeneity within 3% were confirmed. The TL signal emitted is detected using a CCD camera and displayed as a spatial dose distribution. Irradiation using synchrotron radiation between 10 and 100 keV and (60)Co gamma rays showed that the TL sheet dosimetry system was promising for radiation dose mapping for various purposes.

  18. Development of modern approach to absorbed dose assessment in radionuclide therapy, based on Monte Carlo method simulation of patient scintigraphy

    NASA Astrophysics Data System (ADS)

    Lysak, Y. V.; Klimanov, V. A.; Narkevich, B. Ya

    2017-01-01

    One of the most difficult problems of modern radionuclide therapy (RNT) is control of the absorbed dose in pathological volume. This research presents new approach based on estimation of radiopharmaceutical (RP) accumulated activity value in tumor volume, based on planar scintigraphic images of the patient and calculated radiation transport using Monte Carlo method, including absorption and scattering in biological tissues of the patient, and elements of gamma camera itself. In our research, to obtain the data, we performed modeling scintigraphy of the vial with administered to the patient activity of RP in gamma camera, the vial was placed at the certain distance from the collimator, and the similar study was performed in identical geometry, with the same values of activity of radiopharmaceuticals in the pathological target in the body of the patient. For correct calculation results, adapted Fisher-Snyder human phantom was simulated in MCNP program. In the context of our technique, calculations were performed for different sizes of pathological targets and various tumors deeps inside patient’s body, using radiopharmaceuticals based on a mixed β-γ-radiating (131I, 177Lu), and clear β- emitting (89Sr, 90Y) therapeutic radionuclides. Presented method can be used for adequate implementing in clinical practice estimation of absorbed doses in the regions of interest on the basis of planar scintigraphy of the patient with sufficient accuracy.

  19. ProxiScan™: A Novel Camera for Imaging Prostate Cancer

    ScienceCinema

    Ralph James

    2017-12-09

    ProxiScan is a compact gamma camera suited for high-resolution imaging of prostate cancer. Developed by Brookhaven National Laboratory and Hybridyne Imaging Technologies, Inc., ProxiScan won a 2009 R&D 100 Award, sponsored by R&D Magazine to recognize t

  20. Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe

    DOE PAGES

    Kim, Kihyun; Yoon, Yongsu; James, Ralph B.

    2018-03-13

    Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less

  1. Noise in CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, P. N.; Amman, M.; Lee J. S.

    2000-10-10

    Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may bemore » the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments.« less

  2. Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kihyun; Yoon, Yongsu; James, Ralph B.

    Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less

  3. 135Xe measurements with a two-element CZT-based radioxenon detector for nuclear explosion monitoring.

    PubMed

    Ranjbar, Lily; Farsoni, Abi T; Becker, Eric M

    2017-04-01

    Measurement of elevated concentrations of xenon radioisotopes ( 131m Xe, 133m Xe, 133 Xe and 135 Xe) in the atmosphere has been shown to be a very powerful method for verifying whether or not a detected explosion is nuclear in nature. These isotopes are among the few with enough mobility and with half-lives long enough to make their detection at long distances realistic. Existing radioxenon detection systems used by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) suffer from problems such as complexity, need for high maintenance and memory effect. To study the response of CdZnTe (CZT) detectors to xenon radioisotopes and investigate whether it is capable of mitigating the aforementioned issues with the current radioxenon detection systems, a prototype detector utilizing two coplanar CZT detectors was built and tested at Oregon State University. The detection system measures xenon radioisotopes through beta-gamma coincidence technique by detecting coincidence events between the two detectors. In this paper, we introduce the detector design and report our measurement results with radioactive lab sources and 135 Xe produced in the OSU TRIGA reactor. Minimum Detectable Concentration (MDC) for 135 Xe was calculated to be 1.47 ± 0.05 mBq/m 3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of hydrogenation on the electrical and optical properties of CdZnTe substrates and HgCdTe epitaxial layers

    NASA Astrophysics Data System (ADS)

    Sitharaman, S.; Raman, R.; Durai, L.; Pal, Surendra; Gautam, Madhukar; Nagpal, Anjana; Kumar, Shiv; Chatterjee, S. N.; Gupta, S. C.

    2005-12-01

    In this paper, we report the experimental observations on the effect of plasma hydrogenation in passivating intrinsic point defects, shallow/deep levels and extended defects in low-resistivity undoped CdZnTe crystals. The optical absorption studies show transmittance improvement in the below gap absorption spectrum. Using variable temperature Hall measurement technique, the shallow defect level on which the penetrating hydrogen makes complex, has been identified. In 'compensated' n-type HgCdTe epitaxial layers, hydrogenation can improve the resistivity by two orders of magnitude.

  5. Development of Camera Electronics for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu

    2009-05-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. We have developed test systems for some of these concepts and are testing their performance. Here we present test results of the test systems.

  6. High-Temperature Annealing of CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, J.; Hwang, S.; Yu, H.

    The electrical properties of CdZnTe(CZT) above the melting point of tellurium (Te) inclusions were determined during in situ annealing. The thermal annealing cycles of the CZT detectors were 490 °C, 530 °C, and 570 °C continuously, which were higher than the melting points of elemental Te and Te inclusions and lower than the sublimation temperature of CZT. Unexpectedly, the CZT detectors exhibited very low leakage current at room temperature after the thermal annealing cycles due to the formation of rectifying contacts. The activation energy of high-resistivity CZT was 0.81 eV indicating pinning of Fermi level nearly in the middle ofmore » bandgap. At room temperature, CZT detectors with rectifying contacts showed clearly the 59.5-keV gamma-ray peak of Am-241. As a result, observed fluctuations of the leakage current at about 470 °C might have originated from a mixed conductivity of liquid and solid CZT due to the melting of Te inclusions.« less

  7. Gamma ray detector modules

    NASA Technical Reports Server (NTRS)

    Capote, M. Albert (Inventor); Lenos, Howard A. (Inventor)

    2009-01-01

    A radiation detector assembly has a semiconductor detector array substrate of CdZnTe or CdTe, having a plurality of detector cell pads on a first surface thereof, the pads having a contact metallization and a solder barrier metallization. An interposer card has planar dimensions no larger than planar dimensions of the semiconductor detector array substrate, a plurality of interconnect pads on a first surface thereof, at least one readout semiconductor chip and at least one connector on a second surface thereof, each having planar dimensions no larger than the planar dimensions of the interposer card. Solder columns extend from contacts on the interposer first surface to the plurality of pads on the semiconductor detector array substrate first surface, the solder columns having at least one solder having a melting point or liquidus less than 120 degrees C. An encapsulant is disposed between the interposer circuit card first surface and the semiconductor detector array substrate first surface, encapsulating the solder columns, the encapsulant curing at a temperature no greater than 120 degrees C.

  8. High-Temperature Annealing of CdZnTe Detectors

    DOE PAGES

    Suh, J.; Hwang, S.; Yu, H.; ...

    2017-11-10

    The electrical properties of CdZnTe(CZT) above the melting point of tellurium (Te) inclusions were determined during in situ annealing. The thermal annealing cycles of the CZT detectors were 490 °C, 530 °C, and 570 °C continuously, which were higher than the melting points of elemental Te and Te inclusions and lower than the sublimation temperature of CZT. Unexpectedly, the CZT detectors exhibited very low leakage current at room temperature after the thermal annealing cycles due to the formation of rectifying contacts. The activation energy of high-resistivity CZT was 0.81 eV indicating pinning of Fermi level nearly in the middle ofmore » bandgap. At room temperature, CZT detectors with rectifying contacts showed clearly the 59.5-keV gamma-ray peak of Am-241. As a result, observed fluctuations of the leakage current at about 470 °C might have originated from a mixed conductivity of liquid and solid CZT due to the melting of Te inclusions.« less

  9. High compositional homogeneity of CdTe{sub x}Se{sub 1−x} crystals grown by the Bridgman method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-01

    We obtained high-quality CdTe{sub x}Se{sub 1−x} (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing highermore » efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd{sub x}Zn{sub 1−x}Te (CdZnTe or CZT)« less

  10. High Compositional Homogeneity of CdTe xSe 1-x Crystals Grown by the Bridgman Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-03

    We obtained high-quality CdTe xSe 1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing highermore » efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd xZn 1-xTe (CdZnTe or CZT).« less

  11. Evaluation of a CdTe semiconductor based compact gamma camera for sentinel lymph node imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Paolo; Curion, Assunta S.; Mettivier, Giovanni

    2011-03-15

    Purpose: The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. Methods: The room-temperature CdTe pixel detector (1 mm thick) has 256x256 square pixels arranged with a 55 {mu}m pitch (sensitive area 14.08x14.08 mm{sup 2}), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diametermore » at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. Results: For {sup 99m}Tc, at 50 mm distance, a background-subtracted sensitivity of 6.5x10{sup -3} cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3x10{sup -2} cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq {sup 99m}Tc and prior localization with standard gamma camera lymphoscintigraphy. Conclusions: The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.« less

  12. Renal Scintigraphy

    MedlinePlus

    ... in your hand or arm. When it is time for the imaging to begin, the gamma camera will take a series of images. The camera may rotate around you or it may stay in one position and you will be asked to change positions in ... to remain still for brief periods of time. You may be asked to sit or lie ...

  13. Europe's space camera unmasks a cosmic gamma-ray machine

    NASA Astrophysics Data System (ADS)

    1996-11-01

    The new-found neutron star is the visible counterpart of a pulsating radio source, Pulsar 1055-52. It is a mere 20 kilometres wide. Although the neutron star is very hot, at about a million degrees C, very little of its radiant energy takes the form of visible light. It emits mainly gamma-rays, an extremely energetic form of radiation. By examining it at visible wavelengths, astronomers hope to figure out why Pulsar 1055-52 is the most efficient generator of gamma-rays known so far, anywhere the Universe. The Faint Object Camera found Pulsar 1055-52 in near ultraviolet light at 3400 angstroms, a little shorter in wavelength than the violet light at the extremity of the human visual range. Roberto Mignani, Patrizia Caraveo and Giovanni Bignami of the Istituto di Fisica Cosmica in Milan, Italy, report its optical identification in a forthcoming issue of Astrophysical Journal Letters (1 January 1997). The formal name of the object is PSR 1055-52. Evading the glare of an adjacent star The Italian team had tried since 1988 to spot Pulsar 1055-52 with two of the most powerful ground-based optical telescopes in the Southern Hemisphere. These were the 3.6-metre Telescope and the 3.5-metre New Technology Telescope of the European Southern Observatory at La Silla, Chile. Unfortunately an ordinary star 100,000 times brighter lay in almost the same direction in the sky, separated from the neutron star by only a thousandth of a degree. The Earth's atmosphere defocused the star's light sufficiently to mask the glimmer from Pulsar 1055-52. The astronomers therefore needed an instrument in space. The Faint Object Camera offered the best precision and sensitivity to continue the hunt. Devised by European astronomers to complement the American wide field camera in the Hubble Space Telescope, the Faint Object Camera has a relatively narrow field of view. It intensifies the image of a faint object by repeatedly accelerating electrons from photo-electric films, so as to produce brighter flashes when the electrons hit a phosphor screen. Since Hubble's launch in 1990, the Faint Object Camera has examined many different kinds of cosmic objects, from the moons of Jupiter to remote galaxies and quasars. When the space telescope's optics were corrected at the end of 1993 the Faint Object Camera immediately celebrated the event with the discovery of primeval helium in intergalactic gas. In their search for Pulsar 1055-52, the astronomers chose a near-ultraviolet filter to sharpen the Faint Object Camera's vision and reduce the adjacent star's huge advantage in intensity. In May 1996, the Hubble Space Telescope operators aimed at the spot which radio astronomers had indicated, as the source of the radio pulsations of Pulsar 1055-52. The neutron star appeared precisely in the centre of the field of view, and it was clearly separated from the glare of the adjacent star. At magnitude 24.9, Pulsar 1055-52 was comfortably within the power of the Faint Object Camera, which can see stars 20 times fainter still. "The Faint Object Camera is the instrument of choice for looking for neutron stars," says Giovanni Bignami, speaking on behalf of the Italian team. "Whenever it points to a judiciously selected neutron star it detects the corresponding visible or ultraviolet light. The Faint Object Camera has now identified three neutron stars in that way, including Pulsar 1055-52, and it has examined a few that were first detected by other instruments." Mysteries of the neutron stars The importance of the new result can be gauged by the tally of only eight neutron stars seen so far at optical wavelengths, compared with about 760 known from their radio pulsations, and about 21 seen emitting X-rays. Since the first pulsar was detected by radio astronomers in Cambridge, England, nearly 30 years ago, theorists have come to recognize neutron stars as fantastic objects. They are veritable cosmic laboratories in which Nature reveals the behaviour of matter under extreme stress, just one step short of a black hole. A neutron star is created by the force of a supernova explosion in a large star, which crushes the star's core to an unimaginable density. A mass greater than the Sun's is squeezed into a ball no wider than a city. The gravity and magnetic fields are billions of times stronger than the Earth's. The neutron star revolves rapidly, which causes it to wink like a cosmic lighthouse as it swivels its magnetic poles towards and away from the Earth. Pulsar 1055-52 spins at five revolutions per second. At its formation in a supernova explosion, a neutron star is endowed with two main forms of energy. One is heat, at temperatures of millions of degrees, which the neutron star radiates mainly as X-rays, with only a small proportion emerging as visible light. The other power supply for the neutron star comes from its high rate of spin and a gradual slowing of the rotation. By a variety of processes involving the magnetic field and accelerated particles in the neutron star's vicinity, the spin energy of the neutron star is converted into radiation at many different wavelengths, from radio waves to gamma-rays. The exceptional gamma-ray intensity of Pulsar 1055-52 was first appreciated in observations by NASA's Compton Gamma Ray Observatory. The team in Milan recently used the Hubble Space Telescope to find the distance of the peculiar neutron star Geminga, which is not detectable by radio pulses but is a strong source of gamma-rays (see ESA Information Note 04-96, 28 March 1996). Pulsar 1055-52 is even more powerful in that respect. About 50 per cent of its radiant energy is gamma-rays, compared with 15 per cent from Geminga and 0.1 per cent from the famous Crab Pulsar, the first neutron star seen by visible light. Making the gamma-rays requires the acceleration of electrons through billions of volts. The magnetic environment of Pulsar 1055-52 fashions a natural gamma-ray machine of amazing power. The orientation of the neutron star's magnetic field with respect to the Earth may contribute to its brightness in gamma-rays. Geminga, Pulsar 1055-52 and another object, Pulsar 0656+14, make a trio that the Milanese astronomers call the Three Musketeers. All have been observed with the Faint Object Camera. They are isolated, elderly neutron stars, some hundreds of thousands of years old, contrasting with the 942 year-old Crab Pulsar which is still surrounded by dispersing debris of a supernova seen by Chinese astronomers in the 11th Century. The mysteries of the neutron stars will keep astronomers busy for years to come, and the Faint Object Camera in the Hubble Space Telescope will remain the best instrument for spotting their faint visible light. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA). The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Maryland. Note to editors: An image is available of (i) PSR 1055-52 seen by ESA's Faint Object Camera in the Hubble Space Telescope, and (ii) the same region of the sky seen by the European Southern Observatory's New Technology Telescope, with the position of PSR 1055-52 indicated. The image is available on the World Wide Web at http://ecf.hq.eso.org/stecf-pubrel.html http://www.estec.esa.nl/spdwww/h2000/html/snlmain.htm

  14. Molecular Imaging in the College of Optical Sciences – An Overview of Two Decades of Instrumentation Development

    PubMed Central

    Furenlid, Lars R.; Barrett, Harrison H.; Barber, H. Bradford; Clarkson, Eric W.; Kupinski, Matthew A.; Liu, Zhonglin; Stevenson, Gail D.; Woolfenden, James M.

    2015-01-01

    During the past two decades, researchers at the University of Arizona’s Center for Gamma-Ray Imaging (CGRI) have explored a variety of approaches to gamma-ray detection, including scintillation cameras, solid-state detectors, and hybrids such as the intensified Quantum Imaging Device (iQID) configuration where a scintillator is followed by optical gain and a fast CCD or CMOS camera. We have combined these detectors with a variety of collimation schemes, including single and multiple pinholes, parallel-hole collimators, synthetic apertures, and anamorphic crossed slits, to build a large number of preclinical molecular-imaging systems that perform Single-Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), and X-Ray Computed Tomography (CT). In this paper, we discuss the themes and methods we have developed over the years to record and fully use the information content carried by every detected gamma-ray photon. PMID:26236069

  15. Colorimetric calibration of wound photography with off-the-shelf devices

    NASA Astrophysics Data System (ADS)

    Bala, Subhankar; Sirazitdinova, Ekaterina; Deserno, Thomas M.

    2017-03-01

    Digital cameras are often used in recent days for photographic documentation in medical sciences. However, color reproducibility of same objects suffers from different illuminations and lighting conditions. This variation in color representation is problematic when the images are used for segmentation and measurements based on color thresholds. In this paper, motivated by photographic follow-up of chronic wounds, we assess the impact of (i) gamma correction, (ii) white balancing, (iii) background unification, and (iv) reference card-based color correction. Automatic gamma correction and white balancing are applied to support the calibration procedure, where gamma correction is a nonlinear color transform. For unevenly illuminated images, non- uniform illumination correction is applied. In the last step, we apply colorimetric calibration using a reference color card of 24 patches with known colors. A lattice detection algorithm is used for locating the card. The least squares algorithm is applied for affine color calibration in the RGB model. We have tested the algorithm on images with seven different types of illumination: with and without flash using three different off-the-shelf cameras including smartphones. We analyzed the spread of resulting color value of selected color patch before and after applying the calibration. Additionally, we checked the individual contribution of different steps of the whole calibration process. Using all steps, we were able to achieve a maximum of 81% reduction in standard deviation of color patch values in resulting images comparing to the original images. That supports manual as well as automatic quantitative wound assessments with off-the-shelf devices.

  16. Nuclear medicine image registration by spatially noncoherent interferometry.

    PubMed

    Scheiber, C; Malet, Y; Sirat, G; Grucker, D

    2000-02-01

    This article introduces a technique for obtaining high-resolution body contour data in the same coordinate frame as that of a rotating gamma camera, using a miniature range finder, the conoscope, mounted on the camera gantry. One potential application of the technique is accurate coregistration in longitudinal brain SPECT studies, using the face of the patient (or "mask"), instead of SPECT slices, to coregister subsequent acquisitions involving the brain. Conoscopic holography is an interferometry technique that relies on spatially incoherent light interference in birefringent crystals. In this study, the conoscope was used to measure the absolute distance (Z) between a light source reflected from the skin and its observation plane. This light was emitted by a 0.2-mW laser diode. A scanning system was used to image the face during SPECT acquisition. The system consisted of a motor-driven mirror (Y axis) and the gamma-camera gantry (1 profile was obtained for each rotation step, X axis). The system was calibrated to place the conoscopic measurements and SPECT slices in the same coordinate frame. Through a simple and robust calibration of the system, the SE for measurements performed on geometric shapes was less than 2 mm, i.e., less than the actual pixel size of the SPECT data. Biometric measurements of an anthropomorphic brain phantom were within 3%-5% of actual values. The mask data were used to register images of a brain phantom and of a volunteer's brain, respectively. The rigid transformation that allowed the merging of masks by visual inspection was applied to the 2 sets of SPECT slices to perform the fusion of the data. At the cost of an additional low-cost setup integrated into the gamma-camera gantry, real-time data about the surface of the head were obtained. As in all other surface-based techniques (as opposed to volume-based techniques), this method allows the match of data independently from the dataset of interest and facilitates further registration of data from any other source. The main advantage of this technique compared with other optically based methods is the robustness of the calibration procedure and the compactness of the sensor as a result of the colinearity of the projected beam and the reflected (diffused) beams of the conoscope. Taking into account the experimental nature of this preliminary work, significant improvements in the accuracy and speed of measurements (up to 1000 points/s) are expected.

  17. MONICA: A Compact, Portable Dual Gamma Camera System for Mouse Whole-Body Imaging

    PubMed Central

    Xi, Wenze; Seidel, Jurgen; Karkareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.; Choyke, Peter L.

    2009-01-01

    Introduction We describe a compact, portable dual-gamma camera system (named “MONICA” for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed “looking up” through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV ± 10%, yielded the following results: spatial resolution (FWHM at 1-cm), 2.2-mm; sensitivity, 149 cps/MBq (5.5 cps/μCi); energy resolution (FWHM), 10.8%; count rate linearity (count rate vs. activity), r2 = 0.99 for 0–185 MBq (0–5 mCi) in the field-of-view (FOV); spatial uniformity, < 3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-minute images acquired throughout the 168-hour study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g. limited imaging space, portability, and, potentially, cost are important. PMID:20346864

  18. Semiconductor radiation detector with internal gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwanczyk, Jan; Patt, Bradley E.; Vilkelis, Gintas

    An avalanche drift photodetector (ADP) incorporates extremely low capacitance of a silicon drift photodetector (SDP) and internal gain that mitigates the surface leakage current noise of an avalanche photodetector (APD). The ADP can be coupled with scintillators such as CsI(Tl), NaI(Tl), LSO or others to form large volume scintillation type gamma ray detectors for gamma ray spectroscopy, photon counting, gamma ray counting, etc. Arrays of the ADPs can be used to replace the photomultiplier tubes (PMTs) used in conjunction with scintillation crystals in conventional gamma cameras for nuclear medical imaging.

  19. Inspection and Gamma-Ray Dose Rate Measurements of the Annulus of the VSC-17 Concrete Spent Nuclear Fuel Storage Cask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. L. Winston

    2007-09-01

    The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.

  20. High-Resolution Scintimammography: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection ofmore » breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.« less

  1. Temporal Imaging CeBr3 Compton Camera: A New Concept for Nuclear Decommissioning and Nuclear Waste Management

    NASA Astrophysics Data System (ADS)

    Iltis, A.; Snoussi, H.; Magalhaes, L. Rodrigues de; Hmissi, M. Z.; Zafiarifety, C. Tata; Tadonkeng, G. Zeufack; Morel, C.

    2018-01-01

    During nuclear decommissioning or waste management operations, a camera that could make an image of the contamination field and identify and quantify the contaminants would be a great progress. Compton cameras have been proposed, but their limited efficiency for high energy gamma rays and their cost have severely limited their application. Our objective is to promote a Compton camera for the energy range (200 keV - 2 MeV) that uses fast scintillating crystals and a new concept for locating scintillation event: Temporal Imaging. Temporal Imaging uses monolithic plates of fast scintillators and measures photons time of arrival distribution in order to locate each gamma ray with a high precision in space (X,Y,Z), time (T) and energy (E). This provides a native estimation of the depth of interaction (Z) of every detected gamma ray. This also allows a time correction for the propagation time of scintillation photons inside the crystal, therefore resulting in excellent time resolution. The high temporal resolution of the system makes it possible to veto quite efficiently background by using narrow time coincidence (< 300 ps). It is also possible to reconstruct the direction of propagation of the photons inside the detector using timing constraints. The sensitivity of our system is better than 1 nSv/h in a 60 s acquisition with a 22Na source. The project TEMPORAL is funded by the ANDRA/PAI under the grant No. RTSCNADAA160019.

  2. Compton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton Therapy

    PubMed Central

    Hueso-González, Fernando; Fiedler, Fine; Golnik, Christian; Kormoll, Thomas; Pausch, Guntram; Petzoldt, Johannes; Römer, Katja E.; Enghardt, Wolfgang

    2016-01-01

    Proton beams are promising means for treating tumors. Such charged particles stop at a defined depth, where the ionization density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimizes the damage to normal tissue compared to photon therapy. Nevertheless, inherent range uncertainties cast doubts on the irradiation of tumors close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of protons over photons. In this context, several research groups are developing experimental tools for range verification based on the detection of prompt gammas, a nuclear by-product of the proton irradiation. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf, detector components have been characterized in realistic radiation environments as a step toward a clinical Compton camera. On the one hand, corresponding experimental methods and results obtained during the ENTERVISION training network are reviewed. On the other hand, a novel method based on timing spectroscopy has been proposed as an alternative to collimated imaging systems. The first tests of the timing method at a clinical proton accelerator are summarized, its applicability in a clinical environment for challenging the current safety margins is assessed, and the factors limiting its precision are discussed. PMID:27148473

  3. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they entermore » and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.« less

  4. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  5. Post-growth annealing of Bridgman-grown CdZnTe and CdMnTe crystals for room-temperature nuclear radiation detectors

    NASA Astrophysics Data System (ADS)

    Egarievwe, Stephen U.; Yang, Ge; Egarievwe, Alexander A.; Okwechime, Ifechukwude O.; Gray, Justin; Hales, Zaveon M.; Hossain, Anwar; Camarda, Giuseppe S.; Bolotnikov, Aleksey E.; James, Ralph B.

    2015-06-01

    Bridgman-grown cadmium zinc telluride (CdZnTe or CZT) and cadmium manganese telluride (CdMnTe or CMT) crystals often have Te inclusions that limit their performances as X-ray- and gamma-ray-detectors. We present here the results of post-growth thermal annealing aimed at reducing and eliminating Te inclusions in them. In a 2D analysis, we observed that the sizes of the Te inclusions declined to 92% during a 60-h annealing of CZT at 510 °C under Cd vapor. Further, tellurium inclusions were eliminated completely in CMT samples annealed at 570 °C in Cd vapor for 26 h, whilst their electrical resistivity fell by an order of 102. During the temperature-gradient annealing of CMT at 730 °C and an 18 °C/cm temperature gradient for 18 h in a vacuum of 10-5 mbar, we observed the diffusion of Te from the sample, so causing a reduction in size of the Te inclusions. For CZT samples annealed at 700 °C in a 10 °C/cm temperature gradient, we observed the migration of Te inclusions from a low-temperature region to a high one at 0.022 μm/s. During the temperature-gradient annealing of CZT in a vacuum of 10-5 mbar at 570 °C and 30 °C/cm for 18 h, some Te inclusions moved toward the high-temperature side of the wafer, while other inclusions of the same size, i.e., 10 μm in diameter, remained in the same position. These results show that the migration, diffusion, and reaction of Te with Cd in the matrix of CZT- and CMT-wafers are complex phenomena that depend on the conditions in local regions, such as composition and structure, as well as on the annealing conditions.

  6. Gamma-ray spectroscopy at MHz counting rates with a compact LaBr3 detector and silicon photomultipliers for fusion plasma applications.

    PubMed

    Nocente, M; Rigamonti, D; Perseo, V; Tardocchi, M; Boltruczyk, G; Broslawski, A; Cremona, A; Croci, G; Gosk, M; Kiptily, V; Korolczuk, S; Mazzocco, M; Muraro, A; Strano, E; Zychor, I; Gorini, G

    2016-11-01

    Gamma-ray spectroscopy measurements at MHz counting rates have been carried out, for the first time, with a compact spectrometer based on a LaBr 3 scintillator and silicon photomultipliers. The instrument, which is also insensitive to magnetic fields, has been developed in view of the upgrade of the gamma-ray camera diagnostic for α particle measurements in deuterium-tritium plasmas of the Joint European Torus. Spectra were measured up to 2.9 MHz with a projected energy resolution of 3%-4% in the 3-5 MeV range, of interest for fast ion physics studies in fusion plasmas. The results reported here pave the way to first time measurements of the confined α particle profile in high power plasmas of the next deuterium-tritium campaign at the Joint European Torus.

