Sample records for ce pr gd

  1. Blue/pink/purple electroluminescence from metal-oxide-semiconductor devices fabricated by spin-coating of [tantalum:(gadolinium/praseodymium)] and (praseodymium:cerium) organic compounds on silicon

    NASA Astrophysics Data System (ADS)

    Ohzone, Takashi; Matsuda, Toshihiro; Fukuoka, Ryouhei; Hattori, Fumihiro; Iwata, Hideyuki

    2016-08-01

    Blue/pink/purple electroluminescence (EL) from metal-oxide-semiconductor (MOS) devices with an indium tin oxide (ITO)/[Gd/(Ta + Gd/Pr)/(Pr + Ce)-Si-O] insulator layer/n+-Si substrate surface is reported. The insulator layers were fabricated from organic liquid sources of Gd or (Ta + Gd/Pr)/(Pr + Ce) mixtures, which were spin-coated on the n+-Si substrate and annealed at 950 °C for 30 min in air. The EL emission could be observed by the naked eye in the dark in the Fowler-Nordheim (FN) tunnel current regions. Peak wavelengths in the measured EL spectra were independent of the positive current. The EL intensity ratio of ultraviolet (UV) to the visible range varied with the composition ratio of the (Ta + Gd) liquids, and an optimum Ta to Gd ratio existed for the strongest blue emission, which could be attributed to the Ta-related oxide/silicate. The pink EL of the device fabricated with the (\\text{Ta}:\\text{Pr} = 6:4) mixture ratio can be explained by EL emission peaks related to the Pr3+ ions. The purple EL observed from the (\\text{Pr}:\\text{Ce} = 6:4) device corresponds to the strong and broad emission profile near the 357 nm peak, which cannot be assigned to Ce3+ ions. The results suggest that the EL can be attributed to the double-layer oxides with different compositions in the MOS devices. The upper layer consists of various Ta-, Gd-, Pr-, and Ce-related oxides and their silicates, while the lower SiO x -rich layer contributes to the FN current due to the high electric field, and thus the various EL colors.

  2. Electronic conductivity of Ce0.9Gd0.1O(1.95-δ) and Ce0.8Pr0.2O(2-δ): Hebb-Wagner polarisation in the case of redox active dopants and interference.

    PubMed

    Chatzichristodoulou, C; Hendriksen, P V

    2011-12-28

    The electronic conductivity of Ce(0.9)Gd(0.1)O(1.95-δ) and Ce(0.8)Pr(0.2)O(2-δ) under suppressed ionic flow was measured as a function of pO(2) in the range from 10(3) atm to 10(-17) atm for temperatures between 600 °C and 900 °C by means of Hebb-Wagner polarisation. The steady state I-V curve of Ce(0.9)Gd(0.1)O(1.95-δ) could be well described by the standard Hebb-Wagner equation [M. H. Hebb, J. Chem. Phys., 1952, 20, 185; C. Wagner, Z. Elektrochem., 1956, 60, 4], yielding expressions for the n- and p-type conductivity as a function of pO(2). On the other hand, significant deviation of the steady state I-V curve from the standard Hebb-Wagner equation was observed for the case of Ce(0.8)Pr(0.2)O(2-δ). It is shown that the I-V curve can be successfully reproduced when the presence of the redox active dopant, Pr(3+)/Pr(4+), is taken into account, whereas even better agreement can be reached when further taking into account the interference between the ionic and electronic flows [C. Chatzichristodoulou, W.-S. Park, H.-S. Kim, P. V. Hendriksen and H.-I. Yoo, Phys. Chem. Chem. Phys., 2010, 12, 33]. Expressions are deduced for the small polaron mobilities in the Ce 4f and Pr 4f bands of Ce(0.8)Pr(0.2)O(2-δ).

  3. Magnetic interactions in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr, Nd and Gd) studied by time differential perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Mishra, S N

    2009-03-18

    Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in RScGe compounds.

  4. Synthesis, structure and properties of bimetallic sodium rare-earth (RE) borohydrides, NaRE(BH4)4, RE = Ce, Pr, Er or Gd.

    PubMed

    Payandeh GharibDoust, SeyedHosein; Ravnsbæk, Dorthe B; Černý, Radovan; Jensen, Torben R

    2017-10-10

    Formation, stability and properties of new metal borohydrides within RE(BH 4 ) 3 -NaBH 4 , RE = Ce, Pr, Er or Gd is investigated. Three new bimetallic sodium rare-earth borohydrides, NaCe(BH 4 ) 4 , NaPr(BH 4 ) 4 and NaEr(BH 4 ) 4 are formed based on an addition reaction between NaBH 4 and halide free rare-earth metal borohydrides RE(BH 4 ) 3 , RE = Ce, Pr, Er. All the new compounds crystallize in the orthorhombic crystal system. NaCe(BH 4 ) 4 has unit cell parameters of a = 6.8028(5), b = 17.5181(13), c = 7.2841(5) Å and space group Pbcn. NaPr(BH 4 ) 4 is isostructural to NaCe(BH 4 ) 4 with unit cell parameters of a = 6.7617(2), b = 17.4678(7), c = 7.2522(3) Å. NaEr(BH 4 ) 4 crystallizes in space group Cmcm with unit cell parameters of a = 8.5379(2), b = 12.1570(4), c = 9.1652(3) Å. The structural relationships, also to the known RE(BH 4 ) 3 , are discussed in detail and related to the stability and synthesis conditions. Heat treatment of NaBH 4 -Gd(BH 4 ) 3 mixture forms an unstable amorphous phase, which decomposes after one day at RT. NaCe(BH 4 ) 4 and NaPr(BH 4 ) 4 show reversible hydrogen storage capacity of 1.65 and 1.04 wt% in the fourth H 2 release, whereas that of NaEr(BH 4 ) 4 continuously decreases. This is mainly assigned to formation of metal hydrides and possibly slower formation of sodium borohydride. The dehydrogenated state clearly contains rare-earth metal borides, which stabilize boron in the dehydrogenated state.

  5. Positive hysteresis of Ce-doped GAGG scintillator

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Watanabe, Kenichi; Sato, Hiroki; Yagi, Hideki; Yanagitani, Takagimi

    2014-10-01

    Positive hysteresis and radiation tolerance to high-dose radiation exposure were investigated for Ce 1% and 3% doped Gd3(Al, Ga)5O12 (Ce:GAGG) crystal scintillator on comparison with other garnet scintillators such Ce:YAG, Ce:LuAG, Pr:LuAG, and ceramic Ce:GAGG. When they were irradiated by several Gy 60Co γ-rays, Ce 1% doped GAGG crystal exhibited ∼20% light yield enhancement (positive hysteresis). This is the first time to observe positive hysteresis in Ce doped GAGG. On the other hand, other garnet materials did not show the positive hysteresis and their light yields were stable after 800 Gy irradiation except Pr:LuAG. The light yield of Pr:LuAG decreased largely. When irradiated Ce:GAGG which showed positive hysteresis was evaluated in Synchrotron facility (UVSOR), new excitation band was created around 60 nm.

  6. Transport and magnetic properties of dilute rare-earth-PbSe alloys

    NASA Astrophysics Data System (ADS)

    Jovovic, V.; Joottu-Thiagarajan, S.; West, J.; Heremans, J. P.; Story, T.; Golacki, Z.; Paszkowicz, W.; Osinniy, V.

    2007-03-01

    An increase in the density of states is predicted [1] to increase the thermoelectric (TE) figure of merit, and could be induced by doping TE materials with rare-earth elements. This was attempted here: the galvanomagnetic and thermomagnetic properties of dilute alloys of PbSe and Ce, Pr, Nd, Eu, Gd and Yb were measured from 80 to 380K; magnetic susceptibilities were measured from 4 to 120K. The density of states effective mass, the relaxation time, and the carrier density and mobility are calculated from measurements of the electrical conductivity and the Hall, Seebeck and transverse Nernst-Ettingshausen coefficients. The Eu, Gd, Nd and Yb-alloyed samples are paramagnetic; the concentrations of rare-earth atoms are determined from fitting a Curie-Weiss law. The magnetic behavior of the Ce and Pr-alloyed samples is different. Ce, Pr, Nd, Gd and Yb act as donors with efficiencies that will be reported. Alloying with divalent Eu does not affect carrier density but increases the energy gap. This work suggests that the 4f orbitals preserve their atomic-like localized character and exhibit only weak sp-f hybridization. 1 G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. USA 93 7436 (1996)

  7. The formation, structure and physical properties of M(2)Pd(14+x)B(5-y) compounds, with M =  La, Ce, Pr, Nd, Sm, Eu, Gd, Lu and Th.

    PubMed

    Royanian, E; Bauer, E; Kaldarar, H; Galatanu, A; Khan, R T; Hilscher, G; Michor, H; Reissner, M; Rogl, P; Sologub, O; Giester, G; Gonçalves, A P

    2009-07-29

    Novel ternary compounds, M(2)Pd(14+x)B(5-y) (M =  La, Ce, Pr, Nd, Sm, Eu, Gd, Lu, Th; x∼0.9, y∼0.1), have been synthesized by arc melting. The crystal structures of Nd(2)Pd(14+x)B(5-y) and Th(2)Pd(14+x)B(5-y) were determined from x-ray single-crystal data and both are closely related to the structure type of Sc(4)Ni(29)B(10). All compounds were characterized by Rietveld analyses and found to be isotypic with the Nd(2)Pd(14+x)B(5-y) type. Measurements of the temperature dependent susceptibility and specific heat as well as the temperature and field dependent resistivity were employed to derive basic information on bulk properties of these compounds. The electrical resistivity of M(2)Pd(14+x)B(5-y), in general, is characterized by small RRR (residual resistance ratio) values originating from defects inherent to the crystal structure. Whereas the compounds based on Ce, Nd, Sm and Gd exhibit magnetic order, those based on Pr and Eu seem to be non-magnetic, at least down to 400 mK. While the non-magnetic ground state of the Pr based compound is a consequence of crystalline electric field effects in the context of the non-Kramers ion Pr, the lack of magnetic order in the case of the Eu based compound results from an intermediate valence state of the Eu ion.

  8. Nuclear Data Sheets for A = 142

    NASA Astrophysics Data System (ADS)

    Johnson, T. D.; Symochko, D.; Fadil, M.; Tuli, J. K.

    2011-08-01

    The 2000 Nuclear Data Sheets for A=142 by J. K. Tuli, with literature cutoff date of February 4, 2000, has been revised. The evaluated experimental data are presented for 16 known nuclides of mass 142 (Ba, Ce, Cs, Dy, Eu, Gd, Ho, I, La, Nd, Pm, Pr, Sm, Tb, Te, Xe). Comparing to the previous evaluation (2000Tu01) significant changes were done to the level schemes of Gd, Cs, Ce and Nd. For all nuclides, the more recent Q values have been added.

  9. Nuclear Data Sheets for A-142

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, T.D.; Johnson,T.D.; Symochko,D.

    The 2000 Nuclear Data Sheets for A = 142 by J. K. Tuli, with literature cutoff date of February 4, 2000, has been revised. The evaluated experimental data are presented for 16 known nuclides of mass 142 (Ba, Ce, Cs, Dy, Eu, Gd, Ho, I, La, Nd, Pm, Pr, Sm, Tb, Te, Xe). Comparing to the previous evaluation (2000Tu01) significant changes were done to the level schemes of Gd, Cs, Ce and Nd. For all nuclides, the more recent Q values have been added.

  10. UV-emitting phosphors: synthesis, photoluminescence and applications

    NASA Astrophysics Data System (ADS)

    Thakare, D. S.; Omanwar, S. K.; Muthal, P. L.; Dhopte, S. M.; Kondawar, V. K.; Moharil, S. V.

    2004-02-01

    UV-emitting phosphors find uses in various applications, such as photocopying, phototherapy, sun tanning, etc. The phosphor requirements for these applications vary. Simple methods for preparing different UV-emitting phosphors are described. Novel syntheses for some borates (SrB4O7:Eu, CeMgB5O10:Gd, GdBO3:Pr, LaB3O6:Ce,Bi, LaB3O6:Gd,Bi, LaB3O6:Ce, Ba2B5O9Cl:Eu), a silicate (Ba2SiO5:Pb), phosphates (Sr2-xMgxP2O7:Eu) and a sulphate (CaSO4:Eu) are reported. Photoluminescence spectra of the phosphors so prepared are presented and discussed in the context of applications like phototherapy and photocopying lamps, photoluminescent liquid crystal displays, radiophotoluminescence, etc.

  11. Effect of Mg substitution on crystal structure and hydrogenation of Ce{sub 2}Ni{sub 7}-type Pr{sub 2}Ni{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwase, Kenji, E-mail: fbiwase@mx.ibaraki.ac.jp; Mori, Kazuhiro; Terashita, Naoyoshi

    2017-03-15

    The effect of Pr being substituted by Mg in Pr{sub 2}Ni{sub 7} with a Ce{sub 2}Ni{sub 7}-type structure was investigated by X-ray diffraction (XRD) and pressure−composition (P−C) isotherm measurements. The maximum hydrogen capacity of Pr{sub 2}Ni{sub 7} reached 1.24 H/M in the first absorption process. However, 0.61 H/M hydrogen remained in the sample after the first desorption and the reversible hydrogen capacity decreased to 0.63 H/M. Severe peak broadening was observed in the XRD profile of Pr{sub 2}Ni{sub 7}H{sub 5.4} after the first P−C isotherm cycle. The metal sublattice of Pr{sub 2}Ni{sub 7}H{sub 5.4} is deformed and changes from themore » Ce{sub 2}Ni{sub 7}-type structure to a lower symmetry during hydrogenation, with no detection of an amorphous phase. Pr{sub 1.5}Mg{sub 0.5}Ni{sub 7} consists of two phases: 80% Gd{sub 2}Co{sub 7}-type and 20% PuNi{sub 3}-type phases. Mg substitution leads to the relative stability of the Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures. The Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures are retained after the P-C isotherm. The reversible hydrogen capacity reached 1.05 H/M. The structural change during the hydrogen absorption−desorption cycle and the hydrogenation characteristics are changed by Mg atoms replacing Pr in the MgZn{sub 2}-type cell. - Graphical abstract: The maximum hydrogen capacity is 1.2 H/M in the first absorption process and the reversible capacity is 0.63 H/M.« less

  12. Ion-Size-Dependent Formation of Mixed Titanium/Lanthanide Oxo Clusters.

    PubMed

    Artner, Christine; Kronister, Stefan; Czakler, Matthias; Schubert, Ulrich

    2014-11-01

    The mixed-metal oxo clusters LnTi 4 O 3 (O i Pr) 2 (OMc) 11 (Ln = La, Ce; OMc = methacrylate), Ln 2 Ti 6 O 6 (OMc) 18 (HO i Pr) (Ln = La, Ce, Nd, Sm) and Ln 2 Ti 4 O 4 (OMc) 14 (HOMc) 2 (Ln = Sm, Eu, Gd, Ho) have been synthesized from titanium isopropoxide, the corresponding lanthanide acetate and methacrylic acid. The type of cluster obtained strongly depends on the size of the lanthanide ion.

  13. Performance of thin long scintillator strips of GSO:Ce, LGSO:Ce and LuAG:Pr for low energy γ-rays

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masaaki; Aogaki, Souichiro; Takeutchi, Fujio; Tamagawa, Yoichi; Usuki, Yoshiyuki

    2012-11-01

    Interest in fibers or strips of single crystalline scintillators is increasing for their possible applications in fine-segmented particle detectors for particle physics experiments as well as γ-ray detectors for medical diagnoses. We compared 2×2×100 mm3 strips of Gd2SiO5(GSO):Ce, Lu1.9Gd0.1SiO5 (LGSO):Ce, and Lu3Al5O12(LuAG):Pr single crystals for 0.511 MeV γ-rays with respect to the effective light attenuation length λa, light yield LY, FWHM energy resolution ΔE/E and rms position resolution σ(z) of the injection position z along the length. The obtained result was (λa, LY, ΔE/E, σ(z))=(128 mm, 380 phe/MeV, 17.7%, 8.7 mm) in GSO:Ce, (509 mm, 1760 phe/MeV, 12.2%, 10.9 mm) in LGSO:Ce, and (171 mm, 690 phe/MeV, 15.0%, 8.9 mm) in LuAG:Pr. The z position was obtained independently from the pulse height ratio as well as the timing difference between both ends of the strip. The latter method gave comparable or even smaller σ(z) than the former only in LGSO:Ce having both large LY and fast rise time. The λa in the 100 mm long GSO:Ce strip was found to be twice as large as that in the 200 mm long one [1] with the same cross-section. To obtain good ΔE/E and σ(z), large light yield, fast rise time, and moderately large attenuation length are important for the scintillators.

  14. Structure and magnetic properties of RE{sub 2}CuIn{sub 3} (RE=Ce, Pr, Nd, Sm and Gd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyvanchuk, Yuriy B.; Szytula, Andrzej; Zarzycki, Arkadiusz

    2008-12-15

    The ternary copper indides RE{sub 2}CuIn{sub 3}{identical_to}RECu{sub 0.5}In{sub 1.5} (RE=Ce, Pr, Nd, Sm and Gd) were synthesized from the elements in sealed tantalum tubes in an induction furnace. They crystallize with the CaIn{sub 2}-type structure, space group P6{sub 3}/mmc, with a statistical occupancy of copper and indium on the tetrahedral substructure. These indides show homogeneity ranges RECu{sub x}In{sub 2-x}. Single crystal structure refinements were performed for five crystals: CeCu{sub 0.66}In{sub 1.34} (a=479.90(7) pm, c=768.12(15) pm), PrCu{sub 0.52}In{sub 1.48} (a=480.23(7) pm, c=759.23(15) pm), NdCu{sub 0.53}In{sub 1.47} (a=477.51(7) pm, c=756.37(15) pm), SmCu{sub 0.46}In{sub 1.54} (a=475.31(7) pm, c=744.77(15) pm), and GdCu{sub 0.33}In{sub 1.67}more » (a=474.19(7), c=737.67(15) pm). Temperature-dependent susceptibility measurements show antiferromagnetic ordering at T{sub N}=4.7 K for Pr{sub 2}CuIn{sub 3} and Nd{sub 2}CuIn{sub 3} and 15 K for Sm{sub 2}CuIn{sub 3}. Fitting of the susceptibility data of the samarium compound revealed an energy gap {delta}E=39.7(7) K between the ground and the first excited levels. - Graphical abstract: The CaIn{sub 2}-type structure of Sm{sub 2}CuIn{sub 3}.« less

  15. Crystal Chemical Substitution at Ca and La Sites in CaLa4(SiO4)3O To Design the Composition Ca1- xM xLa4-xRE x(SiO4)3O for Nuclear Waste Immobilization and Its Influence on the Thermal Expansion Behavior.

    PubMed

    Ravikumar, Ramya; Gopal, Buvaneswari; Jena, Hrudananda

    2018-06-04

    The oxysilicate apatite host CaLa 4 (SiO 4 ) 3 O has been explored for immobilization of radioactive nuclides. Divalent ion, trivalent rare earth ion, and combined ionic substitutions in the silicate oxyapatite were carried out to optimize the simulated wasteform composition. The phases were characterized by powder X-ray diffraction, FT-IR, TGA, SEM-EDS, and HT-XRD techniques. The results revealed the effect of ionic substitutions on the structure and thermal expansion behavior. The investigation resulted in the formulation of simulated wasteforms such as La 3.4 Ce 0.1 Pr 0.1 Nd 0.1 Sm 0.1 Gd 0.1 Y 0.1 (SiO 4 ) 3 O (WF-1) and Ca 0.8 Sr 0.1 Pb 0.1 La 3.4 Ce 0.1 Pr 0.1 Nd 0.1 Sm 0.1 Gd 0.1 Y 0.1 (SiO 4 ) 3 O (WF-2). In comparison to the average axial thermal expansion coefficients of the hexagonal unit cell of the parent CaLa 4 (SiO 4 ) 3 O measured in the temperature range 298-1073 K (α' a = 9.74 × 10 -6 K -1 and α' c = 10.10 × 10 -6 K -1 ), rare earth ion substitution decreases the thermal expansion coefficients, as in the case of La 3.4 Ce 0.1 Pr 0.1 Nd 0.1 Sm 0.1 Gd 0.1 Y 0.1 (SiO 4 ) 3 O (α' a = 8.67 × 10 -6 K -1 and α' c = 7.94 × 10 -6 K -1 ). However, the phase Ca 0.8 Sr 0.1 Pb 0.1 La 3.4 Ce 0.1 Pr 0.1 Nd 0.1 Sm 0.1 Gd 0.1 Y 0.1 (SiO 4 ) 3 O shows an increase in the values of thermal expansion coefficients: α' a = 11.74 × 10 -6 K -1 and α' c = 11.70 × 10 -6 K -1 .

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.; Nishimura, S.; Lorusso, G.

    The β-decay half-lives of 94 neutron-rich nuclei 144$-$151Cs, 146$-$154Ba, 148$-$156La, 150$-$158Ce, 153$-$160Pr, 156$-$162Nd, 159$-$163Pm, 160$-$166Sm, 161$-$168Eu, 165$-$170Gd, 166$-$172Tb, 169$-$173Dy, 172$-$175Ho, and two isomeric states 174mEr, 172mDy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β-decay half-lives are observed at neutron-number N = 97 for 58Ce, 59Pr, 60Nd, and 62Sm, and N = 105 for 63Eu, 64Gd, 65Tb, and 66Dy. Lastly, features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditionsmore » show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, J.; Nishimura, S.; Lorusso, G.

    The β-decay half-lives of 94 neutron-rich nuclei 144 $-$ 151Cs, 146 $-$ 154Ba, 148 $-$ 156La, 1 50 $-$ 158Ce, 153 $-$160Pr, 156 $-$ 162 Nd, 159 $-$ 163Pm, 160 $-$ 166Sm, 161 $-$ 168Eu , 165 $-$ 170Gd, 166 $-$ 172Tb, 169 $-$ 173Dy, 172 $-$ 175Ho, and two isomeric states 174 mEr, 172 mDy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β -decay half-lives are observed at neutron-number N = 97 for 58Ce, 59Pr, 60Nd , and 62Sm, and N = 105 for 63Eu,more » 64Gd, 65Tb, and 66Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. In conclusion, $r$-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.« less

  18. Between metamagnetic transition and spin-flip behavior in Ce 122 system of (Ce-Gd)Ru2Si2

    NASA Astrophysics Data System (ADS)

    Yano, K.; Amakai, Y.; Hara, Y.; Sato, K.; Kita, E.; Takano, H.; Ohta, T.; Murayama, S.

    2018-03-01

    Aiming at getting some clues to the mechanism of meta-magnetic transition and surprisingly small magnetic moment of Ce along hard axis in CeRu2Si2, the (Ce-Gd)Ru2Si2 system where Ce was substituted by Gd were studied through magnetic properties mainly in Gd-rich regions. At Gd=0, i.e. in CeRu2Si2, the magnetic moment of Ce showed a symptom of saturation in M-H curve under H=90,000 Oe at 2 K and the Ce magnetic moment at 4.2 K can be nearly identical to that at 2 K employing 1/H plot. At Gd-rich content of 0.8, Ce magnetic moment coupled parallel to that of Gd, Ce ↑ Gd ↑ both in easy and hard axis and the extremely smallness of Ce magnetic moment in hard axis disappeared perfectly at x=0.8. Furthermore at Gd=1, GdRu2Si2, Gd magnetic moment caused 2-step like spin-flip in both easy and hard axis.

