Science.gov

Sample records for ce entrained fuel process

  1. Entrainment.

    ERIC Educational Resources Information Center

    Carrier, Romance F.

    1978-01-01

    Presents a literature review including: (1) theoretical studies concerned with the development of methdology to determine the significance of entrainment effects to whale populations and ecosystems; and (2) site and laboratory studies. A list of 107 references drawn from the 1976 and 1977 literature is also presented. (HM)

  2. The macroscopic entrainment processes of simulated cumulus ensemble. Part II: Testing the entraining-plume model

    SciTech Connect

    Lin, Chichung; Arakawa, Akio

    1997-04-15

    According to Part I of this paper, is seems that ignoring the contribution from descendent cloud air in a cloud model for cumulus parameterization (CMCP), such as the spectral cumulus ensemble model in the Arakawa-Schubert parameterization, is an acceptable simplification for tropical deep convection. Since each subensemble in the spectral cumulus ensemble model is formally analogous to an entraining plume, the latter is examined using the simulated data from a cloud-resolving model (CRM). The authors first follow the analysis procedure of Warner. With the data from a nonprecipitating experiment, the authors show that the entraining-plume model cannot simultaneously predict the mean liquid water profile and cloud top height of the clouds simulated by the CRM. However, the mean properties of active elements of clouds, which are characterized by strong updrafts, can be described by an entraining plume of similar top height. With data from a precipitating experiment, the authors examine the spectral cumulus ensemble model using the Paluch diagram. It is found that the spectral cumulus ensemble model appears adequate if different types of clouds in the spectrum are interpreted as subcloud elements with different entrainment characteristics. The resolved internal structure of clouds can thus be viewed as a manifestation of a cloud spectrum. To further investigate whether the fractional rate of entrainment is an appropriate parameter for characterizing cloud types in the spectral cumulus ensemble model, the authors stratify the simulated saturated updrafts (subcloud elements) into different types according to their eventual heights and calculate the cloud mass flux and mean moist static energy for each type. Entrainment characteristics are then inferred through the cloud mass flux and in-cloud moist static energy. It is found that different types of subcloud elements have distinguishable thermodynamic properties and entrainment characteristics. 16 refs., 8 figs.

  3. Fluidized-Solid-Fuel Injection Process

    NASA Technical Reports Server (NTRS)

    Taylor, William

    1992-01-01

    Report proposes development of rocket engines burning small grains of solid fuel entrained in gas streams. Main technical discussion in report divided into three parts: established fluidization technology; variety of rockets and rocket engines used by nations around the world; and rocket-engine equation. Discusses significance of specific impulse and ratio between initial and final masses of rocket. Concludes by stating three important reasons to proceed with new development: proposed engines safer; fluidized-solid-fuel injection process increases variety of solid-fuel formulations used; and development of fluidized-solid-fuel injection process provides base of engineering knowledge.

  4. The macroscopic entrainment processes of simulated cumulus ensemble. Part I: Entrainment sources

    SciTech Connect

    Lin, Chichung; Arakawa, A.

    1997-04-15

    Parameterization of cumulus convection requires a model that describes the statistical properties of a cumulus ensemble under given large-scale conditions. Such a model is called a cloud model for cumulus parameterization (CMCP). It would be best if the development of a CMCP were guided by synchronous observations covering a population of clouds. Unfortunately, observations for cumulus clouds are usually confined to individual clouds, leaving many uncertainties in designing a CMCP. In an attempt to improve the formulation of entrainment effects in a CMCP, the data simulated by a two-dimensional cloud-resolving model are used to investigate sources of entrainment into cumulus clouds. The authors first plot the Paluch diagram using the data from a nonprecipitating experiment. It is found that typical patterns on the Paluch diagram obtained by observational studies can be reproduced using the simulated data and can be interpreted in ways other than two-point mixing. The authors further examine entrainment sources through extensive trajectory analysis using the data from a precipitating experiment. They find that cloud air parcels at one level usually originate from locations of various heights, indicating a continuous series of entrainment events occurring throughout the cloud depth. However, the authors do not find a cloud air parcel decending more than several hundred meters. Penetrative downdrafts produced by mixing between cloud air and entrained air are not observed in the cases simulated. It seems that, as far as tropical deep convection is concerned, ignoring the contribution from descendent cloud air in a CMCP is an acceptable simplification. 52 refs., 14 figs.

  5. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOEpatents

    Givens, Edwin N.; Ying, David H. S.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  6. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    NASA Astrophysics Data System (ADS)

    Ratnayake, Ruwan Kumara

    While best estimate computer codes provide the licensing basis for nuclear power facilities, they also serve as analytical tools in overall plant and component design procedures. An ideal best estimate code would comprise of universally applicable mechanistic models for all its components. However, due to the limited understanding in these specific areas, many of the models and correlations used in these codes reflect high levels of empiricism. As a result, the use of such models is strictly limited to the range of parameters within which the experiments have been conducted. Disagreements between best estimate code predictions and experimental results are often explained by the mechanistic inadequacies of embedded models. Significant mismatches between calculated and experimental critical power values are common observations in the analyses of Boiling Water Reactors (BWR). Based on experimental observations and calculations, these mismatches are attributed to the additional entrainment and deposition caused by spacer grids in BWR fuel assemblies. In COBRA-TF (Coolant Boiling in Rod Arrays-Two Fluid); a state of the art industrial best estimate code, these disagreements are hypothesized to occur due the absence of an appropriate spacer grid model. In this thesis, development of a suitably detailed spacer grid model and integrating it to COBRA-TF is documented. The new spacer grid model is highly mechanistic so that the applicability of it is not seriously affected by geometric variations in different spacer grid designs. COBRA-TF (original version) simulations performed on single tube tests and BWR rod bundles with spacer grids showed that single tube predictions were more accurate than those of the rod bundles. This observation is understood to arise from the non-availability of a suitable spacer grid model in COBRA-TF. Air water entrainment experiments were conducted in a test section simulating two adjacent BWR sub channels to visualize the flow behavior at

  7. Research on the pyrolysis of hardwood in an entrained bed process development unit

    SciTech Connect

    Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O'Neil, D.J. . Research Inst.)

    1991-08-01

    An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

  8. Fuel gas conditioning process

    DOEpatents

    Lokhandwala, Kaaeid A.

    2000-01-01

    A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.

  9. The role of the scalar and enstrophy flux in entrainment processes

    NASA Astrophysics Data System (ADS)

    Mistry, Dhiren; Dawson, James R.

    2016-11-01

    Turbulent entrainment is a multi-stage, multi-scale process that describes the growth of a turbulent region of flow. Ultimately, turbulent entrainment is achieved through viscous diffusion of vorticity, and molecular diffusion in the presence of scalars, with irrotational and unmixed regions of the flow at the smallest scales. We do not fully understand how these small-scale processes are coupled to or modulated by the large-scales of turbulence. This is partly because the mean entrainment rates in turbulent shear flows can be determined by considering large-scales quantities only. We present experimental evidence that the large-scale flux of enstrophy and scalar towards the turbulent/non-turbulent interface (TNTI) coincides with a local increase in the entrainment velocity along the TNTI. This is achieved using a passive scalar (Sc >> 1) to identify the TNTI, and a time-resolved interface-tracking method to measure the local entrainment velocity. Our results indicate that the both scalar and enstrophy fluxes towards the TNTI increase the vorticity and scalar gradients increasing the local rates of diffusion. These results show how local processes of small-scale diffusion are modulated by the large-scale turbulence.

  10. Estuarine circulation-driven entrainment of oceanic nutrients fuels coastal phytoplankton in an open coastal system in Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenta; Kasai, Akihide; Fukuzaki, Koji; Ueno, Masahiro; Yamashita, Yoh

    2017-01-01

    We investigated interactions among seasonal fluctuations in phytoplankton biomass, riverine nutrient flux, and the fluxes of nutrients entrained by estuarine circulation in Tango Bay, Japan, to determine the influence of freshwater inflows to an open bay on coastal phytoplankton productivity. The riverine nutrient flux was strongly regulated by river discharge. Estuarine circulation was driven by river discharge, with high fluxes of nutrients (mean nitrate + nitrite flux: 5.3 ± 3.5 Mg [mega grams]-N day-1) between winter and early spring, enhanced by nutrient supply to the surface water via vertical mixing. In contrast, low-nutrient seawater was delivered to the bay between late spring and summer (1.0 ± 0.8 Mg-N day-1). Seasonal fluctuations in phytoplankton biomass were affected by the entrained fluxes of oceanic nutrients and variation in the euphotic zone depth, and to a lesser degree by the riverine nutrient flux. Bioassays and stoichiometric analyses indicated that phytoplankton growth was limited by nitrogen and/or phosphorus. Both the entrainment of oceanic nutrients and the euphotic zone depth affected the duration and magnitude of blooms. Our findings show that, unlike semi-enclosed bays, seasonal variations in coastal phytoplankton in an open coastal system are primarily fueled by the entrainment of oceanic nutrients and are influenced by both freshwater inflow and coastal conditions (e.g. vertical mixing and wind events).

  11. Exploring Stratocumulus Cloud-Top Entrainment Processes and Parameterizations by Using Doppler Cloud Radar Observations

    SciTech Connect

    Albrecht, Bruce A.; Fang, Ming; Ghate, Virendra P.

    2016-02-01

    Observations from an upward-pointing Doppler cloud radar are used to examine cloud-top entrainment processes and parameterizations in a non-precipitating continental stratocumulus cloud deck maintained by time varying surface buoyancy fluxes and cloud-top radiative cooling. Radar and ancillary observations were made at the Atmospheric Radiation Measurement (ARM)’s Southern Great Plains (SGP) site located near Lamont, Oklahoma of unbroken, non-precipitating stratocumulus clouds observed for a 14-hour period starting 0900 Central Standard Time on 25 March 2005. The vertical velocity variance and energy dissipation rate (EDR) terms in a parameterized turbulence kinetic energy (TKE) budget of the entrainment zone are estimated using the radar vertical velocity and the radar spectrum width observations from the upward-pointing millimeter cloud radar (MMCR) operating at the SGP site. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlates strongly (r=0.72) to the dissipation rate term in the entrainment zone. However, the ratio of the variance term to the dissipation decreases at night due to decoupling of the boundary layer. When the night -time decoupling is accounted for, the correlation between the variance and the EDR term increases (r=0.92). To obtain bulk coefficients for the entrainment parameterizations derived from the TKE budget, independent estimate of entrainment were obtained from an inversion height budget using ARM SGP observations of the local time derivative and the horizontal advection of the cloud-top height. The large-scale vertical velocity at the inversion needed for this budget from EMWF reanalysis. This budget gives a mean entrainment rate for the observing period of 0.76±0.15 cm/s. This mean value is applied to the TKE budget parameterizations to obtain the bulk coefficients needed in these parameterizations. These bulk coefficients are compared with those from previous and are used to in the

  12. Subtask 3.16 - Low-Cost Coal-Water Fuel for Entrained-Flow Gasification

    SciTech Connect

    Anderson, C.M.

    1997-10-01

    The specific objective of this research project is to assess the potential process efficiency and pollution control benefits that may occur by applying the hydrothermal, or hot water-drying, process to low-rank coals as related to entrained-flow gasification systems. Project emphasis is on identifying more efficient coal dewatering and CWF formulation methods prior to gasification. A favorable estimate of incremental cost for integrated hydrothermal drying depends, in part, on increasing the particle size of the feed coal from minus 100 to minus 28 mesh for the purpose of simplifying the slurry concentration process. Two options will be reviewed for dewatering or concentrating the processed slurry: (1) repressurization and then concentration with sieve bends or (2) partial dewatering at system pressure with hydroclones. Both have their own merits, sieve bends being a low-cost alternative, while hydroclone application would not require additional pumping sections prior to gasification. Various CWF samples with different particle-size distributions and solids concentrations will be sent to equipment vendors for application review. Also, EERC cost models will be used to calculate the integral cost of adding the partial dewatering to the hydrothermal technology for a commercial-size facility.

  13. A comparison of the turbulent entrainment process in line plumes and wall plumes

    NASA Astrophysics Data System (ADS)

    Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul

    2016-11-01

    Flows driven by sources of buoyancy appear in a large number of geophysical and industrial applications. The process of turbulent entrainment in these flows is key to understanding how they evolve and how one might model them. It has been observed that the entrainment is reduced when a line source of buoyancy is positioned immediately adjacent to a wall. To gain insight into the effect of the wall on the entrainment process we perform simultaneous PIV and LIF on both line plumes, in the absence of any boundary, and when the source is adjacent to a vertical boundary forming a wall plume. The experiments are designed to isolate the effect of the wall by using the same experimental setup and parameters for both flows with the addition of the wall and half the buoyancy flux used in the wall plume case. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume, a technique we have recently used to analyse similar effects in an axisymmetric plume, the significance of this large scale engulfment will be quantified.

  14. The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries.

    PubMed

    Raffelt, Klaus; Henrich, Edmund; Koegel, Andrea; Stahl, Ralph; Steinhardt, Joachim; Weirich, Friedhelm

    2006-01-01

    Forschungszentrum Karlsruhe has developed a concept for the utilization of cereal straw and other thin-walled biomass with high ash content. The concept consists of a regional step (drying, chopping, flash-pyrolysis, and mixing) and a central one (pressurized entrained-flow gasification, gas cleaning, synthesis of fuel, and production of byproducts). The purpose of the regional plant is to prepare the biomass by minimizing its volume and producing a stable and safe storage and transport form. In the central gasifier, the pyrolysis products are converted into syngas. The syngas is tar-free and can be used for Fischer-Tropsch synthesis after gas cleaning.

  15. Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Preteatment and Immobilization Processes

    SciTech Connect

    Wasan, Darsh T.; Nikolov, Alex

    2005-06-01

    The objectives of this research effort are to develop a fundamental understanding of the physico-chemical mechanisms that produce foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research will be tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  16. ENTRAINMENT MODELS

    EPA Science Inventory

    This presentation presented information on entrainment models. Entrainment models use entrainment hypotheses to express the continuity equation. The advantage is that plume boundaries are known. A major disadvantage is that the problems that can be solved are rather simple. The ...

  17. ENTRAINMENT MODELS

    EPA Science Inventory

    This presentation presented information on entrainment models. Entrainment models use entrainment hypotheses to express the continuity equation. The advantage is that plume boundaries are known. A major disadvantage is that the problems that can be solved are rather simple. The ...

  18. Demonstration of Entrained Solids and Sr/TRU Removal Processes with Archived AN-107 Waste

    SciTech Connect

    RT Hallen; KP Brooks; LK Jagoda

    2000-08-02

    Archived AN-107 waste was used to evaluate entrained solids removal, Sr/TRU decontamination of supernatant, and Sr/TRU solids removal. Even though most of the entrained solids had been previously removed from the archived sample, the residual entrained solids rapidly fouled the filter element resulting in very poor filter performance. An attempt to run at higher pressure resulted in more fouling, and reduced filter performance. Filtration efforts to remove entrained solids were abandoned and the waste was treated for Sr/TRU removal with the entrained solids present. The new processing scheme for Sr/TRU removal involving precipitation by added strontium and permanganate worked well. The decontamination factors for Sr and TRU components were significantly greater than the ILAW DF requirements for higher reagent concentrations of 1M hydroxide, 0.075M Sr, and 0.05M permanganate and lower reagent concentrations of 0.8M hydroxide, 0.05M Sr, and 0.03M permanganate. These results support the use of lower concentration of reagent additions in future tests. Optimization studies should be conducted to examine the reduction in added hydroxide from 1M to 0.5 M, reduction of Sr from 0.075M to 0.05M, and reduction in permanganate from 0.05M to 0.03M and the impact this reduction has on filtration performance with new samples from Tank AN-107. The combined entrained solids and Sr/TRU precipitate were successfully filtered in the single element, crossflow filtration unit. The filtrate flux was high, >0.1 gpm/ft{sup 2}, at the initial test conditions of 53 psi and 11.2ft/s for the treated archived AN-107 sample. The filter flux rate dropped significantly with time as testing progressed and appears to be a result of shearing the agglomerated solids and fouling of the filter element by the resulting fine particles. The relatively low clean water flux rates obtained at the end of the test also indicate filter fouling. Chemical cleaning was required to restore clean water flux rates to

  19. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  20. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    SciTech Connect

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study

  1. Spent graphite fuel element processing

    SciTech Connect

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  2. Catalysts for improved fuel processing

    SciTech Connect

    Borup, R.L.; Inbody, M.A.

    2000-09-01

    This report covers our technical progress on fuel processing catalyst characterization for the specific purpose of hydrogen production for proton-exchange-membrane (PEM) fuel cells. These development efforts support DOE activities in the development of compact, transient capable reformers for on-board hydrogen generation starting from candidate fuels. The long-term objective includes increased durability and lifetime, in addition to smaller volume, improved performance, and other specifications required meeting fuel processor goals. The technical barriers of compact fuel processor size, transient capability, and compact, efficient thermal management all are functions of catalyst performance. Significantly, work at LANL now tests large-scale fuel processors for performance and durability, as influenced by fuels and fuel constituents, and complements that testing with micro-scale catalyst evaluation which is accomplished under well controlled conditions.

  3. Fuel processing device

    DOEpatents

    Ahluwalia, Rajesh K.; Ahmed, Shabbir; Lee, Sheldon H. D.

    2011-08-02

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  4. Enhanced water vapor in Asian dust layer: Entrainment processes and implication for aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Sang-Woo; Kim, Jiyoung; Sohn, Byung-Ju; Jefferson, Anne; Choi, Suk-Jin; Cha, Dong-Hyun; Lee, Dong-Kyou; Anderson, Theodore L.; Doherty, Sarah J.; Weber, Rodney J.

    The entrainment process of water vapor into the dust layer during Asian dust events and the effect of water vapor associated with the Asian dust layer (ADL) on aerosol hygroscopic properties are investigated. The entrainment processes of water vapor into the ADL is examined by using a PSU/NCAR MM5 together with the backward trajectory model, radiosonde data, and remotely sensed aerosol vertical distribution data. Two dust events in the spring of 1998 and 2001 are examined in detail. The results reveal that the water vapor mixing ratio (WVMR) derived by the MM5 fits in well with the WVMR observed by radiosonde, and is well coincident with the aerosol extinction coefficient ( σep) measured by the micro-pulse lidar. The temporal evolution of the vertical distributions of WVMR and σep exhibited similar features. On the basis of a well simulation of the enhanced water vapor within the dust layer by the MM5, we trace the dust storms to examine the entrainment mechanism. The enhancement of WVMR within the ADL was initiated over the mountainous areas. The relatively moist air mass in the well-developed mixing layer over the mountainous areas is advected upward from the boundary layer by an ascending motion. However, a large portion of the water vapor within the ADL is enhanced over the edge of a highland and the plains in China. This is well supported by the simulated WVMR and the wind vectors. Aircraft-based in situ measurements of the chemical and optical properties of aerosol enable a quantitative estimation of the effect of the enhanced WVMR on the aerosol hygroscopic properties. The submicron aerosol accompanied by the dust storm caused an increase of aerosol scattering through water uptakes during the transport. This increase could be explained by the chemical fact that water-soluble submicron pollution aerosols are enriched in the ADL.

  5. Monolithic Fuel Fabrication Process Development

    SciTech Connect

    C. R. Clark; N. P. Hallinan; J. F. Jue; D. D. Keiser; J. M. Wight

    2006-05-01

    The pursuit of a high uranium density research reactor fuel plate has led to monolithic fuel, which possesses the greatest possible uranium density in the fuel region. Process developments in fabrication development include friction stir welding tool geometry and cooling improvements and a reduction in the length of time required to complete the transient liquid phase bonding process. Annealing effects on the microstructures of the U-10Mo foil and friction stir welded aluminum 6061 cladding are also examined.

  6. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  7. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  8. Processing of transparent polycrystalline AlON:Ce3+ scintillators

    DOE PAGES

    Chen, Ching -Fong; Yang, Pin; King, Graham; ...

    2015-10-23

    A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce4+ to Ce3+ in the solid solution. We explored two different activator concentrations (0.5 and 1.0 mol%). Fully dense and transparent AlON:Ce3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystal field splitting around the Ce3+more » activator in the AlON was comparable to the splitting induced by Br₋ and the Cl₋ ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce3+ were demonstrated. Lastly, challenges and mechanisms related to the radioluminescence efficiency are discussed.« less

  9. Non-homogeneous hybrid rocket fuel for enhanced regression rates utilizing partial entrainment

    NASA Astrophysics Data System (ADS)

    Boronowsky, Kenny

    A concept was developed and tested to enhance the performance and regression rate of hydroxyl terminated polybutadiene (HTPB), a commonly used hybrid rocket fuel. By adding small nodules of paraffin into the HTPB fuel, a non-homogeneous mixture was created resulting in increased regression rates. The goal was to develop a fuel with a simplified single core geometry and a tailorable regression rate. The new fuel would benefit from the structural stability of HTPB yet not suffer from the large void fraction representative of typical HTPB core geometries. Regression rates were compared between traditional HTPB single core grains, 85% HTPB mixed with 15% (by weight) paraffin cores, 70% HTPB mixed with 30% paraffin cores, and plain paraffin single core grains. Each fuel combination was tested at oxidizer flow rates, ranging from 0.9 - 3.3 g/s of gaseous oxygen, in a small scale hybrid test rocket and average regression rates were measured. While large uncertainties were present in the experimental setup, the overall data showed that the regression rate was enhanced as paraffin concentration increased. While further testing would be required at larger scales of interest, the trends are encouraging. Inclusion of paraffin nodules in the HTPB grain may produce a greater advantage than other more noxious additives in current use. In addition, it may lead to safer rocket motors with higher integrated thrust due to the decreased void fraction.

  10. Electrochemical reduction of CerMet fuels for transmutation using surrogate CeO2-Mo pellets

    NASA Astrophysics Data System (ADS)

    Claux, B.; Souček, P.; Malmbeck, R.; Rodrigues, A.; Glatz, J.-P.

    2017-08-01

    One of the concepts chosen for the transmutation of minor actinides in Accelerator Driven Systems or fast reactors proposes the use of fuels and targets containing minor actinides oxides embedded in an inert matrix either composed of molybdenum metal (CerMet fuel) or of ceramic magnesium oxide (CerCer fuel). Since the sufficient transmutation cannot be achieved in a single step, it requires multi-recycling of the fuel including recovery of the not transmuted minor actinides. In the present work, a pyrochemical process for treatment of Mo metal inert matrix based CerMet fuels is studied, particularly the electroreduction in molten chloride salt as a head-end step required prior the main separation process. At the initial stage, different inactive pellets simulating the fuel containing CeO2 as minor actinide surrogates were examined. The main studied parameters of the process efficiency were the porosity and composition of the pellets and the process parameters as current density and passed charge. The results indicated the feasibility of the process, gave insight into its limiting parameters and defined the parameters for the future experiment on minor actinide containing material.

  11. Measurements and modeling of pulverized fuel char in an entrained flow reactor

    NASA Astrophysics Data System (ADS)

    Kebria, Mazdak

    In recent years, the combustion zone of utility boilers were modified for NOx control and this made the task of maintaining low residual carbon levels in boiler fly ash much more difficult. To predict the relationships between boiler operating conditions and residual carbon-in-ash, there is a need for improvements in determining the appropriate char reactivity to use in simulating coal-fired combustors and in relating this reactivity to unburned coal characteristics. To aid in this effort, a tubular, downward-fired, refractory-lined, laminar entrained flow reactor (EFR) was built to provide a pilot scale environment with 2 seconds residence time for studying coal combustion. Using a commercial CFD code (FLUENT), a three dimensional numerical model of coal burning in the EFR was created to evaluate common char burnout kinetic modeling approaches. EFR experimental data was obtained for operating conditions adjusted to reproduce particle Lagrangian temperature and oxygen concentration time histories typically found in coal-fired utility boilers. The radial temperature profiles were measured at different axial locations in the EFR with a suction pyrometer and thermocouples. The temperature distribution in the reactor agreed well with the simulations. A gas analyzer with a quenching probe was used to measure the oxygen distribution to similarly confirm oxygen distribution in the EFR. A semi-isokinetic particulate sampling probe was used to extract ash samples at different heights in the reactor to measure the evolution of loss on ignition (LOI). Measured LOI values were used to validate the model against predicted values. Reaction kinetics rates in the model were adjusted to bring agreement between calculated LOI and the measured values from the experimental results. The LOI predictions by kinetic-diffusion and CBK model are very similar at the late stage of char burnout. The results indicate that we can achieve sufficient accuracy for the prediction of final carbon

  12. Shaping process makes fuels

    SciTech Connect

    Tabak, S.A.; Krambeck, F.J.

    1985-09-01

    The Mobil Olefin to Gasoline and Distillate (MOGD) process is described in which light olefinic compunds can be converted to high quality gasoline and distillate. This process, now ready for commercialization is based on a unique synthetic zeolite catalyst, the shape of which selectively oligomerizes light olefins to higher molecular weight iso-olefins. The highly flexible process can be designed to produce distillate/gasoline ratios of 0/100 to 90/10 for a commercial plant, depending on market requirements. MOGD is applicable to a wide range of feed streams ranging from ethylene to 400 degrees F end point olefinic naphtha. The process has been tested using commercially produced catalyst in refinery-scale equipment.

  13. Small scale processes and entrainment in a stratocumulus marine boundary layer

    SciTech Connect

    Stevens, D.E.; Almgren, A.S.; Bell, J.B.; Beckner, V.E.; Rendleman, C.A.

    1998-05-01

    Lack of resolution is a common problem hampering the use of large eddy simulation models for investigating boundary layer dynamics. Entrainment into the tops of marine stratus is characteristic of this problem. The use of parallel computing as a technique for resolving both boundary layer motions and the entrainment region enables the investigation of the interaction between the moist thermodynamics and turbulence in the entrainment region at very small length scales (dx = 8 m, dz = 4 m). This interaction results in heterogeneity at small scales which is important for correctly diagnosing the details of entrainment. This study presents several numerical experiments at high resolution using a generalization of a 1995 GCSS (GEWEX Cloud System Studies) model intercomparison. Subtle details of the numerical algorithm are found to cause larger differences in entrainment than choice of subgrid model. A kinetic energy budget shows that even for very high resolution, numerical dissipation is usually larger than that produced by the subgrid model. However, the structure of eddies at the inversion is determined mainly by resolution with very little dependence on numerical representation. Inversion properties are converging as resolution approaches an undulation scale. Most of the mixing is confined within 100 meters of the inversion with entraining motions having an aspect ratio of 6 to 1.

  14. The role of the CeO 2 /BiVO 4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes

    DOE PAGES

    Shinde, A.; Li, G.; Zhou, L.; ...

    2016-09-09

    Solar fuel generators entail a high degree of materials integration, and efficient photoelectrocatalysis of the constituent reactions hinges upon the establishment of highly functional interfaces. Our recent application of high throughput experimentation to interface discovery for solar fuels photoanodes has revealed several surprising and promising mixed-metal oxide coatings for BiVO4. Furthermore, when using sputter deposition of composition and thickness gradients on a uniform BiVO4 film, we systematically explore photoanodic performance as a function of the composition and loading of Fe–Ce oxide coatings. This combinatorial materials integration study not only enhances the performance of this new class of materials but alsomore » identifies CeO2 as a critical ingredient that merits detailed study. A heteroepitaxial CeO2(001)/BiVO4(010) interface is identified in which Bi and V remain fully coordinated to O such that no surface states are formed. Ab initio calculations of the integrated materials and inspection of the electronic structure reveals mechanisms by which CeO2 facilitates charge transport while mitigating deleterious recombination. Our results support the observations that addition of Ce to BiVO4 coatings greatly enhances photoelectrocatalytic activity, providing an important strategy for developing a scalable solar fuels technology.« less

  15. The role of the CeO 2 /BiVO 4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes

    SciTech Connect

    Shinde, A.; Li, G.; Zhou, L.; Guevarra, D.; Suram, S. K.; Toma, F. M.; Yan, Q.; Haber, J. A.; Neaton, J. B.; Gregoire, J. M.

    2016-09-09

    Solar fuel generators entail a high degree of materials integration, and efficient photoelectrocatalysis of the constituent reactions hinges upon the establishment of highly functional interfaces. Our recent application of high throughput experimentation to interface discovery for solar fuels photoanodes has revealed several surprising and promising mixed-metal oxide coatings for BiVO4. Furthermore, when using sputter deposition of composition and thickness gradients on a uniform BiVO4 film, we systematically explore photoanodic performance as a function of the composition and loading of Fe–Ce oxide coatings. This combinatorial materials integration study not only enhances the performance of this new class of materials but also identifies CeO2 as a critical ingredient that merits detailed study. A heteroepitaxial CeO2(001)/BiVO4(010) interface is identified in which Bi and V remain fully coordinated to O such that no surface states are formed. Ab initio calculations of the integrated materials and inspection of the electronic structure reveals mechanisms by which CeO2 facilitates charge transport while mitigating deleterious recombination. Our results support the observations that addition of Ce to BiVO4 coatings greatly enhances photoelectrocatalytic activity, providing an important strategy for developing a scalable solar fuels technology.

  16. Auditory processing assessment suggests that Wistar audiogenic rat neural networks are prone to entrainment.

    PubMed

    Pinto, Hyorrana Priscila Pereira; Carvalho, Vinícius Rezende; Medeiros, Daniel de Castro; Almeida, Ana Flávia Santos; Mendes, Eduardo Mazoni Andrade Marçal; Moraes, Márcio Flávio Dutra

    2017-04-07

    Epilepsy is a neurological disease related to the occurrence of pathological oscillatory activity, but the basic physiological mechanisms of seizure remain to be understood. Our working hypothesis is that specific sensory processing circuits may present abnormally enhanced predisposition for coordinated firing in the dysfunctional brain. Such facilitated entrainment could share a similar mechanistic process as those expediting the propagation of epileptiform activity throughout the brain. To test this hypothesis, we employed the Wistar audiogenic rat (WAR) reflex animal model, which is characterized by having seizures triggered reliably by sound. Sound stimulation was modulated in amplitude to produce an auditory steady-state-evoked response (ASSR; -53.71Hz) that covers bottom-up and top-down processing in a time scale compatible with the dynamics of the epileptic condition. Data from inferior colliculus (IC) c-Fos immunohistochemistry and electrographic recordings were gathered for both the control Wistar group and WARs. Under 85-dB SLP auditory stimulation, compared to controls, the WARs presented higher number of Fos-positive cells (at IC and auditory temporal lobe) and a significant increase in ASSR-normalized energy. Similarly, the 110-dB SLP sound stimulation also statistically increased ASSR-normalized energy during ictal and post-ictal periods. However, at the transition from the physiological to pathological state (pre-ictal period), the WAR ASSR analysis demonstrated a decline in normalized energy and a significant increase in circular variance values compared to that of controls. These results indicate an enhanced coordinated firing state for WARs, except immediately before seizure onset (suggesting pre-ictal neuronal desynchronization with external sensory drive). These results suggest a competing myriad of interferences among different networks that after seizure onset converge to a massive oscillatory circuit.

  17. Synthetic fuels handbook: properties, process and performance

    SciTech Connect

    Speight, J.

    2008-07-01

    The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

  18. Microbial fuel cell treatment of fuel process wastewater

    DOEpatents

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  19. Processing sunflower oil for fuel

    SciTech Connect

    Backer, L.F.; Jacobsen, L.; Olson, C.

    1982-05-01

    Research on processing of sunflower seed for oil was initiated to evaluate the equipment that might adapt best to on-farm or small factory production facilities. The first devices identified for evaluation were auger press expeller units, primary oil cleaning equipment, and final filters. A series of standard finishing filtration tests were carried out on sunflower oil and sunflower oil - diesel fuel blends using sunflower oil from four different sources.

  20. Process for removal of sulfur compounds from fuel gases

    DOEpatents

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  1. A multi-platform study of entrainment by (sub-)mesoscale processes in the Denmark Strait overflow plume

    NASA Astrophysics Data System (ADS)

    Kanzow, Torsten; Schaffer, Janin; Nunes, Nuno; Tippenhauer, Sandra; Jochumsen, Kerstin; Quadfasel, Detlef; Paka, Vadim

    2014-05-01

    The Nordic overflows double their volume by entraining ambient water as they descend into the subpolar North Atlantic. To study small-scale processes associated with entrainment a multi-platform experiment was carried out 180 km downstream of Denmark Strait in the pathway of the overflow plume. Moored observations revealed pronounced eddy-activity with periods near 1.6 days. Temperature along horizontal profiles observed from an autonomous underwater vehicle (AUV) in the transition layer between the overflow plume and the ambient water revealed pronounced variance on wavelengths between 20 and 500 m. This band cuts across from the turbulent motions into the internal wave regime. During episodes of elevated turbulent dissipation (as observed by the AUV), increased temperature variance on wavelengths less than 200 m was found with a wavenumber-dependence characteristic of turbulence. Besides topographically induced mixing, the AUV captured strong turbulence near the edge of an energetic eddy, implying that eddy-driven horizontal advection and vertical mixing act in concert to entrain ambient water into the plume.

  2. Characterization and ecological risk assessment of nanoparticulate CeO2 as a diesel fuel catalyst.

    PubMed

    Batley, Graeme E; Halliburton, Brendan; Kirby, Jason K; Doolette, Casey L; Navarro, Divina; McLaughlin, Mike J; Veitch, Colin

    2013-08-01

    Nanoparticulate cerium dioxide (nano-CeO2 ), when combusted as an additive to diesel fuel, was transformed from 6 nm to 14 nm sizes into particles near 43 nm, with no obvious change in the unit cell dimensions or crystalline form. Cerium sulfate, if formed during combustion, was below detection limits. Ceria nanoparticles were agglomerated within the soot matrix, with a mean aerodynamic diameter near 100 nm. The dissolution of cerium from the dried ceria catalyst in synthetic soft water was extremely small (<0.0006% or <0.2 µg Ce/L), with particles being highly agglomerated (<450 nm). Agglomeration was reduced in the presence of humic acid. In the combusted samples, soot was dominant, and the solubility of cerium in soft water showed an almost 100-fold increase in the <1 nm fraction compared to that before combustion. It appeared that the nano-CeO2 remained agglomerated within the soot matrix and would not be present as dispersed nanoparticles in aquatic or soil environments. Despite the increased dissolution, the solubility was not sufficient for the combusted ceria to represent a risk in aquatic ecosystems. The predicted environmental concentrations were still orders of magnitude below the predicted no effects concentration of near 1 mg/L. In the soil environment, any cerium released from soot materials would interact with natural colloids, decreasing cerium concentrations in soil solutions and further minimizing the potential risk to soil organisms.

  3. Dry process dependency of dupic fuel cycle

    SciTech Connect

    Park, Kwangheon; Whang, Juho; Kim, Yun-goo; Kim, Heemoon

    1996-12-31

    During the Dry Process, volatile and semi-volatile elements are released from the fuel. The effects of these released radioactive nuclides on DUPIC fuel cycle are analyzed from the view-point of radiation hazard, decay beat, and hazard index. Radiation hazard of fresh and spent DUPIC fuel is sensitive to the method of Dry Process. Decay beat of the fuel is also affected. Hazard index turned out not to be dependent on Dry Process.

  4. Small-scale processes and entrainment in a stratocumulus marine boundary layer

    SciTech Connect

    Stevens, D.E.; Bell, J.B.; Almgren, A.S.; Beckner, V.E.; Rendleman, C.A.

    2000-02-15

    Numerical studies of boundary layer meteorology are increasingly reliant on large eddy simulation (LES) models, but few detailed validation studies of these types of models have been done. In this paper, the authors investigate the behavior of an LES model for simulation of a marine boundary layer. Specifically, the authors focus on the mechanisms that control numerical predictions of entrainment into the tops of marine stratus in a moist generalization of the 1995 Global Energy and Water Cycle Experiment Cloud System Studies model intercomparison. For the computational study the authors present a sequence of simulations of varying resolution, from a typical resolution (50 m horizontal and 25 m vertical mesh size) to a fine resolution (8 m horizontal and 4 m vertical mesh size). The authors also explore variations in the model such as different subgrid models and modifications of the advection scheme. It was found that the thickness of the inversion, the depth of entraining eddies, and the shape of vertical velocity spectra were determined mainly by the mesh spacing used. However, the entrainment rate was found to have a distinct dependence on the amount of combined numerical and subgrid-scale mixing. This indicates that the use of large eddy simulation to study mixing in stratocumulus boundary layers needs to account for both sources of mixing.

  5. Role of Microstructure and Surface Defects on the Dissolution Kinetics of CeO2, a UO2 Fuel Analogue.

    PubMed

    Corkhill, Claire L; Bailey, Daniel J; Tocino, Florent Y; Stennett, Martin C; Miller, James A; Provis, John L; Travis, Karl P; Hyatt, Neil C

    2016-04-27

    The release of radionuclides from spent fuel in a geological disposal facility is controlled by the surface mediated dissolution of UO2 in groundwater. In this study we investigate the influence of reactive surface sites on the dissolution of a synthesized CeO2 analogue for UO2 fuel. Dissolution was performed on the following: CeO2 annealed at high temperature, which eliminated intrinsic surface defects (point defects and dislocations); CeO2-x annealed in inert and reducing atmospheres to induce oxygen vacancy defects and on crushed CeO2 particles of different size fractions. BET surface area measurements were used as an indicator of reactive surface site concentration. Cerium stoichiometry, determined using X-ray Photoelectron Spectroscopy (XPS) and supported by X-ray Diffraction (XRD) analysis, was used to determine oxygen vacancy concentration. Upon dissolution in nitric acid medium at 90 °C, a quantifiable relationship was established between the concentration of high energy surface sites and CeO2 dissolution rate; the greater the proportion of intrinsic defects and oxygen vacancies, the higher the dissolution rate. Dissolution of oxygen vacancy-containing CeO2-x gave rise to rates that were an order of magnitude greater than for CeO2 with fewer oxygen vacancies. While enhanced solubility of Ce(3+) influenced the dissolution, it was shown that replacement of vacancy sites by oxygen significantly affected the dissolution mechanism due to changes in the lattice volume and strain upon dissolution and concurrent grain boundary decohesion. These results highlight the significant influence of defect sites and grain boundaries on the dissolution kinetics of UO2 fuel analogues and reduce uncertainty in the long term performance of spent fuel in geological disposal.

  6. Integrated process for reprocessing spent nuclear fuel

    SciTech Connect

    Forsberg, C.W.

    1991-03-06

    This invention is comprised of a process for recovering nuclear fuel from spent fuel assemblies that employs a single canister process container. The cladding and fuel are oxidized in the container, the fuel is dissolved and removed from the container for separation from the aqueous phase, the aqueous phase containing radioactive waste is returned to the container. This container is also the disposal vessel. Add solidification agents and compress container for long term storage.

  7. Fast Reactor Spent Fuel Processing: Experience and Criticality Safety

    SciTech Connect

    Chad Pope

    2007-05-01

    This paper discusses operational and criticality safety experience associated with the Idaho National Laboratory Fuel Conditioning Facility which uses a pyrometallurgical process to treat spent fast reactor metallic fuel. The process is conducted in an inert atmosphere hot cell. The process starts with chopping metallic fuel elements into a basket. The basket is lowered into molten salt (LiCl-KCl) along with a steel mandrel. Active metal fission products, transuranic metals and sodium metal in the spent fuel undergo chemical oxidation and form chlorides. Voltage is applied between the basket, which serves as an anode, and the mandrel, which serves as a cathode, causing metallic uranium in the spent fuel to undergo electro-chemical oxidation thereby forming uranium chloride. Simultaneously at the cathode, uranium chloride undergoes electro-chemical reduction and deposits uranium metal onto the mandrel. The uranium metal and accompanying entrained salt are placed in a distillation furnace where the uranium melts forming an ingot and the entrained salt boils and subsequently condenses in a separate crucible. The uranium ingots are placed in long term storage. During the ten year operating history, over one hundred criticality safety evaluations were prepared. All criticality safety related limits and controls for the entire process are contained in a single document which required over thirty revisions to accommodate the process changes. Operational implementation of the limits and controls includes use of a near real-time computerized tracking system. The tracking system uses an Oracle database coupled with numerous software applications. The computerized tracking system includes direct fuel handler interaction with every movement of material. Improvements to this system during the ten year history include introduction of web based operator interaction, tracking of moderator materials and the development of a plethora database queries to assist in day to day

  8. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOEpatents

    Knight, James A.; Gorton, Charles W.

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  9. Ordering processes in monophase CeH2+x

    NASA Astrophysics Data System (ADS)

    Ratishvili, I. G.; Vajda, P.; Boukraa, A.; Namoradze, N. Z.

    1994-06-01

    The hydrogen ordering processes in the β phase of the rare-earth hydride system CeH2+x are analyzed. It is assumed that, within the discussed concentration range (x<0.75), the stable states of the metal-hydrogen system are homogeneous monophase solutions with fixed concentrations. The description of ordering is based upon the mean-field approximation of the static-concentration-waves theory. The relevant energy constants describing the H-H interactions are determined using available experimental data corresponding to the order-disorder transformation temperatures. It is shown that in the system under consideration there exists (in the concentration range x>=0.35), besides the usual order-disorder transformation, an additional order-order transition at low temperatures which, in some cases (for x>0.44), has a two-step character.

  10. Processing temperature tuned interfacial microstructure and protonic and oxide ionic conductivities of well-sintered Sm0.2Ce0.8O1.9- Na2CO3 nanocomposite electrolytes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Chuanming; Zeng, Yanwei; Wang, Zhentao; Ye, Zhupeng; Zhang, Yuan

    2017-08-01

    Well-sintered SDC-NC (Sm0.2Ce0.8O1.9-Na2CO3) nanocomposites have been prepared through a rare-earth/sodium complex carbonate precipitation, powder prefirings at the temperatures 400, 500 and 600 °C and sintering at 800 °C. Their sintering performances, phase components and microstructures have been characterized by Archimedean method, XRD and FESEM techniques. In particular, the influence of the interfacial interactions between the phases of SDC and NC on the microstructures and electrical conductivities of SDC-NC nanocomposites have been investigated by AC impedance and Raman spectroscopies. It has been found that on the basis of the fitting analysis of AC impedance data, the oxide ionic and protonic conductivities of interfacial and non-interfacial phases in the SDC-NC nanocomposites are found to be strongly dependent upon their prefiring temperatures with the sample of SN-600 showing the highest values of 73.2/33.7 and 51.1/105.4 μS/cm at 300 °C, respectively. The single cell based on the electrolyte of SN-600 presents an OCV of 0.992 V and peak power density of 421 mW/cm2 at 550 °C. The interfacial interactions between the phases of SDC and NC inside SDC-NC nanocomposites are considered responsible for their differences in microstructure and electrical conductivity.

  11. Nanostructured Gd-CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting

    NASA Astrophysics Data System (ADS)

    Akbari-Fakhrabadi, A.; Mangalaraja, R. V.; Sanhueza, Felipe A.; Avila, Ricardo E.; Ananthakumar, S.; Chan, S. H.

    2012-11-01

    Gadolinia-doped ceria (Ce0.9Gd0.1O1.95, GDC) electrolyte was fabricated by aqueous-based tape casting method for solid oxide fuel cells (SOFCs). The ceramic powder prepared by combustion synthesis was used with poly acrylic acid (PAA), poly vinyl alcohol (PVA), poly ethylene glycol (PEG), Octanol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate and double distilled water as dispersant, binder, plasticizer, defoamer, surfactant and solvent respectively, to prepare stable GDC slurry. The conditions for preparing stable GDC slurries were studied and optimized by sedimentation, zeta potential and viscosity measurements. Green tapes with smooth surface, flexibility, thickness in the range of 0.35-0.4 mm and 45% relative green density were prepared. Conventional and flash sintering techniques were used and compared for densification which demonstrated the possibility of surpassing sintering at high temperatures and retarding related grain growth.

  12. Separation and detection of amino acid metabolites of Escherichia coli in microbial fuel cell with CE.

    PubMed

    Wang, Wei; Ma, Lihong; Lin, Ping; Xu, Kaixuan

    2016-07-01

    In this work, CE-LIF was employed to investigate the amino acid metabolites produced by Escherichia coli (E. coli) in microbial fuel cell (MFC). Two peptides, l-carnosine and l-alanyl-glycine, together with six amino acids, cystine, alanine, lysine, methionine, tyrosine, arginine were separated and detected in advance by a CE-LIF system coupled with a homemade spontaneous injection device. The injection device was devised to alleviate the effect of electrical discrimination for analytes during sample injection. All analytes could be completely separated within 8 min with detection limits of 20-300 nmol/L. Then this method was applied to analyze the substrate solution containing amino acid metabolites produced by E. coli. l-carnosine, l-alanyl-glycine, and cystine were used as the carbon, nitrogen, and sulfur source for the E. coli culture in the MFC to investigate the amino acid metabolites during metabolism. Two MFCs were used to compare the activity of metabolism of the bacteria. In the sample collected at the running time 200 h of MFC, the amino acid methionine was discovered as the metabolite with the concentrations 23.3 μg/L.

  13. Fuel quality processing study, volume 1

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  14. Fuel quality processing study, volume 1

    NASA Astrophysics Data System (ADS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-04-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  15. A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign

    DOE PAGES

    Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang; ...

    2017-04-20

    Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed in this paper. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humiditymore » differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Finally, clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.« less

  16. A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign

    NASA Astrophysics Data System (ADS)

    Yeom, Jae Min; Yum, Seong Soo; Liu, Yangang; Lu, Chunsong

    2017-09-01

    Entrainment and mixing processes and their effects on cloud microphysics in the continental stratocumulus clouds observed in Oklahoma during the RACORO campaign are analyzed in the frame of homogeneous and inhomogeneous mixing concepts by combining the approaches of microphysical correlation, mixing diagram, and transition scale (number). A total of 110 horizontally penetrated cloud segments is analyzed. Mixing diagram and cloud microphysical relationship analyses show homogeneous mixing trait of positive relationship between liquid water content (L) and mean volume of droplets (V) (i.e., smaller droplets in more diluted parcel) in most cloud segments. Relatively small temperature and humidity differences between the entraining air from above the cloud top and cloudy air and relatively large turbulent dissipation rate are found to be responsible for this finding. The related scale parameters (i.e., transition length and transition scale number) are relatively large, which also indicates high likelihood of homogeneous mixing. Clear positive relationship between L and vertical velocity (W) for some cloud segments is suggested to be evidence of vertical circulation mixing, which may further enhance the positive relationship between L and V created by homogeneous mixing.

  17. Dry Processing of Used Nuclear Fuel

    SciTech Connect

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  18. Fuel processing requirements and techniques for fuel cell propulsion power

    SciTech Connect

    Kumar, R.; Ahmed, S.; Yu, M.

    1993-08-01

    Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen wig need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.

  19. Fuel quality/processing study. Volume 3: Fuel upgrading studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Bruggink, P.; Sinnett, C.

    1981-01-01

    The methods used to calculate the refinery selling prices for the turbine fuels of low quality are described. Detailed descriptions and economics of the upgrading schemes are included. These descriptions include flow diagrams showing the interconnection between processes and the stream flows involved. Each scheme is in a complete, integrated, stand alone facility. Except for the purchase of electricity and water, each scheme provides its own fuel and manufactures, when appropriate, its own hydrogen.

  20. Fuel Conditioning Facility Electrorefiner Process Model

    SciTech Connect

    DeeEarl Vaden

    2005-10-01

    The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

  1. Mathematical modeling of biomass fuels formation process.

    PubMed

    Gaska, Krzysztof; Wandrasz, Andrzej J

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task.