  7. The Swift Gamma Ray Burst Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelmy, S. D.; Burrows, D. N.; Cominsky, L. R.

    2004-01-01

    The Swift mission: scheduled for launch in early 2004: is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to: 1) determine the origin of GFU3s; 2) classify GRBs and search for new types; 3) study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and 4) use GRBs to study the early universe out to z greater than 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1-4 arcmin positions: and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 arcsec positions and perform spectroscopy in the 0.2 to 10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0.3 arcsec positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of approx. 1 mCrab (approx. 2 x l0(exp -11) erg/sq cm s in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients. with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program for the mission will provide funding for community involvement. Innovations from the Swift program applicable to the future include: 1) a large-area gamma-ray detector us- ing the new CdZnTe detectors; 2) an autonomous rapid slewing spacecraft; 3) a multiwavelength payload combining optical, X-ray, and gamma-ray instruments; 4) an observing program coordinated with other ground-based and space-based observatories; and 5) immediate multiwavelength data flow to the community. The mission is currently funded for 2 years of operations and the spacecraft will have a lifetime to orbital decay of approx. 8 years.

  8. The CdZnTe Detector with Slit Collimator for Measure Distribution of the Specific Activity Radionuclide in the Ground

    NASA Astrophysics Data System (ADS)

    Stepanov, V. E.; Volkovich, A. G.; Potapov, V. N.; Semin, I. A.; Stepanov, A. V.; Simirskii, Iu. N.

    2018-01-01

    From 2011 in the NRC "Kurchatov Institute" carry out the dismantling of the MR multiloop research reactor. Now the reactor and all technological equipment in the premises of the reactor were dismantled. Now the measurements of radioactive contamination in the reactor premises are made. The most contaminated parts of premises - floor and the ground beneath it. To measure the distribution of specific activity in the ground the CdZnTe detector (volume 500MM3) was used. Detector placed in a lead shielding with a slit collimation hole. The upper part of shielding is made movable to close and open the slit of the collimator. At each point two measurements carried out: with open and closed collimator. The software for determination specific activity of radionuclides in ground was developed. The mathematical model of spectrometric system based on the Monte-Carlo method. Measurements of specific activity of ground were made. Using the results of measurements the thickness of the removed layer of ground and the amount of radioactive waste were calculated.

  9. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  10. Real-time proton beam range monitoring by means of prompt-gamma detection with a collimated camera

    NASA Astrophysics Data System (ADS)

    Roellinghoff, F.; Benilov, A.; Dauvergne, D.; Dedes, G.; Freud, N.; Janssens, G.; Krimmer, J.; Létang, J. M.; Pinto, M.; Prieels, D.; Ray, C.; Smeets, J.; Stichelbaut, F.; Testa, E.

    2014-03-01

    Prompt-gamma profile was measured at WPE-Essen using 160 MeV protons impinging a movable PMMA target. A single collimated detector was used with time-of-flight (TOF) to reduce the background due to neutrons. The target entrance rise and the Bragg peak falloff retrieval precision was determined as a function of incident proton number by a fitting procedure using independent data sets. Assuming improved sensitivity of this camera design by using a greater number of detectors, retrieval precisions of 1 to 2 mm (rms) are expected for a clinical pencil beam. TOF improves the contrast-to-noise ratio and the performance of the method significantly.

  11. GCT, the Gamma-ray Cherenkov Telescope for multi-TeV science with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Sol, H.; Dournaux, J.-L.; Laporte, P.

    2016-12-01

    GCT is a gamma-ray telescope proposed for the high-energy section of the Cherenkov Telescope Array (CTA). A GCT prototype telescope has been designed, built and installed at the Observatoire de Paris in Meudon. Equipped with the first GCT prototype camera developed by an international collaboration, the complete GCT prototype was inaugurated in December 2015, after getting its first Cherenkov light on the night sky in November. The phase of tests, assessment, and optimisation is now coming to an end. Pre-production of the first GCT telescopes and cameras should start in 2017, for an installation on the Chilean site of CTA in 2018.

  12. Effect of the cadmium chloride treatment on RF sputtered Cd{sub 0.6}Zn{sub 0.4}Te films for application in multijunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimpi, Tushar M., E-mail: mechanical.tushar@gmail.com; Kephart, Jason M.; Swanson, Drew E.

    Single phase Cd{sub 0.6}Zn{sub 0.4}Te (CdZnTe) films of 1 μm thickness were deposited by radio frequency planar magnetron sputter deposition on commercial soda lime glass samples coated with fluorine-doped tin oxide and cadmium sulphide (CdS). The stack was then treated with cadmium chloride (CdCl{sub 2}) at different temperatures using a constant treatment time. The effect of the CdCl{sub 2} treatment was studied using optical, materials, and electrical characterization of the samples and compared with the as-deposited CdZnTe film with the same stack configuration. The band gap deduced from Tauc plots on the as-deposited CdZnTe thin film was 1.72 eV. The depositedmore » film had good crystalline quality with a preferred orientation along the {111} plane. After the CdCl{sub 2} treatment, the absorption edge shifted toward longer wavelength region and new peaks corresponding to cadmium telluride (CdTe) emerged in the x-ray diffraction pattern. This suggested loss of zinc after the CdCl{sub 2} treatment. The cross sectional transmission electron microscope images of the sample treated at 400 °C and the energy dispersive elemental maps revealed the absence of chlorine along the grain boundaries of CdZnTe and residual CdTe. The presence of chlorine in the CdTe devices plays a vital role in drastically improving the device performance which was not observed in CdZnTe samples treated with CdCl{sub 2}. The loss of zinc from the surface and incomplete recrystallization of the grains together with the presence of high densities of stacking faults were observed. The surface images using scanning electron microscopy showed that the morphology of the grains changed from small spherical shape to large grains formed due to the fusion of small grains with distinct grain boundaries visible at the higher CdCl{sub 2} treatment temperatures. The absence of chlorine along the grain boundaries, incomplete recrystallization and distinct grain boundaries is understood to cause the poor performance of the fabricated devices.« less

  13. Test apparatus to monitor time-domain signals from semiconductor-detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Haston, Kyle; Barber, H. Bradford; Furenlid, Lars R.; Salçin, Esen; Bora, Vaibhav

    2011-10-01

    Pixellated semiconductor detectors, such as CdZnTe, CdTe, or TlBr, are used for gamma-ray imaging in medicine and astronomy. Data analysis for these detectors typically estimates the position (x, y, z) and energy (E) of each interacting gamma ray from a set of detector signals {Si} corresponding to completed charge transport on the hit pixel and any of its neighbors that take part in charge sharing, plus the cathode. However, it is clear from an analysis of signal induction, that there are transient signal on all pixel electrodes during the charge transport and, when there is charge trapping, small negative residual signals on all electrodes. If we wish to optimally obtain the event parameters, we should take all these signals into account. We wish to estimate x,y,z and E from the set of all electrode signals, {Si(t)}, including time dependence, using maximum-likelihood techniques[1]. To do this, we need to determine the probability of the electrode signals, given the event parameters {x, y, z, E}, i.e. Pr( {Si(t)} | {x, y, z, E} ). Thus we need to map the detector response of all pixels, {Si(t)}, for a large number of events with known x,y,z and E.In this paper we demonstrate the existence of the transient signals and residual signals and determine their magnitudes. They are typically 50-100 times smaller than the hit-pixel signals. We then describe development of an apparatus to measure the response of a 16-pixel semiconductor detector and show some preliminary results. We also discuss techniques for measuring the event parameters for individual gamma-ray interactions, a requirement for determining Pr( {Si(t)} | {x, y, z, E}).

  14. Charge-sensitive front-end electronics with operational amplifiers for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Födisch, P.; Berthel, M.; Lange, B.; Kirschke, T.; Enghardt, W.; Kaever, P.

    2016-09-01

    Cadmium zinc telluride (CdZnTe, CZT) radiation detectors are suitable for a variety of applications, due to their high spatial resolution and spectroscopic energy performance at room temperature. However, state-of-the-art detector systems require high-performance readout electronics. Though an application-specific integrated circuit (ASIC) is an adequate solution for the readout, requirements of high dynamic range and high throughput are not available in any commercial circuit. Consequently, the present study develops the analog front-end electronics with operational amplifiers for an 8×8 pixelated CZT detector. For this purpose, we modeled an electrical equivalent circuit of the CZT detector with the associated charge-sensitive amplifier (CSA). Based on a detailed network analysis, the circuit design is completed by numerical values for various features such as ballistic deficit, charge-to-voltage gain, rise time, and noise level. A verification of the performance is carried out by synthetic detector signals and a pixel detector. The experimental results with the pixel detector assembly and a 22Na radioactive source emphasize the depth dependence of the measured energy. After pulse processing with depth correction based on the fit of the weighting potential, the energy resolution is 2.2% (FWHM) for the 511 keV photopeak.

  15. Evaluation of a CdTe semiconductor based compact γ camera for sentinel lymph node imaging.

    PubMed

    Russo, Paolo; Curion, Assunta S; Mettivier, Giovanni; Esposito, Michela; Aurilio, Michela; Caracò, Corradina; Aloj, Luigi; Lastoria, Secondo

    2011-03-01

    The authors assembled a prototype compact gamma-ray imaging probe (MediPROBE) for sentinel lymph node (SLN) localization. This probe is based on a semiconductor pixel detector. Its basic performance was assessed in the laboratory and clinically in comparison with a conventional gamma camera. The room-temperature CdTe pixel detector (1 mm thick) has 256 x 256 square pixels arranged with a 55 microm pitch (sensitive area 14.08 x 14.08 mm2), coupled pixel-by-pixel via bump-bonding to the Medipix2 photon-counting readout CMOS integrated circuit. The imaging probe is equipped with a set of three interchangeable knife-edge pinhole collimators (0.94, 1.2, or 2.1 mm effective diameter at 140 keV) and its focal distance can be regulated in order to set a given field of view (FOV). A typical FOV of 70 mm at 50 mm skin-to-collimator distance corresponds to a minification factor 1:5. The detector is operated at a single low-energy threshold of about 20 keV. For 99 mTc, at 50 mm distance, a background-subtracted sensitivity of 6.5 x 10(-3) cps/kBq and a system spatial resolution of 5.5 mm FWHM were obtained for the 0.94 mm pinhole; corresponding values for the 2.1 mm pinhole were 3.3 x 10(-2) cps/kBq and 12.6 mm. The dark count rate was 0.71 cps. Clinical images in three patients with melanoma indicate detection of the SLNs with acquisition times between 60 and 410 s with an injected activity of 26 MBq 99 mTc and prior localization with standard gamma camera lymphoscintigraphy. The laboratory performance of this imaging probe is limited by the pinhole collimator performance and the necessity of working in minification due to the limited detector size. However, in clinical operative conditions, the CdTe imaging probe was effective in detecting SLNs with adequate resolution and an acceptable sensitivity. Sensitivity is expected to improve with the future availability of a larger CdTe detector permitting operation at shorter distances from the patient skin.

  16. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komura, S.; Takada, A.; Mizumura, Y.

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factormore » over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.« less

  17. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    NASA Astrophysics Data System (ADS)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2017-04-01

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 107 s exposure and over 20 GRBs down to a 6 × 10-6 erg cm-2 fluence and 10% polarization during a one-year observation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turkington, T.

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less

  19. TU-H-206-01: An Automated Approach for Identifying Geometric Distortions in Gamma Cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, S; Nelson, J; Samei, E

    2016-06-15

    Purpose: To develop a clinically-deployable, automated process for detecting artifacts in routine nuclear medicine (NM) quality assurance (QA) bar phantom images. Methods: An artifact detection algorithm was created to analyze bar phantom images as part of an ongoing QA program. A low noise, high resolution reference image was acquired from an x-ray of the bar phantom with a Philips Digital Diagnost system utilizing image stitching. NM bar images, acquired for 5 million counts over a 512×512 matrix, were registered to the template image by maximizing mutual information (MI). The MI index was used as an initial test for artifacts; lowmore » values indicate an overall presence of distortions regardless of their spatial location. Images with low MI scores were further analyzed for bar linearity, periodicity, alignment, and compression to locate differences with respect to the template. Findings from each test were spatially correlated and locations failing multiple tests were flagged as potential artifacts requiring additional visual analysis. The algorithm was initially deployed for GE Discovery 670 and Infinia Hawkeye gamma cameras. Results: The algorithm successfully identified clinically relevant artifacts from both systems previously unnoticed by technologists performing the QA. Average MI indices for artifact-free images are 0.55. Images with MI indices < 0.50 have shown 100% sensitivity and specificity for artifact detection when compared with a thorough visual analysis. Correlation of geometric tests confirms the ability to spatially locate the most likely image regions containing an artifact regardless of initial phantom orientation. Conclusion: The algorithm shows the potential to detect gamma camera artifacts that may be missed by routine technologist inspections. Detection and subsequent correction of artifacts ensures maximum image quality and may help to identify failing hardware before it impacts clinical workflow. Going forward, the algorithm is being deployed to monitor data from all gamma cameras within our health system.« less

  20. Light-Trap: a SiPM upgrade for VHE astronomy and beyond

    NASA Astrophysics Data System (ADS)

    Ward, J. E.; Cortina, J.; Guberman, D.

    2016-11-01

    Ground-based gamma-ray astronomy in the Very High Energy (VHE, E > 100 GeV) regime has fast become one of the most interesting and productive sub-fields of astrophysics today. Utilizing the Imaging Atmospheric Cherenkov Technique (IACT) to reconstruct the energy and direction of incoming gamma-ray photons from the universe, several source-classes have been revealed by previous and current generations of IACT telescopes (e.g. Whipple, MAGIC, HESS and VERITAS). The next generation pointing IACT experiment, the Cherenkov Telescope Array (CTA), will provide increased sensitivity across a wider energy range and with better angular resolution. With the development of CTA, the future of IACT pointing arrays is being directed towards having more and more telescopes (and hence cameras), and therefore the need to develop low-cost pixels with acceptable light-collection efficiency is clear. One of the primary paths to the above goal is to replace Photomultiplier Tubes (PMTs) with Silicon-PMs (SiPMs) as the pixels in IACT telescope cameras. However SiPMs are not yet mature enough to replace PMTs for several reasons: sensitivity to unwanted longer wavelengths while lacking sensitivity at short wavelengths, small physical area, high cost, optical cross-talk and dark rates. Here we propose a novel method to build relatively low-cost SiPM-based pixels utilising a disk of wavelength-shifting material, which overcomes some of these drawbacks by collecting light over a larger area than standard SiPMs and improving sensitivity to shorter wavelengths while reducing background. We aim to optimise the design of such pixels, integrating them into an actual 7-pixel cluster which will be inserted into a MAGIC camera and tested during real observations. Results of simulations, laboratory measurements and the current status of the cluster design and development will be presented.

  1. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates.

    PubMed

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2018-02-08

    In this work, we irradiated a high-definition (HD) industrial camera based on a commercial-off-the-shelf (COTS) CMOS image sensor (CIS) with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR) versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB). The work is valuable and can provide suggestion for camera users in the radiation field.

  2. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates

    PubMed Central

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2018-01-01

    In this work, we irradiated a high-definition (HD) industrial camera based on a commercial-off-the-shelf (COTS) CMOS image sensor (CIS) with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR) versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB). The work is valuable and can provide suggestion for camera users in the radiation field. PMID:29419782

  3. Photon counting readout pixel array in 0.18-μm CMOS technology for on-line gamma-ray imaging of 103palladium seeds for permanent breast seed implant (PBSI) brachytherapy

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.

    2008-03-01

    Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.

  4. Development of a Compton camera for prompt-gamma medical imaging

    NASA Astrophysics Data System (ADS)

    Aldawood, S.; Thirolf, P. G.; Miani, A.; Böhmer, M.; Dedes, G.; Gernhäuser, R.; Lang, C.; Liprandi, S.; Maier, L.; Marinšek, T.; Mayerhofer, M.; Schaart, D. R.; Lozano, I. Valencia; Parodi, K.

    2017-11-01

    A Compton camera-based detector system for photon detection from nuclear reactions induced by proton (or heavier ion) beams is under development at LMU Munich, targeting the online range verification of the particle beam in hadron therapy via prompt-gamma imaging. The detector is designed to be capable to reconstruct the photon source origin not only from the Compton scattering kinematics of the primary photon, but also to allow for tracking of the secondary Compton-scattered electrons, thus enabling a γ-source reconstruction also from incompletely absorbed photon events. The Compton camera consists of a monolithic LaBr3:Ce scintillation crystal, read out by a multi-anode PMT acting as absorber, preceded by a stacked array of 6 double-sided silicon strip detectors as scatterers. The detector components have been characterized both under offline and online conditions. The LaBr3:Ce crystal exhibits an excellent time and energy resolution. Using intense collimated 137Cs and 60Co sources, the monolithic scintillator was scanned on a fine 2D grid to generate a reference library of light amplitude distributions that allows for reconstructing the photon interaction position using a k-Nearest Neighbour (k-NN) algorithm. Systematic studies were performed to investigate the performance of the reconstruction algorithm, revealing an improvement of the spatial resolution with increasing photon energy to an optimum value of 3.7(1)mm at 1.33 MeV, achieved with the Categorical Average Pattern (CAP) modification of the k-NN algorithm.

  5. Study of the polarimetric performance of a Si/CdTe semiconductor Compton camera for the Hitomi satellite

    NASA Astrophysics Data System (ADS)

    Katsuta, Junichiro; Edahiro, Ikumi; Watanabe, Shin; Odaka, Hirokazu; Uchida, Yusuke; Uchida, Nagomi; Mizuno, Tsunefumi; Fukazawa, Yasushi; Hayashi, Katsuhiro; Habata, Sho; Ichinohe, Yuto; Kitaguchi, Takao; Ohno, Masanori; Ohta, Masayuki; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tajima, Hiroyasu; Yuasa, Takayuki; Itou, Masayoshi; SGD Team

    2016-12-01

    Gamma-ray polarization offers a unique probe into the geometry of the γ-ray emission process in celestial objects. The Soft Gamma-ray Detector (SGD) onboard the X-ray observatory Hitomi is a Si/CdTe Compton camera and is expected to be an excellent polarimeter, as well as a highly sensitive spectrometer due to its good angular coverage and resolution for Compton scattering. A beam test of the final-prototype for the SGD Compton camera was conducted to demonstrate its polarimetric capability and to verify and calibrate the Monte Carlo simulation of the instrument. The modulation factor of the SGD prototype camera, evaluated for the inner and outer parts of the CdTe sensors as absorbers, was measured to be 0.649-0.701 (inner part) and 0.637-0.653 (outer part) at 122.2 keV and 0.610-0.651 (inner part) and 0.564-0.592 (outer part) at 194.5 keV at varying polarization angles with respect to the detector. This indicates that the relative systematic uncertainty of the modulation factor is as small as ∼ 3 % .

  6. Inversion of the conical Radon transform with vertices on a surface of revolution arising in an application of a Compton camera

    NASA Astrophysics Data System (ADS)

    Moon, Sunghwan

    2017-06-01

    A Compton camera has been introduced for use in single photon emission computed tomography to improve the low efficiency of a conventional gamma camera. In general, a Compton camera brings about the conical Radon transform. Here we consider a conical Radon transform with the vertices on a rotation symmetric set with respect to a coordinate axis. We show that this conical Radon transform can be decomposed into two transforms: the spherical sectional transform and the weighted fan beam transform. After finding inversion formulas for these two transforms, we provide an inversion formula for the conical Radon transform.

  7. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  8. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  9. Impact of an external radiation field on handheld XRF measurements for nuclear forensics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steeb, Jennifer L.; Mertz, Carol J.; Finck, Martha R.

    X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld, portable XRF device by applying an external radiation field (10 mR/h to 17 R/h) using two types of radiography sources: a 60Co radiography camera to observe effects from high-energy gamma emissions and an 192Ir radiography camera to observe effects from several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter x-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/hr for both the 192Ir and 60Co sources.

  10. Pulse-shape discrimination of surface events in CdZnTe detectors for the COBRA experiment

    NASA Astrophysics Data System (ADS)

    Fritts, M.; Tebrügge, J.; Durst, J.; Ebert, J.; Gößling, C.; Göpfert, T.; Gehre, D.; Hagner, C.; Heidrich, N.; Homann, M.; Köttig, T.; Neddermann, T.; Oldorf, C.; Quante, T.; Rajek, S.; Reinecke, O.; Schulz, O.; Timm, J.; Wonsak, B.; Zuber, K.

    2014-06-01

    Events near the cathode and anode surfaces of a coplanar grid CdZnTe detector are identifiable by means of the interaction depth information encoded in the signal amplitudes. However, the amplitudes cannot be used to identify events near the lateral surfaces. In this paper a method is described to identify lateral surface events by means of their pulse shapes. Such identification allows for discrimination of surface alpha particle interactions from more penetrating forms of radiation, which is particularly important for rare event searches. The effectiveness of the presented technique in suppressing backgrounds due to alpha contamination in the search for neutrinoless double beta decay with the COBRA experiment is demonstrated.

  11. The MIRAX x-ray astronomy transient mission

    NASA Astrophysics Data System (ADS)

    Braga, João; Mejía, Jorge

    2006-06-01

    The Monitor e Imageador de Raios-X (MIRAX) is a small (~250 kg) X-ray astronomy satellite mission designed to monitor the central Galactic plane for transient phenomena. With a field-of-view of ~1000 square degrees and an angular resolution of ~6 arcmin, MIRAX will provide an unprecedented discovery-space coverage to study X-ray variability in detail, from fast X-ray novae to long-term (~several months) variable phenomena. Chiefly among MIRAX science objectives is its capability of providing simultaneous complete temporal coverage of the evolution of a large number of accreting black holes, including a detailed characterization of the spectral state transitions in these systems. MIRAX's instruments will include a soft X-ray (2-18 keV) and two hard X-ray (10-200 keV) coded-aperture imagers, with sensitivities of ~5 and ~2.6 mCrab/day, respectively. The hard X-ray imagers will be built at the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil, in close collaboration with the Center for Astrophysics & Space Sciences (CASS) of the University of California, San Diego (UCSD) and the Institut fur Astronomie und Astrophysik of the University of Tubingen (IAAT) in Germany; UCSD will provide the crossed-strip position-sensitive (0.5- mm spatial resolution) CdZnTe (CZT) hard X-ray detectors. The soft X-ray camera, provided by the Space Research Organization Netherlands (SRON), will be the spare flight unit of the Wide Field Cameras that flew on the Italian-Dutch satellite BeppoSAX. MIRAX is an approved mission of the Brazilian Space Agency (Agnecia Espacial Brasileira - AEB) and is scheduled to be launched in 2011 in a low-altitude (~550 km) circular equatorial orbit. In this paper we present recent developments in the mission planning and design, as well as Monte Carlo simulations performed on the GEANT-based package MGGPOD environment (Weidenspointner et al. 2004) and new algorithms for image digital processing. Simulated images of the central Galactic plane as it would be seen by MIRAX are shown.

  12. Upgraded cameras for the HESS imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gérard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-François; Gräber, Tobias; Hinton, James; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Lypova, Iryna; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, François

    2016-08-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of five imaging atmospheric Cherenkov telescopes, sensitive to cosmic gamma rays of energies between 30 GeV and several tens of TeV. Four of them started operations in 2003 and their photomultiplier tube (PMT) cameras are currently undergoing a major upgrade, with the goals of improving the overall performance of the array and reducing the failure rate of the ageing systems. With the exception of the 960 PMTs, all components inside the camera have been replaced: these include the readout and trigger electronics, the power, ventilation and pneumatic systems and the control and data acquisition software. New designs and technical solutions have been introduced: the readout makes use of the NECTAr analog memory chip, which samples and stores the PMT signals and was developed for the Cherenkov Telescope Array (CTA). The control of all hardware subsystems is carried out by an FPGA coupled to an embedded ARM computer, a modular design which has proven to be very fast and reliable. The new camera software is based on modern C++ libraries such as Apache Thrift, ØMQ and Protocol buffers, offering very good performance, robustness, flexibility and ease of development. The first camera was upgraded in 2015, the other three cameras are foreseen to follow in fall 2016. We describe the design, the performance, the results of the tests and the lessons learned from the first upgraded H.E.S.S. camera.

  13. Electronics for a prototype variable field of view PET camera using the PMT-quadrant-sharing detector array

    NASA Astrophysics Data System (ADS)

    Li, H.; Wong, Wai-Hoi; Zhang, N.; Wang, J.; Uribe, J.; Baghaei, H.; Yokoyama, S.

    1999-06-01

    Electronics for a prototype high-resolution PET camera with eight position-sensitive detector modules has been developed. Each module has 16 BGO (Bi/sub 4/Ge/sub 3/O/sub 12/) blocks (each block is composed of 49 crystals). The design goals are component and space reduction. The electronics is composed of five parts: front-end analog processing, digital position decoding, fast timing, coincidence processing and master data acquisition. The front-end analog circuit is a zone-based structure (each zone has 3/spl times/3 PMTs). Nine ADCs digitize integration signals of an active zone identified by eight trigger clusters; each cluster is composed of six photomultiplier tubes (PMTs). A trigger corresponding to a gamma ray is sent to a fast timing board to obtain a time-mark, and the nine digitized signals are passed to the position decoding board, where a real block (four PMTs) can be picked out from the zone for position decoding. Lookup tables are used for energy discrimination and to identify the gamma-hit crystal location. The coincidence board opens a 70-ns initial timing window, followed by two 20-ns true/accidental time-mark lookup table windows. The data output from the coincidence board can be acquired either in sinogram mode or in list mode with a Motorola/IRONICS VME-based system.

  14. HgCdTe Growth on 6 cm × 6 cm CdZnTe Substrates for Large-Format Dual-Band Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Vang, T.; Patten, E. A.; Radford, W. A.; Johnson, S. M.

    2010-07-01

    This paper describes molecular-beam epitaxy growth of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) dual-band device structures on large-area (6 cm × 6 cm) CdZnTe substrates. Wafer-level composition and defect mapping techniques were used to investigate the limiting mechanisms in improving the cutoff wavelength ( λ c) uniformity and reducing the defect density. Structural quality of epitaxial layers was monitored using etch pit density (EPD) measurements at various depths in the epitaxial layers. Finally, 640 × 480, 20- μm-pixel-pitch dual-band focal-plane arrays (FPAs) were fabricated to demonstrate the overall maturity of growth and fabrication processes of epitaxial layers. The MWIR/LWIR dual-band layers, at optimized growth conditions, show a λ c variation of ±0.15 μm across a 6 cm × 6 cm CdZnTe substrate, a uniform low macrodefect density with an average of 1000 cm-2, and an average EPD of 1.5 × 105 cm-2. FPAs fabricated using these layers show band 1 (MWIR) noise equivalent temperature difference (NETD) operability of 99.94% and band 2 (LWIR) NETD operability of 99.2%, which are among the highest reported to date.

  15. Directional Unfolded Source Term (DUST) for Compton Cameras.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean

    2018-03-01

    A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

  16. Ga:Ge array development

    NASA Technical Reports Server (NTRS)

    Young, Erick T.; Rieke, G. H.; Low, Frank J.; Haller, E. E.; Beeman, J. W.