  19. Role of Pr substitution as deoxygenation in suppression of superconductivity in GdPr-123 system

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    1996-02-01

    Predominantly single phase polycrystalline Gd 1- xPr xBa 2Cu 3O 7- y (GdPr-123) samples with 0 ≤ x ≤ 1.0 have been prepared by standard solid state reaction technique and characterized by XRD. The electrical resistivity measurements show the suppression of superconductivity with increasing x. Two plateaus appear in the Tc versus x curve at x ≈ 0-0.05 and at x ≈ 0.15-0.25 followed by a decrease to zero at xcr ≈ 0.45, similar to the plateaus of Tc versus 7 - y curve at 7 - y ≈ 6.8 -7 and at 7 - y ≈ 6.55-6.75 in RBa 2Cu 3O 7 - y ( R-123) ( R: Y or rare earth except Ce, Pr, Pm, Tb) systems. The valency of Pr was determined by magnetization measurements in the temperature range 100 K to 250 K. This data indicates a mixed valence state for Pr ions with an effective magnetic moment μ ≈ 2.69 μB per Pr ion, which yields a valency for Pr of ≈ 3.86 +. For these systems, Tc( x) does not follow the Abrikosov-Gor'kov pair breaking theory. We suggest that the suppression of superconductivity by Pr-substitution can be explained by means of an effective increasing of the oxygen deficiency in the structure, in a similar way to what happens in an R-123 system, when 7 - y is decreased in a controlled manner. This implies that CuO 2 planes are responsible for superconductivity through the effect of chains.

  20. 94 β-Decay Half-Lives of Neutron-Rich _{55}Cs to _{67}Ho: Experimental Feedback and Evaluation of the r-Process Rare-Earth Peak Formation.

    PubMed

    Wu, J; Nishimura, S; Lorusso, G; Möller, P; Ideguchi, E; Regan, P-H; Simpson, G S; Söderström, P-A; Walker, P M; Watanabe, H; Xu, Z Y; Baba, H; Browne, F; Daido, R; Doornenbal, P; Fang, Y F; Gey, G; Isobe, T; Lee, P S; Liu, J J; Li, Z; Korkulu, Z; Patel, Z; Phong, V; Rice, S; Sakurai, H; Sinclair, L; Sumikama, T; Tanaka, M; Yagi, A; Ye, Y L; Yokoyama, R; Zhang, G X; Alharbi, T; Aoi, N; Bello Garrote, F L; Benzoni, G; Bruce, A M; Carroll, R J; Chae, K Y; Dombradi, Z; Estrade, A; Gottardo, A; Griffin, C J; Kanaoka, H; Kojouharov, I; Kondev, F G; Kubono, S; Kurz, N; Kuti, I; Lalkovski, S; Lane, G J; Lee, E J; Lokotko, T; Lotay, G; Moon, C-B; Nishibata, H; Nishizuka, I; Nita, C R; Odahara, A; Podolyák, Zs; Roberts, O J; Schaffner, H; Shand, C; Taprogge, J; Terashima, S; Vajta, Z; Yoshida, S

    2017-02-17

    The β-decay half-lives of 94 neutron-rich nuclei ^{144-151}Cs, ^{146-154}Ba, ^{148-156}La, ^{150-158}Ce, ^{153-160}Pr, ^{156-162}Nd, ^{159-163}Pm, ^{160-166}Sm, ^{161-168}Eu, ^{165-170}Gd, ^{166-172}Tb, ^{169-173}Dy, ^{172-175}Ho, and two isomeric states ^{174m}Er, ^{172m}Dy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β-decay half-lives are observed at neutron-number N=97 for _{58}Ce, _{59}Pr, _{60}Nd, and _{62}Sm, and N=105 for _{63}Eu, _{64}Gd, _{65}Tb, and _{66}Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.

  1. Nuclear Data Sheets for A = 139

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Paresh K.; Singh, Balraj; Singh, Sukhjeet

    2016-12-15

    The experimental nuclear spectroscopic data for known nuclides of mass number 139 (Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy) have been evaluated and presented together with adopted properties for levels and gamma rays. This evaluation represents a revision of previous one (2001Bu16) by T.W. Burrows. Since then extensive new data have become available for many A=139 nuclides although, no excited state data are yet available for {sup 139}Sn, {sup 139}Sb, {sup 139}Tb, and {sup 139}Dy. The decay schemes of {sup 139}Sn, {sup 139}Sb, {sup 139}I, {sup 139}Tb and {sup 139}Dymore » nuclei are not known, and those for {sup 139}Gd and {sup 139}Eu are poorly known. Particle-transfer data are available for {sup 139}Ba, {sup 139}La, {sup 139}Ce and {sup 139}Pr. Limited high-spin data are available for {sup 139}Te, {sup 139}I, {sup 139}Cs, {sup 139}Ba, {sup 139}La and {sup 139}Ce, while such data are extensive for {sup 139}Pr, {sup 139}Nd, {sup 139}Pm, {sup 139}Sm, {sup 139}Eu and {sup 139}Gd. Recent {sup 139}Pm high-spin data from two independent studies using the same reaction and similar beam energy are in conflict and could be improved using state-of-the-art large gamma-detector arrays in contrast to the smaller arrays currently used. Cases for which no new experimental information are available since the last update have undergone checking resulting in some changes in the current work, but for the most part these are taken from the previous evaluations. Thus, the present work has greatly benefited from all prior NDS evaluations (2001Bu16, 1989Bu12, 1981Pe04, 1974Gr46), but at the same time data presented herein supersede those in the earlier evaluations.« less

  2. Lightweight high performance ceramic material

    DOEpatents

    Nunn, Stephen D [Knoxville, TN

    2008-09-02

    A sintered ceramic composition includes at least 50 wt. % boron carbide and at least 0.01 wt. % of at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb, and Lu, the sintered ceramic composition being characterized by a density of at least 90% of theoretical density.

  3. Distribution behavior of uranium, neptunium, rare-earth elements ( Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiClKCI eutectic salt and liquid cadmium or bismuth

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-12-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCI eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system.

  4. 94 β -Decay Half-Lives of Neutron-Rich Cs 55 to Ho 67 : Experimental Feedback and Evaluation of the r -Process Rare-Earth Peak Formation

    DOE PAGES

    Wu, J.; Nishimura, S.; Lorusso, G.; ...

    2017-02-16

    The β-decay half-lives of 94 neutron-rich nuclei 144 $-$ 151Cs, 146 $-$ 154Ba, 148 $-$ 156La, 1 50 $-$ 158Ce, 153 $-$160Pr, 156 $-$ 162 Nd, 159 $-$ 163Pm, 160 $-$ 166Sm, 161 $-$ 168Eu , 165 $-$ 170Gd, 166 $-$ 172Tb, 169 $-$ 173Dy, 172 $-$ 175Ho, and two isomeric states 174 mEr, 172 mDy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of β -decay half-lives are observed at neutron-number N = 97 for 58Ce, 59Pr, 60Nd , and 62Sm, and N = 105 for 63Eu,more » 64Gd, 65Tb, and 66Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. In conclusion, $r$-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.« less

  5. Physical properties of single crystalline R Mg 2 Cu 9 ( R = Y , Ce - Nd , Gd - Dy , Yb ) and the search for in-plane magnetic anisotropy in hexagonal systems

    DOE PAGES

    Kong, Tai; Meier, William R.; Lin, Qisheng; ...

    2016-10-24

    Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less

  6. Physical properties of single crystalline R Mg 2 Cu 9 ( R = Y , Ce - Nd , Gd - Dy , Yb ) and the search for in-plane magnetic anisotropy in hexagonal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Tai; Meier, William R.; Lin, Qisheng

    Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less

  7. Substitution of Nd with other rare earth elements in melt spun Nd{sub 2}Fe{sub 14}B magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D. N.; Lau, D.; Chen, Z.

    2016-05-15

    This is a contemporary study of rapidly quenched Nd{sub 1.6}X{sub 0.4}Fe{sub 14}B magnetic materials (where X= Nd, Y, Ce, La, Pr, Gd and Ho). A 20% substitution of the Nd component from Nd{sub 2}Fe{sub 14}B can bring about some commercial advantage. However, there will be some compromise to the magnetic performance. Light rare earth elements are definitely more abundant (Y, Ce, La) than the heavier rare earth elements, but when they are included in RE{sub 2}Fe{sub 14}B magnets they tend to lower magnetic performance and thermal stability. Substituting heavy rare earth elements (Gd, Ho) for Nd in Nd{sub 2}Fe{sub 14}Bmore » improves the thermal stability of magnets but causes a loss in magnet remanence.« less

  8. Photoluminescence properties of phosphors based on Lu3+-stabilized Gd3Al5O12:Tb3+/Ce3+ garnet solid solutions

    NASA Astrophysics Data System (ADS)

    Li, Jinkai; Li, Ji-Guang; Li, Xiaodong; Sun, Xudong

    2016-12-01

    The Gd3Al5O12:Tb/Ce (GdAG:Tb/Ce) garnet solutions effectively stabilized by Lu3+ have been achieved by calcining their precursor at 1300 °C. Detailed characterizations are given to the materials in terms of XRD, FE-SEM, BET, PL/PLE, and fluorescence decay analysis. The occurrence of Gd3+ and Tb3+ transitions from the photoluminescence excitation spectrum monitoring the Ce3+ yellow emission strongly confirmed the efficient Gd3+ → Ce3+ and Tb3+ → Ce3+ energy transfer. The [(Gd0.8Lu0.2)0.99-xCe0.01Tbx]AG (x = 0-0.1) phosphors with good dispersion and uniform particle size exhibit various luminescent properties under different excitation wavelength of 275, 338, and 457 nm, respectively. The photoluminescence comparison indicated that owing to the Gd3+ → Ce3+ and Tb3+ → Ce3+ energy transfer, the best luminescent phosphor [(Gd0.8Lu0.2)0.89Ce0.01 Tb0.1]AG is almost identical to the well-known YAG:Ce, higher than LuAG:Ce in emission intensity, and has a substantially red-shifted emission band that is desired for warm-white lighting. The Tb3+ → Ce3+ energy transfer was suggested to be electric multipolar interactions, and the processes of energy migration among the optically active Gd3+, Tb3+, and Ce3+ ions were discussed in detail. Fluorescence decay analysis found the lifetime for the Ce3+ emission hardly changes with the Tb3+ incorporation. The [(Gd0.8Lu0.2)0.99-xCe0.01Tbx]AG garnets developed in this work may serve as a new type of phosphor that hopefully meets the requirements of various lighting, optical display, and scintillation applications.

  9. Preliminary geochemical results of corals from the Puerto Morelos Reef, Southeastern Mexico

    NASA Astrophysics Data System (ADS)

    Marquez, N.; Kasper, J.

    2012-04-01

    A microprobe (MB), major, trace and rare earth elements (REE) analyses were carried out in three coral species Acropora palmata, Acropora cervicornis and Gorgonia ventalina at Puerto Morelos, Reef, Southeastern Mexico. This was done to assess the degree in which the corals developed under the different chemical-physical natural and artificial conditions. The corals were cut at the top and middle and based upon the observations by using the MB analysis, results showed the highest concentrations of Ag, Cu, Cr, Ni, S, Sr, Zn y Zr in Gorgonia Ventalina suggesting an impact coming from the industrial discharges and/or rusting of boats in the area. The results of X-ray fluorescence analysis for major and trace elements showed that the Fe , Sr and Zr increase their content in the skeletons of Acropora palmata y Gorgonia ventalina also asociated with the presence of human activity since the area is composed mainly by carbonate source sediments. The rare earth elements (REE) analysis showed that the negative anomaly of Ce suggests a well oxygenated, highly oxidative modern shallow waters, and high nutrients related to suspended matter for Acropora Palmata, Acropora cervicornis y Gorgonia ventalina, The Positive Eu anomaly in the corals are due to the development of the reef linked to the concentration of waters enriched in La. The Nd/Yb ratio indicates a shallow water development for the corals. This is also supported by the Ce/Ce* vs. Pr/Pr* ratios that indicate shallow marine waters in the development of the three corals studied (Ce*= 0.5La+0.5Pr and Pr*= 0.5Ce+0.5Nd). Enrichment of heavy rare earth elements (Gd-Lu) in the corals may be associated with high pH values and CO, OH- ions in the sea water.

  10. Growth and luminescent properties of Lu 2SiO 5:Ce and (Lu 1- xGd x) 2SiO 5:Ce single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Grinyov, B.; Sidletskiy, O.; Kurtsev, D.; Fedorov, A.; Baumer, V.; Nikl, M.; Mares, J. A.; Beitlerova, A.; Prusa, P.; Kucera, M.

    2011-12-01

    Single crystalline films (SCF) of Lu 2SiO 5:Ce (LSO:Ce), (Lu 1- xGd x) 2SiO 5:Ce (LGSO:Ce) and LGSO:Ce,Tb orthosilicates with thickness of 2.5-21 μm were crystallized by liquid phase epitaxy method onto undoped LSO substrates from melt-solution based on PbO-B 2O 3 flux. The concentration of Gd was varied in the range of x=0.2-0.7 formula units (f.u.). In the case of LGSO:Ce SCF growth we do not use any additional doping for reducing the misfit between the SCF and substrate lattices. The luminescence and scintillation properties of LSO:Ce, LGSO:Ce and LGSO:Ce,Tb SCFs were mutually compared and confronted with the performance of reference LSO:Ce and LYSO:Ce crystals. With increasing Gd content the luminescence spectrum of LGSO:Ce SCF is gradually red-shifted with respect to that of LSO:Ce SCF. The LY of (Lu 1- xGd x)SO:Ce SCF becomes lower in comparison with that for LSO:Ce SC at increasing Gd content in the range of x=0.2-0.7 f.u. The peculiarities of luminescence properties of LSO:Ce and LGSO:Ce SCFs in comparison with crystal analogs are explained by the different distribution of Ce 3+ over Lu1 and Lu2 positions of LSO host and by the influence of Pb 2+ contamination coming from the flux used for the film growth.

  11. Solvothermal syntheses, and characterization of [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce, Pr) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu, Gd, Er, Tm, Yb): The effect of lanthanide contraction on the crystal structures of lanthanide selenidoantimonates(V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia Dingxian; Zhu Aimei; Jin Qinyan

    Two types of lanthanide selenidoantimonates [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce(1a), Pr(1b)) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu(2a), Gd(2b), Er(2c), Tm(2d), Yb(2e); en=ethylenediamine) were solvothermally synthesized by reactions of LnCl{sub 3}, Sb and Se with the stoichiometric ratio in en solvent at 140 deg. C. The four-en coordinated lanthanide complex cation [Ln(en){sub 4}]{sup 3+} formed in situ balances the charge of SbSe{sub 4}{sup 3-} anion. In compounds 1a and 1b, the SbSe{sub 4}{sup 3-} anion act as a monodentate ligand to coordinate complex [Ln(en){sub 4}]{sup 3+} and the neutral compound [Ln(en){sub 4}(SbSe{sub 4})] is formed. The Ln{sup 3+} ion has a nine-coordinated environmentmore » involving eight N atoms and one Se atom forming a distorted monocapped square antiprism. In 2a-2e the lanthanide(III) ion exists as isolated complex [Ln(en){sub 4}]{sup 3+}, in which the Ln{sup 3+} ion is in a bicapped trigonal prism geometry. A systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series. TG curves show that compounds 1a-1b and 2a-2e remove their organic components in one and two steps, respectively. - Graphical abstract: Two types of lanthanide selenidoantimonates [Ln(en){sub 4}(SbSe{sub 4})] (Ln=Ce, Pr) and [Ln(en){sub 4}]SbSe{sub 4}.0.5en (Ln=Eu, Gd, Er, Tm, Yb; en=ethylenediamine) have been synthesized under the mild solvothermal conditions, and a systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series.« less

  12. Determination of Rare Earth Elements in Geological Samples Using Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Bhatt, Chet R; Jain, Jinesh C; Goueguel, Christian L; McIntyre, Dustin L; Singh, Jagdish P

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used to detect rare earth elements (REEs) in natural geological samples. Low and high intensity emission lines of Ce, La, Nd, Y, Pr, Sm, Eu, Gd, and Dy were identified in the spectra recorded from the samples to claim the presence of these REEs. Multivariate analysis was executed by developing partial least squares regression (PLS-R) models for the quantification of Ce, La, and Nd. Analysis of unknown samples indicated that the prediction results of these samples were found comparable to those obtained by inductively coupled plasma mass spectrometry analysis. Data support that LIBS has potential to quantify REEs in geological minerals/ores.

  13. Evolution of magnetism in LnCuGa3 (Ln = La-Nd, Sm-Gd) studied via μSR and specific heat

    NASA Astrophysics Data System (ADS)

    Graf, M. J.; Hettinger, J. D.; Nemeth, K.; Dally, R.; Baines, C.; Subbarao, U.; Peter, S. C.

    2017-12-01

    Muon spin rotation/relaxation (μSR) and specific heat measurements are presented for polycrystalline LnCuGa3, with Ln = La-Nd, and Sm-Gd. All materials undergo magnetic ordering transitions, apart from non-magnetic LaCuGa3, and PrCuGa3, which shows the onset of short range correlations below 3 K but no long-range magnetic order down to T = 25 mK. While magnetic order in the Ce and Nd compounds is incommensurate with the lattice, the order is commensurate for the Sm and Eu compounds. The strong damping in GdCuGa3 prevents us from determining the nature of magnetism in that system. SmCuGa3 exhibits two precessional frequencies, which appear at different temperatures, suggesting inhomogeneous magnetic ordering or a second magnetic/structural phase transition.

  14. Synthesis and characterization of physical properties of Gd2O2S:Pr3+ semi-nanoflower phosphor

    NASA Astrophysics Data System (ADS)

    Bagheri, A.; Rezaee Ebrahim Saraee, Kh.; Shakur, H. R.; Zamani Zeinali, H.

    2016-05-01

    Pure gadolinium oxysulfide phosphor (Gd2O2S) and trivalent praseodymium-doped gadolinium oxysulfide phosphor (Gd2O2S:Pr3+) scintillators with semi-nanoflower crystalline structures were successfully synthesized through a precipitation method and subsequent calcination treatment as a converter for X-ray imaging detectors. The characterization such as the crystal structures and nanostructure of Gd2O2S:Pr3+ scintillator measured by XRD and FeE-SEM experiment. The optical properties of Gd2O2S:Pr3+ scintillator were studied. Luminescence spectra of Gd2O2S:Pr3+ under 320 nm UV excitation show a green emission at near 511 nm corresponding to the 3P0-3H4 of Pr ions. After scintillation properties of synthesized Gd2O2S:Pr3+ scintillator investigated, Gd2O2S:Pr3+ scintillating film fabricated on a glass substrate by a sedimentation method. X-ray imaging of the fabricated scintillators confirmed that the Gd2O2S:Pr3+ scintillator could be used for radiography applications in which good spatial resolution is needed.

  15. Systematic variation of rare earths in monazite

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J.; Carron, M.K.

    1953-01-01

    Ten monazites from widely scattered localities have been analyzed for La, Ce, Pr, Nd, Sm, Gd, Y and Th by means of a combined chemical and emission spectrographic method. The analytical results, calculated to atomic percent of total rare earths (thorium excluded), show a considerable variation in the proportions of every element except praseodymium, which is relatively constant. The general variation trends of the elements may be calculated by assuming that the monazites represent different stages in a fractional precipitation process, and by assuming that there is a gradational increase in the precipitability of rare earth elements with decreasing ionic radius. Fractional precipitation brings about an increase in lanthanum and cerium, little change in praseodymium, and a decrease in neodymium, samarium, gadolinium, and yttrium. Deviations from the calculated lines of variation consist of a simultaneous, abnormal increase or decrease in the proportions of cerium, praseodymium, and neodymium with antipathetic decrease or increase in the proportions of the other elements. These deviations are ascribed to abnormally high or low temperatures that affect the precipitability of the central trio of elements (Ce, Pr, Nd) relatively more than that of the other elements. The following semiquantitative rules have been found useful in describing the composition of rare earths from monazite: 1. 1. The sum of lanthanum and neodymium is very nearly a constant at 42 ?? 2 atomic percent. 2. 2. Praseodymium is very nearly constant at 5 ?? 1 atomic percent. 3. 3. The sum of Ce, Sm, Gd, and Y is very nearly a constant at 53 ?? 3 atomic percent. No correlation could be established between the content of Th and that of any of the rare earth elements. ?? 1953.

  16. Static high-pressure structural studies on Dy to 119 GPa

    NASA Astrophysics Data System (ADS)

    Patterson, Reed; Saw, Cheng K.; Akella, Jagannadham

    2004-05-01

    Structural phase transitions in the rare-earth metal dysprosium have been studied in a diamond anvil cell to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp→Sm-type→dhcp→hR24 (hexagonal)→bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa, respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.

  17. A facile synthesis of high quality nanostructured CeO2 and Gd2O3-doped CeO2 solid electrolytes for improved electrochemical performance.

    PubMed

    Kuo, Yu-Lin; Su, Yu-Ming; Chou, Hung-Lung

    2015-06-07

    This study describes the use of a composite nitrate salt solution as a precursor to synthesize CeO2 and Gd2O3-doped CeO2 (GDC) nanoparticles (NPs) using an atmospheric pressure plasma jet (APPJ). The microstructures of CeO2 and GDC NPs were found to be cubical and spherical shaped nanocrystallites with average particle sizes of 10.5 and 6.7 nm, respectively. Reactive oxygen species, detected by optical emission spectroscopy (OES), are believed to be the major oxidative agents for the formation of oxide materials in the APPJ process. Based on the material characterization and OES observations, the study effectively demonstrated the feasibility of preparing well-crystallized GDC NPs by the APPJ system as well as the gas-to-particle mechanism. Notably, the Bader charge of CeO2 and Ce0.9Gd0.1O2 characterized by density function theory (DFT) simulation and AC impedance measurements shows that Gd helps in increasing the charge on Ce0.9Gd0.1O2 NPs, thus improving their conductivity and making them candidate materials for electrolytes in solid oxide fuel cells.

  18. Growth and luminescent properties of scintillators based on the single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorenko, Yu, E-mail: zorenko@ukw.edu.pl; Laboratory for Optoelectronic Materials, Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv; Gorbenko, V.

    Highlights: • Single crystalline films of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12} garnets at x = 0 ÷ 3.0 were grown by LPE method onto YAG substrates. • Lattice constant of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12}:Ce film and the misfit m between films and YAG substrate changed linearly with increasing of Gd content. • Effective Gd{sup 3+}–Ce{sup 3+} energy transfer occurs in the Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. • Best scintillation light yield is observed in the Lu{sub 3}Al{sub 5}O{sub 12}:Ce and Lu{sub 2.4}Gd{sub 0.6}Al{sub 5}O{sub 12}:Ce films. • Increase of the Gd content in x = 1.5–2.5 range resultsmore » in decreasing the scintillation LY of Lu{sub 3−x}Gd{sub x}Al{sub 5}O{sub 12}:Ce films. - Abstract: The work is related to the growth of scintillators based on the single crystalline films (SCF) of Ce{sup 3+} doped Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} mixed rare-earth garnets by Liquid Phase Epitaxy (LPE) method. We have shown, that full set of Lu{sub 3−}Gd{sub x}Al{sub 5}O{sub 12} SCFs with x values ranging from 0 to 3.0 can be successfully crystallized by the LPE method onto Y{sub 3}Al{sub 5}O{sub 12} (YAG) substrates from the melt-solutions based on PbO-B{sub 2}O{sub 3} flux. The absorption, X-ray excited luminescence, photoluminescence, thermoluminescence and light yield measurements, the latter under excitation by α-particles of {sup 239}Pu and {sup 241}Am radioisotopes, were applied for their characterization.« less

  19. Optical and scintillation characteristics of Gd2YAl2Ga3O12:Ce and Lu2YAl2Ga3O12:Ce single crystals

    NASA Astrophysics Data System (ADS)

    Chewpraditkul, Warut; Sakthong, Ongsa; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Szczesniak, Tomasz; Swiderski, Lukasz; Moszynski, Marek; Kamada, Kei; Yoshikawa, Akira; Nikl, Martin

    2017-06-01

    The optical and scintillation characteristics of Gd2YAl2Ga3O12:Ce and Lu2YAl2Ga3O12:Ce single crystals are investigated. At 662 keV γ-rays, light yield (LY) of 37,900 ph/MeV and energy resolution of 7.0% obtained for Gd2YAl2Ga3O12:Ce are superior to those of 18,900 ph/MeV and 11.5% obtained for Lu2YAl2Ga3O12:Ce. Scintillation decays are measured using the time-correlated single photon counting technique. A fast component decay time of 45 ns with relative intensity of 88% obtained for Lu2YAl2Ga3O12:Ce is superior to that of 50 ns (65%) for Gd2YAl2Ga3O12:Ce. The linear attenuation coefficient at 662 keV γ-rays is also determined and discussed.