  2. Combustion processes in wildland fuels

    Treesearch

    Charles K. McMahon

    1985-01-01

    Abstract. A 5-year summary of accomplishments, current activities, and planned actions for fire research project SE-2110 are presented. Areas of discussion center on: (1) characterization of wildland smoke, and (2) fuel, fire, and emission relationships. Characterization summaries include physical and chemical properties of smoke, smoke from...

  3. Effect of oxidizer to fuel molar ratio on particle size and DC conductivity of CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, B. M.; Rajeeva, M. P.; Naveen, C. S.; Chaturmukha, V. S.; Avinash, B. S.; Jayanna, H. S.; Lamani, Ashok R.

    2016-05-01

    Cerium oxide nanoparticles were synthesized by solution combustion method with varying the oxidizer (cerium nitrate hexa hydrate) to fuel (Glycine) molar ratio. The prepared samples were characterized by UV-visible spectrometer, X-ray diffractometer (XRD), Scanning electron microscope (SEM) and Energy dispersive X-Ray analysis (EDAX). XRD pattern reveals the formation of cubic fluorite structure of CeO2. It was observed that finest crystallites were found at extreme fuel-deficient condition and it is good enough to produce favorable powder characteristics. The average crystallite size was found to be 14.46 nm to 21.57 nm. The temperature dependent dc conductivity was carried out using Keithley source meter between the temperature range from 300K to 573K. From this study it was found that the conductivity increases with increase of temperature due to semiconducting behavior of CeO2 and it decreases with particle size due to increase in the energy band gap.

  4. Carbon oxides free fuel processing for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Tushar V.

    Fuel processing represents a very important aspect of fuel cell technology. The widespread utilization of fuel cells will only be possible if CO x-free hydrogen producing technologies are developed. Towards this objective, step-wise reforming of hydrocarbons and catalytic decomposition of ammonia were investigated for hydrogen production. Also, novel Au-based catalysts were synthesized for preferentially eliminating CO in the presence of excess hydrogen. The step-wise reforming of hydrocarbons was investigated for production of CO-free hydrogen for proton exchange membrane fuel cells. Proof of concept pulse reactor experiments employing Ni-based catalysts clearly showed the feasibility of the cyclic step-wise reforming process for clean hydrogen production. Under optimum conditions the CO content in the hydrogen was found to be less than 20 ppm by this process (a large amount of CO is obtained as a by-product from conventional methods of hydrogen production). The step-wise reforming process thus greatly simplifies fuel reforming, as expensive and circuitous post-reforming hydrogen purification processes are eliminated. The process was profoundly influenced by the operating temperature, space velocity and nature of the catalyst support. Catalytic ammonia decomposition was investigated for COx-free hydrogen production for alkaline fuel cells. These studies revealed that Ru, Ir and Ni-based catalysts were active for the process with Ru being the most active and Ni the least. The catalyst supports played a decisive role in determining the ammonia decomposition activity. Partial pressure dependence studies of the reaction rate on model Ir (100) catalysts yielded a positive order (0.9 +/- 0.l) with respect to ammonia and negative order (-0.7 +/- 0.l) with respect to hydrogen. The negative order with respect to hydrogen was attributed to the enhancement in the reverse of the ammonia decomposition reaction in the presence of surface hydrogen atoms. Novel nano-Au catalysts

  5. Process for vaporizing a liquid hydrocarbon fuel

    DOEpatents

    Szydlowski, Donald F.; Kuzminskas, Vaidotas; Bittner, Joseph E.

    1981-01-01

    The object of the invention is to provide a process for vaporizing liquid hydrocarbon fuels efficiently and without the formation of carbon residue on the apparatus used. The process includes simultaneously passing the liquid fuel and an inert hot gas downwardly through a plurality of vertically spaed apart regions of high surface area packing material. The liquid thinly coats the packing surface, and the sensible heat of the hot gas vaporizes this coating of liquid. Unvaporized liquid passing through one region of packing is uniformly redistributed over the top surface of the next region until all fuel has been vaporized using only the sensible heat of the hot gas stream.

  6. Plasma method for processing spent nuclear fuel

    SciTech Connect

    Timofeev, A. V.

    2007-11-15

    Plasma methods for processing spent nuclear fuel are analyzed. It is shown that, by ICR heating in a nonuniform magnetic field, the energy of the heated ash ions can be increased substantially, while nuclear fuel ions can be kept cold. Two methods for extracting heated ash ions from a cold plasma flow are considered, specifically, that by increasing the ion gyroradius and that due to ion drift in a curved magnetic field. It is found that the required degree of separation of ash and fuel ions can be achieved in systems with quite moderate parameters.

  7. Fuel processing and thermochemical/photochemical cycles

    NASA Astrophysics Data System (ADS)

    Hunt, Arlon J.

    A long sought goal of energy research has been to find a method to produce hydrogen fuel economically by splitting water using sunlight as the source of energy. Implementing method of producing useful fuels from raw materials using sunlight on a large scale generally involves significant capital and energy costs. Sunlight is an attractive means of providing a renewable source of energy to drive the process after providing the initial capital outlay. However, the combination of capital costs to provide concentrated solar energy and the elaborate and expensive plants required to carry out the chemical processes puts a heavy financial burden on this approach to a clean and renewable energy economy. Solar driven fuel processing methods include thermal decomposition, thermochemical, photochemical, electrochemical, biochemical, and hybrid reactions. The range of approaches to carry out these processes runs the gamut from well established chemical engineering practices with near term predictable costs, to long term basic photochemical processes, the details of which are still speculative.

  8. SOFC system with integrated catalytic fuel processing

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  9. Pyrochemical processing of DOE spent nuclear fuel

    SciTech Connect

    Laidler, J.J.

    1995-02-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  10. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  11. Processing of transparent polycrystalline AlON:Ce3+ scintillators

    SciTech Connect

    Chen, Ching -Fong; Yang, Pin; King, Graham; Tegtmeier, Eric L.

    2015-10-23

    A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce4+ to Ce3+ in the solid solution. We explored two different activator concentrations (0.5 and 1.0 mol%). Fully dense and transparent AlON:Ce3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystal field splitting around the Ce3+ activator in the AlON was comparable to the splitting induced by Br₋ and the Cl₋ ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce3+ were demonstrated. Lastly, challenges and mechanisms related to the radioluminescence efficiency are discussed.

  12. Improving solid oxide fuel cell performance by a single-step co-firing process

    NASA Astrophysics Data System (ADS)

    Dai, Hailu; Chen, Han; He, Shoucheng; Cai, Guifan; Guo, Lucun

    2015-07-01

    Solid oxide fuel cells (SOFCs) with Sm0.2Ce0.8O2-δ (SDC) as the electrolyte are successfully prepared by a single-step co-firing process with the sintering temperature as low as 1100 °C. Different from the conventional SOFC preparation procedure that involves multistep firing processes, the single-step co-firing preparation procedure simplifies the fuel cell preparation procedure and additionally improves the fuel cell performance. The cell prepared by the single-step process exhibits the maximum power density of 289 mW cm-2 at 700 °C, while the cell prepared by the conventional method is only 211 mW cm-2, with an increase of 37% been achieved. The impedance analysis reveals that the single co-firing procedure not only improves the contact between the electrolyte and electrodes, but also lowers the cell polarization resistance, thus leading to a better fuel cell performance.

  13. Transport and deposition of CeO2 nanoparticles in water-saturated porous media.

    PubMed

    Li, Zhen; Sahle-Demessie, Endalkachew; Hassan, Ashraf Aly; Sorial, George A

    2011-10-01

    Ceria nanoparticles are used for fuel cell, metal polishing and automobile exhaust catalyst; however, little is known about the impact of their release to the environment. The stability, transport and deposition of engineered CeO2 nanoparticles through water-saturated column packed with sand were studied by monitoring effluent CeO2 concentration. The influence of solution chemistry such as ionic strength (1-10 mM) and pH (3-9) on the mobility and deposition of CeO2 nanoparticles was investigated by using a three-phase (deposition-rinse-reentrainment) procedure in packed bed columns. The results show that water chemistry governs the transport and deposition of CeO2 nanoparticles. Transport is significantly hindered at acidic conditions (pH 3) and high ionic strengths (10 mM and above), and the deposited CeO2 particles may not be re-entrained by increasing the pH or lowering the ionic strength of water. At neutral and alkaline conditions (pH6 and 9), and lower ionic strengths (below 10 mM), partial breakthrough of CeO2 nanoparticles was observed and particles can be partially detached and re-entrained from porous media by changing the solution chemistry. A mathematical model was developed based on advection-dispersion-adsorption equations and it successfully predicts the transport, deposition and re-entrainment of CeO2 nanoparticles through a packed bed. There is strong agreement between the deposition rate coefficients calculated from experimental data and predicted by the model. The successful prediction for attachment and detachment of nanoparticles during the deposition and re-entrainment phases is unique addition in this study. This work can be applied to access the risk of CeO2 nanoparticles transport in contaminated ground water.

  14. CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell

    PubMed Central

    Lei, M.; Wang, Z. B.; Li, J. S.; Tang, H. L.; Liu, W. J.; Wang, Y. G.

    2014-01-01

    Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8–1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study. PMID:25491655

  15. CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell.

    PubMed

    Lei, M; Wang, Z B; Li, J S; Tang, H L; Liu, W J; Wang, Y G

    2014-12-10

    Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8-1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study.

  16. Alternative Fuel for Portland Cement Processing

    SciTech Connect

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  17. The Use of Synthetic JP-8 Fuels in Military Engines

    DTIC Science & Technology

    2010-01-01

    Future work will include the use of a gas to liquid diesel fuel known as GTL as well as blends of the fuels included in this submission. Such future...around the liquid fuel is entrained with hot cylinder gas and ignites. Engine Speed 1250 1250 1400 1400 1600 1600 Fuel Fueling Rate [lbs/hr...fuels. These fuels can be created from coal, biomass or natural gas feedstock using the Fischer Tropsch process. The Army has taken strides to

  18. Contribution of energetically reactive surface features to the dissolution of CeO2 and ThO2 analogues for spent nuclear fuel microstructures.

    PubMed

    Corkhill, Claire L; Myllykylä, Emmi; Bailey, Daniel J; Thornber, Stephanie M; Qi, Jiahui; Maldonado, Pablo; Stennett, Martin C; Hamilton, Andrea; Hyatt, Neil C

    2014-08-13

    In the safety case for the geological disposal of nuclear waste, the release of radioactivity from the repository is controlled by the dissolution of the spent fuel in groundwater. There remain several uncertainties associated with understanding spent fuel dissolution, including the contribution of energetically reactive surface sites to the dissolution rate. In this study, we investigate how surface features influence the dissolution rate of synthetic CeO2 and ThO2, spent nuclear fuel analogues that approximate as closely as possible the microstructure characteristics of fuel-grade UO2 but are not sensitive to changes in oxidation state of the cation. The morphology of grain boundaries (natural features) and surface facets (specimen preparation-induced features) was investigated during dissolution. The effects of surface polishing on dissolution rate were also investigated. We show that preferential dissolution occurs at grain boundaries, resulting in grain boundary decohesion and enhanced dissolution rates. A strong crystallographic control was exerted, with high misorientation angle grain boundaries retreating more rapidly than those with low misorientation angles, which may be due to the accommodation of defects in the grain boundary structure. The data from these simplified analogue systems support the hypothesis that grain boundaries play a role in the so-called "instant release fraction" of spent fuel, and should be carefully considered, in conjunction with other chemical effects, in safety performance assessements for the geological disposal of spent fuel. Surface facets formed during the sample annealing process also exhibited a strong crystallographic control and were found to dissolve rapidly on initial contact with dissolution medium. Defects and strain induced during sample polishing caused an overestimation of the dissolution rate, by up to 3 orders of magnitude.

  19. Processing of driver fuel assemblies at FFTF

    SciTech Connect

    Danko, A.D.; Hicks, D.F.; Arneson, S.O.

    1982-07-01

    The ability to disassemble an irradiated Fast Flux Test Facility (FFTF) Driver Fuel Assembly (DFA) is important both to the continued operation of the FFTF and the future of the Breeder Reactor Program. At the FFTF, DFA's with up to three (3)* kilowatts of decay heat will be placed in the Interim Examination and Maintenance (IEM) Cell for disassembly and nondestructive examination. This process includes sodium removal, duct measurement, duct cutting and pulling, fuel pin removal, and component disposition to other laboratories for destructive examination.

  20. High sintering activity Cu-Gd co-doped CeO 2 electrolyte for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Dong, Yingchao; Hampshire, Stuart; Lin, Bin; Ling, Yihan; Zhang, Xiaozhen

    Nano-sized Ce 0.79Gd 0.2Cu 0.01O 2- δ electrolyte powder was synthesized by the polyvinyl alcohol assisted combustion method, and then characterized by crystalline structure, powder morphology, sintering micro-structure and electrical properties. The results demonstrate that the as-synthesized Ce 0.79Gd 0.2Cu 0.01O 2- δ was well crystalline with cubic fluorite structure, and exhibited a porous foamy morphology composed of gas cavities and fine crystals ranging from 30 to 50 nm. After sintering at 1100 °C, the as-prepared pellets exhibited a dense and moderate-grained micro-structure with 95.54% relative density, suggesting that the synthesized Ce 0.79Gd 0.2Cu 0.01O 2- δ powder had high sintering activity. The powders made by this method are expected to offer potential application in intermediate-to-low temperature solid-oxide fuel cells, due to its very low densification sintering temperature (1100 °C), as well as high conductivity of 0.026 S cm -1 at 600 °C and good mechanical performance with three-point flexural strength value of 148.15 ± 2.42 MPa.

  1. FUEL PROCESSING FOR FUEL CELLS: EFFECTS ON CATALYST DURABILITY AND CARBON FORMATION

    SciTech Connect

    R. BORUP; M. INBODY; B. MORTON; L. BROWN

    2001-05-01

    On-board production of hydrogen for fuel cells for automotive applications is a challenging developmental task. The fuel processor must show long term durability and under challenging conditions. Fuel processor catalysts in automotive fuel processors will be exposed to large thermal variations, vibrations, exposure to uncontrolled ambient conditions, and various impurities from ambient air and from fuel. For the commercialization of fuel processors, the delineation of effects on catalyst activity and durability are required. We are studying fuels and fuel constituent effects on the fuel processor system as part of the DOE Fuel Cells for Transportation program. Pure fuel components are tested to delineate the fuel component effect on the fuel processor and fuel processor catalysts. Component blends are used to simulate ''real fuels'', with various fuel mixtures being examined such as reformulated gasoline and naptha. The aliphatic, napthenic, olefin and aromatic content are simulated to represent the chemical kinetics of possible detrimental reactions, such as carbon formation, during fuel testing. Testing has examined the fuel processing performance of different fuel components to help elucidate the fuel constituent effects on fuel processing performance and upon catalyst durability. Testing has been conducted with vapor fuels, including natural gas and pure methane. The testing of pure methane and comparable testing with natural gas (97% methane) have shown some measurable differences in performance in the fuel processor. Major gasoline fuel constituents, such as aliphatic compounds, napthanes, and aromatics have been compared for their effect on the fuel processing performance. Experiments have been conducted using high-purity compounds to observe the fuel processing properties of the individual components and to document individual fuel component performance. The relative carbon formation of different fuel constituents have been measured by monitoring carbon via

  2. Tb and Ce Doped Y123 Films Processed by Pulsed Laser Deposition

    DTIC Science & Technology

    2004-05-01

    onto SrTiO3 single crystal substrates by pulsed laser ablation. Doped YBCO films were characterized for Tc, magnetic field dependence of Jc (at 77 K...AFRL-PR-WP-TP-2006-221 Tb AND Ce DOPED Y123 FILMS PROCESSED BY PULSED LASER DEPOSITION Joseph W. Kell, Timothy J. Haugan, Mary Frances Locke...From - To) 05/10/2003 — 05/10/2004 4. TITLE AND SUBTITLE Tb AND Ce DOPED Y123 FILMS PROCESSED BY PULSED LASER DEPOSITION . 5a. CONTRACT NUMBER In

  3. Thermodynamic assessment of the LiF-CeF3-ThF4 system: Prediction of PuF3 concentration in a molten salt reactor fuel

    NASA Astrophysics Data System (ADS)

    Beneš, O.; Konings, R. J. M.

    2013-04-01

    A thermodynamic description of the LiF-CeF3-ThF4 system is made in this study using a two-sublattice model for the description of the solid solution and a quasi-chemical model based on quadruplet approximation for the liquid phase. New calorimetric experimental data of the binary LiF-CeF3, CeF3-ThF4 and ternary LiF-CeF3-ThF4 systems have been obtained in this work justifying the calculated phase diagrams. Using the obtained thermodynamic assessment the concentration of PuF3 in the LiF-ThF4 melt was estimated based on the similarities with CeF3 and the melting behaviour of the initial molten salt fast reactor fuel was discussed.

  4. Recycling of nuclear spent fuel with AIROX processing

    SciTech Connect

    Majumdar, D.; Jahshan, S.N.; Allison, C.M.; Kuan, P.; Thomas, T.R.

    1992-12-01

    This report examines the concept of recycling light water reactor (LWR) fuel through use of a dry-processing technique known as the AIROX (Atomics International Reduction Oxidation) process. In this concept, the volatiles and the cladding from spent LWR fuel are separated from the fuel by the AIROX process. The fuel is then reenriched and made into new fuel pins with new cladding. The feasibility of the concept is studied from a technical and high level waste minimization perspective.

  5. Constraining Mantle Differentiation Processes with La-Ce and Sm-Nd Isotope Systematics

    NASA Astrophysics Data System (ADS)

    Willig, M.; Stracke, A.

    2016-12-01

    Cerium (Ce) and Neodymium (Nd) isotopic ratios in oceanic basalts reflect the time integrated La-Ce and Sm-Nd ratios, and hence the extent of light rare earth element element (LREE) depletion or enrichment of their mantle sources. New high precision Ce-Nd isotope data from several ocean islands define a tight array in ԑCe-ԑNd space with ԑNd = -8.2±0.4 ԑCe + 1.3±0.9 (S.D.), in good agreement with previous data [1, 2]. The slope of the ԑCe-ԑNd array and the overall isotopic range are sensitive indicators of the processes that govern the evolution of the mantle's LREE composition. A Monte Carlo approach is employed to simulate continuous mantle-crust differentiation by partial melting and recycling of crustal materials. Partial melting of mantle peridotites produces variably depleted mantle and oceanic crust, which evolve for different time periods, before the oceanic crust is recycled back into the mantle including small amounts of continental crust (GLOSS [3]). Subsequently, depleted mantle and recycled materials of variable age and composition melt, and the respective melts mix in different proportions. Mixing lines strongly curve towards depleted mantle, and tend to be offset from the data for increasingly older and more depleted mantle. Observed ԑCe-ԑNd in ridge [1] and ocean island basalts and the slope of the ԑCe-ԑNd array therefore define upper limits for the extent and age of LREE depletion preserved in mantle peridotites. Very old average mantle depletion ages (> ca. 1-2 Ga) for the bulk of the mantle are difficult to reconcile with the existing ԑCe-ԑNd data, consistent with the range of Nd-Hf-Os model ages in abyssal peridotites [4-6]. Moreover, unless small amounts of continental crust are included in the recycled material, it is difficult to reproduce the relatively shallow slope of the ԑCe-ԑNd array, consistent with constraints from the ԑNd - ԑHf mantle array [7]. [1] Makishima and Masuda, 1994 Chem. Geol. 118, 1-8. [2] Doucelance et al

  6. Contrasting microphysical characteristics of the clouds measured during the dry and wet seasons in Amazon and their implication on entrainment and mixing processes

    NASA Astrophysics Data System (ADS)

    Yum, S. S.; Yeom, J. M.; Mei, F.; Schmid, B.; Comstock, J. M.; Machado, L.; Cecchini, M. A.

    2016-12-01

    Cloud microphysical properties can be modulated by entrainment and mixing of clear air, and how this occurs critically determines colloidal stability and optical properties of clouds. Our recent study showed predominant homogeneous mixing (HM) traits although relevant scale parameter analyses indicated dominance of inhomogeneous mixing (IM), for the marine stratocumulus clouds over the southeast Pacific. We speculated that entrainment and mixing at the cloud top may have been indeed inhomogeneous as the scale parameters suggested but the vertical circulation mixing in the cloud may have changed the cloud microphysical relationships to suggest HM at the altitudes of horizontal penetration. Meanwhile, continental stratocumulus clouds over the Southern Great Plains of the US showed even stronger HM traits. We do similar analyses for the Amazonian clouds measured onboard the US DOE G-1 aircraft during the Green Ocean Amazon (GOAmazon) project. Aerosol, thermodynamic, and cloud microphysical characteristics of the dry and wet seasons were contrastingly different. Mixing diagram analysis and cloud microphysical relationships suggested strong HM traits for both dry and wet seasons except that in the dry season secondary droplet activation during entrainment and mixing processes seemed to have an effect on the results. With the availability of 1 Hz and 10 Hz datasets, scale dependence of the results were also examined.

  7. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles.

    PubMed

    Abo Markeb, Ahmad; Alonso, Amanda; Sánchez, Antoni; Font, Xavier

    2017-11-15

    Synthesized magnetic core-shell Ce-Ti@Fe3O4 nanoparticles were tested, as an adsorbent, for fluoride removal and the adsorption studies were optimized. Adsorption capacity was compared with the synthesized Ce-Ti oxide nanoparticles. The adsorption equilibrium for the Ce-Ti@Fe3O4 adsorbent was found to occur in <15min and it was demonstrated to be stable and efficient in a wide pH range of 5-11 with high fluoride removal efficiency over 80% of all cases. Furthermore, isotherm data were fitted using Langmuir and Freundlich models, and the adsorption capacities resulted in 44.37 and 91.04mg/g, at pH7, for Ce-Ti oxides and Ce-Ti@Fe3O4 nanoparticles, respectively. The physical sorption mechanism was estimated using the Dubinin-Radushkevich model. An anionic exchange process between the OH(-) group on the surface of the Ce-Ti@Fe3O4 nanomaterial and the F(-) was involved in the adsorption. Moreover, thermodynamic parameters proved the spontaneous process for the adsorption of fluoride on Ce-Ti@Fe3O4 nanoparticles. The reusability of the material through magnetic recovery was demonstrated for five cycles of adsorption-desorption. Although the nanoparticles suffer slight structure modifications after their reusability, they keep their adsorption capacity. Likewise, the efficiency of the Ce-Ti@Fe3O4 was demonstrated when applied to real water to obtain a residual concentration of F(-) below the maximum contaminated level, 1.5mg/L (WHO, 2006). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Partial entrainment of gravel bars during floods

    USGS Publications Warehouse

    Konrad, C.P.; Booth, D.B.; Burges, S.J.; Montgomery, D.R.

    2002-01-01

    Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress ??*0 of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to ??*0 with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root-mean-square error of 0.09). Variation in partial entrainment for a given ??*0 demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < ??*0 < 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.

  9. Distributed generation - the fuel processing example

    SciTech Connect

    Victor, R.A.; Farris, P.J.; Maston, V.

    1996-12-31

    The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

  10. Ultra-Deep Adsorptive Desulfurization of Light-Irradiated Diesel Fuel over Supported TiO2-CeO2 Adsorbents

    SciTech Connect

    Xiao, Jing; Wang, Xiaoxing; Chen, Yongsheng; Fujii, Mamoru; Song, Chunshan

    2014-02-13

    This study investigates ultra-deep adsorptive desulfurization (ADS) from light-irradiated diesel fuel over supported TiO2CeO2 adsorbents. A 30-fold higher desulfurization capacity of 95 mL of fuel per gram of adsorbent (mL-F/g-sorb) or 1.143 mg of sulfur per gram of adsorbent (mg-S/g-sorb) was achieved from light-irradiated fuel over the original low-sulfur fuel containing about 15 ppm by weight (ppmw) of sulfur. The sulfur species on spent TiO2CeO2/MCM-48 adsorbent was identified by sulfur K-edge XANES as sulfones and the adsorption selectivity to different compounds tested in a model fuel decreases in the order of indole > dibenzothiophenesulfone → dibenzothiophene > 4-methyldibenzothiophene > benzothiophene > 4,6-dimethyldibenzothiophene > phenanthrene > 2-methylnaphthalene ~ fluorene > naphthalene. The results suggest that during ADS of light-irradiated fuel, the original sulfur species were chemically transformed to sulfones, resulting in the significant increase in desulfurization capacity. For different supports for TiO2–CeO2 oxides, the ADS capacity increases with a decrease in the point of zero charge (PZC) value; for silica-supported TiO2CeO2 oxides (the lowest PZC value of 2–4) with different surface areas, the ADS capacity increases monotonically with increasing surface area. The supported TiO2CeO2/MCM-48 adsorbent can be regenerated using oxidative air treatment. The present study provides an attractive new path to achieve ultraclean fuel more effectively.

  11. The impact of the new quality management system standards on the CE-marking process.

    PubMed

    Donawa, M

    2001-01-01

    In December 2000, the new ISO 9000 quality management system series of standards was published. This represents a significant development for manufacturers marketing medical devices in Europe, who use these standards to demonstrate conformity to the European medical device Directives. This article discusses some issues related to the introduction of these standards in Europe and their use in the CE-marking process.

  12. Parallel Signal Processing and System Simulation using aCe

    NASA Technical Reports Server (NTRS)

    Dorband, John E.; Aburdene, Maurice F.

    2003-01-01

    Recently, networked and cluster computation have become very popular for both signal processing and system simulation. A new language is ideally suited for parallel signal processing applications and system simulation since it allows the programmer to explicitly express the computations that can be performed concurrently. In addition, the new C based parallel language (ace C) for architecture-adaptive programming allows programmers to implement algorithms and system simulation applications on parallel architectures by providing them with the assurance that future parallel architectures will be able to run their applications with a minimum of modification. In this paper, we will focus on some fundamental features of ace C and present a signal processing application (FFT).

  13. In Situ fuel processing in a microbial fuel cell.

    PubMed

    Bahartan, Karnit; Amir, Liron; Israel, Alvaro; Lichtenstein, Rachel G; Alfonta, Lital

    2012-09-01

    A microbial fuel cell (MFC) was designed in which fuel is generated in the cell by the enzyme glucoamylase, which is displayed on the surface of yeast. The enzyme digests starch specifically into monomeric glucose units and as a consequence enables further glucose oxidation by microorganisms present in the MFC anode. The oxidative enzyme glucose oxidase was coupled to the glucoamylase digestive enzyme. When both enzymes were displayed on the surface of yeast cells in a mixed culture, superior fuel-cell performance was observed in comparison with other combinations of yeast cells, unmodified yeast, or pure enzymes. The feasibility of the use of the green macroalgae Ulva lactuca in such a genetically modified MFC was also demonstrated. Herein, we report the performance of such fuel cells as a proof of concept for the enzymatic digestion of complex organic fuels in the anode of MFCs to render the fuel more available to microorganisms.

  14. A processing centre for the CNES CE-GPS experimentation

    NASA Technical Reports Server (NTRS)

    Suard, Norbert; Durand, Jean-Claude

    1994-01-01

    CNES is involved in a GPS (Global Positioning System) geostationary overlay experimentation. The purpose of this experimentation is to test various new techniques in order to select the optimal station synchronization method, as well as the geostationary spacecraft orbitography method. These new techniques are needed to develop the Ranging GPS Integrity Channel services. The CNES experimentation includes three transmitting/receiving ground stations (manufactured by IN-SNEC), one INMARSAT 2 C/L band transponder and a processing center named STE (Station de Traitements de l'Experimentation). Not all the techniques to be tested are implemented, but the experimental system has to include several functions; part of the future system simulation functions, such as a servo-loop function, and in particular a data collection function providing for rapid monitoring of system operation, analysis of existing ground station processes, and several weeks of data coverage for other scientific studies. This paper discusses system architecture and some criteria used in its design, as well as the monitoring function, the approach used to develop a low-cost and short-life processing center in collaboration with a CNES sub-contractor (ATTDATAID), and some results.

  15. Pyroprocess for processing spent nuclear fuel

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    2002-01-01

    This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

  16. HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION

    SciTech Connect

    Woodward, Paul R.; Lin, Pei-Hung; Herwig, Falk E-mail: fherwig@uvic.ca

    2015-01-01

    We present the first three-dimensional, fully compressible gas-dynamics simulations in 4π geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of near global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 ± 1.48 × 10{sup –13} M {sub ☉} s{sup –1}.

  17. Entrainment Rate in Shallow Cumuli: Dependence on Entrained Dry Air Sources and Probability Density Functions

    NASA Astrophysics Data System (ADS)

    Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A. M.

    2012-12-01

    In situ aircraft cumulus observations from the RACORO field campaign are used to estimate entrainment rate for individual clouds using a recently developed mixing fraction approach. The entrainment rate is computed based on the observed state of the cloud core and the state of the air that is laterally mixed into the cloud at its edge. The computed entrainment rate decreases when the air is entrained from increasing distance from the cloud core edge; this is because the air farther away from cloud edge is drier than the neighboring air that is within the humid shells around cumulus clouds. Probability density functions of entrainment rate are well fitted by lognormal distributions at different heights above cloud base for different dry air sources (i.e., different source distances from the cloud core edge). Such lognormal distribution functions are appropriate for inclusion into future entrainment rate parameterization in large scale models. To the authors' knowledge, this is the first time that probability density functions of entrainment rate have been obtained in shallow cumulus clouds based on in situ observations. The reason for the wide spread of entrainment rate is that the observed clouds are affected by entrainment mixing processes to different extents, which is verified by the relationships between the entrainment rate and cloud microphysics/dynamics. The entrainment rate is negatively correlated with liquid water content and cloud droplet number concentration due to the dilution and evaporation in entrainment mixing processes. The entrainment rate is positively correlated with relative dispersion (i.e., ratio of standard deviation to mean value) of liquid water content and droplet size distributions, consistent with the theoretical expectation that entrainment mixing processes are responsible for microphysics fluctuations and spectral broadening. The entrainment rate is negatively correlated with vertical velocity and dissipation rate because entrainment

  18. Nanoporous silver cathode surface treated by atomic layer deposition of CeO(x) for low-temperature solid oxide fuel cells.

    PubMed

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-05-06

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO(x)) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO(x) treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO(x) surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO(x) treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO(x)-treated Ag cathodes related to the microstructure of the layers.

  19. Nanoporous silver cathode surface treated by atomic layer deposition of CeO x for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chean Neoh, Ke; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Jong Choi, Hyung; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO x ) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO x -treated Ag cathodes related to the microstructure of the layers.

  20. Ni-(Ce0.8-xTix)Sm0.2O2-δ anode for low temperature solid oxide fuel cells running on dry methane fuel

    NASA Astrophysics Data System (ADS)

    Han, Bing; Zhao, Kai; Hou, Xiaoxue; Kim, Dong-Jin; Kim, Bok-Hee; Ha, Su; Norton, M. Grant; Xu, Qing; Ahn, Byung-Guk

    2017-01-01

    A titanium-doped Ce0.8Sm0.2O1.9 composite is developed as an anode component of low temperature solid oxide fuel cells running on methane fuel. Crystallographic parameters of (Ce0.8-xTix)Sm0.2O2-δ (0.00 < x < 0.10) are investigated with respect to the amount of titanium. The composites show a single cubic phase with the titanium amount being in the range of 0.00-0.07, while the lattice parameters decrease with increasing titanium content. The (Ce0.8-xTix)Sm0.2O2-δ composites are applied to an anode-supported single cell consisting of Ni-(Ce0.8-xTix)Sm0.2O2-δ anode/Ce0.8Sm0.2O1.9 electrolyte/La0.6Sr0.4Co0.2Fe0.8O3-δ cathode. Catalytic properties of Ni-(Ce0.8-xTix)Sm0.2O2-δ are inspected with the electrochemical performance and performance stability of the cells in dry methane fuel. The cell with Ni-(Ce0.73Ti0.07)Sm0.2O2-δ (x = 0.07) anode displays a low polarization resistance and an optimum maximum power density (679 mW cm-2 at 600 °C). A performance stability investigation indicates that the cell exhibits a fairly low degradation rate of 3 mV h-1 during a 31 h operation in dry methane. These findings suggest the application potential of the titanium doped Ce0.8Sm0.2O1.9 for the anode of solid oxide fuel cells.

  1. Prediction and measurement of entrained flow coal gasification processes. Interim report, September 8, 1981-September 7, 1983

    SciTech Connect

    Hedman, P.O.; Smoot, L.D.; Fletcher, T.H.; Smith, P.J.; Blackham, A.U.

    1984-01-31

    This volume reports interim experimental and theoretical results of the first two years of a three year study of entrained coal gasification with steam and oxygen. The gasifier facility and testing methods were revised and improved. The gasifier was also modified for high pressure operation. Six successful check-out tests at elevated pressure were performed (55, 75, 100, 130, 170, and 215 psig), and 8 successful mapping tests were performed with the Utah bituminous coal at an elevated pressure of 137.5 psig. Also, mapping tests were performed at atmospheric pressure with a Utah bituminous coal (9 tests) and with a Wyoming subbituminous coal (14 tests). The LDV system was used on the cold-flow facility to make additional nonreactive jets mixing measurements (local mean and turbulent velocity) that could be used to help validate the two-dimensional code. The previously completed two-dimensional entrained coal gasification code, PCGC-2, was evaluated through rigorous comparison with cold-flow, pulverized coal combustion, and entrained coal gasification data. Data from this laboratory were primarily used but data from other laboratories were used when available. A complete set of the data used has been compiled into a Data Book which is included as a supplemental volume of this interim report. A revised user's manual for the two-dimensional code has been prepared and is also included as a part of this interim report. Three technical papers based on the results of this study were published or prepared. 107 references, 57 figures, 35 tables.

  2. Co- and Ce/Co-coated ferritic stainless steel as interconnect material for Intermediate Temperature Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Falk-Windisch, Hannes; Claquesin, Julien; Sattari, Mohammad; Svensson, Jan-Erik; Froitzheim, Jan

    2017-03-01

    Chromium species volatilization, oxide scale growth, and electrical scale resistance were studied at 650 and 750 °C for thin metallic Co- and Ce/Co-coated steels intended to be utilized as the interconnect material in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFC). Mass gain was recorded to follow oxidation kinetics, chromium evaporation was measured using the denuder technique and Area Specific Resistance (ASR) measurements were carried out on 500 h pre-exposed samples. The microstructure of thermally grown oxide scales was characterized using Scanning Electron Microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive X-Ray Analysis (EDX). The findings of this study show that a decrease in temperature not only leads to thinner oxide scales and less Cr vaporization but also to a significant change in the chemical composition of the oxide scale. Very low ASR values (below 10 mΩ cm2) were measured for both Co- and Ce/Co-coated steel at 650 and 750 °C, indicating that the observed change in the chemical composition of the Co spinel does not have any noticeable influence on the ASR. Instead it is suggested that the Cr2O3 scale is expected to be the main contributor to the ASR, even at temperatures as low as 650 °C.

  3. Chemical process safety at fuel cycle facilities

    SciTech Connect

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document.

  4. Probing electron transfer processes in YPO(4):Ce, Sm by combined synchrotron-laser excitation spectroscopy.

    PubMed

    Poolton, N R J; Bos, A J J; Jones, G O; Dorenbos, P

    2010-05-12

    Yttrium phosphate co-doped with cerium and samarium acts as a charge storage phosphor, but in highly doped material (0.5% co-doping levels), the proximity of defects leads to the uncontrolled non-radiative loss of stored charge through tunnelling. In order to characterize these defects, their mutual interactions and intra-pair charge transfer routes, experiments have been undertaken in which a laser probe is deployed during luminescence excitation using a synchrotron. Two modes of operation are described; in each case, the laser (2.8 eV) probes only Sm(2+) ions, and the detection is set to monitor exclusively Ce(3+) 5d-4f emission. Mode 1: the sample is pumped with monochromatic synchrotron photons in the range 4.5-12 eV, and the resultant charge populations probed with the laser 30 s later; this has the effect of sampling electrons trapped at Sm(2+) that are in quasi-equilibrium. Here, a clear transition between a sub-bandgap Urbach tail region and excitations above the mobility edge is especially apparent, enabling an accurate value of the conduction band energy of YPO(4) to be determined, 9.20 eV. Furthermore, the Sm(2+) and Ce(3+) ground state energies can be positioned within the bandgap (6.8 eV and 3.85 eV above the top of the valence band, respectively). Mode 2: the sample is pumped with monochromatic synchrotron photons in the range 4.5-12 eV and, during this pumping process, the laser probe is activated. This more dynamic process probes direct electron transfer excitation processes between spatially correlated Sm-Ce defect pairs, via their excited states; the laser probe enhances the Ce(3+) emission if direct electron transfer from the Ce(3+) ground state to the excited states of Sm(2+) is being pumped, or quenches the luminescence if the Ce(3+) excited states are pumped. The experiments allow for a precise measure of the difference in energy between the Sm(2+) and Ce(3+) ground states (2.98 eV).

  5. Audit of fuel processing restoration property

    SciTech Connect

    1995-10-01

    In April, 1992, due to a diminished need for reprocessed uranium, the Secretary of Energy terminated the Fuel Processing Restoration (FPR) project. The termination left management and operating (M&O) contractors at the Idaho National Engineering Laboratory (Laboratory) with over $54 million in tools, equipment and material to be retained, utilized or disposed of. The objectives of the audit were to determine whether FPR property was adequately accounted for and whether the property was properly redistributed or excessed when the FPR project was terminated.

  6. 76 FR 44049 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... COMMISSION Guidance for Fuel Cycle Facility Change Processes AGENCY: Nuclear Regulatory Commission. ACTION... for Fuel Cycle Facility Change Processes'' in the Federal Register for a 30 day public comment period.... DG-3037 describes the types of changes for fuel cycle facilities for which licensees are to...

  7. Mesler entrainment in alcohols

    NASA Astrophysics Data System (ADS)

    Sundberg-Anderson, R. K.; Saylor, J. R.

    2014-01-01

    Mesler entrainment has been studied extensively in water and, more recently, in silicone oils. Studies of Mesler entrainment in liquids other than these are rare. The extant experimental results in water show significant irreproducibility both in the qualitative characteristics of Mesler entrainment and in the existence or nonexistence of Mesler entrainment when, for example, drops of the same diameter are released from the same height. In contrast, in silicone oils, Mesler entrainment is highly reproducible, essentially occurring either all of the time, or none of the time for a given set of conditions. A goal of the present work was to determine which of these two behaviors is the "standard" behavior—that is, to determine whether Mesler entrainment is typically repeatable or not. The experimental studies presented herein were conducted in three liquids that have not been the subject of detailed investigation to date: ethyl alcohol, isopropyl alcohol, and methyl alcohol. All of these alcohol results showed behavior very similar to that observed in silicone oils, suggesting that Mesler entrainment is typically repeatable and that water is an atypical fluid, causing irreproducible results. Additionally, we present data obtained in silicone oils and combine that with the alcohol data in an attempt to develop a combination of dimensionless groups that predicts the boundaries within which Mesler entrainment occurs for liquids other than water.

  8. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  9. Process and composition for stabilized distillate fuel oils

    SciTech Connect

    Reid, D.K.

    1987-03-10

    A process is described for stabilizing distillate fuel oil which comprises adding to the fuel oil an effective stabilizing amount of a mixture of (a) N-(2-aminoethyl)piperazine, (b) triethylenetetramine, and (c) N,N-diethylhydroxylamine.

  10. Process and composition for color stabilized distillate fuel oils

    SciTech Connect

    Reid, D.K.

    1987-03-03

    A process is described for inhibiting color deterioration of distillate fuel oil which comprises adding to the fuel oil an effective inhibiting amount of a mixture of (a) N-(2-aminoethyl) piperazine and (b) N, N-diethylhydroxylamine.

  11. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  12. Nd1.8Ce0.2CuO4+δ:Ce0.9Gd0.1O2-δ as a composite cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Khandale, A. P.; Bhoga, S. S.

    2014-12-01

    The (100 - x)Nd1.8Ce0.2CuO4+δ:(x)Ce0.9Gd0.1O2-δ (x = 00, 10, 20 and 30 vol.%) composite systems are obtained by impregnating a stoichiometric solution of cerium and gadolinium nitrates followed by sintering at 900 °C for 4 h. Impregnating the Ce0.9Gd0.1O2-δ not only inhibits the growth of the host Nd1.8Ce0.2CuO4+δ grains during sintering but also enlarges the oxygen reduction reaction zone by introducing a nanosized phase that is ionically conductive, which significantly decreases the electrode polarization resistance of the composite cathode. A minimum polarization resistance value of 0.23 ± 0.02 Ω cm2 is obtained at 700 °C for a (80)Nd1.8Ce0.2CuO4+δ:(20)Ce0.9Gd0.1O2-δ composite cathode, and this value is attributed to the optimal dispersion into the porous Nd1.8Ce0.2CuO4+δ matrix. The impedance spectra are modeled using an electrical equivalent model that consists of a mid-frequency ZR1 -CPE circuit (parallel combination of R1 and constant phase element (CPE)) and a low-frequency Gerischer impedance. The Gerischer impedance decreases significantly when Ce0.9Gd0.1O2-δ infiltrates the Nd1.8Ce0.2CuO4+δ matrix. The oxygen partial pressure-dependent polarization study suggests a medium-frequency response, which is due to charge transfer step; however, the low-frequency response corresponds to the non-charge transfer oxygen adsorption-desorption and the diffusion process during the overall oxygen reduction reaction process.

  13. Performance of the nano-structured Cu-Ni (alloy) -CeO2 anode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Minquan; Wang, Shaolan; Chen, Ting; Yuan, Chun; Zhou, Yucun; Wang, Shaorong; Huang, Jun

    2015-01-01

    In this work, copper and nickel oxides (CuO-NiO) powders with various mole ratios were synthesized by the glycine nitrate process (GNP) and the Cu-Ni alloy was obtained by reducing the CuO-NiO powders at 600 °C for 0.75 h. Furthermore, Cu1-xNix (alloy) -CeO2 impregnated YSZ anodes were fabricated by the impregnation method and the optimized anode composition was evaluated. It was found that the optimized mole ratio of Cu:Ni was 5:5, while the weight ratio of Cu-Ni alloy to CeO2 was 3:1. Additionally, impregnated anode with 40 wt % loading of Cu0.5Ni0.5 (alloy)-CeO2 exhibited the best performance and the polarization resistance of such anode was only 0.097, 0.115, 0.145 and 0.212 Ω cm2 at 750, 700, 650 and 600 °C, respectively. Finally, the performance of the optimized anode in methane (CH4) was investigated and the carbon deposition is greatly suppressed compared to the Ni-based anode.

  14. Overview of fuel processing options for polymer electrolyte fuel cell systems

    SciTech Connect

    Kumar, R.

    1995-12-31

    The polymer electrolyte fuel cell (PEFC) is being developed for use in heavy- and light-duty transportation applications. While this fuel cell has been used successfully in buses and vans with compressed hydrogen as the on-board fuel [1,2], the fuel cell system must incorporate fuel processing (reforming) for any other on-board fuel to produce the hydrogen or hydrogen-rich fuel gas to be fed to the fuel cell stack. This is true even for alternative methods of storing hydrogen, such as use of a metal hydride or liquefied hydrogen. The ``fuel processing`` needed to recover the hydrogen includes providing the heat of dissociation of the hydride and cooling the hydrogen to the temperature of the fuel cell stack. Discussed below are some of the options being considered for processing of on-board fuels (other than compressed hydrogen) to generate the fuel cell anode gas, and the effects of fuel processing on system design, efficiency, steady-state and dynamic performance, and other factors.

  15. Fluid entrainment by isolated vortex rings

    NASA Astrophysics Data System (ADS)

    Dabiri, John O.; Gharib, Morteza

    2004-07-01

    Of particular importance to the development of models for isolated vortex ring dynamics in a real fluid is knowledge of ambient fluid entrainment by the ring. This time-dependent process dictates changes in the volume of fluid that must share impulse delivered by the vortex ring generator. Therefore fluid entrainment is also of immediate significance to the unsteady forces that arise due to the presence of vortex rings in starting flows. Applications ranging from industrial and transportation, to animal locomotion and cardiac flows, are currently being investigated to understand the dynamical role of the observed vortex ring structures. Despite this growing interest, fully empirical measurements of fluid entrainment by isolated vortex rings have remained elusive. The primary difficulties arise in defining the unsteady boundary of the ring, as well as an inability to maintain the vortex ring in the test section sufficiently long to facilitate measurements. We present a new technique for entrainment measurement that utilizes a coaxial counter-flow to retard translation of vortex rings generated from a piston cylinder apparatus, so that their growth due to fluid entrainment can be observed. Instantaneous streamlines of the flow are used to determine the unsteady vortex ring boundary and compute ambient fluid entrainment. Measurements indicate that the entrainment process does not promote self-similar vortex ring growth, but instead consists of a rapid convection-based entrainment phase during ring formation, followed by a slower diffusive mechanism that entrains ambient fluid into the isolated vortex ring. Entrained fluid typically constitutes 30% to 40% of the total volume of fluid carried with the vortex ring. Various counter-flow protocols were used to substantially manipulate the diffusive entrainment process, producing rings with entrained fluid fractions up to 65%. Measurements of vortex ring growth rate and vorticity distribution during diffusive entrainment

  16. Photophysical and energy transfer processes in Ce3+ co-doped ZrO2: Eu3+ nanorods

    NASA Astrophysics Data System (ADS)

    Ahemen, I.; Dejene, F. B.

    2017-02-01

    Cerium (III) ion co-doped ZrO2: Eu3+ nanorods at varying Ce3+ ion concentrations were synthesized by a simple chemical dehydration route. Their structural, morphological and optical properties were investigated. Structural studies revealed a tetragonal phase with CeO2 phase grafted onto its surface. Field emission scanning electron microscopy images show nanorods of different dimensions. Diffraction peaks shifted towards smaller angles indicating the incorporation of the rare earth ions. Both Ce3+ (donor) and Eu3+ (activator) emission peaks were obtained when the samples were excited via the Ce3+ excitation band indicating energy transfer from the donor to activator. The process of energy transfer is both multipolar and exchange interactions. However, no significant enhancement of the activator's emission intensity, because concentration quenching process dominated the energy transfer process. The internal quantum efficiency, though low (20-25%), increased with increasing Ce3+ concentration.

  17. Studying Effects of Cloud Area Structure on Entrainment-Mixing Processes, Droplet Clustering, and Microphysics with a New Particle-Resolved Direct Numerical Simulation Model

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gao, Z.; Lin, X.

    2016-12-01

    A new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation. Six numerical experiments, each of which represents a different combination of three initial cloudy area structure and two turbulence scenarios (decaying and forced turbulence) are performed to investigate the processes of entrainment of clear air and sub-sequent mixing with cloudy air and their interactions with cloud microphysics under different environments (e.g., cloud-top mixing, lateral mixing, and inside clouds). The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are highly different with different settings, especially for the decaying cases, highlighting the role of the initial shape of cloud filaments in the study of cloud entrainment and mixing. Further investigated are the effects of droplet sedimentation on droplet clustering and preferential concentration. Also explored are the potentials of using the DNS to develop understanding and parameterization of such sub-LES turbulent processes and their interactions with cloud microphysics.