    1989-01-01

    Work at the University of Arizona and at Lawrence Berkeley Laboratory on the development of a far infrared array camera for the Multiband Imaging Photometer on the Space Infrared Telescope Facility (SIRTF) is discussed. The camera design uses stacked linear arrays of Ge:Ga photoconductors to make a full two-dimensional array. Initial results from a 1 x 16 array using a thermally isolated J-FET readout are presented. Dark currents below 300 electrons s(exp -1) and readout noises of 60 electrons were attained. Operation of these types of detectors in an ionizing radiation environment are discussed. Results of radiation testing using both low energy gamma rays and protons are given. Work on advanced C-MOS cascode readouts that promise lower temperature operation and higher levels of performance than the current J-FET based devices is described.

  17. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Bo; Wei, Tingcun; Gao, Wu

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of themore » whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a power consumption of 8 mW per channel. The linearity error is lower than 1% and the overall gain of the readout channel is 165 V/pC. The crosstalk between the channels is less than 3%. By connecting the readout ASIC to a CdZnTe detector, we obtained a γ-ray spectrum, the energy resolution is 5.1% at the 59.5-keV line of {sup 241}Am source. (authors)« less

  18. Toward Simultaneous Real-Time Fluoroscopic and Nuclear Imaging in the Intervention Room.

    PubMed

    Beijst, Casper; Elschot, Mattijs; Viergever, Max A; de Jong, Hugo W A M

    2016-01-01

    To investigate the technical feasibility of hybrid simultaneous fluoroscopic and nuclear imaging. An x-ray tube, an x-ray detector, and a gamma camera were positioned in one line, enabling imaging of the same field of view. Since a straightforward combination of these elements would block the lines of view, a gamma camera setup was developed to be able to view around the x-ray tube. A prototype was built by using a mobile C-arm and a gamma camera with a four-pinhole collimator. By using the prototype, test images were acquired and sensitivity, resolution, and coregistration error were analyzed. Nuclear images (two frames per second) were acquired simultaneously with fluoroscopic images. Depending on the distance from point source to detector, the system resolution was 1.5-1.9-cm full width at half maximum, the sensitivity was (0.6-1.5) × 10(-5) counts per decay, and the coregistration error was -0.13 to 0.15 cm. With good spatial and temporal alignment of both modalities throughout the field of view, fluoroscopic images can be shown in grayscale and corresponding nuclear images in color overlay. Measurements obtained with the hybrid imaging prototype device that combines simultaneous fluoroscopic and nuclear imaging of the same field of view have demonstrated the feasibility of real-time simultaneous hybrid imaging in the intervention room. © RSNA, 2015

  19. Intraoperative Imaging Guidance for Sentinel Node Biopsy in Melanoma Using a Mobile Gamma Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dengel, Lynn T; Judy, Patricia G; Petroni, Gina R

    2011-04-01

    The objective is to evaluate the sensitivity and clinical utility of intraoperative mobile gamma camera (MGC) imaging in sentinel lymph node biopsy (SLNB) in melanoma. The false-negative rate for SLNB for melanoma is approximately 17%, for which failure to identify the sentinel lymph node (SLN) is a major cause. Intraoperative imaging may aid in detection of SLN near the primary site, in ambiguous locations, and after excision of each SLN. The present pilot study reports outcomes with a prototype MGC designed for rapid intraoperative image acquisition. We hypothesized that intraoperative use of the MGC would be feasible and that sensitivitymore » would be at least 90%. From April to September 2008, 20 patients underwent Tc99 sulfur colloid lymphoscintigraphy, and SLNB was performed with use of a conventional fixed gamma camera (FGC), and gamma probe followed by intraoperative MGC imaging. Sensitivity was calculated for each detection method. Intraoperative logistical challenges were scored. Cases in which MGC provided clinical benefit were recorded. Sensitivity for detecting SLN basins was 97% for the FGC and 90% for the MGC. A total of 46 SLN were identified: 32 (70%) were identified as distinct hot spots by preoperative FGC imaging, 31 (67%) by preoperative MGC imaging, and 43 (93%) by MGC imaging pre- or intraoperatively. The gamma probe identified 44 (96%) independent of MGC imaging. The MGC provided defined clinical benefit as an addition to standard practice in 5 (25%) of 20 patients. Mean score for MGC logistic feasibility was 2 on a scale of 1-9 (1 = best). Intraoperative MGC imaging provides additional information when standard techniques fail or are ambiguous. Sensitivity is 90% and can be increased. This pilot study has identified ways to improve the usefulness of an MGC for intraoperative imaging, which holds promise for reducing false negatives of SLNB for melanoma.« less

  20. Septal penetration correction in I-131 imaging following thyroid cancer treatment

    NASA Astrophysics Data System (ADS)

    Barrack, Fiona; Scuffham, James; McQuaid, Sarah

    2018-04-01

    Whole body gamma camera images acquired after I-131 treatment for thyroid cancer can suffer from collimator septal penetration artefacts because of the high energy of the gamma photons. This results in the appearance of ‘spoke’ artefacts, emanating from regions of high activity concentration, caused by the non-isotropic attenuation of the collimator. Deconvolution has the potential to reduce such artefacts, by taking into account the non-Gaussian point-spread-function (PSF) of the system. A Richardson–Lucy deconvolution algorithm, with and without prior scatter-correction was tested as a method of reducing septal penetration in planar gamma camera images. Phantom images (hot spheres within a warm background) were acquired and deconvolution using a measured PSF was applied. The results were evaluated through region-of-interest and line profile analysis to determine the success of artefact reduction and the optimal number of deconvolution iterations and damping parameter (λ). Without scatter-correction, the optimal results were obtained with 15 iterations and λ  =  0.01, with the counts in the spokes reduced to 20% of the original value, indicating a substantial decrease in their prominence. When a triple-energy-window scatter-correction was applied prior to deconvolution, the optimal results were obtained with six iterations and λ  =  0.02, which reduced the spoke counts to 3% of the original value. The prior application of scatter-correction therefore produced the best results, with a marked change in the appearance of the images. The optimal settings were then applied to six patient datasets, to demonstrate its utility in the clinical setting. In all datasets, spoke artefacts were substantially reduced after the application of scatter-correction and deconvolution, with the mean spoke count being reduced to 10% of the original value. This indicates that deconvolution is a promising technique for septal penetration artefact reduction that could potentially improve the diagnostic accuracy of I-131 imaging. Novelty and significance This work has demonstrated that scatter correction combined with deconvolution can be used to substantially reduce the appearance of septal penetration artefacts in I-131 phantom and patient gamma camera planar images, enable improved visualisation of the I-131 distribution. Deconvolution with symmetric PSF has previously been used to reduce artefacts in gamma camera images however this work details the novel use of an asymmetric PSF to remove the angularly dependent septal penetration artefacts.

  1. The Underwater Spectrometric System Based on CZT Detector for Survey of the Bottom of MR Reactor Pool - 13461

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potapov, Victor; Safronov, Alexey; Ivanov, Oleg

    2013-07-01

    The underwater spectrometer system for detection of irradiated nuclear fuel on the pool bottom of the reactor was elaborated. During the development process metrological studies of CdZnTe (CZT) detectors were conducted. These detectors are designed for spectrometric measurements in high radiation fields. A mathematical model based on the Monte Carlo method was created to evaluate the capability of such a system. A few experimental models were realized and the characteristics of the spectrometric system are represented. (authors)

  2. Swift-BAT: The First Year of Gamma-Ray Burst Detections

    NASA Technical Reports Server (NTRS)

    Krimm, Hans A.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift has been detecting gamma-ray bursts (GRBs) since Dec. 17,2004 and automated burst alerts have been distributed since Feb. 14,2005. Since commissioning the BAT has triggered on more than 100 GRBs, nearly all of which have been followed up by the narrow-field instruments on Swift through automatic repointing, and by ground and other satellite telescopes after rapid notification. Within seconds of a trigger the BAT produces and relays to the ground a position good to three arc minutes and a four channel light curve. A full ten minutes of event data follows on subsequent ground station passes. The burst archive has allowed us to determine ensemble burst parameters such as fluence, peak flux and duration. An overview of the properties of BAT bursts and BAT'S performance as a burst monitor will be presented in this talk. BAT is a coded aperture imaging system with a wide (approx.2 sr) field of view consisting of a large coded mask located 1 m above a 5200 cm2 array of 32.768 CdZnTe detectors. All electronics and other hardware systems on the BAT have been operating well since commissioning and there is no sign of any degradation on orbit. The flight and ground software have proven similarly robust and allow the real time localization of all bursts and the rapid derivation of burst light curves, spectra and spectral fits on the ground.

  3. Design of a Multi-Channel Low-Noise Readout ASIC for CdZnTe-Based X-Ray and γ-Ray Spectrum Analyzer

    NASA Astrophysics Data System (ADS)

    Gan, B.; Wei, T.; Gao, W.; Zheng, R.; Hu, Y.

    2015-10-01

    In this paper, we report on the recent development of a 32-channel low-noise front-end readout ASIC for cadmium zinc telluride (CdZnTe) X-ray and γ-ray detectors. Each readout channel includes a charge sensitive amplifier, a CR-RC shaping amplifier and an analog output buffer. The readout ASIC is implemented using TSMC 0.35 - μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 mm ×4.8 mm. At room temperature, the equivalent noise level of a typical channel reaches 133 e- (rms) with the input parasitic capacitance of 0 pF for the average power consumption of 2.8 mW per channel. The linearity error is less than ±2% and the input energy dynamic range of the readout ASIC is from 10 keV to 1 MeV. The crosstalk between the channels is less than 0.4%. By connecting the readout ASIC to a CdZnTe detector, we obtained a γ-ray spectrum, the energy resolution is 1.8% at the 662-keV line of 137Cs source.

  4. Ultra-long Duration Balloon Mission Concept Study: EXIST-LITE Hard X-ray Imaging Survey

    NASA Technical Reports Server (NTRS)

    2003-01-01

    We carried out a mission concept Study for an ultra-long duration balloon (ULDB) mission to conduct a high-sensitivity hard x-ray (approx. 20-600 keV) imaging sky survey. The EXIST-LITE concept has been developed, and critical detector technologies for realistic fabrication of very large area Cd-Zn-Te imaging detector arrays are now much better understood. A ULDB mission such as EXIST-LITE is now even more attractive as a testbed for the full Energetic X-ray Imaging Survey Telescope (EXIST) mission, recommended by the Decadal Survey, and now included in the NASA Roadmap and Strategic Plan as one of the 'Einstein Probes'. In this (overdue!) Final Report we provide a brief update for the science opportunities possible with a ULDB mission such as EXIST-LITE and relate these to upcoming missions (INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift) as well as the ultimate very high sensitivity sky survey mission EXIST. We then review the progress made over this investigation in Detector/Telescope design concept, Gondola and Mission design concept, and Data Handling/Analysis.

  5. An Online Change of Activity in Energy Spectrum for Detection on an Early Intervention Robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudergui, K.; Laine, F.; Montagu, T.

    With the growth of industrial risks and the multiplication of CBRNe (Chemical Biological Radiological and explosive) attacks through toxic chemicals, biological or radiological threats, public services and military authorities face with increasingly critical situations, whose management is strongly conditioned by fast and reliable establishment of an informative diagnostic. Right after an attack, the five first minutes are crucial to define the various scenarios and the most dangerous for a human intervention. Therefore the use of robots is considered essential by all stakeholders of security. In this context, the SISPEO project (Systeme d'Intervention Sapeurs Pompiers Robotise) aims to create/build/design a robustmore » response through a robotic platform for early intervention services such as civil and military security in hostile environments. CEA LIST has proposed an adapted solution to detect and characterize nuclear and radiological risks online and in motion, using a miniature embedded CdZnTe (CZT) crystal Gamma-ray spectrometer. This paper presents experimental results for this miniature embedded CZT spectrometer and its associated mathematical method to detect and characterize radiological threats online and in motion. (authors)« less

  6. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    NASA Astrophysics Data System (ADS)

    Guarino, V.; Vassiliev, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Romani, R.; Wagner, R.; Woods, M.

    2009-05-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 20 GeV to 200 TeV is based on an array of 50-100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of IACTs. In this submission, we focus on the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic optical system originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes, such as cold and hot glass slumping, cured CFRP, and electroforming, provide new opportunities for cost effective solutions for the design of the optical system. We explore capabilities of these mirror fabrication methods for the AGIS project and alignment methods for optical systems. We also study a mechanical structure which will provide support points for mirrors and camera design driven by the requirement of minimizing the deflections of the mirror support structures.

  7. Inferred UV Fluence Focal-Spot Profiles from Soft X-Ray Pinhole Camera Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Theobald, W.; Sorce, C.; Epstein, R.; Keck, R. L.; Kellogg, C.; Kessler, T. J.; Kwiatkowski, J.; Marshall, F. J.; Seka, W.; Shvydky, A.; Stoeckl, C.

    2017-10-01

    The drive uniformity of OMEGA cryogenic implosions is affected by UV beamfluence variations on target, which require careful monitoring at full laser power. This is routinely performed with multiple pinhole cameras equipped with charge-injection devices (CID's) that record the x-ray emission in the 3- to 7-keV photon energy range from an Au-coated target. The technique relies on the knowledge of the relation between x-ray fluence Fx and UV fluence FUV ,Fx FUVγ , with a measured γ = 3.42 for the CID-based diagnostic and 1-ns laser pulse. It is demonstrated here that using a back-thinned charge-coupled-device camera with softer filtration for x-rays with photon energies <2 keV and well calibrated pinhole provides a lower γ 2 and a larger dynamic range in the measured UV fluence. Inferred UV fluence profiles were measured for 100-ps and 1-ns laser pulses and were compared to directly measured profiles from a UV equivalent-target-plane diagnostic. Good agreement between both techniques is reported for selected beams. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. CZT Detector Development for New Generation Hard-X Astronomical Instruments

    NASA Astrophysics Data System (ADS)

    Uslenghi, Michela; Conti, Giancarlo; D'Angelo, Sergio; Fiorini, Mauro; Quadrini, Egidio M.; Natalucci, Lorenzo; Ubertini, Pietro

    2006-04-01

    In the context of the definition of a future European gamma-ray mission, following the now on-orbit INTEGRAL observatory, we are carrying out a feasibility study on a Gamma Ray Wide Field Camera (5-500 KeV) for transient event detection. Recent achievements in high energy astronomy have validated the CZT detectors performances in terms of good spatial resolution, detection efficiency, energy resolution and low noise at room temperature. We started a development program aimed to explore the possibilities to improve and optimize the performance of this kind of detectors, acting at the level of both the readout system and crystal quality. Preliminary results of characterization of pixelated crystals provided by IMARAD (now Orbotech) are presented, along with their analysis and interpretation based on an analytical model of signal formation.

  9. Simple, fast, and low-cost camera-based water content measurement with colorimetric fluorescent indicator

    NASA Astrophysics Data System (ADS)

    Song, Seok-Jeong; Kim, Tae-Il; Kim, Youngmi; Nam, Hyoungsik

    2018-05-01

    Recently, a simple, sensitive, and low-cost fluorescent indicator has been proposed to determine water contents in organic solvents, drugs, and foodstuffs. The change of water content leads to the change of the indicator's fluorescence color under the ultra-violet (UV) light. Whereas the water content values could be estimated from the spectrum obtained by a bulky and expensive spectrometer in the previous research, this paper demonstrates a simple and low-cost camera-based water content measurement scheme with the same fluorescent water indicator. Water content is calculated over the range of 0-30% by quadratic polynomial regression models with color information extracted from the captured images of samples. Especially, several color spaces such as RGB, xyY, L∗a∗b∗, u‧v‧, HSV, and YCBCR have been investigated to establish the optimal color information features over both linear and nonlinear RGB data given by a camera before and after gamma correction. In the end, a 2nd order polynomial regression model along with HSV in a linear domain achieves the minimum mean square error of 1.06% for a 3-fold cross validation method. Additionally, the resultant water content estimation model is implemented and evaluated in an off-the-shelf Android-based smartphone.

  10. The effect of guar gum and fiber-enriched wheat bran on gastric emptying of a semisolid meal in healthy subjects.

    PubMed

    Rydning, A; Berstad, A; Berstad, T; Hertzenberg, L

    1985-04-01

    The effect of physiological doses of guar gum (Guarem), 5 g, and fiber-enriched wheat bran (Fiberform), 10.5 g, on gastric emptying was studied by two different methods in healthy subjects: by a simple isotope localization monitor placed over the upper part of the abdomen and by gamma camera. The fiber preparations were added to a semisolid meal consisting of wheatmeal porridge and juice, using technetium-99 DTPA as a marker. The gamma camera showed no effect of fiber on gastric emptying. The isotope localization monitor, however, indicated that Fiberform prevented a postprandial accumulation of the meal within the upper part of the stomach. The simple isotope localization monitor cannot be recommended for measurements of gastric emptying.

  11. Nonvolatile gate effect in a ferroelectric-semiconductor quantum well.

    PubMed

    Stolichnov, Igor; Colla, Enrico; Setter, Nava; Wojciechowski, Tomasz; Janik, Elzbieta; Karczewski, Grzegorz

    2006-12-15

    Field effect transistors with ferroelectric gates would make ideal rewritable nonvolatile memories were it not for the severe problems in integrating the ferroelectric oxide directly on the semiconductor channel. We propose a powerful way to avoid these problems using a gate material that is ferroelectric and semiconducting simultaneously. First, ferroelectricity in semiconductor (Cd,Zn)Te films is proven and studied using modified piezoforce scanning probe microscopy. Then, a rewritable field effect device is demonstrated by local poling of the (Cd,Zn)Te layer of a (Cd,Zn)Te/CdTe quantum well, provoking a reversible, nonvolatile change in the resistance of the 2D electron gas. The results point to a potential new family of nanoscale one-transistor memories.

  12. Ground calibration of the spatial response and quantum efficiency of the CdZnTe hard x-ray detectors for NuSTAR

    NASA Astrophysics Data System (ADS)

    Grefenstette, Brian W.; Bhalerao, Varun; Cook, W. Rick; Harrison, Fiona A.; Kitaguchi, Takao; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa; Rana, Vikram

    2017-08-01

    Pixelated Cadmium Zinc Telluride (CdZnTe) detectors are currently flying on the Nuclear Spectroscopic Telescope ARray (NuSTAR) NASA Astrophysics Small Explorer. While the pixel pitch of the detectors is ≍ 605 μm, we can leverage the detector readout architecture to determine the interaction location of an individual photon to much higher spatial accuracy. The sub-pixel spatial location allows us to finely oversample the point spread function of the optics and reduces imaging artifacts due to pixelation. In this paper we demonstrate how the sub-pixel information is obtained, how the detectors were calibrated, and provide ground verification of the quantum efficiency of our Monte Carlo model of the detector response.

  13. [Results of the EGRET Detector Program

    NASA Technical Reports Server (NTRS)

    Carter-Lewis, D. A.

    1998-01-01

    This NASA grant has funded studies of cosmic objects observed by both the EGRET detector aboard the Compton Gamma-ray Observatory and Whipple Gamma-ray imaging telescope. The former has sensitivity up to a few GeV and latter has sensitivity starting at about 200 GeV extending up to beyond 10 TeV. Thus these instruments probe some of the most energetic phenomena in the universe. This program has been in place for several years and led to important results referred to below. The Whipple Observatory Imaging Cherenkov Telescope consists of a 10-meter reflector with a nanosecond photomultiplier-tube camera at the focal plane. During the time period covered by this grant, it had either 109 pixels or 151 pixels on a 1/4 degree hexagonal pattern. As a TeV gamma ray enters the atmosphere, it produces an electron/positron pair initiating an extensive air shower. Cherenkov light from the electrons and positrons in the shower form an image of the shower at the phototube camera. The shape and intensity of this image is used to distinguish gamma-ray initiated showers from cosmic-ray (largely proton and alpha-particle) background showers and to derive an energy estimate for the primary gamma-ray. The Whipple Observatory gamma-ray collaboration pioneered this imaging technique which normally rejects over 99 percent of the cosmic-ray background while keeping over 70 percent of the gamma-ray signal. One of its key features is 2 large collection area which can exceed 50,000 meters. This grant covered primarily correlated observations of Markarian 421 and observations of the Cygnus region. The former resulted in a multiwavelength campaign showing correlations in several wavebands. The TeV data showed dramatic variability with the emission characterized by day-scale flickering and with now well defined steady component.

  14. Positron emission particle tracking using a modular positron camera

    NASA Astrophysics Data System (ADS)

    Parker, D. J.; Leadbeater, T. W.; Fan, X.; Hausard, M. N.; Ingram, A.; Yang, Z.

    2009-06-01

    The technique of positron emission particle tracking (PEPT), developed at Birmingham in the early 1990s, enables a radioactively labelled tracer particle to be accurately tracked as it moves between the detectors of a "positron camera". In 1999 the original Birmingham positron camera, which consisted of a pair of MWPCs, was replaced by a system comprising two NaI(Tl) gamma camera heads operating in coincidence. This system has been successfully used for PEPT studies of a wide range of granular and fluid flow processes. More recently a modular positron camera has been developed using a number of the bismuth germanate (BGO) block detectors from standard PET scanners (CTI ECAT 930 and 950 series). This camera has flexible geometry, is transportable, and is capable of delivering high data rates. This paper presents simple models of its performance, and initial experience of its use in a range of geometries and applications.

  15. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  16. Rise Time of the Simulated VERITAS 12 m Davies-Cotton Reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Richard J.

    The Very Energetic Radiation Imaging Telescope Array System (VERITAS) will utilise Imaging Atmospheric Cherenkov Telescopes (IACTs) based on a Davies-Cotton design with f-number f/1.0 to detect cosmic gamma-rays. Unlike a parabolic reflector, light from the Davies-Cotton does not arrive isochronously at the camera. Here the effect of the telescope geometry on signal rise-time is examined. An almost square-pulse arrival time profile with a rise time of 1.7 ns is found analytically and confirmed through simulation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalemci, Emrah

    This work summarizes the efforts in Turkey to build a laboratory capable of building and testing high energy astrophysics detectors that work in space. The EC FP6 ASTRONS project contributed strongly to these efforts, and as a result a fully operational laboratory at Sabanci University have been developed. In this laboratory we test and develop Si and CdZnTe based room temperature semiconductor strip detectors and develop detector and electronics system to be used as a payload on potential small Turkish satellites.

  18. Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy

    NASA Astrophysics Data System (ADS)

    Roemer, K.; Pausch, G.; Bemmerer, D.; Berthel, M.; Dreyer, A.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Petzoldt, J.; Rohling, H.; Thirolf, P.; Wagner, A.; Wagner, L.; Weinberger, D.; Fiedler, F.

    2015-10-01

    Particle therapy in oncology is advantageous compared to classical radiotherapy due to its well-defined penetration depth. In the so-called Bragg peak, the highest dose is deposited; the tissue behind the cancerous area is not exposed. Different factors influence the range of the particle and thus the target area, e.g. organ motion, mispositioning of the patient or anatomical changes. In order to avoid over-exposure of healthy tissue and under-dosage of cancerous regions, the penetration depth of the particle has to be monitored, preferably already during the ongoing therapy session. The verification of the ion range can be performed using prompt gamma emissions, which are produced by interactions between projectile and tissue, and originate from the same location and time of the nuclear reaction. The prompt gamma emission profile and the clinically relevant penetration depth are correlated. Various imaging concepts based on the detection of prompt gamma rays are currently discussed: collimated systems with counting detectors, Compton cameras with (at least) two detector planes, or the prompt gamma timing method, utilizing the particle time-of-flight within the body. For each concept, the detection system must meet special requirements regarding energy, time, and spatial resolution. Nonetheless, the prerequisites remain the same: the gamma energy region (2 to 10 MeV), high counting rates and the stability in strong background radiation fields. The aim of this work is the comparison of different scintillation crystals regarding energy and time resolution for optimized prompt gamma detection.

  19. Breathing synchronized assessment of the chest hemodynamics: application to gamma and MR angiography

    NASA Astrophysics Data System (ADS)

    Eclancher, Bernard; Demangeat, Jean-Louis; Germain, Philippe; Baruthio, Joseph

    2003-05-01

    The project was to assess by gamma and MR angiography the bulk variations of chest blood volume related to deep and slow breathing movements. The acquisitions were performed at constant intervals on the widely moving system, without cardiac gating. Two fast enough modalities were used: a gamma-stethoscope working at 30 msec intervals for bulk volumic detection (of 99Tc labelled red cells), and MR imaging at 0.5 sec intervals well depicting displacements but not yet performing true angiography. The third modality yielding quantitative imaging was the scintillation gamma camera, but which required 30 sec signal acquisitions for each image. Frames were acquired at 1 sec intervals for up to 30 breathing cycles, and later sorted with double (inspiration and expiration) synchronization for the reconstruction of an average breathing cycle. Convergent results were obtained from the three angiographic modalities, confirming that the deep breathing movements produced inspiratory increases in bulk blood volume and caudal-median displacement of heart and great vessels, and expiratory decreases in blood volume and cranial-left displacement of heart and great vessels. Deep and slow breathing contributed effectively to thoracic blood pumping. The design of a 64x64 channels collimator has been undertaken to speed up the scintillation camera imaging acquisitions.

  20. MO-AB-206-00: Nuclear Medicine Physics and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less

  1. A Major Upgrade of the H.E.S.S. Cherenkov Cameras

    NASA Astrophysics Data System (ADS)

    Lypova, Iryna; Giavitto, Gianluca; Ashton, Terry; Balzer, Arnim; Berge, David; Brun, Francois; Chaminade, Thomas; Delagnes, Eric; Fontaine, Gerard; Füßling, Matthias; Giebels, Berrie; Glicenstein, Jean-Francois; Gräber, Tobias; Hinton, Jim; Jahnke, Albert; Klepser, Stefan; Kossatz, Marko; Kretzschmann, Axel; Lefranc, Valentin; Leich, Holger; Lüdecke, Hartmut; Manigot, Pascal; Marandon, Vincent; Moulin, Emmanuel; de Naurois, Mathieu; Nayman, Patrick; Ohm, Stefan; Penno, Marek; Ross, Duncan; Salek, David; Schade, Markus; Schwab, Thomas; Simoni, Rachel; Stegmann, Christian; Steppa, Constantin; Thornhill, Julian; Toussnel, Francois

    2017-03-01

    The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging atmospheric Cherenkov telescopes (IACTs) located in Namibia. It was built to detect Very High Energy (VHE, >100 GeV) cosmic gamma rays, and consists of four 12 m diameter Cherenkov telescopes (CT1-4), built in 2003, and a larger 28 m telescope (CT5), built in 2012. The larger mirror surface of CT5 permits to lower the energy threshold of the array down to 30 GeV. The cameras of CT1-4 are currently undergoing an extensive upgrade, with the goals of reducing their failure rate, reducing their readout dead time and improving the overall performance of the array. The entire camera electronics has been renewed from ground-up, as well as the power, ventilation and pneumatics systems, and the control and data acquisition software. Technical solutions forseen for the next-generation Cherenkov Telescope Array (CTA) observatory have been introduced, most notably the readout is based on the NECTAr analog memory chip. The camera control subsystems and the control software framework also pursue an innovative design, increasing the camera performance, robustness and flexibility. The CT1 camera has been upgraded in July 2015 and is currently taking data; CT2-4 will upgraded in Fall 2016. Together they will assure continuous operation of H.E.S.S at its full sensitivity until and possibly beyond the advent of CTA. This contribution describes the design, the testing and the in-lab and on-site performance of all components of the newly upgraded H.E.S.S. camera.