  20. Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection.

    PubMed

    Nguyen, Thi Anh Huong; Nguyen, Van Ri; Le, Duc Dung; Nguyen, Thi Thanh Binh; Cao, Van Hoang; Nguyen, Thi Kim Dung; Sáiz, Jorge; Hauser, Peter C; Mai, Thanh Duc

    2016-07-29

    The employment of an in-house-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) as a simple and inexpensive solution for simultaneous determination of many rare earth elements (REEs) in ore samples from Vietnam, as well as in anti-corrosion coating samples is reported. 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) were determined using an electrolyte composed of 20mM arginine and 10mM α-hydroxyisobutyric acid adjusted to pH 4.2 with acetic acid. The best detection limit achieved was 0.24mg/L using the developed CE-C(4)D method. Good agreement between results from CE-C(4)D and the confirmation method (ICP-MS) was achieved, with a coefficient of determination (r(2)) for the two pairs of data of 0.998. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The development of Ce3+-activated (Gd,Lu)3Al5O12 garnet solid solutions as efficient yellow-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Li, Jinkai; Li, Ji-Guang; Liu, Shaohong; Li, Xiaodong; Sun, Xudong; Sakka, Yoshio

    2013-10-01

    Ce3+-activated Gd3Al5O12 garnet, effectively stabilized by Lu3+ doping, has been developed for new yellow-emitting phosphors. The powder processing of [(Gd1-xLux)1-yCey]3Al5O12 solid solutions was achieved through precursor synthesis via carbonate precipitation, followed by annealing. The resultant (Gd,Lu)AG:Ce3+ phosphor particles exhibit typical yellow emission at ˜570 nm (5d-4f transition of Ce3+) upon blue-light excitation at ˜457 nm (the 2F5/2-5d transition of Ce3+). The quenching concentration of Ce3+ was determined to be ˜1.0 at% (y = 0.01) and the quenching mechanism was suggested to be driven by exchange interactions. The best luminescent [(Gd0.9Lu0.1)0.99Ce0.01]AG phosphor is comparative to the well-known YAG:Ce3+ in emission intensity but has a substantially red-shifted emission band that is desired for warm-white lighting. The effects of processing temperature (1000-1500 °C) on the spectroscopic properties of the phosphors, especially those of Lu3+/Ce3+, were thoroughly investigated and discussed from the centroid position and crystal field splitting of the Ce3+ 5d energy levels.

  2. Synthesis and luminescent properties of Gd3Ga2Al3O12 phosphors doped with Eu3+ or Ce3+

    NASA Astrophysics Data System (ADS)

    Oh, M. J.; Kim, H. J.

    2016-09-01

    Eu3+-or Ce3+-doped gadolinium gallium aluminum garnet (GGAG), Gd3Ga2Al3O12, phosphors are fabricated using solid-state reactions with Gd2O3, Ga2O3, Al2O3, CeO2 and Eu2O3 powders. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors are sintered at 1300 °C or 1600 °C for 5 hours by using an electric furnace under normal atmosphere. X-ray diffraction and field-emission scanning electron microscopy studies are carried out in order to analyze the physical properties of these materials, and their luminescence properties are also measured by using UV and X-ray sources. The Eu3+-or Ce3+-doped Gd3Ga2Al3O12 phosphors show higher light yields in comparison to commercial phosphors such as Gd2O2S:Tb (gadox). This indicates that Gd3Ga2Al3O12:Eu3+ phosphors are promising materials for use in X-ray imaging and dose monitoring at proton beamlines.

  3. Sol-gel syntheses, luminescence, and energy transfer properties of α-GdB5O9:Ce(3+)/Tb(3+) phosphors.

    PubMed

    Sun, Xiaorui; Gao, Wenliang; Yang, Tao; Cong, Rihong

    2015-02-07

    Sol-gel method was applied to prepare homogenous and highly crystalline phosphors with the formulas α-GdB5O9:xTb(3+) (0 ≤ x ≤ 1), α-Gd1-xCexB5O9 (0 ≤ x ≤ 0.40), α-GdB5O9:xCe(3+), 0.30Tb(3+) (0 ≤ x ≤ 0.15) and α-GdB5O9:0.20Ce(3+), xTb(3+) (0 ≤ x ≤ 0.10). The success of the syntheses was proved by the linear shrinkage or expansion of the cell volumes against the substitution contents. In α-GdB5O9:xTb(3+), an efficient energy transfer from Gd(3+) to Tb(3+) was observed and there was no luminescence quenching. The exceptionally high efficiency of the f-f excitations of Tb(3+) implies that these phosphors may be good green-emitting UV-LED phosphors. For α-Gd1-xCexB5O9, Ce(3+) absorbs the majority of the energy and transfers it to Gd(3+). Therefore, the co-doping of Ce(3+) and Tb(3+) leads to a significant enhancement in the green emission of Tb(3+). Our current results together with the study on α-GdB5O9:xEu(3+) in the literature indicate that α-GdB5O9 is a good phosphor host with advantages including controllable preparation, diverse cationic doping, the absence of concentration quenching, and effective energy transfer.

  4. Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, S.; Dalela, S., E-mail: sdphysics@rediffmail.com; Kumar, Sudish

    In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.

  5. Effect of the Pr3+ → Gd3+ energy transfer in multicomponent garnet single crystal scintillators

    NASA Astrophysics Data System (ADS)

    Babin, V.; Nikl, M.; Kamada, K.; Beitlerova, A.; Yoshikawa, A.

    2013-09-01

    Luminescence processes in the undoped and Pr3+-doped (Gd,RE)3(Ga,Al)5O12, RE = Lu,Y, multicomponent garnets are studied by time-resolved photoluminescence spectroscopy. Energy transfer processes between Pr3+ and Gd3+ causing significant deterioration of the scintillation performance are considered in detail. As is shown in current work, an overlap of the 5d1-3H4 emission transition of Pr3+ and 8S-6Px absorption transition of Gd3+ results in unwanted depletion of Pr3+ 5d1 excited state and is further intensified by the concentration quenching in the Gd3+-sublattice. This process explains a drastic decrease of light yield in Pr3+-doped Gd3+-containing multicomponent garnets observed in a previous work.

  6. Rapid and highly reproducible analysis of rare earth elements by multiple collector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baker, Joel; Waight, Tod; Ulfbeck, David

    2002-10-01

    A method has been developed for the rapid chemical separation and highly reproducible analysis of the rare earth elements (REE) by isotope dilution analysis by means of a multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS). This technique is superior in terms of the analytical reproducibility or rapidity of analysis compared with quadrupole ICP-MS or with thermal ionization mass spectrometric isotope dilution techniques. Samples are digested by standard hydrofluoric-nitric acid-based techniques and spiked with two mixed spikes. The bulk REE are separated from the sample on a cation exchange column, collecting the middle-heavy and light REE as two groups, which provides a middle-heavy REE cut with sufficient separation of the light from the heavier REE to render oxide interferences trivial, and a Ba-free light REE cut. The heavy (Er-Lu), middle (Eu-Gd), and light REE (La-Eu) concentrations are determined by three short (1 to 2 min) analyses with a CETAC Aridus desolvating nebulizer introduction system. Replicate digestions of international rock standards demonstrate that concentrations can be reproduced to <1%, which reflects weighing errors during digestion and aliquotting as inter-REE ratios reproduce to ≤0.2% (2 SD). Eu and Ce anomalies reproduce to <0.15%. In addition to determining the concentrations of polyisotopic REE by isotope dilution analysis, the concentration of monoisotopic Pr can be measured during the light REE isotope dilution run, by reference to Pr/Ce and Pr/Nd ratios measured in a REE standard solution. Pr concentrations determined in this way reproduce to <1%, and Pr/REE ratios reproduce to <0.4%. Ce anomalies calculated with La and Pr also reproduce to <0.15% (2 SD). The precise Ce (and Eu) anomaly measurements should allow greater use of these features in studying the recycling of materials with these anomalies into the mantle, or redox-induced effects on the REE during recycling and dehydration of oceanic lithosphere, partial melting, metamorphism, alteration, or sedimentation processes. Moreover, this technique consumes very small amounts (subnanograms) of the REE and will allow precise REE determinations to be made on much smaller samples than hitherto possible.

  7. Effect of Ga3+ and Gd3+ ions substitution on the structural and optical properties of Ce3+ -doped yttrium aluminium garnet phosphor nanopowders.

    PubMed

    Wako, A H; Dejene, F B; Swart, H C

    2016-11-01

    The structural and optical properties of commercially obtained Y 3 Al 5 O 12 :Ce 3 + phosphor were investigated by replacing Al 3 + with Ga 3 + and Y 3 + with Gd 3 + in the Y 3 Al 5 O 12 :Ce 3 + structure to form Y 3 (Al,Ga) 5 O 12 :Ce 3 + and (Y,Gd) 3 Al 5 O 12 :Ce 3 + . X-Ray diffraction (XRD) results showed slight 2-theta peak shifts to lower angles when Ga 3 + was used and to higher angles when Gd 3 + was used, with respect to peaks from Y 3 Al 5 O 12 :Ce 3 + and JCPDS card no. 73-1370. This could be attributed to induced crystal-field effects due to the different ionic sizes of Ga 3 + and Gd 3 + compared with Al 3 + and Y 3 + . The photoluminescence (PL) spectra showed broad excitation from 350 to 550 nm with a maximum at 472 nm, and broad emission bands from 500 to 650 nm, centred at 578 nm for Y 3 Al 5 O 12 :Ce 3 + arising from the 5d → 4f transition of Ce 3 + . PL revealed a blue shift for Ga 3 + substitution and a red shift for Gd 3 + substitution. UV-Vis showed two absorption peaks at 357 and 457 nm for Y 3 Al 5 O 12 :Ce 3 + , with peaks shifting to 432 nm for Ga 3 + and 460 nm for Gd 3 + substitutions. Changes in the trap levels or in the depth and number of traps due to Ce 3 + were analysed using thermoluminescence (TL) spectroscopy. This revealed the existence of shallow and deep traps. It was observed that Ga 3 + substitution contributes to the shallowest traps at 74 °C and fewer deep traps at 163 °C, followed by Gd 3 + with shallow traps at 87 °C and deep traps at 146 °C. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. T1 relaxivity of core-encapsulated gadolinium liposomal contrast agents--effect of liposome size and internal gadolinium concentration.

    PubMed

    Ghaghada, Ketan; Hawley, Catherine; Kawaji, Keigo; Annapragada, Ananth; Mukundan, Srinivasan

    2008-10-01

    Long circulating core-encapsulated gadolinium (CE-Gd) liposomal nanoparticles that have surface conjugated polyethylene glycol are a promising platform technology for use as blood pool T1-based magnetic resonance (MR) contrast agents. The objective of this study was to investigate the effect of liposome size and internal (core) Gd concentration on the T1 relaxivity of CE-Gd liposomes. Twelve different liposomal formulations were synthesized and characterized, resulting in a size (50, 100, 200, and 400 nm) and core Gd-concentration (200, 350, and 500 mM) "matrix" of test samples. Subsequently, CE-Gd liposomes were diluted in deionized water (four diluted samples) and molar T1 relaxivity (r1) measurements were performed at 2- and 7-T MR field strengths. The r1 of CE-Gd liposomes was inversely related to the liposome size. The largest change in r1 was observed between liposomes that were extruded through 50- and 100-nm filter membranes. At both field strengths, the variation in internal gadolinium concentration did not show any significant correlation (alpha < or = 0.05) with r1. The size of CE-Gd liposomal nanoparticles significantly affects the T1 relaxivity. An inverse relation was observed between liposome size and T1 relaxivity. The T1 relaxivity did not change significantly with core Gd concentration over the measured concentration range.

  9. Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Luo, Jialiang; Nikl, Martin; Ren, Guohao

    2014-01-01

    In the recent successful improvement of scintillation efficiency in Lu3Al5O12:Ce driven by Ga3+ and Gd3+ admixture, the "band-gap engineering" and energy level positioning have been considered the valid strategies so far. This study revealed that this improvement was also associated with the cerium valence instability along with the changes of chemical composition. By utilizing X-ray absorption near edge spectroscopy technique, tuning the Ce3+/Ce4+ ratio by Ga3+ admixture was evidenced, while it was kept nearly stable with the Gd3+ admixture. Ce valence instability and Ce3+/Ce4+ ratio in multicomponent garnets can be driven by the energy separation between 4f ground state of Ce3+ and Fermi level.

  10. Luminescence and light yield of (Gd2Y)(Ga3Al2)O12:Pr3+ single crystal scintillators

    NASA Astrophysics Data System (ADS)

    Lertloypanyachai, Prapon; Pathumrangsan, Nichakorn; Sreebunpeng, Krittiya; Pattanaboonmee, Nakarin; Chewpraditkul, Weerapong; Yoshikawa, Akira; Kamada, Kei; Nikl, Martin

    2017-06-01

    Praseodymium-doped (Gd2Y)(Ga3Al2)O12 (GYGAG: Pr) single crystals are grown by the micro-pulling down method with different Pr concentrations. The energy transfer process between Pr3+ and Gd3+ is investigated by photoluminescence excitation (PLE) and emission (PL) spectra measurements. Photoelectron yield measurements are carried out using photomultiplier. At 662 keV γ-rays, photoelectron yield of 2520 phe/MeV obtained for the GYGAG: Pr (0.01%) sample is larger than that of 1810 phe/MeV obtained for BGO crystal. Light yield degradation for the GYGAG: Pr scintillators is presumably due to the energy transfer from 5d state of Pr3+ to 4f state of Gd3+ together with the concentration quenching in the Gd3+-sublattice.

  11. Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun

    2018-02-01

    SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.

  12. A comparative study on the luminescence properties of Ce3+/Tb3+ doped Gd-based host nanomaterials

    NASA Astrophysics Data System (ADS)

    Jadhao, Charushila Vasant; Rani, Barkha; Sahu, Niroj Kumar

    2018-04-01

    A comparative study on the crystal phases and their respective luminescence behaviour of Gd3+ based host materials such as GdPO4, GdF3, GdVO4 and Gd2O3 sensitized with 7at.% Ce3+ and activated with 5 at.% Tb3+ have been reported. The nanomaterials were prepared by polyol method using ethylene glycol as solvent and found to have different crystal structures such as monoclinic, orthorhombic, tetragonal and cubic phase. Clear characteristics emission from Tb3+ has been observed in all the samples when excited in the absorption wavelength of Ce3+ and Gd3+ (˜280 nm). Among all the above materials, intense emission of Tb3+ is found in GdPO4 followed by GdF3, Gd2O3 and GdVO4 respectively. The Tb3+ emission is strongly influenced by the energy transfer process and crystal structure of the host materials and hence this study will be important for choosing suitable materials for display devices and biomedical applications.

  13. Paramagnetic Ce3 + optical emitters in garnets: Optically detected magnetic resonance study and evidence of Gd-Ce cross-relaxation effects

    NASA Astrophysics Data System (ADS)

    Tolmachev, D. O.; Gurin, A. S.; Uspenskaya, Yu. A.; Asatryan, G. R.; Badalyan, A. G.; Romanov, N. G.; Petrosyan, A. G.; Baranov, P. G.; Wieczorek, H.; Ronda, C.

    2017-06-01

    Paramagnetic Ce3 +optical emitters have been studied by means of optically detected magnetic resonance (ODMR) via Ce3 + spin-dependent emission in cerium-doped garnet crystals which were both gadolinium free and contain gadolinium in a concentration from the lowest (0.1%) to 100%, i.e., to the superparamagnetic state. It has been shown that the intensity of photoluminescence excited by circularly polarized light into Ce3 + absorption bands can be used for selective monitoring the population of the Ce3 + ground-state spin sublevels. Direct evidence of the cross-relaxation effects in garnet crystals containing two electron spin systems, i.e., the simplest one of Ce3 + ions with the effective spin S =1/2 and the system of Gd3 + ions with the maximum spin S =7/2 , has been demonstrated. Magnetic resonance of Gd3 + has been found by monitoring Ce3 + emission in cerium-doped garnet crystals with gadolinium concentrations of 0.1 at. %, 4%-8%, and 100%, which implies the impact of the Gd3 + spin polarization on the optical properties of Ce3 +. Strong internal magnetic fields in superparamagnetic crystals were shown to modify the processes of recombination between UV-radiation-induced electron and hole centers that lead to the recombination-induced Ce3 + emission. Observation of spikes and subsequent decay in the cross-relaxation-induced ODMR signals under pulsed microwave excitation is suggested to be an informative method to investigate transient processes in the many-spin system of Ce3 +, Gd3 +, and electron and hole radiation-induced centers.

  14. Energy Transfer Processes in (Lu,Gd)AlO3:Ce

    DTIC Science & Technology

    2001-01-01

    studies on energy transfer processes in Ce-activated Lu, Y and Gd aluminum perovskite crystals that contribute to production of scintillation light in...LuAIO3, GdA10 3, cerium, scintillators, VUV spectroscopy, luminescence, time profiles, energy transfer 1. INTRODUCTION The yttrium aluminum perovskite...The Czochralski-grown monocrystals of LuAP:Ce were first evaluated in a garnet -free perovskite phase by Lempicki et al. in 1994 .4 More detailed

  15. Molecular Dynamics Simulation of the Structure and Ion Transport in the Ce1 - x Gd x O2 - δ|YSZ Heterosystem

    NASA Astrophysics Data System (ADS)

    Galin, M. Z.; Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    Molecular dynamics simulation has been used to develop a realistic atomistic model of two-layer Ce1 - x Gd x O2 - δ|YSZ heterosystem. It is shown that Ce1 - x Gd x O2 - δ and YSZ layers (about 15 and 16 Å thick, respectively) retain their crystal structure on the whole. The main structural distortions are found to occur near the Ce1 - x Gd x O2 - δ|YSZ geometric interface, within a narrow interfacial region of few angstroms thick. Both the generalized diffusion characteristics of the system as a whole and the oxygen diffusion coefficients in the layers are calculated, and the diffusion activation energies are determined.

  16. Luminescence and scintillation characteristics of (GdxY3-x)Al2Ga3O12:Ce (x = 1,2,3) single crystals

    NASA Astrophysics Data System (ADS)

    Chewpraditkul, Warut; Pattanaboonmee, Nakarin; Sakthong, Ongsa; Chewpraditkul, Weerapong; Szczesniak, Tomasz; Moszynski, Marek; Kamada, Kei; Yoshikawa, Akira; Nikl, Martin

    2018-02-01

    The luminescence and scintillation characteristics of Czochralski-grown (GdxY3-x)Al2Ga3O12:Ce (x = 1,2,3) single crystals are presented. With increasing Gd content in this garnet host, the 5d2 absorption band was blue-shifted while the 5d1 absorption and 5d1 → 4f emission bands were red-shifted due to an increase in the crystal field splitting of the 5d levels. In addition, the luminescence quenching temperature of the Ce3+emission and activation energy for thermal quenching decreased with increasing Gd content. The Gd3+ → Ce3+ energy transfer was evidenced by photoluminescence excitation spectra of Ce3+ emission. At 662 keV γ - rays, the light yield (LY) of 48,600 ph/MeV and energy resolution of 6.5% was measured for a Gd3Al2Ga3O12:Ce crystal. Scintillation decay measurements were performed using the time-correlated single photon counting technique. Superior time resolution of Gd3Al2Ga3O12:Ce is due to its high LY and fast scintillation response. The total mass attenuation coefficients at 60 and 662 keV γ - rays were also determined.

  17. Microwave synthesis of pure and doped cerium (IV) oxide (CeO2) nanoparticles for methylene blue degradation.

    PubMed

    El Rouby, W M A; Farghali, A A; Hamdedein, A

    2016-11-01

    Cerium (IV) oxide (CeO 2 ), samarium (Sm) and gadolinium (Gd) doped CeO 2 nanoparticles were prepared using microwave technique. The effect of microwave irradiation time, microwave power and pH of the starting solution on the structure and crystallite size were investigated. The prepared nanoparticles were characterized using X-ray diffraction, FT-Raman spectroscopy, and transmission electron microscope. The photocatalytic activity of the as-prepared CeO 2 , Sm and Gd doped CeO 2 toward degradation of methylene blue (MB) dye was investigated under UV light irradiation. The effect of pH, the amount of catalyst and the dye concentration on the degradation extent were studied. The photocatalytic activity of CeO 2 was kinetically enhanced by trivalent cation (Gd and Sm) doping. The results revealed that Gd doped CeO 2 nanoparticles exhibit the best catalytic degradation activity on MB under UV irradiation. For clarifying the environmental safety of the by products produced from the degradation process, the pathways of MB degradation were followed using liquid chromatography/mass spectroscopy (LC/MS). The total organic carbon content measurements confirmed the results obtained by LC/MS. Compared to the same nanoparticles prepared by another method, it was found that Gd doped CeO 2 prepared by hydrothermal process was able to mineralize MB dye completely under UV light irradiation.

  18. Buffer layers and articles for electronic devices

    DOEpatents

    Paranthaman, Mariappan P.; Aytug, Tolga; Christen, David K.; Feenstra, Roeland; Goyal, Amit

    2004-07-20

    Materials for depositing buffer layers on biaxially textured and untextured metallic and metal oxide substrates for use in the manufacture of superconducting and other electronic articles comprise RMnO.sub.3, R.sub.1-x A.sub.x MnO.sub.3, and combinations thereof; wherein R includes an element selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and A includes an element selected from the group consisting of Be, Mg, Ca, Sr, Ba, and Ra.

  19. Static High Pressure Structural studies on Dy to 119 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J R; Saw, C K; Akella, J

    2003-11-12

    Structural phase transitions in the rare-earth metal Dysprosium have been studied in a Diamond Anvil Cell (DAC) to 119 GPa by x-ray diffraction. Four transformations following the sequence hcp {yields} Sm-type {yields} dhcp {yields} hR24 (hexagonal) {yields} bcm (monoclinic) are observed at 6, 15, 43, and 73 GPa respectively. The hexagonal to monoclinic transformation is accompanied by a 6% reduction in volume, which is attributed to delocalization of the 4f electrons, similar to that seen in Ce, Pr, and Gd.

  20. Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotsenko, V.P., E-mail: ssclab@ukr.net; Berezovskaya, I.V.; Voloshinovskii, A.S.

    2015-04-15

    Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions havemore » been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.« less

  1. Free carrier absorption in self-activated PbWO4 and Ce-doped Y3(Al0.25Ga0.75)3O12 and Gd3Al2Ga3O12 garnet scintillators

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Korjik, M.; Lucchini, M. T.; Nargelas, S.; Sidletskiy, O.; Tamulaitis, G.; Tratsiak, Y.; Vaitkevičius, A.

    2016-08-01

    Nonequilibrium carrier dynamics in the scintillators prospective for fast timing in high energy physics and medical imaging applications was studied. The time-resolved free carrier absorption investigation was carried out to study the dynamics of nonequilibrium carriers in wide-band-gap scintillation materials: self-activated led tungstate (PbWO4, PWO) ant two garnet crystals, GAGG:Ce and YAGG:Ce. It was shown that free electrons appear in the conduction band of PWO and YAGG:Ce crystals within a sub-picosecond time scale, while the free holes in GAGG:Ce appear due to delocalization from Gd3+ ground states to the valence band within a few picoseconds after short-pulse excitation. The influence of Gd ions on the nonequilibrium carrier dynamics is discussed on the base of comparison the results of the free carrier absorption in GAGG:Ce containing gadolinium and in YAGG without Gd in the host lattice.