  18. PEM Fuel Cell Mechanisms and Processes

    NASA Astrophysics Data System (ADS)

    Wilson, Mahlon

    2000-03-01

    A fuel cell produces electrical energy via an electrochemical reaction. Unlike a conventional battery, the "fuel" and oxidant are supplied to the device from external sources. The device can thus be operated until the fuel (or oxidant) supply is exhausted, which can provide very high energy densities for the overall system. Historically, fuel cells have been of principle interest to the space program because of their high intrinsic conversion efficiencies and benign reaction product (water). Because of these various advantages and ever increasing environmental concerns, most types of fuel cells are attracting greater commercial and government interest. However, the popularity of a relatively new type of fuel cell, the polymer electrolyte membrane (PEM) fuel cell, is rapidly outpacing the others. Unlike most other types of fuel cells, which use liquid electrolytes, the PEM fuel cell uses a quasi-solid electrolyte based on a polymer backbone with side-chains possessing acid-based groups. The numerous advantages of this family of electrolytes make the PEM fuel cell particularly attractive for smaller scale terrestrial applications such as transportation, home-based distributed power, and portable power applications. Despite the many advantages, the conventional PEM introduces some unique challenges that significantly impact the design and operation of PEM-based fuel cells. In this presentation, an overview of PEM fuel cells will be provided starting with the fundamental principles on through the contributions and characteristics of the key components, the basics of PEM fuel cell operation, the considerations of various applications and the ramifications on system design.

  19. Entraining gravity currents

    NASA Astrophysics Data System (ADS)

    Johnson, Chris; Hogg, Andrew

    2012-11-01

    Large-scale gravity currents, such as those formed when industrial effluent is discharged at sea, are greatly affected by the entrainment and mixing of ambient fluid into the current, which both dilutes the flow and causes an effective drag between the current and ambient. We study these currents theoretically by combining a shallow-water model for gravity currents flowing under a deep ambient with an empirical model for entrainment, and seek long-time similarity solutions of this model. We find that the dependence of entrainment on the bulk Richardson number plays a crucial role in the current dynamics, and results in entrainment occurring mainly in a region close to the flow front, reminiscent of the entraining current `head' observed in natural flows. The long-time solution of an entraining lock-release current is a similarity solution of the second kind, in which the current grows as a power of time that is dependent on the form of the entrainment model, approximately as t 0 . 44. The structure of a current driven by a constant buoyancy flux is quite different, with the current length growing as t 4 / 5. Scaling arguments suggest that these solutions are reached only at very long times, and so may be attained in large natural flows, but not in small-scale experiments.

  20. Cost reductions of fuel cells for transport applications: fuel processing options

    NASA Astrophysics Data System (ADS)

    Teagan, W. P.; Bentley, J.; Barnett, B.

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R&D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice, operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under 150/kW in stationary applications and 30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories.

  1. Variable area fuel cell process channels

    DOEpatents

    Kothmann, Richard E.

    1981-01-01

    A fuel cell arrangement having a non-uniform distribution of fuel and oxidant flow paths, on opposite sides of an electrolyte matrix, sized and positioned to provide approximately uniform fuel and oxidant utilization rates, and cell conditions, across the entire cell.

  2. The art of entrainment.

    PubMed

    Roenneberg, Till; Daan, Serge; Merrow, Martha

    2003-06-01

    The circadian system actively synchronizes the temporal sequence of biological functions with the environment. The oscillatory behavior of the system ensures that entrainment is not passive or driven and therefore allows for great plasticity and adaptive potential. With the tools at hand, we now can concentrate on the most important circadian question: How is the complex task of entrainment achieved by anatomical, cellular, and molecular components? Understanding entrainment is equal to understanding the circadian system. The results of this basic research will help us to understand temporal ecology and will allow us to improve conditions for humans in industrialized societies.

  3. Prediction and measurement of optimum operating conditions for entrained coal gasification processes. Quarterly technical progress report, No. 1, 1 November 1979-31 January 1980

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Smith, P.J.

    1980-02-15

    This report summarizes work completed to predict and measure optimum operating conditions for entrained coal gasifications processes. This study is the third in a series designed to investigate mixing and reaction in entrained coal gasifiers. A new team of graduate and undergraduate students was formed to conduct the experiments on optimum gasification operating conditions. Additional coal types, which will be tested in the gasifier were identified, ordered, and delivered. Characterization of these coals will be initiated. Hardware design modifications to introduce swirl into the secondary were initiated. Minor modifications were made to the gasifier to allow laser diagnostics to be made on an independently funded study with the Los Alamos Scientific Laboratory. The tasks completed on the two-dimensional model included the substantiation of a Gaussian PDF for the top-hat PDF in BURN and the completion of a Lagrangian particle turbulent dispersion module. The reacting submodel is progressing into the final stages of debug. The formulation of the radiation submodel is nearly complete and coding has been initiated. A device was designed, fabricated, and used to calibrate the actual Swirl Number of the cold-flow swirl generator used in the Phase 2 study. Swirl calibrations were obtained at the normal tests flow rates and at reduced flow rates. Two cold-flow tests were also performed to gather local velocity data under swirling conditions. Further analysis of the cold-flow coal-dust and swirl test results from the previous Phase 2 study were completed.

  4. Y0.08Sr0.88TiO3-CeO2 composite as a diffusion barrier layer for stainless-steel supported solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Kun Joong; Kim, Sun Jae; Choi, Gyeong Man

    2016-03-01

    A new diffusion barrier layer (DBL) is proposed for solid oxide fuel cells (SOFCs) supported on stainless-steel where DBL prevents inter-diffusion of atoms between anode and stainless steel (STS) support during fabrication and operation of STS-supported SOFCs. Half cells consisting of dense yttria-stabilized zirconia (YSZ) electrolyte, porous Ni-YSZ anode layer, and ferritic STS support, with or without Y0.08Sr0.88TiO3-CeO2 (YST-CeO2) composite DBL, are prepared by tape casting and co-firing at 1250 and 1350 °C, respectively, in reducing (H2) atmosphere. The porous YST-CeO2 layer (t ∼ 60 μm) blocks inter-diffusion of Fe and Ni, and captures the evaporated Cr during cell fabrication (1350 °C). The cell with DBL and La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathode achieved a maximum power density of ∼220 mW cm-2 which is stable at 700 °C. In order to further improve the power performance, Ni coarsening in anode during co-firing must be prevented or alternative anode which is resistive to coarsening is suggested. This study demonstrates that the new YST-CeO2 layer is a promising as a DBL for stainless-steel-supported SOFCs fabricated with co-firing process.

  5. Distillate Fuel Processing for Marine Fuel Cell Applications

    DTIC Science & Technology

    2000-01-17

    Steinfeld, R. Sanderson, H. Ghezel-Ayagh, S. Abens FuelCell Energy, Inc. 3 Great Pasture Road Danbury, CT 06811 Mark C. Cervi Naval Surface Warfare...in its publications Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to...information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports

  6. The entrainment, pressure and flow process of a jet fan modeled in a square section wind tunnel

    SciTech Connect

    Mutama, K.R.; Hall, A.E.

    1995-12-31

    Jet fan (ductless fan) ventilation in underground mines and tunnels is a subject requiring further attention. At present there are no accepted procedures or guidelines for this type of ventilation. The main reason has been the absence of sufficient general data, which has hampered the development of rules. There is great potential for using jet fans in terms of both effectiveness and economics because they eliminate the need for ventilation tubing. In the present studies a procedure is described and results are presented from a jet fan modeled in a square section wind tunnel. The major purpose of the studies was to provide fundamental data on jet fan performance after it was realized that previous work had been limited and too site specific. The jet fan position in relation to the tunnel walls was varied in order to study the influence of confining walls on entrainment rates and the resulting aerodynamics. A clearer understanding of the fundamental principles of jet fan applications was obtained.

  7. Insight into the structure and functional application of the Sr0.95Ce0.05CoO3-δ cathode for solid oxide fuel cells.

    PubMed

    Yang, Wei; Zhang, Huairuo; Sun, Chunwen; Liu, Lilu; Alonso, J A; Fernández-Díaz, M T; Chen, Liquan

    2015-04-06

    A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 μm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.

  8. Fuel Cell Stations Automate Processes, Catalyst Testing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  9. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3-δ anode for direct ammonia-fueled solid oxide fuel cells.

    PubMed

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-04-08

    In this study, Ni/BaCe0.75Y0.25O3-δ (Ni/BCY25) was investigated as an anode for direct ammonia-fueled solid oxide fuel cells. The catalytic activity of Ni/BCY25 for ammonia decomposition was found to be remarkably higher than Ni/8 mol % Y2O3-ZrO2 and Ni/Ce0.90Gd0.10O1.95. The poisoning effect of water and hydrogen on ammonia decomposition reaction over Ni/BCY25 was evaluated. In addition, an electrolyte-supported SOFC employing BaCe0.90Y0.10O3-δ (BCY10) electrolyte and Ni/BCY25 anode was fabricated, and its electrochemical performance was investigated at 550-650 °C with supply of ammonia and hydrogen fuel gases. The effect of water content in anode gas on the cell performance was also studied. Based on these results, it was concluded that Ni/BCY25 was a promising anode for direct ammonia-fueled SOFCs. An anode-supported single cell denoted as Ni/BCY25|BCY10|Sm0.5Sr0.5CoO3-δ was also fabricated, and maximum powder density of 216 and 165 mW cm(-2) was achieved at 650 and 600 °C, for ammonia fuel, respectively.

  10. Process for the production and recovery of fuel values from coal

    DOEpatents

    Sass, Allan; McCarthy, Harry E.; Kaufman, Paul R.; Finney, Clement S.

    1982-01-01

    A method of pyrolyzing and desulfurizing coal in a transport reactor to recover volatile fuel values and hydrogen by heating particulate coal entrained in a carrier gas substantially free of oxygen to a pyrolysis temperature in a zone within three seconds.

  11. Flowerlike CeO2 microspheres coated with Sr2Fe1.5Mo0.5Ox nanoparticles for an advanced fuel cell

    PubMed Central

    Liu, Yanyan; Tang, Yongfu; Ma, Zhaohui; Singh, Manish; He, Yunjuan; Dong, Wenjing; Sun, Chunwen; Zhu, Bin

    2015-01-01

    Flowerlike CeO2 coated with Sr2Fe1.5Mo0.5Ox (Sr-Fe-Mo-oxide) nanoparticles exhibits enhanced conductivity at low temperatures (300–600 oC), e.g. 0.12 S cm−1 at 600 oC, this is comparable to pure ceria (0.1 S cm−1 at 800 oC). Advanced single layer fuel cell was constructed using the flowerlike CeO2/Sr-Fe-Mo-oxide layer attached to a Ni-foam layer coated with the conducting transition metal oxide. Such fuel cell has yielded a peak power density of 802 mWcm−2 at 550 oC. The mechanism of enhanced conductivity and cell performance were analyzed. These results provide a promising strategy for developing advanced low-temperature SOFCs. PMID:26154917

  12. Process for producing fluid fuel from coal

    DOEpatents

    Hyde, Richard W.; Reber, Stephen A.; Schutte, August H.; Nadkarni, Ravindra M.

    1977-01-01

    Process for producing fluid fuel from coal. Moisture-free coal in particulate form is slurried with a hydrogen-donor solvent and the heated slurry is charged into a drum wherein the pressure is so regulated as to maintain a portion of the solvent in liquid form. During extraction of the hydrocarbons from the coal, additional solvent is added to agitate the drum mass and keep it up to temperature. Subsequently, the pressure is released to vaporize the solvent and at least a portion of the hydrocarbons extracted. The temperature of the mass in the drum is then raised under conditions required to crack the hydrocarbons in the drum and to produce, after subsequent stripping, a solid coke residue. The hydrocarbon products are removed and fractionated into several cuts, one of which is hydrotreated to form the required hydrogen-donor solvent while other fractions can be hydrotreated or hydrocracked to produce a synthetic crude product. The heaviest fraction can be used to produce ash-free coke especially adapted for hydrogen manufacture. The process can be made self-sufficient in hydrogen and furnishes as a by-product a solid carbonaceous material with a useful heating value.

  13. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.

    1994-09-01

    The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

  14. Electrocatalytic and fuel processing studies for portable fuel cells

    NASA Astrophysics Data System (ADS)

    Matter, Paul H.

    In the field of catalysis, the development of alternative catalysts for the oxygen reduction reaction (ORR) in Polymer Electrolyte Membrane Fuel Cell (PEMFC) cathodes has been an ongoing task for researchers over the past two decades. PEM fuel cells are considered to be potential replacements for internal combustion engines in automobiles, and their reduced emissions and better efficiency would have huge payoffs for our environment, and in reducing our nation's dependence on foreign oil. To date, PEMFC cathode over-potentials are still significant, and the only materials discovered to be highly active and stable catalysts in an acidic environment are platinum-based. Despite several major advances in recent years in reducing platinum loading in fuel cell electrodes, the high expense and low availability of platinum will hinder the large-scale commercialization of PEM fuel cells. The most hopeful advances being made in replacing platinum are related to pyrolyzed organic macrocycles with transition metal centers (such as Fe or Co porphyrins and phthalocyanines). Encouragingly, it has recently been discovered that active electrodes could be prepared by heat-treating metal and nitrogen precursors (not necessarily organic macrocycles) together in the presence of a carbon support. In the first study of this dissertation, catalysts for the Oxygen Reduction Reaction (ORR) were prepared by the pyrolysis of acetonitrile over various supports. The supports used included Vulcan Carbon, high purity alumina, silica, magnesia, and these same supports impregnated with Fe, Co, or Ni in the form of acetate salt. The catalysts were characterized by BET surface area analysis, BJH Pore Size Distribution (PSD), conductivity testing, Transmission Electron Microscopy (TEM), Temperature Programmed Oxidation (TPO), Thermo-Gravimetric Analysis (TGA), X-Ray Diffraction (XRD), X-ray Photo-electron Spectroscopy (XPS), Mossbauer Spectroscopy, Rotating Disk Electrode (RDE) half cell testing, and

  15. Solid oxide fuel cell process and apparatus

    DOEpatents

    Cooper, Matthew Ellis [Morgantown, WV; Bayless, David J [Athens, OH; Trembly, Jason P [Durham, NC

    2011-11-15

    Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H.sub.2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H.sub.2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.

  16. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  17. Exploring Entrainment Patterns of Human Emotion in Social Media

    PubMed Central

    Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692

  18. Exploring Entrainment Patterns of Human Emotion in Social Media.

    PubMed

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  19. Cloud-Top Entrainment in Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  20. Evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants

    SciTech Connect

    Vidt, E.J.; Jablonski, G.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1981-12-01

    This interim report satisfies the Task B requirement to define process configurations for systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The configurations studied include entrained, fluidized-bed, gravitating-bed, and molten salt gasifiers, both air and oxygen blown. Desulfurization systems utilizing wet scrubbing processes, such as Selexol and Rectisol II, and dry sorbents, such as iron oxide and dolomite, were chosen for evaluation. Cleanup systems not chosen by DOE's MCFC contractors, General Electric and United Technologies, Inc., for their MCFC power plant work by virtue of the resource requirements of those systems for commercial development were chosen for detailed study in Tasks C and D of this contract. Such systems include Westinghouse fluidized-bed gasification, air and oxygen blown, Rockwell molten carbonate air-blown gasification, METC iron oxide desulfurization, and dolomitic desulfurization. In addition, for comparison, gasification systems such as the Texaco entrained and the British Gas/Lurgi slagging units, along with wet scrubbing by Rectisol II, have also been chosen for detailed study.

  1. Entrainment by Lazy Plumes

    NASA Astrophysics Data System (ADS)

    Kaye, Nigel; Hunt, Gary

    2004-11-01

    We consider plumes with source conditions that have a net momentum flux deficit compared to a pure plume - so called lazy plumes. We examine both the case of constant buoyancy flux and buoyancy flux linearly increasing with height. By re-casting the plume conservation equations (Morton, Taylor & Turner 1956) for a constant entrainment coefficient ((α)) in terms of the plume radius (β) and the dimensionless parameter (Γ=frac5Q^2 B4α M^5/2) we show that the far-field flow in a plume with a linear internal buoyancy flux gain is a constant velocity lazy plume with reduced entrainment and radial growth rate. For highly lazy source conditions we derive first-order approximate solutions which indicate a region of zero entrainment near the source. These phenomena have previously been observed, however, it has often been assumed that reduced entrainment implies a reduced (α). We demonstrate that a constant (α) formulation is able to capture the behaviour of these reduced entrainment flows. Morton, B. R., Taylor, G. I. & Turner, J. S. (1956), Turbulent gravitational convection from maintained and instantaneous sources.', Proc. Roy. Soc. 234, 1-23.

  2. Gaseous Fuel Injection Modeling using a Gaseous Sphere Injection Methodology

    SciTech Connect

    Hessel, R P; Aceves, S M; Flowers, D L

    2006-03-06

    The growing interest in gaseous fuels (hydrogen and natural gas) for internal combustion engines calls for the development of computer models for simulation of gaseous fuel injection, air entrainment and the ensuing combustion. This paper introduces a new method for modeling the injection and air entrainment processes for gaseous fuels. The model uses a gaseous sphere injection methodology, similar to liquid droplet in injection techniques used for liquid fuel injection. In this paper, the model concept is introduced and model results are compared with correctly- and under-expanded experimental data.

  3. Fuel Quality/Processing Study. Volume I. Final report

    SciTech Connect

    O'Hara, J B; Bela, A; Jentz, N E; Syverson, H T; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This report presents the results of the Fuel Quality/Processing Study project for production of gas turbine fuels. The objective was to provide a data base for establishing intelligent trade-off between advanced turbine technology and liquid fuel quality. Synthetic fuels to be emphasized include those derived from coal and shale. The intent is to use the data base produced to guide the development of specifications for future synthetic liquid fuels anticipated for use in the time period 1985-2000. It is also to be used as a basis for evaluating the value and benefits of federally sponsored R and D efforts in the field of advanced gas turbine technology. The project assessed relative fuel costs, quality and energy efficiency for a number of fuel sources and processing alternatives. An objective was to accelerate implementation of fuel-flexible combustors for industrial and utility stationary gas turbine systems. This is to be accomplished by generating and demonstrating the technology base for development of reliable gas turbine combustors capable of sustained environmentally acceptable operation when using minimally processed synthetic fuels. The key program results are summarized for the following subject areas: literature survey, on-site fuel pretreatment, existing refineries to upgrade fuels, new refineries to upgrade fuels, and environmental considerations. An inhouse linear programming model served as the basis for determining economic processing paths for the existing refineries and new refineries syncrude upgrading. This involved development of extensive input data comprised of fuel properties, yields, component blending characteristics, incremental capital and operating costs, feed and product costs. Economics are based on March 1980 price levels.

  4. Process for Generating Engine Fuel Consumption Map: Ricardo Cooled EGR Boost 24-bar Standard Car Engine Tier 2 Fuel

    EPA Pesticide Factsheets

    This document summarizes the process followed to utilize the fuel consumption map of a Ricardo modeled engine and vehicle fuel consumption data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.

  5. Fuel ethanol production: process design trends and integration opportunities.

    PubMed

    Cardona, Carlos A; Sánchez, Oscar J

    2007-09-01

    Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.

  6. Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ electrolyte

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Jin, Chao; Yang, Chenghao; Wang, Siwei; Chen, Fanglin

    Anode-supported micro-tubular solid oxide fuel cells (SOFCs) based on a proton and oxide ion mixed conductor electrolyte, BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3- δ (BZCYYb), have been fabricated using phase inversion and dip-coating techniques with a co-firing process. The single cell is composed of NiO-BZCYYb anode, BZCYYb electrolyte and La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ (LSCF)-BZCYYb cathode. Maximum power densities of 0.08, 0.15, and 0.26 W cm -2 have been obtained at 500, 550 and 600 °C, respectively, using H 2 as fuel and ambient air as oxidant.

  7. Visual cortex entrains to sign language.

    PubMed

    Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel

    2017-06-13

    Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language <5 Hz, peaking at [Formula: see text]1 Hz. Coherence to sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.

  8. Fuel quality/processing study. Volume 4: On site processing studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Cutrone, M.; Doering, H.; Hickey, J.

    1981-01-01

    Fuel treated at the turbine and the turbine exhaust gas processed at the turbine site are studied. Fuel treatments protect the turbine from contaminants or impurities either in the upgrading fuel as produced or picked up by the fuel during normal transportation. Exhaust gas treatments provide for the reduction of NOx and SOx to environmentally acceptable levels. The impact of fuel quality upon turbine maintenance and deterioration is considered. On site costs include not only the fuel treatment costs as such, but also incremental costs incurred by the turbine operator if a turbine fuel of low quality is not acceptably upgraded.

  9. MnO2/CeO2 for catalytic ultrasonic decolorization of methyl orange: Process parameters and mechanisms.

    PubMed

    Zhao, He; Zhang, Guangming; Chong, Shan; Zhang, Nan; Liu, Yucai

    2015-11-01

    MnO2/CeO2 catalyst was prepared and characterized by means of Brunauer-Emmet-Teller (BET) method, X-ray diffraction (XRD) and scanning electron microscope (SEM). The characterization showed that MnO2/CeO2 had big specific surface area and MnO2 was dispersed homogeneously on the surface of CeO2. Excellent degradation efficiency of methyl orange was achieved by MnO2/CeO2 catalytic ultrasonic process. Operating parameters were studied and optimized. The optimal conditions were 10 min of ultrasonic irradiation, 1.0 g/L of catalyst dose, 2.6 of pH value and 1.3 W/ml of ultrasonic density. Under the optimal conditions, nearly 90% of methyl orange was removed. The mechanism of methyl orange degradation was further studied. The decolorization mechanism in the ultrasound-MnO2/CeO2 system was quite different with that in the ultrasound-MnO2 system. Effects of manganese and cerium in catalytic ultrasonic process were clarified. Manganese ions in solution contributed to generating hydroxyl free radical. MnO2/CeO2 catalyst strengthened the oxidation ability of ultrasound and realized complete decolorization of methyl orange.

  10. The effects of physicochemical properties of CeO2 nanoparticles on toxicity to soil denitrification processes

    NASA Astrophysics Data System (ADS)

    Dahle, Jessica Teague

    The studies presented in this thesis identify the impact of NP CeO 2 on soil denitrifying microbial communities and reveal that physical and chemical characteristics including particle size, speciation, concentration, pH, and presence of ligands are key to predicting environmental fate and reactivity of NP CeO2 in the soil. A review of the literature in Chapter 1 revealed a widespread lack of toxicological information for soil exposures to NP CeO2. Soil denitrifying bacteria are a keystone species because they serve an important role in the global nitrogen cycle controlling the atmospheric nitrogen input. Soil denitrifiers are important to this study because the reducing conditions during denitrification could induce phase transformation of Ce(IV) to Ce(III), potentially influencing the toxicity of Ce. Cerium is well known for being the only lanthanide that is thermodynamically stable in both the trivalent and tetravalent state in low temperature geochemical environments. Using well characterized NP Ce(IV)O 2 as well as bulk soluble Ce(III), batch denitrification experiments were conducted to evaluate the toxicity of Ce species to the denitrifying community in a Toccoa sandy loam soil. The statistical analysis on the antimicrobial effect on soil denitrifiers was conducted using both steady-state evaluation and zero-order kinetic models in order to compare the toxicity of the Ce(III) species to the NPs. These studies, presented in Chapter 3, show that soluble Ce(III) is far more toxic than Ce(IV)O2 NPs when an equal total concentration of Ce is used, though both species exhibit toxicity to the denitrifiers via statistically significant inhibition of soil denitrification processes. Particle-size dependent toxicity, species-dependent toxicity, and concentration-dependent toxicity were all observed in this study for both the steady-state and the kinetic evaluations. The possibility of toxicity enhancement and diminishment via dissolution and ligand complexation

  11. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  12. Fuel quality-processing study. Volume 2: Literature survey

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Amero, R.; Murthy, B.; Cutrone, M.

    1981-01-01

    The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.

  13. Automated small scale oil seed processing plant for production of fuel for diesel engines

    SciTech Connect

    Thompson, J.C.; Peterson, C.L.

    1982-01-01

    University of Idaho seed processing research is centered about a CeCoCo oil expeller. A seed preheater-auger, seed bin, meal auger, and oil pump have been constructed to complete the system, which is automated and instrumented. The press, preheater, cake removal auger, and oil transfer pump are tied into a central panel where energy use is measured and the process controlled. Extracted oil weight, meal weight, process temperature, and input energy are all recorded during operation. The oil is transferred to tanks where it settles for 48 hours or more. It is then pumped through a filtering system and stored ready to be used as an engine fuel. The plant has processed over 11,000 kg of seed with an average extraction efficiency of 78 percent. 5 tables.

  14. Treatment of oxide spent fuel using the lithium reduction process

    SciTech Connect

    Karell, E.J.; Pierce, R.D.; Mulcahey, T.P.

    1996-05-01

    The wide variety in the composition of DOE spent nuclear fuel complicates its long-term disposition because of the potential requirement to individually qualify each type of fuel for repository disposal. Argonne National Laboratory (ANL) has developed the electrometallurgical treatment technique to convert all of these spent fuel types into a single set of disposal forms, simplifying the qualification process. While metallic fuels can be directly processed using the electrometallurgical treatment technique, oxide fuels must first be reduced to the metallic form. The lithium reduction process accomplishes this pretreatment. In the lithium process the oxide components of the fuel are reduced using lithium at 650 C in the presence of molten LiCl, yielding the corresponding metals and Li{sub 2}O. The reduced metal components are then separated from the LiCl salt phase and become the feed material for electrometallurgical treatment. A demonstration test of the lithium reduction process was successfully conducted using a 10-kg batch of simulated oxide spent fuel and engineering-scale equipment specifically constructed for that purpose. This paper describes the lithium process, the equipment used in the demonstration test, and the results of the demonstration test.

  15. Modeling of a CeO2 thermochemistry reduction process for hydrogen production by solar concentrated energy

    NASA Astrophysics Data System (ADS)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Arancibia-Bulnes, Camilo A.; Villafan-Vidales, Heidi I.; Espinosa-Paredes, Gilberto

    2016-05-01

    In this paper the simulation of the thermal reduction for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. For the thermochemical process, a solar reactor prototype is proposed; consisting of a cubic receptacle made of graphite fiber thermally insulated. Inside the reactor a pyramidal arrangement with nine tungsten pipes is housed. The pyramidal arrangement is made respect to the focal point where the reflected energy is concentrated. The solar energy is concentrated through the solar furnace of high radiative flux. The endothermic step is the reduction of the cerium oxide to lower-valence cerium oxide, at very high temperature. The exothermic step is the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For the modeling, three sections of the pipe where the reaction occurs were considered; the carrier gas inlet, the porous medium and the reaction products outlet. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  16. Electrochemical performance and carbon deposition resistance of Ce-doped La0.7Sr0.3Fe0.5Cr0.5O3-δ anode materials for solid oxide fuel cells fed with syngas

    NASA Astrophysics Data System (ADS)

    Sun, Yi-Fei; Li, Jian-Hui; Chuang, Kart T.; Luo, Jing-Li

    2015-01-01

    Ce-doped La0.7Sr0.3Fe0.5Cr0.5O3-δ (Ce-LSFC) perovskite anode catalysts for solid oxide fuel cells are successfully synthesized by a modified combustion method for the first time. The pure perovskite structure without formation of CeO2 is obtained when the content of Ce ≤ 10%. Compared with La0.7Sr0.3Fe0.5Cr0.5O3-δ anode, Ce-LSFC anode not only shows much higher catalytic activity towards the oxidation of syngas with less carbon deposition, but also displays better regeneration from coking. The enhanced performance is attributed to the more available oxygen vacancies in lattice and better oxygen mobility after doping with Ce.

  17. Electrochemical performance of a solid oxide fuel cell with an anode based on Cu-Ni/CeO2 for methane direct oxidation

    NASA Astrophysics Data System (ADS)

    Hornés, Aitor; Escudero, María J.; Daza, Loreto; Martínez-Arias, Arturo

    2014-03-01

    A CuNi-CeO2/YSZ/LSF solid oxide fuel cell has been fabricated and tested with respect to its electrochemical activity for direct oxidation of dry methane. The electrodes have been prepared by impregnation of corresponding porous YSZ layers, using reverse microemulsions as impregnating medium for the anode (constituted by Cu-Ni at 1:1 atomic ratio in combination with CeO2). On the basis of I-V electrochemical testing complemented by impedance spectroscopy (IS) measurements it is shown the ability of the SOFC for direct oxidation of methane in a rather stable way. Differences in the behavior as a function of operating temperature (1023-1073 K) are also revealed and examined on the basis of analysis of IS spectra.

  18. Long-term evaluation of solid oxide fuel cell candidate materials in a 3-cell generic stack test fixture, part III: Stability and microstructure of Ce-(Mn,Co)-spinel coating, AISI441 interconnect, alumina coating, cathode and anode

    NASA Astrophysics Data System (ADS)

    Chou, Yeong-Shyung; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2014-07-01

    A generic solid oxide fuel cell stack test fixture was developed to evaluate candidate materials and processing under realistic conditions. Part III of the work investigated the stability of Ce-(Mn,Co) spinel coating, AISI441 metallic interconnect, alumina coating, and cell's degradation. After 6000 h test, the spinel coating showed densification with some diffusion of Cr. At the metal interface, segregation of Si and Ti was observed, however, no continuous layer formed. The alumina coating for perimeter sealing areas appeared more dense and thick at the air side than the fuel side. Both the spinel and alumina coatings remained bonded. EDS analysis of Cr within the metal showed small decrease in concentration near the coating interface and would expect to cause no issue of Cr depletion. Inter-diffusion of Ni, Fe, and Cr between spot-welded Ni wire and AISI441 interconnect was observed and Cr-oxide scale formed along the circumference of the weld. The microstructure of the anode and cathode was discussed relating to degradation of the top and middle cells. Overall, the Ce-(Mn,Co) spinel coating, alumina coating, and AISI441 steel showed the desired long-term stability and the developed generic stack fixture proved to be a useful tool to validate candidate materials for SOFC.

  19. Data processing and initial results from the CE-3 Extreme Ultraviolet Camera

    NASA Astrophysics Data System (ADS)

    Feng, Jian-Qing; Liu, Jian-Jun; He, Fei; Yan, Wei; Ren, Xin; Tan, Xu; He, Ling-Ping; Chen, Bo; Zuo, Wei; Wen, Wei-Bin; Su, Yan; Zou, Yong-Liao; Li, Chun-Lai

    2014-12-01

    The Extreme Ultraviolet Camera (EUVC) onboard the Chang'e-3 (CE-3) lander is used to observe the structure and dynamics of Earth's plasmasphere from the Moon. By detecting the resonance line emission of helium ions (He+) at 30.4 nm, the EUVC images the entire plasmasphere with a time resolution of 10 min and a spatial resolution of about 0.1 Earth radius (RE) in a single frame. We first present details about the data processing from EUVC and the data acquisition in the commissioning phase, and then report some initial results, which reflect the basic features of the plasmasphere well. The photon count and emission intensity of EUVC are consistent with previous observations and models, which indicate that the EUVC works normally and can provide high quality data for future studies.

  20. How to Achieve Fast Entrainment? The Timescale to Synchronization

    PubMed Central

    Granada, Adrián E.; Herzel, Hanspeter

    2009-01-01

    Entrainment, where oscillators synchronize to an external signal, is ubiquitous in nature. The transient time leading to entrainment plays a major role in many biological processes. Our goal is to unveil the specific dynamics that leads to fast entrainment. By studying a generic model, we characterize the transient time to entrainment and show how it is governed by two basic properties of an oscillator: the radial relaxation time and the phase velocity distribution around the limit cycle. Those two basic properties are inherent in every oscillator. This concept can be applied to many biological systems to predict the average transient time to entrainment or to infer properties of the underlying oscillator from the observed transients. We found that both a sinusoidal oscillator with fast radial relaxation and a spike-like oscillator with slow radial relaxation give rise to fast entrainment. As an example, we discuss the jet-lag experiments in the mammalian circadian pacemaker. PMID:19774087

  1. Galvanic cell for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  2. Electrochemical fluorination for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  3. Synergize fuel and petrochemical processing plans with catalytic reforming

    SciTech Connect

    1997-03-01

    Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

  4. Reactivity of atomically dispersed Pt(2+) species towards H2: model Pt-CeO2 fuel cell catalyst.

    PubMed

    Lykhach, Yaroslava; Figueroba, Alberto; Camellone, Matteo Farnesi; Neitzel, Armin; Skála, Tomáš; Negreiros, Fabio R; Vorokhta, Mykhailo; Tsud, Nataliya; Prince, Kevin C; Fabris, Stefano; Neyman, Konstantin M; Matolín, Vladimír; Libuda, Jörg

    2016-03-21

    The reactivity of atomically dispersed Pt(2+) species on the surface of nanostructured CeO2 films and the mechanism of H2 activation on these sites have been investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy in combination with density functional calculations. Isolated Pt(2+) sites are found to be inactive towards H2 dissociation due to high activation energy required for H-H bond scission. Trace amounts of metallic Pt are necessary to initiate H2 dissociation on Pt-CeO2 films. H2 dissociation triggers the reduction of Ce(4+) cations which, in turn, is coupled with the reduction of Pt(2+) species. The mechanism of Pt(2+) reduction involves reverse oxygen spillover and formation of oxygen vacancies on Pt-CeO2 films. Our calculations suggest the existence of a threshold concentration of oxygen vacancies associated with the onset of Pt(2+) reduction.

  5. ARTICLE Ionic Conduction and Fuel Cell Performance of Ba0.98Ce0.8Tm0.2O3-α Ceramic

    NASA Astrophysics Data System (ADS)

    Qiu, Li-gan; Wang, Mao-yuan

    2010-12-01

    The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sample was investigated by alternating current impedance spectroscopy and gas concentration cell methods under different gases atmospheres in the temperature range of 500-900°C. The performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured. In wet hydrogen, the sample is a pure protonic conductor with the protonic transport number of 1 in the range of 500-600 °C, a mixed conductor of proton and electron with the protonic transport number of 0.945-0.933 above 600 °C. In wet air, the sample is a mixed conductor of proton, oxide ion, and electronic hole. The protonic transport numbers are 0.010-0.021, and the oxide ionic transport numbers are 0.471-0.382. In hydrogen-air fuel cell, the sample is a mixed conductor of proton, oxide ion and electron, the ionic transport numbers are 0.942-0.885. The fuel cell using Ba0.98Ce0.8Tm0.2O3-α as solid electrolyte can work stably. At 900 °C, the maximum power output density is 110.2 mW/cm2, which is higher than that of our previous cell using BaxCe0.8RE0.2O3-α (x<=1, RE=Y, Eu, Ho) as solid electrolyte.

  6. Distillate fuel-oil processing for phosphoric acid fuel-cell power plants

    SciTech Connect

    Ushiba, K. K.

    1980-02-01

    The current efforts to develop distillate oil-steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high-temperature steam reforming (HTSR); autothermal reforming (ATR); autothermal gasification (AG); and ultra desulfurization followed by steam reforming. Sulfur in the feed is a key problem in the process development. A majority of the developers consider sulfur as an unavoidable contaminant of distillate fuel and are aiming to cope with it by making the process sulfur-tolerant. In the HTSR development, the calcium aluminate catalyst developed by Toyo Engineering represents the state of the art. United Technology (UTC), Engelhard, and Jet Propulsion Laboratory (JPL) are also involved in the HTSR research. The ATR of distillate fuel is investigated by UTC and JPL. The autothermal gasification (AG) of distillate fuel is being investigated by Engelhard and Siemens AG. As in the ATR, the fuel is catalytically gasified utilizing the heat generated by in situ partial combustion of feed, however, the goal of the AG is to accomplish the initial breakdown of the feed into light gases and not to achieve complete conversion to CO and H/sub 2/. For the fuel-cell integration, a secondary reforming of the light gases from the AG step is required. Engelhard is currently testing a system in which the effluent from the AG section enters the steam-reforming section, all housed in a single vessel. (WHK)

  7. Synthetic fuel formulation and process for producing the same

    SciTech Connect

    Burke, C.L.

    1981-05-05

    A synthetic fuel formulation is disclosed, together with a process of producing such synthetic fuel. Based on its total weight, the fuel is comprised of approximately fifty to about seventy-five percent of an aliphatic hydrocarbon alcohol containing two to eleven carbon atoms, about five to twelve percent water, approximately two or twenty weight percent of a solvent for the alcohol, and about one to about seven weight percent of a hydrocarbon glycol, acetone, and methyl ethyl ketone. Optional ingredients may also be included, such as antirust and anti-foaming agents, as well as an agent to increase the storage life of the fuel. To produce such synthetic fuel, the foregoing ingredients are mixed sequentially, starting with the alcohol and adding thereto the solvent, acetone, optional agents if utilized, methyl ethyl ketone, the glycol, and water.

  8. IFR fuel cycle process equipment design environment and objectives

    SciTech Connect

    Rigg, R.H.

    1993-03-01

    Argonne National laboratory (ANL) is refurbishing the hot cell facility originally constructed with the EBR-II reactor. When refurbishment is complete, the facility win demonstrate the complete fuel cycle for current generation high burnup metallic fuel elements. These are sodium bonded, stainless steel clad fuel pins of U-Zr or U-Pu-Zr composition typical of the fuel type proposed for a future Integral Fast Reactor (IFR) design. To the extent possible, the process equipment is being built at full commercial scale, and the facility is being modified to incorporate current DOE facility design requirements and modem remote maintenance principles. The current regulatory and safety environment has affected the design of the fuel fabrication equipment, most of which will be described in greater detail in subsequent papers in this session.

  9. IFR fuel cycle process equipment design environment and objectives

    SciTech Connect

    Rigg, R.H.

    1993-01-01

    Argonne National laboratory (ANL) is refurbishing the hot cell facility originally constructed with the EBR-II reactor. When refurbishment is complete, the facility win demonstrate the complete fuel cycle for current generation high burnup metallic fuel elements. These are sodium bonded, stainless steel clad fuel pins of U-Zr or U-Pu-Zr composition typical of the fuel type proposed for a future Integral Fast Reactor (IFR) design. To the extent possible, the process equipment is being built at full commercial scale, and the facility is being modified to incorporate current DOE facility design requirements and modem remote maintenance principles. The current regulatory and safety environment has affected the design of the fuel fabrication equipment, most of which will be described in greater detail in subsequent papers in this session.

  10. Mesler entrainment in alcohols

    NASA Astrophysics Data System (ADS)

    Saylor, J. R.; Sundberg, R. K.

    2012-11-01

    When a drop impacts a flat surface of the same liquid at an intermediate velocity, the impact can result in the formation of a very large number of very small bubbles. At lower velocities, drops bounce or float, and at larger velocities a single bubble forms, or there is a splash. The formation of large numbers of small bubbles during intermediate velocity impacts is termed Mesler entrainment and its controlling mechanism is poorly understood. Existing research has shown that Mesler entrainment is highly irreproducible when water is the working fluid, and very reproducible when silicone oil is the working fluid. Whether this is because water is problematic, or silicone oil is uniquely well-suited, is unclear. To answer this question, experiments were conducted using three different alcohols. The results of these experiments were very reproducible for all alcohols tested, suggesting that there is something unique about water which accounts for its lack of reproducibility. The data from these experiments were also used to develop a dimensionless group that quantifies the conditions under which Mesler entrainment occurs. This dimensionless group is used to provide insight into the mechanism of this unique method of bubble formation.

  11. The data processing and analysis for the CE-5T1 GNSS experiment

    NASA Astrophysics Data System (ADS)

    Liu, Huicui; Cao, Jianfeng; Cheng, Xiao; Peng, Jing; Tang, Geshi

    2017-02-01

    In this paper the performance of a high sensitivity GPS/GLONASS receiver mounted on CE-5T1 Service Module is studied and the data received on the first Earth-lunar transfer orbit is processed and analyzed. At least four GLONASS satellites are visible for 46% of the data span while for 98% of the data span at least four GPS satellites are visible. GLONASS serves as a necessary supplement to GPS in real time positioning whenever less than four GPS satellites are tracked, and helps to optimize the observation geometry by reducing the Position Dilution of Precision (PDOP) values by up to 77%. However, noisier GLONASS pseudorange data should be properly weighted in order not to deteriorate the positioning accuracy. Studies indicate that when the inverse square of the pseudorange measurement error of each satellite is applied as the weight value, single point positioning (SPP) accuracy improves from 57.7 m (RMS) with GPS data alone to 44.6 m (RMS) with the addition of GLONASS data. Transmitter antenna Equivalent Isotropic Radiated Power (EIRP)s of all the four blocks of GPS satellites as well as GLONASS satellites are derived from the received C/N0 data and show significant variance in sidelobe power patterns. In general, the EIRP patterns of GPS Block IIR-M and GLONASS satellite antennas have a comparatively flat power level of around 10 dB W within the off-boresight angle range of 30-80° and roll off at the off-boresight angle of about 80°, offering deep space applications greater benefits than the other three blocks of GPS satellites. In addition, an interesting close encounter happens between CE-5T1 spacecraft and GLONASS satellite R06. Investigations indicate that the PDOP value increases up to 1.4 times and the SPP accuracy deteriorates by more than 142% if satellite R06 is excluded in the positioning computation.

  12. Production of synthetic fuels using syngas from a steam hydrogasification and reforming process

    NASA Astrophysics Data System (ADS)

    Raju, Arun Satheesh Kumar

    from carbonaceous feedstocks. Experimental work on the Fischer-Tropsch synthesis has also been performed. A life cycle analysis has been performed with the objective of comparing the life cycle energy consumption and emissions of synthetic diesel fuel produced through the CE-CERT process with other fuel/vehicle combinations. The experimental and simulation results presented here demonstrate that the CE-CERT process is versatile and can potentially handle a number of different feedstocks. CE-CERT process appears to be suitable for commercialization in very large scales with a coal feedstock and also in a distributed network of smaller scale reactors utilizing localized renewable feedstocks.

  13. Role of pyro-chemical processes in advanced fuel cycles

    NASA Astrophysics Data System (ADS)

    Nawada, Hosadu Parameswara; Fukuda, Kosaku

    2005-02-01

    Partitioning and Transmutation (P&T) of Minor Actinides (MAs) and Long-Lived Fission Products (LLFP) arising out of the back-end of the fuel cycle would be one of the key-steps in any future sustainable nuclear fuel cycle. Pyro-chemical separation methods would form a critical stage of P&T by recovering long-lived elements and thus reducing the environmental impact by the back-end of the fuel-cycle. This paper attempts to overview global developments of pyro-chemical process that are envisaged in advanced nuclear fuel cycles. Research and development needs for molten-salt electro-refining as well as molten salt extraction process that are foreseen as partitioning methods for spent nuclear fuels such as oxide, metal and nitride fuels from thermal or fast reactors; high level liquid waste from back-end fuel cycle as well as targets from sub-critical Accelerator Driven Sub-critical reactors would be addressed. The role of high temperature thermodynamic data of minor actinides in defining efficiency of recovery or separation of minor actinides from other fission products such as lanthanides will also be illustrated. In addition, the necessity for determination of accurate high temperature thermodynamic data of minor actinides would be discussed.

  14. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, James L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  15. Process of producing liquid hydrocarbon fuels from biomass

    DOEpatents

    Kuester, J.L.

    1987-07-07

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  16. Optimum catalytic process for alcohol fuels from syngas

    SciTech Connect

    Not Available

    1990-04-28

    The objectives of this contract are to discover and evaluate the catalytic properties of novel homogeneous, heterogeneous, or combination catalytic systems for the production of alcohol fuel extenders from syngas, to evaluate analytically and on the bench scale novel reactor concepts for use in converting syngas to liquid fuel products, and to develop on the bench scale the best combination of chemistry, reactor, and total process configuration to achieve the minimum product cost for conversion of syngas to liquid fuel products. Methanol production and heterogeneous catalysis utilizing transition elements supported on metal oxides with spinel structure are discussed. 12 figs., 16 tabs.

  17. Reduction of Pt2+ species in model Pt-CeO2 fuel cell catalysts upon reaction with methanol

    NASA Astrophysics Data System (ADS)

    Neitzel, Armin; Johánek, Viktor; Lykhach, Yaroslava; Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Matolín, Vladimír; Libuda, Jörg

    2016-11-01

    The stability of atomically dispersed Pt2+ species on the surface of nanostructured CeO2 films during the reaction with methanol has been investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The isolated Pt2+ species were prepared at low Pt concentration in Pt-CeO2 film. Additionally, Pt2+ species coexisting with metallic Pt particles were prepared at high Pt concentration. We found that adsorption of methanol yields similar decomposition products regardless of Pt concentration in Pt-CeO2 films. A small number of oxygen vacancies formed during the methanol decomposition can be replenished in the Pt-CeO2 film with low Pt concentration by diffusion of oxygen from the bulk. In the presence of supported Pt particles, a higher number of oxygen vacancies leads to a partial reduction of the Pt2+ species. The isolated Pt2+ species are reduced under rather strongly reducing conditions only, i.e. during annealing under continuous exposure to methanol. Reduction of isolated Pt2+ species results in the formation of ultra-small Pt particles containing around 25 atoms per particle or less. Such ultra-small Pt particles demonstrate excellent stability against sintering during annealing of Pt-CeO2 film with low Pt concentration under reducing conditions.

  18. Analysis of the ATR fuel element swaging process

    SciTech Connect

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B&W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF.

  19. In-situ transmission electron microscopy study of oxygen vacancy ordering and dislocation annihilation in undoped and Sm-doped CeO2 ceramics during redox processes

    NASA Astrophysics Data System (ADS)

    Ding, Yong; Chen, Yu; Pradel, Ken C.; Liu, Meilin; Lin Wang, Zhong

    2016-12-01

    Ceria (CeO2) based ceramics have been widely used for many applications due to their unique ionic, electronic, and catalytic properties. Here, we report our findings in investigating into the redox processes of undoped and Sm-doped CeO2 ceramics stimulated by high-energy electron beam irradiation within a transmission electron microscope (TEM). The reduced structure with oxygen vacancy ordering has been identified as the CeO1.68 (C-Ce2O3+δ) phase via high-resolution TEM. The reduction of Ce4+ to Ce3+ has been monitored by electron energy-loss spectroscopy. The decreased electronic conductivity of the Sm-doped CeO2 (Sm0.2Ce0.8O1.9, SDC) is revealed by electron holography, as positive electrostatic charges accumulated at the surfaces of SDC grains under electron beam irradiation, but not at CeO2 grains. The formation of the reduced CeO1.68 domains corresponds to lattice expansion compared to the CeO2 matrix. Therefore, the growth of CeO1.68 nuclei builds up strain inside the matrix, causing annihilation of dislocations inside the grains. By using in-situ high-resolution TEM and a fast OneView camera recording system, we investigated dislocation motion inside both CeO2 and SDC grains under electron beam irradiation. The dislocations prefer to dissociate into Shockley partials bounded by stacking faults. Then, the partials can easily glide in the {111} planes to reach the grain surfaces. Even the Lomer-Cottrell lock can be swept away by the phase change induced strain field. Our results revealed the high mobility of dislocations inside CeO2 and SDC grains during their respective redox processes.