  2. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  3. A compact neutron scatter camera for field deployment

    DOE PAGES

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less

  4. Geochemistry of Vesta and Ceres: In-flight calibration of Dawn

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Feldman, W. C.; McSween, H. Y.

    2009-04-01

    The purpose of the Dawn mission is to investigate processes that contributed to the formation and early evolution of solid bodies in the solar system by exploring Vesta and Ceres, which are the two largest bodies in the main astreroid belt. Because they were formed at different heliocentric distances, Vesta and Ceres incorporated different amounts of water and other volatiles, which strongly influenced their thermal evolution. Vesta, which is thought to be the source of the basaltic, Howardite, Eucrite, and Diogenite (HED) meteorites, is dry and underwent igneous differentiation. In contrast, low-temperature, aqueous processing must have played an important role in the evolution of Ceres, which is rich in water and other volatiles, and may still contain subsurface liquid water. By exploring both Vesta and Ceres, the gradient in the composition of the solar nebula and role of water in planetary evolution can be investigated. The Dawn payload includes redundant framing cameras (FC), a visible and infrared spectrometer (VIR), and a gamma ray and neutron detector (GRaND), which, along with radio science, will measure surface geomorphology, composition, and mineralogy, and provide constraints on the internal structure of Vesta and Ceres. For both Vesta and Ceres, global mapping data will be acquired from circular polar orbits. In low altitude orbits, GRaND will map the elemental composition of Vesta and Ceres to depths less than one meter, including major rock forming elements and light elements (such as H, C, and N), which are the primary constituents of ices. GRaND consists of 21 radiation sensors, which measure the spectrum of neutrons and gamma rays originating from interactions between galactic cosmic rays and the material constituents of the asteroids and, separately, backgrounds from spacecraft materials. GRaND uses a bismuth germanate (BGO) scintillator for gamma ray spectroscopy, which has high efficiency, enabling the measurement of gamma rays up to 10 MeV, including capture gamma rays from Fe and Ti. Below 3 MeV, the BGO sensor works in combination with a 16-element array of CdZnTe semiconductors, which have relatively high resolution, enabling accurate measurement of the densely populated, low energy region of the gamma ray spectrum, which contains gamma rays from radioactive decay (K, Th, and U) and from nuclear reactions (for example, with Mg, Si, and H). Thermal, epithermal, and fast neutrons are measured using a combination of boron-loaded plastic and lithium-loaded glass scintillators. At Vesta, gamma ray and neutron spectroscopy will be used to determine geochemical trends that can be compared with HED data. For example, a scatter plot of the average atomic mass (determined from fast neutrons) and magnesium number can be used to tell the difference between diogenite and eucrite compositions, which are HED end-members. Correlations with MgO (for example, with FeO or SiO2) also strongly differentiate between diogenite and eucrite, and, in combination with optical spectroscopy, can be used to determine whether an olivine-rich mantle is exposed in Vesta's large south polar crater. At Ceres, neutron spectroscopy can be used to determine water abundance and layering (for example, ice may be present in the shallow subsurface at high latitudes), which will provide constraints on recharge and loss mechanisms (for example, emplacement via water volcanism vs. gradual replenishment from a subsurface acquifer). In addition, nuclear spectroscopy can be used to determine the possible presence of CO2 and NH3 ices on the surface of Ceres as well as the composition of non-icy materials, including the hydration state and composition of surface minerals. GRaND was calibrated in the laboratory prior to delivery to the spacecraft. In addition, the response of the instrument to the space radiation environment was measured during Earth-Mars cruise, which followed launch in September of 2007. Because the data were acquired when the energetic particle flux was minimal, the measurements are ideal for determining the background from galactic cosmic rays under conditions that would be ideal for science data acquisition at Vesta and Ceres. In February of 2009, the spacecraft will fly by Mars. At closest approach, the spacecraft will be within 500 km of Mars, providing GRaND with a strong source of planetary neutrons and gamma rays, which will be used to cross-calibrate GRaND against elemental abundance data acquired by the Mars Odyssey Gamma Ray Spectrometer instrument suite. Here, we describe the instrument response model and its application to the analysis of the space radiation background during cruise and cross-calibration against Odyssey data at Mars. The model is applied to determine the expected performance of GRaND at Vesta and Ceres.

  5. Coded-aperture Compton camera for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Farber, Aaron M.

    This dissertation describes the development of a novel gamma-ray imaging system concept and presents results from Monte Carlo simulations of the new design. Current designs for large field-of-view gamma cameras suitable for homeland security applications implement either a coded aperture or a Compton scattering geometry to image a gamma-ray source. Both of these systems require large, expensive position-sensitive detectors in order to work effectively. By combining characteristics of both of these systems, a new design can be implemented that does not require such expensive detectors and that can be scaled down to a portable size. This new system has significant promise in homeland security, astronomy, botany and other fields, while future iterations may prove useful in medical imaging, other biological sciences and other areas, such as non-destructive testing. A proof-of-principle study of the new gamma-ray imaging system has been performed by Monte Carlo simulation. Various reconstruction methods have been explored and compared. General-Purpose Graphics-Processor-Unit (GPGPU) computation has also been incorporated. The resulting code is a primary design tool for exploring variables such as detector spacing, material selection and thickness and pixel geometry. The advancement of the system from a simple 1-dimensional simulation to a full 3-dimensional model is described. Methods of image reconstruction are discussed and results of simulations consisting of both a 4 x 4 and a 16 x 16 object space mesh have been presented. A discussion of the limitations and potential areas of further study is also presented.

  6. A restraint-free small animal SPECT imaging system with motion tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisenberger, A.G.; Gleason, S.S.; Goddard, J.

    2005-06-01

    We report on an approach toward the development of a high-resolution single photon emission computed tomography (SPECT) system to image the biodistribution of radiolabeled tracers such as Tc-99m and I-125 in unrestrained/unanesthetized mice. An infrared (IR)-based position tracking apparatus has been developed and integrated into a SPECT gantry. The tracking system is designed to measure the spatial position of a mouse's head at a rate of 10-15 frames per second with submillimeter accuracy. The high-resolution, gamma imaging detectors are based on pixellated NaI(Tl) crystal scintillator arrays, position-sensitive photomultiplier tubes, and novel readout circuitry requiring fewer analog-digital converter (ADC) channels whilemore » retaining high spatial resolution. Two SPECT gamma camera detector heads based upon position-sensitive photomultiplier tubes have been built and installed onto the gantry. The IR landmark-based pose measurement and tracking system is under development to provide animal position data during a SPECT scan. The animal position and orientation data acquired by the tracking system will be used for motion correction during the tomographic image reconstruction.« less

  7. A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras

    NASA Astrophysics Data System (ADS)

    Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.

    2010-10-01

    We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.

  8. A low-count reconstruction algorithm for Compton-based prompt gamma imaging

    NASA Astrophysics Data System (ADS)

    Huang, Hsuan-Ming; Liu, Chih-Chieh; Jan, Meei-Ling; Lee, Ming-Wei

    2018-04-01

    The Compton camera is an imaging device which has been proposed to detect prompt gammas (PGs) produced by proton–nuclear interactions within tissue during proton beam irradiation. Compton-based PG imaging has been developed to verify proton ranges because PG rays, particularly characteristic ones, have strong correlations with the distribution of the proton dose. However, accurate image reconstruction from characteristic PGs is challenging because the detector efficiency and resolution are generally low. Our previous study showed that point spread functions can be incorporated into the reconstruction process to improve image resolution. In this study, we proposed a low-count reconstruction algorithm to improve the image quality of a characteristic PG emission by pooling information from other characteristic PG emissions. PGs were simulated from a proton beam irradiated on a water phantom, and a two-stage Compton camera was used for PG detection. The results show that the image quality of the reconstructed characteristic PG emission is improved with our proposed method in contrast to the standard reconstruction method using events from only one characteristic PG emission. For the 4.44 MeV PG rays, both methods can be used to predict the positions of the peak and the distal falloff with a mean accuracy of 2 mm. Moreover, only the proposed method can improve the estimated positions of the peak and the distal falloff of 5.25 MeV PG rays, and a mean accuracy of 2 mm can be reached.

  9. System Integration of FastSPECT III, a Dedicated SPECT Rodent-Brain Imager Based on BazookaSPECT Detector Technology

    PubMed Central

    Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.

    2010-01-01

    FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137

  10. An image-based array trigger for imaging atmospheric Cherenkov telescope arrays

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Krennrich, Frank; Weinstein, Amanda; Eisch, Jonathan; Byrum, Karen; Anderson, John; Drake, Gary

    2018-05-01

    It is anticipated that forthcoming, next generation, atmospheric Cherenkov telescope arrays will include a number of medium-sized telescopes that are constructed using a dual-mirror Schwarzschild-Couder configuration. These telescopes will sample a wide (8 °) field of view using a densely pixelated camera comprising over 104 individual readout channels. A readout frequency congruent with the expected single-telescope trigger rates would result in substantial data rates. To ameliorate these data rates, a novel, hardware-level Distributed Intelligent Array Trigger (DIAT) is envisioned. A copy of the DIAT operates autonomously at each telescope and uses reduced resolution imaging data from a limited subset of nearby telescopes to veto events prior to camera readout and any subsequent network transmission of camera data that is required for centralized storage or aggregation. We present the results of Monte-Carlo simulations that evaluate the efficacy of a "Parallax width" discriminator that can be used by the DIAT to efficiently distinguish between genuine gamma-ray initiated events and unwanted background events that are initiated by hadronic cosmic rays.

  11. MINER - A Mobile Imager of Neutrons for Emergency Responders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, John E. M.; Brennan, James S.; Gerling, Mark D

    2014-10-01

    We have developed a mobile fast neutron imaging platform to enhance the capabilities of emergency responders in the localization and characterization of special nuclear material. This mobile imager of neutrons for emergency responders (MINER) is based on the Neutron Scatter Camera, a large segmented imaging system that was optimized for large-area search applications. Due to the reduced size and power requirements of a man-portable system, MINER has been engineered to fit a much smaller form factor, and to be operated from either a battery or AC power. We chose a design that enabled omnidirectional (4π) imaging, with only a ~twofoldmore » decrease in sensitivity compared to the much larger neutron scatter cameras. The system was designed to optimize its performance for neutron imaging and spectroscopy, but it does also function as a Compton camera for gamma imaging. This document outlines the project activities, broadly characterized as system development, laboratory measurements, and deployments, and presents sample results in these areas. Additional information can be found in the documents that reside in WebPMIS.« less

  12. A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping.

    PubMed

    Kang, Han Gyu; Lee, Ho-Young; Kim, Kyeong Min; Song, Seong-Hyun; Hong, Gun Chul; Hong, Seong Jong

    2017-01-01

    The aim of this study is to integrate NIR, gamma, and visible imaging tools into a single endoscopic system to overcome the limitation of NIR using gamma imaging and to demonstrate the feasibility of endoscopic NIR/gamma/visible fusion imaging for sentinel lymph node (SLN) mapping with a small animal. The endoscopic NIR/gamma/visible imaging system consists of a tungsten pinhole collimator, a plastic focusing lens, a BGO crystal (11 × 11 × 2 mm 3 ), a fiber-optic taper (front = 11 × 11 mm 2 , end = 4 × 4 mm 2 ), a 122-cm long endoscopic fiber bundle, an NIR emission filter, a relay lens, and a CCD camera. A custom-made Derenzo-like phantom filled with a mixture of 99m Tc and indocyanine green (ICG) was used to assess the spatial resolution of the NIR and gamma images. The ICG fluorophore was excited using a light-emitting diode (LED) with an excitation filter (723-758 nm), and the emitted fluorescence photons were detected with an emission filter (780-820 nm) for a duration of 100 ms. Subsequently, the 99m Tc distribution in the phantom was imaged for 3 min. The feasibility of in vivo SLN mapping with a mouse was investigated by injecting a mixture of 99m Tc-antimony sulfur colloid (12 MBq) and ICG (0.1 mL) into the right paw of the mouse (C57/B6) subcutaneously. After one hour, NIR, gamma, and visible images were acquired sequentially. Subsequently, the dissected SLN was imaged in the same way as the in vivo SLN mapping. The NIR, gamma, and visible images of the Derenzo-like phantom can be obtained with the proposed endoscopic imaging system. The NIR/gamma/visible fusion image of the SLN showed a good correlation among the NIR, gamma, and visible images both for the in vivo and ex vivo imaging. We demonstrated the feasibility of the integrated NIR/gamma/visible imaging system using a single endoscopic fiber bundle. In future, we plan to investigate miniaturization of the endoscope head and simultaneous NIR/gamma/visible imaging with dichroic mirrors and three CCD cameras. © 2016 American Association of Physicists in Medicine.

  13. Development of a composite large-size SiPM (assembled matrix) based modular detector cluster for MAGIC

    NASA Astrophysics Data System (ADS)

    Hahn, A.; Mazin, D.; Bangale, P.; Dettlaff, A.; Fink, D.; Grundner, F.; Haberer, W.; Maier, R.; Mirzoyan, R.; Podkladkin, S.; Teshima, M.; Wetteskind, H.

    2017-02-01

    The MAGIC collaboration operates two 17 m diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) on the Canary Island of La Palma. Each of the two telescopes is currently equipped with a photomultiplier tube (PMT) based imaging camera. Due to the advances in the development of Silicon Photomultipliers (SiPMs), they are becoming a widely used alternative to PMTs in many research fields including gamma-ray astronomy. Within the Otto-Hahn group at the Max Planck Institute for Physics, Munich, we are developing a SiPM based detector module for a possible upgrade of the MAGIC cameras and also for future experiments as, e.g., the Large Size Telescopes (LST) of the Cherenkov Telescope Array (CTA). Because of the small size of individual SiPM sensors (6 mm×6 mm) with respect to the 1-inch diameter PMTs currently used in MAGIC, we use a custom-made matrix of SiPMs to cover the same detection area. We developed an electronic circuit to actively sum up and amplify the SiPM signals. Existing non-imaging hexagonal light concentrators (Winston cones) used in MAGIC have been modified for the angular acceptance of the SiPMs by using C++ based ray tracing simulations. The first prototype based detector module includes seven channels and was installed into the MAGIC camera in May 2015. We present the results of the first prototype and its performance as well as the status of the project and discuss its challenges.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginsz, M.; Duchene, G.; Didierjean, F.

    The state-of-the art gamma-ray spectrometers such as AGATA and GRETA are using position sensitive multi-segmented HPGe crystals. Pulse-shape analysis (PSA) allows to retrieve the localisation of the gamma interactions and to perform gamma-ray tracking within germanium. The precision of the localisation depends on the quality of the pulse-shape database used for comparison. The IPHC laboratory developed a new fast scanning table allowing to measure experimental pulse shapes in the whole volume of any crystal. The results of the scan of an AGATA 36-fold segmented tapered coaxial detector are shown here, 48580 experimental pulse shapes are extracted within 2 weeks ofmore » scanning. These data will contribute to AGATA PSA performances, but have also applications for gamma cameras or Compton-suppressed detectors. (authors)« less

  15. The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"

    NASA Astrophysics Data System (ADS)

    Ichinohe, Yuto; Uchida, Yuusuke; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin`ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki

    2016-01-01

    The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm2 meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.

  16. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.

    PubMed

    Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating subsequent radioguided surgery.

  17. Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Werner, F.; Bauer, C.; Bernhard, S.; Capasso, M.; Diebold, S.; Eisenkolb, F.; Eschbach, S.; Florin, D.; Föhr, C.; Funk, S.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Lahmann, R.; Marszalek, A.; Pfeifer, M.; Principe, G.; Pühlhofer, G.; Pürckhauer, S.; Rajda, P. J.; Reimer, O.; Santangelo, A.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Wolf, D.; Zietara, K.; CTA Consortium

    2017-12-01

    The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of telescopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.

  18. Two-modality γ detection of blood volume by camera imaging and nonimaging stethoscope for kinetic studies of cardiovascular control in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Eclancher, Bernard; Chambron, Jacques; Dumitresco, Barbu; Karman, Miklos; Pszota, Agnes; Simon, Atilla; Didon-Poncelet, Anna; Demangeat, Jean

    2002-04-01

    The quantification of rapid hemodynamic reactions to wide and slow breathing movements has been performed, by two modalities (gamma) -left ventriculography of 99mTc-labeled blood volume, in anterior oblique incidence on standing and even exercising healthy volunteers and cardiac patients. A highly sensitive stethoscope delivered whole (gamma) -counts acquired at 30 msec intervals in a square field of view including the left ventricle, in a one dimensional low resolution imaging mode for beat to beat analysis. A planar 2D (gamma) -camera imaging of the same cardiac area was then performed without cardiac gating for alternate acquisitions during deep inspiration and deep expiration, completed by a 3D MRI assessment of the stethoscope detection field. Young healthy volunteers displayed wide variations of diastolic times and stroke volumes, as a result of enhanced baroreflex control, together with +/- 16% variations of the stethoscope's background blood volume counts. Any of the components of these responses were shifted, abolished or even inverted as a result of either obesity, hypertension, aging or cardiac pathologies. The assessment of breathing control of the cardiovascular system by the beat to beat (gamma) -ventriculography combined with nuclear 2D and 3D MRI imaging is a kinetic method allowing the detection of functional anomalies in still ambulatory patients.

  19. Determination of in vivo behavior of mitomycin C-loaded o/w soybean oil microemulsion and mitomycin C solution via gamma camera imaging.

    PubMed

    Kotmakçı, Mustafa; Kantarcı, Gülten; Aşıkoğlu, Makbule; Ozkılıç, Hayal; Ertan, Gökhan

    2013-09-01

    In this study, a microemulsion system was evaluated for delivery of mitomycin C (MMC). To track the distribution of the formulated drug after intravenous administration, radiochemical labeling and gamma scintigraphy imaging were used. The aim was to evaluate a microemulsion system for intravenous delivery of MMC and to compare its in vivo behavior with that of the MMC solution. For microemulsion formulation, soybean oil was used as the oil phase. Lecithin and Tween 80 were surfactants and ethanol was the cosurfactant. To understand the whole body localization of MMC-loaded microemulsion, MMC was labeled with radioactive technetium and gamma scintigraphy was applied for visualization of drug distribution. Radioactivity in the bladder 30 minutes after injection of the MMC solution was observed, according to static gamma camera images. This shows that urinary excretion of the latter starts very soon. On the other hand, no radioactivity appeared in the urinary bladder during the 90 minutes following the administration of MMC-loaded microemulsion. The unabated radioactivity in the liver during the experiment shows that the localization of microemulsion formulation in the liver is stable. In the light of the foregoing, it is suggested that this microemulsion formulation may be an appropriate carrier system for anticancer agents by intravenous delivery in hepatic cancer chemotherapy.

  20. The soft gamma-ray detector (SGD) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Goldwurm, Andrea; Hagino, Kouichi; Hayashi, Katsuhiro; Ichinohe, Yuto; Kataoka, Jun; Katsuta, Junichiro; Kitaguchi, Takao; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumu; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2016-07-01

    The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.

  1. Inauguration and first light of the GCT-M prototype for the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Watson, J. J.; De Franco, A.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jegouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Tibaldo, L.; Trichard, C.; Vink, J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-01-01

    The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4 m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond contin-uously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96 ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT structure at the Observatoire de Paris-Meudon, where it observed the first Cherenkov light detected by a prototype instrument for CTA.

  2. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  3. The COBRA demonstrator at the LNGS underground laboratory

    NASA Astrophysics Data System (ADS)

    Ebert, J.; Fritts, M.; Gehre, D.; Gößling, C.; Göpfert, T.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Köttig, T.; Kröninger, K.; Michel, T.; Neddermann, T.; Nitsch, C.; Oldorf, C.; Quante, T.; Rajek, S.; Rebber, H.; Reinecke, O.; Rohatsch, K.; Schulz, O.; Sörensen, A.; Stekl, I.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Timm, J.; Wester, T.; Wonsak, B.; Zatschler, S.; Zuber, K.

    2016-01-01

    The COBRA demonstrator, a prototype for a large-scale experiment searching for neutrinoless double beta-decay, was built at the underground laboratory Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It consists of an array of 64 monolithic, calorimetric CdZnTe semiconductor detectors with a coplanar-grid design and a total mass of 380 g. It is used to investigate the experimental challenges faced when operating CdZnTe detectors in low-background mode, to identify potential background sources and to show the long-term stability of the detectors. The first data-taking period started in 2011 with a subset of the detectors, while the demonstrator was completed in November 2013. To date, more than 250 kg d of data have been collected. This paper describes the technical details of the experimental setup and the hardware components.

  4. Electron-tracking Compton gamma-ray camera for small animal and phantom imaging

    NASA Astrophysics Data System (ADS)

    Kabuki, Shigeto; Kimura, Hiroyuki; Amano, Hiroo; Nakamoto, Yuji; Kubo, Hidetoshi; Miuchi, Kentaro; Kurosawa, Shunsuke; Takahashi, Michiaki; Kawashima, Hidekazu; Ueda, Masashi; Okada, Tomohisa; Kubo, Atsushi; Kunieda, Etuso; Nakahara, Tadaki; Kohara, Ryota; Miyazaki, Osamu; Nakazawa, Tetsuo; Shirahata, Takashi; Yamamoto, Etsuji; Ogawa, Koichi; Togashi, Kaori; Saji, Hideo; Tanimori, Toru

    2010-11-01

    We have developed an electron-tracking Compton camera (ETCC) for medical use. Our ETCC has a wide energy dynamic range (200-1300 keV) and wide field of view (3 sr), and thus has potential for advanced medical use. To evaluate the ETCC, we imaged the head (brain) and bladder of mice that had been administered with F-18-FDG. We also imaged the head and thyroid gland of mice using double tracers of F-18-FDG and I-131 ions.

  5. Effect of different thickness of material filter on Tc-99m spectra and performance parameters of gamma camera

    NASA Astrophysics Data System (ADS)

    Nazifah, A.; Norhanna, S.; Shah, S. I.; Zakaria, A.

    2014-11-01

    This study aimed to investigate the effects of material filter technique on Tc-99m spectra and performance parameters of Philip ADAC forte dual head gamma camera. Thickness of material filter was selected on the basis of percentage attenuation of various gamma ray energies by different thicknesses of zinc material. A cylindrical source tank of NEMA single photon emission computed tomography (SPECT) Triple Line Source Phantom filled with water and Tc-99m radionuclide injected was used for spectra, uniformity and sensitivity measurements. Vinyl plastic tube was used as a line source for spatial resolution. Images for uniformity were reconstructed by filtered back projection method. Butterworth filter of order 5 and cut off frequency 0.35 cycles/cm was selected. Chang's attenuation correction method was applied by selecting 0.13/cm linear attenuation coefficient. Count rate was decreased with material filter from the compton region of Tc-99m energy spectrum, also from the photopeak region. Spatial resolution was improved. However, uniformity of tomographic image was equivocal, and system volume sensitivity was reduced by material filter. Material filter improved system's spatial resolution. Therefore, the technique may be used for phantom studies to improve the image quality.

  6. The iQID Camera: An Ionizing-Radiation Quantum Imaging Detector

    DOE PAGES

    Miller, Brian W.; Gregory, Stephanie J.; Fuller, Erin S.; ...

    2014-06-11

    We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detectors response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The detector’s response to a broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated particle interactions is optically amplified by the intensifier andmore » then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. Individual particles are identified and their spatial position (to sub-pixel accuracy) and energy are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, high sensitivity, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discrimate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is single-particle, real-time digital autoradiography. In conclusion, we present the latest results and discuss potential applications.« less

  7. Synthetic neutron camera and spectrometer in JET based on AFSI-ASCOT simulations

    NASA Astrophysics Data System (ADS)

    Sirén, P.; Varje, J.; Weisen, H.; Koskela, T.; contributors, JET

    2017-09-01

    The ASCOT Fusion Source Integrator (AFSI) has been used to calculate neutron production rates and spectra corresponding to the JET 19-channel neutron camera (KN3) and the time-of-flight spectrometer (TOFOR) as ideal diagnostics, without detector-related effects. AFSI calculates fusion product distributions in 4D, based on Monte Carlo integration from arbitrary reactant distribution functions. The distribution functions were calculated by the ASCOT Monte Carlo particle orbit following code for thermal, NBI and ICRH particle reactions. Fusion cross-sections were defined based on the Bosch-Hale model and both DD and DT reactions have been included. Neutrons generated by AFSI-ASCOT simulations have already been applied as a neutron source of the Serpent neutron transport code in ITER studies. Additionally, AFSI has been selected to be a main tool as the fusion product generator in the complete analysis calculation chain: ASCOT - AFSI - SERPENT (neutron and gamma transport Monte Carlo code) - APROS (system and power plant modelling code), which encompasses the plasma as an energy source, heat deposition in plant structures as well as cooling and balance-of-plant in DEMO applications and other reactor relevant analyses. This conference paper presents the first results and validation of the AFSI DD fusion model for different auxiliary heating scenarios (NBI, ICRH) with very different fast particle distribution functions. Both calculated quantities (production rates and spectra) have been compared with experimental data from KN3 and synthetic spectrometer data from ControlRoom code. No unexplained differences have been observed. In future work, AFSI will be extended for synthetic gamma diagnostics and additionally, AFSI will be used as part of the neutron transport calculation chain to model real diagnostics instead of ideal synthetic diagnostics for quantitative benchmarking.

  8. First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Kataoka, J.; Tagawa, L.; Iwamoto, Y.; Okochi, H.; Katsumi, N.; Kinno, S.; Arimoto, M.; Maruhashi, T.; Fujieda, K.; Kurihara, T.; Ohsuka, S.

    2017-11-01

    Considerable amounts of radioactive substances (mainly 137Cs and 134Cs) were released into the environment after the Japanese nuclear disaster in 2011. Some restrictions on residence areas were lifted in April 2017, owing to the successive and effective decontamination operations. However, the distribution of radioactive substances in vast areas of mountain, forest and satoyama close to the city is still unknown; thus, decontamination operations in such areas are being hampered. In this paper, we report on the first aerial gamma-ray imaging of a schoolyard in Fukushima using a drone that carries a high sensitivity Compton camera. We show that the distribution of 137Cs in regions with a diameter of several tens to a hundred meters can be imaged with a typical resolution of 2-5 m within a 10-20 min flights duration. The aerial gamma-ray images taken 10 m and 20 m above the ground are qualitatively consistent with a dose map reconstructed from the ground-based measurements using a survey meter. Although further quantification is needed for the distance and air-absorption corrections to derive in situ dose map, such an aerial drone system can reduce measurement time by a factor of ten and is suitable for place where ground-based measurement are difficult.