  2. A comparative investigation of Lu2SiO5:Ce and Gd2O2S:Eu powder scintillators for use in x-ray mammography detectors

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Fountos, G. P.; David, S. L.; Valais, I. G.; Toutountzis, A. E.; Kalyvas, N. E.; Kandarakis, I. S.; Panayiotakis, G. S.

    2009-10-01

    The dominant powder scintillator in most medical imaging modalities for decades has been Gd2O2S:Tb due to the very good intrinsic properties and overall efficiency. Apart from Gd2O2S:Tb, there are alternative powder phosphor scintillators such as Lu2SiO5:Ce and Gd2O2S:Eu that have been suggested for use in various medical imaging modalities. Gd2O2S:Eu emits red light and can be combined mainly with digital mammography detectors such as CCDs. Lu2SiO5:Ce emits blue light and can be combined with blue sensitivity films, photocathodes and some photodiodes. For the purposes of the present study, two scintillating screens, one from Lu2SiO5:Ce and the other from Gd2O2S:Eu powders, were prepared using the method of sedimentation. The screen coating thicknesses were 25.0 and 33.1 mg cm-2 respectively. The screens were investigated by evaluating the following parameters: the output signal, the modulation transfer function, the noise equivalent passband, the informational efficiency, the quantum detection efficiency and the zero-frequency detective quantum efficiency. Furthermore, the spectral compatibility of those materials with various optical detectors was determined. Results were compared to published data for the commercially employed 'Kodak Min-R film-screen system', based on a 31.7 mg cm-2 thick Gd2O2S:Tb phosphor. For Gd2O2S:Eu, MTF data were found comparable to those of Gd2O2S:Tb, while the MTF of Lu2SiO5:Ce was even higher resulting in better spatial resolution and image sharpness properties. On the other hand, Gd2O2S:Eu was found to exhibit higher output signal and zero-frequency detective quantum efficiency than Lu2SiO5:Ce.

  3. Project VeSElkA: abundance analysis of chemical species in HD 41076 and HD 148330

    NASA Astrophysics Data System (ADS)

    Khalack, V.; Gallant, G.; Thibeault, C.

    2017-10-01

    A new semi-automatic approach is employed to carry out the abundance analysis of high-resolution spectra of HD 41076 and HD 148330 obtained recently with the spectropolarimetre Echelle SpectroPolarimetric Device for Observations of Stars at the Canada-France-Hawaii Telescope. This approach allows to prepare in a semi-automatic mode the input data for the modified zeeman2 code and to analyse several hundreds of line profiles in sequence during a single run. It also provides more information on abundance distribution for each chemical element at the deeper atmospheric layers. Our analysis of the Balmer profiles observed in the spectra of HD 41076 and HD 148330 has resulted in the estimates of their effective temperature, gravity, metallicity and radial velocity. The respective models of stellar atmosphere have been calculated with the code phoenix and used to carry out abundance analysis employing the modified zeeman2 code. The analysis shows a deficit of the C, N, F, Mg, Ca, Ti, V, Cu, Y, Mo, Sm and Gd, and overabundance of Cr, Mn, Fe, Co, Ni, Sr, Zr, Ba, Ce, Nd and Dy in the stellar atmosphere of HD 41076. In the atmosphere of HD 148330, the C, N and Mo appear to be underabundant, while the Ne, Na, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Sr, Y, Zr, Ba, Ce, Pr, Nd, Sm, Eu, Gd and Dy are overabundant. We also have found signatures of vertical abundance stratification of Fe, Ti, Cr and Mn in HD 41076, and of Fe, Ti, V, Cr, Mn, Y, Zr, Ce, Nd, Sm and Gd in HD 148330.

  4. Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Kaviyarasu, K.; Murmu, P. P.; Kennedy, J.; Thema, F. T.; Letsholathebe, Douglas; Kotsedi, L.; Maaza, M.

    2017-10-01

    Gadolinium implanted cerium oxide (Gd-CeO2) nanocomposites is an important candidate which have unique hexagonal structure and high K- dielectric constant. Gd-CeO2 nanoparticles were synthesized using hydrothermal method. X-ray diffraction (XRD) results showed that the peaks are consistent with pure phase cubic structure the XRD pattern also confirmed crystallinity and phase purity of the sample. Nanocrystals sizes were found to be up to 25 nm as revealed by XRD and SEM. It is suggested that Gd gives an affirmative effect on the ion influence behavior of Gd-CeO2. XRD patterns showed formation of new phases and SEM micrographs revealed hexagonal structure. Photoluminescence measurement (PL) reveals the systematic shift of the emission band towards lower wavelength thereby ascertaining the quantum confinement effect (QCE). The PL spectrum has wider broad peak ranging from 390 nm to 770 nm and a sharp one centered on at 451.30 nm which is in tune with Gd ions. In the Raman spectra showed intense band observed between 460 cm-1 and 470 cm-1 which is attributed to oxygen ions into CeO2. Room temperature ferromagnetism was observed in un-doped and Gd implanted and annealed CeO2 nanocrystals. In the recent studies, ceria based materials have been considered as one of the most promising electrolytes for reduced temperature SOFC (solid oxide fuel cell) system due to their high ionic conductivities allowing its use in stainless steel supported fuel cells. CeO2 having an optical bandgap 3.3 eV and n-type carrier density which make it a promising candidate for various technological application such as buffer layer on silicon on insulator devices.

  5. Impact of Lu/Gd ratio and activator concentration on structure and scintillation properties of LGSO:Ce crystals

    NASA Astrophysics Data System (ADS)

    Sidletskiy, O.; Bondar, V.; Grinyov, B.; Kurtsev, D.; Baumer, V.; Belikov, K.; Katrunov, K.; Starzhinsky, N.; Tarasenko, O.; Tarasov, V.; Zelenskaya, O.

    2010-02-01

    We have studied the dependence of structural and scintillation characteristics of Lu 2 xGd 2-2 xSiO 5:Ce (LGSO:Ce) crystals on cation composition. LGSO:Ce crystals at x=0-1 have been obtained by the Czochralski method. We report here a strong correlation between ionic radii of trivalent cations and their distribution between non-equivalent sites in lattice. By choosing the optimal Lu/Gd ratio and Ce concentration we were able to obtain the light output by˜70%, as compared to LSO:Ce crystals, and energy resolution ˜7 at% 662 KeV ( 137Cs); the afterglow level was decreased by 1-3 orders of magnitude as compared to LSO:Ce. We also discuss the possible mechanisms of control on scintillation characteristics of mixed orthosilicates.

  6. Czochralski growth of Gd3(Al5-xGax)O12 (GAGG) single crystals and their scintillation properties

    NASA Astrophysics Data System (ADS)

    Kurosawa, Shunsuke; Shoji, Yasuhiro; Yokota, Yuui; Kamada, Kei; Chani, Valery I.; Yoshikawa, Akira

    2014-05-01

    Ce:Gd3(AlxGa1-x)5O12 (x=2.5/5 and 3/5, Ce:GAGG-2.5 and Ce:GAGG-3) crystals were grown by the Czochralski process in order to reduce cost of the starting materials as compared with conventional Ce:Gd3Al2Ga3O12 (Ce:GAGG-2) crystal which have high light output. Although perovskite phase was detected in Ce:GAGG-3, Ce:GAGG-2.5 had single-phase garnet structure. Solidification fraction for the Ce:GAGG-2.5 growth was 0.52. Optical properties including transmittance, emission, and excitation spectra of 30 samples cut from the Ce:GAGG-2.5 bulk ingot did not depend on their original position along the growth axis. These samples had light outputs of approximately 58,000±3000 photons/MeV. However, scintillation decay times varied from 140 to 200 ns and depended on the position clearly.

  7. Effects of Gd/Lu ratio on the luminescence properties and garnet phase stability of Ce3+ activated GdxLu3-xAl5O12 single crystals

    NASA Astrophysics Data System (ADS)

    Bartosiewicz, K.; Babin, V.; Kamada, K.; Yoshikawa, A.; Beitlerova, A.; Nikl, M.

    2018-06-01

    The luminescence properties of Ce3+ activated (Gd,Lu)3Al5O12 single crystals are investigated as a function of the Gd/Lu ratio with the aim of an improved understanding of the luminescence quenching, energy transfer processes, and garnet phase stability. Upon heavy substitution of Lu with Gd, the target garnet phase becomes thermodynamically unstable and unwanted secondary phase inclusions arise. The secondary phase shows luminescence properties in the UV spectral range. The thermal quenching process of the 5d→4f emission of Ce3+ in the garnet phase is determined by the temperature dependence of the photoluminescence decay time and delayed radiative recombination decays. The results show that the onset of the thermal quenching is moved to lower temperatures with increasing the Gd3+ content. The main mechanism responsible for the luminescence quenching is due to the non-radiative relaxation from 5d1 excited state to 4f ground state of Ce3+. The energy transfer processes between Gd3+ and Ce3+ as well as between secondary and garnet phase are evidenced by the photoluminescence excitation and emission spectra as well as decay kinetic measurements.

  8. Composition-property relationships in (Gd3-xLux)(GayAl5-y)O12:Ce (x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4) multicomponent garnet scintillators

    NASA Astrophysics Data System (ADS)

    Luo, Jialiang; Wu, Yuntao; Zhang, Guoqing; Zhang, Huaijin; Ren, Guohao

    2013-12-01

    The (LuxGd3-x)(GayAl5-y)O12:Ce (x = 0, 1, 2, 3 and y = 0, 1, 2, 3, 4) scintillating polycrystalline powders were prepared by high temperature solid state reaction method. A pure cubic phase was confirmed in all samples by X-ray diffraction (XRD). X-ray excited luminescence (XEL), photoluminescence excitation and emission spectra were employed to study the influence of Gd3+-Ga3+ admixture on the luminescent mechanism of Ce3+ as well as the energy transfer from Gd3+ to Ce3+. The band-gap structures with varying Gd3+ and Ga3+ content were constructed to understand the luminescence behaviors. In addition, thermoluminescence spectra (TL) were utilized to identify the moving of conduction band (CB) by monitoring the shift of the corresponding TL peaks. Finally, it was found that incorporation of 40 mol% (y = 2) Ga3+ and 33.3-66.7 mol% (x = 1-2) Gd3+ could secure enough energy-separation between CB and 5d1 of Ce3+ avoiding thermal ionization effect at utmost, and bury the antisite defect traps into CB, and in turn achieving the optimum scintillation efficiency.

  9. The Gd-Co-Al system at 870/1070 K as a representative of the rare earth-Co-Al family and new rare-earth cobalt aluminides: Crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Morozkin, A. V.; Garshev, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Mozharivskyj, Y.; Yuan, Fang; Yao, Jinlei; Nirmala, R.; Quezado, S.; Malik, S. K.

    2018-05-01

    The Gd-Co-Al system has been investigated at 870/1070 K by X-ray and elemental EDS analyses. The existence of the known compounds Gd2Co3Al9 (Y2Co3Ga9-type), Gd3Co4.5Al11.5 (Gd3Co4.6Al11) (Gd3Ru4Al12-type), Gd3Co6-7.4Al3-1.6 (CeNi3-type), GdCo1.15-0.65Al0.85-1.35 (MgZn2-type), Gd2Co2Al (Mo2NiB2-type) and Gd3Co3.5-3.25Al0.5-0.75 (W3CoB3-type) has been confirmed at 870/1070 K. Structure types have been determined for Gd2Co6Al19 (U2Co6Al19-type), Gd7Co6Al7 (Pr7Co6Al7-type), Gd6Co2-2.21Al1-0.79 (Ho6Co2Ga-type) and Gd14Co3.2Al2.8 (Gd14Co2.58Al3.42 at 970 K) (Lu14Co3In3-type). The structures of Gd6Co2Al, Gd6Co2.21Al0.79 and Gd14Co2.58Al3.42 flux-grown at 970 K have been refined from the single crystal X-ray diffraction data. Additionally, new ternary compounds Gd2Co5.7-5.3Al1.3-1.7 (Er2Co7-type) and Gd58Co20Al22 (unknown type structure) have been identified. Quasi-binary solid solutions were detected for Gd2Co17, GdCo5, Gd2Co7, GdCo3, GdCo2 and GdAl2 at 870/1070 K, while no appreciable solubility was observed for the other binary compounds in the Gd-Co-Al system. Magnetic properties of the Gd2Co3Al9, Gd3Co4.6Al11, Gd7Co6Al7, Gd6Co2.2Al0.8 and Gd14Co2.58Al3.42 compounds have been studied and are presented in this work. Gd6Co2.2Al0.8, Gd3Co4.6Al11, Gd7Co6Al7 and Gd14Co2.58Al3.42 order ferromagnetically, while Gd2Co3Al9 displays antiferromagnetic transition. Additionally, {Y, Sm, Tb - Tm}2Co6Al19 (U2Co6Al19-type), Yb2Co3Al9 (Y2Co3Ga9-type), {Y, Sm, Tm, Yb}3Co4.6Al11 (Gd3Ru4Al12-type) and Tb7Co6Al7 (Pr7Co6Al7-type) compounds have been synthesized and investigated.

  10. Surfactant mediated hydrothermal synthesis, characterization and luminescent properties of GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} @ GdPO{sub 4} core shell nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khajuria, Heena; Ladol, Jigmet; Khajuria, Sonika

    Highlights: • Core shell nanorods were synthesised by surfactant assisted hydrothermal method. • Morphology of core shell nanorods resembles those of core nanorods indicating coating of shell on cores. • More uniform and non-aggregated core shell nanorods were prepared in presence of surfactants. • Surfactant assisted prepared core shell nanorods show intense emission as compared to uncoated core nanorods. - Abstract: Core shell GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} @ GdPO{sub 4} nanorods were synthesized via hydrothermal route in the presence of different surfactants [cetyltrimethyl ammonium bromide (CTAB) and Sodium dodecyl sulphate (SDS)]. The nanorods were characterized by powder X-ray diffractionmore » (PXRD), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and photoluminescence (PL) studies. The X-ray diffraction results indicate good crystallinity and effective doping in core and core shell nanorods. SEM and TEM micrographs show that all of the as prepared gadolinium phosphate products have rod like shape. The compositional analysis of GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} core was done by EDS. The emission intensity of the GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} @ GdPO{sub 4} core shell increased significantly with respect to those of GdPO{sub 4}: Ce{sup 3+}/Tb{sup 3+} core nanorods. The effect of surfactant on the uniformity, thickness and luminescence of the core shell nanorods was investigated.« less

  11. Development of scintillating screens based on the single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitaliy; Savchyn, Volodymyr; Zorenko, Tanya; Fedorov, Alexander; Sidletskiy, Oleg

    2014-09-01

    The paper is dedicated to development of scintillators based on single crystalline films of Ce doped (Gd,Y)3(Al,Ga,Sc)5O12 multi-component garnets onto Gd3Ga5O12 substrates using the liquid phase epitaxy method.

  12. Atelier d'astronomie X

    NASA Astrophysics Data System (ADS)

    Ballet, J.; Barret, D.

    2001-01-01

    L'astronomie X connait aujourd'hui une de ses périodes les plus actives et les plus fastes, après le lancement de Chandra et XMM-Newton, et alors que Beppo SAX et Rossi XTE sont toujours en orbite. L'extraordinaire complémentarité de ces satellites est telle que leur domaine d'utilisation est extrêmement vaste, couvrant des étoiles jeunes aux toujours énigmatiques sursauts γ, en passant bien entendu par les trous noirs accrétants dans les binaires X ou dans les noyaux actifs de galaxies. L'atelier fut organisé selon quatre thèmes les étoiles, les phénomènes explosifs, les binaires X et les noyaux actifs de galaxies. Les résultats qui y furent présentés, pour chacun de ces thèmes témoignent de la superbe qualité des données obtenues. En particulier l'accès à la haute résolution spectrale (réseaux) en rayons X marque un pas important. Les présentations plus théoriques ont montré que parallèlement des progrès significatifs sont réalisés dans la physique de l'accrétion autour des objets compacts. Les actes de l'atelier donnent un panorama représentatif des progrès réalisés récemment par l'astronomie X, aussi bien du point de vue observationnel que théorique. Ces actes de colloque sont aussi l'occasion de rappeler l'historique et ce que furent les activités scientifiques de notre GdR au moment ou il doit s'intègrer au GdR PCHE et au PNPS. Enfin, pour toutes informations complémentaires concernant l'atelier: http://www.cesr.fr/~barret/adj/vg.html Ce site donne accès en particulier à la plupart des présentations (transparents).

  13. Nonlinear optical crystal optimized for Ytterbium laser host wavelengths

    DOEpatents

    Ebbers, Christopher A [Pleasanton, CA; Schaffers, Kathleen I [Livermore, CA

    2008-05-27

    A material for harmonic generation has been made by substitutional changes to the crystal LaCa.sub.4 (BO.sub.3).sub.3 also known as LaCOB in the form Re1.sub.xRe2.sub.yRe3.sub.zCa.sub.4(B0.sub.3).sub.3O where Re1 and Re2, (rare earth ion 1 and rare earth ion 2) are selected from the group consisting of Sc, Yttrium, La, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm, Yb, and Lu; Re3 is Lanthanum; and x+y+z=1.

  14. Nonlinear optical crystal optimized for Ytterbium laser host wavelengths

    DOEpatents

    Ebbers, Christopher A [Livermore, CA; Schaffers, Kathleen I [Pleasanton, CA

    2007-02-20

    A material for harmonic generation has been made by substitutional changes to the crystal LaCa.sub.4 (BO.sub.3).sub.3 also known as LaCOB in the form Re1.sub.xRe2.sub.yRe3.sub.zCa.sub.4(BO.sub.3).sub.3O where Re1 and Re2, (rare earth ion 1 and rare earth ion 2) are selected from the group consisting of Sc, Yttrium, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; Re3 is Lanthanum; and x+y+z=1.

  15. Nonlinear optical crystal optimized for ytterbium laser host wavelengths

    DOEpatents

    Ebbers, Christopher A [Livermore, CA; Schaffers, Kathleen I [Pleasanton, CA

    2007-08-21

    A material for harmonic generation has been made by substitutional changes to the crystal LaCa.sub.4(BO.sub.3).sub.3 also known as LaCOB in the form Re1.sub.xRe2.sub.yRe3.sub.zCa.sub.4(B0.sub.3).sub.3O where Re1 and Re2, (rare earth ion 1 and rare earth ion 2) are selected from the group consisting of Sc, Yttrium, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; Re3 is Lanthanum; and x+y+z=1.

  16. Photoeffect cross sections of some rare-earth elements at 145.4 keV

    NASA Astrophysics Data System (ADS)

    Umesh, T. K.; Ranganathaiah, C.; Sanjeevaiah, B.

    1985-08-01

    Total attenuation cross sections in the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er were derived from the measured total cross sections of their simple oxide compounds, by employing the mixture rule at 145.4-keV photon energy. The compound cross sections have been measured by performing transmission experiments in a good geometry setup. From the derived total cross sections of elements, photoeffect cross sections have been obtained by subtracting the theoretical scattering cross sections. A good agreement is observed between the present data of photoeffect cross sections and Scofield's theoretical data.

  17. Thermal barrier coating having high phase stability

    DOEpatents

    Subramanian, Ramesh

    2001-01-01

    A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating layer (20) characterized by a microstructure having gaps (28) where the thermal barrier coating (20) consists essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements selected from Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

  18. Evaluation of critical distances for energy transfer between Pr3+ and Ce3+ in yttrium aluminium garnet

    NASA Astrophysics Data System (ADS)

    Zeng, Peng; Wei, Xiantao; Zhou, Shaoshuai; Yin, Min; Chen, Yonghu

    2016-09-01

    A series of Pr3+/Ce3+ doped yttrium aluminium garnet (Y3Al5O12 or simply YAG) phosphors were synthesized to investigate the energy transfer between Pr3+ and Ce3+ for their potential application in a white light-emitting diode and quantum information storage and processing. The excitation and emission spectra of YAG:Pr3+/Ce3+ were measured and analyzed, and it revealed that the reabsorption between Pr3+ and Ce3+ was so weak that it can be ignored, and the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) did occur. By analyzing the excitation and the emission spectra, the energy transfer from Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2) was examined in detail with an original strategy deduced from fluorescence dynamics and the Dexter energy transfer theory, and the critical distances of energy transfer were derived to be 7.9 Å and 4.0 Å for Pr3+ (5d) to Ce3+ (5d) and Ce3+ (5d) to Pr3+ (1D2), respectively. The energy transfer rates of the two processes of various concentrations were discussed and evaluated. Furthermore, for the purpose of sensing a single Pr3+ state with a Ce3+ ion, the optimal distance of Ce3+ from Pr3+ was evaluated as 5.60 Å, where the probability of success reaches its maximum value of 78.66%, and meanwhile the probabilities were evaluated for a series of Y3+ sites in a YAG lattice. These results will be of valuable reference for achievement of the optimal energy transfer efficiency in Pr3+/Ce3+ doped YAG and other similar systems.

  19. Luminescence properties and scintillation response in Ce3+-doped Y2Gd1Al5-xGaxO12 (x = 2, 3, 4) single crystals

    NASA Astrophysics Data System (ADS)

    Chewpraditkul, Warut; Pánek, Dalibor; Brůža, Petr; Chewpraditkul, Weerapong; Wanarak, Chalerm; Pattanaboonmee, Nakarin; Babin, Vladimir; Bartosiewicz, Karol; Kamada, Kei; Yoshikawa, Akira; Nikl, Martin

    2014-08-01

    The compositional dependence of luminescence properties and scintillation response were investigated in Ce3+-doped Y2Gd1Al5-xGaxO12 (x = 2, 3, 4) single crystals. The Gd3+ → Ce3+ energy transfer was evidenced by photoluminescence excitation spectra of Ce3+ emission. With increasing Ga content in the garnet host, the Ce3+ luminescence from the lowest 5d level (5d1) is shifted toward higher energy due to the decrease in the crystal field splitting of the 5d levels. Light yield (LY) and its dependence on the amplifier shaping time were measured under excitation with γ-rays. High LY value of ˜38 000 ph/MeV was obtained for a Y2Gd1Al3Ga2O12:Ce sample. Scintillation decay was measured with an extended dynamical and temporal scale under the nanosecond pulse soft X-ray excitation. The decrease of both LY value and relative contribution of slower decay component in the scintillation response was observed with increasing Ga content in the garnet host.

  20. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater

    USGS Publications Warehouse

    Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R.

    1996-01-01

    In order to evaluate details of the partitioning behaviours of Y, rare earth elements (REEs), and Ti between inorganic metal oxide surfaces and seawater, we studied the distribution of these elements in hydrogenetic marine ferromanganese (Fe-Mn) crusts from the Central Pacific Ocean. Nonphosphatized Fe-Mn crusts display shale-normalized rare earths and yttrium (REYSN) patterns (Y inserted between Dy and Ho) that are depleted in light REEs (LREEs) and which show negative anomalies for YSN, and positive anomalies for LaSN, EuSN, GdSN, and in most cases, CeSN. They show considerably smaller Y/ Ho ratios than seawater or common igneous and clastic rocks, indicating that Y and Ho are fractionated in the marine environment. Compared to P-poor crusts, REYSN patterns of phosphatized Fe-Mn crusts are similar, but yield pronounced positive YSN anomalies, stronger positive LaSN anomalies, and enrichment of the HREEs relative to the MREEs. The data suggest modification of REY during phosphatization and indicate that studies requiring primary REY distributions or isotopic ratios should be restricted to nonphosphatized (layers of) Fe-Mn crusts. Apparent bulk coefficients, KMD, describing trace metal partitioning between nonphosphatized hydrogenetic Fe-Mn crusts and seawater, are similar for Pr to Eu and decrease for Eu to Yb. Exceptionally high values of KCeD, which are similar to those of Ti, result from oxidative scavenging of Ce and support previous suggestions that Ce(IV) is a hydroxide-dominated element in seawater. Yttrium and Gd show lower KD values than their respective neighbours in the REY series. Results of modelling the exchange equilibrium between REY dissolved in seawater and REY sorbed on hydrous Fe-Mn oxides corroborate previous studies that suggested the surface complexation of REY can be approximated by their first hydroxide binding constant. Negative "anomalies" occur for stabilities of bulk surface complexes of Gd, La, and particularly Y. The differences in inorganic surface complex stability between Y and Ho and between Gd and its REE neighbours are similar to those shown by the stabilities of complexes with aminocarboxylic acids and are significantly larger than those shown by stabilities of complexes with carboxylic acids. Hence, sorption of Y and REEs onto hydrous Fe-Mn oxides may contribute significantly to the positive YSN and GdSN anomalies in seawater.