  20. Catalytic oxidation with Al-Ce-Fe-PILC as a post-treatment system for coffee wet processing wastewater.

    PubMed

    Sanabria, Nancy R; Peralta, Yury M; Montañez, Mardelly K; Rodríguez-Valencia, Nelson; Molina, Rafael; Moreno, Sonia

    2012-01-01

    The effluent from the anaerobic biological treatment of coffee wet processing wastewater (CWPW) contains a non-biodegradable compound that must be treated before it is discharged into a water source. In this paper, the wet hydrogen peroxide catalytic oxidation (WHPCO) process using Al-Ce-Fe-PILC catalysts was researched as a post-treatment system for CWPW and tested in a semi-batch reactor at atmospheric pressure and 25 °C. The Al-Ce-Fe-PILC achieved a high conversion rate of total phenolic compounds (70%) and mineralization to CO(2) (50%) after 5 h reaction time. The chemical oxygen demand (COD) of coffee processing wastewater after wet hydrogen peroxide catalytic oxidation was reduced in 66%. The combination of the two treatment methods, biological (developed by Cenicafé) and catalytic oxidation with Al-Ce-Fe-PILC, achieved a 97% reduction of COD in CWPW. Therefore, the WHPCO using Al-Ce-Fe-PILC catalysts is a viable alternative for the post-treatment of coffee processing wastewater.

  1. Development of entrained-flow gasification technologies in the Asia-Pacific region (review)

    NASA Astrophysics Data System (ADS)

    Ryzhkov, A. F.; Bogatova, T. F.; Lingyan, Zeng; Osipov, P. V.

    2016-11-01

    The gasifier that provides solid fuel conversion to produce syngas with relevant parameters is the key element of plants generating electric and thermal power, producing chemicals from coal. The purpose of this article is to analyze the modern trends in the development of gasification technologies and determine technical solutions providing the high efficiency of gasifiers and the characteristics of generated syngas that meet the requirements established by the process user. Based on the analysis of the world gasification technologies database, which includes all types of gasifiers in use and gasifiers at the construction or design stage, the data on the development of entrained-flow gasification technologies in the Asia-Pacific (AP) countries are discussed. The major constructional components of gasification plants, fuel-feed and syngas cooling methods and their influence on the efficiency and operational reliability are considered. The analysis of technological solutions confirmed the prospectivity of dry-feed entrained-flow technologies. The staged organization of the gasification process makes it possible to solve issues of increasing the economic and environmental indicators of gasification plant operation. The basic directions of modernization of entrained-flow gasifiers for improving their technical-and-economic perfomance was determined.

  2. Microwave Processing of Simulated Advanced Nuclear Fuel Pellets

    SciTech Connect

    D.E. Clark; D.C. Folz

    2010-08-29

    Throughout the three-year project funded by the Department of Energy (DOE) and lead by Virginia Tech (VT), project tasks were modified by consensus to fit the changing needs of the DOE with respect to developing new inert matrix fuel processing techniques. The focus throughout the project was on the use of microwave energy to sinter fully stabilized zirconia pellets using microwave energy and to evaluate the effectiveness of techniques that were developed. Additionally, the research team was to propose fundamental concepts as to processing radioactive fuels based on the effectiveness of the microwave process in sintering the simulated matrix material.

  3. Basic combustion and pollutant-formation processes for pulverized fuels. Quarterly technical progress report No. 1, 1 October 1980-31 December 1980

    SciTech Connect

    Germane, Geoffery J.; Smoot, L. Douglas

    1981-01-15

    A study of basic combustion and pollutant formation processes for pulverized solid fossil fuels has been initiated. The solid fossil fuels under consideration for this research include such solid fuels as non-bituminous coal types, solvent refined coal, combustion char, petroleum coke, oil shale and tar sand. The potential industrial application of pulverized fuels other than coal provides some promise for relief from present and future conventional fuel shortages. Utilization problems with these fuels such as flame stability, fuel handling, pollutant emission and ash and slag formation in large-scale furnaces may be fundamentally addressed in laboratory reactors using properly scaled operating variables. An extensive literature search was begun to assess current knowledge relative to utilization of these fuels. This review will provide a basis for selection of three solid fuels for testing. Pertinent information from industrial contacts will also be used in the fuel selection. The criteria to be used in the selection of these fuels include availability for economic industrial use, adaptability, grindability, flame stability, entrainability, uniformity, applicability to direct firing with air, solidity with heating, availability to the BYU Combustion Laboratory, cost, other physical characteristics affecting their use, industrial input and recommendations, and DOE approval. The existing laboratory coal combustor at BYU will be modified to provide flexibility for a potentially wide range of operating characteristics with the selected solid fuels. A computer system has been identified for interface both to the reactor for data acquisition and control of operating variables and to the main research computer for final data reduction and display.

  4. Processing of carbon composite paper as electrode for fuel cell

    NASA Astrophysics Data System (ADS)

    Mathur, R. B.; Maheshwari, Priyanka H.; Dhami, T. L.; Sharma, R. K.; Sharma, C. P.

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material.

  5. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  6. Entrainment of neural oscillations as a modifiable substrate of attention.

    PubMed

    Calderone, Daniel J; Lakatos, Peter; Butler, Pamela D; Castellanos, F Xavier

    2014-06-01

    Brain operation is profoundly rhythmic. Oscillations of neural excitability shape sensory, motor, and cognitive processes. Intrinsic oscillations also entrain to external rhythms, allowing the brain to optimize the processing of predictable events such as speech. Moreover, selective attention to a particular rhythm in a complex environment entails entrainment of neural oscillations to its temporal structure. Entrainment appears to form one of the core mechanisms of selective attention, which is likely to be relevant to certain psychiatric disorders. Deficient entrainment has been found in schizophrenia and dyslexia and mounting evidence also suggests that it may be abnormal in attention-deficit/hyperactivity disorder (ADHD). Accordingly, we suggest that studying entrainment in selective-attention paradigms is likely to reveal mechanisms underlying deficits across multiple disorders.

  7. Removal of sulfamethazine antibiotics using CeFe-graphene nanocomposite as catalyst by Fenton-like process.

    PubMed

    Wan, Zhong; Hu, Jun; Wang, Jianlong

    2016-11-01

    The presence of sulfonamide (SMT) antibiotics in aquatic environments has received increasing attention in recent years, and they are ubiquitous pollutants which cannot be effectively removed by conventional wastewater treatment processes. In this paper, the nanocomposites Ce(0)/Fe(0)-reduced graphene oxide (Ce(0)/Fe(0)-RGO) were synthesized through chemical reduction method, and characterized by Raman and FTIR before and after use. The addition of RGO can prevent the agglomeration of Ce(0) and Fe(0). The elimination of SMT can be divided into adsorption and degradation process. The adsorption of SMT onto the catalyst can enhance its degradation. The effect of pH value, concentration of H2O2, catalyst dosage, temperature and initial SMT concentration on the removal efficiency of SMT was determined. When pH = 7, T = 25 °C, H2O2 = 8 mM, Ce(0)/Fe(0)-RGO = 0.5 g/L, SMT = 20 mg/L, the removal efficiency of SMT and TOC was 99% and 73%, respectively. The stability of the catalysts was evaluated with repeated batch experiments using ethanol, water and acid as solvents to wash the used catalysts, respectively. The surface change of the catalysts after each use was characterized by Raman and FTIR analysis. The intermediates were detected by GC-MS and IC, the possible degradation pathway of SMT was tentatively proposed.

  8. Novel Redox Processes for Carbonaceous Fuel Conversion

    NASA Astrophysics Data System (ADS)

    He, Feng

    The current study investigates oxygen carrier development, process intensification, and oxygen carrier attrition behaviors for a number of novel, redox-based energy conversion schemes. (Abstract shortened by ProQuest.).

  9. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  10. A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    SciTech Connect

    D. L. Chichester; S. J. Thompson

    2013-09-01

    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium in the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for

  11. Advanced Fuels and Combustion Processes for Propulsion

    DTIC Science & Technology

    2010-09-01

    production from biomass steam reforming – Conduct a feasibility analysis of the proposed integrated process Energia Technologies - D. Nguyen & K. Parimi...strength foam material development by Ultramet – Combustion experiments performed U. Of Alabama – End-user input provided by Solar Turbines Major

  12. Proposed pyrometallurgical process for rapid recycle of discharged fuel materials from the integral fast reactor. [Metal fuel

    SciTech Connect

    Burris, L.; Steindler, M.; Miller, W.

    1984-01-01

    The pool-type Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory includes on-site recycle of discharged core and blanket fuel materials. The process and fabrication steps will be demonstrated in the EBR-II Fuel Cycle Facility with IFR fuel irradiated in EBR-II and the Fast Flux Test Facility. The proposed process consists of two major steps: a halide slagging step and an electrorefining step. The fuel is maintained in the metallic form to yield directly a metal product sufficiently decontaminated to allow recycle to the reactor as new fuel. The process is further described and available information to support its feasibility is presented.

  13. A New Approach for Estimating Entrainment Rate in Cumulus Clouds

    SciTech Connect

    Lu C.; Liu, Y.; Yum, S. S.; Niu, S.; Endo, S.

    2012-02-16

    A new approach is presented to estimate entrainment rate in cumulus clouds. The new approach is directly derived from the definition of fractional entrainment rate and relates it to mixing fraction and the height above cloud base. The results derived from the new approach compare favorably with those obtained with a commonly used approach, and have smaller uncertainty. This new approach has several advantages: it eliminates the need for in-cloud measurements of temperature and water vapor content, which are often problematic in current aircraft observations; it has the potential for straightforwardly connecting the estimation of entrainment rate and the microphysical effects of entrainment-mixing processes; it also has the potential for developing a remote sensing technique to infer entrainment rate.

  14. Single-step process to prepare CeO2 nanotubes with improved catalytic activity.

    PubMed

    González-Rovira, Leandro; Sánchez-Amaya, José M; López-Haro, Miguel; del Rio, Eloy; Hungría, Ana B; Midgley, Paul; Calvino, José J; Bernal, Serafín; Botana, F Javier

    2009-04-01

    CeO(2) nanotubes have been grown electrochemically using a porous alumina membrane as a template. The resulting material has been characterized by means of scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy, high-angle annular dark-field scanning transmission electron microscopy tomography, high-resolution electron microscopy (HREM), and electron energy loss spectroscopy. According to SEM, the outer diameter of the nanotubes corresponds to the pore size (200 nm) of the alumina membrane, and their length ranges between 30 and 40 microm. HREM images have revealed that the width of the nanotube walls is about 6 nm. The catalytic activity of these novel materials for the CO oxidation reaction is compared to that of a polycrystalline powder CeO(2) sample prepared by a conventional route. The activity of the CeO(2) nanotubes is shown to be in the order of 400 times higher per gram of oxide at 200 degrees C (77.2 x 10(-2) cm(3) CO(2) (STP)/(gxs) for the nanotube-shaped CeO(2) and 0.16 x 10(-2) cm(3) CO(2) (STP)/(gxs) for the powder CeO(2)).

  15. Can cloud-top entrainment promote cloud growth?

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1984-01-01

    The primary significance of Cloud Deepening through Entrainment (CDE) is that it can prevent the cloud top entrainment instability from destroying a cloud deck. Without suppressing the instability, CDE transforms it from a cloud destroyer to a cloud builder. The analysis does not depend on an entrainment hypothesis. Moreover, it is not restricted to PBL stratocumulus sheets. Stratiform clouds in the free atmosphere can be subject to CDE we need only reinterpret Ps as the pressure at the base of an elevated turbulent mixed layer. Modest departures from well mixedness will alter the results quantitatively but not qualitatively. Processes other than entrainment, such as surface evaporation, radiative cooling, and advection will often work with CDE to build a cloud layer; but of course they can also oppose CDE by reducing the relative humidity. If we make the weak assumption that the deepening of a cloud layer favors an increase in the cloud top entrainment rate (without specifying any particular functional relationship) we are led to speculate that CDE can cause runaway cloud growth, even in the absence of cloud top entrainment instability. through CDE entrainment leads to a deeper cloud, which leads to stronger entrainment.

  16. Evaluation of gasification and gas cleanup processes for use in molten-carbonate fuel-cell power plants. Task B interim report

    SciTech Connect

    Not Available

    1981-12-01

    This interim report satisfies the Task B requirement for DOE Contract DE-AC21-81MC16220 to define process configurations for systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The information and data necessary for this study were extracted from sources in the public domain, including reports from DOE, EPRI, and EPA; work sponsored in whole or in part by Federal agencies; and from trade journals, MCFC developers, and manufacturers. The configurations include entrained, fluidized-bed, gravitating-bed, and molten salt gasifiers, both air and oxygen blown. Desulfurization systems utilizing wet scrubbing processes, such as Selexol and Rectisol II, and dry sorbents, such as iron oxide and dolomite, were chosen for evaluation.

  17. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    PubMed

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Doped CeO2-LaFeO3 composite oxide as an active anode for direct hydrocarbon-type solid oxide fuel cells.

    PubMed

    Shin, Tae Ho; Ida, Shintaro; Ishihara, Tatsumi

    2011-12-07

    Direct utilization of hydrocarbon and other renewable fuels is one of the most important issues concerning solid oxide fuel cells (SOFCs). Mixed ionic and electronic conductors (MIECs) have been explored as anode materials for direct hydrocarbon-type SOFCs. However, electrical conductivity of the most often reported MIEC oxide electrodes is still not satisfactory. As a result, mixed-conducting oxides with high electrical conductivity and catalytic activity are attracting considerable interest as an alternative anode material for noncoke depositing anodes. In this study, we examine the oxide composite Ce(Mn,Fe)O(2)-La(Sr)Fe(Mn)O(3) for use as an oxide anode in direct hydrocarbon-type SOFCs. High performance was demonstrated for this composite oxide anode in direct hydrocarbon-type SOFCs, showing high maximum power density of approximately 1 W cm(-2) at 1073 K when propane and butane were used as fuel. The high power density of the cell results from the high electrical conductivity of the composite oxide in hydrocarbon and the high surface activity in relation to direct hydrocarbon oxidation.

  19. Hexahedron Prism-Anchored Octahedronal CeO2: Crystal Facet-Based Homojunction Promoting Efficient Solar Fuel Synthesis.

    PubMed

    Li, Ping; Zhou, Yong; Zhao, Zongyan; Xu, Qinfeng; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang

    2015-08-05

    An unprecedented, crystal facet-based CeO2 homojunction consisting of hexahedron prism-anchored octahedron with exposed prism surface of {100} facets and octahedron surface of {111} facets was fabricated through solution-based crystallographic-oriented epitaxial growth. The photocatalysis experiment reveals that growth of the prism arm on octahedron allows to activate inert CeO2 octahedron for an increase in phototocatalytic reduction of CO2 into methane. The pronounced photocatalytic performance is attributed to a synergistic effect of the following three factors: (1) band alignment of the {100} and {111} drives electrons and holes to octahedron and prism surfaces, respectively, aiming to reach the most stable energy configuration and leading to a spatial charge separation for long duration; (2) crystallographic-oriented epitaxial growth of the CeO2 hexahedron prism arm on the octahedron verified by the interfacial lattice fringe provides convenient and fast channels for the photogenerated carrier transportation between two units of homojuntion; (3) different effective mass of electrons and holes on {100} and {111} faces leads to high charge carrier mobility, more facilitating the charge separation. The proposed facet-based homojunction in this work may provide a new concept for the efficient separation and fast transfer of photoinduced charge carriers and enhancement of the photocatalytic performance.

  20. Hydrogen purification for fuel cell using CuO/CeO 2-Al 2O 3 catalyst

    NASA Astrophysics Data System (ADS)

    Maciel, Cristhiane Guimarães; Profeti, Luciene Paula Roberto; Assaf, Elisabete Moreira; Assaf, José Mansur

    CuO/CeO 2, CuO/Al 2O 3 and CuO/CeO 2-Al 2O 3 catalysts, with CuO loading varying from 1 to 5 wt.%, were prepared by the citrate method and applied to the preferential oxidation of carbon monoxide in a reaction medium containing large amounts of hydrogen (PROX-CO). The compounds were characterized ex situ by X-ray diffraction, specific surface area measurements, temperature-programmed reduction and temperature-programmed reduction of oxidized surfaces; XANES-PROX in situ experiments were also carried out to study the copper oxidation state under PROX-CO conditions. These analyses showed that in the reaction medium the Cu 0 is present as dispersed particles. On the ceria, these metallic particles are smaller and more finely dispersed, resulting in a stronger metal-support interaction than in CuO/Al 2O 3 or CuO/CeO 2-Al 2O 3 catalysts, providing higher PROX-CO activity and better selectivity in the conversion of CO to CO 2 despite the greater BET area presented by samples supported on alumina. It is also shown that the lower CuO content, the higher metal dispersion and consequently the catalytic activity. The redox properties of the ceria support also contributed to catalytic performance.

  1. Entraining synthetic genetic oscillators

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Buldú, Javier M.; Sanjuán, Miguel A. F.; de Luis, Oscar; Izquierdo, Adriana; Coloma, Antonio

    2009-09-01

    We propose a new approach for synchronizing a population of synthetic genetic oscillators, which consists in the entrainment of a colony of repressilators by external modulation. We present a model where the repressilator dynamics is affected by periodic changes in temperature. We introduce an additional plasmid in the bacteria in order to correlate the temperature variations with the enhancement of the transcription rate of a certain gene. This can be done by introducing a promoter that is related to the heat shock response. This way, the expression of that gene results in a protein that enhances the overall oscillations. Numerical results show coherent oscillations of the population for a certain range of the external frequency, which is in turn related to the natural oscillation frequency of the modified repressilator. Finally we study the transient times related with the loss of synchronization and we discuss possible applications in biotechnology of large-scale production coupled to synchronization events induced by heat shock.

  2. Pyrolysis process for producing fuel gas

    NASA Technical Reports Server (NTRS)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  3. Power plant intake entrainment analysis

    SciTech Connect

    Edinger, J.E.; Kolluru, V.S.

    2000-04-01

    Power plant condenser cooling water intake entrainment of fish eggs and larvae is becoming an issue in evaluating environmental impacts around the plants. Methods are required to evaluate intake entrainment on different types of water bodies. Presented in this paper is a derivation of the basic relationships for evaluating entrainment from the standing crop of fish eggs and larvae for different regions of a water body, and evaluating the rate of entrainment from the standing crop. These relationships are coupled with a 3D hydrodynamic and transport model that provides the currents and flows required to complete the entrainment evaluation. Case examples are presented for a simple river system, and for the more complex Delaware River Estuary with multiple intakes. Example evaluations are made for individual intakes, and for the cumulative impacts of multiple intakes.

  4. Fate of virginiamycin through the fuel ethanol production process

    USDA-ARS?s Scientific Manuscript database

    Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process wa...

  5. PROCESS OF DISSOLVING FUEL ELEMENTS OF NUCLEAR REACTORS

    DOEpatents

    Wall, E.M.V.; Bauer, D.T.; Hahn, H.T.

    1963-09-01

    A process is described for dissolving stainless-steelor zirconium-clad uranium dioxide fuel elements by immersing the elements in molten lead chloride, adding copper, cuprous chloride, or cupric chloride as a catalyst and passing chlorine through the salt mixture. (AEC)

  6. A specific Ce oxidation process during sorption of rare earth elements on biogenic Mn oxide produced by Acremonium sp. strain KR21-2

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuya; Tani, Yukinori; Takahashi, Yoshio; Tanimizu, Masaharu; Suzuki, Yoshinori; Kozai, Naofumi; Ohnuki, Toshihiko

    2010-10-01

    Sorption of rare earth elements (REEs) and Ce oxidation on natural and synthetic Mn oxides have been investigated by many researchers. Although Mn(II)-oxidizing microorganisms are thought to play an important role in the formation of Mn oxides in most natural environments, Ce oxidation by biogenic Mn oxide and the relevance of microorganisms to the Ce oxidation process have not been well understood. Therefore, in this study, we conducted sorption experiments of REEs on biogenic Mn oxide produced by Acremonium sp. strain KR21-2. The distribution coefficients, Kd(REE), between biogenic Mn oxide (plus hyphae) and 10 mmol/L NaCl solution showed a large positive Ce anomaly and convex tetrad effect variations at pH 3.8, which was consistent with previous works using synthetic Mn oxide. The positive Ce anomaly was caused by oxidation of Ce(III) to Ce(IV) by the biogenic Mn oxide, which was confirmed by analysis of the Ce L III-edge XANES spectra. With increasing pH, the positive Ce anomaly and convex tetrad effects became less pronounced. Furthermore, negative Ce anomalies were observed at a pH of more than 6.5, suggesting that Ce(IV) was stabilized in the solution (<0.2 μm) phase, although Ce(III) oxidation to Ce(IV) on the biogenic Mn oxide was confirmed by XANES analysis. It was demonstrated that no Ce(III) oxidation occurred during sorption on the hyphae of strain KR21-2 by the Kd(REE) patterns and XANES analysis. The analysis of size exclusion HPLC-ICP-MS showed that some fractions of REEs in the filtrates (<0.2 μm) after sorption experiments were bound to organic molecules (40 and <670 kDa fractions), which were possibly released from hyphae. A line of our data indicates that the negative Ce anomalies under circumneutral pH conditions arose from Ce(III) oxidation on the biogenic Mn oxide and subsequent complexation of Ce(IV) with organic ligands. The suppression of tetrad effects is also explained by the complexation of REEs with organic ligands. The results of

  7. Analysis of on-board fuel processing designs for PEM fuel cell vehicles

    SciTech Connect

    Kartha, S.; Fischer, S.; Kreutz, T.

    1996-12-31

    As a liquid fuel with weight and volume energy densities comparable to those of gasoline, methanol is an attractive energy carrier for mobile power systems. It is available without contaminants such as sulfur, and can be easily reformed at relatively low temperatures with inexpensive catalysts. This study is concerned with comparing the net efficiencies of PEM fuel cell vehicles fueled with methanol and hydrogen, using fuel cell system models developed using ASPEN chemical process simulation software. For both the methanol and hydrogen systems, base case designs are developed and several variations are considered that differ with respect to the degree of system integration for recovery of heat and compressive work. The methanol systems are based on steam reforming with the water-gas shift reaction and preferential oxidation, and the hydrogen systems are based on compressed hydrogen. This analysis is an exercise in optimizing the system design for each fuel, which ultimately entails balancing system efficiency against a host of other considerations, including system complexity, performance, cost, reliability, weight and volume.

  8. Characterization of nanocrystalline (Th 1- xCe x)O y powders synthesized by co-precipitation process

    NASA Astrophysics Data System (ADS)

    Yildiz, Ö.

    2007-06-01

    Nanocrystalline thoria-ceria (Th 1- xCe x)O y powders in a ratio of x = 0.05-0.5 mol% were prepared by a co-precipitation process, which employs thorium and cerium nitrate as thorium and cerium source material, deionized water as solvent and ammonia gas as precipitant. Cerium was used as a simulator for plutonium and the other actinides with a +4 valency. After co-precipitation the aqueous (Th 1- xCe x)(OH) y · nH 2O cakes had been dried at 110 °C, these powders were separately milled in acetone, carbon tetrachloride, n-dodecane, isopropanol and water before and/or after calcination at different temperatures (300-600 °C). DTA-TG, XRD, TEM and BET analyses were performed to characterize the produced powders. Characterization results revealed that the materials were not crystallized, even the temperature reached up to 600 °C. The crystallization of (Th 1- xCe x)O y began at about 600 °C. The crystal growth took place between the temperatures 600 °C and 1200 °C. The powders have a range average crystallite sizes from 5 to 115 nm, with a specific surface area from 6 to 111 m 2/g depending on the calcination temperature and Ce mol%. In this way the crystallized nano (Th 1- xCe x)O 2 powder with a higher specific surface area is able to be produced to obtain the pellets in very high density.

  9. Thermodynamic description of the interaction processes in the Cu-Ce-O system in the temperature range 1100-1300°C

    NASA Astrophysics Data System (ADS)

    Samoilova, O. V.; Mikhailov, G. G.; Makrovets, L. A.; Trofimov, E. A.

    2017-03-01

    A thermodynamic simulation and an experimental study of the interaction between cerium and oxygen in liquid copper have been performed. The thermodynamic analysis of the interaction processes in the Cu-Ce-O system is carried out using the technique of constructing the surface of solubility of components in a metal in the temperature range 1100-1300°C. As a result of simulation, data on changes in the Gibbs energy Δ G T ° and the equilibrium constants of formation of cerium oxides Ce2O3 and CeO2 from the components of a copper-based metallic melt are obtained. The first-order interaction parameters (according to Wagner) of cerium and oxygen dissolved in liquid copper, namely, e Ce Ce, e O Ce, and e Ce O, are evaluated. Experimental studies of the Cu-Ce-O system have been performed. The morphological features, the size, and the composition of nonmetallic inclusions formed as a result of interaction in the Cu-Ce-O system are studied using scanning electron microscopy and electron-probe microanalysis.

  10. Process development and fabrication for sphere-pac fuel rods. [PWR; BWR

    SciTech Connect

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

  11. Method For Processing Spent (Trn,Zr)N Fuel

    DOEpatents

    Miller, William E.; Richmann, Michael K.

    2004-07-27

    A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.

  12. Forecasting Inundation from Debris Flows That Grow By Entraining Sediment

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Coe, J. A.; Brien, D. L.

    2014-12-01

    Destructive debris flows often grow, and extend their runouts, by entraining sediment as they travel. However, incorporating varied entrainment processes into physics-based flow routing models is challenging. As an alternative, we developed a relatively simple, automated method for forecasting the inundation hazards posed by debris flows that entrain sediment and coalesce from multiple flows. Within a drainage network, we amalgamate the effects of many possible debris flows with each flow volume proportional to an entrainment rate scaled by the upslope contributing area, and then use these volumes in the USGS GIS-based inundation model LAHARZ. Our approach only requires estimates of two parameters: spatial entrainment rate & maximum entrainment area or maximum volume. Our procedure readily integrates various sediment sources and it can portray different inundation hazard levels on a GIS-based map by varying our two parameters. We applied this approach to part of the Coast Range, southern Oregon, USA. Using aerial photography, we mapped debris flows triggered by a large 1996 rain event on a LiDAR-derived topographic base, and identified initiation locations, travel paths, and areas of channel erosion and deposition. Many catchments experienced multiple debris flows that coalesced downstream and about 95% of the debris flows entrained sediment as they traveled. Flows typically stopped entraining sediment before the upslope contributing area reached ~500,000 m2. We used pre- and post-debris-flow stereo photos to estimate spatial entrainment rates in four clear-cut catchments having both channel erosion and coalescence of flows; these rates varied from 0.12 to 0.2 m3/m2. GIS-based inundation maps, using our automated methods, are quite similar to the mapped flow paths and deposits. Given appropriate parameters, our approach could be applied to a variety of steep, channelized environments where entrainment is important, such as alpine and post-wildfire slopes.

  13. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    SciTech Connect

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  14. Speech Entrainment Compensates for Broca's Area Damage

    PubMed Central

    Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris

    2015-01-01

    Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to speech entrainment. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during speech entrainment versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of speech entrainment to improve speech production and may help select patients for speech entrainment treatment. PMID:25989443

  15. In situ screen-printed BaZr 0.1Ce 0.7Y 0.2O 3- δ electrolyte-based protonic ceramic membrane fuel cells with layered SmBaCo 2O 5+ x cathode

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Dong, Yingchao; Yan, Ruiqiang; Zhang, Shangquan; Hu, Mingjun; Zhou, Yang; Meng, Guangyao

    In order to develop a simple and cost-effective route to fabricate protonic ceramic membrane fuel cells (PCMFCs) with layered SmBaCo 2O 5+ x (SBCO) cathode, a dense BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY) electrolyte was fabricated on a porous anode by in situ screen printing. The porous NiO-BaZr 0.1Ce 0.7Y 0.2O 3- δ (NiO-BZCY) anode was directly prepared from metal oxide (NiO, BaCO 3, ZrO 2, CeO 2 and Y 2O 3) by a simple gel-casting process. An ink of metal oxide (BaCO 3, ZrO 2, CeO 2 and Y 2O 3) powders was then employed to deposit BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY) thin layer by an in situ reaction-sintering screen printing process on NiO-BZCY anode. The bi-layer with 25 μm dense BZCY electrolyte was obtained by co-sintering at 1400 °C for 5 h. With layered SBCO cathode synthesized by gel-casting on the bi-layer, single cells were assembled and tested with H 2 as fuel and the static air as oxidant. A high open-circuit potential of 1.01 V, a maximum power density of 382 mW cm -2, and a low polarization resistance of the electrodes of 0.15 Ω cm 2 was achieved at 700 °C.

  16. Used nuclear fuel separations process simulation and testing

    SciTech Connect

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D.

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  17. Performance and sulfur poisoning of Ni/CeO2 impregnated La0.75Sr0.25Cr0.5Mn0.5O3-δ anode in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Yiqian; Zhang, Yaohui; Zhu, Xingbao; Wang, Zhihong; Lü, Zhe; Huang, Xiqiang; Zhou, Yongjun; Zhu, Lin; Jiang, Wei

    2015-07-01

    In this study, comparison experiments are conducted based on yttria-stabilized zirconia (YSZ) electrolyte supported single solid oxide fuel cells (SOFCs) with pure La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCrM) or Ni/CeO2 impregnated LSCrM anodes. The single cells are tested in dry H2 and H2/H2S (50 ppm) mixture, respectively. Compared with the pure LSCrM anode, the cell with Ni/CeO2 impregnated LSCrM presents a significant performance improvement when the pure H2 is fueled to the anode, and shows a good stability during a constant-current discharge testing (398 mA cm-2). When the fuel is switched to H2/H2S mixture, the cell with Ni/CeO2 impregnated LSCrM anode still shows a remarkable constant-current discharge (120 mA cm-2) performance compared with pure LSCrM anode. The Ni/CeO2 impregnation can improve the electrochemical performance of the LSCrM anode without any sacrifice of sulfur tolerance ability. The Ni/CeO2 impregnated LSCrM might be a potential anode material for solid oxide fuel cell operating in sulfur-containing fuels. The XRD and XPS results demonstrate that the anode poisoning product is composed of adsorbed sulfur, metal sulfides and sulfate radical. The mass spectrum result confirms that the poisoning mechanism involves the reaction of sulfur with anode rather than the direct reaction between H2S gas and anode.

  18. Enhanced performance of solid oxide fuel cells using BaZr0.2Ce0.7Y0.1O3-δ thin films

    NASA Astrophysics Data System (ADS)

    Konwar, Dimpul; Park, Bang Ju; Basumatary, Padmini; Yoon, Hyon Hee

    2017-06-01

    Thin-film BaZr0.2Ce0.7Y0.1O3-δ (BZCY) is a promising electrolyte material for intermediate-temperature solid oxide fuel cells. However, a major drawback is its poor adhesion to porous electrodes. For achieving a high adhesion of thin BZCY films to anodes, a mixed electrolyte containing La0.80Sr0.20Ga0.80Mg0.20O3-δ (LSGM) and BZCY is deposited onto a porous NiO-BZCYYb anode, followed by the deposition of a 4 μm-thick BZCY electrolyte layer over the mixed electrolyte layer by e-beam vapor deposition. The formation of a fully dense and well-adhered BZCY layer is confirmed. The prepared cell exhibits excellent potential for achieving high power densities with various fuels. The maximum power densities of a single cell are 1.21, 0.93, and 0.76 W cm-2 at 650 °C with hydrogen, methane, and biogas, respectively. Furthermore, the maximum power densities are 0.26, 0.12, and 0.21 W cm-2 at 500 °C with hydrogen, methane, and biogas, respectively. The ionic conductivities of the electrolyte layer are 1.2 × 10-2 S cm-1 and 3.1 × 10-3 S cm-1 at 650 and 500 °C respectively, with an activation energy of 0.46 eV.

  19. A new family of Ce-doped SmFeO3 perovskite for application in symmetrical solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fan, Weiwei; Sun, Zhu; Wang, Junkai; Zhou, Jun; Wu, Kai; Cheng, Yonghong

    2016-04-01

    Here, a nanoporous Sm0.95Ce0.05FeO3-δ (SCFO) perovskite-type oxide is assessed in regard to its possible use as an electrode material for symmetrical solid oxide fuel cells. It is found that SCFO has a good redox stability after characterizing the sample which is calcined at 850 °C in 5% H2/N2 for 10 h. Optimized electrochemical performances are obtained in both the nanoporous anode and cathode which are mainly due to the high catalytic activity of SCFO for redox reaction. The peak power density of SCFO|YSZ|SCFO symmetrical cell is as high as 130 mW cm-2 at 800 °C using pure, humidified H2 as the fuel. Moreover, the maximum power density of 193 mW cm-2 can be obtained for the SCFO:YSZ(7:3)|YSZ|SCFO:YSZ(7:3) symmetrical cell under the same conditions.

  20. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  1. Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel

    SciTech Connect

    Hertzler, T.

    1993-02-01

    This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository.

  2. A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells

    SciTech Connect

    Brown, L.F.

    1996-03-01

    Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

  3. Cortical entrainment to music and its modulation by expertise

    PubMed Central

    Doelling, Keith B.; Poeppel, David

    2015-01-01

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta–theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15–30 Hz)—often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238

  4. Cortical entrainment to music and its modulation by expertise.

    PubMed

    Doelling, Keith B; Poeppel, David

    2015-11-10

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.

  5. FUEL ELEMENTS FOR NUCLEAR REACTORS AND PROCESS OF MAKING

    DOEpatents

    Roake, W.E.

    1958-08-19

    A process is described for producing uranium metal granules for use in reactor fuel elements. The granules are made by suspending powdered uramiunn metal or uranium hydride in a viscous, non-reactive liquid, such as paraffin oil, aad pouring the resulting suspension in droplet, on to a bed of powdered absorbent. In this manner the liquid vehicle is taken up by the sorbent and spherical pellets of uranium metal are obtained. The

  6. Ceramic processing and electrochemical analysis of proton conductive solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Long

    Ba(Zr0.8-xCexY0.2)O3-delta (0≤x≤0.4) (BZCYs) powders were successfully fabricated by both solid state reaction and glycine-nitrate process. Lithium fluoride (LiF) was selected as a liquid phase sintering additive to lower the sintering temperature of BZCYs. Using LiF as an additive, high density BZCYs ceramics can be obtained at sintering temperatures 200˜300 °C lower than the usual 1700 °C with much shorter soaking time. Nuclear reaction investigations showed no lithium and a small amount of fluorine reside in the sample which indicates the non-concomitant evaporation of lithium and fluorine during the sintering process. Scanning electron microscopic investigations showed the bimodal structure of BZCY ceramics and grain growth as Ce content increases. In a water saturated hydrogen containing atmosphere, BZCY ceramics have higher conductivity when LiF is used in the sintering process. LiF-added BZCY electrolyte-supported fuel cells with different cathodes were tested at temperatures from 500˜850 °C. Results show that Pt cathode gives much higher power output than ceramic cathodes, indicating much larger polarization from ceramic cathodes than Pt. Ba(Zr0.6Ce 0.2Y0.2)O3-delta anode supported proton conductive solid oxide fuel cells (H-SOFCs) show low power output due to its low proton conductivity. Ba(Ce0.8Y0.2)O3-delta anode supported H-SOFCs show excellent power output. Different H2 and O2 partial pressures were used for fuel and oxidative gas, respectively, to obtain information for V(i) modeling. Different thicknesses of supporting anode were used to obtain saturation current densities of H-SOFC. Using the dusty-gas model which includes Stefan-Maxwell equation and Knudsen terms, the calculation gave tortuosity of our supporting anode 1.95+/-0.1. The gas concentrations across the anode were also calculated by knowing the tortuosity of the supporting anode. An electrochemical model of H-SOFC was developed. The excellent agreement between model and

  7. Fuel quality/processing study. Volume 2: Appendix. Task 1 literature survey

    NASA Technical Reports Server (NTRS)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Klumpe, H. W.; Kessler, H. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    The results of a literature survey of fuel processing and fuel quality are given. Liquid synfuels produced from coal and oil shale are discussed. Gas turbine fuel property specifications are discussed. On-site fuel pretreatment and emissions from stationary gas turbines are discussed. Numerous data tables and abstracts are given.

  8. The British nuclear fuels CACITOX soil treatment process

    SciTech Connect

    Brierley, K.W.; Hultman, C.W.S.

    1994-12-31

    Contamination of soils by heavy metals and radionuclides is a common problem throughout the world. British Nuclear Fuels plc (BNFL) is extending its patented CACITOX{sup {trademark}} process, originally developed for the treatment of nuclear fuel reprocessing wastes, to the treatment of soils and other materials contaminated with heavy metals and transuranic (TRU) elements. CACITOX{sup {trademark}} is a novel proprietary leaching process which uses a mild, highly selective and environmentally friendly reagent system. It is potentially capable of treating contaminated soils and sediments without depositing unacceptable by-products within the soil matrix or destroying the matrix itself. The low reagent concentrations and its high selectivity result in minimization of secondary waste and conservation of resources. This innovative process is at the heart of BNFL`s development of a modular soil treatment plant, EXCEL*CR{sup {trademark}}. Although many mechanical unit operations employed in the EXCEL*CR{sup {trademark}} plant are similar to conventional soil washing (size classification), it is distinguished by the ability of the process to selectively leach the contaminants from the soil as soluble chemical complexes. This paper describes the CACITOX{sup {trademark}} process and its use in the EXCEL*CR{sup {trademark}} soil treatment plant. The paper outlines the process chemistry, development of its application and reviews progress in the current development program. The design philosophy for the EXCEL*CR{sup {trademark}} plant is further described.

  9. Material Properties Governing Co-Current Flame Spread: The Effect of Air Entrainment

    NASA Technical Reports Server (NTRS)

    Coutin, Mickael; Rangwala, Ali S.; Torero, Jose L.; Buckley, Steven G.

    2003-01-01

    A study on the effects of lateral air entrainment on an upward spreading flame has been conducted. The fuel is a flat PMMA plate of constant length and thickness but variable width. Video images and surface temperatures have allowed establishing the progression of the pyrolyis front and on the flame stand-off distance. These measurements have been incorporated into a theoretical formulation to establish characteristic mass transfer numbers ("B" numbers). The mass transfer number is deemed as a material related parameter that could be used to assess the potential of a material to sustain co-current flame spread. The experimental results show that the theoretical formulation fails to describe heat exchange between the flame and the surface. The discrepancies seem to be associated to lateral air entrainment that lifts the flame off the surface and leads to an over estimation of the local mass transfer number. Particle Image Velocimetry (PIV) measurements are in the process of being acquired. These measurements are intended to provide insight on the effect of air entrainment on the flame stand-off distance. A brief description of the methodology to be followed is presented here.

  10. Comprehensive modeling and numerical investigation of entrained-flow coal gasifiers

    NASA Astrophysics Data System (ADS)

    Silaen, Armin Karen

    Numerical simulations of coal gasification process inside a generic 2-stage entrained-flow gasifier are carried out using the commercial CFD solver ANSYS/FLUENT. The 3-D Navier-Stokes equations and eight species transport equations are solved with three heterogeneous global reactions, three homogeneous reactions, and one thermal cracking equation of volatiles. Finite rates are used for the heterogeneous solid-gas reactions. Both finite rate and eddy-breakup combustion models are calculated for each homogeneous gas-gas reaction, and the smaller of the two rates is used. Lagrangian-Eulerian method is employed. The Eulerian method calculates the continuous phase while the Lagrangian method tracks each coal particle. Fundamental study is carried out to investigate effects of five turbulence models (standard k-epsilon, k-o, RSM, k-o SST, and k-epsilon RNG) and four devolatilization models (Kobayashi, single rate, constant rate, and CPD) on gasification simulation. A study is also conducted to investigate the effects of different operation parameters on gasification process including coal mixture (dry vs. slurry), oxidant (oxygen-blown vs. air-blown), and different coal distributions between two stages. Finite-rate model and instantaneous gasification model are compared. It is revealed that the instantaneous gasification approach can provide an overall evaluation of relative changes of gasifier performance in terms of temperature, heating value, and gasification efficiency corresponding to parametric variations, but not adequately capture the local gasification process predicted by the finite rate model in most part of the gasifier. Simulations are performed to help with design modifications of a small industrial demonstration entrained-flow gasifier. It is discovered that the benefit of opening the slag tap on the quench-type gasifier wider by allowing slag to move successfully without clogging is compromised by increased heat losses, reduced gasification performance

  11. Smelting Associated with the Advanced Spent Fuel Conditioning Process

    SciTech Connect

    Hur, J-M.; Jeong, M-S.; Lee, W-K.; Cho, S-H.; Seo, C-S.; Park, S-W.

    2004-10-03

    The smelting process associated with the advanced spent fuel conditioning process (ACP) of Korea Atomic Energy Research Institute was studied by using surrogate materials. Considering the vaporization behaviors of input materials, the operation procedure of smelting was set up as (1) removal of residual salts, (2) melting of metal powder, and (3) removal of dross from a metal ingot. The behaviors of porous MgO crucible during smelting were tested and the chemical stability of MgO in the salt-being atmosphere was confirmed.

  12. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, Charles D.; Faison, Brendlyn D.; Davison, Brian H.; Woodward, Jonathan

    1994-01-01

    A process for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attritor and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system.

  13. New insight into the promoting role of process on the CeO₂-WO₃/TiO₂ catalyst for NO reduction with NH₃ at low-temperature.

    PubMed

    Zhang, Shule; Zhong, Qin; Shen, Yuge; Zhu, Li; Ding, Jie

    2015-06-15

    This study aimed at investigating the reason of high catalytic activity for CeO2-WO3/TiO2 catalyst from the aspects of WO3 interaction with other species and the NO oxidation process. Analysis by X-ray diffractometry, photoluminescence spectra, diffuse reflectance UV-visible, X-ray photoelectron spectroscopy, density functional theory calculations, electron paramagnetic resonance spectroscopy, temperature-programmed-desorption of NO and in situ diffuse reflectance infrared transform spectroscopy showed that WO3 could interact with CeO2 to improve the electron gaining capability of CeO2 species. In addition, WO3 species acted as electron donating groups to transfer the electrons to CeO2 species. The two aspects enhanced the formation of reduced CeO2 species to improve the formation of superoxide ions. Furthermore, the Ce species were the active sites for the NO adsorption and the superoxide ions over the catalyst needed oxidizing the adsorbed NO to improve the NO oxidation. This process was responsible for the high catalytic activity of CeO2-WO3/TiO2 catalyst. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Flicker Regularity Is Crucial for Entrainment of Alpha Oscillations.

    PubMed

    Notbohm, Annika; Herrmann, Christoph S

    2016-01-01

    those presented during the maximum. In the second experiment stimulation with higher light intensity during both rhythmic and arrhythmic stimulation lead to an increased behavioral modulation depth, supposedly as a consequence of stronger entrainment during rhythmic stimulation. Altogether, our results reveal evidence for rhythmic and arrhythmic visual stimulation to induce fundamentally different processes in the brain: we suggest that rhythmic but not arrhythmic stimulation interacts with ongoing alpha oscillations via entrainment.

  15. Flicker Regularity Is Crucial for Entrainment of Alpha Oscillations

    PubMed Central

    Notbohm, Annika; Herrmann, Christoph S.

    2016-01-01

    compared to those presented during the maximum. In the second experiment stimulation with higher light intensity during both rhythmic and arrhythmic stimulation lead to an increased behavioral modulation depth, supposedly as a consequence of stronger entrainment during rhythmic stimulation. Altogether, our results reveal evidence for rhythmic and arrhythmic visual stimulation to induce fundamentally different processes in the brain: we suggest that rhythmic but not arrhythmic stimulation interacts with ongoing alpha oscillations via entrainment. PMID:27790105

  16. Enhanced performance of solid oxide fuel cells with Ni/CeO 2 modified La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Xingbao; Lü, Zhe; Wei, Bo; Chen, Kongfa; Liu, Mingliang; Huang, Xiqiang; Su, Wenhui

    The optimization of electrodes for solid oxide fuel cells (SOFCs) has been achieved via a wet impregnation method. Pure La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCrM) anodes are modified using Ni(NO 3) 2 and/or Ce(NO 3) 3/(Sm,Ce)(NO 3) x solution. Several yttria-stabilized zirconia (YSZ) electrolyte-supported fuel cells are tested to clarify the contribution of Ni and/or CeO 2 to the cell performance. For the cell using pure-LSCrM anodes, the maximum power density (P max) at 850 °C is 198 mW cm -2 when dry H 2 and air are used as the fuel and oxidant, respectively. When H 2 is changed to CH 4, the value of P max is 32 mW cm -2. After 8.9 wt.% Ni and 5.8 wt.% CeO 2 are introduced into the LSCrM anode, the cell exhibits increased values of P max 432, 681, 948 and 1135 mW cm -2 at 700, 750, 800 and 850 °C, respectively, with dry H 2 as fuel and air as oxidant. When O 2 at 50 mL min -1 is used as the oxidant, the value of P max increases to 1450 mW cm -2 at 850 °C. When dry CH 4 is used as fuel and air as oxidant, the values of P max reach 95, 197, 421 and 645 mW cm -2 at 750, 800, 850 and 900 °C, respectively. The introduction of Ni greatly improves the performance of the LSCrM anode but does not cause any carbon deposit.

  17. NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for the PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O.

    2003-08-01

    The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.

  18. Study of Air Entrainment by a Horizontal Plunging Liquid Jet

    NASA Astrophysics Data System (ADS)

    Trujillo, Mario; Deshpande, Suraj; Wu, Xiongjun; Chahine, Georges

    2009-11-01

    The process of air entrainment following the impact of an initially horizontal circular water jet on a pool of water has been studied computationally and experimentally. It has been found that the entrainment of air cavities in the near field region is periodic, not continuous as reported in earlier studies. The simulations are based on a Volume-of-Fluid methodology with interfacial compression using a modified version of the open source utilities, OpenFoam. Close agreement with experiments is reported on the creation of cavities in the near field, where air entrainment occurs. The period of entrainment is found to be proportional to g, and a simplified closed-form solution for this periodic event is presented. An overall physical picture of the mechanisms leading to bubble formation is given. The far field, which is characterized by the presence of small bubbles is only partially resolved computationally. Comparisons against velocity data are performed in this region leading to adequate qualitative agreement.

  19. A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    NASA Technical Reports Server (NTRS)

    Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.

    2012-01-01

    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c)< 1 cm/s and v(sub f)> 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.

  20. Plate-Based Fuel Processing System Final Report

    SciTech Connect

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  1. Novel BaCe 0.7In 0.2Yb 0.1O 3- δ proton conductor as electrolyte for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Wang, Siwei; Dixon, Latoya; Chen, Fanglin

    Novel proton conductor BaCe 0.7In 0.2Yb 0.1O 3- δ (BCIYb) has been successfully synthesized by a modified Pechini method and characterized as electrolyte for intermediate temperature solid oxide fuel cells. Acceptable tolerance to wet CO 2 environment was found during chemical stability tests. No interaction between the BCIYb electrolyte and La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ (LSCF) cathode was observed during the cathode fabrication process. Further, no detectable impurity phase was found when the BCIYb-LSCF mixed powders were calcined at 700 °C for 50 h. BCIYb dense samples sintered at 1450 °C for 5 h showed acceptable conductivities of 7.2 × 10 -3, 8 × 10 -3, 4.5 × 10 -3 and 3.1 × 10 -3 S cm -1 at 800 °C in dry air, wet air, wet H 2 and wet N 2, respectively. The maximum cell power outputs of single cells with the configuration of Ni-BaZr 0.1Ce 0.7Y 0.2O 3- δ (BZCY)|BCIYb|BZCY-LSCF were 0.15, 0.218 and 0.28 W cm -2 at 600, 650 and 700 °C, respectively. No cell degradation was observed for cells operated at a constant voltage of 0.7 V in the 25 h short-term durability test.

  2. Conversion of microalgae to jet fuel: process design and simulation.

    PubMed

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Entrainment and detrainment in a simple cumulus cloud model

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Huffman, G. J.