  9. Characterization of a compact LaBr3(Ce) detector with Silicon photomultipliers at high 14 MeV neutron fluxes

    NASA Astrophysics Data System (ADS)

    Rigamonti, D.; Nocente, M.; Giacomelli, L.; Tardocchi, M.; Angelone, M.; Broslawski, A.; Cazzaniga, C.; Figueiredo, J.; Gorini, G.; Kiptily, V.; Korolczuk, S.; Murari, A.; Pillon, M.; Pilotti, R.; Zychor, I.; Contributors, JET

    2017-10-01

    A new compact gamma-ray spectrometer based on a Silicon Photo-Multiplier (SiPM) coupled to a LaBr3(Ce) crystal has been developed for the upgrade of the Gamma Camera (GC) of JET, where it must operate in a high intensity neutron/gamma-ray admixed field. The work presents the results of an experiment aimed at characterizing the effect of 14 MeV neutron irradiation on both LaBr3(Ce) and SiPM that compose the full detector. The pulse height spectrum from neutron interactions with the crystal has been measured and is successfully reproduced by MCNP simulations. It is calculated that about 8% of the impinging neutrons leave a detectable signal of which less than < 4% of the events occur in the energy region above 3 MeV, which is of interest for gamma-ray spectroscopy applications. Neutron irradiation also partly degrades the performance of the SiPM and this is mostly manifested as an increase of the dark current versus the neutron fluence. However, it was found that the SiPM can be still operated up to a fluence of 4×1010 n/cm2, which is the highest value we experimentally tested. Implications of these results for GC measurements at JET are discussed.

  10. Detection of the thermal component in GRB 160107A

    NASA Astrophysics Data System (ADS)

    Kawakubo, Yuta; Sakamoto, Takanori; Nakahira, Satoshi; Yamaoka, Kazutaka; Serino, Motoko; saoka, Yoichi; Cherry, Michael L.; Matsukawa, Shohei; Mori, Masaki; Nakagawa, Yujin; Ozawa, Shunsuke; Penacchioni, Ana V.; Ricciarini, Sergio B.; Tezuka, Akira; Torii, Shoji; Yamada, Yusuke; Yoshida, Atsumasa

    2018-01-01

    We present the detection of a blackbody component in gamma-ray burst GRB 160107A emission by using the combined spectral data of the CALET Gamma-ray Burst Monitor (CGBM) and the MAXI Gas Slit Camera (GSC). MAXI/GSC detected the emission ˜45 s prior to the main burst episode observed by the CGBM. The MAXI/GSC and the CGBM spectrum of this prior emission period is fitted well by a blackbody with temperature 1.0^{+0.3}_{-0.2} keV plus a power law with a photon index of -1.6 ± 0.3. We discuss the radius of the photospheric emission and the main burst emission based on the observational properties. We stress the importance of coordinated observations via various instruments collecting high-quality data over a broad energy coverage in order to understand the GRB prompt emission mechanism.

  11. The HURRA filter: An easy method to eliminate collimator artifacts in high-energy gamma camera images.

    PubMed

    Perez-Garcia, H; Barquero, R

    The correct determination and delineation of tumor/organ size is crucial in 2-D imaging in 131 I therapy. These images are usually obtained using a system composed of a Gamma camera and high-energy collimator, although the system can produce artifacts in the image. This article analyses these artifacts and describes a correction filter that can eliminate those collimator artifacts. Using free software, ImageJ, a central profile in the image is obtained and analyzed. Two components can be seen in the fluctuation of the profile: one associated with the stochastic nature of the radiation, plus electronic noise and the other periodically across the position in space due to the collimator. These frequencies are analytically obtained and compared with the frequencies in the Fourier transform of the profile. A specially developed filter removes the artifacts in the 2D Fourier transform of the DICOM image. This filter is tested using a 15-cm-diameter Petri dish with 131 I radioactive water (big object size) image, a 131 I clinical pill (small object size) image, and an image of the remainder of the lesion of two patients treated with 3.7GBq (100mCi), and 4.44GBq (120mCi) of 131 I, respectively, after thyroidectomy. The artifact is due to the hexagonal periodic structure of the collimator. The use of the filter on large-sized images reduces the fluctuation by 5.8-3.5%. In small-sized images, the FWHM can be determined in the filtered image, while this is impossible in the unfiltered image. The definition of tumor boundary and the visualization of the activity distribution inside patient lesions improve drastically when the filter is applied to the corresponding images obtained with HE gamma camera. The HURRA filter removes the artifact of high-energy collimator artifacts in planar images obtained with a Gamma camera without reducing the image resolution. It can be applied in any study of patient quantification because the number of counts remains invariant. The filter makes possible the definition and delimitation of small uptakes, such as those presented in treatments with 131 I. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  12. Predicted performance of a PG-SPECT system using CZT primary detectors and secondary Compton-suppression anti-coincidence detectors under near-clinical settings for boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hales, Brian; Katabuchi, Tatsuya; Igashira, Masayuki; Terada, Kazushi; Hayashizaki, Noriyosu; Kobayashi, Tooru

    2017-12-01

    A test version of a prompt-gamma single photon emission computed tomography (PG-SPECT) system for boron neutron capture therapy (BNCT) using a CdZnTe (CZT) semiconductor detector with a secondary BGO anti-Compton suppression detector has been designed. A phantom with healthy tissue region of pure water, and 2 tumor regions of 5 wt% borated polyethylene was irradiated to a fluence of 1.3 × 109 n/cm2. The number of 478 keV foreground, background, and net counts were measured for each detector position and angle. Using only experimentally measured net counts, an image of the 478 keV production from the 10B(n , α) 7Li* reaction was reconstructed. Using Monte Carlo simulation and the experimentally measured background counts, the reliability of the system under clinically accurate parameters was extrapolated. After extrapolation, it was found that the value of the maximum-value pixel in the reconstructed 478 keV γ-ray production image overestimates the simulated production by an average of 9.2%, and that the standard deviation associated with the same value is 11.4%.

  13. Nuclear medicine imaging system

    DOEpatents

    Bennett, G.W.; Brill, A.B.; Bizais, Y.J.C.; Rowe, R.W.; Zubal, I.G.

    1983-03-11

    It is an object of this invention to provide a nuclear imaging system having the versatility to do positron annihilation studies, rotating single or opposed camera gamma emission studies, and orthogonal gamma emission studies. It is a further object of this invention to provide an imaging system having the capability for orthogonal dual multipinhole tomography. It is another object of this invention to provide a nuclear imaging system in which all available energy data, as well as patient physiological data, are acquired simultaneously in list mode.

  14. Molecular breast imaging using a dedicated high-performance instrument

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Wagenaar, Douglas; Hruska, Carrie B.; Phillips, Stephen; Caravaglia, Gina; Rhodes, Deborah

    2006-08-01

    In women with radiographically dense breasts, the sensitivity of mammography is less than 50%. With the increase in the percent of women with dense breasts, it is important to look at alternative screening techniques for this population. This article reviews the strengths and weaknesses of current imaging techniques and focuses on recent developments in semiconductor-based gamma camera systems that offer significant improvements in image quality over that achievable with single-crystal sodium iodide systems. We have developed a technique known as Molecular Breast Imaging (MBI) using small field of view Cadmium Zinc Telluride (CZT) gamma cameras that permits the breast to be imaged in a similar manner to mammography, using light pain-free compression. Computer simulations and experimental studies have shown that use of low-energy high sensitivity collimation coupled with the excellent energy resolution and intrinsic spatial resolution of CZT detectors provides optimum image quality for the detection of small breast lesions. Preliminary clinical studies with a prototype dual-detector system have demonstrated that Molecular Breast Imaging has a sensitivity of ~90% for the detection of breast tumors less than 10 mm in diameter. By comparison, conventional scintimammography only achieves a sensitivity of 50% in the detection of lesions < 10 mm. Because Molecular Breast Imaging is not affected by breast density, this technique may offer an important adjunct to mammography in the evaluation of women with dense breast parenchyma.

  15. Optical photometric monitoring of gamma -ray loud blazars. II. Observations from November 1995 to June 1996

    NASA Astrophysics Data System (ADS)

    Raiteri, C. M.; Ghisellini, G.; Villata, M.; de Francesco, G.; Lanteri, L.; Chiaberge, M.; Peila, A.; Antico, G.

    1998-02-01

    New data from the optical monitoring of gamma -ray loud blazars at the Torino Astronomical Observatory are presented. Observations have been taken in the Johnson's B, V, and Cousins' R bands with the 1.05m REOSC telescope equipped with a 1242x1152 pixel CCD camera. Many of the 22 monitored sources presented here show noticeable magnitude variations. Periods corresponding to pointings of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) satellite are indicated on the light curves. The comparison of our data with those taken by CGRO in the gamma -ray band will contribute to better understand the mechanism of the gamma -ray emission. We finally show intranight light curves of 3C 66A and OJ 287, where microvariability was detected. Tables 2--21 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  16. Heart Imaging System

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Johnson Space Flight Center's device to test astronauts' heart function in microgravity has led to the MultiWire Gamma Camera, which images heart conditions six times faster than conventional devices. Dr. Jeffrey Lacy, who developed the technology as a NASA researcher, later formed Proportional Technologies, Inc. to develop a commercially viable process that would enable use of Tantalum-178 (Ta-178), a radio-pharmaceutical. His company supplies the generator for the radioactive Ta-178 to Xenos Medical Systems, which markets the camera. Ta-178 can only be optimally imaged with the camera. Because the body is subjected to it for only nine minutes, the radiation dose is significantly reduced and the technique can be used more frequently. Ta-178 also enables the camera to be used on pediatric patients who are rarely studied with conventional isotopes because of the high radiation dosage.

  17. High resolution CsI(Tl)/Si-PIN detector development for breast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.; Tull, C.R.

    High resolution multi-element (8x8) imaging arrays with collimators, size matched to discrete CsI(Tl) scintillator arrays and Si-PIN photodetector arrays (PDA`s) were developed as prototypes for larger arrays for breast imaging. Photodetector pixels were each 1.5 {times} 1.5 mm{sup 2} with 0.25 mm gaps. A 16-element quadrant of the detector was evaluated with a segmented CsI(Tl) scintillator array coupled to the silicon array. The scintillator thickness of 6 mm corresponds to >85% total gamma efficiency at 140 keV. Pixel energy resolution of <8% FWHM was obtained for Tc-99m. Electronic noise was 41 e{sup {minus}} RMS corresponding to a 3% FWHM contributionmore » to the 140 keV photopeak. Detection efficiency uniformity measured with a Tc-99m flood source was 4.3% for an {approximately}10% energy photopeak window. Spatial resolution was 1.53 mm FWHM and pitch was 1.75 mm as measured from the Co-57 (122 keV) line spread function. Signal to background was 34 and contrast was 0.94. The energy resolution and spatial characteristics of the new imaging detector exceed those of other scintillator based imaging detectors. A camera based on this technology will allow: (1) Improved Compton scatter rejection; (2) Detector positioning in close proximity to the breast to increase signal to noise; (3) Improved spatial resolution; and (4) Improved efficiency compared to high resolution collimated gamma cameras for the anticipated compressed breast geometries.« less

  18. (99m)Tc-MDP bone scintigraphy of the hand: comparing the use of novel cadmium zinc telluride (CZT) and routine NaI(Tl) detectors.

    PubMed

    Koulikov, Victoria; Lerman, Hedva; Kesler, Mikhail; Even-Sapir, Einat

    2015-12-01

    Cadmium zinc telluride (CZT) solid-state detectors have been recently introduced in the field of nuclear medicine in cardiology and breast imaging. The aim of the current study was to evaluate the performance of the novel detectors (CZT) compared to that of the routine NaI(Tl) in bone scintigraphy. A dual-headed CZT-based camera dedicated originally to breast imaging has been used, and in view of the limited size of the detectors, the hands were chosen as the organ for assessment. This is a clinical study. Fifty-eight consecutive patients (total 116 hands) referred for bone scan for suspected hand pathology gave their informed consent to have two acquisitions, using the routine camera and the CZT-based camera. The latter was divided into full-dose full-acquisition time (FD CZT) and reduced-dose short-acquisition time (RD CZT) on CZT technology, so three image sets were available for analysis. Data analysis included comparing the detection of hot lesions and identification of the metacarpophalangeal, proximal interphalangeal, and distal interphalangeal joints. A total of 69 hot lesions were detected on the CZT image sets; of these, 61 were identified as focal sites of uptake on NaI(Tl) data. On FD CZT data, 385 joints were identified compared to 168 on NaI(Tl) data (p < 0.001). There was no statistically significant difference in delineation of joints between FD and RD CZT data as the latter identified 383 joints. Bone scintigraphy using a CZT-based gamma camera is associated with improved lesion detection and anatomic definition. The superior physical characteristics of this technique raised a potential reduction in administered dose and/or acquisition time without compromising image quality.

  19. Critical Technology Events (CTEs) that Support the Rationale for Army Laboratories Based on S&T Functions Performed

    DTIC Science & Technology

    2013-09-01

    is very compatible to growth of mercury cadmium telluride (HgCdTe or MCT) on its surface. HgCdTe is the IR sensitive material. However, CdZnTe is...in Indiana which is one of the few test ranges in the developed world where battlefield smokes and live artillery fire could be 41 F. Shields, NV...spectral region of E&M spectrum) I2 – Image Intensification JIEDDO – Joint IED Defeat Office JPG – Jefferson Proving Ground, Indiana . JPO – Joint

  20. Experimental Comparison of Knife-Edge and Multi-Parallel Slit Collimators for Prompt Gamma Imaging of Proton Pencil Beams.

    PubMed

    Smeets, Julien; Roellinghoff, Frauke; Janssens, Guillaume; Perali, Irene; Celani, Andrea; Fiorini, Carlo; Freud, Nicolas; Testa, Etienne; Prieels, Damien

    2016-01-01

    More and more camera concepts are being investigated to try and seize the opportunity of instantaneous range verification of proton therapy treatments offered by prompt gammas emitted along the proton tracks. Focusing on one-dimensional imaging with a passive collimator, the present study experimentally compared in combination with the first, clinically compatible, dedicated camera device the performances of instances of the two main options: a knife-edge slit (KES) and a multi-parallel slit (MPS) design. These two options were experimentally assessed in this specific context as they were previously demonstrated through analytical and numerical studies to allow similar performances in terms of Bragg peak retrieval precision and spatial resolution in a general context. Both collimators were prototyped according to the conclusions of Monte Carlo optimization studies under constraints of equal weight (40 mm tungsten alloy equivalent thickness) and of the specificities of the camera device under consideration (in particular 4 mm segmentation along beam axis and no time-of-flight discrimination, both of which less favorable to the MPS performance than to the KES one). Acquisitions of proton pencil beams of 100, 160, and 230 MeV in a PMMA target revealed that, in order to reach a given level of statistical precision on Bragg peak depth retrieval, the KES collimator requires only half the dose the present MPS collimator needs, making the KES collimator a preferred option for a compact camera device aimed at imaging only the Bragg peak position. On the other hand, the present MPS collimator proves more effective at retrieving the entrance of the beam in the target in the context of an extended camera device aimed at imaging the whole proton track within the patient.

  1. Field-deployable gamma-radiation detectors for DHS use

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy

    2007-09-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS' requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER TM, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack TM that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field1. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant spectral data and software-triggers the digital camera to take a snapshot. The spectral data including in situ analysis and the imagery data will be packaged in a suitable format and sent to a command post using an imbedded cell phone.

  2. High-Energy 3D Calorimeter based on position-sensitive virtual Frisch-grid CdZnTe detectors for use in Gamma-ray Astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotnikov, Alexey; De Geronimo, GianLuigi; Vernon, Emerson

    We present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frischgrid CZT detectors. This calorimeter aims to measure photons with energies from ~100 keV to 10 (goal 50) MeV. The expected energy resolution at 662 keV is ~1% FWHM, and the photon interaction positionmeasurement accuracy is ~1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section of 6x6 mm 2 and length of 2-4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. Themore » 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., > 1 cm). Also, it allows us to relax the requirements on the quality of the crystals, maintaining good energy resolution and significantly reducing the instrument cost. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons. Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays. Another viable option is to use this calorimeter as a focal plane to conduct spectroscopic measurements of cosmic γ-ray events. In combination with a coded-aperture mask, it potentially could provide mapping of the 511-keV radiation from the Galactic Center region.« less

  3. Comparison of CdZnTe neutron detector models using MCNP6 and Geant4

    NASA Astrophysics Data System (ADS)

    Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David

    2018-01-01

    The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.

  4. Elemental abundances of the B and A stars Gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.; Philip, A. G. D.

    1992-01-01

    Fine analyses of the B and A stars, Gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780 are performed. Although the data cover rather limited spectral regions, still useful results were obtained. The data were mostly obtained at the KPNO coude feed telescope with CCD TI No. 3, camera 5, and grating A. The He/H ratio of HR 4817 confirms the similarity of many abundance values with those of the peculiar Mn star 53 Tauri. For the most part Gamma Gem, 7 Sex, and HR 5780 have derived abundances similar to those of other normal sharp-lined stars of similar effective temperature.

  5. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  6. Color calibration of an RGB camera mounted in front of a microscope with strong color distortion.

    PubMed

    Charrière, Renée; Hébert, Mathieu; Trémeau, Alain; Destouches, Nathalie

    2013-07-20

    This paper aims at showing that performing color calibration of an RGB camera can be achieved even in the case where the optical system before the camera introduces strong color distortion. In the present case, the optical system is a microscope containing a halogen lamp, with a nonuniform irradiance on the viewed surface. The calibration method proposed in this work is based on an existing method, but it is preceded by a three-step preprocessing of the RGB images aiming at extracting relevant color information from the strongly distorted images, taking especially into account the nonuniform irradiance map and the perturbing texture due to the surface topology of the standard color calibration charts when observed at micrometric scale. The proposed color calibration process consists first in computing the average color of the color-chart patches viewed under the microscope; then computing white balance, gamma correction, and saturation enhancement; and finally applying a third-order polynomial regression color calibration transform. Despite the nonusual conditions for color calibration, fairly good performance is achieved from a 48 patch Lambertian color chart, since an average CIE-94 color difference on the color-chart colors lower than 2.5 units is obtained.

  7. A machine learning method for fast and accurate characterization of depth-of-interaction gamma cameras

    NASA Astrophysics Data System (ADS)

    Pedemonte, Stefano; Pierce, Larry; Van Leemput, Koen

    2017-11-01

    Measuring the depth-of-interaction (DOI) of gamma photons enables increasing the resolution of emission imaging systems. Several design variants of DOI-sensitive detectors have been recently introduced to improve the performance of scanners for positron emission tomography (PET). However, the accurate characterization of the response of DOI detectors, necessary to accurately measure the DOI, remains an unsolved problem. Numerical simulations are, at the state of the art, imprecise, while measuring directly the characteristics of DOI detectors experimentally is hindered by the impossibility to impose the depth-of-interaction in an experimental set-up. In this article we introduce a machine learning approach for extracting accurate forward models of gamma imaging devices from simple pencil-beam measurements, using a nonlinear dimensionality reduction technique in combination with a finite mixture model. The method is purely data-driven, not requiring simulations, and is applicable to a wide range of detector types. The proposed method was evaluated both in a simulation study and with data acquired using a monolithic gamma camera designed for PET (the cMiCE detector), demonstrating the accurate recovery of the DOI characteristics. The combination of the proposed calibration technique with maximum- a posteriori estimation of the coordinates of interaction provided a depth resolution of  ≈1.14 mm for the simulated PET detector and  ≈1.74 mm for the cMiCE detector. The software and experimental data are made available at http://occiput.mgh.harvard.edu/depthembedding/.

  8. Single-view 3D reconstruction of correlated gamma-neutron sources

    DOE PAGES

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.

    2017-01-05

    We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less

  9. Single-view 3D reconstruction of correlated gamma-neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara A.

    We describe a new method of 3D image reconstruction of neutron sources that emit correlated gammas (e.g. Cf- 252, Am-Be). This category includes a vast majority of neutron sources important in nuclear threat search, safeguards and non-proliferation. Rather than requiring multiple views of the source this technique relies on the source’s intrinsic property of coincidence gamma and neutron emission. As a result only a single-view measurement of the source is required to perform the 3D reconstruction. In principle, any scatter camera sensitive to gammas and neutrons with adequate timing and interaction location resolution can perform this reconstruction. Using a neutronmore » double scatter technique, we can calculate a conical surface of possible source locations. By including the time to a correlated gamma we further constrain the source location in three-dimensions by solving for the source-to-detector distance along the surface of said cone. As a proof of concept we applied these reconstruction techniques on measurements taken with the the Mobile Imager of Neutrons for Emergency Responders (MINER). Two Cf-252 sources measured at 50 and 60 cm from the center of the detector were resolved in their varying depth with average radial distance relative resolution of 26%. To demonstrate the technique’s potential with an optimized system we simulated the measurement in MCNPX-PoliMi assuming timing resolution of 200 ps (from 2 ns in the current system) and source interaction location resolution of 5 mm (from 3 cm). Furthermore, these simulated improvements in scatter camera performance resulted in radial distance relative resolution decreasing to an average of 11%.« less

  10. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  11. Thyroid Scan and Uptake

    MedlinePlus

    ... minutes prior to the test. When it is time for the imaging to begin, you will lie down on a moveable examination table with your head tipped backward and neck extended. The gamma camera will then take a series of images, capturing images of the thyroid gland ...

  12. Gamma-camera 18F-FDG PET in diagnosis and staging of patients presenting with suspected lung cancer and comparison with dedicated PET.

    PubMed

    Oturai, Peter S; Mortensen, Jann; Enevoldsen, Henriette; Eigtved, Annika; Backer, Vibeke; Olesen, Knud P; Nielsen, Henrik W; Hansen, Hanne; Stentoft, Poul; Friberg, Lars

    2004-08-01

    It is not clear whether high-quality coincidence gamma-PET (gPET) cameras can provide clinical data comparable with data obtained with dedicated PET (dPET) cameras in the primary diagnostic work-up of patients with suspected lung cancer. This study focuses on 2 main issues: direct comparison between foci resolved with the 2 different PET scanners and the diagnostic accuracy compared with final diagnosis determined by the combined information from all other investigations and clinical follow-up. Eighty-six patients were recruited to this study through a routine diagnostic program. They all had changes on their chest radiographs, suggesting malignant lung tumor. In addition to the standard diagnostic program, each patient had 2 PET scans that were performed on the same day. After administration of 419 MBq (range = 305-547 MBq) (18)F-FDG, patients were scanned in a dedicated PET scanner about 1 h after FDG administration and in a dual-head coincidence gamma-camera about 3 h after tracer injection. Images from the 2 scans were evaluated in a blinded set-up and compared with the final outcome. Malignant intrathoracic disease was found in 52 patients, and 47 patients had primary lung cancers. dPET detected all patients as having malignancies (sensitivity, 100%; specificity, 50%), whereas gPET missed one patient (sensitivity, 98%; specificity, 56%). For evaluating regional lymph node involvement, sensitivity and specificity rates were 78% and 84% for dPET and 61% and 90% for gPET, respectively. When comparing the 2 PET techniques with clinical tumor stage (TNM), full agreement was obtained in 64% of the patients (Cohen's kappa = 0.56). Comparing categorization of the patients into clinical relevant stages (no malignancy/malignancy suitable for treatment with curative intent/nontreatable malignancy), resulted in full agreement in 81% (Cohen's kappa = 0.71) of patients. Comparing results from a recent generation of gPET cameras obtained about 2 h later than those of dPET, there was a fairly good agreement with regard to detecting primary lung tumors but slightly reduced sensitivity in detecting smaller malignant lesions such as lymph nodes. Depending on the population to be investigated, and if dPET is not available, gPET might provide significant diagnostic information in patients in whom lung cancer is suspected.

  13. Trace copper measurements and electrical effects in LPE HgCdTe

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, S. P.; Norton, P. W.; Bollong, A. B.; Socha, A.; Tregilgas, J. H.; Ard, C. K.; Arlinghaus, H. F.

    1996-08-01

    Recent improvements in sputter initiated resonance ionization spectroscopy (SIRIS) have now made it possible to measure copper in HgCdTe films into the low 1013 cm-3 range. We have used this technique to show that copper is responsible for type conversion in n-type HgCdTe films. Good n-type LPE films were found to have less than 1 x 1014 cm-3 copper, while converted p-type samples were found to have copper concentrations approximately equal to the hole concentrations. Some compensated n-type samples with low mobilities have copper concentrations too low to account for the amount of compensation and the presence of a deep acceptor level is suggested. In order to study diffusion of copper from substrates into LPE layers, a CdTe boule was grown intentionally spiked with copper at approximately 3 x 1016 cm-3. Annealing HgCdTe films at 360°C was found to greatly increase the amount of copper that diffuses out of the substrates and a substrate screening technique was developed based on this phenomenon. SIRIS depth profiles showed much greater copper in HgCdTe films than in the substrates, indicating that copper is preferentially attracted to HgCdTe over Cd(Zn)Te. SIRIS spatial mapping showed that copper is concentrated in substrate tellurium inclusions 5 25 times greater than in the surrounding CdZnTe matrix.

  14. Study for identification of beneficial uses of Space, phase 1. Volume 2, book 2: Technical report: results, conclusions and recommendations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A variety of technologies were investigated to determine the benefits to be derived from space activities. The subjects accepted for product development are: (1) eutectics for cold cathodes, (2) higher putiry fiber optics, (3) fluidic wafers, (4) large germanium wafers for gamma ray camera, (5) improved batteries and capacitors, (6) optical filters, (7) corrosion resistant electrodes, (8) high strength carbon-based filaments for plastic reinforcement, and (9) new antibiotics. In addition, three ideas for services, involving disposal of radioactive wastes, blood analysis, and enhanced solar insolation were proposed.

  15. A neutron camera system for MAST.

    PubMed

    Cecconello, M; Turnyanskiy, M; Conroy, S; Ericsson, G; Ronchi, E; Sangaroon, S; Akers, R; Fitzgerald, I; Cullen, A; Weiszflog, M

    2010-10-01

    A prototype neutron camera has been developed and installed at MAST as part of a feasibility study for a multichord neutron camera system with the aim to measure the spatial and time resolved 2.45 MeV neutron emissivity profile. Liquid scintillators coupled to a fast digitizer are used for neutron/gamma ray digital pulse shape discrimination. The preliminary results obtained clearly show the capability of this diagnostic to measure neutron emissivity profiles with sufficient time resolution to study the effect of fast ion loss and redistribution due to magnetohydrodynamic activity. A minimum time resolution of 2 ms has been achieved with a modest 1.5 MW of neutral beam injection heating with a measured neutron count rate of a few 100 kHz.

  16. Hybrid radioguided occult lesion localization (hybrid ROLL) of (18)F-FDG-avid lesions using the hybrid tracer indocyanine green-(99m)Tc-nanocolloid.