  1. Effect of surface modification on photoluminescence properties of Y3Al5O12:Ce3+, Gd3+ nano-phosphors.

    PubMed

    Li, Jie; Zhao, Junfu; Zhou, Hefeng; Liang, Jian; Liu, Xuguang; Xu, Bingshe

    2011-04-01

    In this study, a series of Y(3)Al(5)O(12):Ce(3+), Gd(3+) nano-phosphors were prepared using a simply wet chemical process with polyvinyl pyrrolidone as a modifier. The crystal and bonding structures of Y(3)Al(5)O(12):Ce(3+), Gd(3+) nano-phosphors prepared with different weight percentages of polyvinyl pyrrolidone were characterized by X-ray diffractometry and infrared spectrometry. The decomposition process of dried precursor gel with adding 1.37 wt% polyvinyl pyrrolidone was investigated by differential thermal and thermogravimetric analysis. The effect of surface modification on photoluminescence properties for the samples was studied. The results show that the steric hindrance effect of polyvinyl pyrrolidone leads to high dispersion and good crystallinity of Y(3)Al(5)O(12):Ce(3+), Gd(3+) nano-phosphors prepared with adding a proper weight percentages of polyvinyl pyrrolidone. Adding polyvinyl pyrrolidone is beneficial for the photoluminescence enhancement of the samples, which is attributed to the promotion of the incorporation of Ce(3+) and Gd(3+) into the Y(3)Al(5)O(12) nanocrystal and the surface passivation of the nano-particles by the polyvinyl pyrrolidone molecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Scintillation properties of the Ce-doped multicomponent garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Prusa, P.; Kucera, M.; Mares, J. A.; Hanus, M.; Beitlerova, A.; Onderisinova, Z.; Nikl, M.

    2013-10-01

    (Lu,Y,Gd)3(Al,Ga)5O12:Ce garnet scintillator single crystalline films were grown onto LuAG, YAG and GGG substrates by liquid phase epitaxy method. Absorption, radioluminescence spectra and photoluminescence excitation, emission spectra, and decay kinetics were measured. Photoelectron yield, its dependence on amplifier shaping time and energy resolution were determined to evaluate scintillation performance. Most of the samples exhibited strong UV emission caused by trapped excitons and/or Gd3+ 4f-4f transition. However, emission spectrum of the best performing Gd2YAl5O12:Ce is dominated by the Ce3+ fast 5d-4f luminescence. This sample has outperformed photoelectron yield of all the garnet films studied so far.

  3. Photoluminescence and scintillation properties of Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) crystals

    NASA Astrophysics Data System (ADS)

    Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    Apatite crystals with chemical compositions of 0.5% Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) were synthesized by the Floating Zone method, and then we evaluated their photoluminescence (PL) and scintillation properties. All the Ce-doped samples exhibited PL and scintillation with an intense broad emission in 400-550 nm in which the origin was attributed to the 5d-4f transition of Ce3+, and the emission peak became broader with increasing the concentration of Lu3+. Both PL and scintillation decay time profiles were best-approximated by a sum of two exponential decay functions, and the origin of slower component was attributed to the 5d-4f transition of Ce3+. In the X-ray induced afterglow measurements, the Ce-doped Sr2(Gd0.4Lu0.6)8(SiO4)6O2 sample exhibited the lowest afterglow level. Furthermore, the Ce-doped Sr2(Gd0.5Lu0.5)8(SiO4)6O2 and Sr2(Gd0.4Lu0.6)8(SiO4)6O2 samples showed a clear full energy deposited peak under 5.5 MeV 241Am α-ray irradiation, and the estimated absolute scintillation light yields were around 290 and 1300 ph/5.5 MeV-α, respectively.

  4. Comprehensive Study of Pr-Doped GdBa2Cu3O7 - y System

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    1997-09-01

    An extensive study of the magnetic, electrical transport, and structural properties of the normal and superconducting states of Gd1 - xPrxBa2Cu3O7 - y (GdPr-123) is presented. Ceramic compounds have been synthesized by the solid state reaction technique, and characterized by XRD, SEM, TGA, and DT techniques. The parent compound GdBa2Cu3O7 - y (Gd-123) is a high-Tc superconductor and the endpoint compound, PrBa2Cu3O7 - y (Pr-123) is a magnetic insulator, both having the crystal structures isomorphic to the 123 phase structure. The superconducting transition temperature is reduced with increasing Pr content in a non-linear manner, in contrast to the Abrikosov-Gorkov pair breaking theory. A metal-insulator transition is observed at the critical Pr content, xcr 0.45, at which superconductivity completely disappears. Magnetic susceptibility measurements show that the nominal Pr valence is 3.86+, independent of the Pr content. The metal-insulator transition in this system is similar to that in the oxygen-deficient RBa2Cu3O7 - y (R-123) system. Based on this resemblance, we suggest that Pr doping reduces the carrier concentration (either by hole filling/localization or changes in the band structure) similar to the deoxygenated case. Hence, the environment surrounding the Cu-O layers is important to high-Tc superconductivity (HTSC). In this sense, HTSC cannot completely be two dimensional feature. A chain-plane correlation (CPC) effect is plausible. The normal state conduction mechanism has been interpreted by the quantum percolation theory based on localized states. Localization is probably caused by the Pr valence fluctuations in the GdPr-123 system.

  5. Role of Ce4+ in the Scintillation Mechanism of Codoped Gd3Ga3Al2O12∶Ce

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Meng, Fang; Li, Qi; Koschan, Merry; Melcher, Charles L.

    2014-10-01

    To control the time-response performance of widely used cerium-activated scintillators in cutting-edge medical-imaging devices, such as time-of-flight positron-emission tomography, a comprehensive understanding of the role of Ce valence states, especially stable Ce44, in the scintillation mechanism is essential. However, despite some progress made recently, an understanding of the physical processes involving Ce4+ is still lacking. The aim of this work is to clarify the role of Ce4+ in scintillators by studying Ca2+ codoped Gd3Ga3Al2O12∶Ce (GGAG ∶Ce). By using a combination of optical absorption spectra and x-ray absorption near-edge spectroscopies, the correlation between Ca2+ codoping content and the Ce4+ fraction is seen. The energy-level diagrams of Ce3+ and Ce4+ in the Gd3Ga3Al2O12 host are established by using theoretical and experimental methods, which indicate a higher position of the 5d1 state of Ce4+ in the forbidden gap in comparison to that of Ce3+. Underlying reasons for the decay-time acceleration resulting from Ca2+ codoping are revealed, and the physical processes of the Ce4+-emission model are proposed and further demonstrated by temperature-dependent radioluminescence spectra under x-ray excitation.

  6. Evaluation of critical distances for energy transfer between Pr{sup 3+} and Ce{sup 3+} in yttrium aluminium garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Peng; Wei, Xiantao; Yin, Min

    A series of Pr{sup 3+}/Ce{sup 3+} doped yttrium aluminium garnet (Y{sub 3}Al{sub 5}O{sub 12} or simply YAG) phosphors were synthesized to investigate the energy transfer between Pr{sup 3+} and Ce{sup 3+} for their potential application in a white light-emitting diode and quantum information storage and processing. The excitation and emission spectra of YAG:Pr{sup 3+}/Ce{sup 3+} were measured and analyzed, and it revealed that the reabsorption between Pr{sup 3+} and Ce{sup 3+} was so weak that it can be ignored, and the energy transfer from Pr{sup 3+} (5d) to Ce{sup 3+} (5d) and Ce{sup 3+} (5d) to Pr{sup 3+} ({sup 1}D{submore » 2}) did occur. By analyzing the excitation and the emission spectra, the energy transfer from Pr{sup 3+} (5d) to Ce{sup 3+} (5d) and Ce{sup 3+} (5d) to Pr{sup 3+} ({sup 1}D{sub 2}) was examined in detail with an original strategy deduced from fluorescence dynamics and the Dexter energy transfer theory, and the critical distances of energy transfer were derived to be 7.9 Å and 4.0 Å for Pr{sup 3+} (5d) to Ce{sup 3+} (5d) and Ce{sup 3+} (5d) to Pr{sup 3+} ({sup 1}D{sub 2}), respectively. The energy transfer rates of the two processes of various concentrations were discussed and evaluated. Furthermore, for the purpose of sensing a single Pr{sup 3+} state with a Ce{sup 3+} ion, the optimal distance of Ce{sup 3+} from Pr{sup 3+} was evaluated as 5.60 Å, where the probability of success reaches its maximum value of 78.66%, and meanwhile the probabilities were evaluated for a series of Y{sup 3+} sites in a YAG lattice. These results will be of valuable reference for achievement of the optimal energy transfer efficiency in Pr{sup 3+}/Ce{sup 3+} doped YAG and other similar systems.« less

  7. Modulated visible spectra properties of Pr:Ca1-xRxF2+x(R=Y, La, Gd) crystals

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Qian, Xiaobo; Wu, Qinghui; Ma, Fengkai; Wang, Jingya; Xu, Jun; Su, Liangbi

    2017-10-01

    The spectroscopic properties of the 1.0 at.%Pr:Ca0.97R0.02F2.03(R=Y, La, Gd) crystals are investigated. X-diffraction and room temperature absorption spectra have been registered and analyzed. The emission spectra and decay curves of the crystals were obtained at room temperature. The photoluminescence intensity in the visible region is significantly enhanced by co-doping R3+ ions in Pr:CaF2 crystal. The different effects among the R3+ (Y3+, La3+ and Gd3+) regulating ions on the crystals were observed and compared. Pr:Ca0.97La0.02F2.03 and Pr:Ca0.97Y0.02F2.03 crystals have substantially strong emission at blue and orange region, while the Pr:Ca0.97Gd0.02F2.03 crystal is more suitable for the red emission emitting.

  8. Role of Ce 4 + in the scintillation mechanism of codoped Gd 3 Ga 3 Al 2 O 12 : Ce

    DOE PAGES

    Wu, Yuntao; Meng, Fang; Li, Qi; ...

    2014-10-17

    To control the time-response performance of widely used cerium-activated scintillators in cutting-edge medical-imaging devices, such as time-of-flight positron-emission tomography, a comprehensive understanding of the role of Ce valence states, especially stable Ce 4+, in the scintillation mechanism is essential. However, despite some progress made recently, an understanding of the physical processes involving Ce 4+ is still lacking. The aim of this work is to clarify the role of Ce 4+ in scintillators by studying Ca 2+ codoped Gd 3Ga 3Al 2O1 2∶Ce (GGAG∶Ce). By using a combination of optical absorption spectra and x-ray absorption near-edge spectroscopies, the correlation between Ca 2+codopingmore » content and the Ce 4+ fraction is seen. The energy-level diagrams of Ce 3+ and Ce 4+ in the Gd 3Ga 3Al 2O 12 host are established by using theoretical and experimental methods, which indicate a higher position of the 5d 1 state of Ce 4+ in the forbidden gap in comparison to that of Ce 3+. Underlying reasons for the decay-time acceleration resulting from Ca 2+ codoping are revealed, and the physical processes of the Ce 4+-emission model are proposed and further demonstrated by temperature-dependent radioluminescence spectra under x-ray excitation.« less

  9. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1-x Sb x compounds

    NASA Astrophysics Data System (ADS)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; Paudyal, D.; Mudryk, Y.; Pecharsky, V. K.

    2017-12-01

    Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R  =  rare-earth, T   =  transition metal and X  =  p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions 0.65 ≤slant x ≤slant 0.9 . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions 0 ≤slant x < 0.65 lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, x ≈ 0.7 , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro-ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for x = 0.75 indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.

  10. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe 1–xSb x compounds

    DOE PAGES

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; ...

    2017-11-09

    Here, experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth,more » $ T$ = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions $$0.65 \\leqslant x \\leqslant 0.9$$ . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions $$0 \\leqslant x < 0.65$$ lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, $$x \\approx 0.7$$ , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro–ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for $x = 0.75$ indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.« less

  11. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe 1–xSb x compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.

    Here, experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R = rare-earth,more » $ T$ = transition metal and X = p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions $$0.65 \\leqslant x \\leqslant 0.9$$ . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions $$0 \\leqslant x < 0.65$$ lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, $$x \\approx 0.7$$ , coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro–ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for $x = 0.75$ indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.« less

  12. The Ce-Ni-Si system as a representative of the rare earth-Ni-Si family: Isothermal section and new rare-earth nickel silicides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozkin, A.V., E-mail: morozkin@tech.chem.msu.ru; Knotko, A.V.; Garshev, A.V.

    The Ce-Ni-Si system has been investigated at 870/1070 K by X-ray and microprobe analyses. The existence of the known compounds, i.e.: Ce{sub 2}Ni{sub 15.8}Si{sub 1.2} (Th{sub 2}Ni{sub 17}-type), Ce{sub 2}Ni{sub 15-14}Si{sub 2-3} (Th{sub 2}Zn{sub 17}-type), CeNi{sub 8.6}Si{sub 2.4} (BaCd{sub 11}-type), CeNi{sub 8.8}Si{sub 4.2} (LaCo{sub 9}Si{sub 4}-type), CeNi{sub 6}Si{sub 6} (CeNi{sub 6}Si{sub 6}-type), CeNi{sub 5}Si{sub 1-0.3} (TbCu{sub 7}-type), CeNi{sub 4}Si (YNi{sub 4}Si-type), CeNi{sub 2}Si{sub 2} (CeGa{sub 2}Al{sub 2}-type), Ce{sub 2}Ni{sub 3}Si{sub 5} (U{sub 2}Co{sub 3}Si{sub 5}-type), Ce{sub 3}Ni{sub 6}Si{sub 2} (Ce{sub 3}Ni{sub 6}Si{sub 2}-type), Ce{sub 3}Ni{sub 4}Si{sub 4} (U{sub 3}Ni{sub 4}Si{sub 4}-type), CeNiSi{sub 2} (CeNiSi{sub 2}-type), ~CeNi{sub 1.3}Si{sub 0.7} (unknown typemore » structure), Ce{sub 6}Ni{sub 7}Si{sub 4} (Pr{sub 6}Ni{sub 7}Si{sub 4}-type), CeNiSi (LaPtSi-type), CeNi{sub 0.8-0.3}Si{sub 1.2-1.7} (AlB{sub 2}-type), ~Ce{sub 2}Ni{sub 2}Si (unknown type structure), ~Ce{sub 4.5}Ni{sub 3.5}Si{sub 2} (unknown type structure), Ce{sub 15}Ni{sub 7}Si{sub 10} (Pr{sub 15}Ni{sub 7}Si{sub 10}-type), Ce{sub 5}Ni{sub 1.85}Si{sub 3} (Ce{sub 5}Ni{sub 1.85}Si{sub 3}-type), Ce{sub 6}Ni{sub 1.4}Si{sub 3.4} (Ce{sub 6}Ni{sub 1.67}Si{sub 3}-type), Ce{sub 7}Ni{sub 2}Si{sub 5} (Ce{sub 7}Ni{sub 2}Si{sub 5}-type) and Ce{sub 3}NiSi{sub 3} (Y{sub 3}NiSi{sub 3}-type) has been confirmed in this section. Moreover, the type structure has been determined for ~Ce{sub 2}Ni{sub 2}Si (Mo{sub 2}NiB{sub 2}-type Ce{sub 2}Ni{sub 2.5}Si{sub 0.5}) and ~Ce{sub 4.5}Ni{sub 3.5}Si{sub 2} (W{sub 3}CoB{sub 3}-type Ce{sub 3}Ni{sub 3-2.7}Si{sub 1-1.3}) and new ternary phases Ce{sub 2}Ni{sub 6.25}Si{sub 0.75} (Gd{sub 2}Co{sub 7}-type), CeNi{sub 7-7.6}Si{sub 6-5.4} (GdNi{sub 7}Si{sub 6}-type) and ~Ce{sub 27}Ni{sub 42}Si{sub 31} (unknown type structure) have been identified in this system. Quasi-binary phases, solid solutions, were detected at 870/1070 K for CeNi{sub 5}, CeNi{sub 3} and CeSi{sub 2}; while no appreciable solubility was observed for the other binary compounds of the Ce-Ni-Si system. As a prolongation of Rare Earth-Ni-Si system’s isostructural rows, LaNi{sub 7}Si{sub 6} and YNi{sub 6.6}Si{sub 6.1} (GdNi{sub 7}Si{sub 6}-type), ScNi{sub 6}Si{sub 6} (YCo{sub 6}Ge{sub 6}-type), NdNi{sub 6}Si{sub 6} (YNi{sub 6}Si{sub 6}-type), (Tb, Ho){sub 2}Ni{sub 15}Si{sub 2} (Th{sub 2}Zn{sub 17}-type), Nd{sub 2}Ni{sub 2.3}Si{sub 0.7} and Sm{sub 2}Ni{sub 2.2}Si{sub 0.8} (Mo{sub 2}NiB{sub 2}-type), Nd{sub 3}Ni{sub 2.55}Si{sub 1.45} (W{sub 3}CoB{sub 3}-type) and (Tb, Dy){sub 7}Ni{sub 50}Si{sub 19} (Y{sub 7}Ni{sub 49}Si{sub 20}-type) compounds were synthesized and investigated. Magnetic properties of the CeNi{sub 6}Si{sub 6}, CeNi{sub 7}Si{sub 6}, CeNi{sub 8.8}Si{sub 4.2}, Ce{sub 6}Ni{sub 7}Si{sub 4}, CeNi{sub 5}Si, Ce{sub 2}Ni{sub 2.5}Si{sub 0.5}, Nd{sub 2}Ni{sub 2.3}Si{sub 0.7} and Dy{sub 7}Ni{sub 50}Si{sub 19} compounds have also been investigated and are presented here. - Highlights: • Ce-Ni-Si isothermal section was obtained at 870/1070 K. • Twenty one known ternary cerium nickel silicides were confirmed in Ce-Ni-Si. • Five new cerium nickel silicides were detected in Ce-Ni-Si. • Eleven new rare earth nickel silicides were detected in R-Ni-Si. • Magnetic properties of eight rare earth nickel silicides were investigated.« less

  13. [Rare earth elements contents and distribution characteristics in nasopharyngeal carcinoma tissue].

    PubMed

    Zhang, Xiangmin; Lan, Xiaolin; Zhang, Lingzhen; Xiao, Fufu; Zhong, Zhaoming; Ye, Guilin; Li, Zong; Li, Shaojin

    2016-03-01

    To investigate the rare earth elements(REEs) contents and distribution characteristics in nasopharyngeal carcinoma( NPC) tissue in Gannan region. Thirty patients of NPC in Gannan region were included in this study. The REEs contents were measured by tandem mass spectrometer inductively coupled plasma(ICP-MS/MS) in 30 patients, and the REEs contents and distribution were analyzed. The average standard deviation value of REEs in lung cancer and normal lung tissues was the minimum mostly. Light REEs content was higher than the medium REEs, and medium REEs content was higher than the heavy REEs content. REEs contents changes in nasopharyngeal carcinoma were variable obviously, the absolute value of Nd, Ce, Pr, Gd and other light rare earth elements were variable widely. The degree of changes on Yb, Tb, Ho and other heavy rare earth elements were variable widely, and there was presence of Eu, Ce negative anomaly(δEu=0. 385 5, δCe= 0. 523 4). The distribution characteristic of REEs contents in NPC patients is consistent with the parity distribution. With increasing atomic sequence, the content is decline wavy. Their distribution patterns were a lack of heavy REEs and enrichment of light REEs, and there was Eu , Ce negative anomaly.

  14. Magnetic and magnetocaloric properties in Gd1-yPryNi2 compounds

    NASA Astrophysics Data System (ADS)

    Alho, B. P.; Lopes, P. H. O.; Ribeiro, P. O.; Alvarenga, T. S. T.; Nóbrega, E. P.; de Sousa, V. S. R.; Carvalho, A. M. G.; Caldas, A.; Tedesco, J. C. G.; Coelho, A. A.; de Oliveira, N. A.; von Ranke, P. J.

    2018-03-01

    In this work, we report the magnetic and magnetocaloric properties of the Gd1-yPryNi2 compounds from both experimental and theoretical points of view. It is worth noting that this series shows a variety of magnetic arrangements depending on the Pr concentration, including paramagnetism, ferrimagnetism and ferromagnetism. Our experimental work consists of the systematic analysis of the magnetic properties of the compounds with y = 0.0, 0.25, 0.5, 0.75 and 1.0, which includes temperature and magnetic field dependence of the magnetization, heat capacity and isothermal entropy change obtained by isothermal magnetization curves. Also, we developed a model Hamiltonian, which takes into account the exchange interactions among Gd-Gd, Gd-Pr and Pr-Pr ions, the Zeeman interaction for both ions and the crystalline electrical field interaction for the Pr ions. We systematically investigated the magnetic properties of the series and obtained a good agreement when compared with our experimental data.

  15. YAG glass-ceramic phosphor for white LED (II): luminescence characteristics

    NASA Astrophysics Data System (ADS)

    Tanabe, Setsuhisa; Fujita, Shunsuke; Yoshihara, Satoru; Sakamoto, Akihiko; Yamamoto, Shigeru

    2005-09-01

    Optical properties of the Ce:YAG glass-ceramic (GC) phosphor for the white LED were investigated. Concentration dependence of fluorescence intensity of Ce3+:5d→4f transition in the GC showed a maximum at 0.5mol%Ce2O3. Quantum efficiency (QE) of Ce3+ fluorescence in the GC materials, the color coordinate and luminous flux of electroluminescence of LED composite were evaluated with an integrating sphere. QE increased with increasing ceramming temperature of the as-made glass. The color coordinates (x,y) of the composite were increased with increasing thickness of the GC mounted on a blue LED chip. The effect of Gd2O3 substitution on the optical properties of the GC materials was also investigated. The excitation and emission wavelength shifted to longer side up to Gd/(Y+Gd)=0.40 in molar composition. As a result, the color coordinate locus of the LED with various thickness of the GdYAG-GC shifted to closer to the Planckian locus for the blackbody radiation. These results were explained by partial substitution of Gd3+ ions in the precipitated YAG micro-crystals, leading to the increase of lattice constant of unit cell, which was confirmed by X-ray diffraction.

  16. Synthesis and photoluminescence characteristics of (Y,Gd)BO3:RE (RE = Eu(3+), Ce(3+), Dy(3+) and Tb(3+)) phosphors for blue chip and near-UV white LEDs.