    1982-01-01

    A cumulus cloud model, analogous to the mixed-layer models of the planetary boundary layer and the upper ocean, is developed using a single, unitary entrainment process in which the motion of the cloud boundary relative to the mean flow is permitted, produced, and controlled by turbulent processes. An alternate theory to the mixing-length theory of Asai and Kasahara (1967) is proposed which completely removes the strong scale-dependence of the Asai-Kasahara model. The model reintroduces scale-dependence by introducing including the pe5turbation pressure term of the equation of vertical motion. It is shown that the model predicts deeper clouds than the Asai-Kasahara model for a given sounding, due to the entrainment assumption and the effects of the perturbation pressure. Lateral entrainment dominates cloud-top entrainment, although finite-difference errors increase the cloud-top entrainment rate from zero to a positive value in actual situations. The fractional entrainment rate for updrafts is determined to vary only slightly with height and to decrease only slowly as the cloud radius increases, while the fractional detrainment rate for updrafts increases with height.

  4. Synthesis of Entrainment and Detrainment formulations for Convection Parameterizations

    NASA Astrophysics Data System (ADS)

    Siebesma, P.

    2015-12-01

    Mixing between convective clouds and its environment, usually parameterized in terms of entrainment and detrainment, are among the most important processes that determine the strength of the climate model sensitivity. This notion has led to a renaissance of research in exploring the mechanisms of these mixing processes and, as a result, to a wide range of seemingly different parameterized formulations. In this study we are aiming to synthesize these results as to offer a solid framework for use in parameterized formulations of convection. Detailed LES analyses in which clouds are subsampled according to their size show that entrainment rates are inversely proportional to the typical cloud radius, in accordance with original entraining plume models. These results can be shown analytically to be consistent with entrainment rate formulations of cloud ensembles that decrease inversely proportional with height, by making only mild assumptions on the shape of the associated cloud size distribution. In addition there are additional dependencies of the entrainment rates on the environmental thermodynamics such as the relative humidity and stability but these are of second order. In contrast detrainment rates do depend to first order on the environmental thermodynamics such as relative humidity and stability. This can be understood by realizing that i) the details of the cloud size distribution do depend on these environmental factors and ii) that detrainment rates have a much stronger dependency on the shape of the cloud size distribution than entrainment rates.

  5. Differential Entrainment of Neuroelectric Delta Oscillations in Developmental Dyslexia

    PubMed Central

    Soltész, Fruzsina; Szűcs, Denes; Leong, Victoria; White, Sonia; Goswami, Usha

    2013-01-01

    Oscillatory entrainment to the speech signal is important for language processing, but has not yet been studied in developmental disorders of language. Developmental dyslexia, a difficulty in acquiring efficient reading skills linked to difficulties with phonology (the sound structure of language), has been associated with behavioural entrainment deficits. It has been proposed that the phonological ‘deficit’ that characterises dyslexia across languages is related to impaired auditory entrainment to speech at lower frequencies via neuroelectric oscillations (<10 Hz, ‘temporal sampling theory’). Impaired entrainment to temporal modulations at lower frequencies would affect the recovery of the prosodic and syllabic structure of speech. Here we investigated event-related oscillatory EEG activity and contingent negative variation (CNV) to auditory rhythmic tone streams delivered at frequencies within the delta band (2 Hz, 1.5 Hz), relevant to sampling stressed syllables in speech. Given prior behavioural entrainment findings at these rates, we predicted functionally atypical entrainment of delta oscillations in dyslexia. Participants performed a rhythmic expectancy task, detecting occasional white noise targets interspersed with tones occurring regularly at rates of 2 Hz or 1.5 Hz. Both groups showed significant entrainment of delta oscillations to the rhythmic stimulus stream, however the strength of inter-trial delta phase coherence (ITC, ‘phase locking’) and the CNV were both significantly weaker in dyslexics, suggestive of weaker entrainment and less preparatory brain activity. Both ITC strength and CNV amplitude were significantly related to individual differences in language processing and reading. Additionally, the instantaneous phase of prestimulus delta oscillation predicted behavioural responding (response time) for control participants only. PMID:24204644

  6. Experimental insights on the electron transfer and energy transfer processes between Ce{sup 3+}-Yb{sup 3+} and Ce{sup 3+}-Tb{sup 3+} in borate glass

    SciTech Connect

    Sontakke, Atul D. Katayama, Yumiko; Tanabe, Setsuhisa; Ueda, Jumpei; Dorenbos, Pieter

    2015-03-30

    A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host. The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.

  7. Femtosecond laser processing of fuel injectors - a materials processing evaluation

    SciTech Connect

    Stuart, B C; Wynne, A

    2000-12-16

    Lawrence Livermore National Laboratory (LLNL) has developed a new laser-based machining technology that utilizes ultrashort-pulse (0.1-1.0 picosecond) lasers to cut materials with negligible generation of heat or shock. The ultrashort pulse laser, developed for the Department of Energy (Defense Programs) has numerous applications in operations requiring high precision machining. Due to the extremely short duration of the laser pulse, material removal occurs by a different physical mechanism than in conventional machining. As a result, any material (e.g., hardened steel, ceramics, diamond, silicon, etc.) can be machined with minimal heat-affected zone or damage to the remaining material. As a result of the threshold nature of the process, shaped holes, cuts, and textures can be achieved with simple beam shaping. Conventional laser tools used for cutting or high-precision machining (e.g., sculpting, drilling) use long laser pulses (10{sup -8} to over 1 sec) to remove material by heating it to the melting or boiling point (Figure 1.1a). This often results in significant damage to the remaining material and produces considerable slag (Figure 1.2a). With ultrashort laser pulses, material is removed by ionizing the material (Figure 1.1b). The ionized plasma expands away from the surface too quickly for significant energy transfer to the remaining material. This distinct mechanism produces extremely precise and clean-edged holes without melting or degrading the remaining material (Figures 1.2 and 1.3). Since only a very small amount of material ({approx} <0.5 microns) is removed per laser pulse, extremely precise machining can be achieved. High machining speed is achieved by operating the lasers at repetition rates up to 10,000 pulses per second. As a diagnostic, the character of the short-pulse laser produced plasma enables determination of the material being machined between pulses. This feature allows the machining of multilayer materials, metal on metal or metal on

  8. PROCESS OF MAKING SHAPED FUEL FOR NUCLEAR REACTORS

    DOEpatents

    O'Leary, W.J.; Fisher, E.A.

    1964-02-11

    A process for making uranium dioxide fuel of great strength, density, and thermal conductivity by mixing it with 0.1 to 1% of a densifier oxide (tin, aluminum, zirconium, ferric, zinc, chromium, molybdenum, titanium, or niobium oxide) and with a plasticizer (0.5 to 3% of bentonite and 0.05 to 2% of methylcellulose, propylene glycol alginate, or ammonium alginate), compacting the mixture obtained, and sintering the bodies in an atmosphere of carbon monoxide or carbon dioxide, with or without hydrogen, or of a nitrogen-hydrogen mixture is described. (AEC)

  9. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, D.O.; Buxton, S.R.

    1980-06-16

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  10. Process for recovery of palladium from nuclear fuel reprocessing wastes

    DOEpatents

    Campbell, David O.; Buxton, Samuel R.

    1981-01-01

    Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M, (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound, (c) heating the solution at reflux temperature until precipitation is complete, and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

  11. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  12. Automated catalyst processing for cloud electrode fabrication for fuel cells

    DOEpatents

    Goller, Glen J.; Breault, Richard D.

    1980-01-01

    A process for making dry carbon/polytetrafluoroethylene floc material, particularly useful in the manufacture of fuel cell electrodes, comprises of the steps of floccing a co-suspension of carbon particles and polytetrafluoroethylene particles, filtering excess liquids from the co-suspension, molding pellet shapes from the remaining wet floc solids without using significant pressure during the molding, drying the wet floc pellet shapes within the mold at temperatures no greater than about 150.degree. F., and removing the dry pellets from the mold.

  13. Air entrainment in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  14. Development of multilayer imprint process for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tokumaru, Kazuki; Tsumori, Fujio; Kudo, Kentaro; Osada, Toshiko; Shinagawa, Kazunari

    2017-06-01

    Solid oxide fuel cells (SOFCs) are fuel cells made of ceramics. To increase the SOFC energy density, we developed an SOFC with a wavy electrolyte layer. As a wavy electrolyte has a larger reaction surface area than a flat electrolyte, a higher energy density could be obtained. Our proposed process is named micro-powder imprint (µPI) with a multilayer imprint process that is useful for fabricating a microscale pattern on a ceramic sheet such as an SOFC electrolyte layer. µPI is based on nanoimprint lithography; therefore, it also exhibits the same advantages of high resolution and mass productivity. The starting material for µPI is a compound sheet containing ceramic powder and binder materials consisting of thermoplastic resin. In this study, two different sheets were stacked into one sheet as a multilayer sheet for the µPI process to form a wavy compound sheet. As the initial state of the stacked sheet, including the mechanical properties of each layer, affects the final wavy shape, we changed the material composition. As a result, the SOFCs unit cell with a wavy electrolyte was fabricated. Note that the anode layer was formed at the same time. After adding the cathode layer, we succeeded in preparing a complete cell for testing power generation.

  15. Co3O4/Sm-Doped CeO2/Co3O4 Trilayer Coating on AISI 441 Interconnect for Solid Oxide Fuel Cells.

    PubMed

    Shen, Fengyu; Lu, Kathy

    2017-02-22

    In this work, a novel Co/Sm-doped CeO2 (SDC)/Co trilayer of ∼6 μm is deposited by alternating electrodeposition and electrophoresis and oxidized to a Co3O4/SDC/Co3O4 trilayer structure. This coating is unique and effective in the following aspects: (1) The area specific resistance of the coated interconnect is more stable and lower than that of the uncoated interconnect after thermal treatment at 800 °C for 400 h. (2) The Co3O4/SDC/Co3O4 coating layer can effectively inhibit Cr diffusion and evaporation and significantly slow the oxidation rate of the interconnect. (3) The Sm0.5Sr0.5Co0.2Fe0.8O3 cathode in the electrolyte/cathode/interconnect half-cell retains its initial stoichiometry after 100 h of the thermal treatment. Subsequently, the ohmic resistance RΩ, high frequency polarization resistance RH, and low frequency polarization resistance RL of the half-cell with the Co3O4/SDC/Co3O4 coated interconnect are all smaller than those of the half-cell with the bare interconnect. The Co3O4/SDC/Co3O4 coating layer has great advantages to be used as a protective layer for the metallic interconnect in solid oxide fuel cells to improve cell performance, stability, and durability.

  16. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  17. Microbial fuel cell treatment of ethanol fermentation process water

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  18. New process converts cellulose waste into high Btu alcohol fuel

    SciTech Connect

    Not Available

    1980-08-01

    In the U.S. about 500 million tons of cellulose ends up in agricultural and municipal waste streams annually. Scientists at New York University have found a way to continuously convert waste cellulose such as sawdust and old newspapers into glucose sugar. It is reported that the process involves a twin-screen extruder and in a small pilot facility the extruder is continuously processing sawdust and newspapers at a rate of 200 pounds per hour. The resulting dark brown sludge contains 30% glucose that can be used to manufacture alcohol. The unreacted material, mainly lignin, can be burned for fuel. It is stated that there is enough energy in this secondary waste to run the alcohol fermentation and distillation process.

  19. Entrainment of the master circadian clock by scheduled feeding.

    PubMed

    Castillo, Marina R; Hochstetler, Kelly J; Tavernier, Ronald J; Greene, Dana M; Bult-Ito, Abel

    2004-09-01

    The master circadian clock, located in the mammalian suprachiasmatic nuclei (SCN), generates and coordinates circadian rhythmicity, i.e., internal organization of physiological and behavioral rhythms that cycle with a near 24-h period. Light is the most powerful synchronizer of the SCN. Although other nonphotic cues also have the potential to influence the circadian clock, their effects can be masked by photic cues. The purpose of this study was to investigate the ability of scheduled feeding to entrain the SCN in the absence of photic cues in four lines of house mouse (Mus domesticus). Mice were initially housed in 12:12-h light/dark cycle with ad libitum access to food for 6 h during the light period followed by 4-6 mo of constant dark under the same feeding schedule. Wheel running behavior suggested and circadian PER2 protein expression profiles in the SCN confirmed entrainment of the master circadian clock to the onset of food availability in 100% (49/49) of the line 2 mice in contrast to only 4% (1/24) in line 3 mice. Mice from line 1 and line 4 showed intermediate levels of entrainment, 57% (8/14) and 39% (7/18), respectively. The predictability of entrainment vs. nonentrainment in line 2 and line 3 and the novel entrainment process provide a powerful tool with which to further elucidate mechanisms involved in entrainment of the SCN by scheduled feeding.

  20. Rhythmic entrainment as a musical affect induction mechanism.

    PubMed

    J Trost, W; Labbé, C; Grandjean, D

    2017-02-01

    One especially important feature of metrical music is that it contains periodicities that listeners' bodily rhythms can adapt to. Recent psychological frameworks have introduced the notion of rhythmic entrainment, among other mechanisms, as an emotion induction principle. In this review paper, we discuss rhythmic entrainment as an affect induction mechanism by differentiating four levels of entrainment in humans-perceptual, autonomic physiological, motor, and social-all of which could contribute to a subjective feeling component. We review the theoretical and empirical literature on rhythmic entrainment to music that supports the existence of these different levels of entrainment by describing the phenomena and characterizing the associated underlying brain processes. The goal of this review is to present the theoretical implications and empirical findings about rhythmic entrainment as an important principle at the basis of affect induction via music, since it rests upon the temporal dimension of music, which is a specificity of music as an affective stimulus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Performance of Ni/ScSZ cermet anode modified by coating with Gd 0.2Ce 0.8O 2 for an SOFC running on methane fuel

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Ye, X. F.; Wang, S. R.; Nie, H. W.; Shi, J.; Hu, Q.; Qian, J. Q.; Sun, X. F.; Wen, T. L.

    A Ni/scandia-stabilized zirconia (ScSZ) cermet anode was modified by coating with nano-sized gadolinium-doped ceria (GDC, Gd 0.2Ce 0.8O 2) prepared using a simple combustion process within the pores of the anode for a solid oxide fuel cell (SOFC) running on methane fuel. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed in the anode characterizations. Then, the short-term stability for the cells with the Ni/ScSZ and 2.0 wt.%GDC-coated Ni/ScSZ anodes in 97%CH 4/3%H 2O at 700 °C was checked over a relative long period of operation. Open circuit voltages (OCVs) increased from 1.098 to 1.179 V, and power densities increased from 224 to 848 mW cm -2, as the operating temperature of an SOFC with 2.0 wt.%GDC-coated Ni/ScSZ anode was increased from 700 to 850 °C in humidified methane. The coating of nano-sized Gd 0.2Ce 0.8O 2 particle within the pores of the porous Ni/ScSZ anode significantly improved the performance of anode supported cells. Electrochemical impedance spectra (EIS) illustrated that the cell with Ni/ScSZ anode exhibited far greater impedances than the cell with 2.0 wt.%GDC-coated Ni/ScSZ anode. Introduction of nano-sized GDC particles into the pores of porous Ni/ScSZ anode will result in a substantial increase in the ionic conductivity of the anode and increase the triple phase boundary region expanding the number of sites available for electrochemical activity. No significant degradation in performance has been observed after 84 h of cell testing when 2.0 wt.%GDC-coated Ni/ScSZ anode was exposed to 97%CH 4/3%H 2O at 700 °C. Very little carbon was detected on the anodes, suggesting that carbon deposition was limited during cell operation. Consequently, the GDC coating on the pores of anode made it possible to have good stability for long-term operation due to low carbon deposition.

  2. Indirect thermal liquefaction process for producing liquid fuels from biomass

    SciTech Connect

    Kuester, J.L.

    1980-01-01

    A progress report on an indirect liquefaction process to convert biomass type materials to quality liquid hydrocarbon fuels by gasification followed by catalytic liquid fuels synthesis has been presented. A wide variety of feedstocks can be processed through the gasification system to a gas with a heating value of 500 + Btu/SCF. Some feedstocks are more attractive than others with regard to producing a high olefin content. This appears to be related to hydrocarbon content of the material. The H/sub 2//CO ratio can be manipulated over a wide range in the gasification system with steam addition. Some feedstocks require the aid of a water-gas shift catalyst while others appear to exhibit an auto-catalytic effect to achieve the conversion. H/sub 2/S content (beyond the gasification system wet scrubber) is negligible for the feedstocks surveyed. The water gas shift reaction appears to be enhanced with an increase in pyrolysis reactor temperature over the range of 1300 to 1700/sup 0/F. Reactor temperature in the Fischer-Tropsch step is a significant factor with regard to manipulating product composition analysis. The optimum temperature however will probably correspond to maximum conversion to liquid hydrocarbons in the C/sub 5/ - C/sub 17/ range. Continuing research includes integrated system performance assessment, alternative feedstock characterization (through gasification) and factor studies for gasification (e.g., catalyst usage, alternate heat transfer media, steam usage, recycle effects, residence time study) and liquefaction (e.g., improved catalysts, catalyst activity characterization).

  3. Maximizing the liquid fuel yield in a biorefining process.

    PubMed

    Zhang, Bo; von Keitz, Marc; Valentas, Kenneth

    2008-12-01

    Biorefining strives to recover the maximum value from each fraction, at minimum energy cost. In order to seek an unbiased and thorough assessment of the alleged opportunity offered by biomass fuels, the direct conversion of various lignocellulosic biomass was studied: aspen pulp wood (Populus tremuloides), aspen wood pretreated with dilute acid, aspen lignin, aspen logging residues, corn stalk, corn spathe, corn cob, corn stover, corn stover pellet, corn stover pretreated with dilute acid, and lignin extracted from corn stover. Besides the heating rate, the yield of liquid products was found to be dependent on the final liquefaction temperature and the length of liquefaction time. The major compounds of the liquid products from various origins were identified by GC-MS. The lignin was found to be a good candidate for the liquefaction process, and biomass fractionation was necessary to maximize the yield of the liquid bio-fuel. The results suggest a biorefinery process accompanying pretreatment, fermentation to ethanol, liquefaction to bio-crude oil, and other thermo-conversion technologies, such as gasification. Other biorefinery options, including supercritical water gasification and the effectual utilization of the bio-crude oil, are also addressed.

  4. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    NASA Astrophysics Data System (ADS)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  5. Process for converting cellulosic materials into fuels and chemicals

    DOEpatents

    Scott, C.D.; Faison, B.D.; Davison, B.H.; Woodward, J.

    1994-09-20

    A process is described for converting cellulosic materials, such as waste paper, into fuels and chemicals utilizing enzymatic hydrolysis of the major constituent of paper, cellulose. A waste paper slurry is contacted by cellulase in an agitated hydrolyzer. The cellulase is produced from a continuous, columnar, fluidized-bed bioreactor utilizing immobilized microorganisms. An attrition mill and a cellobiase reactor are coupled to the agitated hydrolyzer to improve reaction efficiency. The cellulase is recycled by an adsorption process. The resulting crude sugars are converted to dilute product in a fluidized-bed bioreactor utilizing microorganisms. The dilute product is concentrated and purified by utilizing distillation and/or a biparticle fluidized-bed bioreactor system. 1 fig.

  6. Air entrainment by breaking waves

    NASA Astrophysics Data System (ADS)

    Deike, Luc; Lenain, Luc; Melville, W. Kendall

    2017-04-01

    We present an estimate of the total volume of entrained air by breaking waves in the open ocean, based on a model for a single breaking wave and the statistics of breaking waves measured in the field and described by the average length of breaking crests moving with speeds in the range (c,c + dc) per unit area of ocean surface, Λ(c)dc, introduced by Phillips (1985). By extending the single breaking wave model to the open ocean, we show that the volume flux of air entrained by breaking waves, VA (volume per unit ocean area per unit time, a velocity), is given by the third moment of Λ(c), modulated by a function of the wave slope. Using field measurements of the distribution Λ(c) and the wave spectrum, we obtain an estimate of the total volume flux of air entrained by breaking for a wide range of wind and wave conditions. These results pave the way for accurate remote sensing of the air entrained by breaking waves and subsequent estimates of the associated gas transfer.

  7. Integrated microchemical systems for fuel processing in micro fuel cell applications

    NASA Astrophysics Data System (ADS)

    Pattekar, Ashish V.

    Rapid advances in microelectronics technology over the last decade have led to the search for novel applications of miniaturization to all aspects of engineering. Microreaction engineering, which involves the development of miniature reactors on microchips for novel applications, has been a key area of interest in this quest for miniaturization. The idea of a fully integrated microplant with embedded control electronics, sensors and actuators on a single silicon chip has been gaining increasing acceptance as significant progress is being made in this area. The aim of this project has been to demonstrate a working microreaction system for hydrogen delivery to miniature proton exchange membrane (PEM) fuel cells through the catalytic steam reforming of methanol. The complete reformer - fuel cell unit is proposed as an alternative to conventional portable sources of electricity such as batteries due to its ability to provide an uninterrupted supply of electricity as long as a supply of methanol and water can be provided. This technology also offers significantly higher energy storage densities, which translates into less frequent 'recharging' through the refilling of methanol fuel. Various aspects of the design of a miniature methanol reformer on a silicon substrate are discussed with a focus on the theoretical understanding of microreactor operation and optimum utilization of the semiconductor-processing techniques used for fabricating the devices. Three prototype microreactor designs have been successfully fabricated and tested. Issues related to microchannel capping, on-chip heating and temperature sensing, introduction and trapping of catalyst particles in microchannels, microfluidic interfacing, pressure drop reduction, and thermal insulation have been addressed. Details regarding modeling and simulation of the designs to provide an insight into the working of the microreactor are presented along with a description of the microfabrication steps followed to

  8. Thermodynamic analysis and comparison on oxy-fuel power generation process - article no. 053001

    SciTech Connect

    Deng, S.M.; Hynes, R.

    2009-09-15

    In this paper, pressurized oxy-fuel combustion power generation processes are modeled and analyzed based on a 350 MW subcritical reheat boiler associated with a condensing steam turbine. The performance results are obtained. Furthermore, the influences of slurry concentration and coal properties on power plant performance are investigated. An oxy-fuel configuration operating at ambient pressure is studied to compare the performance with pressurized oxy-fuel configuration. Thermodynamic analysis reveals the true potentials of the pressurized oxy-fuel process. Based on the system integration, an improved configuration is proposed in which plant efficiency of pressurized oxy-fuel process is increased by 1.36%.

  9. Synthesis and electrochemical characterization of Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 composite cathode for intermediate-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Dai, Ningning; Lou, Zhongliang; Wang, Zhenhua; Liu, Xiaoxi; Yan, Yiming; Qiao, Jinshuo; Jiang, Taizhi; Sun, Kening

    2013-12-01

    Nanoporous composite oxides Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 (SFM-SDC) have been prepared by a facile one-step method as cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The SFM-SDC composite materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and electrochemical impedance spectroscopy (EIS). The EIS results exhibit that SFM-SDC40 (wt% 60:40) cathode has encouraging electrochemical performance with low polarization resistance (Rp) on YSZ (Y2O3-stabilized ZrO2) electrolyte. Subsequently, bi-layer cathodes SDC/SFM-SDC are fabricated, and excellent electrochemical performance of such composite cathodes are observed. We demonstrate that the SDC interlayer significantly decreases the Rp of cathode and accelerates the charge transfer process. As a result, the Rp of the SDC/SFM-SDC40 bi-layer cathodes is almost 50% less than that of SFM-SDC40 cathode on YSZ electrolyte at 800 °C, and Rp is only 0.11 Ω cm2. Compared with single cells without an interlayer, the anode-supported single cells with SDC interlayer exhibit enhancement in overall power performance.

  10. Process Developed for Fabricating Engineered Pore Structures for High- Fuel-Utilization Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Sofie, Stephen W.; Cable, Thomas L.; Salamone, Sam M.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have tremendous commercial potential because of their high efficiency, high energy density, and flexible fuel capability (ability to use fossil fuels). The drive for high-power-utilizing, ultrathin electrolytes (less than 10 microns), has placed an increased demand on the anode to provide structural support, yet allow sufficient fuel entry for sustained power generation. Concentration polarization, a condition where the fuel demand exceeds the supply, is evident in all commercial-based anode-supported cells, and it presents a significant roadblock to SOFC commercialization.

  11. Sulfur tolerant molten carbonate fuel cell anode and process

    DOEpatents

    Remick, Robert J.

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  12. Review of solar fuel-producing quantum conversion processes

    NASA Technical Reports Server (NTRS)

    Peterson, D. B.; Biddle, J. R.; Fujita, T.

    1984-01-01

    The status and potential of fuel-producing solar photochemical processes are discussed. Research focused on splitting water to produce dihydrogen and is at a relatively early stage of development. Current emphasis is primarily directed toward understanding the basic chemistry underlying such quantum conversion processes. Theoretical analyses by various investigators predict a limiting thermodynamic efficiency of 31% for devices with a single photosystem operating with unfocused sunlight at 300 K. When non-idealities are included, it appears unlikely that actual devices will have efficiencies greater than 12 to 15%. Observed efficiencies are well below theoretical limits. Cyclic homogeneous photochemical processes for splitting water have efficiencies considerably less than 1%. Efficiency can be significantly increased by addition of a sacrificial reagent; however, such systems are no longer cyclic and it is doubtful that they would be economical on a commercial scale. The observed efficiencies for photoelectrochemical processes are also low but such systems appear more promising than homogeneous photochemical systems. Operating and systems options, including operation at elevated temperature and hybrid and coupled quantum-thermal conversion processes, are also considered.

  13. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our

  14. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha.

    PubMed

    Kayser, Stephanie J; Ince, Robin A A; Gross, Joachim; Kayser, Christoph

    2015-11-04

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that

  15. Doing Duo - a case study of entrainment in William Forsythe's choreography "Duo".

    PubMed

    Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E

    2014-01-01

    Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models.

  16. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  17. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-09-30

    The U.S. Department of Energy‘s National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE‘s bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and

  18. Product Characterization for Entrained Flow Coal/Biomass Co-Gasification

    SciTech Connect

    Maghzi, Shawn; Subramanian, Ramanathan; Rizeq, George; Singh, Surinder; McDermott, John; Eiteneer, Boris; Ladd, David; Vazquez, Arturo; Anderson, Denise; Bates, Noel

    2011-12-11

    The U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) is exploring affordable technologies and processes to convert domestic coal and biomass resources to high-quality liquid hydrocarbon fuels. This interest is primarily motivated by the need to increase energy security and reduce greenhouse gas emissions in the United States. Gasification technologies represent clean, flexible and efficient conversion pathways to utilize coal and biomass resources. Substantial experience and knowledge had been developed worldwide on gasification of either coal or biomass. However, reliable data on effects of blending various biomass fuels with coal during gasification process and resulting syngas composition are lacking. In this project, GE Global Research performed a complete characterization of the gas, liquid and solid products that result from the co-gasification of coal/biomass mixtures. This work was performed using a bench-scale gasifier (BSG) and a pilot-scale entrained flow gasifier (EFG). This project focused on comprehensive characterization of the products from gasifying coal/biomass mixtures in a high-temperature, high-pressure entrained flow gasifier. Results from this project provide guidance on appropriate gas clean-up systems and optimization of operating parameters needed to develop and commercialize gasification technologies. GE's bench-scale test facility provided the bulk of high-fidelity quantitative data under temperature, heating rate, and residence time conditions closely matching those of commercial oxygen-blown entrained flow gasifiers. Energy and Environmental Research Center (EERC) pilot-scale test facility provided focused high temperature and pressure tests at entrained flow gasifier conditions. Accurate matching of syngas time-temperature history during cooling ensured that complex species interactions including homogeneous and heterogeneous processes such as particle nucleation, coagulation, surface condensation, and gas

  19. Simulating entrainment and particle fluxes in stratified estuaries

    SciTech Connect

    Jensen, A.; Jirka, G.; Lion, L.W.; Brunk, B.

    1999-04-01

    Settling and entrainment are the dominant processes governing noncohesive particle concentration throughout the water column of salt-wedge estuaries. Determination of the relative contribution of these transport processes is complicated by vertical gradients in turbulence and fluid density. A differential-turbulence column (DTC) was designed to simulate a vertical section of a natural water column. With satisfactory characterization of turbulence dissipation and saltwater entrainment, the DTC facilitates controlled studies of suspended particles under estuarine conditions. The vertical decay of turbulence in the DTC was found to obey standard scaling law relations when the characteristic length scale for turbulence in the apparatus was incorporated. The entrainment rate of a density interface also followed established grid-stirred turbulence scaling laws. These relations were used to model the change in concentration of noncohesive particles above a density interface. Model simulations and experimental data from the DTC were consistent over the range of conditions encountered in natural salt-wedge estuaries. Results suggest that when the ratio of entrainment rate to particle settling velocity is small, sedimentation is the dominant transport process, while entrainment becomes significant as the ratio increases.

  20. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Fuel gas systems and processes to... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... requirements for fuel gas systems and processes. (1) Except during periods of start-up, shutdown and...

  1. Turbulence and entrainment length scales in large wind farms

    NASA Astrophysics Data System (ADS)

    Andersen, Søren J.; Sørensen, Jens N.; Mikkelsen, Robert F.

    2017-03-01

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control. This article is part of the themed issue 'Wind energy in complex terrains'.

  2. Turbulence and entrainment length scales in large wind farms.

    PubMed

    Andersen, Søren J; Sørensen, Jens N; Mikkelsen, Robert F

    2017-04-13

    A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control.This article is part of the themed issue 'Wind energy in complex terrains'.

  3. Supercritical Fluids Processing of Biomass to Chemicals and Fuels

    SciTech Connect

    Olson, Norman K.

    2011-09-28

    The main objective of this project is to develop and/or enhance cost-effective methodologies for converting biomass into a wide variety of chemicals, fuels, and products using supercritical fluids. Supercritical fluids will be used both to perform reactions of biomass to chemicals and products as well as to perform extractions/separations of bio-based chemicals from non-homogeneous mixtures. This work supports the Biomass Program’s Thermochemical Platform Goals. Supercritical fluids are a thermochemical approach to processing biomass that, while aligned with the Biomass Program’s interests in gasification and pyrolysis, offer the potential for more precise and controllable reactions. Indeed, the literature with respect to the use of water as a supercritical fluid frequently refers to “supercritical water gasification” or “supercritical water pyrolysis.”

  4. Environmental assessment for radioisotope heat source fuel processing and fabrication

    SciTech Connect

    Not Available

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  5. Interaction behavior between binary xCe-yNd alloy and HT9

    NASA Astrophysics Data System (ADS)

    Kim, Jun Hwan; Cheon, Jin Sik; Lee, Byoung Oon; Kim, June Hyung

    2016-10-01

    Studies were carried out to investigate the role of Ce and Nd, contained inside metal fuel during reactor operation, and their effect on the Fuel-Cladding Chemical Interaction (FCCI) phenomenon, which limits fuel performance in the Sodium-cooled Fast Reactor (SFR). Binary model alloys of xCe-yNd were manufactured, and then diffusion couple tests with HT9 (12Cr-1MoWV) ferritic-martensitic cladding material were carried out at a temperature of 660 °C for up to 25 h. The results showed that both Ce and Nd reacted with Fe in the cladding material to form an interaction layer. Analysis of the microstructure and reaction kinetics revealed that Fe in the cladding material rapidly migrates into Ce to form eutectic reaction, leaving a Fe depleted zone, in which Ce substitutes. In the case of Nd element, a typical solid-solid diffusion process governed to form a Fe17Nd2 type intermetallic compound. Synergism between Ce and Nd occurred so that the reaction thickness was increased, reaching the maximum reaction thickness in the case of the xCe-yNd alloy, whose composition was nearly 1:1.

  6. Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup

    SciTech Connect

    Ivan R. Thomas

    2010-07-01

    INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentation within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge

  7. Entrainment by the jet in HH 47

    NASA Technical Reports Server (NTRS)

    Raymond, John C.; Morse, Jon A.; Hartigan, P.; Curiel, S.; Heathcote, Steve

    1994-01-01

    Fabry-Perot images of the HH 47 optical jet show that the velocity decreases from the center toward the edges which is interpreted as evidence for entrainment. Those images can be used to investigate the rate of entrainment required to account for the observed luminosity. Entrainment along the jet can account for only small fractions of the jet mass and the molecular outflow seen in CO. We compare the density, excitation, and velocity structure of the jet with the predictions of viscous entrainment models and models of entrainment by expulsion of jet material by internal shocks, and find that either type of model can explain the general features.

  8. Sm 0.2(Ce 1- xTi x) 0.8O 1.9 modified Ni-yttria-stabilized zirconia anode for direct methane fuel cell

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Chen, Fanglin; Wang, Wendong; Ding, Dong; Gao, Jianfeng

    Sm 0.2(Ce 1- xTi x) 0.8O 1.9 (SCT x, x = 0-0.29) modified Ni-yttria-stabilized zirconia (YSZ) has been fabricated and evaluated as anode in solid oxide fuel cells for direct utilization of methane fuel. It has been found that both the amount of Ti-doping and the SCT x loading level in the anode have substantial effect on the electrochemical activity for methane oxidation. Optimal anode performance for methane oxidation has been obtained for Sm 0.2(Ce 0.83Ti 0.17) 0.8O 1.9 (SCT0.17) modified Ni-YSZ anode with SCT0.17 loading of about 241 mg cm -2 resulted from four repeated impregnation cycles. When operating on humidified methane as fuel and ambient air as oxidant at 700 °C, single cells with the configuration of SCT0.17 modified Ni-YSZ anode, YSZ electrolyte and La 0.6Sr 0.4Co 0.2Fe 0.8O 3-Sm 0.2Ce 0.8O 1.9 (LSCF-SDC) composite cathode show the polarization cell resistance of 0.63 Ω cm 2 under open circuit conditions and produce a peak power density of 383 mW cm -2. It has been revealed that the coated Ti-doped SDC on Ni-YSZ anode not only effectively prevents the methane fuel from directly impacting on the Ni particles, but also enhances the kinetics of methane oxidation due to an improved oxygen storage capacity (OSC) and redox equilibrium of the anode surface, resulting in significant enhancement of the SCT x modified Ni-YSZ anode for direct methane oxidation.

  9. On the Airborne Laser Scanning data processing for capturing fuel layer and mapping fuel properties

    NASA Astrophysics Data System (ADS)

    Coluzzi, Rosa; Lasaponara, Rosa; Lanorte, Antonio

    2010-05-01

    conventional ALS. In this paper we discuss the results obtained from the approach we devised to extract information on fuel layer. We derived tree-model using the measurements of crown diameter and height canopy obtained from the point clouds. The workflow for processing airborne laser data (LiDAR) and airborne images may be divided into five major steps: (i) initial setup and data calibration, (ii) classifying points, (iii) processing images, (iv) validating positioning, and (v) creating delivery products. The initial setup involves importing all the necessary raw data into the processing software, applying coordinate transformations and calibration, which is based on the comparison of the laser data produced by different flight passes which overlap each other. Later both Digital Surface Model (DSMs) and Digital Terrain Model (DTMs) are obtained. Fuel characterization demands a detailed and reliable separation of different layer of vegetation. Such classification can be obtained using the diverse laser measurements and information, such as: (i) height; (ii) intensity; (iii) echo width. Herein, we will focus on the elaboration performed using both height, obtained from the 3D point clouds, and ortophoto acquired at the same time as ALS survey. Due to its efficient data sampling capabilities, FW-LIDAR is capable of detecting target with an altimetrical resolution of <0.1m. To achieve this level of resolution, it is necessary to process the ALS point cloud using appropriate numerical filters. In this case study, the classification of laser data was performed using a strategy based on a set of "filtrations of the filtrate". Appropriate criteria for the classification and filtering were set to gradually refine the intermediate results.

  10. Entrainment in electrohydrodynamic heat pipes

    NASA Technical Reports Server (NTRS)

    Jones, T. B.; Perry, M. P.

    1972-01-01

    A theoretical analysis for predicting the onset of the Kelvin-Helmholtz instability is reported. The model for the analysis is described, and the derived stability criterion are given. It is concluded that surface tension plays a role in the entrainment limit of electro hydrodynamic heat pipes. The surface of the liquid in an EHD flow structure is open, with no restriction placed on the wavenumbers of perturbations.

  11. Timescales of Massive Human Entrainment

    PubMed Central

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick

    2015-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment—as expressed by the content and patterns of hundreds of thousands of messages on Twitter—during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5–10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment. PMID:25880357

  12. 62 FR 46525 - Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-09-03

    ... COMMISSION Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG AGENCY: Nuclear Regulatory... completion and availability of NUREG-1601, ``Chemical Process Safety at Fuel Cycle Facilities,'' dated July.... SUPPLEMENTARY INFORMATION: NRC is announcing the availability of NUREG-1601, ``Chemical Process Safety at...

  13. Assessment of sulfur removal processes for advanced fuel cell systems

    SciTech Connect

    Lorton, G.A.

    1980-01-01

    This study consisted of a technical evaluation and economic comparison of sulfur removal processes for integration into a coal gasification-molten carbonate (CGMC) fuel cell power plant. Initially, the performance characteristics of potential sulfur removal processes were evaluated and screened for conformance to the conditions and requirements expected in commercial CGMC power plants. Four of these processes, the Selexol process, the Benfield process, the Sulfinol process, and the Rectisol process, were selected for detailed technical and economic comparison. The process designs were based on a consistent set of technical criteria for a grass roots facility with a capacity of 10,000 tons per day of Illinois No. 6 coal. Two raw gas compositions, based on oxygen-blown and air-blown Texaco gasification, were used. The bulk of the sulfur was removed in the sulfur removal unit, leaving a small amount of sulfur compounds in the gas (1 ppMv or 25 ppMv). The remaining sulfur compounds were removed by reaction with zinc oxide in the sulfur polishing unit. The impact of COS hydrolysis pretreatment on sulfur removal was evaluated. Comprehensive capital and O and M cost estimates for each of the process schemes were developed for the essentially complete removal of sulfur compounds. The impact on the overall plant performance was also determined. The total capital requirement for sulfur removal schemes ranged from $59.4/kW to $84.8/kW for the oxygen-blown cases and from $89.5/kW to $133/kW for the air-blown cases. The O and M costs for sulfur removal for 70% plant capacity factor ranged from 0.82 mills/kWh to 2.76 mills/kWh for the oxygen-blown cases and from 1.77 mills/kWh to 4.88 mills/kWh for the air-blown cases. The Selexol process benefitted the most from the addition of COS hydrolysis pretreatment.

  14. AFCI Transmutation Fuel Processes and By-Products Planning: Interim Report

    SciTech Connect

    Eric L. Shaber

    2005-09-01

    dictates the need for detailed process flows, mass balances, batch size data, and radiological dose estimates. Full definition of the materials that will need to be handled in the facility as feed material inputs, in-process fuel, scrap recycle, scrap requiring recovery, and by-product wastes is required. The feed material for demonstrating transmutation fuel fabrication will need to come from the separations of actinides from spent nuclear fuel processed in the same AFCF.

  15. Localizing ventricular tachycardia through entrainment.

    PubMed

    Kuo, C T; Luqman, N; Lin, K H; Chiang, C W

    2000-12-01

    Area(s) of slow conduction are thought to be present within the reentry circuit of most clinically important ventricular tachycardia (VT). To prevent recurrence after ablation of VT late after myocardial infarction, it is desirable to localize and destroy area(s) of slow conduction "critical link" within the reentry circuit. Conventionally, they may be identified by endocardial catheter mapping, continuous electrical activity, mid-diastolic potentials, earliest endocardial activation, pace-mapping etc. However, none of these methods are very specific. Entrainment method may be used to localize the slow conduction zone of reentrant VT. Concealed entrainment is consistent with pacing at a site in the reentry circuit but may also occur at some "bystander" sites that are close to the reentry circuit but are not participating in the circuit itself. During pacing at the slow conduction area of the reentry circuit, the stimulus to QRS (S-QRS) interval should equal the electrogram to QRS (EG-QRS) interval during VT. Similarly the post-pacing interval (PPI) approximates the tachycardia cycle length. During pacing at bystander sites, the S-QRS interval may be greater, less than or equal to the EG-QRS interval, depending on the conduction time from the bystander site to the circuit. The PPI, however, always exceed the tachycardia cycle length. In conjunction with concealed entrainment, the use of diastolic potential, double potentials and continuous electrical activity enhances the prediction of radiofrequency termination of post-infarction VT.

  16. Pulsar rotation with superfluid entrainment

    NASA Astrophysics Data System (ADS)

    Antonelli, Marco; Pizzochero, Pierre M.

    2017-06-01

    Large pulsar glitches (like the ones detected in the Vela) are though to be a consequence of the superfluid component present in the interior of mature neutron stars: this component can rotate differentially with respect to the normal part of the star, storing the angular momentum needed to produce the observed sudden decrease of the pulsar rotational period. However strong entrainment (a non-dissipative effect that couples the superfluid component with the non-superfluid component inside the star) challenges this picture. Here we study the impact of entrainment on the angular momentum that can be exchanged between the normal component and the superfluid during a glitch by means of a consistent global model. This allows to estimate the maximum angular momentum reservoir stored into the superfluid component of the star: the essential ingredient are newly calculated mesoscopic pinning forces that block the superfluid vorticity in the crust of the neutron star. This method can also provide a quantitative test for global models of rotating neutron stars, as well as for microphysical inputs present in literature (like entrainment parameters and pinning forces).

  17. Nitride Fuel Development Using Cryo-process Technique

    SciTech Connect

    O'Brien, Brandi M; Windes, William E

    2007-06-01

    A new cryo-process technique has been developed for the fabrication of advanced fuel for nuclear systems. The process uses a new cryo-processing technique whereby small, porous microspheres (<2000 µm) are formed from sub-micron oxide powder. A simple aqueous particle slurry of oxide powder is pumped through a microsphere generator consisting of a vibrating needle with controlled amplitude and frequency. As the water-based droplets are formed and pass through the microsphere generator they are frozen in a bath of liquid nitrogen and promptly vacuum freeze-dried to remove the water. The resulting porous microspheres consist of half micron sized oxide particles held together by electrostatic forces and mechanical interlocking of the particles. Oxide powder microspheres ranging from 750 µm to 2000 µm are then converted into a nitride form using a high temperature fluidized particle bed. Carbon black can be added to the oxide powder before microsphere formation to augment the carbothermic reaction during conversion to a nitride. Also, the addition of ethyl alcohol to the aqueous slurry reduces the surface tension energy of the droplets resulting in even smaller droplets forming in the microsphere generator. Initial results from this new process indicate a lower impurity contamination in the final nitrides due to the single feed stream of particles, material handling and conversion are greatly simplified, a minimum of waste and personnel exposure are anticipated, and finally the conversion kinetics may be greatly increased because of the small oxide powder size (sub-micron) forming the porous microsphere. Thus far the fabrication process has been successful in demonstrating all of these improvements with surrogate ZrO2 powder. Further tests will be conducted in the future using the technique on UO2 powders.

  18. Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey

    SciTech Connect

    O'Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

  19. Process for making a martensitic steel alloy fuel cladding product

    DOEpatents

    Johnson, Gerald D.; Lobsinger, Ralph J.; Hamilton, Margaret L.; Gelles, David S.

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  20. Disposition of salt-waste from pyrochemical nuclear fuel processing

    SciTech Connect

    Vance, E.R.

    2007-07-01

    Waste salts from pyrochemical processing of nuclear fuel can be immobilised in sodalite if consolidated by hot isostatic pressing (HIP) at {approx}750 deg. C/100 MPa in thick stainless steel 316 cans. Other canning materials for this purpose also look possible. Spodiosite-based waste forms do not look promising in terms of leach resistance and their incorporation of alkali ions and compatibility with other phases which could potentially accommodate fission products, such as NaZr{sub 2}(PO{sub 4}){sub 3} or alumino-phosphate glass. Chloro- or fluor-apatite-based waste forms however have been reported to successfully accommodate fission products and alkalis which would be derived from either chloride- or fluoride-based waste pyro-processing salts. The presence of 10 or 20 wt% of additional Whitlockite, Ca{sub 3}(PO{sub 4}){sub 2}, should allow chemical flexibility to maintain the same qualitative phase assemblage when there are variations in the waste feed and in the waste/precursor ratios. Experimental verification of incorporation of the full complement of waste salts and fission products is not yet complete however. Apatite-rich samples could likely be HIPed in Inconel 600 cans. Other candidate HIP canning materials such as Alloy 22 or Inconel 625 are under study by encapsulating them in the candidate waste form and studying their interaction or otherwise with the waste form. (author)

  1. Potential synergy: the thorium fuel cycle and rare earths processing

    SciTech Connect

    Ault, T.; Wymer, R.; Croff, A.; Krahn, S.

    2013-07-01

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-level estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)

  2. Sintering Studies of Ga-Doped CeO{sub 2} (Ga-Doped PuO{sub 2} Surrogate) for Mixed Oxide Nuclear Fuel

    SciTech Connect

    Haertling, C.; Huling, J.; Park, Y.S.

    1999-04-25

    Sintering studies of CeO{sub 2} and CeO{sub 2} + 2 wt. % Ga{sub 2}O{sub 3} were completed. Firing temperatures studied were 1250-1650 C with 2 to 4 hour firing soak times in air. Powders fabricated by three methods (as-received, attrition-mill and nitrite-derived) were studied. Attrition-milled CeO{sub 2} improved densities as compared with as-received CeO{sub 2}. Attrition-milled CeO{sub 2} with 2 wt.% Ga{sub 2}O{sub 3} showed decreased densities with increasing temperatures. As-received CeO{sub 2} with 2 wt.% Ga{sub 2}O{sub 3} showed a opposite trend, increasing in density with increased firing temperature. Two pellet preparation methods were studied, a one-step-press method and a two-step-press method. The two-step-press method showed greater densities at lower firing temperatures and times as compared with the one-step-press method, however for CeO{sub 2} + 2 wt.% Ga{sub 2}O{sub 3}, the two methods gave equivalent results at 1650 C, 6 hr. firing conditions.

  3. Fuel Injector With Shear Atomizer

    NASA Technical Reports Server (NTRS)

    Beal, George W.; Mills, Virgil L.; Smith, Durward B., II; Beacom, William F.

    1995-01-01

    Atomizer for injecting liquid fuel into combustion chamber uses impact and swirl to break incoming stream of fuel into small, more combustible droplets. Slanted holes direct flow of liquid fuel to stepped cylindrical wall. Impact on wall atomizes liquid. Air flowing past vanes entrains droplets of liquid in swirling flow. Fuel injected at pressure lower than customarily needed.

  4. Fate of virginiamycin through the fuel ethanol production process.

    PubMed

    Bischoff, Kenneth M; Zhang, Yanhong; Rich, Joseph O

    2016-05-01

    Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process was conducted in the pilot plant facilities at the National Corn to Ethanol Research Center, Edwardsville, IL. Three 15,000-liter fermentor runs were performed: one with no antibiotic (F1), one dosed with 2 parts per million (ppm) of a commercial virginiamycin product (F2), and one dosed at 20 ppm of virginiamycin product (F3). Fermentor samples, distillers dried grains with solubles (DDGS), and process intermediates (whole stillage, thin stillage, syrup, and wet cake) were collected from each run and analyzed for virginiamycin M and virginiamycin S using a liquid chromatography-mass spectrometry method. Virginiamycin M was detected in all process intermediates of the F3 run. On a dry-weight basis, virginiamycin M concentrations decreased approximately 97 %, from 41 μg/g in the fermentor to 1.4 μg/g in the DDGS. Using a disc plate bioassay, antibiotic activity was detected in DDGS from both the F2 and F3 runs, with values of 0.69 μg virginiamycin equivalent/g sample and 8.9 μg/g, respectively. No antibiotic activity (<0.6 μg/g) was detected in any of the F1 samples or in the fermentor and process intermediate samples from the F2 run. These results demonstrate that low concentrations of biologically active antibiotic may persist in distillers grains coproducts produced from fermentations treated with virginiamycin.