    PubMed

    KleinJan, G H; Brouwer, O R; Mathéron, H M; Rietbergen, D D D; Valdés Olmos, R A; Wouters, M W; van den Berg, N S; van Leeuwen, F W B

    2016-01-01

    To assess if combined fluorescence- and radio-guided occult lesion localization (hybrid ROLL) is feasible in patients scheduled for surgical resection of non-palpable (18)F-FDG-avid lesions on PET/CT. Four patients with (18)F-FDG-avid lesions on follow-up PET/CT that were not palpable during physical examination but were suspected to harbor metastasis were enrolled. Guided by ultrasound, the hybrid tracer indocyanine green (ICG)-(99m)Tc-nanocolloid was injected centrally in the target lesion. SPECT/CT imaging was used to confirm tracer deposition. Intraoperatively, lesions were localized using a hand-held gamma ray detection probe, a portable gamma camera, and a fluorescence camera. After excision, the gamma camera was used to check the wound bed for residual activity. A total of six (18)F-FDG-avid lymph nodes were identified and scheduled for hybrid ROLL. Comparison of the PET/CT images with the acquired SPECT/CT after hybrid tracer injection confirmed accurate tracer deposition. No side effects were observed. Combined radio- and fluorescence-guidance enabled localization and excision of the target lesion in all patients. Five of the six excised lesions proved tumor-positive at histopathology. The hybrid ROLL approach appears to be feasible and can facilitate the intraoperative localization and excision of non-palpable lesions suspected to harbor tumor metastases. In addition to the initial radioguided detection, the fluorescence component of the hybrid tracer enables high-resolution intraoperative visualization of the target lesion. The procedure needs further evaluation in a larger cohort and wider range of malignancies to substantiate these preliminary findings. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  17. Design of optimal collimation for dedicated molecular breast imaging systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinmann, Amanda L.; Hruska, Carrie B.; O'Connor, Michael K.

    2009-03-15

    Molecular breast imaging (MBI) is a functional imaging technique that uses specialized small field-of-view gamma cameras to detect the preferential uptake of a radiotracer in breast lesions. MBI has potential to be a useful adjunct method to screening mammography for the detection of occult breast cancer. However, a current limitation of MBI is the high radiation dose (a factor of 7-10 times that of screening mammography) associated with current technology. The purpose of this study was to optimize the gamma camera collimation with the aim of improving sensitivity while retaining adequate resolution for the detection of sub-10-mm lesions. Square-hole collimatorsmore » with holes matched to the pixilated cadmium zinc telluride detector elements of the MBI system were designed. Data from MBI patient studies and parameters of existing dual-head MBI systems were used to guide the range of desired collimator resolutions, source-to-collimator distances, pixel sizes, and collimator materials that were examined. General equations describing collimator performance for a conventional gamma camera were used in the design process along with several important adjustments to account for the specialized imaging geometry of the MBI system. Both theoretical calculations and a Monte Carlo model were used to measure the geometric efficiency (or sensitivity) and resolution of each designed collimator. Results showed that through optimal collimation, collimator sensitivity could be improved by factors of 1.5-3.2, while maintaining a collimator resolution of either {<=}5 or {<=}7.5 mm at a distance of 3 cm from the collimator face. These gains in collimator sensitivity permit an inversely proportional drop in the required dose to perform MBI.« less

  18. Continuous on-line monitoring of left ventricular function with a new nonimaging detector:validation and clinical use in the evaluation of patients post angioplasty.

    PubMed

    Breisblatt, W M; Schulman, D S; Follansbee, W P

    1991-06-01

    A new miniaturized nonimaging radionuclide detector (Cardioscint, Oxford, England) was evaluated for the continuous on-line assessment of left ventricular function. This cesium iodide probe can be placed on the patient's chest and can be interfaced to an IBM compatible personal computer conveniently placed at the patient's bedside. This system can provide a beat-to-beat or gated determination of left ventricular ejection fraction and ST segment analysis. In 28 patients this miniaturized probe was correlated against a high resolution gamma camera study. Over a wide range of ejection fraction (31% to 76%) in patients with and without regional wall motion abnormalities, the correlation between the Cardioscint detector and the gamma camera was excellent (r = 0.94, SEE +/- 2.1). This detector system has high temporal (10 msec) resolution, and comparison of peak filling rate (PFR) and time to peak filling (TPFR) also showed close agreement with the gamma camera (PFR, r = 0.94, SEE +/- 0.17; TPFR, r = 0.92, SEE +/- 6.8). In 18 patients on bed rest the long-term stability of this system for measuring ejection fraction and ST segments was verified. During the monitoring period (108 +/- 28 minutes) only minor changes in ejection fraction occurred (coefficient of variation 0.035 +/- 0.016) and ST segment analysis showed no significant change from baseline. To determine whether continuous on-line measurement of ejection fraction would be useful after coronary angioplasty, 12 patients who had undergone a successful procedure were evaluated for 280 +/- 35 minutes with the Cardioscint system.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. The next evolution in radioguided surgery: breast cancer related sentinel node localization using a freehandSPECT-mobile gamma camera combination

    PubMed Central

    Engelen, Thijs; Winkel, Beatrice MF; Rietbergen, Daphne DD; KleinJan, Gijs H; Vidal-Sicart, Sergi; Olmos, Renato A Valdés; van den Berg, Nynke S; van Leeuwen, Fijs WB

    2015-01-01

    Accurate pre- and intraoperative identification of the sentinel node (SN) forms the basis of the SN biopsy procedure. Gamma tracing technologies such as a gamma probe (GP), a 2D mobile gamma camera (MGC) or 3D freehandSPECT (FHS) can be used to provide the surgeon with radioguidance to the SN(s). We reasoned that integrated use of these technologies results in the generation of a “hybrid” modality that combines the best that the individual radioguidance technologies have to offer. The sensitivity and resolvability of both 2D-MGC and 3D-FHS-MGC were studied in a phantom setup (at various source-detector depths and using varying injection site-to-SN distances), and in ten breast cancer patients scheduled for SN biopsy. Acquired 3D-FHS-MGC images were overlaid with the position of the phantom/patient. This augmented-reality overview image was then used for navigation to the hotspot/SN in virtual-reality using the GP. Obtained results were compared to conventional gamma camera lymphoscintigrams. Resolution of 3D-FHS-MGC allowed identification of the SNs at a minimum injection site (100 MBq)-to-node (1 MBq; 1%) distance of 20 mm, up to a source-detector depth of 36 mm in 2D-MGC and up to 24 mm in 3D-FHS-MGC. A clinically relevant dose of approximately 1 MBq was clearly detectable up to a depth of 60 mm in 2D-MGC and 48 mm in 3D-FHS-MGC. In all ten patients at least one SN was visualized on the lymphoscintigrams with a total of 12 SNs visualized. 3D-FHS-MGC identified 11 of 12 SNs and allowed navigation to all these visualized SNs; in one patient with two axillary SNs located closely to each other (11 mm), 3D-FHS-MGC was not able to distinguish the two SNs. In conclusion, high sensitivity detection of SNs at an injection site-to-node distance of 20 mm-and-up was possible using 3D-FHS-MGC. In patients, 3D-FHS-MGC showed highly reproducible images as compared to the conventional lymphoscintigrams. PMID:26069857

  20. Localization and spectral isolation of special nuclear material using stochastic image reconstruction

    NASA Astrophysics Data System (ADS)

    Hamel, M. C.; Polack, J. K.; Poitrasson-Rivière, A.; Clarke, S. D.; Pozzi, S. A.

    2017-01-01

    In this work we present a technique for isolating the gamma-ray and neutron energy spectra from multiple radioactive sources localized in an image. Image reconstruction algorithms for radiation scatter cameras typically focus on improving image quality. However, with scatter cameras being developed for non-proliferation applications, there is a need for not only source localization but also source identification. This work outlines a modified stochastic origin ensembles algorithm that provides localized spectra for all pixels in the image. We demonstrated the technique by performing three experiments with a dual-particle imager that measured various gamma-ray and neutron sources simultaneously. We showed that we could isolate the peaks from 22Na and 137Cs and that the energy resolution is maintained in the isolated spectra. To evaluate the spectral isolation of neutrons, a 252Cf source and a PuBe source were measured simultaneously and the reconstruction showed that the isolated PuBe spectrum had a higher average energy and a greater fraction of neutrons at higher energies than the 252Cf. Finally, spectrum isolation was used for an experiment with weapons grade plutonium, 252Cf, and AmBe. The resulting neutron and gamma-ray spectra showed the expected characteristics that could then be used to identify the sources.

  1. Achieving subpixel resolution with time-correlated transient signals in pixelated CdZnTe gamma-ray sensors using a focused laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ocampo Giraldo, Luis A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; De Geronimo, Gianluigi; Gul, Rubi; Fried, Jack; Hossain, Anwar; Unlu, Kenan; Vernon, Emerson; Yang, Ge; James, Ralph B.

    2017-05-01

    High-resolution position-sensitive detectors have been proposed to correct response non-uniformities in Cadmium Zinc Telluride (CZT) crystals by virtually subdividing the detectors area into small voxels and equalizing responses from each voxel. 3D pixelated detectors coupled with multichannel readout electronics are the most advanced type of CZT devices offering many options in signal processing and enhancing detector performance. One recent innovation proposed for pixelated detectors is to use the induced (transient) signals from neighboring pixels to achieve high sub-pixel position resolution while keeping large pixel sizes. The main hurdle in achieving this goal is the relatively low signal induced on the neighboring pixels because of the electrostatic shielding effect caused by the collecting pixel. In addition, to achieve high position sensitivity one should rely on time-correlated transient signals, which means that digitized output signals must be used. We present the results of our studies to measure the amplitude of the pixel signals so that these can be used to measure positions of the interaction points. This is done with the processing of digitized correlated time signals measured from several adjacent pixels taking into account rise-time and charge-sharing effects. In these measurements we used a focused pulsed laser to generate a 10-micron beam at one milliwatt (650-nm wavelength) over the detector surface while the collecting pixel was moved in cardinal directions. The results include measurements that present the benefits of combining conventional pixel geometry with digital pulse processing for the best approach in achieving sub-pixel position resolution with the pixel dimensions of approximately 2 mm. We also present the sub-pixel resolution measurements at comparable energies from various gamma emitting isotopes.

  2. Development of portable CdZnTe spectrometers for remote sensing of signatures from nuclear materials

    NASA Astrophysics Data System (ADS)

    Burger, Arnold; Groza, Michael; Cui, Yunlong; Roy, Utpal N.; Hillman, Damian; Guo, Mike; Li, Longxia; Wright, Gomez W.; James, Ralph B.

    2005-03-01

    Room temperature cadmium zinc telluride (CZT) gamma-ray spectrometers are being developed for a number for years for medical, space and national security applications where high sensitivity, low operating power and compactness are indispensable. The technology has matured now to the point where large volume (several cubic centimeters) and high energy resolution (approximately 1% at 660 eV) of gamma photons, are becoming available for their incorporation into portable systems for remote sensing of signatures from nuclear materials. The straightforward approach of utilizing a planar CZT device has been excluded due to the incomplete collection arising from the trapping of holes and causing broadening of spectral lines at energies above 80 keV, to unacceptable levels of performance. Solutions are being pursued by developing devices aimed at processing the signal produced primarily by electrons and practically insensitive to the contribution of holes, and recent progress has been made in the areas of material growth as well as electrode and electronics design. Present materials challenges are in the growth of CZT boules from which large, oriented single crystal pieces can be cut to fabricate such sizable detectors. Since virtually all the detector grade CZT boules consist of several grains, the cost of a large, single crystal section is still high. Co-planar detectors, capacitive Frisch-grid detectors and devices taking advantage of the small pixel effect, are configurations with a range of requirements in crystallinity and defect content and involve variable degrees of complexity in the fabrication, surface passivation and signal processing. These devices have been demonstrated by several research groups and will be discussed in terms of their sensitivity and availability.

  3. [Diagnostic use of positron emission tomography in France: from the coincidence gamma-camera to mobile hybrid PET/CT devices].

    PubMed

    Talbot, Jean-Noël

    2010-11-01

    Positron emission tomography (PET) is a well-established medical imaging method. PET is increasingly used for diagnostic purposes, especially in oncology. The most widely used radiopharmaceutical is FDG, a glucose analogue. Other radiopharmaceuticals have recently been registered or are in development. We outline technical improvements of PET machines during more than a decade of clinical use in France. Even though image quality has improved considerably and PET-CT hybrid machines have emerged, spending per examination has remained remarkably constant. Replacement and maintenance costs have remained in the range of 170-190 Euros per examination since 1997, whether early CDET gamma cameras or the latest time-of-flight PET/CT devices are used. This is mainly due to shorter acquisition times and more efficient use of FDG New reimbursement rates for PET/CT are needed in France in order to favor regular acquisition of state-of-the-art devices. One major development is the coupling of PET and MR imaging.

  4. A Robotic arm for optical and gamma radwaste inspection

    NASA Astrophysics Data System (ADS)

    Russo, L.; Cosentino, L.; Pappalardo, A.; Piscopo, M.; Scirè, C.; Scirè, S.; Vecchio, G.; Muscato, G.; Finocchiaro, P.

    2014-12-01

    We propose Radibot, a simple and cheap robotic arm for remote inspection, which interacts with the radwaste environment by means of a scintillation gamma detector and a video camera representing its light (< 1 kg) payload. It moves vertically thanks to a crane, while the other three degrees of freedom are obtained by means of revolute joints. A dedicated algorithm allows to automatically choose the best kinematics in order to reach a graphically selected position, while still allowing to fully drive the arm by means of a standard videogame joypad.

  5. Comment on 'Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification'.

    PubMed

    Sitek, Arkadiusz

    2016-12-21

    The origin ensemble (OE) algorithm is a new method used for image reconstruction from nuclear tomographic data. The main advantage of this algorithm is the ease of implementation for complex tomographic models and the sound statistical theory. In this comment, the author provides the basics of the statistical interpretation of OE and gives suggestions for the improvement of the algorithm in the application to prompt gamma imaging as described in Polf et al (2015 Phys. Med. Biol. 60 7085).

  6. Comment on ‘Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification’

    NASA Astrophysics Data System (ADS)

    Sitek, Arkadiusz

    2016-12-01

    The origin ensemble (OE) algorithm is a new method used for image reconstruction from nuclear tomographic data. The main advantage of this algorithm is the ease of implementation for complex tomographic models and the sound statistical theory. In this comment, the author provides the basics of the statistical interpretation of OE and gives suggestions for the improvement of the algorithm in the application to prompt gamma imaging as described in Polf et al (2015 Phys. Med. Biol. 60 7085).

  7. Monitoring the distribution of prompt gamma rays in boron neutron capture therapy using a multiple-scattering Compton camera: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Taewoong; Lee, Hyounggun; Lee, Wonho

    2015-10-01

    This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by 10B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.

  8. Cardiac phase-synchronized myocardial thallium-201 single-photon emission tomography using list mode data acquisition and iterative tomographic reconstruction.

    PubMed

    Vemmer, T; Steinbüchel, C; Bertram, J; Eschner, W; Kögler, A; Luig, H

    1997-03-01

    The purpose of this study was to determine whether data acquisition in the list mode and iterative tomographic reconstruction would render feasible cardiac phase-synchronized thallium-201 single-photon emission tomography (SPET) of the myocardium under routine conditions without modifications in tracer dose, acquisition time, or number of steps of the a gamma camera. Seventy non-selected patients underwent 201T1 SPET imaging according to a routine protocol (74 MBq/2 mCi 201T1, 180 degrees rotation of the gamma camera, 32 steps, 30 min). Gamma camera data, ECG, and a time signal were recorded in list mode. The cardiac cycle was divided into eight phases, the end-diastolic phase encompassing the QRS complex, and the end-systolic phase the T wave. Both phase- and non-phase-synchronized tomograms based on the same list mode data were reconstructed iteratively. Phase-synchronized and non-synchronized images were compared. Patients were divided into two groups depending on whether or not coronary artery disease had been definitely diagnosed prior to SPET imaging. The numbers of patients in both groups demonstrating defects visible on the phase-synchronized but not on the non-synchronized images were compared. It was found that both postexercise and redistribution phase tomograms were suited for interpretation. The changes from end-diastolic to end-systolic images allowed a comparative assessment of regional wall motility and tracer uptake. End-diastolic tomograms provided the best definition of defects. Additional defects not apparent on non-synchronized images were visible in 40 patients, six of whom did not show any defect on the non-synchronized images. Of 42 patients in whom coronary artery disease had been definitely diagnosed, 19 had additional defects not visible on the non-synchronized images, in comparison to 21 of 28 in whom coronary artery disease was suspected (P < 0.02; chi 2). It is concluded that cardiac phase-synchronized 201T1 SPET of the myocardium was made feasible by list mode data acquisition and iterative reconstruction. The additional findings on the phase-synchronized tomograms, not visible on the non-synchronized ones, represented genuine defects. Cardiac phase-synchronized 201T1 SPET is advantageous in allowing simultaneous assessment of regional wall motion and tracer uptake, and in visualizing smaller defects.

  9. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  10. Iodine 125 Imaging in Mice Using NaI(Tl)/Flat Panel PMT Integral Assembly

    NASA Astrophysics Data System (ADS)

    Cinti, M. N.; Majewski, S.; Williams, M. B.; Bachmann, C.; Cominelli, F.; Kundu, B. K.; Stolin, A.; Popov, V.; Welch, B. L.; De Vincentis, G.; Bennati, P.; Betti, M.; Ridolfi, S.; Pani, R.

    2007-06-01

    Radiolabeled agents that bind to specific receptors have shown great promise in diagnosing and characterizing tumor cell biology. In vivo imaging of gene transcription and protein expression represents an other area of interest. The radioisotope I is commercially available as a label for molecular probes and utilized by researchers in small animal studies. We propose an advanced imaging detector based on planar NaI(T1) integral assembly with a Hamamatsu Flat Panel Photomultiplier (MA-PMT) representing one of the best trade-offs between spatial resolution and detection efficiency. We characterized the imaging performances of this planar detector, in comparison with a gamma camera based on a pixellated scintillator. We also tested the in-vivo image capability by acquiring images of mice as a part of a study of inflammatory bowel disease (IBD). In this study, four 25g mice with an IBD-like phenotype (SAMP1/YitFc) were injected with 375, 125, 60 and 30 muCi of I-labelled antibody against mucosal vascular addressin cell adhesion molecule (MAdCAM-1), which is up-regulated in the presence of inflammation. Two mice without bowel inflammation were injected with 150 and 60 muCi of the labeled anti-MAdCAM-1 antibody as controls. To better evaluate the performances of the integral assembly detector, we also acquired mice images with a dual modality (X and Gamma Ray) camera dedicated for small animal imaging. The results coming from this new detector are considerable: images of SAMP1/YitFc injected with 30 muCi activity show inflammation throughout the intestinal tract, with the disease very well defined at two hours post-injection.

  11. Calibration strategies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  12. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    NASA Astrophysics Data System (ADS)

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including: the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half-maximum (FWHM) across the entire dynamic range, and a noise floor about 20 keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.

  13. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    PubMed Central

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2014-01-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications. PMID:25937684

  14. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications.

    PubMed

    Barber, W C; Wessel, J C; Nygard, E; Iwanczyk, J S

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications.

  15. SU-F-J-189: A Method to Improve the Spatial Resolution of Prompt Gamma Based Compton Imaging for Proton Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draeger, E; Chen, H; Polf, J

    Purpose: To test two new techniques, the distance-of-closest approach (DCA) and Compton line (CL) filters, developed as a means of improving the spatial resolution of Compton camera (CC) imaging. Methods: Gammas emitted from {sup 22}Na, {sup 137}Cs, and {sup 60}Co point sources were measured with a prototype 3-stage CC. The energy deposited and position of each interaction in each stage were recorded and used to calculate a “cone-of-origin” for each gamma that scattered twice in the CC. A DCA filter was developed which finds the shortest distance from the gamma’s cone-of-origin surface to the location of the gamma source. Themore » DCA filter was applied to the data to determine the initial energy of the gamma and to remove “bad” interactions that only contribute noise to the image. Additionally, a CL filter, which removes gamma events that do not follow the theoretical predictions of the Compton scatter equation, was used to further remove “bad” interactions from the measured data. Then images were reconstructed with raw, unfiltered data, DCA filtered data, and DCA+CL filtered data and the achievable image resolution of each dataset was compared. Results: Spatial resolutions of ∼2 mm, and better than 2 mm, were achievable with the DCA and DCA+CL filtered data, respectively, compared to > 5 mm for the raw, unfiltered data. Conclusion: In many special cases in medical imaging where information about the source position may be known, such as proton radiotherapy range verification, the application of the DCA and CL filters can result in considerable improvements in the achievable spatial resolutions of Compton imaging.« less

  16. The Advanced Gamma-ray Imaging System (AGIS): Real Time Stereoscopic Array Trigger

    NASA Astrophysics Data System (ADS)

    Byrum, K.; Anderson, J.; Buckley, J.; Cundiff, T.; Dawson, J.; Drake, G.; Duke, C.; Haberichter, B.; Krawzcynski, H.; Krennrich, F.; Madhavan, A.; Schroedter, M.; Smith, A.

    2009-05-01

    Future large arrays of Imaging Atmospheric Cherenkov telescopes (IACTs) such as AGIS and CTA are conceived to comprise of 50 - 100 individual telescopes each having a camera with 10**3 to 10**4 pixels. To maximize the capabilities of such IACT arrays with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We describe the design of a stereoscopic array trigger that calculates image parameters and then correlates them across a subset of telescopes. Fast Field Programmable Gate Array technology allows to use lookup tables at the array trigger level to form a real-time pattern recognition trigger tht capitalizes on the multiple view points of the shower at different shower core distances. A proof of principle system is currently under construction. It is based on 400 MHz FPGAs and the goal is for camera trigger rates of up to 10 MHz and a tunable cosmic-ray background suppression at the array level.

  17. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerología Department of Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Ávila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; de Buen, I. Gamboa; Buenfil, A. E.; Brandan, M. E.

    2010-12-01

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerología, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with 137Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrología, to known 137Cs gamma radiation air kerma. Radionuclides considered for this study are 131I, 18F, 67Ga, 99mTc, 111In, 201Tl and 137Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with 131I and 137Cs. High dose values were found at the waste storage room, outside corridor of 137Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the 137Cs brachytherapy corridor is equal to (18.51±0.02)×10-3 mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05±0.03)×10-3 mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).

  18. Development of compact Compton camera for 3D image reconstruction of radioactive contamination

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Terasaka, Y.; Ozawa, S.; Nakamura Miyamura, H.; Kaburagi, M.; Tanifuji, Y.; Kawabata, K.; Torii, T.

    2017-11-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the large tsunami caused by the Great East Japan Earthquake of March 11, 2011. Very large amounts of radionuclides were released from the damaged plant. Radiation distribution measurements inside FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a compact Compton camera to measure the distribution of radioactive contamination inside the FDNPS buildings three-dimensionally (3D). The total weight of the Compton camera is lower than 1.0 kg. The gamma-ray sensor of the Compton camera employs Ce-doped GAGG (Gd3Al2Ga3O12) scintillators coupled with a multi-pixel photon counter. Angular correction of the detection efficiency of the Compton camera was conducted. Moreover, we developed a 3D back-projection method using the multi-angle data measured with the Compton camera. We successfully observed 3D radiation images resulting from the two 137Cs radioactive sources, and the image of the 9.2 MBq source appeared stronger than that of the 2.7 MBq source.

  19. Design and performances of a low-noise and radiation-hardened readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Bo, Gan; Tingcun, Wei; Wu, Gao; Yongcai, Hu

    2016-06-01

    In this paper, we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit (ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications. The readout channel is comprised of a charge sensitive amplifier, a CR-RC shaping amplifier, an analog output buffer, a fast shaper, and a discriminator. An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 × 2.2 mm2. The input energy range is from 5 to 350 keV. For this 8-channel prototype ASIC, the measured electrical characteristics are as follows: the overall gain of the readout channel is 210 V/pC, the linearity error is less than 2%, the crosstalk is less than 0.36%, The equivalent noise charge of a typical channel is 52.9 e- at zero farad plus 8.2 e- per picofarad, and the power consumption is less than 2.4 mW/channel. Through the measurement together with a CdZnTe detector, the energy resolution is 5.9% at the 59.5-keV line under the irradiation of the radioactive source 241Am. The radiation effect experiments show that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad(Si). Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (Nos. 11475136, 11575144, 61176094), and the Shaanxi Natural Science Foundation of China (No. 2015JM1016).

  20. Study on the effect of Cd-diffusion annealing on the electrical properties of CdZnTe

    NASA Astrophysics Data System (ADS)

    Wanwan, Li; Zechun, Cao; Bin, Zhang; Feng, Zhan; Hongtao, Liu; Wenbin, Sang; Jiahua, Min; Kang, Sun

    2006-06-01

    In order to meet the requirements for the device design of radiation detectors, CdZnTe (or Cd 1-xZn xTe) crystals grown by Vertical Bridgman Method often need subsequent annealing to increase their resistivity. The nature of this treatment is a diffusion process. Thus, it is meaningful to relate the change of resistivity to the diffusion parameters. A model correlating resistivity and conduction type of CdZnTe with the main diffusion parameter—diffusion coefficient—is put forward in this paper. Combining the model with the analysis of our experimental data, DCd=1.464×10 -10, 1.085×10 -11 and 4.167×10 -13 cm 2/s are the values of Cd self-diffusion coefficient in Cd 0.9Zn 0.1Te at 1073, 973 and 873 K, respectively. The data coincide closely with the Cd self-diffusion coefficient in CdTe provided by different authors [E.D. Jones, N.M. Stewart, Self-diffusion of cadmium in cadmium telluride, J. Crystal Growth 84 (1987) 289-294; P.M. Borsenberger, D.A. Stevenson, J. Phys. Chem. Solids 29 (1968) 1277; R.C. Whelan, D. Shaw, in: D.G. Thomas (Ed.), II -VI Semiconductor Compounds, Benjamin, New York, 1967, p. 451]. With the data, the effects of annealing time on the change of resistivity and conduction type for Cd 0.9Zn 0.1Te wafers, which are annealed in saturated Cd vapor at 1073, 973 and 873 K, were simulated, and good consistency was found. This work suggests an alternative way to obtain the diffusion coefficient in semiconductor materials and also enables ones to analyze the diffusion process quantitatively and predict the annealing results.

  1. STS-37 Breakfast / Ingress / Launch & ISO Camera Views

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The primary objective of the STS-37 mission was to deploy the Gamma Ray Observatory. The mission was launched at 9:22:44 am on April 5, 1991, onboard the space shuttle Atlantis. The mission was led by Commander Steven Nagel. The crew was Pilot Kenneth Cameron and Mission Specialists Jerry Ross, Jay Apt, and Linda Godwing. This videotape shows the crew having breakfast on the launch day, with the narrator introducing them. It then shows the crew's final preparations and the entry into the shuttle, while the narrator gives information about each of the crew members. The countdown and launch is shown including the shuttle separation from the solid rocket boosters. The launch is reshown from 17 different camera views. Some of the other camera views were in black and white.

  2. A data acquisition system for coincidence imaging using a conventional dual head gamma camera

    NASA Astrophysics Data System (ADS)

    Lewellen, T. K.; Miyaoka, R. S.; Jansen, F.; Kaplan, M. S.