    PubMed

    Rangari, V V; Singh, V; Dhoble, S J

    2016-03-01

    A series of Eu(3+)-, Ce(3+)-, Dy(3+)- and Tb(3+)-doped (Y,Gd)BO3 phosphors was synthesized by a solid-state diffusion method. X-Ray diffraction confirmed their hexagonal structure and the scanning electron microscopy results showed crystalline particles. The excitation spectra revealed that (Y,Gd)BO3 phosphors doped with Eu(3+), Ce(3+), Dy(3+) and Tb(3+) are effectively excited with near UV-light of 395 nm/blue light, 364, 351 and 314 nm, respectively. Photoluminescence spectra of Eu(3+)-, Ce(3+)- and Tb(3+)/Dy(3+)-doped phosphor showed intense emission of reddish orange, blue and white light, respectively. The phosphor Y0.60Gd0.38BO3:Ce0.02 showed CIE 1931 color coordinates of (0.158, 0.031) and better color purity compared with commercially available blue BAM:Eu(2+) phosphor. The phosphor (Y,Gd)BO3 doped with Eu(3+), Dy(3+) and Tb(3+) showed CIE 1931 color coordinates of (0.667, 0.332), (0.251, 0.299) and (0.333, 0.391) respectively. Significant photoluminescence characteristics of the prepared phosphors indicate that they might serve as potential candidates for blue chip and near-UV white light-emitting diode applications. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  18. Identification of New Neutron-Rich Isotopes in the Rare-Earth Region Produced by 345 MeV/nucleon 238U

    NASA Astrophysics Data System (ADS)

    Fukuda, Naoki; Kubo, Toshiyuki; Kameda, Daisuke; Inabe, Naohito; Suzuki, Hiroshi; Shimizu, Yohei; Takeda, Hiroyuki; Kusaka, Kensuke; Yanagisawa, Yoshiyuki; Ohtake, Masao; Tanaka, Kanenobu; Yoshida, Koichi; Sato, Hiromi; Baba, Hidetada; Kurokawa, Meiko; Ohnishi, Tetsuya; Iwasa, Naohito; Chiba, Ayuko; Yamada, Taku; Ideguchi, Eiji; Go, Shintaro; Yokoyama, Rin; Fujii, Toshihiko; Nishibata, Hiroki; Ieki, Kazuo; Murai, Daichi; Momota, Sadao; Nishimura, Daiki; Sato, Yoshiteru; Hwang, Jongwon; Kim, Sunji; Tarasov, Oleg B.; Morrissey, David J.; Simpson, Gary

    2018-01-01

    A search for new isotopes in the neutron-rich rare-earth region has been carried out using a 345 MeV/nucleon 238U beam at the RIKEN Nishina Center RI Beam Factory. Fragments produced were analyzed and identified using the BigRIPS in-flight separator. We observed a total of 29 new neutron-rich isotopes: 153Ba, 154,155,156La, 156,157,158Ce, 156,157,158,159,160,161Pr, 162,163Nd, 164,165Pm, 166,167Sm, 169Eu, 171Gd, 173,174Tb, 175,176Dy, 177,178Ho, and 179,180Er.

  19. Near infrared emission of TbAG:Ce3+,Yb3+ phosphor for solar cell applications

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Yadav, P. J.; Pathak, A. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimated to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr3+, Gd3+,Gd3+-Eu3+, and Er3+-Tb3+ had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb3+-Yb3+, Pr3+-Yb3+, and Tm3+-Yb3+ has been reported. The Yb3+ ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb3+ is close to 100% and the energy of the only excited level of Yb3+ (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce3+-doped Tb3Al5O12 (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300-500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce3+ ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this paper, Ce3+ -Yb3+-codoped TbAG ceramics were prepared and the energy transfer (ET) including down conversion mechanism in Ce3+ - Yb3+ codoped TbAG ceramics have been evaluated by the photoluminescence (PL), the photoluminescence excitation (PLE), the lifetime and the quantum yield (QY), which was measured directly using an integrating sphere.

  20. Co-doping effects on luminescence and scintillation properties of Ce doped (Lu,Gd)3(Ga,Al)5O12 scintillator

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroaki; Kamada, Kei; Kurosawa, Shunsuke; Pejchal, Jan; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2016-11-01

    Mg co-doping effects on scintillation properties of Ce:Lu1Gd2(Ga,Al)5O12 (LGGAG) were investigated. Mg 200 ppm co-doped Ce:LGGAG single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg co-doping. Ce4+ charge transfer absorption was observed below 300 nm in Mg,Ce:LGGAG which is in good agreement with previous reports. The scintillation decay times were accelerated by Mg co-doping.

  1. Effects of Oxygen Deficiency and Dopping of pr in Gd1-x Prx Ba2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Zolfagharkhani, G.; Daadmehr, V.; Farzaneh, M.; Sedighiani, A.; Akhavan, M.

    2000-09-01

    Single phase crystalline samples of Gd1-x Prx Ba2Cu3O7-y with 0.0 ≤ x ≤ 0.2 have been prepared by standard solid state reaction technique and characterized by SEM and XRD. The electrical measurements show two plateaus in Tc versus y curve for GdBa2Cu3O7-y (0

  2. Transparent garnet ceramic scintillators for gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Rhodes, William H.; Brecher, Charles; Shah, Ananya; Shirwadkar, Urmila; Glodo, Jarek; Cherepy, Nerine; Payne, Stephen

    2012-10-01

    Lanthanide gallium/aluminum-based garnets have a great potential as host structures for scintillation materials for medical imaging. Particularly attractive features are their high density, chemical radiation stability and more importantly, their cubic structure and isotropic optical properties, which allow them to be fabricated into fully transparent, highperformance polycrystalline optical ceramics. Lutetium/gadolinium aluminum/gallium garnets (described by formulas ((Gd,Lu)3(Al,Ga)5O12:Ce, Gd3(Al,Ga)5O12:Ce and Lu3Al5O12:Pr)) feature high effective atomic number and good scintillation properties, which make them particularly attractive for Positron Emission Tomography (PET) and other γ- ray detection applications. The ceramic processing route offers an attractive alternative to single crystal growth for obtaining scintillator materials at relatively low temperatures and at a reasonable cost, with flexibility in dimension control as well as activator concentration adjustment. In this study, optically transparent polycrystalline ceramics mentioned above were prepared by the sintering-HIP approach, employing nano-sized starting powders. The properties and microstructures of the ceramics were controlled by varying the processing parameters during consolidation. Single-phase, high-density, transparent specimens were obtained after sintering followed by a pressure-assisted densification process, i.e. hot-isostatic-pressing. The transparent ceramics displayed high contact and distance transparency as well as high light yield as high as 60,000-65,000 ph/MeV under gamma-ray excitation, which is about 2 times that of a LSO:Ce single crystal. The excellent scintillation and optical properties make these materials promising candidates for medical imaging and γ-ray detection applications.

  3. Abnormal variation of magnetic properties with Ce content in (PrNdCe)2Fe14B sintered magnets prepared by dual alloy method

    NASA Astrophysics Data System (ADS)

    Xue-Feng, Zhang; Jian-Ting, Lan; Zhu-Bai, Li; Yan-Li, Liu; Le-Le, Zhang; Yong-Feng, Li; Qian, Zhao

    2016-05-01

    Resource-saving (PrNdCe)2Fe14B sintered magnets with nominal composition (PrNd)15-x Ce x Fe77B8 (x = 0-10) were prepared using a dual alloy method by mixing (PrNd)5Ce10Fe77B8 with (PrNd)15Fe77B8 powders. For Ce atomic percent of 1% and 2%, coercivity decreases dramatically. With further increase of Ce atomic percent, the coercivity increases, peaks at 6.38 kOe in (PrNd)11Ce4Fe77B8, and then declines gradually. The abnormal dependence of coercivity is likely related to the inhomogeneity of rare earth chemical composition in the intergranular phase, where PrNd concentration is strongly dependent on the additive amount of (PrNd)5Ce10Fe77B8 powders. In addition, for Ce atomic percent of 8%, 7%, and 6% the coercivity is higher than that of magnets prepared by the conventional method, which shows the advantage of the dual alloy method in preparing high abundant rare earth magnets. Project supported by the National Natural Science Foundation of China (Grant Nos. 51461033, 51571126, 51541105, and 11547032), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2013MS0110), and the Inner Mongolia University of Science and Technology Innovation Fund, China.

  4. Rare earth and precious elements in the urban sewage sludge and lake surface sediments under anthropogenic influence in the Republic of Benin.

    PubMed

    Yessoufou, Arouna; Ifon, Binessi Edouard; Suanon, Fidèle; Dimon, Biaou; Sun, Qian; Dedjiho, Comlan Achille; Mama, Daouda; Yu, Chang-Ping

    2017-11-09

    Nowadays, sewage sludge and water bodies are subjected to heavy pollution due to rapid population growth and urbanization. Heavy metal pollution represents one of the main challenges threatening our environment and the ecosystem. The present work aims to evaluate the contamination state of the sewage sludge and lake sediments in the Republic of Benin. Twenty metallic elements including 15 rare earth elements (Eu, Sb, Cs, Nd, Pr, Gd, La, Ce, Tb, Sm, Dy, Ho, Eu, Yb, and Lu) and five precious elements (Ag, Au, Pd, Pt, and Ru) were investigated using inductive plasma-mass spectrometry. Results showed broad range concentrations of the elements. Ce, La, and Nd were present in both sediments and sewage sludge at concentrations ranging 5.80-41.30 mg/kg dry matter (DM), 3.23-15.60 mg/kg DM, and 2.74-19.26 mg/kg DM, respectively. Pr, Sm, Gd, Tb, Dy, Eu, Er, Yb, Cs, Ho, and Tm concentrations were lower (0.02-5.94 mg/kg DM). Among precious elements, Ag was detected at the highest concentration in all sites (0.43-4.72 mg/kg DM), followed by Pd (0.20-0.57 mg/kg DM) and Au (0.01-0.57 mg/kg DM). Ru and Pt concentrations were < 0.20 mg/kg DM in all samples. Pollution indices and enrichment factor indicated a strong to severe enrichment of the elements, mainly Ce and precious elements in both sediments and sewage sludge. This revealed a growing anthropogenic input which was also implied by principal component analysis. The evaluation of pollution loading index (PLI) indicated a moderate to strong contamination (0.12 ≤ PLI ≤ 0.58; 37 ≤ PLI ≤ 114, respectively, for rare earth elements and precious elements), while the degree of contamination indicated a moderate polymetallic contamination for rare earth elements and significant contamination for precious elements.

  5. Color tunable emission in Ce3+ and Tb3+ co-doped Ba2Ln(BO3)2Cl (Ln=Gd and Y) phosphors for white light-emitting diodes.

    PubMed

    Zhang, Niumiao; Guo, Chongfeng; Jing, Heng; Jeong, Jung Hyun

    2013-12-01

    Ce(3+) and Tb(3+) co-doped Ba2Ln(BO3)2Cl (Ln=Y and Gd) green emitting phosphors were prepared by solid state reaction in reductive atmosphere. The emission and excitation spectra as well as luminescence decays were investigated, showing the occurrence of efficient energy transfer from Ce(3+) to Tb(3+) in this system. The phosphors exhibit both a blue emission from Ce(3+) and a green emission from Tb(3+) under near ultraviolet light excitation with 325-375 nm wavelength. Emission colors of phosphors could be tuned from deep blue through cyan to green by adjusting the Tb(3+) concentrations. The energy transfer efficiency and emission intensity of Ba2Y(BO3)2Cl:Ce(3+), Tb(3+) precede those of Ba2Gd(BO3)2Cl:Ce(3+), Tb(3+), and the sample Ba2Y(BO3)2Cl:0.03Ce(3+), 0.10Tb(3+) is the best candidate for n-UV LEDs. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Understanding the Mechanism of Magnetic Relaxation in Pentanuclear {MnIVMnIII2LnIII2} Single-Molecule Magnets.

    PubMed

    Vignesh, Kuduva R; Langley, Stuart K; Moubaraki, Boujemaa; Murray, Keith S; Rajaraman, Gopalan

    2018-02-05

    A new family of heterometallic pentanuclear complexes of formulas [Mn IV Mn III 2 Ln III 2 O 2 (benz) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Dy (1-Dy), Tb (2-Tb), Gd (3-Gd), Eu (4-Eu), Sm (5-Sm), Nd (6-Nd), Pr (7-Pr); benz(H) = benzoic acid; mdeaH 2 = N-methyldiethanolamine) and [Mn IV Mn III 2 Ln III 2 O 2 (o-tol) 4 (mdea) 3 (NO 3 ) 2 (MeOH)] (Ln = Gd (8-Gd), Eu (9-Eu); o-tol(H) = o-toluic acid) have been isolated and structurally, magnetically, and theoretically characterized. dc magnetic susceptibility measurements reveal dominant antiferromagnetic magnetic interactions for each complex, except for 2-Tb and 3-Gd, which reveal an upturn in the χ M T product at low temperatures. The magnetic interactions between the spin centers in the Gd derivatives, 3-Gd and 8-Gd, which display markedly different χ M T vs T profiles, were found to be due to the interactions of the Gd III -Gd III ions which change from ferromagnetic (3-Gd) to antiferromagnetic (8-Gd) due to structural differences. ac magnetic susceptibility measurements reveal a nonzero out-of-phase component for 1-Dy and 7-Pr, but no maxima were observed above 2 K (H dc = 0 Oe), which suggests single-molecule magnet (SMM) behavior. Out-of-phase signals were observed for complexes 2-Tb, 4-Eu, 8-Gd, and 9-Eu, in the presence of a static dc field (H dc = 2000, 3000 Oe). The anisotropic nature of the lanthanide ions in the benzoate series (1-Dy, 2-Tb, 5-Sm, 6-Nd, and 7-Pr) were thoroughly investigated using ab initio methods. CASSCF calculations predict that the origin of SMM behavior in 1-Dy and 7-Pr and the applied field SMM behavior in 2-Tb does not solely originate from the single-ion anisotropy of the lanthanide ions. To fully understand the relaxation mechanism, we have employed the Lines model to fit the susceptibility data using the POLY_ANISO program, which suggests that the zero-field SMM behavior observed in complexes 1-Dy and 7-Pr is due to weak Mn III/IV -Ln III and Ln III -Ln III couplings and an unfavorable Ln III /Mn III /Mn IV anisotropy. In complexes 4-Eu, 8-Gd, and 9-Eu ab initio calculations indicate that the anisotropy of the Mn III ions solely gives rise to the possibility of SMM behavior. Complex 7-Pr is a Pr(III)-containing complex that displays zero-field SMM behavior, which is rare, and our study suggests the possibility of coupling weak SOC lanthanide metal ions to anisotropic transition-metal ions to derive SMM characteristics; however, enhancing the exchange coupling in {3d-4f} complexes is still a stubborn hurdle in harnessing new generation {3d-4f} SMMs.

  7. Thermal barrier coating having high phase stability

    DOEpatents

    Subramanian, Ramesh

    2002-01-01

    A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating characterized by a microstructure having gaps (28) where the thermal barrier coating comprises a first thermal barrier layer (40), and a second thermal barrier layer (30) with a pyrochlore crystal structure having a chemical formula of A.sup.n+.sub.2-x B.sup.m+.sub.2+x O.sub.7-y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof, where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof, where n and m are the valence of A and B respectively, and for -0.5.ltoreq.x.ltoreq.0.5, ##EQU1## and excluding the following combinations for x=0, y=0: A=La and B=Zr; A=La and B=Hf; A=Gd and B=Hf; and A=Yb and B=Ti.

  8. Heterometallic cerium(IV) perrhenate, permanganate, and molybdate complexes supported by the imidodiphosphinate ligand [N(i-Pr2PO)2]-.

    PubMed

    Wang, Guo-Cang; Sung, Herman H Y; Dai, Feng-Rong; Chiu, Wai-Hang; Wong, Wai-Yeung; Williams, Ian D; Leung, Wa-Hung

    2013-03-04

    Heterometallic cerium(IV) perrhenate, permanganate, and molybdate complexes containing the imidodiphosphinate ligand [N(i-Pr2PO)2](-) have been synthesized, and their reactivity was investigated. Treatment of Ce[N(i-Pr2PO)2]3Cl (1) with AgMO4 (M = Re, Mn) afforded Ce[N(i-Pr2PO)2]3(ReO4) (2) or Ce2[N(i-Pr2PO)2]6(MnO4)2 (3). In the solid state, 3 is composed of a [Ce2{N(i-Pr2PO)2}6(MnO4)](+) moiety featuring a weak Ce-OMn interaction [Ce-OMn distance = 2.528(8) Å] and a noncoordinating MnO4(-) counteranion. While 3 is stable in the solid state and acetonitrile solution, it decomposes readily in other organic solvents, such as CH2Cl2. 3 can oxidize ethylbenzene to acetophenone at room temperature. Treatment of 1 with AgBF4, followed by reaction with [n-Bu4N]2[MoO4], afforded [Ce{N(i-Pr2PO)2}3]2(μ-MoO4) (4). Reaction of trans-Ce[N(i-Pr2PO)2]2(NO3)2 (5), which was prepared from (NH4)2Ce(NO3)6 and K[N(i-Pr2PO)2], with 2 equiv of [n-Bu4N][Cp*MoO3] yielded trans-Ce[N(i-Pr2PO)2]2(Cp*MoO3)2 (6). 4 can catalyze the oxidation of methyl phenyl sulfide with tert-butyl hydroperoxide with high selectivity. The crystal structures of complexes 3-6 have been determined.

  9. Preparation and physical properties of the GdPr-123 system

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    1997-06-01

    The Gd - Pr solid solution of the `123' crystal structure, 0953-2048/10/6/008/img1 (GdPr-123) with 0953-2048/10/6/008/img2 has been prepared by the standard solid-state reaction technique. Details of sample preparation and results of XRD, SEM, TGA, DT, 0953-2048/10/6/008/img3, and 0953-2048/10/6/008/img4 measurements are reported. For 0953-2048/10/6/008/img5, GdPr-123 is non-superconducting down to 10 K and does not show `metallic' conduction. Samples have a predominantly single-phase orthorhombic structure with Pmmm symmetry and a small percentage (0953-2048/10/6/008/img6) of the Ba sites are occupied by Pr ions in some Pr-rich samples. The lower critical field value measured lies in the range of 10 mT. The nominal valence of the Cu ion in the whole range of x is determined; at the metal - semiconductor boundary 0953-2048/10/6/008/img7, which is smaller by only 0.18 than the value 2.33 of the fully oxygenated 0953-2048/10/6/008/img8 (Gd-123) system. However, the valence of Pr is 3.86+. We suggest that the increasing band filling and localization of states due to the disorder effects together with Pr doping could cause the observed metal - semiconducting transition; qualitatively this is the same as the oxygen depletion case.

  10. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  11. Volume collapse phase transitions in cerium-praseodymium alloys under high pressure

    DOE PAGES

    Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.; ...

    2018-06-08

    Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less

  12. Scintillation properties of Pr 3+-doped lutetium and yttrium aluminum garnets: Comparison with Ce 3+-doped ones

    NASA Astrophysics Data System (ADS)

    Mares, Jiri A.; Nikl, Martin; Beitlerova, Alena; Blazek, Karel; Horodysky, Petr; Nejezchleb, Karel; D'Ambrosio, Carmelo

    2011-12-01

    Scintillation properties of Pr 3+-doped LuAG and YAG crystals were investigated and compared with those of Ce 3+-doped ones. The highest L.Y.'s were observed with the longest shaping time 10 μs. They can reach up to ˜16,000 ph/MeV or ˜23,500 ph/MeV for LuAG:Pr and LuAG:Ce, respectively. Energy resolutions (FWHM) are a bit better with LuAG:Pr than those of LuAG:Ce, e.g. at 662 keV FWHM are around 6% and between 8-12%, respectively. There were observed no large changes in proportionality of Pr 3+- or Ce 3+-doped LuAG or YAG crystals but the best proportionality has YAP:Ce crystal. Pr 3+- or Ce 3+-doped LuAG crystals exhibit slow decay components in the time range 1.5-3.5 μs while those of YAG ones have shorter decay components between 0.3-1.7 μs.

  13. Effect of microstructure on the high temperature mechanical properties of (CeO{sub 2}){sub 0.8}(GdO{sub 1.5}){sub 0.2} electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sammes, N.M.; Zhang, Y.

    CeO{sub 2}-based oxides have recently been shown to have great potential as electrolytes in medium temperature solid oxide fuel cell applications, primarily due to their high ionic conductivity. Steele et al., for example, have examined a cell of the type: O{sub 2}, La{sub 0.6}Sr{sub 0.4}Fe{sub 0.8}Co{sub 0.2}O{sub 3}{vert_bar}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}{vert_bar}Ni-ZrO{sub 2}, H{sub 2}/H{sub 2}O at 715{degrees}C. Gd{sub 2}O{sub 3} doped CeO{sub 2} has been reported as having one of the highest oxygen ion conductivities of the ceria-based materials. An ionic conductivity of 8.3 x 10{sup -2} s/cm has been reported for (CeO{sub 2}){sub 0.8}(GdO{sub 1.5}){sub 0.2} at 800{degrees}C, whichmore » is approximately four times that of Y{sub 2}O{sub 3}-doped ZrO{sub 2}, at the same temperature. Although the electrical properties of the material have been examined in detail, very little work has considered the microstructural/property relationships, particularly in relation to the mechanical properties. It is well know that CeO{sub 2}-based materials are difficult to density and attempts have been performed to examine this. Preliminary studies have also been undertaken to examine the effect of sintering on the mechanical properties of the material. In this paper we examine the effect of microstructure on the high temperature mechanical properties of (CeO{sub 2}){sub 0.8}(GdO{sub 1.5}){sub 0.2}.« less

  14. Properties of transparent (Gd,Lu)3(Al,Ga)5O12:Ce ceramic with Mg, Ca and Ce co-dopants

    NASA Astrophysics Data System (ADS)

    Wang, Yimin; Baldoni, Gary; Brecher, Charles; Rhodes, William H.; Shirwadkar, Urmila; Glodo, Jarek; Shah, Ishaan; Ji, Chuncheng

    2015-08-01

    Cerium activated mixed lutetium/gadolinium- and aluminum/gallium-based garnets have great potential as host scintillators for medical imaging applications. (Gd,Lu)3(Al,Ga)5O12:Ce and denoted as GLuGAG feature high effective atomic number and good light yield, which make it particularly attractive for Positron Emission Tomography (PET) and other γ-ray detection applications. For PET application, rapid decay and good timing resolution are extremely important. Most Ce-doped mixed garnet materials such as GLuGAG:Ce, have their main decay component at around 80 ns. However, it has been reported that the decays of some single crystal scintillators (e.g., LSO and GGAG) can be effectively accelerated by codoping with selected additives such as Ca, Mg and B. In this study, transparent polycrystalline (Gd,Lu)3(Al,Ga)5O12:Ce ceramics codoped with Ca or Mg or additional Ce, were fabricated by the sinter-HIP approach. It was found the transmission of the ceramics are closely related to the microstructure of the ceramics. As the co-dopant levels increase, 2nd phase occurs in the ceramic and thus transparency of the ceramic decreases. Ca and Mg co-doping in GLuGAG:Ce ceramic effectively accelerate decays of GLuGAG:Ce ceramics at a cost of light output. However, additional Ce doping in the GLuGAG:Ce has no benefit on improving decay time but, on the other hand, reduces transmission, light output. The mechanism under the different scintillation behaviors with Mg, Ca and Ce dopants are discussed. The results suggest that decay time of GLuGAG:Ce ceramics can be effectively tailored by co-doping GLuGAG:Ce ceramic with Mg and Ca for applications with optimal timing resolution.

  15. Electro-optic modulator material

    DOEpatents

    Adams, John J.; Ebbers, Chris A.

    2005-02-22

    An electro-optic device for use with a laser beam. A crystal has a first face and a second face. Means are provided for applying a voltage across the crystal to obtain a net phase retardation on the polarization of the laser beam when the laser beam is passed through the crystal. In one embodiment the crystal is composed of a compound having the chemical formula ReAe40(BO3)3 where: RE consists of one or more of the following elements La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and two other elements Y and Sc; and where Ae is from the list of Ca, Sr, or Ba.