  5. High performance fuel electrodes fabricated by electroless plating of copper on BaZr0.8Ce0.1Y0.1O3-δ proton-conducting ceramic

    NASA Astrophysics Data System (ADS)

    Patki, Neil S.; Way, J. Douglas; Ricote, Sandrine

    2017-10-01

    The stability of copper at high temperatures in reducing and hydrocarbon-containing atmospheres makes it a good candidate for fabricating fuel electrodes on proton-conducting ceramics, such as BaZr0.9-xCexY0.1O3-δ (BZCY). In this work, the electrochemical performance of Cu-based electrodes fabricated by electroless plating (ELP) on BaZr0.8Ce0.1Y0.1O3-δ is studied with impedance spectroscopy. Three activation catalysts (Pd, Ru, and Cu) are investigated and ELP is compared to a commercial Cu paste (ESL 2312-G) for electrode fabrication. The area specific resistances (ASR) for Pd, Ru, and Cu activations at 700 °C in moist 5% H2 in Ar are 2.1, 3.2, and 13.4 Ω cm2, respectively. That is a 1-2 orders of magnitude improvement over the commercial Cu paste (192 Ω cm2). Furthermore, the ASR has contributions from electrode processes and charge transfer at the electrode/electrolyte interface. Additionally, the morphology of the as-fabricated electrode is unaffected by the activation catalyst. However, heat treatment at 750 °C in H2 for 24 h leads to sintering and large reorganization of the electrode fabricated with Cu activation (micron sized pores seen in the tested sample), while Pd and Ru activations are immune to such reorganization. Thus, Pd and Ru are identified as candidates for future work with improvements to charge transfer required for the former, and better electrode processes required for the latter.

  6. Fuel quality-processing study. Volume 1: Overview and results

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.

    1982-01-01

    The methods whereby the intermediate results were obtained are outlined, and the evaluation of the feasible paths from liquid fossil fuel sources to generated electricity is presented. The segments from which these paths were built are the results from the fuel upgrading schemes, on-site treatments, and exhaust gas treatments detailed in the subsequent volumes. The salient cost and quality parameters are included.

  7. Process for making film-bonded fuel cell interfaces

    DOEpatents

    Kaufman, Arthur; Terry, Peter L.

    1990-07-03

    An improved interface configuration for use between adjacent elements of a fuel cell stack. The interface is impervious to gas and liquid and provides resistance to corrosion by the electrolyte of the fuel cell. A multi-layer arrangement for the interface provides bridging electrical contact with a hot-pressed resin filling the void space.

  8. Plasma processing of spent nuclear fuel by two-frequency ion cyclotron resonance heating

    SciTech Connect

    Timofeev, A. V.

    2009-11-15

    A previously developed method for analyzing the plasma processing of spent nuclear fuel is generalized to a plasma containing multicharged fuel ions. In such a plasma, ion cyclotron resonance heating of nuclear ash ions should be carried out in two monochromatic RF fields of different frequencies, provided that the fraction of {xi} multicharged ions is small, {xi} {<=} 0.1, a condition that substantially restricts the productivity of systems for processing spent nuclear fuel. Ways of overcoming this difficulty are discussed.

  9. Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process

    SciTech Connect

    G. A. Moore; M. C. Marshall

    2010-01-01

    Integral to the current UMo fuel foil processing scheme being developed at Idaho National Laboratory (INL) is the incorporation of a zirconium barrier layer for the purpose of controlling UMo-Al interdiffusion at the fuel-meat/cladding interface. A hot “co-rolling” process is employed to establish a ~25-µm-thick zirconium barrier layer on each face of the ~0.3-mm-thick U10Mo fuel foil.

  10. Refractive index matched suspensions as a tool for investigating entrainment by avalanches and debris flows

    NASA Astrophysics Data System (ADS)

    Bates, Belinda; Ancey, Christophe

    2015-04-01

    Geophysical gravity flows such as avalanches and debris flows are complicated mixtures of fluid and solids, often containing particle sizes of many orders of magnitude. In a debris flow, for example, the composition varies from head to tail, and from bottom to top due to particle size segregation and recirculation. In addition the solid components may have different masses and mechanical properties. For this reason, a complete understanding of substrate entrainment by this type of flow is still out of reach. A common strategy for advancing our understanding of the physics of processes like entrainment is to use a greatly simplified laboratory model of a debris flow, and take internal and bulk measurements. This idealized technique forms the basis of this study, in which a two-phase, monodisperse suspension of PMMA beads in a refractive-index matched suspending fluid flowed down a flume, encountering an entrainable region of the same suspension on the way. This study represents the first attempt of taking continuous internal velocity measurements inside a flowing, entraining model avalanche or debris flow in the laboratory. Interior PIV measurements of flow velocity were taken in the entrainable region, along with surface height measurements, to shed some light on the entrainment mechanisms and to see how the bulk flow responded. Further, some differential pressure measurements were made in the entrainable bed to see if pore-pressure peaks had any correlation with significant events during entrainment. We present our preliminary findings and discuss the suitability of the method to entrainment investigations.

  11. Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks.

    PubMed

    Keitel, Anne; Ince, Robin A A; Gross, Joachim; Kayser, Christoph

    2017-02-15

    The timing of slow auditory cortical activity aligns to the rhythmic fluctuations in speech. This entrainment is considered to be a marker of the prosodic and syllabic encoding of speech, and has been shown to correlate with intelligibility. Yet, whether and how auditory cortical entrainment is influenced by the activity in other speech-relevant areas remains unknown. Using source-localized MEG data, we quantified the dependency of auditory entrainment on the state of oscillatory activity in fronto-parietal regions. We found that delta band entrainment interacted with the oscillatory activity in three distinct networks. First, entrainment in the left anterior superior temporal gyrus (STG) was modulated by beta power in orbitofrontal areas, possibly reflecting predictive top-down modulations of auditory encoding. Second, entrainment in the left Heschl's Gyrus and anterior STG was dependent on alpha power in central areas, in line with the importance of motor structures for phonological analysis. And third, entrainment in the right posterior STG modulated theta power in parietal areas, consistent with the engagement of semantic memory. These results illustrate the topographical network interactions of auditory delta entrainment and reveal distinct cross-frequency mechanisms by which entrainment can interact with different cognitive processes underlying speech perception. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    SciTech Connect

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in the critical reactors

  13. Formation of Ce 0.8Sm 0.2O 1.9 nanoparticles by urea-based low-temperature hydrothermal process

    NASA Astrophysics Data System (ADS)

    Cheng, Ming-Yao; Hwang, Ding-Han; Sheu, Hwo-Shuenn; Hwang, Bing-Joe

    The synthesis and formation mechanism of the nano-sized Ce 0.8Sm 0.2O 1.9 particles prepared by a urea-based low-temperature hydrothermal process was investigated in this study. From ex situ X-ray diffraction and induced coupled plasma-atomic emission spectroscopy investigations, it was found that large quantities of cerium hydroxide co-precipitated with some samarium hydroxide at the initial stage of the hydrothermal process. The remaining Sm 3+ ions in the solutions were further hydrolyzed and deposited on the surface of the cerium hydroxide-rich precipitates to form a core-shell-like structure. During the hydrothermal process, the core-shell-like structure transformed to a single cubic fluorite phase which is due to the incorporation of the deposited samarium hydroxide into the cerium oxide-rich core. Further, the average grain size of the synthesized nanocrystalline Ce 0.8Sm 0.2O 1.9 was reduced with increasing the urea concentration in the solution. The density of the disk prepared with the synthesized Ce 0.8Sm 0.2O 1.9 powders was found to increase with a decrease in the grain size of Ce 0.8Sm 0.2O 1.9. The existence of SO 4 2- anions in the SDC powders prepared at low-urea concentration may result in the SDC disks with low density due to their decomposition during sintering process.

  14. Process simulation of a PEM fuel cell system

    SciTech Connect

    Ledjeff-Hey, K.; Roes, J.; Formanski, V.; Gieshoff, J.; Vogel, B.

    1996-01-01

    The thermodynamic performance of a PEM fuel cell system for producing electrical power from natural gas is investigated by considering the flows of energy and energy through the various steps of the whole system. The flows of energy are evaluated using a computer code for energy and energy analyses. The fuel cell system is designed to produce a hydrogen volumetric flow of nearly 5.0 m{sup 3} {sub NTP}/h, provided to the fuel cell at an absolute pressure of 2.9 bar. The fuel cell itself is working with an efficiency of about 60 % at an operating temperature of 65 - 75{degrees} C with an air ratio of four and provides a maximum electric power of 9 kW. Taking into consideration only the produced electric power as useful output of the fuel cell system a total efficiency of 42.2 % is calculated using the simulation results.

  15. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect

    Susan Stacy; Julie Braun

    2006-12-01

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  16. Planning Document for Spent Nuclear Fuel (SNF) Cleanliness Inspection Process (OCRWM)

    SciTech Connect

    PITNER, A.L.

    2000-02-14

    The Fuel Retrieval System (FRS) Process Validation Procedure (Shen 1999) requires that a specified quantity of fuel processed through the Primary Cleaning Machine (PCM) be inspected for cleanliness during initial operational and process validation testing. Specifically, these inspections are performed to confirm that the PCM adequately cleans the fuel elements of canister sludge. The results of these inspections will be used to demonstrate that residual quantities of canister particulate on fuel elements loaded into Multi-Canister Overpacks (MCOs) are within projected levels used to establish safety basis limits (Sloughter 1998). The fuel inspections performed as part of the validation process will be conducted during the Hot Operations portion of the Phased Startup Initiative (PSI) of the Fuel Retrieval and Integrated Water Treatment Systems (Pajunen 1999). Hot Operations testing constitutes Phases 3 and 4 of the PSI. The fuel assemblies in all candidate canisters will be thoroughly inspected during these test phases (highly degraded fuel assemblies are exempt from inspection). During subsequent production operation of the FRS, only periodic (every tenth canister) inspections for cleanliness will be performed and documented. This document describes the specific processes and techniques that will be applied in performing the cleanliness inspections, and the methodology used to verify that the documented inspection results conform to Office of Civilian Radioactive Waste Management (OCRWM) requirements. The procedures and processes presented here are in conformance with the Quality Assurance Program Plan for Implementation of the OCRWM Quality Assurance Requirements and Description (QARD) for the Spent Nuclear Fuel Project (QAPP-OCRWM-001).

  17. Planning Document for Spent Nuclear Fuel (SNF) Cleanliness Inspection Process (OCRWM)

    SciTech Connect

    PITNER, A.L.

    2000-06-26

    The Fuel Retrieval System (FRS) Process Validation Procedure (Stegen 2000) requires that a specified quantity of fuel processed through the Primary Cleaning Machine (PCM) be inspected for cleanliness during initial operational and process validation testing. Specifically these inspections are performed to confirm that the PCM adequately cleans the fuel elements of canister sludge. The results of these inspections will be used to demonstrate that residual quantities of canister particulate on fuel elements loaded into Multi-Canister Overpacks (MCOs) are within projected levels used to establish safety basis limits (Sloughter 2000). The fuel inspections performed as part of the validation process will be conducted during the Hot Operations portion of the Phased Startup Initiative (PSI) of the Fuel Retrieval and Integrated Water Treatment Systems (Pajunen 2000). Hot Operations testing constitutes Phases 3 and 4 of PSI. The fuel assemblies in all candidate canisters will be thoroughly inspected during these test phases (highly degraded fuel assemblies that qualify as scrap are exempt from inspection). During subsequent production operation of the FRS, only periodic inspections for cleanliness will be performed and documented. This document describes the specific processes and techniques that will be applied in performing the cleanliness inspections, and the methodology used to verify that the documented inspection results conform to Office of Civilian Radioactive Waste Management (OCRWM) requirements. The procedures and processes presented here are in conformance with the Quality Assurance Program Plan for Implementation of the OCRWM Quality Assurance Requirements and Description (QARD) for the Spent Nuclear Fuel Project (QAPP-OCRWM-001).

  18. Solar photochemical process engineering for production of fuels and chemicals

    SciTech Connect

    Biddle, J.R.; Peterson, D.B.; Fujita, T.

    1984-05-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water have been studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. Results predict energy costs in the range of $34 to $55/10/sup 6/ kJ ($36 to $59/10/sup 6/ Btu) for the flat-plate system and $94 to $141/10/sup 6/ kJ ($99 to $149/10/sup 6/ Btu) for the trough system. The overall plant efficiency is the single most important factor in determining the cost of the fuel. Therefore, solar quantum conversion processes were reviewed for the purpose of identifying processes which promise better performance and lower costs. Operating and systems options, including operation at elevated temperatures and hybrid and coupled quantum-thermal conversion processes, were also briefly examined.

  19. Tagging the neuronal entrainment to beat and meter.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Missal, Marcus; Mouraux, André

    2011-07-13

    Feeling the beat and meter is fundamental to the experience of music. However, how these periodicities are represented in the brain remains largely unknown. Here, we test whether this function emerges from the entrainment of neurons resonating to the beat and meter. We recorded the electroencephalogram while participants listened to a musical beat and imagined a binary or a ternary meter on this beat (i.e., a march or a waltz). We found that the beat elicits a sustained periodic EEG response tuned to the beat frequency. Most importantly, we found that meter imagery elicits an additional frequency tuned to the corresponding metric interpretation of this beat. These results provide compelling evidence that neural entrainment to beat and meter can be captured directly in the electroencephalogram. More generally, our results suggest that music constitutes a unique context to explore entrainment phenomena in dynamic cognitive processing at the level of neural networks.

  20. Thermochemical Processing of Radioactive Waste Using Powder Metal Fuels

    SciTech Connect

    Ojovan, M. I.; Sobolev, I. A.; Dmitriev, S. A.; Panteleev, V. I.; Karlina, O. K.; Klimov. V. L.

    2003-02-25

    Problematic radioactive wastes were generated during various activities of both industrial facilities and research institutions usually in relative small amounts. These can be spent ion exchange resins, inorganic absorbents, wastes from research nuclear reactors, irradiated graphite, mixed, organic or chlorine-containing radioactive waste, contaminated soils, un-burnable heavily surface-contaminated materials, etc. Conventional treatment methods encounter serious problems concerning processing efficiency of such waste, e.g. complete destruction of organic molecules and avoiding of possible emissions of radionuclides, heavy metals and chemically hazardous species. Some contaminations cannot be removed from surface using common decontamination methods. Conditioning of ash residues obtained after treatment of solid radioactive waste including ashes received from treating problematic wastes also is a complicated task. Moreover due to relative small volume of specific type radioactive waste the development of target treatment procedures and facilities to conduct technological processes and their deployment could be economically unexpedient and ecologically no justified. Thermochemical processing technologies are used for treating and conditioning problematic radioactive wastes. The thermochemical processing uses powdered metal fuels (PMF) that are specifically formulated for the waste composition and react chemically with the waste components. The composition of the PMF is designed in such a way as to minimize the release of hazardous components and radionuclides in the off gas and to confine the contaminants in the ash residue. The thermochemical procedures allow decomposition of organic matter and capturing hazardous radionuclides and chemical species simultaneously. A significant advantage of thermochemical processing is its autonomy. Thermochemical treatment technologies use the energy of exothermic reactions in the mixture of radioactive or hazardous waste with PMF

  1. Direct Conversion of Chemically De-Ashed Coal in Fuel Cells (II)

    SciTech Connect

    Cooper, J F

    2005-07-25

    We review the technical challenges associated with the production and use of various coal chars in a direct carbon conversion fuel cell. Existing chemical and physical deashing processes remove material below levels impacting performance at minimal cost. At equilibrium, sulfur entrained is rejected from the melt as COS in the offgas.

  2. AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. Heterogeneous catalytic process for alcohol fuels from syngas

    SciTech Connect

    Minahan, D.M.; Nagaki, D.A.

    1995-12-31

    This project is focused on the discovery and evaluation of novel heterogeneous catalyst for the production of oxygenated fuel enhancers from synthesis gas. Catalysts have been studied and optimized for the production of methanol and isobutanol mixtures which may be used for the downstream synthesis of MTBE or related oxygenates. Higher alcohols synthesis (HAS) from syngas was studied; the alcohols that are produced in this process may be used for the downstream synthesis of MTBE or related oxygenates. This work has resulted in the discovery of a catalyst system that is highly selective for isobutanol compared with the prior art. The catalysts operate at high temperature (400{degrees}C), and consist of a spinel oxide support (general formula AB{sub 2}O{sub 4}, where A=M{sup 2+} and B = M{sup 3+}), promoted with various other elements. These catalysts operate by what is believed to be an aldol condensation mechanism, giving a product mix of mainly methanol and isobutanol. In this study, the effect of product feed/recycle (methanol, ethanol. n-propanol, isopropanol, carbon dioxide and water) on the performance of 10-DAN-55 (spinel oxide based catalyst) at 400{degrees}C, 1000 psi, GHSV = 12,000 and syngas (H{sub 2}/CO) ratio = 1:2 (alcohol addition) and 1:1 (carbon dioxide and water addition) was studied. The effect of operation at high temperatures and pressures on the performance of an improved catalyst formulation was also examined.

  4. Thermal imaging of solid oxide fuel cell anode processes

    NASA Astrophysics Data System (ADS)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  5. Study of the cell reversal process of large area proton exchange membrane fuel cells under fuel starvation

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Shen, Qiang; Hou, Ming; Shao, Zhigang; Yi, Baolian

    In this research, the fuel starvation phenomena in a single proton exchange membrane fuel cell (PEMFC) are investigated experimentally. The response characteristics of a single cell under the different degrees of fuel starvation are explored. The key parameters (cell voltage, current distribution, cathode and anode potentials, and local interfacial potentials between anode and membrane, etc.) are measured in situ with a specially constructed segmented fuel cell. Experimental results show that during the cell reversal process due to the fuel starvation, the current distribution is extremely uneven, the local high interfacial potential is suffered near the anode outlet, hydrogen and water are oxidized simultaneously in the different regions at the anode, and the carbon corrosion is proved to occur at the anode by analyzing the anode exhaust gas. When the fuel starvation becomes severer, the water electrolysis current gets larger, the local interfacial potential turns higher, and the carbon corrosion near the anode outlet gets more significant. The local interfacial potential near the anode outlet increases from ca. 1.8 to 2.6 V when the hydrogen stoichiometry decreases from 0.91 to 0.55. The producing rate of the carbon dioxide also increases from 18 to 20 ml min -1.

  6. The Hanford spent nuclear metal fuel multi-canister overpack and vacuum drying & hot conditioning process

    SciTech Connect

    Goldmann, L.H.; Irwin, J.J.; Miska, C.R.

    1996-12-31

    Nuclear production reactors operated at the U.S. Department of Energy`s Hanford Site from 1944 until 1988 to produce plutonium. Most of the irradiated fuel from these reactors was processed onsite to separate and recover the plutonium. When the processing facilities were closed in 1992, about 1,900 metric tons of unprocessed irradiated fuel remained in storage. Additional fuel was irradiated for research purposes or was shipped to the Hanford Site from offsite reactor facilities for storage or recovery of nuclear materials. The fuel inventory now in storage at the Hanford Site is predominantly N Reactor irradiated fuel, a metallic uranium alloy that is coextruded into zircaloy-2 cladding. The Spent Nuclear Fuel Project has committed to an accelerated schedule for removing spent nuclear fuel from the Hanford Site K Basins to a new interim storage facility in the 200 Area. The Westinghouse Hanford Company has developed an integrated process to deal with the K Basin spent fuel inventory. The process consists of cleaning the fuel, packaging it into MCOs, vacuum drying it at the K Basins, then transporting it to the Canister Storage Building for staging, hot conditioning, and interim storage. This presentation describes the MCO function, design, and life-cycle, including an overview of the vacuum drying and hot conditioning processes.

  7. Sensitivity analysis of a dry-processed Candu fuel pellet's design parameters

    SciTech Connect

    Choi, Hangbok; Ryu, Ho Jin

    2007-07-01

    Sensitivity analysis was carried out in order to investigate the effect of a fuel pellet's design parameters on the performance of a dry-processed Canada deuterium uranium (CANDU) fuel and to suggest the optimum design modifications. Under a normal operating condition, a dry-processed fuel has a higher internal pressure and plastic strain due to a higher fuel centerline temperature when compared with a standard natural uranium CANDU fuel. Under a condition that the fuel bundle dimensions do not change, sensitivity calculations were performed on a fuel's design parameters such as the axial gap, dish depth, gap clearance and plenum volume. The results showed that the internal pressure and plastic strain of the cladding were most effectively reduced if a fuel's element plenum volume was increased. More specifically, the internal pressure and plastic strain of the dry-processed fuel satisfied the design limits of a standard CANDU fuel when the plenum volume was increased by one half a pellet, 0.5 mm{sup 3}/K. (authors)

  8. Using circadian entrainment to find cryptic clocks.

    PubMed

    Eelderink-Chen, Zheng; Olmedo, Maria; Bosman, Jasper; Merrow, Martha

    2015-01-01

    Three properties are most often attributed to the circadian clock: a ca. 24-h free-running rhythm, temperature compensation of the circadian rhythm, and its entrainment to zeitgeber cycles. Relatively few experiments, however, are performed under entrainment conditions. Rather, most chronobiology protocols concern constant conditions. We have turned this paradigm around and used entrainment to study the circadian clock in organisms where a free-running rhythm is weak or lacking. We describe two examples therein: Caenorhabditis elegans and Saccharomyces cerevisiae. By probing the system with zeitgeber cycles that have various structures and amplitudes, we can demonstrate the establishment of systematic entrained phase angles in these organisms. We conclude that entrainment can be utilized to discover hitherto unknown circadian clocks and we discuss the implications of using entrainment more broadly, even in model systems that show robust free-running rhythms.

  9. Properties of Aluminum Deposited by a High-Velocity Oxygen-Fueled Process

    SciTech Connect

    Chow, R; Decker, T A; Gansert, R V; Gansert, D; Lee, D

    2001-06-12

    Aluminum coatings deposited by a HVOF process have been demonstrated and relevant coating properties evaluated according to two deposition parameters, the spray distance and the oxygen-to-fuel flow ratio. The coating porosity, surface roughness, and microhardness are measured. The coating properties are fairly insensitive to spray distance, the distance between the nozzle and the workpiece, and fuel ratios, the oxygen-to-fuel flow. Increasing the fuel content does appear to improve the process productivity in terms of surface roughness. Minimization of nozzle loading is discussed.

  10. Implementation process and deployment initiatives for the regionalized storage of DOE-owned spent nuclear fuel

    SciTech Connect

    Dearien, J.A.; Smith, N.E.L.

    1995-12-31

    This report describes how DOE-owned spent nuclear fuel (SNF) will be stored in the interim 40-year period from 1996 to 2035, by which time it is expected to be in a National Nuclear Repository. The process is described in terms of its primary components: fuel inventory, facilities where it is stored, how the fuel will be moved, and legal issues associated with the process. Tools developed to deploy and fulfill the implementation needs of the National Spent Nuclear Fuel Program are also discussed.

  11. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-04

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum.

  12. Transcriptome Changes in Douglas-fir (Pseudotsuga menziesii) Induced by Exposure to Diesel Emissions Generated with CeO2 Nanoparticle Fuel Additive

    EPA Science Inventory

    When cerium oxide nanoparticles are added to diesel fuel, fuel burning efficiency increases, producing emissions (DECe) with characteristics that differ from conventional diesel exhaust (DE). It has previously been shown that DECe induces more adverse pulmonary effects in rats on...

  13. Transcriptome Changes in Douglas-fir (Pseudotsuga menziesii) Induced by Exposure to Diesel Emissions Generated with CeO2 Nanoparticle Fuel Additive

    EPA Science Inventory

    When cerium oxide nanoparticles are added to diesel fuel, fuel burning efficiency increases, producing emissions (DECe) with characteristics that differ from conventional diesel exhaust (DE). It has previously been shown that DECe induces more adverse pulmonary effects in rats on...

  14. Fluid-bed fluoride volatility process recovers uranium from spent uranium alloy fuels

    NASA Technical Reports Server (NTRS)

    Barghusen, J. J.; Chilenskas, A. A.; Gunderson, G. E.; Holmes, J. T.; Jonke, A. A.; Kincinas, J. E.; Levitz, N. M.; Potts, G. L.; Ramaswami, D.; Stethers, H.; hide

    1967-01-01

    Fluid-bed fluoride volatility process recovers uranium from uranium fuels containing either zirconium or aluminum. The uranium is recovered as uranium hexafluoride. The process requires few operations in simple, compact equipment, and eliminates aqueous radioactive wastes.

  15. The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection

    NASA Astrophysics Data System (ADS)

    Romps, David M.

    2016-03-01

    Convective entrainment is a process that is poorly represented in existing convective parameterizations. By many estimates, convective entrainment is the leading source of error in global climate models. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented here as a convective parameterization that treats entrainment in a physically realistic and computationally efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For computational efficiency, the SPM groups parcels at each height by their purity, which is a measure of their total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy simulation of deep convection.

  16. CeO2-Y2O3-ZrO2 Membrane with Enhanced Molten Salt Corrosion Resistance for Solid Oxide Membrane (SOM) Electrolysis Process

    NASA Astrophysics Data System (ADS)

    Zou, Xingli; Li, Xin; Shen, Bin; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong

    2017-02-01

    Innovative CeO2-Y2O3-ZrO2 membrane has been successfully developed and used in the solid oxide membrane (SOM) electrolysis process for green metallic materials production. The x mol pct ceria/(8- x) mol pct yttria-costabilized zirconia ( xCe(8- x)YSZ, x = 0, 1, 4, or 7) membranes have been fabricated and investigated as the membrane-based inert anodes to control the SOM electroreduction process in molten salt. The characteristics of these fabricated xCe(8- x)YSZ membranes including their corrosion resistances in molten salt and their degradation mechanisms have been systematically investigated and compared. The results show that the addition of ceria in the YSZ-based membrane can inhibit the depletion of yttrium during the SOM electrolysis, which thus makes the ceria-reinforced YSZ-based membranes possess enhanced corrosion resistances to molten salt. The ceria/yttria-costabilized zirconia membranes can also provide reasonable oxygen ion conductivity during electrolysis. Further investigation shows that the newly modified 4Ce4YSZ ceramic membrane has the potential to be used as novel inert SOM anode for the facile and sustainable production of metals/alloys/composites materials such as Si, Ti5Si3, TiC, and Ti5Si3/TiC from their metal oxides precursors in molten CaCl2.

  17. Optimal entrainment of heterogeneous noisy neurons.

    PubMed

    Wilson, Dan; Holt, Abbey B; Netoff, Theoden I; Moehlis, Jeff

    2015-01-01

    We develop a methodology to design a stimulus optimized to entrain nonlinear, noisy limit cycle oscillators with uncertain properties. Conditions are derived which guarantee that the stimulus will entrain the oscillators despite these uncertainties. Using these conditions, we develop an energy optimal control strategy to design an efficient entraining stimulus and apply it to numerical models of noisy phase oscillators and to in vitro hippocampal neurons. In both instances, the optimal stimuli outperform other similar but suboptimal entraining stimuli. Because this control strategy explicitly accounts for both noise and inherent uncertainty of model parameters, it could have experimental relevance to neural circuits where robust spike timing plays an important role.

  18. Simulation study of light transport in laser-processed LYSO:Ce detectors with single-side readout.

    PubMed

    Blackberg, Lisa; El Fakhri, Georges; Sabet, Hamid

    2017-09-20

    A tightly focused pulsed laser beam can locally modify the crystal structure inside the bulk of a scintillator. The result is incorporation of so-called optical barriers with a refractive index different from that of the crystal bulk, that can be used to redirect the scintillation light and control the light spread in the detector. We here systematically study the scintillation light transport in detectors fabricated using the Laser Induced Optical Barrier technique, and objectively compare their potential performance characteristics with those of the two mainstream detector types: monolithic and mechanically pixelated arrays. Among countless optical barrier patterns, we explore barriers arranged in a pixel-like pattern extending all-the-way or half-way through a 20 mm thick LYSO:Ce crystal. We analyze the performance of the detectors coupled to MPPC arrays, in terms of light response functions, flood maps, line profiles, and light collection efficiency. Our results show that laser-processed detectors with both barrier patterns constitute a new detector category with a behavior between that of the two standard detector types. Results show that when the barrier-crystal interface is smooth, no DOI information can be obtained regardless of barrier refractive index (RI). However, with a rough barrier-crystal interface we can extract multiple levels of DOI. Lower barrier RI results in larger light confinement, leading to better transverse resolution. Furthermore we see that the laser-processed crystals have the potential to increase the light collection efficiency, which could lead to improved energy resolution and potentially better timing resolution due to higher signals. For a laser-processed detector with smooth barrier-crystal interfaces the light collection efficiency is simulated to >42%, and for rough interfaces >73%. The corresponding numbers for a monolithic crystal is 39% with polished surfaces, and 71% with rough surfaces, and for a mechanically

  19. Technical and economic feasibility of alternative fuel use in process heaters and small boilers

    SciTech Connect

    Not Available

    1980-02-01

    The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

  20. Pd-substituted (La,Sr)CrO3-δ-Ce0.9Gd0.1O2-δ solid oxide fuel cell anodes exhibiting regenerative behavior

    NASA Astrophysics Data System (ADS)

    Bierschenk, David M.; Potter-Nelson, Elizabeth; Hoel, Cathleen; Liao, Yougui; Marks, Laurence; Poeppelmeier, Kenneth R.; Barnett, Scott A.

    2011-03-01

    Composite anodes consisting of Pd-substituted (La,Sr)CrO3-δ mixed with 50 wt% Ce0.9Gd0.1O2-δ were tested in La0.9Sr0.1Ga0.8Mg0.2O3-δ-electrolyte supported fuel cells at 800 °C with humidified H2 fuel. Low anode polarization resistance was observed during the first several hours of operation, explained by the nucleation of Pd nano-particles on perovskite particle surfaces. Anode performance then degraded gradually before stabilizing. Redox cycling repeatedly restored the anodes to their initial peak performance, followed again by degradation. This regenerative behavior was explained by the observation that the Pd nano-particles were removed by oxidation, and then re-nucleated upon reduction.

  1. Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce ii Lines in the H-band Spectral Window

    NASA Astrophysics Data System (ADS)

    Cunha, Katia; Smith, Verne V.; Hasselquist, Sten; Souto, Diogo; Shetrone, Matthew D.; Allende Prieto, Carlos; Bizyaev, Dmitry; Frinchaboy, Peter; García-Hernández, D. Anibal; Holtzman, Jon; Johnson, Jennifer A.; Jőnsson, Henrik; Majewski, Steven R.; Mészáros, Szabolcs; Nidever, David; Pinsonneault, Mark; Schiavon, Ricardo P.; Sobeck, Jennifer; Skrutskie, Michael F.; Zamora, Olga; Zasowski, Gail; Fernández-Trincado, J. G.

    2017-08-01

    Nine Ce ii lines have been identified and characterized within the spectral window observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey (between λ1.51 and 1.69 μm). At solar metallicities, cerium is an element that is produced predominantly as a result of the slow capture of neutrons (the s-process) during asymptotic giant branch stellar evolution. The Ce ii lines were identified using a combination of a high-resolution (R=λ /δ λ ={{100,000}}) Fourier Transform Spectrometer (FTS) spectrum of α Boo and an APOGEE spectrum (R = 22,400) of a metal-poor, but s-process enriched, red giant (2M16011638-1201525). Laboratory oscillator strengths are not available for these lines. Astrophysical gf-values were derived using α Boo as a standard star, with the absolute cerium abundance in α Boo set by using optical Ce ii lines that have precise published laboratory gf-values. The near-infrared Ce ii lines identified here are also analyzed, as consistency checks, in a small number of bright red giants using archival FTS spectra, as well as a small sample of APOGEE red giants, including two members of the open cluster NGC 6819, two field stars, and seven metal-poor N- and Al-rich stars. The conclusion is that this set of Ce ii lines can be detected and analyzed in a large fraction of the APOGEE red giant sample and will be useful for probing chemical evolution of the s-process products in various populations of the Milky Way.

  2. Turbulent entrainment in sediment-laden flows interacting with an obstacle

    NASA Astrophysics Data System (ADS)

    Wilson, Richard I.; Friedrich, Heide; Stevens, Craig

    2017-03-01

    Temporal entrainment characteristics and mixing processes of sediment-laden turbidity currents interacting with a rectangular obstacle are investigated through lock-exchange experiments. Building on the Morton-Taylor-Turner hypothesis, dependency of temporal entrainment on non-dimensional parameters is examined. Currents of varying density are analyzed during the slumping phase over smooth and rough substrates. Quantitative and qualitative observations of the currents are captured through high resolution, high framerate binary thresholding techniques. Additionally, siphoning techniques are used to compare the density structure of the currents before and after the obstacle. Upon interaction with the obstacle, currents are found to experience four stages of entrainment: (i) lateral entrainment stage; (ii) jet stage; (iii) collapsing stage; (iv) re-establishment stage. The entrainment parameter was within the range of other studies for both obstacle and no-obstacle cases. Reynolds, Froude, and Richardson numbers are also comparable to previous studies; however, there was no clear relationship with the entrainment parameter. This suggests that entrainment dependency on non-dimensional parameters is not quantifiable where the analysis area length to lock-box length ratio is ≈1. The presence of the obstacle was shown to increase entrainment by approximately 99% immediately downstream of the obstacle, associated with a subsequent entrainment decrease by 14% at the downstream end of the analysis area. For rectangular obstacles 1/6th the initial current height, as used for this study, an obstacle's role is limited in decreasing net velocity and entrainment and not fit-for-purpose as a barrier to reduce current velocity. Finally, we discuss optimization strategies, weighing up observed minimal net velocity/entrainment decrease with the detrimental effects of jet expansion.

  3. Effect of Al and Ce doping on the deformation upon sintering in sequential tape cast layers for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cologna, M.; Contino, A. R.; Montinaro, D.; Sglavo, V. M.

    Water-based tape casting is an attractive production route for planar solid oxide fuel cells (SOFCs) due to its high productivity and reduced environmental issues. In this work planar anode supported SOFCs with thin electrolyte were prepared by water-based sequential tape casting and co-sintering. An in situ high temperature monitoring apparatus was assembled to allow the determination of free sintering shrinkage of thin green tape cast layers and to follow the curvature developed in multilayers during the entire sintering process. The instantaneous curvature developed upon co-sintering was studied as a function of the firing schedule and layer composition. It was found that by tailoring the electrode composition it is possible to reduce the shrinking rate difference between anode and electrolyte thus obtaining defect-free electrolyte, minimising the residual curvature of the half-cell and improving the electrochemical performances of the cell.

  4. Concurrent engineering technical interface process flow. Report of the CE Technical/Administrative Interface Task Group of the CALS/CE Industry Steering Group

    NASA Astrophysics Data System (ADS)

    1991-07-01

    A general guide to the components of the Department of Defense (DoD) and Industry needed to describe the technical interfaces required for implementing concurrent engineering is provided. These interfaces address the key components of design, manufacturing, and logistic support in an integrated environment. This document is intended to provide a transition structure for the other concurrent engineering task groups to build a more complete definition of the concurrent engineering process. The document addresses the technical interfaces of the government's acquisition process and does not attempt to define the business relationships or interfaces of administering the acquisition process.

  5. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  6. Electrical start-up for diesel fuel processing in a fuel-cell-based auxiliary power unit

    NASA Astrophysics Data System (ADS)

    Samsun, Remzi Can; Krupp, Carsten; Tschauder, Andreas; Peters, Ralf; Stolten, Detlef

    2016-01-01

    As auxiliary power units in trucks and aircraft, fuel cell systems with a diesel and kerosene reforming capacity offer the dual benefit of reduced emissions and fuel consumption. In order to be commercially viable, these systems require a quick start-up time with low energy input. In pursuit of this end, this paper reports an electrical start-up strategy for diesel fuel processing. A transient computational fluid dynamics model is developed to optimize the start-up procedure of the fuel processor in the 28 kWth power class. The temperature trend observed in the experiments is reproducible to a high degree of accuracy using a dual-cell approach in ANSYS Fluent. Starting from a basic strategy, different options are considered for accelerating system start-up. The start-up time is reduced from 22 min in the basic case to 9.5 min, at an energy consumption of 0.4 kW h. Furthermore, an electrical wire is installed in the reformer to test the steam generation during start-up. The experimental results reveal that the generation of steam at 450 °C is possible within seconds after water addition to the reformer. As a result, the fuel processor can be started in autothermal reformer mode using the electrical concept developed in this work.

  7. Electrophoretic deposition of dense BaCe 0.9Y 0.1O 3- x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zunic, Milan; Chevallier, Laure; Deganello, Francesca; D'Epifanio, Alessandra; Licoccia, Silvia; Di Bartolomeo, Elisabetta; Traversa, Enrico

    Proton conducting BaCe 0.9Y 0.1O 3- x (BCY10) thick films are deposited on cermet anodes made of nickel-yttrium doped barium cerate using electrophoretic deposition (EPD) technique. BCY10 powders are prepared by the citrate-nitrate auto-combustion method and the cermet anodes are prepared by the evaporation and decomposition solution and suspension method. The EPD parameters are optimized and the deposition time is varied between 1 and 5 min to obtain films with different thicknesses. The anode substrates and electrolyte films are co-sintered at 1550 °C for 2 h to obtain a dense electrolyte film keeping a suitable porosity in the anode, with a single heating treatment. The samples are characterized by field emission scanning electron microscopy (FE-SEM) and energy dispersion spectroscopy (EDS). A prototype fuel cell is prepared depositing a composite La 0.8Sr 0.2Co 0.8Fe 0.2O 3 (LSCF)-BaCe 0.9Yb 0.1O 3- δ (10YbBC) cathode on the co-sintered half cell. Fuel cell tests that are performed at 650 °C on the prototype single cells show a maximum power density of 174 mW cm -2.

  8. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  9. Numerical approach for the voloxidation process of an advanced spent fuel conditioning process (ACP)

    SciTech Connect

    Park, Byung Heung; Jeong, Sang Mun; Seo, Chung-Seok

    2007-07-01

    A voloxidation process is adopted as the first step of an advanced spent fuel conditioning process in order to prepare the SF oxide to be reduced in the following electrolytic reduction process. A semi-batch type voloxidizer was devised to transform a SF pellet into powder. In this work, a simple reactor model was developed for the purpose of correlating a gas phase flow rate with an operation time as a numerical approach. With an assumption that a solid phase and a gas phase are homogeneous in a reactor, a reaction rate for an oxidation was introduced into a mass balance equation. The developed equation can describe a change of an outlet's oxygen concentration including such a case that a gas flow is not sufficient enough to continue a reaction at its maximum reaction rate. (authors)

  10. Using Ultrasound to Characterize Pulp Slurries with Entrained Air

    SciTech Connect

    Bamberger, Judith A.

    2006-08-06

    The development of fast and practical methods for inspecting fiber suspensions is of great interest in the paper making industry. For process control and paper quality prediction, several elements of the refining process during paper making must be accurately monitored, including specific fiber properties, weight percent fiber (composition), degree of refining, amount of solids, and entrained air content. The results of previous ultrasonic studies applied to wood pulp provide guidance that ultrasound attenuation is information rich, and it does potentially provide a tool for consistency measurement. Ultrasound has the ability to penetrate dense suspensions such as wood pulp slurries. It is has been shown, in some studies, that ultrasound is sensitive to degree of refining. The effects of entrained air, additives, the origin and treatment of the fibers do however all influence the measured data. A series of measurements were made with hardwood and softwood slurries to evaluate the ability of measuring pulp consistency, solids, and entrained air. The attenuation through the slurry was measured as the ultrasound travels from one transducer through the slurry to the other. The measurements identified the presence of entrained air in the pulp samples. To better understand the effects of air, measurements were made at increasing pressures to show how increased pressure reduced the amount of air observed in the spectrum.

  11. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    EPA Science Inventory

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  12. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    EPA Science Inventory

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  13. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vapors to a fuel gas system or process shall open to the atmosphere during loading. Pressure relief... to the atmosphere. (b) Fuel gas system and process compliance determination. (1) If emissions...

  14. Development of Hot Pressing as a Low Cost Processing Technique for Fuel Cell Fabrication

    SciTech Connect

    Sarin, V

    2003-01-14

    Dependable, plentiful, and economical energy has been the driving force for financial, industrial, and political growth in the US since the mid 19th century. For a country whose progress is so deeply rooted in abundant energy and whose current political agenda involves stabilizing world fossil fuel prices, the development of a reliable, efficient and environmentally friendly power generating source seems compulsory. The maturing of high technology fuel cells may be the panacea the country will find indispensable to free itself from foreign dependence. Fuel cells offer an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions. Fuel cells have few moving parts and run almost silently. Fuel cells are electrochemical devices that convert the chemical energy of a fuel directly to electrical energy. Unlike batteries, which store a finite amount of energy, fuel cells will generate electricity continuously, as long as fuel and oxidant are available to the electrodes. Additionally, fuel cells offer clean, efficient, and reliable power and they can be operated using a variety of fuels. Hence, the fuel cell is an extremely promising technology. Over the course of this research, the fundamental knowledge related to ceramic processing, sintering, and hot pressing to successfully hot press a single operational SOFC in one step has been developed. Ceramic powder processing for each of the components of an SOFC has bene tailored towards this goal. Processing parameter for the electrolyte and cathode have been studied and developed until they converted. Several anode fabrication techniques have been developed. Additionally, a novel anode structured has been developed and refined. These individual processes have been cultivated until a single cell SOFC has been fabricated in one step.

  15. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    DOE PAGES

    Collette, R.; King, J.; Buesch, C.; ...

    2016-04-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less

  16. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    NASA Astrophysics Data System (ADS)

    Collette, R.; King, J.; Buesch, C.; Keiser, D. D.; Williams, W.; Miller, B. D.; Schulthess, J.

    2016-07-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. The results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.

  17. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    SciTech Connect

    Collette, R.; King, J.; Buesch, C.; Keiser, Jr., D. D.; Williams, W.; Miller, B. D.; Schulthess, J.

    2016-04-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.

  18. Planning Document for Spent Nuclear Fuel (SNF) Cleanliness Inspection Process (OCRWM)

    SciTech Connect

    PITNER, A.L.

    2000-12-06

    The Fuel Retrieval System (FRS) Process Validation Procedure (Stegen 2000) requires that a specified quantity of fuel processed through the Primary Cleaning Machine (PCM) be assessed for cleanliness during initial operational and process validation testing. Specifically, these assessments are visual examinations of the fuel, performed to confirm that the PCM adequately cleans the fuel elements of canister sludge. The results of these examinations will be used to demonstrate that residual quantities of canister particulate on fuel elements loaded into Multi-Canister Overpacks (MCOs) are within projected levels used to establish safety basis limits (Sloughter 2000). The fuel assessments, performed as part of the validation process, will be conducted during the Hot Operations portion of the Phased Startup Initiative (PSI) of the Fuel Retrieval and Integrated Water Treatment Systems (Pajunen 2000). Hot Operations testing constitutes Phases 3 and 4 of the PSI. The fuel assemblies in all candidate canisters will be thoroughly examined during these test phases (highly degraded fuel assemblies that qualify as scrap are exempt from evaluation). During subsequent production operation of the FRS, only periodic examinations for cleanliness will be performed and documented. This document describes the specific processes and techniques that will be applied in performing the cleanliness assessments, and the methodology used to verify that the documented assessment results conform to Office of Civilian Radioactive Waste Management (OCRWM) requirements. The procedures and processes presented here are in conformance with the Quality Assurance Program Plan for Implementation of the OCRWM Quality Assurance Requirements and Description (QARD) for the Spent Nuclear Fuel (SNF) Project (QAPP-OCRWM-001).

  19. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  20. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  1. Literature on fabrication of tungsten for application in pyrochemical processing of spent nuclear fuels

    SciTech Connect

    Edstrom, C.M.; Phillips, A.G.; Johnson, L.D.; Corle, R.R.

    1980-10-11

    The pyrochemical processing of nuclear fuels requires crucibles, stirrers, and transfer tubing that will withstand the temperature and the chemical attack from molten salts and metals used in the process. This report summarizes the literature that pertains to fabrication (joining, chemical vapor deposition, plasma spraying, forming, and spinning) is the main theme. This report also summarizes a sampling of literature on molbdenum and the work previously performed at Argonne National Laboratory on other container materials used for pyrochemical processing of spent nuclear fuels.

  2. Flowsheet for shear/leach processing of N Reactor fuel at PUREX

    SciTech Connect

    Enghusen, M.B.

    1995-04-13

    This document was originally prepared to support the restart of the PUREX plant using a new Shear/Leach head end process. However, the PUREX facility was shutdown and processing of the remaining N Reactor fuel is no longer considered an alternative for fuel disposition. This document is being issued for reference only to document the activities which were investigated to incorporate the shear/leach process in the PUREX plant.

  3. Technology development program for Idaho Chemical Processing Plant spent fuel and waste management

    SciTech Connect

    Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

    1993-08-01

    Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

  4. Disposal of defense spent fuel and HLW from the Idaho Chemical Processing Plant

    SciTech Connect

    Ermold, L.F.; Loo, H.H.; Klingler, R.D.; Herzog, J.D.; Knecht, D.A.

    1992-12-01

    Acid high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage ate the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, with an emphasis on the description of HLW and spent fuels requiring repository disposal.

  5. Laboratory experiments on stability and entrainment of oceanic stratocumulus. Part 2: Entrainment experiment

    NASA Technical Reports Server (NTRS)

    Shy, Shenqyang S.

    1990-01-01

    A stratified interface is stable to the buoyancy reversal instability for surprisingly large values of D (buoyancy reversal parameter). A new instability mechanism is proposed, which considers the mixing process at the interface. For the type of density curves studied here, under strong perturbations, the mixed parcel must have a buoyancy reversal comparable to the initial stratification before the interface is unstable. This is in accord with a simple model of the interface mixing process, as well as aircraft observations of long-live marine stratocumulus clouds. These clouds' remarkable longevity in the face of finite D indicates that they can be stable (Hanson, 1984; Albrecht et al., 1985; Siems et al., 1989). It is suggested that buoyancy reversal as well as the disturbance must be large for Cloudtop Entrainment Stability. The effect of buoyancy reversal (evaporative cooling) does not always enhance the entrainment rate over that in the inert case, but it may be negligible if Ri (Richardson number) is large (Ri is larger than 50) and D is small (D is smaller than 0.5). This work may shed some light on the fundamental mechanism of the breakup process of the subtropical stratocumulus clouds into tradewind cumulus. These results may also be related to the instability in the Weddell Sea off of Antarctica.

  6. 77 FR 823 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... electronically under ADAMS Accession Number ML100890016. The regulatory analysis may be found in ADAMS under.... FOR FURTHER INFORMATION CONTACT: R. A. Jervey, U.S. Nuclear Regulatory Commission, Washington, DC... for tracking, evaluating, and documenting changes made to fuel cycle facilities, and to...