    1997-06-01

    A low cost data acquisition system (DAS) was developed to acquire coincidence data from an unmodified General Electric Maxxus dual head scintillation camera. A high impedance pick-off circuit provides position and energy signals to the DAS without interfering with normal camera operation. The signals are pulse-clipped to reduce pileup effects. Coincidence is determined with fast timing signals derived from constant fraction discriminators. A charge-integrating FERA 16 channel ADC feeds position and energy data to two CAMAC FERA memories operated as ping-pong buffers. A Macintosh PowerPC running Labview controls the system and reads the CAMAC memories. A CAMAC 12-channel scaler records singles and coincidence rate data. The system dead-time is approximately 10% at a coincidence rate of 4.0 kHz.

  3. Model analysis for the MAGIC telescope

    NASA Astrophysics Data System (ADS)

    Mazin, D.; Bigongiari, C.; Goebel, F.; Moralejo, A.; Wittek, W.

    The MAGIC Collaboration operates the 17m imaging Cherenkov telescope on the Canary island La Palma. The main goal of the experiment is an energy threshold below 100 GeV for primary gamma rays. The new analysis technique (model analysis) takes advantage of the high resolution (both in space and time) camera by fitting the averaged expected templates of the shower development to the measured shower images in the camera. This approach allows to recognize and reconstruct images just above the level of the night sky background light fluctuations. Progress and preliminary results of the model analysis technique will be presented.

  4. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  5. AIRWAY RETENTION OF MATERIALS OF DIFFERENT SOLUBILITY FOLLOWING LOCAL INTRABRONCHIAL DEPOSITION IN DOGS

    EPA Science Inventory

    We used a gamma camera to monitor the retention and clearance of radiolabeled human serum albumin (HSA), a water-soluble material with molecular weight of 66,000 Daltons, and radiolabeled sulfur colloid (SC), an insoluble submicron (0.22 microm) particle, following localized depo...

  6. Rapid pulse annealing of CdZnTe detectors for reducing electronic noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Lars; Conway, Adam; Nelson, Art

    A combination of doping, rapid pulsed optical and/or thermal annealing, and unique detector structure reduces or eliminates sources of electronic noise in a CdZnTe (CZT) detector. According to several embodiments, methods of forming a detector exhibiting minimal electronic noise include: pulse-annealing at least one surface of a detector comprising CZT for one or more pulses, each pulse having a duration of .about.0.1 seconds or less. The at least one surface may optionally be ion-implanted. In another embodiment, a CZT detector includes a detector surface with two or more electrodes operating at different electric potentials and coupled to the detector surface;more » and one or more ion-implanted CZT surfaces on or in the detector surface, each of the one or more ion-implanted CZT surfaces being independently connected to one of the two or more electrodes and the surface of the detector. At least two of the ion-implanted surfaces are in electrical contact.« less

  7. Point defects in Cd(Zn)Te and TlBr: Theory

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-09-01

    The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.

  8. Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lingyan; Jie, Wanqi, E-mail: jwq@nwpu.edu.cn; Zha, Gangqiang, E-mail: zha-gq@hotmail.com

    2014-06-09

    The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminatedmore » crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.« less

  9. Effect of substrate dislocations on the Hg in-diffusion in CdZnTe substrates used for HgCdTe epilayer growth

    NASA Astrophysics Data System (ADS)

    Kumar, Shiv; Kapoor, A. K.; Nagpal, A.; Sharma, S.; Verma, D.; Kumar, A.; Raman, R.; Basu, P. K.

    2006-12-01

    Chemical-etched HgCdTe epilayers grown onto CdZnTe substrates have been studied using defect etching and EDS on cleaved (1 1 0) face. Formation of etch pits and mercury (Hg) in-diffusion into CZT substrate has been correlated with the substrate quality i.e. the presence of dislocations around second phase inclusions. That the Hg in-diffusion takes place through these dislocations is authenticated by the presence of Te-inclusions in substrates where large density of etch pits are revealed after chemical etching. X-ray rocking curve measurements were carried out to reveal crystalline quality of the substrates. FTIR spectroscopy indicates low transmission values and absence of interference fringes in MCT epilayers with large Hg diffusion. Hg diffusion into CZT substrate upto 25 μm in samples with low FWHM values and upto 250 μm in samples with multiple peaks and high FWHM values was observed.

  10. Aspherical mirrors for the Gamma-ray Cherenkov Telescope, a Schwarschild-Couder prototype proposed for the future Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Dournaux, J. L.; Gironnet, J.; Huet, J. M.; Laporte, P.; Chadwick, P.; Dumas, D.; Pech, M.; Rulten, C. B.; Sayède, F.; Schmoll, J.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project, led by an international collaboration of institutes, aims to create the world's largest next generation Very High-Energy (VHE) gamma-ray telescope array, devoted to observations in a wide band of energy, from a few tens of GeV to more than 100 TeV. The Small-Sized Telescopes (SSTs) are dedicated to the highest energy range. Seventy SSTs are planned in the baseline array design with a required lifetime of about 30 years. The GCT (Gamma-ray Cherenkov Telescope) is one of the prototypes proposed for CTA's SST sub-array. It is based on a Schwarzschild-Couder dual-mirror optical design. This configuration has the benefit of increasing the field-of-view and decreasing the masses of the telescope and of the camera. But, in spite of these many advantages, it was never implemented before in ground-based Cherenkov astronomy because of the aspherical and highly curved shape required for the mirrors. The optical design of the GCT consists of a primary 4 meter diameter mirror, segmented in six aspherical petals, a secondary monolithic 2-meter mirror and a light camera. The reduced number of segments simplifies the alignment of the telescope but complicates the shape of the petals. This, combined with the strong curvature of the secondary mirror, strongly constrains the manufacturing process. The Observatoire de Paris implemented metallic lightweight mirrors for the primary and the secondary mirrors of GCT. This choice was made possible because of the relaxed requirements of optical Cherenkov telescopes compared to optical ones. Measurements on produced mirrors show that these ones can fulfill requirements in shape, PSF and reflectivity, with a clear competition between manufacturing cost and final performance. This paper describes the design of these mirrors in the context of their characteristics and how design optimization was used to produce a lightweight design. The manufacturing process used for the prototype and planned for the large scale production is presented as well as the performance, in terms of geometric and optical properties, of the produced mirrors. The alignment procedure of the mirrors is also detailed. This technique is finally compared to other manufacturing techniques based on composite glass mirrors within the framework of GCT mirrors specificities.

  11. Evaluation of the quality of semi-insulating CdTe for radiation detectors by measurement of lux-ampere characteristics

    NASA Astrophysics Data System (ADS)

    Franc, J.; Kubát, J.; Grill, R.; Dědič, V.; Hlídek, P.; Moravec, P.; Belas, E.

    2011-05-01

    Accumulation of space charge on deep levels represents one of the major problems in fabrication of semi-insulating CdTe and CdZnTe X-ray and gamma-ray detectors, because it influences the applied electric field and can even result in a complete breakdown of the field in part of the sample (polarization and dead layer formation). The goal of the study was to evaluate possibilities of localization of areas of potential space charge accumulation in as grown crystals by steady state measurement of lux-ampere characteristics. All measurements were done at room temperature using He-Ne laser. Voltage was applied parallel to the direction of light propagation in the range 10-100 V. It was observed that all lux-ampere characteristics are sub-linear. Screening effects caused by space charge accumulated on deep levels explain these results. Crystals prepared by Vertical gradient freeze method in our laboratory are compared to a commercially available detector-grade sample prepared by Travelling heater method. Comparison of crystals grown from precursors of different starting purity shows an increase of the slope of lux-ampere characteristics with a decrease of impurity content. A correlation between the slope of lux-ampere characteristics and the mobility-lifetime product of electrons was observed, too.

  12. Gamma-ray detector guidance of breast cancer therapy

    NASA Astrophysics Data System (ADS)

    Ravi, Ananth

    2009-12-01

    Breast cancer is the most common form of cancer in women. Over 75% of breast cancer patients are eligible for breast conserving therapy. Breast conserving therapy involves a lumpectomy to excise the gross tumour, followed by adjuvant radiation therapy to eradicate residual microscopic disease. Recent advances in the understanding of breast cancer biology and recurrence have presented the opportunity to improve breast conserving therapy techniques. This thesis has explored the potential of gamma-ray detecting technology to improve guidance of both surgical and adjuvant radiation therapy aspects of breast conserving therapy. The task of accurately excising the gross tumour during breast conserving surgery (BCS) is challenging, due to the limited guidance currently available to surgeons. Radioimmuno guided surgery (RIGS) has been investigated to determine its potential to delineate the gross tumour intraoperatively. The effects of varying a set of user controllable parameters on the ability of RIGS to detect and delineate model breast tumours was determined. The parameters studied were: Radioisotope, blood activity concentration, collimator height and energy threshold. The most sensitive combination of parameters was determined to be an 111Indium labelled radiopharmaceutical with a gamma-ray detecting probe collimated to a height of 5 mm and an energy threshold at the Compton backscatter peak. Using these parameters it was found that, for the breast tumour model used, the minimum tumour-to-background ratio required to delineate the tumour edge accurately was 5.2+/-0.4 at a blood activity concentration of 5 kBq/ml. Permanent breast seed implantation (PBSI) is a form of accelerated partial breast irradiation that dramatically reduces the treatment burden of adjuvant radiation therapy on patients. Unfortunately, it is currently difficult to localize the implanted brachytherapy seeds, making it difficult to perform a correction in the event that seeds have been misplaced. One method to provide intraoperative seed localization is through the use of a gamma-camera system. Monte Carlo simulations were conducted of a Cadmium Zinc Telluride (CZT) gamma-camera system and a realistic model of a breast with 3 layers of seeds distributed according to the pre-implant treatment plan of a typical patient. The simulations showed that a gamma-camera was able to localize the seeds with a maximum error of 2.0 mm within 20 seconds. An experimental prototype was designed and constructed to validate these promising Monte Carlo results. Using a 64 pixel linear array CZT detector fitted with a custom built brass collimator, images were acquired of a physical phantom similar to the model used in the Monte Carlo simulations. The experimental prototype was able to reliably detect the seeds within 30 seconds with a median error in localization of 1 mm. The results from this thesis suggest that gamma-ray detecting technology may be able to provide significant improvements in guidance of breast cancer therapies and, thus, potentially improved therapeutic outcomes.

  13. Nuclear imaging of iodine uptake in mouse tissues

    NASA Astrophysics Data System (ADS)

    Hammond, W. T.; Bradley, E. L.; Qian, J.; Majewski, S.

    2005-04-01

    We have designed and employed a compact gamma camera based on pixellated scintillators and position-sensitive photomultipliers to obtain in vivo images in mice of biological substances tagged with 125-I. Biomedical imaging studies make use of radioactive isotopes of iodine. In these applications, protection of the thyroid from the effects of the radioactive material can be important. We have studied in vivo the effectiveness in mice of pre-administration of KI in various concentrations to evaluate both the biologically effective doses for thyroid protection and the potential for use in general sodium iodide symporter studies. These findings have important implications for both intentional and accidental exposure to radioiodine.

  14. Batse/Sax and Batse/RXTE-ASM Joint Spectral Studies of GRBs

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    2002-01-01

    We proposed to make joint spectral analysis of gamma-ray bursts (GRBs) in the BATSE data base that are located within the fields of view of either the BeppoSAX wide field cameras (WFCs) or the RXTE all-sky monitor (ASM). The very broad-band coverage obtained in this way would facilitate various studies of GRB spectra that are difficult to perform with BATSE data alone. Unfortunately, the termination of the CGRO mission in June 2000 was not anticipated at the time of the proposal, and the sample of common events turned out to be smaller than we would have liked.

  15. Long-term changes in open field activity of male mice irradiated with low levels of gamma rays at late stage of development.

    PubMed

    Minamisawa, T; Hirokaga, K

    1996-06-01

    The open field activity of first generation (F1) hybrid male C57BL/6 x C3H mice irradiated with gamma-rays on the 14th day of gestation was studied at the following ages: 6-7 months, 12-13 months and 19-20 months. Doses were 0.1 Gy or 0.2 Gy. Open field activity was recorded with a camera. The camera output signal was recorded every sec through an A/D converter to a personal computer. The field was divided into 25 units of 8 cm square. All recordings were continuous for 60 min. The time which the 0.2-Gy group recorded at 6-7 months, spent in the 4 squares in the corner fields was high in comparison with the control group at the same age. The walking distance of the 0.1-Gy group recorded at 12-13 months was longer than that for the age matched control group. No effect of radiation was found on any of the behaviors observed and recorded at 19-20 months. The results demonstrate that exposure to low levels of gamma-rays on the 14th day of gestation results in behavioral changes, which occur at 6-7 and 12-13 months but not 19-20 months.

  16. Prediction of TARANIS Observations of TGF's and Optical Emissions from Red Sprites

    NASA Astrophysics Data System (ADS)

    Nelson, M. A.

    2006-12-01

    TARANIS (Tool for the Analysis of Radiation from Lightning and Sprites) is a French (CNES, Centre National D'Etudes Spatiales) micro-satellite that is scheduled for launch in 2009. This will be the first satellite that will measure coincident gamma-rays and optical emissions from atmospheric discharges. These measurements will provide important clues concerning the physics of discharges that produce gamma-rays and will provide more definitive evidence of the role of conventional breakdown versus runaway breakdown than is currently available. While a variety of discharges may be associated with Transient Gamma Ray Flashes (TGF's), this study will focus on emissions expected from red sprites. Future studies will focus on other types of discharges (for example, gigantic jets or blue jets) to see whether they should produce detectable signal levels at both gamma-ray and optical frequencies. The source of terrestrial TGF's is a matter of debate at this time. Many experts in the field have interpreted the data associated with the RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) satellite to be indicative that the discharges associated with terrestrial gamma-rays are not associated with sprites. However, RHESSI was not designed for the purpose of collecting gamma-ray measurements from terrestrial discharges; does not possess a coincident optical measurement capability; and must average data over many events to predict a spectrum. We will present a statistical analysis of the relative efficiencies of the RHESSI and TARANIS satellite designs for the detection of TGF's associated with sprites. We will show results from a fully 2-D electromagnetic model (UNIMAX, the Unified Maxwell code) and an optical model (POEM, the Physics Based Optical Emission Model) to demonstrate the level of agreement between the simulations and the gamma-ray spectrum measurements and optical measurements (camera, photometer, and spectral measurements) for several different classes of discharges (halos, streamers, and runaway breakdown.) We will distinguish which measurements and model results are indicative of conventional breakdown and which are indicative of runaway breakdown.

  17. Copper crystal lens for medical imaging: first results

    NASA Astrophysics Data System (ADS)

    Roa, Dante E.; Smither, Robert K.

    2001-06-01

    A copper crystal lens designed to focus gamma ray energies of 100 to 200 keV has been assembled at Argonne National Laboratory. In particular, the lens has been optimized to focus the 140.6 keV gamma rays from technetium-99 m typically used in radioactive tracers. This new approach to medical imaging relies on crystal diffraction to focus incoming gamma rays in a manner similar to a simple convex lens focusing visible light. The lens is envisioned to be part of an array of lenses that can be used as a complementary technique to gamma cameras for localized scans of suspected tumor regions in the body. In addition, a 2- lens array can be used to scan a woman's breast in search of tumors with no discomfort to the patient. The incoming gamma rays are diffracted by a set of 828 copper crystal cubes arranged in 13 concentric rings, which focus the gamma rays into a very small area on a well-shielded NaI detector. Experiments performance with technetium-99 m and cobalt 57 radioactive sources indicate that a 6-lens array should be capable of detecting sources with (mu) Ci strength.

  18. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many observatories around the world were pointing their instruments at this mysterious source in the sky, named GRB 031203, in the attempt to decipher its nature. Also ESA's X-ray observatory, XMM-Newton, joined the hunt and observed the source in detail, using its on-board European Photon Imaging Camera (EPIC). The fading X-ray emission from GRB 031203 - called the `afterglow' - is clearly seen in XMM-Newton's images. But much more stunning are the two rings, centred on the afterglow, which appear to expand thousand times faster than the speed of light. Dr. Simon Vaughan, of the University of Leicester, United Kingdom, leads an international team of scientists studying GRB 031203. He explains that these rings are what astronomers call an `echo'. They form when the X-rays from the distant gamma-ray burst shine on a layer of dust in our own Galaxy. "The dust scatters some of the X-rays, causing XMM-Newton to observe these rings, much in the same way as fog scatters the light from a car's headlights," said Vaughan. Although the afterglow is the brightest feature seen in XMM-Newton's images, the expanding echo is much more spectacular. "It is like a shout in a cathedral," Vaughan said. "The shout of the gamma-ray burst is louder, but the Galactic reverberation, seen as the rings, is much more beautiful." The rings seem to expand because the X-rays scattered by dust farther from the direction of GRB 031203 take longer to reach us than those hitting the dust closer to the line of sight. However, nothing can move faster than light. "This is precisely what we expect because of the finite speed of light," said Vaughan. "The rate of expansion that we see is just a visual effect." He and his colleagues explain that we see two rings because there are two thin sheets of dust between the source of the gamma-ray burst and Earth, one closer to us creating the wider ring and one further away where the smaller ring is formed. Since they know precisely at what speed the X-ray light travels in space, the team in Leicester have determined accurately the distance to the dust sheets by measuring the size of the expanding rings. The nearest dust sheet is located 2900 light years away and is probably part of the Gum nebula, a bubble of hot gas resulting from many supernova explosions. The other dust layer is about 4500 light years away. Understanding how dust is distributed in our Galaxy is important because dust favours the collapse of cool gas clouds, which can then form stars and planets. Knowing where dust is located helps astronomers to determine where star and planet formation is likely to occur. Expanding X-ray dust scattering rings, such as those around GRB 031203, have never been seen before. Slower-moving rings, caused by a similar effect, have been seen in visible light around a very few exploding stars, mostly supernovae. The expanding rings also provide much needed information on the gamma-ray burst itself. Gamma-ray bursts are the most powerful explosive events in the Universe, but astronomers are still trying to understand the mystery that surrounds their origin. Some occur with the supernova explosion of a massive star when it has used up all of its fuel, although only stars which have lost their outer layers and which collapse to make a black hole seem able to make a gamma-ray burst. The delayed X-rays from the echo of GRB 031203 are very useful because they tell astronomers how bright the burst was in the X-ray spectrum when it went off on 3 December. The only direct data available from that moment are those obtained by ESA's Integral observatory in the gamma-ray range. "XMM-Newton's measurements are thus crucial to better understand the nature of the burst," said Dr. Fred Jansen, XMM-Newton's project scientist. "The more details we gather of the burst, the more we can learn on how black holes are made." Today, ESA's Integral and XMM-Newton observatories provide astronomers with their most powerful facilities for studying gamma-ray bursts. In 2004 a new gamma-ray satellite, called `Swift', will be launched as part of a collaboration between the USA, United Kingdom and Italy. Swift will add to the flotilla of satellites providing fast and accurate locations of gamma-ray bursts on the sky, which can then be followed with XMM-Newton. This will provide even more opportunities for new discoveries in this cutting-edge field. Notes to editors A scientific paper describing this discovery by Dr. Simon Vaughan and his collaborators has been accepted for publication in ``The Astrophysical Journal'' (see http://arxiv.org/abs/astro-ph/0312603). The other members in Vaughan's team are R. Willingale, P. O'Brien, J. Osborne, A. Levan, M. Watson and J. Tedds from the University of Leicester, United Kingdom; J. Reeves from NASA's Goddard Space Flight Center in Greenbelt, USA; D. Watson from the Neils Bohr Institute for Astronomy in Copenhagen, Denmark; M. Santos-Lleo, P. Rodriguez-Pascual and N. Schartel from ESA's XMM-Newton Science Operations Centre in Villafranca, Spain. Figure caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) Video caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) More about XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.

  19. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F.A.; Packer, S.; Slatkin, D.N.

    1996-12-10

    A nuclear medicine camera and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera includes a flexible frame containing a window, a photographic film, and a scintillation screen, with or without a gamma-ray collimator. The frame flexes for following the contour of the examination site on the patient, with the window being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film and the radiation source inside the patient. The frame is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms. 11 figs.

  20. View of Scientific Instrument Module to be flown on Apollo 15

    NASA Image and Video Library

    1971-06-27

    S71-2250X (June 1971) --- A close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 lunar landing mission. Mounted in a previously vacant sector of the Apollo Service Module (SM), the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data. SIM equipment includes a laser altimeter for accurate measurement of height above the lunar surface; a large-format panoramic camera for mapping, correlated with a metric camera and the laser altimeter for surface mapping; a gamma ray spectrometer on a 25-feet extendible boom; a mass spectrometer on a 21-feet extendible boom; X-ray and alpha particle spectrometers; and a subsatellite which will be injected into lunar orbit carrying a particle and magnetometer, and the S-Band transponder.

  1. VERITAS: status c.2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weekes, T. C.; Atkins, R. W.; Badran, H. M.

    2006-07-11

    VERITAS (Very Energetic Radiation Imaging Telescope Array System), is one of a new generation of TeV gamma-ray observatories. The current status of its construction is described here. The first two telescopes and cameras have been completed and meet the design specifications; the full array of four telescopes could be operational by the end of 2006.

  2. Phantom feet on digital radionuclide images and other scary computer tales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, J.E.; Dworkin, H.J.; Dees, S.M.

    1989-09-01

    Malfunction of a computer-assisted digital gamma camera is reported. Despite what appeared to be adequate acceptance testing, an error in the system gave rise to switching of images and identification text. A suggestion is made for using a hot marker, which would avoid the potential error of misinterpretation of patient images.

  3. Absorbed radiation dose in adults from iodine-131 and iodine-123 orthoiodohippurate and technetium-99m DTPA renography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsen, O.

    1988-03-01

    A mathematic model for evaluation of absorbed dose in radionuclide renography has been developed and programmed for automatic calculation in the computer. Input data to the model are readily available from the results of the renography and, hence, the method described is suitable for individual dose determinations in adults. Apart from the situation with very considerable outflow obstructions (/sup 131/I)OIH single probe renography involves a 15-20 times smaller dose to radiation sensitive organs than (/sup 123/I)OIH gamma camera renography. Further, the latter examination results in a 2-10 times smaller dose than (/sup 99m/Tc)DTPA gamma camera renography under normal outflow conditions.more » Absorbed renal dose is large, approximately 70 mGy, in the three renographies in the borderline case with total outflow obstructions. For comparison, i.v. pyelography, which is the x-ray examination often used instead of radionuclide renography, involves an absorbed dose to ovaries 10-1000 times larger than in radionuclide renography« less

  4. Metabolic cardiac imaging in severe coronary disease: assessment of viability with iodine-123-iodophenylpentadecanoic acid and multicrystal gamma camera, and correlation with biopsy.

    PubMed

    Murray, G; Schad, N; Ladd, W; Allie, D; vander Zwagg, R; Avet, P; Rockett, J

    1992-07-01

    Fifteen patients with coronary disease and resting left ventricular ejection fractions of less than or equal to 0.35 underwent resting metabolic cardiac imaging utilizing 1 mCi [123I]iodophenylpentadecanoic acid (IPPA) intravenously and a multicrystal gamma camera. Parametric images of regional rates of IPPA clearance and accumulation were generated. Forty-two vascular territories (22 infarcted) were evaluated by metabolic imaging as well as transmural myocardial biopsy. Despite resting akinesis or dyskinesis in 20/22 (91%) infarcted territories, 16/22 (73%) of these territories were metabolically viable. Transmural myocardial biopsies in all patients (43 sites, 42 vascular territories) during coronary bypass surgery confirmed IPPA results in 39/43 patients (91%). When compared to biopsy, scan sensitivity for viability was 33/36 (92%) with a specificity of 6/7 (86%). Eighty percent of bypassed, infarcted but IPPA viable segments demonstrated improved regional systolic wall motion postoperatively as assessed by exercise radionuclide angiography. We conclude resting IPPA imaging identifies viable myocardium, thereby providing a safe, cost-effective technique for myocardial viability assessment.

  5. Simulating the Reiner Gamma Lunar Swirl: Influence of the Upstream Plasma Conditions

    NASA Astrophysics Data System (ADS)

    Deca, J.; Gerard, M. J.; Divin, A. V.; Lue, C.; Ahmadi, T.; Lembege, B.; Horanyi, M.

    2017-12-01

    The Reiner Gamma swirl formation, co-located with one of our Moon's strongest crustal magnetic anomalies, is one of the most prominent lunar surface features. Due to Reiner Gamma's fairly moderate spatial scales, it presents an ideal test case to study the solar wind interaction with its magnetic topology from an ion-electron kinetic perspective. Using a fully kinetic particle-in-cell approach, coupled with a surface vector mapping magnetic field model based on Kaguya and Lunar Prospector observations, we are able to constrain both the reflected as well as the incident flux patterns to the lunar surface. Finding excellent agreement with the in-orbit flux measurements from the SARA:SWIM ion sensor onboard the Chandrayaan-1 spacecraft and the surface albedo images from the Lunar Reconnaissance Orbiter Wide Angle Camera we conclude that (from a pure plasma physics point of view) that solar wind standoff is a viable mechanism for the formation of lunar swirls. Here we show how the reflected and incident flux patterns change under influence of the upstream plasma and magnetic field conditions. The possible consequences of crustal magnetic anomalies for lunar swirl formation are essential for the interpretation of our Moon's geological history and evolution, space weathering, and to evaluate the needs and targets for future lunar exploration opportunities.

  6. Multimodal US-gamma imaging using collaborative robotics for cancer staging biopsies.

    PubMed

    Esposito, Marco; Busam, Benjamin; Hennersperger, Christoph; Rackerseder, Julia; Navab, Nassir; Frisch, Benjamin

    2016-09-01

    The staging of female breast cancer requires detailed information about the level of cancer spread through the lymphatic system. Common practice to obtain this information for patients with early-stage cancer is sentinel lymph node (SLN) biopsy, where LNs are radioactively identified for surgical removal and subsequent histological analysis. Punch needle biopsy is a less invasive approach but suffers from the lack of combined anatomical and nuclear information. We present and evaluate a system that introduces live collaborative robotic 2D gamma imaging in addition to live 2D ultrasound to identify SLNs in the surrounding anatomy. The system consists of a robotic arm equipped with both a gamma camera and a stereoscopic tracking system that monitors the position of an ultrasound probe operated by the physician. The arm cooperatively places the gamma camera parallel to the ultrasound imaging plane to provide live multimodal visualization and guidance. We validate the system by evaluating the target registration errors between fused nuclear and US image data in a phantom consisting of two spheres, one of which is filled with radioactivity. Medical experts perform punch biopsies on agar-gelatine phantoms with complex configurations of hot and cold lesions to provide a qualitative and quantitative evaluation of the system. The average point registration error for the overlay is [Formula: see text] mm. The time of the entire procedure was reduced by 36 %, with 80v of the biopsies being successful. The users' feedback was very positive, and the system was deemed to be very intuitive, with handling similar to classic US-guided needle biopsy. We present and evaluate the first medical collaborative robotic imaging system. Feedback from potential users for SLN punch needle biopsy is encouraging. Ongoing work investigates the clinical feasibility with more complex and realistic phantoms.

  7. Ambient Dose Equivalent measured at the Instituto Nacional de Cancerologia Department of Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avila, O.; Torres-Ulloa, C. L.; Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, AP 70-542, 04510, DF

    2010-12-07

    Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placedmore » during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).« less

  8. Homogeneity of CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Hermon, H.; Schieber, M.; James, R. B.; Lund, J.; Antolak, A. J.; Morse, D. H.; Kolesnikov, N. N. P.; Ivanov, Y. N.; Goorsky, M. S.; Yoon, H.; Toney, J.; Schlesinger, T. E.