  16. Devices capable of removing silicon and aluminum from gaseous atmospheres

    DOEpatents

    Spengler, Charles J.; Singh, Prabhakar

    1989-01-01

    An electrochemical device is made of a containment vessel (30) optional ceramic material within the containment vessel and including one or more electrochemical cells (10), the cells containing a porous exposed electrode (11) in contact with a solid electrolyte, where at least one of the exposed electrode, the containment vessel, and the optional ceramic material contains a deposit selected from metal oxide and metal salt capable of forming a metal oxide upon heating, where the metal is selected from the group consisting of Ce, Sm, Mg, Be, Ca, Sr, Ti, Zr, Hf, Y, La, Pr, Nb, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, and their mixtures.

  17. Structural properties of liquid lanthanides using charge hard sphere reference system

    NASA Astrophysics Data System (ADS)

    Thakora, P. B.; Sonvane, Y. A.; Patel, H. P.; Gajjar, P. N.; Jani, A. R.

    2012-06-01

    In the present paper Charge Hard Sphere (CHS) system is employed to investigate the structural properties like long wavelength limit S(0), isothermal compressibility (χT) and coordination number n for some liquid lanthanides viz.: La, Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Yb and Lu. Our well established parameter free model potential is used to describe the electron-ion interaction alongwith sarkar et al. dielectric function. From the present results, it is seen that good agreement between present results and available experimental data have been achieved. At last, we establish the applicability of our parameter free model potential and CHS method to account such structural properties.

  18. Electron traps in Gd3Ga3Al2O12:Ce garnets doped with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Khanin, V. M.; Rodnyi, P. A.; Wieczorek, H.; Ronda, C. R.

    2017-05-01

    The curves of thermally stimulated luminescence of Gd3Ga3Al2O12:Ce3+ ceramics (a nominally pure sample and samples doped with rare-earth ions) are measured in the temperature range of 80-550 K. The depth and the frequency factor of electron traps established by Eu and Yb impurities are determined. An energy-level diagram of rare-earth ions in the bandgap of Gd3Ga3Al2O12 is presented.

  19. Scintillation properties of Gd3Al2Ga3O12:Ce (GAGG:Ce): a comparison between monocrystalline and nanoceramic samples

    NASA Astrophysics Data System (ADS)

    Drozdowski, Winicjusz; Witkowski, Marcin E.; Solarz, Piotr; Głuchowski, Paweł; Głowacki, Michał; Brylew, Kamil

    2018-05-01

    In this Communication the behavior of two types of Gd3Al2Ga3O12:Ce samples under gamma and X-ray excitation is compared. Single crystals of GAGG:1%Ce have been grown by the Czochralski technique, while nanoceramic pills of GAGG:1%Ce have been fabricated by the LTHP sintering from nanocrystalline powders prepared by the Pechini method. The results of pulse height, scintillation time profile, radioluminescence as a function of temperature, and low temperature thermoluminescence measurements, are reported, indicating that monocrystals are still a better choice for scintillator application, nevertheless some of the properties of nanoceramics are indeed promising and there should be a room for improvement.

  20. Broadband Ce(III)-Sensitized Quantum Cutting in Core-Shell Nanoparticles: Mechanistic Investigation and Photovoltaic Application.

    PubMed

    Sun, Tianying; Chen, Xian; Jin, Limin; Li, Ho-Wa; Chen, Bing; Fan, Bo; Moine, Bernard; Qiao, Xvsheng; Fan, Xianping; Tsang, Sai-Wing; Yu, Siu Fung; Wang, Feng

    2017-10-19

    Quantum cutting in lanthanide-doped luminescent materials is promising for applications such as solar cells, mercury-free lamps, and plasma panel displays because of the ability to emit multiple photons for each absorbed higher-energy photon. Herein, a broadband Ce 3+ -sensitized quantum cutting process in Nd 3+ ions is reported though gadolinium sublattice-mediated energy migration in a NaGdF 4 :Ce@NaGdF 4 :Nd@NaYF 4 nanostructure. The Nd 3+ ions show downconversion of one ultraviolet photon through two successive energy transitions, resulting in one visible photon and one near-infrared (NIR) photon. A class of NaGdF 4 :Ce@NaGdF 4 :Nd/Yb@NaYF 4 nanoparticles is further developed to expand the spectrum of quantum cutting in the NIR. When the quantum cutting nanoparticles are incorporated into a hybrid crystalline silicon (c-Si) solar cell, a 1.2-fold increase in short-circuit current and a 1.4-fold increase in power conversion efficiency is demonstrated under short-wavelength ultraviolet irradiation. These insights should enhance our ability to control and utilize spectral downconversion with lanthanide ions.

  1. Significantly different pulse shapes for γ- and α-rays in Gd3Al2Ga3O12:Ce3+ scintillating crystals

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masaaki; Tamagawa, Yoichi; Tomita, Shougo; Yamamoto, Akihiro; Ogawa, Izumi; Usuki, Yoshiyuki

    2012-12-01

    We have found that scintillation in Gd3Al2Ga3O12 (GAGG):Ce3+ garnet single crystals has significantly different pulse shapes for 0.662 MeV γ- and 5.47 MeV α-rays. The decay and rise times for γ-rays are smaller by 50% and threefold, respectively, than those for α-rays. Because the GAGG:Ce is a dense, efficient and fast-response scintillator and because it can be grown in large-size single crystals, it should be a promising unified target and a detector material in the study of neutrinoless double beta decay of 160Gd through the use of pulse shape discrimination between the β-ray signals and the α-ray-induced backgrounds.

  2. Energy transfer from Pr3+ to Gd3+ ions in BaB8O13 phosphor for phototherapy lamps

    NASA Astrophysics Data System (ADS)

    Tamboli, Sumedha; Nair, Govind B.; Dhoble, S. J.; Burghate, D. K.

    2018-04-01

    A series of BaB8O13 phosphors doped with different concentrations of Gd3+ ions and co-doped with Pr3+ ions were synthesized by solid state synthesis method. X-ray powder diffraction (XRD) analysis confirmed the formation of the compound in a crystalline and homogeneous form. Scanning Electron Microscopy (SEM) was performed to study the surface morphology of the compound and Fourier Transform Infrared (FT-IR) spectroscopy measurements determined the nature of bonding between elements of the compounds. The photoluminescence (PL) excitation spectra of BaB8O13:Gd3+ phosphor showed excitation peaks at 246 nm, 252 nm and 274 nm. The prominent emission peak was observed at 313 nm which is in narrow band ultraviolet B (NB-UVB) range. Energy transfer was achieved by co-doping Pr3+ ions with Gd3+ ions. PL decay time was also measured for BaB8O13: Gd3+, Pr3+ phosphor. Emission at 313 nm can be used for the treatment of skin diseases.

  3. Luminescence quenching and scintillation response in the Ce3+ doped GdxY3-xAl5O12 (x = 0.75, 1, 1.25, 1.5, 1.75, 2) single crystals

    NASA Astrophysics Data System (ADS)

    Bartosiewicz, K.; Babin, V.; Kamada, K.; Yoshikawa, A.; Mares, J. A.; Beitlerova, A.; Nikl, M.

    2017-01-01

    The luminescence and scintillation properties of the gadolinium yttrium aluminium garnets, (Gd,Y)3Al5O12 doped with Ce3+ are investigated as a function of the Gd/Y ratio with the aim of an improved understanding of the luminescence quenching, energy transfer and phase stability in these materials. An increase of both crystal field strength and instability of the garnet phase with increasing content of Gd3+ is observed. The instability of the garnet phase results in an appearance of the perovskite phase inclusions incorporated into the garnet phase. The luminescence features of Ce3+ in the perovskite phase inclusions and in the main garnet phase are studied separately. The thermal quenching of the 5 d → 4f emission of Ce3+ in the latter phase is determined by temperature dependence of the photoluminescence decay time. The results show that the onset of the thermal quenching is moved to lower temperatures with increasing gadolinium content. The measurements of temperature dependence of delayed radiative recombination do not reveal a clear evidence that the thermal quenching is caused by thermally induced ionization of the Ce3+ 5d1 excited state. Therefore, the main mechanism responsible for the luminescence quenching is due to the non-radiative relaxation from 5d1 excited state to 4f ground state of Ce3+. The energy transfer processes between Gd3+ and Ce3+ as well as between perovskite and garnet phases are evidenced by the photoluminescence excitation and emission spectra as well as decay kinetic measurements. Thermally stimulated luminescence (TSL) studies in the temperature range 77-497 K and scintillation decays under γ excitation complete the material characterization.

  4. Energy transfer and radiative recombination processes in (Gd, Lu)3Ga3Al2O12:Pr3+ scintillators

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Ren, Guohao

    2013-10-01

    (GdxLu3-x)Ga3Al2O12:0.3 at.%Pr (x = 0.025, 0.05, 0.1, 0.2, 0.4, 0.6) (GLGAG:Pr) polycrystalline powders are prepared by solid-state reaction method. To better understand the luminescence mechanism, the optical diffuse reflectance, photoluminescence emission and excitation, X-ray excited luminescence spectra and decay kinetics of GLGAG:Pr were investigated in detailed, allowing the determination of energy transfer from 5d state of Pr3+ to 4f state of Gd3+, and the non-radiative relaxation from 5d to 4f state of Pr3+. Besides, the former process plays more negative role in the emission quenching of GLGAG:Pr than later one. Pr3+ ion is regarded as an ineffective activation ion in Gd-based multicomponent aluminate garnets. In addition, the wavelength-resolved thermoluminescence spectra of GLGAG:Pr were studied after UV and X-ray irradiation. It is revealed that the localized recombination processes from electron traps to lower lying 4f levels of Pr3+ occurs without populating the higher 5d levels of Pr3+.

  5. Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties

    DTIC Science & Technology

    2014-10-31

    H. Gocmez, Hydrothermal synthesis and properties of Ce1-xGdxO2-δ solid solutions // Solid State Sciences. – 2002. – Vol. 4. – P. 585-590. 19. E...J. Kilner, Ionic conductivity in the CeO2-Gd2O3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation // Solid State Ionics. - 2002. – Vol

  6. Effect of cation size at Gd and Al site on ce energy levels in Gd3(GaAl)5O12 sintered pellets

    NASA Astrophysics Data System (ADS)

    Tyagi, Mohit; Meng, Fang; Darby, Kaitlyn; Koschan, Merry; Melcher, C. L.

    2013-02-01

    Radioluminescence and reflectivity measurements performed on sintered powder pellets of garnet compositions R3GaxAl5-xO12 (where R: Lu, Gd, Sc, Y) have shown that replacing "R" in these compositions with ions of larger radius shifts the excited 5d states of Ce to lower energy, while increased ionic radius at Ga/Al sites shifts these levels to higher energy. Stokes shifts were also calculated and results were verified by comparing the performance of the pellets with that of single crystals.

  7. Crystal Growth and Scintillation Properties of Ce Doped Gd3Ga,Al5O12 Single Crystals

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Yanagida, Takayuki; Pejchal, Jan; Nikl, Martin; Endo, Takanori; Tsutsumi, Kousuke; Fujimoto, Yutaka; Fukabori, Akihiro; Yoshikawa, Akira

    2012-10-01

    Ce1%, 2% and 3% doped Gd3(Ga,Al)5O12 (GAGG) single crystals were grown by the Cz method. Luminescence and scintillation properties were measured. Light yield change along the growth direction and effects of Ce concentration on scintillation properties in Ce:GAGG were studied. Ce3+ 5d-4f emission within 520-530 nm was observed in the Ce:GAGG crystals. The Ce1%:GAGG sample with 3×3×1 mm size showed the highest light yield of 46000 photon/MeV. The energy resolution was 7.8%@662 keV. With increasing solidification fraction, the LY were decreased. It is proposed that the increase of Ga concentration along the growth direction is the main cause of the decrease of LY. The scintillation decay times were accelerated with increasing Ce concentration in the Ce:GAGG crystals. The scintillation decay times were 92.0 ns, 79.1 ns and 68.3 ns in the Ce1, 2 and 3% GAGG, respectively.

  8. Contrast-enhanced peripheral MRA: technique and contrast agents.

    PubMed

    Nielsen, Yousef W; Thomsen, Henrik S

    2012-09-01

    In the last decade contrast-enhanced magnetic resonance angiography (CE-MRA) has gained wide acceptance as a valuable tool in the diagnostic work-up of patients with peripheral arterial disease. This review presents current concepts in peripheral CE-MRA with emphasis on MRI technique and contrast agents. Peripheral CE-MRA is defined as an MR angiogram of the arteries from the aortic bifurcation to the feet. Advantages of CE-MRA include minimal invasiveness and lack of ionizing radiation. The basic technique employed for peripheral CE-MRA is the bolus-chase method. With this method a paramagnetic MRI contrast agent is injected intravenously and T1-weighted images are acquired in the subsequent arterial first-pass phase. In order to achieve high quality MR angiograms without interfering venous contamination or artifacts, a number of factors need to be taken into account. This includes magnetic field strength of the MRI system, receiver coil configuration, use of parallel imaging, contrast bolus timing technique, and k-space filling strategies. Furthermore, it is possible to optimize peripheral CE-MRA using venous compression techniques, hybrid scan protocols, time-resolved imaging, and steady-state MRA. Gadolinium(Gd)-based contrast agents are used for CE-MRA of the peripheral arteries. Extracellular Gd agents have a pharmacokinetic profile similar to iodinated contrast media. Accordingly, these agents are employed for first-pass MRA. Blood-pool Gd-based agents are characterized by prolonged intravascular stay, due to macromolecular structure or protein binding. These agents can be used for first-pass, as well as steady-state MRA. Some Gd-based contrast agents with low thermodynamic stability have been linked to development of nephrogenic systemic fibrosis in patients with severe renal insufficiency. Using optimized technique and a stable MRI contrast agent, peripheral CE-MRA is a safe procedure with diagnostic accuracy close to that of conventional catheter X-ray angiography.

  9. Enhancement of nitric oxide decomposition efficiency achieved with lanthanum-based perovskite-type catalyst.

    PubMed

    Pan, Kuan Lun; Chen, Mei Chung; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2016-06-01

    Direct decompositions of nitric oxide (NO) by La0.7Ce0.3SrNiO4, La0.4Ba0.4Ce0.2SrNiO4, and Pr0.4Ba0.4Ce0.2SrNiO4 are experimentally investigated, and the catalysts are tested with different operating parameters to evaluate their activities. Experimental results indicate that the physical and chemical properties of La0.7Ce0.3SrNiO4 are significantly improved by doping with Ba and partial substitution with Pr. NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4 are 32% and 68%, respectively, at 400 °C with He as carrier gas. As the temperature is increased to 600 °C, NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4, respectively, reach 100% with the inlet NO concentration of 1000 ppm while the space velocity is fixed at 8000 hr(-1). Effects of O2, H2O(g), and CO2 contents and space velocity on NO decomposition are also explored. The results indicate that NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4, respectively, are slightly reduced as space velocity is increased from 8000 to 20,000 hr(-1) at 500 °C. In addition, the activities of both catalysts (La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4) for NO decomposition are slightly reduced in the presence of 5% O2, 5% CO2, or 5% H2O(g). For durability test, with the space velocity of 8000 hr(-1) and operating temperature of 600 °C, high N2 yield is maintained throughout the durability test of 60 hr, revealing the long-term stability of Pr0.4Ba0.4Ce0.2SrNiO4 for NO decomposition. Overall, Pr0.4Ba0.4Ce0.2SrNiO4 shows good catalytic activity for NO decomposition. Nitrous oxide (NO) not only causes adverse environmental effects such as acid rain, photochemical smog, and deterioration of visibility and water quality, but also harms human lungs and respiratory system. Pervoskite-type catalysts, including La0.7Ce0.3SrNiO4, La0.4Ba0.4Ce0.2SrNiO4, and Pr0.4Ba0.4Ce0.2SrNiO4, are applied for direct NO decomposition. The results show that NO decomposition can be enhanced as La0.7Ce0.3SrNiO4 is substituted with Ba and/or Pr. At 600 °C, NO decomposition efficiencies achieved with La0.4Ba0.4Ce0.2SrNiO4 and Pr0.4Ba0.4Ce0.2SrNiO4 reach 100%, demonstrating high activity and good potential for direct NO decomposition. Effects of O2, H2O(g), and CO2 contents on catalytic activities are also evaluated and discussed.

  10. Gd3+ spin-lattice relaxation via multi-band conduction electrons in Y(1-x)Gd(x)In3: an electron spin resonance study.

    PubMed

    Cabrera-Baez, M; Iwamoto, W; Magnavita, E T; Osorio-Guillén, J M; Ribeiro, R A; Avila, M A; Rettori, C

    2014-04-30

    Interest in the electronic structure of the intermetallic compound YIn3 has been renewed with the recent discovery of superconductivity at T ∼ 1 K, which may be filamentary in nature. In this work we perform electron spin resonance (ESR) experiments on Gd(3+) doped YIn3 (Y1-xGdxIn3; 0.001 ⪅ x ⩽̸ 0.08), showing that the spin-lattice relaxation of the Gd(3+) ions, due to the exchange interaction between the Gd(3+) localized magnetic moment and the conduction electrons (ce), is processed via the presence of s-, p- and d-type ce at the YIn3 Fermi level. These findings are revealed by the Gd(3+) concentration dependence of the Korringa-like relaxation rate d(ΔH)/dT and g-shift (Δg = g - 1.993), that display bottleneck relaxation behavior for the s-electrons and unbottleneck behavior for the p- and d-electrons. The Korringa-like relaxation rates vary from 22(2) Oe/K for x ⪅ 0.001 to 8(2) Oe/K for x = 0.08 and the g-shift values change, respectively, from a positive Δg = +0.047(10) to a negative Δg = -0.008(4). Analysis in terms of a three-band ce model allows the extraction of the corresponding exchange interaction parameters Jfs, Jfp and Jfd.

  11. Unusual ground states in {R_5T_4X_{10}} (R  =  rare earth; T  =  Rh, Ir; and X  =  Si, Ge, Sn): a review

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, S.; van Smaalen, Sander

    2017-11-01

    Rare earth compounds of the type R_5T_4X10 (R  =  rare earth; T  =  Rh, Ir, and X  =  Si, Ge, Sn) display a variety of phase transitions towards exotic states, including charge density waves (CDW), local moment magnetism, antiferromagnetism in the heavy fermion state, superconductivity and giant positive magnetoresistance. They support strongly correlated electron systems. In particular, R 5Ir4 Si10 (R  =  Dy-Lu) exhibit strong coupling CDWs with high transition temperatures, and superconductivity or magnetic ordering at lower temperatures. R_5T4 Ge10 (R  =  Gd-Tm T  =  Co, Rh, Ir) show multiple magnetic transitions with large magnetoresistance below the magnetic transitions. Finally, the light rare earth series R_5T4 Sn10 (R  =  Ce, Pr, Nd; T  =  Rh, Ir) display heavy fermion behaviour (for Ce and Pr) or possess giant positive magnetoresistance (for Nd) at low temperatures. This review provides a comprehensive overview of compounds, crystal structures and phase transitions. This is followed by an in-depth discussion of the mechanisms of the phase transitions and the properties of the ordered states.

  12. Influence of Li+ charge compensator ion on the energy transfer from Pr3 + to Gd3 + ions in Ca9Mg(PO4)6F2:Gd3 +, Pr3 +, Li+ phosphor

    NASA Astrophysics Data System (ADS)

    Tamboli, Sumedha; Dhoble, S. J.

    2017-09-01

    Phototherapy is a renowned treatment for curing skin diseases since ancient times. Phototherapeutic treatment for psoriasis and many other diseases require narrow band ultra violet-B (NB-UVB) light with peak intensity at 313 nm to be exposed to the affected part of body. In this paper, we report combustion synthesis of NB-UVB - 313 nm emitting Ca9Mg(PO4)6F2 phosphors doped with Gd3 +, Pr3 + and Li+ ions. The phase formation was confirmed by obtaining X-ray diffraction (XRD) pattern and morphology was studied with the Scanning electron microscopy (SEM) images. Photoluminescence (PL) emission spectra show intense narrow band emission at 313 nm under 274 nm excitation wavelengths. Emission intensity was enhanced when Ca9Mg(PO4)6F2 compound is co-doped with Pr3 + ions. Excitation spectra of Ca9Mg(PO4)6F2:Gd3 +, Pr3 + doped samples shows broad excitation in ultra violet C (UVC) region. Diffuse reflectance spectra (DRS), obtained by UV-visible spectrophotometer, measures the absorption properties of the material. By applying Kubelka Munk function on the diffuse reflectance spectra, band gap of the material is determined. PL decay curves were examined which indicates efficient energy transfer between Pr3 + and Gd3 + ions. Charge compensation effect was also studied by co-doping Li+ ion in host. Emission intensity was found to increase with the addition of charge compensator. The prepared phosphor has potential to convert UVC light into NB-UVB. The luminescence intensity of Gd3 + shows remarkable increase when it is sensitized with Pr3 +, and an addition of charge compensator in the form of Li+, show even better results. This phosphor surely has the potential to be used as phototherapy lamp phosphor.

  13. Testing Room-Temperature Ionic Liquid Solutions for Depot Repair of Aluminum Coatings

    DTIC Science & Technology

    2011-05-01

    Ne 3 Na Mg IIIB IVB VB VIB VIIB ------ VIIIB ------ IB IIB Al Si P S Cl Ar 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 5 Rb Sr Y Zr Nb Mo Tc...Ru Rh Pd Ag Cd In Sn Sb Te I Xe 6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 7 Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np...Electroplating Bath Lid Arrangement ;:::::::::::=== Thermometer Purge gas vent Anode lead Cathode lead (Extractable from the lid) Purge feed gas

  14. Photoeffect cross sections of several rare-earth elements for 323-keV photons

    NASA Astrophysics Data System (ADS)

    Umesh, T. K.; Anasuya, S. J.; Shylaja Kumari, J.; Gowda, Channe; Gopinathan Nair, K. P.; Gowda, Ramakrishna

    1992-02-01

    Total-attenuation cross sections of the oxides of rare-earth elements such as La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, and Er, and also NaNO3 and NaNO2 have been measured in a narrow-beam geometry setup at 323 keV. The total-attenuation cross section for oxygen was obtained as the difference in NaNO3 and NaNO2 cross sections. Using this, the total-attenuation cross sections of the individual lanthanides have been obtained with the aid of the mixture rule. From these, the photoeffect cross sections were derived by subtracting the scattering contribution. These values are found to agree well with Scofield's theoretical data [University of California Report No. UCRL 51326, 1973 (unpublished)].

  15. Evaluation of matrix effect on the determination of rare earth elements and As, Bi, Cd, Pb, Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula - Jataí) by Q-ICP-MS.

    PubMed

    de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho

    2017-01-01

    Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL -1 for honey and 0.00041-0.095μgL -1 for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines.

    PubMed

    Feyerabend, Frank; Fischer, Janine; Holtz, Jakob; Witte, Frank; Willumeit, Regine; Drücker, Heiko; Vogt, Carla; Hort, Norbert

    2010-05-01

    Degradable magnesium alloys for biomedical application are on the verge of being used clinically. Rare earth elements (REEs) are used to improve the mechanical properties of the alloys, but in more or less undefined mixtures. For some elements of this group, data on toxicity and influence on cells are sparse. Therefore in this study the in vitro cytotoxicity of the elements yttrium (Y), neodymium (Nd), dysprosium (Dy), praseodymium (Pr), gadolinium (Gd), lanthanum (La), cerium (Ce), europium (Eu), lithium (Li) and zirconium (Zr) was evaluated by incubation with the chlorides (10-2000 microM); magnesium (Mg) and calcium (Ca) were tested at higher concentrations (200 and 50mM, respectively). The influence on viability of human osteosarcoma cell line MG63, human umbilical cord perivascular (HUCPV) cells and mouse macrophages (RAW 264.7) was determined, as well as the induction of apoptosis and the expression of inflammatory factors (TNF-alpha, IL-1alpha). Significant differences between the applied cells could be observed. RAW exhibited the highest and HUCPV the lowest sensitivity. La and Ce showed the highest cytotoxicity of the analysed elements. Of the elements with high solubility in magnesium alloys, Gd and Dy seem to be more suitable than Y. The focus of magnesium alloy development for biomedical applications should include most defined alloy compositions with well-known tissue-specific and systemic effects. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Magnetic interactions at Ce impurities in REMn2Ge2 (RE = La, Ce, Pr, Nd) compounds

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Burimova, A. N.; Carbonari, A. W.