  7. Use of Hansen Solubility Parameters in Fuel Treatment Processes

    DTIC Science & Technology

    2014-03-17

    reduce cost of RP by producing these fuels from less expensive feed streams. • Reduced coking • Isp improvement • Improved thermal stability Performance...Thiophenes Aromatics Present in RP-1 Concentration varies Detrimental to Thermal Stability! Catalysts for Coking Reactions Detrimental to Performance

  8. Integration and testing of hot desulfurization and entrained-flow gasification for power generation systems. Phase 2, Process optimization: Volume 1, Program summary and PDU operations

    SciTech Connect

    Robin, A.M.; Kassman, J.S.; Leininger, T.F.; Wolfenbarger, J.K.; Wu, C.M.; Yang, P.P.

    1991-09-01

    This second Topical Report describes the work that was completed between January 1, 1989 and December 31, 1990 in a Cooperative Agreement between Texaco and the US Department of Energy that began on September 30, 1987. During the period that is covered in this report, the development and optimization of in-situ and external desulfurization processes were pursued. The research effort included bench scale testing, PDU scoping tests, process economic studies and advanced instrument testing. Two bench scale studies were performed at the Research Triangle Institute with zinc titanate sorbent to obtain data on its cycle life, sulfur capacity, durability and the effect of chlorides. These studies quantify sulfur capture during simulated air and oxygen-blown gasification for two zinc titanate formulations. Eight PDU runs for a total of 20 days of operation were conducted to evaluate the performance of candidate sorbents for both in-situ and external desulfurization. A total of 47 tests were completed with oxygen and air-blown gasification. Candidate sorbents included iron oxide for in-situ desulfurization and calcium based and mixed metal oxides for external desulfurization. Gasifier performance and sorbent sulfur capture are compared for both air-blown and oxygen-blown operation.

  9. Aqueous processing of U-10Mo scrap for high performance research reactor fuel

    NASA Astrophysics Data System (ADS)

    Youker, Amanda J.; Stepinski, Dominique C.; Maggos, Laura E.; Bakel, Allen J.; Vandegrift, George F.

    2012-08-01

    The Global Threat Reduction Initiative (GTRI) Conversion program, which is part of the US government's National Nuclear Security Administration (NNSA), supports the conversion of civilian use of highly enriched uranium (HEU) to low enriched uranium (LEU) for reactor fuel and targets. The reason for conversion is to eliminate the use of any material that may pose a threat to the United States or other foreign countries. High performance research reactors (HPRRs) cannot make the conversion to a standard LEU fuel because they require a more dense fuel to meet their performance requirements. As a result, a more dense fuel consisting of a monolithic uranium-molybdenum alloy containing 10% (w/w) Mo with Al cladding and a Zr bonding-layer is being considered. Significant losses are expected in the fabrication of this fuel, so a means to recycle the scrap pieces is needed. Argonne National Laboratory has developed an aqueous-processing flowsheet for scrap recovery in the fuel fabrication process for high-density LEU-monolithic fuel based on data found in the literature. Experiments have been performed to investigate dissolution conditions for solutions containing approximately 20 g-U/L and 50 g-U/L with and without Fe(NO3)3. HNO3 and HF concentrations have been optimized for timely dissolution of the fuel scrap and prevention of the formation of the U-Zr2 intermetallic, explosive complex, while meeting the requirements needed for further processing.

  10. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-01-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

  11. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-11-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed and manufactured for conducting experimental investigations. Oxidizer (LOX or GOX) supply and control systems have been designed and partly constructed for the head-end injection into the test chamber. Experiments using HTPB fuel, as well as fuels supplied by NASA designated industrial companies will be conducted. Design and construction of fuel casting molds and sample holders have been completed. The portion of these items for industrial company fuel casting will be sent to the McDonnell Douglas Aerospace Corporation in the near future. The study focuses on the following areas: observation of solid fuel burning processes with LOX or GOX, measurement and correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study (Part 2) also being conducted at PSU.

  12. CO-free hydrogen production for fuel cell applications over Au/CeO2 catalysts: FTIR insight into the role of dopant.

    PubMed

    Tabakova, Tatyana; Manzoli, Maela; Vindigni, Floriana; Idakiev, Vasko; Boccuzzi, Flora

    2010-03-25

    The impact of ceria doping by Zn (atomic ratio Zn/(Zn + Ce) = 0.05) on the structural and catalytic properties of Au/CeO(2) catalyst was studied. The ceria modification influenced the catalytic activity toward purification of hydrogen via water-gas shift (WGS) and preferential CO oxidation (PROX) reactions in a different way: it diminished the WGS activity and improved the PROX performance. A characterization by FTIR spectroscopy was conducted to explain differences in the catalytic performance. The nature of gold active species after different pretreatments, under different atmospheres (H(2), D(2)), and after admission of CO and its subsequent interaction with (18)O(2) was investigated. Evidence has been found of the dissociation of hydrogen at room temperature on gold, producing on the oxidized sample a broad absorption assigned to Au-OH vibrations, whereas on the reduced one, bands at 3200 and 1800 cm(-1) ascribed, respectively, to Au-OH and Au-H species have been detected. For the first time, the formation of Au-hydride on supported heterogeneous catalysts was proposed. These features were stronger on the Au/CeO(2) sample than on the Au/Zn-CeO(2) sample. The availability of highly dispersed gold clusters in contact with oxygen vacancies on the ceria surface could contribute to higher WGS activity, whereas the steps of small gold particles are the active sites for both CO and oxygen activation during the PROX reaction.

  13. Investigating the Integration of a Solid Oxide Fuel Cell and a Gas Turbine System with Coal Gasification Technologies

    DTIC Science & Technology

    2001-09-01

    conceptually integrate the hybrid power system with existing and imminent coal gasification technologies. The gasification technologies include the Kellogg...Brown Root (KBR) Transport Reactor and entrained coal gasification . Parametric studies will be performed wherein pertinent fuel cell stack process...dependent variables of interest. Coal gasification data and a proven SOFC model will be used to test the theoretical integration. Feasibility and

  14. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  15. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  16. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Fuel gas systems and processes...

  17. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Fuel gas systems and processes...

  18. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Fuel gas systems and processes...

  19. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Fuel gas systems and processes...

  20. Coal Water Fuels: Production process modifications; their impact on fuel specifications

    SciTech Connect

    Goodman, R.M.

    1986-01-01

    Coal Water Fuels (CWF) have a tremendous potential in the US Energy market. There is an ''oil glut'' and cheap oil is readily available at least in the near term future. Thus, whether future oil shortages and concomitant price escalations for oil are ''just-around-the-corner'' or off in the 21st Century, is a matter for great current debate. The recent indications of price collapse further fuel this debate. Unfortunately, it is only in the future that the correct answer will become apparent. Prudence dictates, however, that survival for a CWF supplier in early 1986, must be predicated on flexibility. It is clear that the most flexible technology and most adaptive supplier network will have the best chance to become successful in the currently difficult CWF market. The Carbogel organization enjoys tremendous flexibility in approach to CWF development and production. Further, the Carbogel technology development program, from its inception, has stressed flexibility and adaptability to different requirements.

  1. Fuel Processing System for a 5kW Methanol Fuel Cell Power Unit.

    DTIC Science & Technology

    1985-11-27

    report documents the development and design of a 5kW neat methanol reformer for phosphoric acid fuel cell power plants . The reformer design was based...VAPORIZATION OF METHANOL ........... 4.3 REFORMING/SHIFT CATALYST BED ......... 2 5.0 COMPONENT TESTING............... 5.1 COMBUSTION TUBE...69 36 Catalyst Bed Temperature Profile Before and After Transient ................. 70 37 Assembly -5kw Neat Methanol Reformer. ......... 72 Page No

  2. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; ...

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  3. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    SciTech Connect

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

  4. The neurochemical basis of photic entrainment of the circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Rea, Michael A.; Buckley, Becky; Lutton, Lewis M.

    1992-01-01

    Circadian rhythmicity in mammals is controlled by the action of a light-entrainable hypothalamus, in association with two cell clusters known as the supra chiasmatic nuclei (SCN). In the absence of temporal environmental clues, this pacemaker continues to measure time by an endogenous mechanism (clock), driving biochemical, physiological, and behavioral rhythms that reflect the natural period of the pacemaker oscillation. This endogenous period usually differs slightly from 24 hours (i.e., circadian). When mammals are maintained under a 24 hour light-dark (LD) cycle, the pacemaker becomes entrained such that the period of the pacemaker oscillation matches that of the LD cycle. Potentially entraining photic information is conveyed to the SCN via a direct retinal projection, the retinohypothalamic tract (RHT). RHT neurotransmission is thought to be mediated by the release of excitatory amino acids (EAA) in the SCN. In support of this hypothesis, recent experiments using nocturnal rodents have shown that EAA antagonists block the effects of light on pacemaker-driven behavioral rhythms, and attenuate light induced gene expression in SCN cells. An understanding of the neurochemical basis of the photic entrainment process would facilitate the development of pharmacological strategies for maintaining synchrony among shift workers in environments, such as the Space Station, which provide unreliable or conflicting temporal photic clues.

  5. Entrainment at a sediment concentration interface in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.

    2016-11-01

    In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.

  6. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    PubMed

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-07

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to <40 mm. The relative plastics vs paper mass ratios in particular result in an SRF with a 95% upper confidence limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.

  7. Neural entrainment to rhythmic speech in children with developmental dyslexia

    PubMed Central

    Power, Alan J.; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2013-01-01

    A rhythmic paradigm based on repetition of the syllable “ba” was used to study auditory, visual, and audio-visual oscillatory entrainment to speech in children with and without dyslexia using EEG. Children pressed a button whenever they identified a delay in the isochronous stimulus delivery (500 ms; 2 Hz delta band rate). Response power, strength of entrainment and preferred phase of entrainment in the delta and theta frequency bands were compared between groups. The quality of stimulus representation was also measured using cross-correlation of the stimulus envelope with the neural response. The data showed a significant group difference in the preferred phase of entrainment in the delta band in response to the auditory and audio-visual stimulus streams. A different preferred phase has significant implications for the quality of speech information that is encoded neurally, as it implies enhanced neuronal processing (phase alignment) at less informative temporal points in the incoming signal. Consistent with this possibility, the cross-correlogram analysis revealed superior stimulus representation by the control children, who showed a trend for larger peak r-values and significantly later lags in peak r-values compared to participants with dyslexia. Significant relationships between both peak r-values and peak lags were found with behavioral measures of reading. The data indicate that the auditory temporal reference frame for speech processing is atypical in developmental dyslexia, with low frequency (delta) oscillations entraining to a different phase of the rhythmic syllabic input. This would affect the quality of encoding of speech, and could underlie the cognitive impairments in phonological representation that are the behavioral hallmark of this developmental disorder across languages. PMID:24376407

  8. Process for Generating Engine Fuel Consumption Map: Future Atkinson Engine with Cooled EGR and Cylinder Deactivation

    EPA Pesticide Factsheets

    This document summarizes the process followed to utilize GT-POWER modeled engine and laboratory engine dyno test data to generate a full engine fuel consumption map which can be used by EPA's ALPHA vehicle simulations.

  9. An analysis of the drying process in forest fuel material

    Treesearch

    G.M. Byram; R.M. Nelson

    2015-01-01

    It is assumed that the flow of moisture in forest fuels and other woody materials is determined by the gradient of a quantity g which is a function of some property, or properties, of the moisture content. There appears to be no preferred choice for this function, hence moisture transfer equations can be based on a number of equally valid definitions of g. The physical...

  10. The GC computer code for flow sheet simulation of pyrochemical processing of spent nuclear fuels

    SciTech Connect

    Ahluwalia, R.K.; Geyer, H.K.

    1996-11-01

    The GC computer code has been developed for flow sheet simulation of pyrochemical processing of spent nuclear fuel. It utilizes a robust algorithm SLG for analyzing simultaneous chemical reactions between species distributed across many phases. Models have been developed for analysis of the oxide fuel reduction process, salt recovery by electrochemical decomposition of lithium oxide, uranium separation from the reduced fuel by electrorefining, and extraction of fission products into liquid cadmium. The versatility of GC is demonstrated by applying the code to a flow sheet of current interest.

  11. The performative pleasure of imprecision: a diachronic study of entrainment in music performance.

    PubMed

    Geeves, Andrew; McIlwain, Doris J; Sutton, John

    2014-01-01

    This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Non-verbal communicative exchanges, via eye contact, gesture, and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance.

  12. The performative pleasure of imprecision: a diachronic study of entrainment in music performance

    PubMed Central

    Geeves, Andrew; McIlwain, Doris J.; Sutton, John

    2014-01-01

    This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Non-verbal communicative exchanges, via eye contact, gesture, and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance. PMID:25400567

  13. Doing Duo – a case study of entrainment in William Forsythe’s choreography “Duo”

    PubMed Central

    Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E.

    2014-01-01

    Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe’s choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models. PMID:25374522

  14. Development and control of the process for the manufacture of zircaloy-4 tubing for LWBR fuel rods

    SciTech Connect

    Eyler, J.H.

    1981-01-01

    The technical requirements for the Light Water Breeder Reactor (LWBR) fuel elements (fuel rods) imposed certain unique requirements for the low hafnium Zircaloy-4 tubing used as fuel rod cladding. This report describes, in detail, the tube manufacturing process, the product and process controls used, the inspections and tests performed, and the efforts involved in refining a commercial tube reducing process to produce tubes that would satisfy the requirements for LWBR fuel rod cladding.

  15. TRISO-Coated Fuel Processing to Support High Temperature Gas-Cooled Reactors

    SciTech Connect

    Del Cul, G.D.

    2002-10-01

    The initial objective of the work described herein was to identify potential methods and technologies needed to disassemble and dissolve graphite-encapsulated, ceramic-coated gas-cooled-reactor spent fuels so that the oxide fuel components can be separated by means of chemical processing. The purpose of this processing is to recover (1) unburned fuel for recycle, (2) long-lived actinides and fission products for transmutation, and (3) other fission products for disposal in acceptable waste forms. Follow-on objectives were to identify and select the most promising candidate flow sheets for experimental evaluation and demonstration and to address the needs to reduce technical risks of the selected technologies. High-temperature gas-cooled reactors (HTGRs) may be deployed in the next -20 years to (1) enable the use of highly efficient gas turbines for producing electricity and (2) provide high-temperature process heat for use in chemical processes, such as the production of hydrogen for use as clean-burning transportation fuel. Also, HTGR fuels are capable of significantly higher burn-up than light-water-reactor (LWR) fuels or fast-reactor (FR) fuels; thus, the HTGR fuels can be used efficiently for transmutation of fissile materials and long-lived actinides and fission products, thereby reducing the inventory of such hazardous and proliferation-prone materials. The ''deep-burn'' concept, described in this report, is an example of this capability. Processing of spent graphite-encapsulated, ceramic-coated fuels presents challenges different from those of processing spent LWR fuels. LWR fuels are processed commercially in Europe and Japan; however, similar infrastructure is not available for processing of the HTGR fuels. Laboratory studies on the processing of HTGR fuels were performed in the United States in the 1960s and 1970s, but no engineering-scale processes were demonstrated. Currently, new regulations concerning emissions will impact the technologies used in

  16. Entrainment rates and microphysics in POST stratocumulus

    NASA Astrophysics Data System (ADS)

    Gerber, H.; Frick, G.; Malinowski, Szymon P.; Jonsson, H.; Khelif, D.; Krueger, Steven K.

    2013-11-01

    An aircraft field study (POST; Physics of Stratocumulus Top) was conducted off the central California coast in July and August 2008 to deal with the known difficulty of measuring entrainment rates in the radiatively important stratocumulus (Sc) prevalent in that area. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter research aircraft flew 15 quasi-Lagrangian flights in unbroken Sc and carried a full complement of probes including three high-data-rate probes: ultrafast temperature probe, particulate volume monitor probe, and gust probe. The probes' colocation near the nose of the Twin Otter permitted estimation of entrainment fluxes and rates with an in-cloud resolution of 1 m. Results include the following: Application of the conditional sampling variation of classical mixed layer theory for calculating the entrainment rate into cloud top for POST flights is shown to be inadequate for most of the Sc. Estimated rates resemble previous results after theory is modified to take into account both entrainment and evaporation at cloud top given the strong wind shear and mixing at cloud top. Entrainment rates show a tendency to decrease for large shear values, and the largest rates are for the smallest temperature jumps across the inversion. Measurements indirectly suggest that entrained parcels are primarily cooled by infrared flux divergence rather than cooling from droplet evaporation, while detrainment at cloud top causes droplet evaporation and cooling in the entrainment interface layer above cloud top.

  17. Temperature compensation and entrainment in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2012-06-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles.

  18. An Update on NiCE Support for BISON

    SciTech Connect

    McCaskey, Alex; Billings, Jay Jay; Deyton, Jordan H.; Wojtowicz, Anna

    2015-09-01

    The Nuclear Energy Advanced Modeling and Simulation program (NEAMS) from the Department of Energy s Office of Nuclear Energy has funded the development of a modeling and simulation workflow environment to support the various codes in its nuclear energy scientific computing toolkit. This NEAMS Integrated Computational Environment (NiCE) provides extensible tools and services that enable efficient code execution, input generation, pre-processing visualizations, and post-simulation data analysis and visualization for a large portion of the NEAMS Toolkit. A strong focus for the NiCE development team throughout FY 2015 has been support for the Multiphysics Object Oriented Simulation Environment (MOOSE) and the NEAMS nuclear fuel performance modeling application built on that environment, BISON. There is a strong desire in the program to enable and facilitate the use of BISON throughout nuclear energy research and industry. A primary result of this desire is the need for strong support for BISON in NiCE. This report will detail improvements to NiCE support for BISON. We will present a new and improved interface for interacting with BISON simulations in a variety of ways: (1) improved input model generation, (2) embedded mesh and solution data visualizations, and (3) local and remote BISON simulation launch. We will also show how NiCE has been extended to provide support for BISON code development.

  19. Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell.

    PubMed

    Zou, Haiming; Wang, Yan

    2017-07-01

    A new process of electrolysis cell (EC) coupled with microbial fuel cell (MFC) was developed here and its feasibility in methyl red (MR) wastewater treatment and simultaneous electricity generation was assessed. Results indicate that an excellent MR removal and electricity production performance was achieved, where the decolorization and COD removal efficiencies were 100% and 89.3%, respectively and a 0.56V of cell voltage output was generated. Electrolysis voltage showed a positive influence on decolorization rate (DR) but also cause a rapid decrease in current efficiency (CE). Although a low COD removal rate of 38.5% was found in EC system, biodegradability of MR solution was significantly enhanced, where the averaged DR was 85.6%. Importantly, COD removal rate in EC-MFC integrated process had a 50.8% improvement compared with the single EC system. The results obtained here would be beneficial to provide a prospective alternative for azo dyes wastewater treatment and power production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Entrained neural oscillations in multiple frequency bands comodulate behavior

    PubMed Central

    Henry, Molly J.; Herrmann, Björn

    2014-01-01

    Our sensory environment is teeming with complex rhythmic structure, to which neural oscillations can become synchronized. Neural synchronization to environmental rhythms (entrainment) is hypothesized to shape human perception, as rhythmic structure acts to temporally organize cortical excitability. In the current human electroencephalography study, we investigated how behavior is influenced by neural oscillatory dynamics when the rhythmic fluctuations in the sensory environment take on a naturalistic degree of complexity. Listeners detected near-threshold gaps in auditory stimuli that were simultaneously modulated in frequency (frequency modulation, 3.1 Hz) and amplitude (amplitude modulation, 5.075 Hz); modulation rates and types were chosen to mimic the complex rhythmic structure of natural speech. Neural oscillations were entrained by both the frequency modulation and amplitude modulation in the stimulation. Critically, listeners’ target-detection accuracy depended on the specific phase–phase relationship between entrained neural oscillations in both the 3.1-Hz and 5.075-Hz frequency bands, with the best performance occurring when the respective troughs in both neural oscillations coincided. Neural-phase effects were specific to the frequency bands entrained by the rhythmic stimulation. Moreover, the degree of behavioral comodulation by neural phase in both frequency bands exceeded the degree of behavioral modulation by either frequency band alone. Our results elucidate how fluctuating excitability, within and across multiple entrained frequency bands, shapes the effective neural processing of environmental stimuli. More generally, the frequency-specific nature of behavioral comodulation effects suggests that environmental rhythms act to reduce the complexity of high-dimensional neural states. PMID:25267634

  1. Entrained neural oscillations in multiple frequency bands comodulate behavior.

    PubMed

    Henry, Molly J; Herrmann, Björn; Obleser, Jonas

    2014-10-14

    Our sensory environment is teeming with complex rhythmic structure, to which neural oscillations can become synchronized. Neural synchronization to environmental rhythms (entrainment) is hypothesized to shape human perception, as rhythmic structure acts to temporally organize cortical excitability. In the current human electroencephalography study, we investigated how behavior is influenced by neural oscillatory dynamics when the rhythmic fluctuations in the sensory environment take on a naturalistic degree of complexity. Listeners detected near-threshold gaps in auditory stimuli that were simultaneously modulated in frequency (frequency modulation, 3.1 Hz) and amplitude (amplitude modulation, 5.075 Hz); modulation rates and types were chosen to mimic the complex rhythmic structure of natural speech. Neural oscillations were entrained by both the frequency modulation and amplitude modulation in the stimulation. Critically, listeners' target-detection accuracy depended on the specific phase-phase relationship between entrained neural oscillations in both the 3.1-Hz and 5.075-Hz frequency bands, with the best performance occurring when the respective troughs in both neural oscillations coincided. Neural-phase effects were specific to the frequency bands entrained by the rhythmic stimulation. Moreover, the degree of behavioral comodulation by neural phase in both frequency bands exceeded the degree of behavioral modulation by either frequency band alone. Our results elucidate how fluctuating excitability, within and across multiple entrained frequency bands, shapes the effective neural processing of environmental stimuli. More generally, the frequency-specific nature of behavioral comodulation effects suggests that environmental rhythms act to reduce the complexity of high-dimensional neural states.

  2. Process integration methodology for natural gas-fueled heat pumps and cogeneration systems

    NASA Astrophysics Data System (ADS)

    Rossiter, Alan P.

    1988-11-01

    A process integration methodology was developed for analyzing industrial processes, identifying those that will benefit from natural gas fueled heat pumps and cogeneration system as well as novel, process-specific opportunities for further equipment improvements, including performance targets. The development included the writing of software to assist in implementing the methodology and application of the procedures in studies using both literature data and plant operating data. These highlighted potential applications for gas fueled heat pumps in ethylene processes and liquor distilling plants, and slightly less attractive opportunities in a number of other plants. Many of the processes studied showed excellent potentials for cogeneration applications.

  3. Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form

    NASA Astrophysics Data System (ADS)

    Terrani, K. A.; Kiggans, J. O.; Silva, C. M.; Shih, C.; Katoh, Y.; Snead, L. L.

    2015-02-01

    The consolidation mechanism and resulting properties of the silicon carbide (SiC) matrix of fully ceramic microencapsulated (FCM) fuel form are discussed. The matrix is produced via the nano-infiltration transient eutectic-forming (NITE) process. Coefficient of thermal expansion, thermal conductivity, and strength characteristics of this SiC matrix have been characterized in the unirradiated state. An ad hoc methodology for estimation of thermal conductivity of the neutron-irradiated NITE-SiC matrix is also provided to aid fuel performance modeling efforts specific to this concept. Finally, specific processing methods developed for production of an optimal and reliable fuel form using this process are summarized. These various sections collectively report the progress made to date on production of optimal FCM fuel form to enable its application in light water and advanced reactors.

  4. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed.

  5. Nuclear power plant and fuel process simulators for educational purposes and quantitative analyses

    SciTech Connect

    Blomberg, P.E.; Kjaer-Pedersen, N.

    1987-01-01

    The excellence of today's technique for plant and fuel process simulators (both in hardware and software) has reached a level that permits a multitude of additional applications beyond the traditional educational purpose. A duplex real-time simulation system, developed by Studsvik, representing the dynamics of a nuclear power plant and the performance of the fuel pins, may be utilized for a number of different important applications. The plant process simulator (Studsvik simulator) and the fuel pin process simulator (INTERPIN-FRPS) have been developed independently and may be operated on an individual basis. However, the combination of the two simulators, as established, implies two major advantages: The hardware (computer and graphics) can be saved, and the Studsvik simulator, particularly its core model, will serve the INTERPIN-FRPS with the necessary and accurate dynamic real-time input data for any local position of the fuel pins in the reactor core.

  6. Preparation and characterization of Ce0.8Y0.2-xCuxO2-δ as electrolyte for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ji, Bifa; Tian, Changan; Wang, Chunyang; Wu, Tong; Xie, Jinsong; Li, Minghua

    2015-03-01

    In this study, ultrafine Ce0.8Y0.2-xCuxO2-δ (for x = 0.00, 0.04, 0.08, 0.12, 0.16, 0.20) powders have been successfully prepared by sol-gel auto-combustion method. The samples were characterized by FTIR, TG-DSC, XRD, Raman spectroscopy, BET, TEM, SEM, AC impedance, and thermal expansion measurements. The results indicated that Ce0.8Y0.2-xCuxO2-δ powders with highly phase-pure cubic fluorite-type structure were obtained after calcining at 700 °C for 2 h; the average crystallite sizes were between 11.3 and 17.9 nm. The as-synthesized powders exhibited high sintering activity, Ce0.8Y0.2-xCuxO2-δ series electrolytes which have higher relatively dense over 95% can obtain after sintering at 1300 °C for 4 h Ce0.8Y0.12Cu0.08O1.86 electrolyte sintered at 1300 °C for 4 h exhibits the highest oxide ionic conductivity (σ800 °C = 0.029 S cm-1), lowest electrical activation energy (Ea = 0.75 eV) and moderate thermal expansion coefficient (TEC = 13.5 × 10-6 K-1, between 25 and 800 °C). Therefore, it was concluded that co-doping with appropriate ratio of Y/Cu can further improve the properties of ceria electrolytes.

  7. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

    PubMed Central

    Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker

    2015-01-01

    Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  8. Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling

    SciTech Connect

    Jung, Jonghwun; Gamwo, I.K.

    2008-04-21

    Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas–solid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

  9. Operating properties of solid oxide fuel cells using BaCe{sub 0.8}Gd{sub 0.2}O{sub 3{minus}{alpha}} electrolyte

    SciTech Connect

    Taniguchi, Noboru; Yasumoto, Eiichi; Gamo, Takaharu

    1996-06-01

    The performance and the long-term operating properties of solid oxide fuel cells (SOFCs) using BaCeO{sub 0.8}GdO{sub 0.2}O{sub 3{minus}{alpha}} (BCG) ceramics as the electrolyte have been investigated. A hydrogen-air fuel cell using BCG electrolyte with a thickness of 0.5 mm exhibited good performance at 800 C. Its short-circuit current was 0.9 A/cm{sup 2}, and there was hardly any degradation of BCG electrolyte in 1,600 h of operation. When a quasi-fuel gas containing 8% CO{sub 2}, which was expected by the reformation of the city gas (CH{sub 4}) at 800 C, was supplied to this cell, its short-circuit current was 0.63 A/cm{sup 2} and the cell worked stably under the discharge current density of 100 mA/cm{sup 2} for 2,500 h. Some sintered metals (Fe, Co, Ni) were examined as a anode material for this electrolyte. Ni is a promising anode material for BCG electrolyte from the point of view of performance and durability.

  10. Controllability of plutonium concentration for FBR fuel at a solvent extraction process in the PUREX process

    SciTech Connect

    Enokida, Youichi; Kitano, Motoki; Sawada, Kayo

    2013-07-01

    Typical Purex solvent extraction systems for the reprocessing of spent nuclear fuel have a feed material containing dilute, 1% in weight, plutonium, along with uranium and fission products. Current reprocessing proposals call for no separation of the pure plutonium. The work described in this paper studied, by computer simulation, the fundamental feasibility of preparing a 20% concentrated plutonium product solution from the 1% feed by adjusting only the feed rates and acid concentrations of the incoming streams and without the addition of redox reagents for the plutonium. A set of process design flowsheets has been developed to realize a concentrated plutonium solution of a 20% stream from the dilute plutonium feed without using redox reagents. (authors)

  11. EEG oscillations entrain their phase to high-level features of speech sound.

    PubMed

    Zoefel, Benedikt; VanRullen, Rufin

    2016-01-01

    Phase entrainment of neural oscillations, the brain's adjustment to rhythmic stimulation, is a central component in recent theories of speech comprehension: the alignment between brain oscillations and speech sound improves speech intelligibility. However, phase entrainment to everyday speech sound could also be explained by oscillations passively following the low-level periodicities (e.g., in sound amplitude and spectral content) of auditory stimulation-and not by an adjustment to the speech rhythm per se. Recently, using novel speech/noise mixture stimuli, we have shown that behavioral performance can entrain to speech sound even when high-level features (including phonetic information) are not accompanied by fluctuations in sound amplitude and spectral content. In the present study, we report that neural phase entrainment might underlie our behavioral findings. We observed phase-locking between electroencephalogram (EEG) and speech sound in response not only to original (unprocessed) speech but also to our constructed "high-level" speech/noise mixture stimuli. Phase entrainment to original speech and speech/noise sound did not differ in the degree of entrainment, but rather in the actual phase difference between EEG signal and sound. Phase entrainment was not abolished when speech/noise stimuli were presented in reverse (which disrupts semantic processing), indicating that acoustic (rather than linguistic) high-level features play a major role in the observed neural entrainment. Our results provide further evidence for phase entrainment as a potential mechanism underlying speech processing and segmentation, and for the involvement of high-level processes in the adjustment to the rhythm of speech.

  12. High performing BaCe0.8Zr0.1Y0.1O3-δ-Sm0.5Sr0.5CoO3-δ based protonic ceramic fuel cell

    NASA Astrophysics Data System (ADS)

    Dailly, J.; Taillades, G.; Ancelin, M.; Pers, P.; Marrony, M.

    2017-09-01

    The electrochemical performances of a composite cathode consisted of Sm0.5Sr0.5CoO3-δ and BaCe0.8Zr0.1Y0.1O3-δ coated onto a BaCe0.8Zr0.1Y0.1O3-δ-based half-cell are evaluated in the intermediate temperature range 600-700 °C. Powders for the manufacture of anode substrate and electrolyte are commercial products, whereas a glycine-nitrate process is used to synthesize the cathode material. The complete cell is manufactured by wet chemical routes, using the combination of tape-casting for the anode substrate NiO-BaCe0.8Zr0.1Y0.1O3-δ and wet powder spraying for the elaboration of the electrolyte BaCe0.8Zr0.1Y0.1O3-δ and air electrode Sm0.5Sr0.5CoO3-δ-BaCe0.8Zr0.1Y0.1O3-δ. Thin electrolytes and porous electrodes are successfully elaborated for a cell size of 3 × 3 cm2. A high open circuit voltage of 1.11 V at 600 °C indicates an excellent gas-tightness of the protonic ceramic electrolyte. A maximum power density of 370-530 mW cm-2 in the range 600-700 °C is measured validating Sm0.5Sr0.5CoO3-δ material as promising cathode for protonic-based cells.

  13. Spent Nuclear Fuel (SNF) Process Validation Technical Support Plan

    SciTech Connect

    SEXTON, R.A.

    2000-03-13

    The purpose of Process Validation is to confirm that nominal process operations are consistent with the expected process envelope. The Process Validation activities described in this document are not part of the safety basis, but are expected to demonstrate that the process operates well within the safety basis. Some adjustments to the process may be made as a result of information gathered in Process Validation.

  14. Spent Nuclear Fuel (SNF) Process Validation Technical Support Plan

    SciTech Connect

    SEXTON, R.A.

    2000-10-17

    The purpose of Process Validation is to confirm that nominal process operations are consistent with the expected process envelope. The Process Validation activities described in this document are not part of the safety basis, but are expected to demonstrate that the process operates well within the safety basis. Some adjustments to the process may be made as a result of information gathered in Process Validation.

  15. Spent Nuclear Fuel (SNF) Process Validation Technical Support Plan

    SciTech Connect

    SEXTON, R.A.

    2000-05-09

    The purpose of Process Validation is to confirm that nominal process operations are consistent with the expected process envelope. The Process Validation activities described in this document are not part of the safety basis, but are expected to demonstrate that the process operates well within the safety basis. Some adjustments to the process may be made as a result of information gathered in Process Validation.

  16. Landslide boost from entrainment of erodible material along the slope

    NASA Astrophysics Data System (ADS)

    Farin, M.; Mangeney, A.; Roche, O.; Ionescu, I.; Hungr, O.

    2011-12-01

    Landslides, debris flows, pyroclastic flows and avalanches are natural hazards that threaten life and property in mountainous, volcanic, coastal and seismically active areas. The granular mass tends to accelerate as gravity pulls it down the slope, and will slow on more gentle slopes, when interaction forces dissipating energy overcome the driving forces. The entrainment of underlying sediments or debris into the gravitational granular flows is suspected to be critical to their dynamics, but direct measurement of material entrainment in natural flows is very difficult. Nevertheless, qualitative and quantitative field observations suggest that material entrainment can either increase or decrease flow velocity and deposit extent, depending on the geological setting and the type of gravitational flow. Based on laboratory experiments on dry granular flows, we show here that erosion of granular material already present on the bed can significantly increase the size and mobility of the flow and possibly generate surges. We present laboratory experiments of granular material flowing over an inclined plane covered by an erodible bed, designed to mimic erosion processes of natural flows traveling over deposits built up by earlier events. The controlling parameters are the inclination of the plane and the thickness of the erodible layer. Different methods are used to prepare the erodible bed, thus leading to various degrees of compaction. We show that erosion processes increases the flow mobility (i. e. runout) by up to 40 % over slopes with inclination close to the repose angle of the grains. The effect is observed even for very thin erodible beds. We demonstrate that the increase of mass of the flowing grains caused by entrainment of the erodible layer is not enough to explain the observed increase in velocity and runout of the granular mass. Erosion efficiency is shown to strongly depend on the slope and on the nature (i. e. degree of compaction) of the erodible bed

  17. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    NASA Astrophysics Data System (ADS)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  18. Laboratory experiments on stability and entrainment of oceanic stratocumulus. Part 1: Instability experiment

    NASA Technical Reports Server (NTRS)

    Shy, Shenqyang S.

    1990-01-01

    The existence and persistence of marine stratocumulus play a significant role in the overall energy budget of the earth. Their stability and entrainment process are important in global climate studies, as well as for local weather forecasting. The purposes of the experimental simulations are to study this process and to address this paradox. The effects of buoyancy reversal is investigated, followed by two types of experiments. An instability experiment involves the behavior of a fully turbulent wake near the inversion generated by a sliding plate. Due to buoyancy reversal, the heavy, mixed fluid starts to sink, turning the potential energy created by the mixing process into kinetic energy, thereby increasing the entrainment rate. An entrainment experiment, using a vertically oscillating grid driven by a controllable speed motor, produces many eddy-induced entrainments at a surface region on scales much less than the depth of the layer.

  19. Fracture process of nonstoichiometric oxide based solid oxide fuel cell under oxidizing/reducing gradient conditions

    NASA Astrophysics Data System (ADS)

    Sato, Kazuhisa; Yashiro, Keiji; Kawada, Tatsuya; Yugami, Hiroo; Hashida, Toshiyuki; Mizusaki, Junichiro

    The influence of chemically induced expansion on the fracture damage of a nonstoichiometric oxide (ceria) based solid oxide fuel cell (SOFC) single cell laminate was investigated by using numerical stress analyses under oxidizing/reducing gradient condition. The single cell examined in this study was composed of electrolyte (Ce 0.8Sm 0.2O 2- δ), anode (Cermets of Ni-Ce 0.8Sm 0.2O 2- δ), and cathode (La 0.6Sr 0.4Co 0.2Fe 0.8O 3- δ), respectively. The finite element method (FEM) was employed to calculate the residual stress, thermal stresses, and chemically induced expansion stresses for the single cell. The residual and thermal stresses were calculated much smaller than the fracture strength of the individual components of the single cell. On the other hand, the chemically induced expansion stresses were shown to remarkably increase for the temperature range greater than 973 K and accounted their magnitude for primary part of the induced stress. It was shown from the FEM that the maximum circumferential stress induced in the single cell exceeded the fracture strength of the individual components at the onset of the fracture damage detect by acoustic emission (AE) method.

  20. Flow Dynamics and Sediment Entrainment in Natural Turbidity Currents Inferred from Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Traer, M. M.; Hilley, G. E.; Fildani, A.

    2009-12-01

    Submarine turbidity currents derive their momentum from gravity acting upon the density contrast between sediment-laden and clear water, and so unlike fluvial systems, the dynamics of such flows are inextricably linked to the rates at which they deposit and entrain sediment. We have analyzed the sensitivity of the growth and maintenance of turbidity currents to sediment entrainment and deposition using the layer-averaged equations of conservation of fluid and sediment mass, and conservation of momentum and turbulent kinetic energy. Our model results show that the dynamics of turbidity currents are extremely sensitive to the functional form and empirical constants of the relationship between sediment entrainment and friction velocity. Data on the relationship between sediment entrainment and friction velocity for submarine density flows are few and as a result, entrainment formulations are populated with data from sub-aerial flows not driven by the density contrast between clear and turbid water. If we entertain the possibility that sediment entrainment in sub-aerial rivers is different than in dense underflows, flow parameters such as velocity, height, and concentration were found nearly impossible to predict beyond a few hundred meters based on the limited laboratory data available that constrain the sediment entrainment process in turbidity currents. The sensitivity of flow dynamics to the functional relationship between friction velocity and sediment entrainment indicates that independent calibration of a sediment entrainment law in the submarine environment is necessary to realistically predict the dynamics of these flows and the resulting patterns of erosion and deposition. To calibrate such a relationship, we have developed an inverse methodology that utilizes existing submarine channel morphology as a means of constraining the sediment entrainment function parameters. We use a Bayesian Metropolis-Hastings sampler to determine the sediment entrainment

  1. Eyeblink entrainment at breakpoints of speech.

    PubMed

    Nakano, Tamami; Kitazawa, Shigeru

    2010-09-01

    The eyes play an essential role in social communication. Eyeblinks, however, have thus far received minor attention. We previously showed that subjects blink in synchrony while viewing the same video stories (Nakano et al. in Proc R Soc B 276:3635-3644, 2009). We therefore hypothesized that eyeblinks are synchronized between listener and speaker in face-to-face conversation. Here, we show that listeners blinked with a delay of 0.25-0.5 s after the speaker blinked when the listeners viewed close-up video clips (with sound) of the speaker's face. Furthermore, this entrainment was selectively triggered by speaker's eyeblinks occurring at the end and during pauses in speech. Eyeblink entrainment was not observed when viewing identical video clips without sound, indicating that blink entrainment was not an automatic imitation. We therefore suggest that eyeblink entrainment reflects smooth communication between interactants.

  2. Activity of fuel batches processed through Hanford separations plants, 1944 through 1989

    SciTech Connect

    Watrous, R.A.; Wootan, D.W.

    1997-07-29

    This document provides a printout of the ``Fuel Activity Database`` (version U6) generated by the Hanford DKPRO code and transmitted to the Los Alamos National Laboratory for input to their ``Hanford Defined Waste`` model of waste tank inventories. This fuel activity file consists of 1,276 records--each record representing the activity associated with a batch of spent reactor fuel processed by month (or shorter period) through individual Hanford separations plants between 1944 and 1989. Each record gives the curies for 46 key radionuclides, decayed to a common reference date of January 1, 1994.

  3. An approach to determining the economic feasibility of refuse-derived fuels and materials recovery processing

    SciTech Connect

    Gershman, H.W.

    1980-06-01

    An approach for determining the economic feasibility of refuse-derived fuel production and the recovery of various materials is demonstrated, using data developed for the metropolitan Washington, D.C., area as input. The processing facility, designed to handle 650 tpd of refuse, is described. Since materials revenues can be predicted with a higher degree of certainty than refuse fuel revenues, it is necessary to determine what revenues the sale of solid waste fuel will have to generate for projected economics to be the same as an alternative disposal practice. (1 diagram, 8 references, 6 tables)

  4. Dissolution process for ZrO.sub.2 -UO.sub.2 -CaO fuels

    DOEpatents

    Paige, Bernice E.

    1976-06-22

    The present invention provides an improved dissolution process for ZrO.sub.2 -UO.sub.2 -CaO-type pressurized water reactor fuels. The zirconium cladding is dissolved with hydrofluoric acid, immersing the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers in the resulting zirconium-dissolver-product in the dissolver vessel, and nitric acid is added to the dissolver vessel to facilitate dissolution of the uranium from the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers.

  5. Sm0.5Sr0.5CoO3-δ infiltrated Ce0.9Gd0.1O2-δ composite cathodes for high performance protonic ceramic fuel cells

    NASA Astrophysics Data System (ADS)

    Zhao, Ling; Li, Geng; Chen, Kongfa; Ling, Yihan; Cui, Yuexiao; Gui, Liangqi; He, Beibei

    2016-11-01

    Sm0.5Sr0.5CoO3-δ (SSC) infiltrated Ce0.9Gd0.1O2-δ (GDC) composite cathodes are developed for protonic ceramic fuel cells (PCFCs). Although the SSC infiltrated GDC cathodes make little contribute to expending the reaction sites of water formation, it can significantly improve the oxygen reduction dynamics among the whole electrochemical reaction. The symmetric half cell and single cell testing results demonstrate the high electrochemical activity of SSC infiltrated GDC cathodes. Moreover, the single cell is stable at 600 °C for 120 h in humidified H2 and humidified H2sbnd CO. The encouraging results indicate that the SSC infiltrated GDC could be the promising composite cathodes for application in PCFCs.

  6. Synthesis, characterization and mechanical properties of NiO - GDC20 (Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9}) nano composite anode for solid oxide fuel cells

    SciTech Connect

    Reddy, M. Narsimha; Rao, P. Vijaya Bhaskar; Sharma, R. K.

    2016-05-06

    In the present research work, X (NiO) +1-X(Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9}) where X = 30,40 and 45 wt% Nano Composite Anodes are synthesized for low temperature operating solid oxide fuel cells (SOFC). NiO and Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} (GDC20) are synthesized by sol-gel citrate method and the nanopowders of NiO, GDC20 were calcined from 650 °c to 750 °c. For anode materials, pelletized the nanocomposites of X(NiO)+ (1-X) GDC20 (X = 30,40,45 wt.%) and sintered at 1200 °c. systematic study of atomic structure, purity, phase and structural parameters such as Lattice parameters, crystallite size of as-synthesized nanopowders and anode materials were carried out by XRD and SEM. For mechanical strength, Vickers micro-hardness of anode composites were estimated and observed that micro-hardness of composites were increasing with NiO wt.% and the density of sintered samples, which is varying from 4.35 to 5.54 Gpa at 500g load.

  7. Effect of Co doping on sinterability and protonic conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ for protonic ceramic fuel cells

    NASA Astrophysics Data System (ADS)

    Wan, Yanhong; He, Beibei; Wang, Ranran; Ling, Yihan; Zhao, Ling

    2017-04-01

    During the application of protonic ceramic fuel cells (PCFCs), Co species derived from Co-containing cathodes readily diffuse into electrolyte layer. In this study, the influence of cobalt doping on the sintering and protonic conducting properties of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) electrolytes is evaluated. The Co-doped BZCYYb oxides prepared by a sol-gel way exhibit the orthorhombic perovskite structure. A trade-off relation between the sinterability and protonic conductivity of Co doped BZCYYb oxides is identified. Furthermore, BaZr0.1Ce0.68Y0.1Yb0.1Co0.02O3-δ (BZCYYbC2) with a compromise between sinterability and protonic conductivity is further applied as electrolyte of a single cell. The single cell with BZCYYbC2 electrolyte demonstrates a competitive power density of 0.67 W cm-2 at 700 °C.

  8. Influence of a platinum functional layer on a Ni-Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} anode for thin-film solid oxide fuel cells

    SciTech Connect

    Kang, Sungmin; Cha, Suk Won E-mail: swcha@snu.ac.kr; Chang, Ikwhang; Kim, Young-Beom E-mail: swcha@snu.ac.kr

    2015-09-15

    A Pt functional layer was deposited between a Ni-Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (50 wt. % Ni) anode and an 8 mol. % yttria-stabilized zirconia electrolyte in order to enhance the performance of a thin film solid oxide fuel cell. By inserting this ultrathin functional layer, the ohmic impedance of the single cell was significantly reduced, and the maximum power density was increased by a factor of ∼1.55. However, excessive deposition of the Pt functional layer caused ionic conduction pathway blocking between the yttria-stabilized zirconia and Ni-Gd{sub 0.1}Ce{sub 0.9}O{sub 1.95} (Ni-GDC), deactivating the Ni-GDC as a mixed ionic and electronic conducting anode. As a result, both the ohmic impedance and anodic faradaic impedance were increased after introduction of excessive Pt functional layer, and the maximum power density was also reduced.

  9. Measurement techniques in dry-powdered processing of spent nuclear fuels.

    SciTech Connect

    Bowers, D. L.; Hong, J.-S.; Kim, H.-D.; Persiani, P. J.; Wolf, S. F.

    1999-07-21

    High-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICPMS) detection, {alpha}-spectrometry ({alpha}-S), and {gamma}-spectrometry ({gamma}-S) were used for the determination of nuclide content in five samples excised from a high-burnup fuel rod taken from a pressurized water reactor (PWR). The samples were prepared for analysis by dissolution of dry-powdered samples. The measurement techniques required no separation of the plutonium, uranium, and fission products. The sample preparation and analysis techniques showed promise for in-line analysis of highly-irradiated spent fuels in a dry-powdered process. The analytical results allowed the determination of fuel burnup based on {sup 148}Nd, Pu, and U content. A goal of this effort is to develop the HPLC-ICPMS method for direct fissile material accountancy in the dry-powdered processing of spent nuclear fuel.

  10. Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration

    NASA Astrophysics Data System (ADS)

    Wylie, Ernest M.; Peruski, Kathryn M.; Prizio, Sarah E.; Bridges, Andrea N. A.; Rudisill, Tracy S.; Hobbs, David T.; Phillip, William A.; Burns, Peter C.

    2016-05-01

    Current separation and purification technologies utilized in the nuclear fuel cycle rely primarily on liquid-liquid extraction and ion-exchange processes. Here, we report a laboratory-scale aqueous process that demonstrates nanoscale control for the recovery of uranium from simulated used nuclear fuel (SIMFUEL). The selective, hydrogen peroxide induced oxidative dissolution of SIMFUEL material results in the rapid assembly of persistent uranyl peroxide nanocluster species that can be separated and recovered at moderate to high yield from other process-soluble constituents using sequestration-assisted ultrafiltration. Implementation of size-selective physical processes like filtration could results in an overall simplification of nuclear fuel cycle technology, improving the environmental consequences of nuclear energy and reducing costs of processing.

  11. Washing of the AN-107 entrained solids

    SciTech Connect

    GJ Lumetta; FV Hoopes

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching.

  12. Neurophysiological Analysis of Circadian Rhythm Entrainment

    DTIC Science & Technology

    1994-05-24

    the newly discovered 5 - HT7 receptor have yet to be performed. These results demonstrate that serotonin acting through a 5 -HTIA-like receptor can...ANNUAL 1 Jan 93 TO 31 Dec 93 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS NEUROPHYSIOLOGICAL ANALYSIS OF CIRCADIAN RHYTHM F49620-93-1-0089 ENTRAINMENT j...sensitivity of SCN cells to serotonin ( 5 -HT) and the effects of serotonin on rhythm entrainment. The evidence to date has suggested, however, that

  13. Improved Laboratory Transition Probabilities for Ce II, Application to the Cerium Abundances of the Sun and Five r-Process-Rich, Metal-Poor Stars, and Rare Earth Lab Data Summary

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; Sneden, C.; Cowan, J. J.; Ivans, I. I.; Den Hartog, E. A.