    1998-02-01

    We describe the current state of nuclear radiation detectors produced from single crystals of Cd 1- xZn xTe(CZT), with 0.04 < x < 0.4, grown by the vertical high pressure Bridgman (VHPB) method. The crystals investigated were grown commercially both in the USA and at the Institute of Solid State Physics, Chernogolska, Russia. The CZT was evaluated by Sandia National Laboratories and the UCLA and CMU groups using proton-induced X-ray emission (PIXE), X-ray diffraction (XRD), photoluminescence (PL), infrared (IR) transmission microscopy, leakage current measurements and response to nuclear radiation. We discuss the homogeneity of the various CZT crystals based on the results from these measurement techniques.

  9. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1974-01-01

    X-rays from a 25-hJ plasma focus apparatus were observed with pinhole cameras. The cameras consist of 0.4 mm diameter pinholes in 2 cm thick lead housing enclosing an X-ray intensifying screen at the image plane. Pictures recorded through thin aluminum foils or plastic sheets for X-ray energies sub gamma smaller than 15 keV show distributed X-ray emissions from the focussed plasma and from the anode surface. However, when thick absorbers are used, radial filamentary structure in the X-ray emission from the anode surface is revealed. Occasionally larger structures are observed in addition to the filaments. Possible mechanisms for the filamentary structure are discussed.

  10. Using a smart phone application to measure high-energy radiation from thunderstorms

    NASA Astrophysics Data System (ADS)

    Bowers, G. S.; Smith, D. M.; Rexroad, W. Z.; Kelley, N. A.; Martinez-Mckinney, F.; Rubenstein, E. P.; Drukier, G.; Benes, G. N.

    2013-12-01

    Commercial airline flights and developing cell phone technologies present a burgeoning opportunity for the public to help investigate radiation from thunderstorms, including terrestrial gamma-ray flashes (TGFs), longer-lived gamma-ray glows, x-rays from lightning stepped leaders, and possible high-energy radiation, never yet observed, from blue jets, gigantic jets, and blue starters. GammaPix is a smartphone application from Image Insight, Inc. that uses the camera's CCD or CMOS sensor to identify and qualitatively assess threats related to gamma radioactivity, e.g., those caused by accidental exposure to radioactive material, high-altitude air travel, or acts of terrorism. A science-oriented version of the app is under development that will be publicized for use aboard commercial airline flights and on the ground in regions (like Japan in the wintertime) where thunderstorm charge centers come close to the ground. The primary goal of the project is to learn whether TGFs close to passenger aircraft and population centers on the ground occur often enough to create concern about radiation risk.

  11. Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.

    PubMed

    van der Velden, Sandra; Beijst, Casper; Viergever, Max A; de Jong, Hugo W A M

    2017-01-01

    X-ray-guided oncological interventions could benefit from the availability of simultaneously acquired nuclear images during the procedure. To this end, a real-time, hybrid fluoroscopic and nuclear imaging device, consisting of an X-ray c-arm combined with gamma imaging capability, is currently being developed (Beijst C, Elschot M, Viergever MA, de Jong HW. Radiol. 2015;278:232-238). The setup comprises four gamma cameras placed adjacent to the X-ray tube. The four camera views are used to reconstruct an intermediate three-dimensional image, which is subsequently converted to a virtual nuclear projection image that overlaps with the X-ray image. The purpose of the present simulation study is to evaluate the impact of gamma camera collimator choice (parallel hole versus pinhole) on the quality of the virtual nuclear image. Simulation studies were performed with a digital image quality phantom including realistic noise and resolution effects, with a dynamic frame acquisition time of 1 s and a total activity of 150 MBq. Projections were simulated for 3, 5, and 7 mm pinholes and for three parallel hole collimators (low-energy all-purpose (LEAP), low-energy high-resolution (LEHR) and low-energy ultra-high-resolution (LEUHR)). Intermediate reconstruction was performed with maximum likelihood expectation-maximization (MLEM) with point spread function (PSF) modeling. In the virtual projection derived therefrom, contrast, noise level, and detectability were determined and compared with the ideal projection, that is, as if a gamma camera were located at the position of the X-ray detector. Furthermore, image deformations and spatial resolution were quantified. Additionally, simultaneous fluoroscopic and nuclear images of a sphere phantom were acquired with a physical prototype system and compared with the simulations. For small hot spots, contrast is comparable for all simulated collimators. Noise levels are, however, 3 to 8 times higher in pinhole geometries than in parallel hole geometries. This results in higher contrast-to-noise ratios for parallel hole geometries. Smaller spheres can thus be detected with parallel hole collimators than with pinhole collimators (17 mm vs 28 mm). Pinhole geometries show larger image deformations than parallel hole geometries. Spatial resolution varied between 1.25 cm for the 3 mm pinhole and 4 cm for the LEAP collimator. The simulation method was successfully validated by the experiments with the physical prototype. A real-time hybrid fluoroscopic and nuclear imaging device is currently being developed. Image quality of nuclear images obtained with different collimators was compared in terms of contrast, noise, and detectability. Parallel hole collimators showed lower noise and better detectability than pinhole collimators. © 2016 American Association of Physicists in Medicine.

  12. The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras

    PubMed Central

    Mackin, Dennis; Polf, Jerimy; Peterson, Steve; Beddar, Sam

    2013-01-01

    Purpose: The authors investigated how the characteristics of the detectors used in a three-stage Compton camera (CC) affect the CC's ability to accurately measure the emission distribution and energy spectrum of prompt gammas (PG) emitted by nuclear de-excitations during proton therapy. The detector characteristics they studied included the material (high-purity germanium [HPGe] and cadmium zinc telluride [CZT]), Doppler broadening (DB), and resolution (lateral, depth, and energy). Methods: The authors simulated three-stage HPGe and CZT CCs of various configurations, detecting gammas from point sources with energies ranging from 0.511 to 7.12 MeV. They also simulated a proton pencil beam irradiating a tissue target to study how the detector characteristics affect the PG data measured by CCs in a clinical proton therapy setting. They used three figures of merit: the distance of closest approach (DCA) and the point of closest approach (PCA) between the measured and actual position of the PG emission origin, and the calculated energy resolution. Results: For CCs with HPGe detectors, DB caused the DCA to be greater than 3 mm for 14% of the 6.13 MeV gammas and 20% of the 0.511 MeV gammas. For CCs with CZT detectors, DB caused the DCA to be greater than 3 mm for 18% of the 6.13 MeV gammas and 25% of the 0.511 MeV gammas. The full width at half maximum (FWHM) of the PCA in the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}\\hat z\\end{equation*} \\end{document}z^ direction for HPGe and CZT detectors ranged from 1.3 to 0.4 mm for gammas with incident energy ranging from 0.511 to 7.12 MeV. For CCs composed of HPGe detectors, the resolution of incident gamma energy calculated by the CC ranged from 6% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For CCs composed of CZT detectors, the resolution of gamma energy calculated by the CC ranged from 10% to 1% for gammas with true incident energies from 0.511 to 7.12 MeV. For HPGe and CZT CCs in which all detector effect were included, the DCA was less than 3 mm for 75% and 68% of the detected gammas, respectively, and restricting gammas to those having energy greater than 2.0 MeV increased these percentages to 83% and 77% for HPGe and CZT, respectively. Distributions of the true gamma origins and the PCA after detector characteristics had been included showed good agreement on beam range and some loss of resolution for the lateral profile of the PG emission. Characteristic energy lines were evident in the calculated gamma energy spectrum. Conclusions: The authors found the following: (1) DB is the dominant source of spatial and energy resolution loss in the CCs at all energy levels; (2) the largest difference in the spatial resolution of HPGe and CZT CCs is that the spatial resolution distributions of CZT have broader tails. The differences in the FWHM of these distributions are small; (3) the energy resolution of both HPGe and CZT three-stage CCs is adequate for PG spectroscopy; and (4) restricting the gammas to those having energy greater than 2.0 MeV can improve the achievable image resolution. PMID:23298111

  13. Low Statistics Reconstruction of the Compton Camera Point Spread Function in 3D Prompt-γ Imaging of Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Lojacono, Xavier; Richard, Marie-Hélène; Ley, Jean-Luc; Testa, Etienne; Ray, Cédric; Freud, Nicolas; Létang, Jean Michel; Dauvergne, Denis; Maxim, Voichiţa; Prost, Rémy

    2013-10-01

    The Compton camera is a relevant imaging device for the detection of prompt photons produced by nuclear fragmentation in hadrontherapy. It may allow an improvement in detection efficiency compared to a standard gamma-camera but requires more sophisticated image reconstruction techniques. In this work, we simulate low statistics acquisitions from a point source having a broad energy spectrum compatible with hadrontherapy. We then reconstruct the image of the source with a recently developed filtered backprojection algorithm, a line-cone approach and an iterative List Mode Maximum Likelihood Expectation Maximization algorithm. Simulated data come from a Compton camera prototype designed for hadrontherapy online monitoring. Results indicate that the achievable resolution in directions parallel to the detector, that may include the beam direction, is compatible with the quality control requirements. With the prototype under study, the reconstructed image is elongated in the direction orthogonal to the detector. However this direction is of less interest in hadrontherapy where the first requirement is to determine the penetration depth of the beam in the patient. Additionally, the resolution may be recovered using a second camera.

  14. Elemental abundances of the B and A stars. 2: Gamma Geminorum, HD 60825, 7 Sextantis, HR 4817, and HR 5780

    NASA Technical Reports Server (NTRS)

    Adelman, Saul J.; Philip, A. G. Davis

    1994-01-01

    We extend fine analyses of the B and A stars, gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780 using additional spectroscopic data from the Kitt Peak National Observatory (KPNO) coude feed telescope with a TI CCD, camera 5, and grating A, and ATLAS9 model atmospheres. In addition we study HD 60825, which had colors similar to the FHB A stars, but was found to be a Population I star. HD 60825, as is gamma Gem, is a sharp-lined early-A star with nearly solar derived abundances. HR 5780 and 7 Sex are also examples of stars which for the most part have solar abundances. The newly derived abundances for HR 4817 reveal important differences with respect to 53 Tau, a somewhat similar HgMn star.

  15. Evaluation of the applicability of the SeHCAT test in the investigation of patients with diarrhoea.

    PubMed

    Orholm, M; Pedersen, J O; Arnfred, T; Rødbro, P; Thaysen, E H

    1988-01-01

    For the assessment of ileal bile acid conservation the retention of orally administered 75Se-23-selena-25-homotaurocholic acid (SeHCAT), a gamma-ray-emitting radioisotope-labelled synthetic bile acid, was measured by an uncollimated abdominal gamma camera in 89 patients with various gastrointestinal disorders and in 20 persons without gastrointestinal complaints. A significant differences in retention was observed between patients with and without previously detected ileal disease. However, it was not possible by use of the test to differentiate between the various types of diarrhoea. Hence the test is not recommended in the routine investigation of patients with diarrhoea.

  16. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  17. Collimator-free photon tomography

    DOEpatents

    Dilmanian, F. Avraham; Barbour, Randall L.

    1998-10-06

    A method of uncollimated single photon emission computed tomography includes administering a radioisotope to a patient for producing gamma ray photons from a source inside the patient. Emissivity of the photons is measured externally of the patient with an uncollimated gamma camera at a plurality of measurement positions surrounding the patient for obtaining corresponding energy spectrums thereat. Photon emissivity at the plurality of measurement positions is predicted using an initial prediction of an image of the source. The predicted and measured photon emissivities are compared to obtain differences therebetween. Prediction and comparison is iterated by updating the image prediction until the differences are below a threshold for obtaining a final prediction of the source image.

  18. Measurement of the Shape of the Optical-IR Spectrum of Prompt Emission from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Grossan, Bruce; Kistaubayev, M.; Smoot, G.; Scherr, L.

    2017-06-01

    While the afterglow phase of gamma-ray bursts (GRBs) has been extensively measured, detections of prompt emission (i.e. during bright X-gamma emission) are more limited. Some prompt optical measurements are regularly made, but these are typically in a single wide band, with limited time resolution, and no measurement of spectral shape. Some models predict a synchrotron self-absorption spectral break somewhere in the IR-optical region. Measurement of the absorption frequency would give extensive information on each burst, including the electron Lorentz factor, the radius of emission, and more (Shen & Zhang 2008). Thus far the best prompt observations have been explained invoking a variety of models, but often with a non-unique interpretation. To understand this apparently heterogeneous behavior, and to reduce the number of possible models, it is critical to add data on the optical - IR spectral shape.Long GRB prompt X-gamma emission typically lasts ~40-80 s. The Swift BAT instrument rapidly measures GRB positions to within a few arc minutes and communicates them via the internet within a few seconds. We have measured the time for a fast-moving D=700 mm telescope to point and settle to be less than 9 s anywhere on the observable sky. Therefore, the majority of prompt optical-IR emission can be measured responding to BAT positions with this telescope. In this presentation, we describe our observing and science programs, and give our design for the Burst Simultaneous Three-channel Instrument (BSTI), which uses dichroics to send eparate bands to 3 cameras. Two EMCCD cameras, give high-time resolution in B and V; a third camera with a HgCdTe sensor covers H band, allowing us to study extinguished bursts. For a total exposure time of 10 s, we find a 5 sigma sensitivity of 21.3 and 20.3 mag in B and R for 1" seeing and Kitt Peak sky brightness, much fainter than typical previous prompt detections. We estimate 5 sigma H-band sensitivity for an IR optimized telescope to be ~16.9 mag in 20 s. With three channels broadly separated in wavelength, two separate slopes would be measured, or if present between our bands, the absorption frequency would be determined, a brand-new window into GRB physics.

  19. Real Time Wide Area Radiation Surveillance System

    NASA Astrophysics Data System (ADS)

    Biafore, M.

    2012-04-01

    We present the REWARD project, financed within the FP7 programme, theme SEC-2011.1.5-1 (Development of detection capabilities of difficult to detect radioactive sources and nuclear materials - Capability Project). Within this project, we propose a novel mobile system for real time, wide area radiation surveillance. The system is based on the integration of new miniaturized solid-state radiation sensors: a CdZnTe detector for gamma radiation and a high efficiency neutron detector based on novel silicon technologies. The sensing unit will include a wireless communication interface to send the data remotely to a monitoring base station which also uses a GPS system to calculate the position of the tag. The system will also incorporate middleware and high level software to provide web-service interfaces for the exchange of information, and that will offer top level functionalities as management of users, mobile tags and environment data and alarms, database storage and management and a web-based graphical user interface. Effort will be spent to ensure that the software is modular and re-usable across as many architectural levels as possible. Finally, an expert system will continuously analyze the information from the radiation sensor and correlate it with historical data from the tag location in order to generate an alarm when an abnormal situation is detected. The system will be useful for many different scenarios, including such lost radioactive sources and radioactive contamination. It will be possible to deploy in emergency units and in general in any type of mobile or static equipment. The sensing units will be highly portable thanks to their low size and low energy consumption. The complete system will be scalable in terms of complexity and cost and will offer very high precision on both the measurement and the location of the radiation. The modularity and flexibility of the system will allow for a realistic introduction to the market. Authorities may start with a basic, low cost system and increase the complexity of it based on the latest needs and also on the budget.

  20. Methods for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian [Pleasanton, CA; Vetter, Kai M [Alameda, CA; Chivers, Daniel H [Fremont, CA

    2012-02-07

    Methods are presented that increase the position resolution and granularity of double sided segmented semiconductor detectors. These methods increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  1. Systems for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  2. Flexible nuclear medicine camera and method of using

    DOEpatents

    Dilmanian, F. Avraham; Packer, Samuel; Slatkin, Daniel N.

    1996-12-10

    A nuclear medicine camera 10 and method of use photographically record radioactive decay particles emitted from a source, for example a small, previously undetectable breast cancer, inside a patient. The camera 10 includes a flexible frame 20 containing a window 22, a photographic film 24, and a scintillation screen 26, with or without a gamma-ray collimator 34. The frame 20 flexes for following the contour of the examination site on the patient, with the window 22 being disposed in substantially abutting contact with the skin of the patient for reducing the distance between the film 24 and the radiation source inside the patient. The frame 20 is removably affixed to the patient at the examination site for allowing the patient mobility to wear the frame 20 for a predetermined exposure time period. The exposure time may be several days for obtaining early qualitative detection of small malignant neoplasms.

  3. Long-term effects of prenatal exposure to low levels of gamma rays on open-field activity in male mice.

    PubMed

    Minamisawa, T; Hirokaga, K

    1995-11-01

    The open-field activity of first-generation (F1) hybrid male C57BL/6 x C3H mice irradiated with gamma rays on day 14 of gestation was studied at the following ages: 6-7 months (young), 12-13 months (adult) and 19-20 months (old). Doses were 0.5 Gy or 1.0 Gy. Open-field activity was recorded with a camera. The camera output signal was recorded every second through an A/D converter to a personal computer. The field was divided into 25 8-cm2 units. All recordings were continuous for 60 min. The walking speed of the 1.0-Gy group recorded at 19-20 months was higher than that for the comparably aged control group. The time which the irradiated group, recorded at 19-20 months, spent in the corner fields was high in comparison with the control group at the same age. Conversely, the time spent by the irradiated group in the middle fields when recorded at 19-20 months was shorter than in the comparably aged control group. No effect of radiation was shown for any of the behaviors observed and recorded at 6-7 and 12-13 months. The results demonstrate that such exposure to gamma rays on day 14 of gestation results in behavioral changes which occur at 19-20 months but not at 6-7 or 12-13 months.

  4. Feasibility of retrieving dust properties and total column water vapor from solar spectra measured using a lander camera on Mars

    NASA Astrophysics Data System (ADS)

    Manago, Naohiro; Noguchi, Katsuyuki; Hashimoto, George L.; Senshu, Hiroki; Otobe, Naohito; Suzuki, Makoto; Kuze, Hiroaki

    2017-12-01

    Dust and water vapor are important constituents in the Martian atmosphere, exerting significant influence on the heat balance of the atmosphere and surface. We have developed a method to retrieve optical and physical properties of Martian dust from spectral intensities of direct and scattered solar radiation to be measured using a multi-wavelength environmental camera onboard a Mars lander. Martian dust is assumed to be composed of silicate-like substrate and hematite-like inclusion, having spheroidal shape with a monomodal gamma size distribution. Error analysis based on simulated data reveals that appropriate combinations of three bands centered at 450, 550, and 675 nm wavelengths and 4 scattering angles of 3°, 10°, 50°, and 120° lead to good retrieval of four dust parameters, namely, aerosol optical depth, effective radius and variance of size distribution, and volume mixing ratio of hematite. Retrieval error increases when some of the observational parameters such as color ratio or aureole are omitted from the retrieval. Also, the capability of retrieving total column water vapor is examined through observations of direct and scattered solar radiation intensities at 925, 935, and 972 nm. The simulation and error analysis presented here will be useful for designing an environmental camera that can elucidate the dust and water vapor properties in a future Mars lander mission.

  5. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Commaux, N.; Eidietis, N. W.; Hollmann, E. M.; Shiraki, D.

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  6. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited).

    PubMed

    Cooper, C M; Pace, D C; Paz-Soldan, C; Commaux, N; Eidietis, N W; Hollmann, E M; Shiraki, D

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  7. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    DOE PAGES

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; ...

    2016-08-30

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20,000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Furthermore, magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less

  8. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  9. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    DOE PAGES

    Gul, R.; Roy, U. N.; James, R. B.

    2017-03-15

    In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less

  10. An analysis of point defects induced by In, Al, Ni, and Sn dopants in Bridgman-grown CdZnTe detectors and their influence on trapping of charge carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gul, R.; Roy, U. N.; James, R. B.

    In this paper, we studied point defects induced in Bridgman-grown CdZnTe detectors doped with Indium (In), Aluminium (Al), Nickel (Ni), and Tin (Sn). Point defects associated with different dopants were observed, and these defects were analyzed in detail for their contributions to electron/hole (e/h) trapping. We also explored the correlations between the nature and abundance of the point defects with their influence on the resistivity, electron mobility-lifetime (μτ e) product, and electron trapping time. We used current-deep level transient spectroscopy to determine the energy, capture cross-section, and concentration of each trap. Furthermore, we used the data to determine the trappingmore » and de-trapping times for the charge carriers. In In-doped CdZnTe detectors, uncompensated Cd vacancies (V Cd -) were identified as a dominant trap. The V Cd - were almost compensated in detectors doped with Al, Ni, and Sn, in addition to co-doping with In. Dominant traps related to the dopant were found at E v + 0.36 eV and E v + 1.1 eV, E c + 76 meV and E v + 0.61 eV, E v + 36 meV and E v + 0.86 eV, E v + 0.52 eV and E c + 0.83 eV in CZT:In, CZT:In + Al, CZT:In + Ni, and CZT:In + Sn, respectively. Results indicate that the addition of other dopants with In affects the type, nature, concentration (N t), and capture cross-section (σ) and hence trapping (t t) and de-trapping (t dt) times. Finally, the dopant-induced traps, their corresponding concentrations, and charge capture cross-section play an important role in the performance of radiation detectors, especially for devices that rely solely on electron transport.« less

  11. The Advanced Gamma-ray Imaging System (AGIS): Topological Array Trigger

    NASA Astrophysics Data System (ADS)

    Smith, Andrew W.

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of the telescopes and on the triggering and readout systems for AGIS. To maximize the capabilities of large arrays of IACTs with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We outline the status of the development of a stereoscopic array trigger that calculates image parameters and correlates them across a subset of telescopes. Field Programmable Gate Arrays (FPGAs) implement the real-time pattern recognition to suppress cosmic rays and night-sky background events. A proof of principle system is being developed to run at camera trigger rates up to 10MHz and array-level rates up to 10kHz.

  12. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luis, R.; Baptista, M.; Barros, S.

    2015-07-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send themore » data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD detection system to the presence of an RDD is predicted and discussed. (authors)« less

  13. Waste inspection tomography (WIT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardi, R.T.

    1996-12-31

    WIT is a self-sufficient mobile semitrailer for nondestructive evaluation and nondestructive assay of nuclear waste drums using x-ray and gamma-ray tomography. The recently completed Phase I included the design, fabrication, and initial testing of all WIT subsystems installed on-board the trailer. Initial test results include 2 MeV digital radiography, computed tomography, Anger camera imaging, single photon emission computed tomography, gamma-ray spectroscopy, collimated gamma scanning, and active and passive computed tomography using a 1.4 mCi source of {sup 166}Ho. These techniques were initially demonstrated on a 55-gallon phantom drum with 3 simulated waste matrices of combustibles, heterogeneous metals, and cement usingmore » check sources of gamma active isotopes such as {sup 137}Cs and {sup 133}Ba with 9-250 {mu}Ci activities. Waste matrix identification, isotopic identification, and attenuation-corrected gamma activity determination were demonstrated nondestructively and noninvasively in Phase I. Currently ongoing Phase II involves DOE site field test demonstrations at LLNL, RFETS, and INEL with real nuclear waste drums. Current WIT experience includes 55 gallon drums of cement, graphite, sludge, glass, metals, and combustibles. Thus far WIT has inspected drums with 0-20 gms of {sup 239}Pu.« less

  14. The Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  15. Ultra-wide Range Gamma Detector System for Search and Locate Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odell, D. Mackenzie Odell; Harpring, Larry J.; Moore, Frank S. Jr.

    2005-10-26

    Collecting debris samples following a nuclear event requires that operations be conducted from a considerable stand-off distance. An ultra-wide range gamma detector system has been constructed to accomplish both long range radiation search and close range hot sample collection functions. Constructed and tested on a REMOTEC Andros platform, the system has demonstrated reliable operation over six orders of magnitude of gamma dose from 100's of uR/hr to over 100 R/hr. Functional elements include a remotely controlled variable collimator assembly, a NaI(Tl)/photomultiplier tube detector, a proprietary digital radiation instrument, a coaxially mounted video camera, a digital compass, and both local andmore » remote control computers with a user interface designed for long range operations. Long range sensitivity and target location, as well as close range sample selection performance are presented.« less

  16. Buried Quasars in Ultraluminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Sanders, David B.

    2004-01-01

    We were awarded l00OkS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order io measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  17. Buried Quasars in Ultra-luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    2004-01-01

    We were awarded l00kS of INTEGRAL spacecraft time (Priority A) to observe the ultraluminous infrared galaxy (ULIG) Mrk 2273 in order to measure the integrated flux of the 20-1003 KeV gamma-Ray emission, and to use this information to search for the presence of an highly obscured active galactic nucleus (AGN). With this observation we hope to be able to better assess the role of AGN in the complete class of ULIGs and therefore to better constrain their contribution to the hard X-ray and soft gamma-ray backgrounds. Our Priority A 100 kS observation of Mrk 273 was successfully carried out during revolution #73 using 4 separate exposures with the IBIS camera during May, 2003. Our IBIS observations of Mrk 273 were successfully executed, and the source was properly centered in the Field-of-view of the detectors. We are still in the process of interpreting the IBIS gamma-ray data.

  18. The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.; Faber, S. M.; Holtzman, Jon A.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common.

  19. Spectroscopic CZT detectors development for x- and gamma-ray imaging instruments

    NASA Astrophysics Data System (ADS)

    Quadrini, Egidio M.; Uslenghi, Michela; Alderighi, Monica; Casini, Fabio; D'Angelo, Sergio; Fiorini, Mauro; La Palombara, Nicola; Mancini, Marcello; Monti, Serena; Bazzano, Angela; Di Cosimo, Sergio; Frutti, Massimo; Natalucci, Lorenzo; Ubertini, Pietro; Guadalupi, Giuseppe M.; Sassi, Matteo; Negri, Barbara

    2007-09-01

    In the context of R&D studies financed by the Italian Space Agency (ASI), a feasibility study to evaluate the Italian Industry interest in medium-large scale production of enhanced CZT detectors has been performed by an Italian Consortium. The R&D investment aims at providing in-house source of high quality solid state spectrometers for Space Astrophysics applications. As a possible spin-off industrial applications to Gamma-ray devices for non-destructive inspections in medical, commercial and security fields have been considered by ASI. The short term programme mainly consists of developing proprietary procedures for 2-3" CZT crystals growth, including bonding and contact philosophy, and a newly designed low-power electronics readout chain. The prototype design and breadboarding is based on a fast signal AD conversion with the target in order to perform a new run for an already existing low-power (<0.7 mW/pixel) ASIC. The prototype also provides digital photon energy reconstruction with particular care for multiple events and polarimetry evaluations. Scientific requirement evaluations for Space Astrophysics Satellite applications have been carried out in parallel, targeted to contribute to the ESA Cosmic Vision 2015-2025 Announcement of Opportunity. Detailed accommodation studies are undergoing, as part of this programme, to size a "Large area arcsecond angular resolution Imager" for the Gamma Ray Imager satellite (Knödlseder et al., this conference).and a new Gamma-ray Wide Field Camera for the "EDGE" proposal (Piro et al., this conference). Finally, an extended market study for cost analysis evaluation in view of the foreseen massive detector production has been performed.

  20. One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co

    Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation ofmore » the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.« less

Top