    2009-05-01

    Recent radiative lifetime measurements accurate to ±5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log ɛ = 1.61 ± 0.01 (σ = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log ɛ = 1.61 ± 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17°3248, CS 22892-052, CS 31082-001, HD 115444, and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of ±0.01 dex similar to the solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process-only model predictions for solar system material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretation for Pr, Dy, and Tm.

  14. Modeling of Neutral Entrainment in an FRC Thruster

    DTIC Science & Technology

    2012-07-01

    helium . The reaction rates as function of temperature are shown in Fig. 1 (left). Note that in addition to the electron impact ionization (denoted EII in...SCX N2 EII N2 recombination FIGURE 1. Different reaction rates in helium (left) and molecular nitrogen (right). The electron impact ionization rates...that the entrainment process in a helium -based FRC thruster may be expected to be fairly efficient, especially for lower plasma temperatures. Note

  15. Simulation of primary fuel atomization processes at subcritical pressures.

    SciTech Connect

    Arienti, Marco

    2013-06-01

    This report documents results from an LDRD project for the first-principles simulation of the early stages of spray formation (primary atomization). The first part describes a Cartesian embedded-wall method for the calculation of flow internal to a real injector in a fully coupled primary calculation. The second part describes the extension to an all-velocity formulation by introducing a momentum-conservative semi-Lagrangian advection and by adding a compressible term in the Poissons equation. Accompanying the description of the new algorithms are verification tests for simple two-phase problems in the presence of a solid interface; a validation study for a scaled-up multi-hole Diesel injector; and demonstration calculations for the closing and opening transients of a single-hole injector and for the high-pressure injection of liquid fuel at supersonic velocity.

  16. Entrainment of peripheral clock genes by cortisol

    PubMed Central

    Mavroudis, Panteleimon D.; Scheff, Jeremy D.; Calvano, Steve E.; Lowry, Stephen F.

    2012-01-01

    Circadian rhythmicity in mammals is primarily driven by the suprachiasmatic nucleus (SCN), often called the central pacemaker, which converts the photic information of light and dark cycles into neuronal and hormonal signals in the periphery of the body. Cells of peripheral tissues respond to these centrally mediated cues by adjusting their molecular function to optimize organism performance. Numerous systemic cues orchestrate peripheral rhythmicity, such as feeding, body temperature, the autonomic nervous system, and hormones. We propose a semimechanistic model for the entrainment of peripheral clock genes by cortisol as a representative entrainer of peripheral cells. This model demonstrates the importance of entrainer's characteristics in terms of the synchronization and entrainment of peripheral clock genes, and predicts the loss of intercellular synchrony when cortisol moves out of its homeostatic amplitude and frequency range, as has been observed clinically in chronic stress and cancer. The model also predicts a dynamic regime of entrainment, when cortisol has a slightly decreased amplitude rhythm, where individual clock genes remain relatively synchronized among themselves but are phase shifted in relation to the entrainer. The model illustrates how the loss of communication between the SCN and peripheral tissues could result in desynchronization of peripheral clocks. PMID:22510707

  17. Tuning the phase of circadian entrainment.

    PubMed

    Bordyugov, Grigory; Abraham, Ute; Granada, Adrian; Rose, Pia; Imkeller, Katharina; Kramer, Achim; Herzel, Hanspeter

    2015-07-06

    The circadian clock coordinates daily physiological, metabolic and behavioural rhythms. These endogenous oscillations are synchronized with external cues ('zeitgebers'), such as daily light and temperature cycles. When the circadian clock is entrained by a zeitgeber, the phase difference ψ between the phase of a clock-controlled rhythm and the phase of the zeitgeber is of fundamental importance for the fitness of the organism. The phase of entrainment ψ depends on the mismatch between the intrinsic period τ and the zeitgeber period T and on the ratio of the zeitgeber strength to oscillator amplitude. Motivated by the intriguing complexity of empirical data and by our own experiments on temperature entrainment of mouse suprachiasmatic nucleus (SCN) slices, we present a theory on how clock and zeitgeber properties determine the phase of entrainment. The wide applicability of the theory is demonstrated using mathematical models of different complexity as well as by experimental data. Predictions of the theory are confirmed by published data on Neurospora crassa strains for different period mismatches τ - T and varying photoperiods. We apply a novel regression technique to analyse entrainment of SCN slices by temperature cycles. We find that mathematical models can explain not only the stable asymptotic phase of entrainment, but also transient phase dynamics. Our theory provides the potential to explore seasonal variations of circadian rhythms, jet lag and shift work in forthcoming studies.

  18. Ambient Fluid Entrainment by Vortex Ring Formation

    NASA Astrophysics Data System (ADS)

    Olcay, Ali B.; Krueger, Paul S.

    2004-11-01

    During the formation of a vortex ring from a piston-cylinder mechanism, the roll-up of the ejected shear layer entrains ambient fluid. The resulting vortex ring convects both ejected and ambient fluid downstream. Ambient fluid entrained during the formation phase must be accelerated with the forming ring and can contribute to elevated propulsive effectiveness for pulsed-jet propulsion. In this regard it is of interest to know how much ambient fluid is entrained during vortex ring formation and if the entrainment occurs primarily during jet ejection or afterward. The present investigation evaluates ambient fluid entrainment experimentally using laser induced fluorescence of vortex ring formation from a piston-cylinder vortex ring generator. The fraction of ambient fluid in fully-developed vortex rings is evaluated directly for piston stroke-to-diameter (L/D) ratios in the range 0.25 to 4 for jet Reynolds number in the range 500 to 2000. The results indicate that the ambient fluid fraction is greater than 50% for L/D < 2.0, and the fraction tends to decrease as L/D increases. Time evolution of the entrainment during ring formation will also be presented.

  19. Coupling governs entrainment range of circadian clocks.

    PubMed

    Abraham, Ute; Granada, Adrián E; Westermark, Pål O; Heine, Markus; Kramer, Achim; Herzel, Hanspeter

    2010-11-30

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light-dark cycles ('entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN-the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system.

  20. Tuning the phase of circadian entrainment

    PubMed Central

    Bordyugov, Grigory; Abraham, Ute; Granada, Adrian; Rose, Pia; Imkeller, Katharina; Kramer, Achim; Herzel, Hanspeter

    2015-01-01

    The circadian clock coordinates daily physiological, metabolic and behavioural rhythms. These endogenous oscillations are synchronized with external cues (‘zeitgebers’), such as daily light and temperature cycles. When the circadian clock is entrained by a zeitgeber, the phase difference ψ between the phase of a clock-controlled rhythm and the phase of the zeitgeber is of fundamental importance for the fitness of the organism. The phase of entrainment ψ depends on the mismatch between the intrinsic period τ and the zeitgeber period T and on the ratio of the zeitgeber strength to oscillator amplitude. Motivated by the intriguing complexity of empirical data and by our own experiments on temperature entrainment of mouse suprachiasmatic nucleus (SCN) slices, we present a theory on how clock and zeitgeber properties determine the phase of entrainment. The wide applicability of the theory is demonstrated using mathematical models of different complexity as well as by experimental data. Predictions of the theory are confirmed by published data on Neurospora crassa strains for different period mismatches τ − T and varying photoperiods. We apply a novel regression technique to analyse entrainment of SCN slices by temperature cycles. We find that mathematical models can explain not only the stable asymptotic phase of entrainment, but also transient phase dynamics. Our theory provides the potential to explore seasonal variations of circadian rhythms, jet lag and shift work in forthcoming studies. PMID:26136227

  1. Coupling governs entrainment range of circadian clocks

    PubMed Central

    Abraham, Ute; Granada, Adrián E; Westermark, Pål O; Heine, Markus; Kramer, Achim; Herzel, Hanspeter

    2010-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light–dark cycles (‘entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN—the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system. PMID:21119632

  2. Industrial fuel gas plant project. Phase II. Memphis industrial fuel gas plant. Final report. [U-GAS process

    SciTech Connect

    Not Available

    1983-01-01

    The Industrial Fuel Gas Plant produces a nominal 50 billion Btu/day of product gas. The entire IFG production will be sold to MLGW. Under normal conditions, 20% of the output of the plant will be sold by MLGW to the local MAPCO refinery and exchanged for pipeline quality refinery gas. The MAPCO refinery gas will be inserted into the Memphis Natural Gas Distribution System. A portion (normally 10%) of the IFG output of the plant will be diverted to a Credit Generation Unit, owned by MLGW, where the IFG will be upgraded to pipeline quality (950 Btu/SCF). This gas will be inserted into MLGW's Natural Gas Distribution System. The remaining output of the IFG plant (gas with a gross heating value of 300 Btu/SCF) will be sold by MLGW as Industrial Fuel Gas. During periods when the IFG plant is partially or totally off-stream, natural gas from the Memphis Natural Gas Distribution System will be sent to an air mixing unit where the gas will be diluted to a medium Btu content and distributed to the IFG customers. Drawing 2200-1-50-00104 is the plant block flow diagram showing the process sequence and process related support facilities of this industrial plant. Each process unit as well as each process-related support facility is described briefly.

  3. Solid recovered fuel: materials flow analysis and fuel property development during the mechanical processing of biodried waste.

    PubMed

    Velis, Costas A; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2013-03-19

    Material flows and their contributions to fuel properties are balanced for the mechanical section of a mechanical-biological treatment (MBT) plant producing solid recovered fuel (SRF) for the UK market. Insights for this and similar plants were secured through a program of sampling, manual sorting, statistics, analytical property determination, and material flow analysis (MFA) with error propagation and data reconciliation. Approximately three-quarters of the net calorific value (Q(net,p,ar)) present in the combustible fraction of the biodried flow is incorporated into the SRF (73.2 ± 8.6%), with the important contributors being plastic film (30.7 MJ kg(ar)(-1)), other packaging plastic (26.1 MJ kg(ar)(-1)), and paper/card (13.0 MJ kg(ar)(-1)). Nearly 80% w/w of the chlorine load in the biodried flow is incorporated into SRF (78.9 ± 26.2%), determined by the operation of the trommel and air classifier. Through the use of a novel mass balancing procedure, SRF quality is understood, thus improving on the understanding of quality assurance in SRF. Quantification of flows, transfer coefficients, and fuel properties allows recommendations to be made for process optimization and the production of a reliable and therefore marketable SRF product.

  4. Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering

    NASA Astrophysics Data System (ADS)

    Knight, Travis W.; Anghaie, Samim

    2002-11-01

    Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.

  5. Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report

    SciTech Connect

    Albrecht, Bruce; Ghate, Virendra; CADeddu, Maria

    2016-06-01

    The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the components of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.

  6. Music and emotions: from enchantment to entrainment.

    PubMed

    Vuilleumier, Patrik; Trost, Wiebke

    2015-03-01

    Producing and perceiving music engage a wide range of sensorimotor, cognitive, and emotional processes. Emotions are a central feature of the enjoyment of music, with a large variety of affective states consistently reported by people while listening to music. However, besides joy or sadness, music often elicits feelings of wonder, nostalgia, or tenderness, which do not correspond to emotion categories typically studied in neuroscience and whose neural substrates remain largely unknown. Here we review the similarities and differences in the neural substrates underlying these "complex" music-evoked emotions relative to other more "basic" emotional experiences. We suggest that these emotions emerge through a combination of activation in emotional and motivational brain systems (e.g., including reward pathways) that confer its valence to music, with activation in several other areas outside emotional systems, including motor, attention, or memory-related regions. We then discuss the neural substrates underlying the entrainment of cognitive and motor processes by music and their relation to affective experience. These effects have important implications for the potential therapeutic use of music in neurological or psychiatric diseases, particularly those associated with motor, attention, or affective disturbances.

  7. Assessment of sulfur removal processes for advanced fuel cell systems

    NASA Astrophysics Data System (ADS)

    Lorton, G. A.

    1980-01-01

    The performance characteristics of potential sulfur removal processes were evaluated and four of these processes, the Selexol process, the Benfield process, the Sulfinol process, and the Rectisol process, were selected for detailed technical and economic comparison. The process designs were based on a consistent set of technical criteria for a grass roots facility with a capacity of 10,000 tons per day of Illinois No. 6 coal. Two raw gas compositions, based on oxygen blown and air blown Texaco gasification, were used. The bulk of the sulfur was removed in the sulfur removal unit, leaving a small amount of sulfur compounds in the gas. The remaining sulfur compounds were removed by reaction with zinc oxide in the sulfur polishing unit. The impact of COS hydrolysis pretreatment on sulfur removal was evaluated. Comprehensive capital and O and M cost estimates for each of the process schemes were developed.

  8. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    NASA Astrophysics Data System (ADS)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (<1%) is significantly lower than H 2 (10-27%) and electricity (20-42%), implies that sufficient land area is not available to meet the need for the entire transportation sector. To counter this dilemma, a number of processes have been proposed in this work: a hybrid hydrogen-carbon (H2CAR) process based on biomass gasification followed by the Fischer-Tropsch process such that 100% carbon efficiency is achieved yielding 330 ege/ton biomass using hydrogen derived from a carbon-free energy. The hydrogen requirement for the H2CAR process is 0.33 kg/liter of diesel. To decrease the hydrogen requirement associated with the H2CAR process, a hydrogen bio-oil (H2Bioil) process based on biomass fast-hydropyrolysis/hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to

  9. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

    SciTech Connect

    Collins, Emory D; Voit, Stewart L; Vedder, Raymond James

    2011-06-01

    The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be controlled for co

  10. Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels

    SciTech Connect

    Dagle, Vanessa Lebarbier; Smith, Colin; Flake, Matthew; Albrecht, Karl O.; Gray, Michel J.; Ramasamy, Karthikeyan K.; Dagle, Robert A.

    2016-01-01

    Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge for U.S. scientists. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. The composition of the resulting hydrocarbon fuel can be modulated to meet specified requirements. Biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C2+ oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C7+) is finally sent to a fourth reactor that is needed for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that ~75% of the hydrocarbons present are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of these catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters.

  11. Coal fueled ported kiln direct reduction process in Norway

    SciTech Connect

    Rierson, D.W.

    1994-12-31

    Allis Mineral Systems (AMS), formerly the minerals processing group at Allis-Chalmers Corporation, developed a ported kiln process in the 1960`s specifically for the direct reduction of iron ore. The process is called ACCAR. This ported kiln technology has more recently been coupled with AMS` GRATE-KILN System for iron oxide pelletizing into the GRATE-CAR Process, for minerals reduction. The GRATE-CAR Process can handle a fine grained ore concentrate through the steps of agglomeration, induration and reduction in a single production line.

  12. Tritium experiments on components for fusion fuel processing at the Tritium Systems Test Assembly

    SciTech Connect

    Konishi, S.; Yoshida, H.; Naruse, Y. ); Carlson, R.V.; Binning, K.E.; Bartlit, J.R.; Anderson, J.L. )

    1990-01-01

    Under a collaborative agreement between US and Japan, two tritium processing components, a palladium diffuser and a ceramic electrolysis cell have been tested with tritium for application to a Fuel Cleanup System (FCU) for plasma exhaust processing at the Los Alamos National Laboratory. The fundamental characteristics, compatibility with tritium, impurities effects with tritium, and long-term behavior of the components, were studied over a three year period. Based on these studies, an integrated process loop, JAERI Fuel Cleanup System'' equipped with above components was installed at the TSTA for full scale demonstration of the plasma exhaust reprocessing.

  13. Spectroscopic Online Monitoring for Process Control and Safeguarding of Radiochemical Fuel Reprocessing Streams

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Casella, Amanda J.; Peterson, James M.

    2013-02-24

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the spent nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved spent nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. In addition, the ability for continuous online monitoring allows for numerous benefits. This paper reviews application of the absorption and vibrational spectroscopic techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. Both techniques demonstrated robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Static spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical safeguards and process control.

  14. Spectroscopic Online Monitoring for Process Control and Safeguarding of Radiochemical Fuel Reprocessing Streams - 13553

    SciTech Connect

    Bryan, S.A.; Levitskaia, T.G.; Casella, Amanda; Peterson, James

    2013-07-01

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved spent nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper discusses application of absorption and vibrational spectroscopic techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. Both techniques demonstrated robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Static spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical safeguards and process control. (authors)

  15. Wind Shear Effects within the Entrainment Zone of Stratocumulus

    NASA Astrophysics Data System (ADS)

    Schulz, Bernhard; Mellado, Juan-Pedro

    2017-04-01

    Stratocumulus clouds are crucial for the Earth's radiative budget and are hence thought to be important for understanding climate change. Still, atmospheric models suffer from order-one uncertainties associated with these clouds. Cloud-top entrainment is particularly challenging because of the small-scales associated with it. Convective instabilities driven by evaporative and radiative cooling of the stratocumulus cloud-top set a continuous encroachment of the cloud layer into the entrainment interfacial layer (EIL), a process defining the entrainment velocity. Wind shear might play an important role in enhancing the entrainment velocity, but has been largely overlooked in the past decades. Therefore, direct numerical simulations focusing on meter and sub-meter scales are used to investigate the interaction between a mean vertical shear and the entrainment velocity. Our main findings are as follows. First, wind shear effects stay localized within the EIL, whose thickness is proportional to the shear layer thickness. This implies that the in-cloud turbulent state is independent of the imposed wind shear as long as the EIL is much thinner than the cloud layer. Therefore, a strong mean wind shear does not necessarily weaken the in-cloud turbulent state by depleting the cloud, which contradicts conjectures based on previous large eddy simulations. Second, a critical nondimensional shear number Scrit exits, such that no significant additional cloud-top cooling is created for S < Scrit, showing that wind shear effects are negligible in this regime. In contrast, a strong wind shear with S > Scrit enhances cloud-top cooling significantly by amplifying radiative and evaporative cooling. For typical atmospheric conditions with a strong capping inversion, Scrit corresponds to a shear velocity of 1 - 2ms-1. Consequently, large scale convective motions inside the cloud layer, associated with velocities of ˜ 1ms-1, are unable to significantly enhance cloud-top forcing of the in

  16. Basis for assessing the movement of spent nuclear fuels from wet to dry storage at the Idaho Chemical Processing Plant

    SciTech Connect

    Guenther, R.J.; Gilbert, E.R.; Johnson, A.B.; Lund, A.L.; Pednekar, S.P.; Windes, W.E.

    1994-12-01

    An assessment of the possible material interactions arising from the movement of previously wet stored spent nuclear fuel (SNF) into long-term dry interim storage has been conducted for selected fuels in the Idaho Chemical Processing Plant (ICPP). Three main classes of fuels are addressed: aluminum (Al) clad, stainless steel (SS) clad, and unclad Uranium-Zirconium Hydride (UZrHx) fuel types. Degradation issues for the cladding, fuel matrix material, and storage canister in both wet and dry storage environments are assessed. Possible conditioning techniques to stabilize the fuel and optimum dry environment conditions during storage are also addressed.

  17. Fuel cells 101

    SciTech Connect

    Hirschenhofer, J.H.

    1999-07-01

    This paper discusses the various types of fuel cells, the importance of cell voltage, fuel processing for natural gas, cell stacking, fuel cell plant description, advantages and disadvantages of the types of fuel cells, and applications. The types covered include: polymer electrolyte fuel cell, alkaline fuel cell, phosphoric acid fuel cell; molten carbonate fuel cell, and solid oxide fuel cell.

  18. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect

    Benson, Charles; Wilson, Robert

    2014-07-15

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of

  19. Radiolytic and Thermal Processes Relevant to Dry Storage of Spent Nuclear Fuels

    SciTech Connect

    Marschman, Steven C.; Madey, Theodore E.; Orlando, Thomas M.; Cowin, James P.; Petrik, Nikolay G.

    2000-09-08

    which can be used to make decisions concerning the safety and treatment issues associated with dry storage of spent nuclear fuel materials. In particular, we set out to establish an understanding of: (1) water interactions with failed-fuel rods and metal-oxide materials; (2) the role of thermal processes and radiolysis (solid-state and interfacial) in the generation of potentially explosive mixtures of gaseous H2 and O2, and (3) the potential role of radiation assisted corrosion during fuel rod storage. The project meets several major DOE/EMSP science needs for the Spent Nuclear Fuel Focus Area: (1) Stabilization of spent nuclear fuel, including mechanism of pyrophoricity and combustion parameters for various fuel types; (2) Characterization of spent nuclear fuel; (3) Development of methods to remove moisture without damage to fuel elements; and (4) Characterization of corrosion, degradation, and radionuclide release mechanisms, kinetics, and rates for fuel matrices.

  20. Solar photochemical process engineering for production of fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  1. Solar photochemical process engineering for production of fuels and chemicals

    NASA Astrophysics Data System (ADS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1984-05-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  2. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  3. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  4. Solar photochemical process engineering for production of fuels and chemicals

    NASA Technical Reports Server (NTRS)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1984-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  5. A FEASIBILITY STUDY FOR THE COPROCESSING OF FOSSIL FUELS WITH BIOMASS BY THE HYDROCARB PROCESS

    EPA Science Inventory

    The report describes and gives results of an assessment of a new process concept for the production of carbon and methanol from fossil fuels. The Hydrocarb Process consists of the hydrogasification of carbonaceous material to produce methane, which is subsequently thermally decom...

  6. 75 FR 28777 - Information Collection; Pre-Decisional Objection Process for Hazardous Fuel Reduction Projects...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... Forest Service Information Collection; Pre-Decisional Objection Process for Hazardous Fuel Reduction... revision, of a currently approved information collection, OMB 0596-0172--Pre-Decisional Objection Process... Standard time, Monday through Friday. SUPPLEMENTARY INFORMATION: Title: Pre-Decisional Objection...

  7. A FEASIBILITY STUDY FOR THE COPROCESSING OF FOSSIL FUELS WITH BIOMASS BY THE HYDROCARB PROCESS

    EPA Science Inventory

    The report describes and gives results of an assessment of a new process concept for the production of carbon and methanol from fossil fuels. The Hydrocarb Process consists of the hydrogasification of carbonaceous material to produce methane, which is subsequently thermally decom...

  8. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process.

    PubMed

    Khan, Mohammad Danish; Abdulateif, Huda; Ismail, Iqbal M; Sabir, Suhail; Khan, Mohammad Zain

    2015-01-01

    Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5-8.0, 27(±2°C and 10.6-18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery.

  9. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process

    PubMed Central

    Khan, Mohammad Danish; Abdulateif, Huda; Ismail, Iqbal M.; Sabir, Suhail; Khan, Mohammad Zain

    2015-01-01

    Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5–8.0, 27(±2°C and 10.6–18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery. PMID:26496083

  10. CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL

    SciTech Connect

    Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

    2008-02-01

    The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for

  11. Head-end process for the reprocessing of HTGR spent fuel

    SciTech Connect

    Chen, J.; Wen, M.

    2013-07-01

    The reprocessing of HTGR spent fuels is in favor of the sustainable development of nuclear energy to realize the maximal use of nuclear resource and the minimum disposal of nuclear waste. The head-end of HTGR spent fuels reprocessing is different from that of the LWR spent fuels reprocessing because of the difference of spent fuel structure. The dismantling of the graphite spent fuel element and the highly effective dissolution of fuel kernel is the most difficult process in the head end of the reprocessing. Recently, some work on the head-end has been done in China. First, the electrochemical method with nitrate salt as electrolyte was studied to disintegrate the graphite matrix from HTGR fuel elements and release the coated fuel particles, to provide an option for the head-end technology of reprocessing. The results show that the graphite matrix can be effectively separated from the coated particle without any damage to the SiC layer. Secondly, the microwave-assisted heating was applied to dissolve the UO{sub 2} kernel from the crashed coated fuel particles. The ceramic UO{sub 2} as the solute has a good ability to absorb the microwave energy. The results of UO{sub 2} kernel dissolution from crushed coated particles by microwave heating show that the total dissolution percentage of UO{sub 2} is more than 99.99% after 3 times cross-flow dissolution with the following parameters: 8 mol/L HNO{sub 3}, temperature 100 Celsius degrees, initial ratio of solid to liquid 1.2 g/ml. (authors)

  12. Fundamental phenomena on fuel decomposition and boundary layer combustion processes with applications to hybrid rocket motors

    NASA Technical Reports Server (NTRS)

    Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.

    1994-01-01

    An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide an engineering technology base for development of large scale hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed for conducting experimental investigations. Oxidizer (LOX or GOX) is injected through the head-end over a solid fuel (HTPB) surface. Experiments using fuels supplied by NASA designated industrial companies will also be conducted. The study focuses on the following areas: measurement and observation of solid fuel burning with LOX or GOX, correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study also being conducted at PSU.

  13. Fundamental Entrainment Observations (VSL, etc.) for a SSSL

    NASA Astrophysics Data System (ADS)

    Foss, John; Bade, Kyle; Neal, Douglas; Prevost, Richard

    2016-11-01

    Fundamental observations of the entrainment process on the low speed side of a high Re self-preserving single stream shear layer have been made using PIV realizations. The Re value was: U0θmid / ν = 6.75*104, where θmid = 13.7 cm is the momentum thickness at the mid-location (x / θ (0) = 390) of the observations. The VSL (Viscous Super Layer), 15-20 ηK thick, is bounded by a well-defined border where the non-vortical/vortical transition occurs. The Kolmogorov microscale (ηK) was determined from the mean-square vorticity adjacent to the VSL. A threshold level to define the border (ωzθmid /U0 = 0.221) was selected by examination of the data. Quantitative measures of the entrainment process have been obtained, including: i) the convoluted length of the border (Lb) made non-dimensional with respect to the length (Lm) of the temporally averaged flow field (Lb /Lm = 2.8) and ii) /ve2 = 17, as a measure of the sink-effect at the border. vb is the measured velocity at the border; ve is the well-established entrainment velocity far from the active shear layer whose value: ve /U0 = 0.035, corresponds to the growth of the self-preserving SSSL (d θ / d x).

  14. 40 CFR 80.513 - What provisions apply to transmix processing facilities and pipelines that produce diesel fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... processing facilities and pipelines that produce diesel fuel from pipeline interface? 80.513 Section 80.513... pipelines that produce diesel fuel from pipeline interface? For purposes of this section, transmix means a mixture of finished fuels, such as pipeline interface, that no longer meets the specifications for a...

  15. 40 CFR 80.513 - What provisions apply to transmix processing facilities and pipelines that produce diesel fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... processing facilities and pipelines that produce diesel fuel from pipeline interface? 80.513 Section 80.513... pipelines that produce diesel fuel from pipeline interface? For purposes of this section, transmix means a mixture of finished fuels, such as pipeline interface, that no longer meets the specifications for a...

  16. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOEpatents

    Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  17. Techno-economic analysis of biomass to fuel conversion via the MixAlco process.

    PubMed

    Pham, Viet; Holtzapple, Mark; El-Halwagi, Mahmoud

    2010-11-01

    MixAlco is a robust process that converts biomass to fuels and chemicals. A key feature of the MixAlco process is the fermentation, which employs a mixed culture of acid-forming microorganisms to convert biomass components (carbohydrates, proteins, and fats) to carboxylate salts. Subsequently, these intermediate salts are chemically converted to hydrocarbon fuels (gasoline, jet fuel, and diesel). This work focuses on process synthesis, simulation, integration, and cost estimation of the MixAlco process. For the base-case capacity of 40 dry tonne feedstock per hour, the total capital investment is US $5.54/annual gallon of hydrocarbon fuels (US $3.79/annual gallon of ethanol equivalent), and the minimum selling price [with 10% return on investment (ROI), internal hydrogen production, and US $60/tonne biomass] is US $2.56/gal hydrocarbon, which is equivalent to US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US $1.76/gal hydrocarbon (US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US $65/bbl. At 40 tph, using the average tipping fee for municipal solid waste (US $45/dry tonne) and current price of external hydrogen (US $1/kg), the minimum selling price is only US $1.24/gal hydrocarbon (US $0.85/gal ethanol equivalent).

  18. Effects of Catalysts on Emissions of Pollutants from Combustion Processes of Liquid Fuels

    NASA Astrophysics Data System (ADS)

    Bok, Agnieszka; Guziałowska-Tic, Joanna; Tic, Wilhelm Jan

    2014-12-01

    The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides). The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.

  19. Effect of Process Variables During the Head-End Treatment of Spent Oxide Fuel

    SciTech Connect

    K.J. Bateman; C.D. Morgan; J.F. Berg; D.J. Brough; P.J. Crane; D.G. Cummings; J.J. Giglio; M.W. Huntley; M.J. Rodriquez; J.D. Sommers; R.P. Lind; D.A. Sell

    2006-08-01

    The development of a head-end processing step for spent oxide fuel that applies to both aqueous and pyrometallurgical technologies is being performed by the Idaho National Laboratory, the Oak Ridge National Laboratory, and the Korean Atomic Energy Research Institute through a joint International Nuclear Energy Research Initiative. The processing step employs high temperatures and oxidative gases to promote the oxidation of UO2 to U3O8. Potential benefits of the head-end step include the removal or reduction of fission products as well as separation of the fuel from cladding. The effects of temperature, pressure, oxidative gas, and cladding have been studied with irradiated spent oxide fuel to determine the optimum conditions for process control. Experiments with temperatures ranging from 500oC to 1250oC have been performed on spent fuel using either air or oxygen gas for the oxidative reaction. Various flowrates and applications have been tested with the oxidative gases to discern the effects on the process. Tests have also been performed under vacuum conditions, following the oxidation cycle, at high temperatures to improve the removal of fission products. The effects of cladding on fission product removal have also been investigated with released fuel under vacuum and high temperature conditions. Results from these experiments will be presented as well as operating conditions based on particle size and decladding characteristics.

  20. Laboratory experiments investigating entrainment by debris flows and associated increased mobility

    NASA Astrophysics Data System (ADS)

    Moberly, D.; Maki, L.; Hill, K. M.

    2014-12-01

    As debris flows course down a steep hillside they entrain bed materials such as loose sediments. The entrainment of materials not only increases the size of the debris flows but the mobility as well. The mechanics underlying the particle entrainment and the associated increased mobility are not well-understood. Existing models for the entrainment process include those that explicitly consider stress ratios, the angle of inclination, and the particle fluxes relative to those achieved under steady conditions. Others include an explicit consideration of the physics of the granular state: the visco-elastic nature of particle flows and, alternatively, the role of macroscopic force chains. Understanding how well these different approaches account for entrainment and deposition rates is important for accurate debris flow modeling, both in terms of the rate of growth and also in terms of the increased mobility associated with the entrainment. We investigate how total and instantaneous entrainment and deposition vary with macroscopic stresses and particle-scale interactions for different particle sizes and different fluid contents using laboratory experiments in an instrumented experimental laboratory debris flow flume. The flume has separate, independent water supplies for the bed and "supply" (parent debris flow), and the bed is instrumented with pore pressure sensors and a basal stress transducer. We monitor flow velocities, local structure, and instantaneous entrainment and deposition rates using a high speed camera. We have found that systems with a mixture of particle sizes are less erosive and more depositional than systems of one particle size under otherwise the same conditions. For both mixtures and single-sized particle systems, we have observed a relatively linear relationship between total erosion and the slope angle for dry flows. Increasing fluid content typically increases entrainment. Measurements of instantaneous entrainment indicate similar dependencies

  1. Granular motions near the threshold of entrainment

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Alexakis, athanasios-Theodosios

    2016-04-01

    Our society is continuously impacted by significant weather events many times resulting in catastrophes that interrupt our normal way of life. In the context of climate change and increasing urbanisation these "extreme" hydrologic events are intensified both in magnitude and frequency, inducing costs of the order of billions of pounds. The vast majority of such costs and impacts (even more to developed societies) are due to water related catastrophes such as the geomorphic action of flowing water (including scouring of critical infrastructure, bed and bank destabilisation) and flooding. New tools and radically novel concepts are in need, to enable our society becoming more resilient. This presentation, emphasises the utility of inertial sensors in gaining new insights on the interaction of flow hydrodynamics with the granular surface at the particle scale and for near threshold flow conditions. In particular, new designs of the "smart-sphere" device are discussed with focus on the purpose specific sets of flume experiments, designed to identify the exact response of the particle resting at the bed surface for various below, near and above threshold flow conditions. New sets of measurements are presented for particle entrainment from a Lagrangian viewpoint. Further to finding direct application in addressing real world challenges in the water sector, it is shown that such novel sensor systems can also help the research community (both experimentalists and computational modellers) gain a better insight on the underlying processes governing granular dynamics.

  2. Development of a model of entrained flow coal gasification and study of aerodynamic mechanisms of action on gasifier operation

    NASA Astrophysics Data System (ADS)

    Abaimov, N. A.; Ryzhkov, A. F.

    2015-11-01

    Problems requiring solution in development of modern highly efficient gasification reactor of a promising high power integrated gasification combined-cycle plant are formulated. The task of creating and testing a numerical model of an entrained-flow reactor for thermochemical conversion of pulverized coal is solved. The basic method of investigation is computational fluid dynamics. The submodel of thermochemical processes, including a single-stage scheme of volatile substances outlet and three heterogeneous reactions of carbon residue conversion (complete carbon oxidation, Boudouard reaction and hydrogasification), is given. The mass loss rate is determined according to the basic assumptions of the diffusion-kinetic theory. The equations applied for calculation of the process of outlet of volatile substances and three stages of fuel gasifi-cation (diffusion of reagent gas toward the surface of the coal particle, heterogeneous reactions of gas with carbon on its surface, and homogeneous reactions beyond the particle surface) are presented. The universal combined submodel Eddy Dissipation/Finite Rate Chemistry with standard (built-in) constants is used for numerical estimates. Aerodynamic mechanisms of action on thermochemical processes of solid fuel gasification are studied, as exemplified by the design upgrade of a cyclone reactor of preliminary thermal fuel preparation. Volume concentrations of combustible gases and products of complete combustion in the syngas before and after primary air and pulverized coal flows' redistribution are given. Volume concentrations of CO in syngas at different positions of tangential secondary air inlet nozzle are compared.

  3. Scale-dependent entrainment velocity and scale-independent net entrainment in a turbulent axisymmetric jet

    NASA Astrophysics Data System (ADS)

    Philip, Jimmy; Mistry, Dhiren; Dawson, James; Marusic, Ivan

    2016-11-01

    The net entrainment in a jet is the product of the mean surface area (S ̲) and the mean entrainment velocity, V ̲ S ̲ , where, V ̲ = αUc with α the entrainment coefficient and Uc the mean centreline velocity. Instantaneously, however, entrainment velocity (v) at a point on the interface is the difference between the interface and the fluid velocities, and the total entrainment ∫ vds = VS , where S is the corrugated interface surface area and V the area averaged entrainment velocity. Using time-resolved multi-scale PIV/PLIF measurements of velocity and scalar in an axisymmetric jet at Re = 25000 , we evaluate V and S directly at the smallest resolved scales, and by filtering the data at different scales (Δ) we find their multi-scales counterparts, VΔ and SΔ. We show that V ̲ S ̲ =VΔ SΔ = V S , independent of the scale. Furthermore, S is found to have a fractal dimension D3 2 . 32 +/- 0 . 1 . Independently, we find that VΔ Δ 0 . 31 , indicating increasing entrainment velocity with increasing length scale. This is consistent with a constant net entrainment across scales, and suggests α as a scale-dependent quantity. Engineering and Physical Sciences Research Council (research Grant No. EP/I005879/1), David Crighton Fellowship from the DAMTP, Univ of Cambridge, and the Australian Research Council.

  4. Solid recovered fuel production from biodegradable waste in grain processing industry.

    PubMed

    Kliopova, Irina; Staniskis, Jurgis Kazimieras; Petraskiene, Violeta

    2013-04-01

    Management of biodegradable waste is one of the most important environmental problems in the grain-processing industry since this waste cannot be dumped anymore due to legal requirements. Biodegradable waste is generated in each stage of grain processing, including the waste-water and air emissions treatment processes. Their management causes some environmental and financial problems. The majority of Lithuanian grain-processing enterprises own and operate composting sites, but in Lithuania the demand for compost is not given. This study focused on the analysis of the possibility of using biodegradable waste for the production of solid recovered fuel, as a local renewable fuel with the purpose of increasing environmental performance and decreasing the direct costs of grain processing. Experimental research with regard to a pilot grain-processing plant has proven that alternative fuel production will lead to minimizing of the volume of biodegradable waste by 75% and the volume of natural gas for heat energy production by 62%. Environmental indicators of grain processing, laboratory analysis of the chemical and physical characteristics of biodegradable waste, mass and energy balances of the solid recovered fuel production, environmental and economical benefits of the project are presented and discussed herein.

  5. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 μm, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  6. Effects of magma chamber processes on water content and H2O/Ce ratios in HIMU magmas from the Cook-Austral Islands: New insights from clinopyroxene phenocrysts

    NASA Astrophysics Data System (ADS)

    Bruce, L. A.; Lassiter, J. C.; Marshall, E. W., IV

    2016-12-01

    The HIMU mantle end member is characterized by radiogenic Pb-isotopes and thought to represent recycled oceanic crust. Therefore, the water content of HIMU mantle sources can provide constraints on the amount of water recycled into the deep mantle via subduction. Olivine-hosted melt inclusions in HIMU lavas from Mangaia, have H2O/Ce ratios up to 245, higher than previous estimates for EM-type lavas (Cabral et al. 2014). However, hydrogen diffusion is rapid in olivine and could result in water loss or gain after entrapment. Hydrogen diffusion is slower in clinopyroxene (cpx) than in olivine. Therefore, we measured water, major and trace elements of cpx phenocrysts in a suite of lavas from the Cook-Austral Islands that span a wide range of 206Pb/204Pb values ( 18.9-21.8). Cpx water content ranges from 37 to 1311 ppm and Ce ranges from 2.5 to 22.7 ppm. H2O/Ce does not correlate with Pb-isotopes in host lavas. Water correlates with La/Yb, but H2O/Ce does not. This suggests that H2O/Ce is not solely controlled by source composition or melting processes. In addition, water does not correlate with indices of fractional crystallization (e.g. Mg#), but Ce increases with decreasing Mg#, resulting in lower H2O/Ce in more evolved cpx. Calculated H2O and H2O/Ce of melts in equilibrium with cpx phenocrysts range from 0.26 to 3.1 wt% and 78 to 304 respectively and are systematically higher than most olivine-hosted melt inclusions from the same samples. These observations suggest that 1) olivine-hosted melt inclusions often experience post-entrapment water loss, and 2) melt H2O/Ce can be affected by magma chamber processes and may not accurately reflect source compositional variations. Global correlations of H2O/Ce with Ce content and equilibration depth in ocean island glasses and melt inclusions suggest a strong influence of degassing processes. H2O/Ce ratios may therefore provide poor direct constraints on the water content of different mantle reservoirs.

  7. On the Development of a Distillation Process for the Electrometallurgical Treatment of Irradiated Spent Nuclear Fuel

    SciTech Connect

    B.R. Westphal; K.C. Marsden; J.C. Price; D.V. Laug

    2008-04-01

    As part of the spent fuel treatment program at the Idaho National Laboratory, a vacuum distillation process is being employed for the recovery of actinide products following an electrorefining process. Separation of the actinide products from a molten salt electrolyte and cadmium is achieved by a batch operation called cathode processing. A cathode processor has been designed and developed to efficiently remove the process chemicals and consolidate the actinide products for further processing. This paper describes the fundamentals of cathode processing, the evolution of the equipment design, the operation and efficiency of the equipment, and recent developments at the cathode processor. In addition, challenges encountered during the processing of irradiated spent nuclear fuel in the cathode processor will be discussed.

  8. Strong effects of network architecture in the entrainment of coupled oscillator systems

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi; Mikhailov, Alexander S.

    2006-12-01

    Random networks of coupled phase oscillators, representing an approximation for systems of coupled limit-cycle oscillators, are considered. Entrainment of such networks by periodic external forcing applied to a subset of their elements is numerically and analytically investigated. For a large class of interaction functions, we find that the entrainment window with a tongue shape becomes exponentially narrow for networks with higher hierarchical organization. However, the entrainment is significantly facilitated if the networks are directionally biased—i.e., closer to the feedforward networks. Furthermore, we show that the networks with high entrainment ability can be constructed by evolutionary optimization processes. The neural network structure of the master clock of the circadian rhythm in mammals is discussed from the viewpoint of our results.

  9. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization

    PubMed Central

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.

    2016-01-01

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160

  10. Roll splitting as an alternative intermediate process for wood fuel

    Treesearch

    Paul E. Barnett; Donald L. Sirois

    1985-01-01

    In an effort to develop mobile equipment for harvesting and processing woody biomass from power line rights-of-way and precommerial thinnings, numerous alternative concepts were evaluated by Tennessee Valley Authority's Timber Harvesting Project.

  11. Catalysts and process for liquid hydrocarbon fuel production

    DOEpatents

    White, Mark G.; Ranaweera, Samantha A.; Henry, William P.

    2016-08-02

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.

  12. Process control measurements in the SRP fuel separations plants

    SciTech Connect

    McKibben, J.M.; Pickett, C.E.; Dickert, H.D.

    1982-02-01

    Programs were started to develop new in-line and at-line analytical techniques. Among the more promising techniques being investigated are: (1) an in-line instrument to analyze for percent tributyl phosphate in process solvent, (2) remote laser optrode techniques (using lazer light transmitted to and from the sample cell via light pipes) for a variety of possible analyses, and (3) sonic techniques for concentration analyses in two component systems. A subcommittee was also formed to investigate state-of-the-technology for process control. The final recommendation was to use a distributed control approach to upgrade the process control sytem. The system selected should be modular, easy to expand, and simple to change control strategies. A distributed system using microprocessorbased controllers would allow installation of the control intelligence near the process, thereby simplifying field wiring. Process information collected and stored in the controllers will be transmitted to operating consoles, via a data highway, for process management and display. The overall program has a number of distinct benefits. There are a number of cost savings that will be realized. Excellent annual return on investment - up to 110% - has been predicted for several of the projects in this program that are already funded. In addition, many of the instrument modifications will improve safety performance and production throughput in the specific ways shown.

  13. Landslide boost from entrainment of erodible material along the slope

    NASA Astrophysics Data System (ADS)

    Farin, M.; Mangeney, A.; Roche, O.; Ionescu, I. R.; Hungr, O.

    2012-04-01

    Landslides, debris flows, pyroclastic flows and avalanches are natural hazards that threaten life and property in mountainous, volcanic, coastal and seismically-active areas. The granular mass tends to accelerate as gravity pulls it down the slope and will decelerate on more gentle slopes, where frictional forces that dissipate energy can overcome the driving forces. The entrainment of underlying sediments or debris into the gravitational granular flows is suspected to be critical to their dynamics, but direct measurement of material entrainment in natural flows is very difficult. Nevertheless, qualitative and quantitative field observations suggest that material entrainment can either increase or decrease flow velocity and deposit extent, depending on the geological setting and the type of gravitational flow. We present laboratory experiments of granular column collapse over an inclined plane covered by an erodible bed, designed to mimic erosion processes of natural flows traveling over deposits built up by earlier events. The controlling parameters are the inclination of the plane, the aspect ratio of the granular column released and the thickness of the erodible layer. The avalanche excavates the erodible layer immediately at the flow front, behind which waves traveling downstream help removing grains from the erodible bed are observed. We show that erosion processes increases the flow mobility (i. e. runout) by up to 25% over slopes with inclination close to the repose angle of the grains. Erosion efficiency is shown to strongly depend on the slope and on the nature of the erodible bed (i. e. degree of compaction): erosion effects are smaller as the compaction of the erodible granular bed increases. The excavation depth first increases and stabilizes to a critical value, and finally decreases when increasing the thickness of the erodible bed. We demonstrate that the increase of mass of the flowing grains caused by entrainment of the erodible layer is not enough

  14. Catalytic hydrosolvation process converts coal to low-sulfur liquid fuel

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1978-01-01

    Development of the catalytic hydrosolvation process for converting coal to low-sulfur fuel oil is described in this paper. Coal impregnated with catalyst was slurried with oil, and the mixture was hydrogenated at a temperature of 475 C, and 30 min residence time under 3600 psi pressure. A ton of coal yielded 3.5 bbl of fuel oil containing 0.2% sulfur, with naphtha and C1-C4 hydrocarbon gases as byproducts. A preliminary economic evaluation of the process indicated potential for further development.

  15. Catalytic hydrosolvation process converts coal to low-sulfur liquid fuel

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1978-01-01

    Development of the catalytic hydrosolvation process for converting coal to low-sulfur fuel oil is described in this paper. Coal impregnated with catalyst was slurried with oil, and the mixture was hydrogenated at a temperature of 475 C, and 30 min residence time under 3600 psi pressure. A ton of coal yielded 3.5 bbl of fuel oil containing 0.2% sulfur, with naphtha and C1-C4 hydrocarbon gases as byproducts. A preliminary economic evaluation of the process indicated potential for further development.

  16. Simulation of process for electrical energy production based on molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    De Simon, G.; Parodi, F.; Fermeglia, M.; Taccani, R.

    A global molten carbonate fuel cells (MCFC) power plant steady-state simulation is presented. A performance fuel cell numerical model is developed and integrated as a custom block in Aspen plus™for the whole process simulation. The burner/reformer compact unit is built assembling existing Aspen plus™internal blocks. A simulation is obtained with the preliminary input specification to get to the base case and a sensitivity analysis is conducted, in order to find the process parameters whose change improves the global efficiency.

  17. Nonphotic entrainment of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  18. Entrainment and the cranial rhythmic impulse.

    PubMed

    McPartland, J M; Mein, E A

    1997-01-01

    Entrainment is the integration or harmonization of oscillators. All organisms pulsate with myriad electrical and mechanical rhythms. Many of these rhythms emanate from synchronized pulsating cells (eg, pacemaker cells, cortical neurons). The cranial rhythmic impulse is an oscillation recognized by many bodywork practitioners, but the functional origin of this impulse remains uncertain. We propose that the cranial rhythmic impulse is the palpable perception of entrainment, a harmonic frequency that incorporates the rhythms of multiple biological oscillators. It is derived primarily from signals between the sympathetic and parasympathetic nervous systems. Entrainment also arises between organisms. The harmonizing of coupled oscillators into a single, dominant frequency is called frequency-selective entrainment. We propose that this phenomenon is the modus operandi of practitioners who use the cranial rhythmic impulse in craniosacral treatment. Dominant entrainment is enhanced by "centering," a technique practiced by many healers, for example, practitioners of Chinese, Tibetan, and Ayurvedic medicine. We explore the connections between centering, the cranial rhythmic impulse, and craniosacral treatment.

  19. Anodic process of electrorefining spent nuclear fuel in molten LiCl-KCL-UCl{sub 3}/CD system.

    SciTech Connect

    Li, S. X.

    2002-07-03

    This article summarizes the experimental results and engineering aspects regarding the anodic process for electrorefining 100 irradiated driver fuel assemblies, a demonstration project for the Department of Energy (DOE) to treat spent nuclear fuel. The focus is on the anode due to its unique geometry (fuel dissolution baskets loaded with chopped irradiated fuel segments), complex chemical compositions, highly demanding process goals and their significance to the entire spent fuel treatment process. Chemical analysis results of cladding hull samples were used as the key criteria to evaluate the effectiveness of the uranium dissolution and noble metal retention. Parametric study indicated that the diffusion of reactants in the porous fuel matrix was the rate-controlling step to the uranium dissolution from the chopped fuel segments. Anode resistance was the most effective parameter to assess the completeness of uranium dissolution and noble metal retention.

  20. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    PubMed

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.