    2018-05-01

    In the work reported in this paper, the temperature dependence of the magnetic hyperfine field (Bh f) at 140Ce nuclei replacing Pr atoms in PrMn2Ge2 compound was measured by the perturbed angular correlation technique to complete the sequence of measurements in REMn2Ge2 (RE = La, Ce, Pr, Nd). Results show an anomalous behavior different from the expected Brillouin curve. A model was used to fit the data showing that the Ce impurity contribution (Bhfimp) to Bhf is negative for NdMn2Ge2 below 210 K. The impurity contribution (Bhfimp) at 0 K for all compounds is much smaller than that for the free Ce3+, showing that the 4f band of Ce is more likely highly hybridized with 5d band of the host. Results show that direction of the localized magnetic moment at Mn atoms strongly affects the exchange interaction at Ce impurities.

  18. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    DOE PAGES

    Lin, Ye; Fang, Shumin; Su, Dong; ...

    2015-04-10

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less

  19. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    PubMed Central

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin

    2015-01-01

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2−δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2−δ–Ce0.8Gd0.2O2−δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution. PMID:25857355

  20. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors.

    PubMed

    Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin

    2015-04-10

    Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2-δ-CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2-δ-Ce0.8Gd0.2O2-δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic-electronic conductor composites through processing induced modifications of the grain boundary defect distribution.

  1. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ye; Fang, Shumin; Su, Dong

    Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less

  2. Magnetization reversal properties of Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Sanjay; Pal, Sudipta, E-mail: sudipta.pal@rediffmail.com; Bose, Esa

    2015-06-24

    We report measurements of the temperature dependent magnetic properties of single phase orthorhombic perovskites system associated with space group Pbnm compounds Pr{sub 1-x}(Gd/Nd){sub x}MnO{sub 3} (x=0.3, 0.5, 0.7). Magnetic properties radically changes with the doping of Gd or Nd. A magnetization reversal is observed below the Neel temperature (T{sub N}), in DC magnetization measurements (at 50 Oe) in the doped compounds. The reversal of magnetization may be due to the antiparallel coupling between the two magnetic sublattices (|Pr+ Gd/ Nd | and Mn). The hysteresis plot taken at 50K indicates a ferrimagnetic characteristic and existence of spin canting of ionsmore » in the magnetic sublattices.« less

  3. Preparation of high magneto-optical performance and crystalline quality Ce1Gd2Fe5-xGaxO12 films on CLNGG substrate crystal

    NASA Astrophysics Data System (ADS)

    Fu, Qiu-ping; Zheng, Ze-yuan; Lin, Nan-xi; Liu, Xiao-feng; Hong, Can-huang; Hu, Xiao-lin; Zhuang, Nai-feng; Chen, Jian-zhong

    2016-11-01

    Thin films of Ce1Gd2Fe5-xGaxO12 (Ce,Ga:GIG) were prepared on Gd3Ga5O12 (GGG) and Ca2.90Li0.30Nb1.93Ga2.76O12 (CLNGG) substrates by using radio frequency magnetron sputtering technique. The phase, grain orientation, surface morphology, transmittance, magnetism and magnetic circular dichroism (MCD) properties of films were analyzed. And the effects of lattice mismatch and non-magnetic Ga3+-doping were discussed. The results show that the films with higher crystallized quality and lower stress can be obtained by growing on CLNGG than on GGG. Moreover, the coercive force, magnetization, magneto-optical effect intensity and orientation of film can be effectively regulated by adjusting Ga3+-doped concentration.

  4. Crystal Growth and Scintillation Properties of $${\\rm Cs}_{2}{\\rm NaGdBr}_{6}{:}{\\rm Ce}^{3+}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Pin; Zhou, Xiaowang; Deng, Haoran

    2013-04-02

    Single crystals of Cs 2NaGdBr 6 with different Ce +3 activator concentrations were grown by a two-zone Bridgman method. This new compound belongs to a large elpasolite halide (A 2BLnX 6) family. Many of these elpasolite compounds have shown high luminosity, good energy resolution and excellent proportionality in comparison to traditional scintillators such as CsI and NaI; therefore, they are particularly attractive for gamma-ray spectroscopy applications. This study investigated the scintillator properties of Cs 2NaGdBr 6:Ce +3 crystals as a new material for radiation detection. Special focus has been placed on the effects of activator concentration (0 to 50 mol.%)more » on the photoluminescence responses. Results of structural refinement, photoluminescence, radioluminescence, lifetime and proportionality measurements for this new compound are reported.« less

  5. Measurement of Cerium and Gadolinium in Solid Lithium Chloride-Potassium Chloride Salt Using Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Williams, Ammon; Bryce, Keith; Phongikaroon, Supathorn

    2017-10-01

    Pyroprocessing of used nuclear fuel (UNF) has many advantages-including that it is proliferation resistant. However, as part of the process, special nuclear materials accumulate in the electrolyte salt and present material accountability and safeguards concerns. The main motivation of this work was to explore a laser-induced breakdown spectroscopy (LIBS) approach as an online monitoring technique to enhance the material accountability of special nuclear materials in pyroprocessing. In this work, a vacuum extraction method was used to draw the molten salt (CeCl 3 -GdCl 3 -LiCl-KCl) up into 4 mm diameter Pyrex tubes where it froze. The salt was then removed and the solid salt was measured using LIBS and inductively coupled plasma mass spectroscopy (ICP-MS). A total of 36 samples were made that varied the CeCl 3 and GdCl 3 (surrogates for uranium and plutonium, respectively) concentrations from 0.5 wt% to 5 wt%. From these samples, univariate calibration curves for Ce and Gd were generated using peak area and peak intensity methods. For Ce, the Ce 551.1 nm line using the peak area provided the best calibration curve with a limit of detection (LOD) of 0.099 wt% and a root mean squared error of cross-validation (RMSECV) of 0.197 wt%. For Gd, the best curve was generated using the peak intensities of the Gd 564.2 nm line resulting in a LOD of 0.027 wt% and a RMSECV of 0.295 wt%. The RMSECV for the univariate cases were determined using leave-one-out cross-validation. In addition to the univariate calibration curves, partial least squares (PLS) regression was done to develop a calibration model. The PLS models yielded similar results with RMSECV (determined using Venetian blind cross-validation with 17% left out per split) values of 0.30 wt% and 0.29 wt% for Ce and Gd, respectively. This work has shown that solid pyroprocessing salt can be qualitatively and quantitatively monitored using LIBS. This work has the potential of significantly enhancing the material monitoring and safeguards of special nuclear materials in pyroprocessing.

  6. A Comparison of the ab Initio Calculated and Experimental Conformational Energies of Alkylcyclohexanes

    NASA Astrophysics Data System (ADS)

    Freeman, Fillmore; Tsegai, Zufan M.; Kasner, Marc L.; Hehre, Warren J.

    2000-05-01

    Ab initio 6-31G(d) and MP2/6-31G(d)//6-31G(d) methods were used to calculate the energies of the rotamers of the chair conformers of alkylcyclohexanes and trimethylsilylcyclohexane. The MP2/6-31G(d)//6-31G(d) calculated conformational energies ( ? or A values, in kcal/mol) of the alkylcyclohexanes (Me = 1.96; Et = 1.80; Pr = 1.73 iso-Pr = 1.60; t-Bu = 5.45; neo-pent = 1.32) and trimethylsilylcyclohexane (SiMe3 = 2.69) are similar to the experimental values. Plots of the calculated conformational energies for the alkylcyclohexanes and trimethylsilylcyclohexane versus their experimental values are linear (slope = 1.253 and r = .993 for 6-31G(d) and slope = 1.114 and r = .982 for MP2/6-31G(d)//6-31G(d)). The conformational energies are determined primarily by steric effects which include gauche (synclinal) interactions and repulsive nonbonded interactions in both the axial and equatorial conformers.

  7. Trap depth and color variation of Ce3+-Cr3+ co-doped Gd3(Al,Ga)5O12 garnet persistent phosphors

    NASA Astrophysics Data System (ADS)

    Asami, Kazuki; Ueda, Jumpei; Tanabe, Setsuhisa

    2016-12-01

    Persistent luminescent properties in Ce3+-Cr3+ codoped Gd3Al5-xGaxO12 garnet (GAGG:Ce-Cr) solid solution have been investigated. The persistent luminescent color is shifted from orange to yellowish green with increasing Ga content because Ce3+: 5d level splitting becomes much weaker. The depth of electron trap introduced by Cr codoping was estimated from the intense thermoluminescence glow peak by the initial rise method. The trap depth decreases from 0.56 eV to 0.29 eV with increasing Ga content. The shift can be explained by downshift of bottom of conduction band. From the persistent luminescence decay curve measurement after ceasing 450 nm blue illumination, the samples with x = 2.5 exhibited the longest persistent luminescence for 405 min until the luminance becomes 2 mcd/m2 in GAGG:Ce-Cr phosphors.

  8. Scintillation properties of Gd3Al2Ga3O12:Ce3+ single crystal scintillators

    NASA Astrophysics Data System (ADS)

    Sakthong, Ongsa; Chewpraditkul, Weerapong; Wanarak, Chalerm; Kamada, Kei; Yoshikawa, Akira; Prusa, Petr; Nikl, Martin

    2014-07-01

    The scintillation properties of Gd3Al2Ga3O12:Ce3+ (GAGG:Ce) single crystals grown by the Czochralski method with 1 at% cerium in the melt were investigated and results were compared with so far published results in the literature. The light yield (LY) and energy resolution were measured using a XP5200B photomultiplier. Despite about twice higher LY for GAGG:Ce, the energy resolution is only slightly better than that of LuAG:Ce due to its worse intrinsic resolution and non-proportionality of LY. The LY dependences on the sample thickness and amplifier shaping time were measured. The estimated photofraction in pulse height spectra of 320 and 662 keV γ-rays and the total mass attenuation coefficient at 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program.

  9. Mg,Ce co-doped Lu2Gd1(Ga,Al)5O12 by micro-pulling down method and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Yamaguchi, Hiroaki; Yoshino, Masao; Kurosawa, Shunsuke; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Pejchal, Jan; Nikl, Martin; Yoshikawa, Akira

    2018-04-01

    The effects of Mg co-doping on the scintillation properties of Ce:Lu2Gd1(Ga,Al)5O12 (LGGAG) single crystals with different Ga/Al ratios were investigated. Mg co-doped and non co-doped Ce:LGGAG single crystals were grown by the micro-pulling down (µ-PD) method and then cut, polished and annealed for each measurement. Absorption spectra, radioluminescence (RL) spectra, pulse height spectra, and scintillation decay were measured to reveal the effect of Mg co-doping. Ce4+ charge transfer (CT) absorption band peaking at ∼260 nm was observed in Mg co-doped samples, which is in good agreement with previous reports for the Ce4+ CT absorption band in other garnet-based crystals. The scintillation decay time tended to be accelerated and the light yield tended to be decreased by Mg co-doping at higher Ga concentrations.

  10. Study on Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ-Ce0.85Gd0.15O1.95 composite cathode material for intermediate temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Kautkar, Pranay R.; Acharya, Smita A.

    2018-05-01

    xDy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ - xCe0.85Gd0.15O1.95 (x = 50 %) composite cathode supported on Ce0.85Gd0.15O1.95 (GDC15) electrolyte are studied for applications in IT-SOFCs. Results attribute that Dy0.45Ba0.05Sr0.5Co0.8Fe0.2O3-δ material is chemically compatible with Ce0.85Gd0.15O1.95 (GDC15). Rietveld refined X-ray diffraction patterns notify orthorhombic (space group:Pbnm) symmetry for Dy0.45 Ba0.05Sr0.5Co0.8Fe0.2O3-δ and fluorite type structure (space group: Fm-3m) symmetry for GDC15. The polarization resistance (Rp) of composite cathode reduces to the minimum value of 1.35 Ω cm2 at 650 °C in air. Area specific resistance (ASR) of composite cathode has found 0.67 Ω.cm2 at 650°C respectively. Result shows that the surface diffusion of the dissociative adsorbed oxygen at electrode/electrolyte interface on the composite cathode.

  11. Fabrication of Ce3+ doped Gd3Ga3Al2O12 ceramics by reactive sintering method

    NASA Astrophysics Data System (ADS)

    Ye, Yong; Liu, Peng; Yan, Dongyue; Xu, Xiaodong; Zhang, Jian

    2017-09-01

    Ce3+ doped Gd3Ga3Al2O12 (Ce:GGAG) ceramics were fabricated by solid state reactive sintering method in this study. The ceramics were pre-sintered in normal muffle furnace in air at various temperature range from 1410 °C to 1550 °C for 10 h and post-treated by hot isostatic press at 1400 °C/2 h in 200 MPa Ar. The phase and microstructure evolution of Ce: GGAG samples during the densification process were investigated by X-ray diffraction and scanning electron microscope. Pure GGAG phase appeared with the temperature increased to 1200 °C. The fully dense and translucent GGAG ceramics were fabricated by pre-sintering at 1450 °C and followed by HIP treatment.

  12. 2 inch size Czochralski growth and scintillation properties of Li+ co-doped Ce:Gd3Ga3Al2O12

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Shoji, Yasuhiro; Kochurikhin, Vladimir V.; Yoshino, Masao; Okumura, Satoshi; Yamamoto, Seiichi; Yeom, Jung Yeol; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Nikl, Martin; Yoshino, Masao; Yoshikawa, Akira

    2017-03-01

    The 2 inch size Li 0.15 and 1.35 mol% co-doped Ce:Gd3Al2Ga3O12 single crystals were prepared by the Czochralski (Cz) method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Li co-doping. Ce4+ CT absorption below 350 nm is clearly enhanced by Li co-doping as same as divalent ions co-doping. By 1.35 at.% Li co-doping, light yield was decrease to 88% of the Ce: GAGG standard and decay time was accelerated to 34.3ns 21.0%, 84.6ns 68.7%, 480ns 10.3%. The timing resolution measurement for a pair of 3 × 3 × 3mm3 size Li,Ce:GAGG scintillator crystals was performed using Si-PMs and the timing resolution of the 1.35 at.% Li co-doped Ce:GAGG was 218ps.

  13. Mobility of rare earth element in hydrothermal process and weathering product: a review

    NASA Astrophysics Data System (ADS)

    Lintjewas, L.; Setiawan, I.

    2018-02-01

    The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.

  14. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    PubMed

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  15. Synthesis and Thermoelectric Properties of Partially Double-Filled (Ce1- z Pr z ) y Fe4- x Co x Sb12 Skutterudites

    NASA Astrophysics Data System (ADS)

    Cha, Ye-Eun; Shin, Dong-Kil; Kim, Il-Ho

    2018-06-01

    Partially double-filled p-type (Ce1- z Pr z ) y Fe4- x Co x Sb12 ( z = 0.25, 0.75; y = 0.8; x = 0, 0.5, 1.0) skutterudites were synthesized by encapsulated melting and consolidated by hot pressing. The microstructure, phase, charge transport characteristics, and thermoelectric properties of the hot-pressed specimens were analyzed. Detailed measurements indicated that the skutterudite phase was successfully synthesized, but a small amount of a secondary phase (FeSb2) was also identified. However, the amount of the FeSb2 phase decreased with an increase in the Co substitution. Unlike for the filled Ce1- z Pr z Fe4- x Co x Sb12 skutterudites with y = 1, the (Ce,Pr)Sb2 phases were not formed by partial filling with Ce/Pr. The electrical conductivity decreased with increasing temperature, similar to the behavior shown by degenerate semiconductors. The Hall coefficient and the Seebeck coefficients were positive, indicating that all specimens exhibited p-type characteristics. The electrical conductivity and the electronic thermal conductivity decreased with increasing Pr filling and Co substitution because of the decreased carrier concentration caused by charge compensation. A maximum dimensionless figure of merit, ZTmax = 0.84, was obtained at 623 K for (Ce0.75Pr0.25)0.8Fe3CoSb12.

  16. Persistent luminescence in powdered and ceramic polycrystalline Gd3Al2Ga3O12:Ce

    NASA Astrophysics Data System (ADS)

    Dosovitskiy, G.; Fedorov, A.; Mechinsky, V.; Borisevich, A.; Dosovitskiy, A.; Tret'jak, E.; Korjik, M.

    2017-02-01

    This paper studies powders of Gd3Ga3Al2O12:Ce, a promising scintillator composition, as a possible object for express pre-characterization of scintillation kinetics and level of persistent luminescence. Garnet phase powders with uniform microstructure, consisting of 1-2 μm grains, were obtained by co-precipitation approach. It was shown, that both scintillation decay time and presence of persistent luminescence are influenced by both powder thermal treatment temperature and strong Ga deficit.

  17. Near infrared emission of TbAG:Ce{sup 3+},Yb{sup 3+} phosphor for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com; Yadav, P. J., E-mail: yadav.pooja75@yahoo.in; Pathak, A. A., E-mail: aapathak@yahoo.com

    2016-05-06

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimatedmore » to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr{sup 3+}, Gd{sup 3+},Gd{sup 3+}–Eu{sup 3+}, and Er{sup 3+}–Tb{sup 3+} had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb{sup 3+}–Yb{sup 3+}, Pr{sup 3+}–Yb{sup 3+}, and Tm{sup 3+}–Yb{sup 3+} has been reported. The Yb{sup 3+} ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb{sup 3+} is close to 100% and the energy of the only excited level of Yb{sup 3+} (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce{sup 3+}-doped Tb{sub 3}Al{sub 5}O{sub 12} (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300–500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce{sup 3+} ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this paper, Ce{sup 3+} –Yb{sup 3+}-codoped TbAG ceramics were prepared and the energy transfer (ET) including down conversion mechanism in Ce{sup 3+} – Yb{sup 3+} codoped TbAG ceramics have been evaluated by the photoluminescence (PL), the photoluminescence excitation (PLE), the lifetime and the quantum yield (QY), which was measured directly using an integrating sphere.« less

  18. Ternary oxide nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus S [Stony Brook, NY; Park, Tae-Jin [Port Jefferson, NY

    2009-09-08

    A single crystalline ternary nanostructure having the formula A.sub.xB.sub.yO.sub.z, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.

  19. Frequency mixing crystal

    DOEpatents

    Ebbers, Christopher A.; Davis, Laura E.; Webb, Mark

    1992-01-01

    In a laser system for converting infrared laser light waves to visible light comprising a source of infrared laser light waves and means of harmoic generation associated therewith for production of light waves at integral multiples of the frequency of the original wave, the improvement of said means of harmonic generation comprising a crystal having the chemical formula X.sub.2 Y(NO.sub.3).sub.5 .multidot.2 nZ.sub.2 o wherein X is selected from the group consisting of Li, Na, K, Rb, Cs, and Tl; Y is selected from the group consisting of Sc, Y, La, Ce, Nd, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Ga, and In; Z is selected from the group consisting of H and D; and n ranges from 0 to 4.

  20. Evaluation of the effect of valence state on cerium oxide nanoparticle toxicity following intratracheal instillation in rats

    PubMed Central

    Dunnick, Katherine M.; Morris, Anna M.; Badding, Melissa A.; Barger, Mark; Stefaniak, Aleksandr B.; Sabolsky, Edward M.; Leonard, Stephen S.

    2016-01-01

    Cerium (Ce) is becoming a popular metal for use in electrochemical applications. When in the form of cerium oxide (CeO2), Ce can exist in both 3 + and 4 + valence states, acting as an ideal catalyst. Previous in vitro and in vivo evidence have demonstrated that CeO2 has either anti- or pro-oxidant properties, possibly due to the ability of the nanoparticles to transition between valence states. Therefore, we chose to chemically modify the nanoparticles to shift the valence state toward 3+. During the hydrothermal synthesis process, 10 mol% gadolinium (Gd) and 20 mol% Gd, were substituted into the lattice of the CeO2 nanoparticles forming a perfect solid solution with various A-site valence states. These two Gd-doped CeO2 nanoparticles were compared to pure CeO2 nanoparticles. Preliminary characteristics indicated that doping results in minimal size and zeta potential changes but alters valence state. Following characterization, male Sprague-Dawley rats were exposed to 0.5 or 1.0 mg/kg nanoparticles via a single intratracheal instillation. Animals were sacrificed and bronchoalveolar lavage fluid and various tissues were collected to determine the effect of valence state and oxygen vacancies on toxicity 1-, 7-, or 84-day post-exposure. Results indicate that damage, as measured by elevations in lactate dehydrogenase, occurred within 1-day post-exposure and was sustained 7-day post-exposure, but subsided to control levels 84-day post-exposure. Furthermore, no inflammatory signaling or lipid peroxidation occurred following exposure with any of the nanoparticles. Our results implicate that valence state has a minimal effect on CeO2 nanoparticle toxicity in vivo. PMID:26898289

  1. Temperature evolution of polar states in GdMn2O5 and Gd0.8Ce0.2Mn2O5

    NASA Astrophysics Data System (ADS)

    Sanina, V. A.; Golovenchits, E. I.; Khannanov, B. Kh.; Scheglov, M. P.; Zalesskii, V. G.

    2014-11-01

    The polar order along the c axis is revealed in GdMn2O5 and Gd0.8Ce0.2Mn2O5 at T ≤ T C1 ≈ 160 K for the first time. This polar order is induced by the charge disproportion in the 2D superstructures emerged due to phase separation. The dynamic state with restricted polar domains of different sizes is found at T > T C1 which is typical of the diffuse ferroelectric phase transition. At the lowest temperatures ( T < 40 K) two polar orders of different origins with perpendicular orientations (along the b and c axes) coexist. The 1D superlattices studied by us earlier in the set of RMn2O5 multiferroics are the charged domain walls which separate of these polar order domains.

  2. Effect of gadolinium dopant on structural, magneto-transport, magnetic and thermo-power of Pr0.8Sr0.2MnO3

    NASA Astrophysics Data System (ADS)

    Poojary, Thrapthi; Babu, P. D.; Sanil, Tejaswini; Daivajna, Mamatha D.

    2018-07-01

    In the present investigation structural, magneto-transport, magnetic and thermo-power measurements of Gadolinium (Gd) doped Pr0.8-xGdxSr0.2MnO3 (0, 0.2, 0.25 and 0.3) manganites have been done. All the samples are single phased with orthorhombic structure. Temperature variation of resistance exhibits a high temperature transition occurring at 156 K and a low temperature cusp at around 95 K for pristine sample. With Gd doping resistance behavior shows insulating behavior throughout the whole temperature range. Magneto-Resistance (MR%) increases with Gd doping. A huge increase in thermo-electric power is observed with Gd doping.

  3. Optical properties in the visible luminescence of SiO2:B2O3:CaO:GdF3 glass scintillators containing CeF3

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Kim, H. J.; Karki, Sujita; Kaewkhao, J.; Damdee, B.; Kothan, S.; Kaewjaeng, S.

    2017-12-01

    CeF3-doped silicaborate-calcium-gadolinium glass scintillators, with the formula 10SiO2:(55-x)B2O3:10CaO:25GdF3:xCeF3, were fabricated by the melt-quenching technique. The doping concentration of the CeF3 was from 0.00 mol% to 0.20 mol%. The optical properties of the CeF3 doped glass scintillators were studied by using various radiation sources. The transition state of the CeF3-doped glass scintillators studied by using the absorption and photo-luminescence spectrum results. The X-ray, photo, proton and laser-induced luminescence spectra were also studied to understand the luminescence mechanism under various conditions. To understand the temperature dependence, the laser-induced luminescence and the decay component of the CeF3-doped glass scintillator were studied while the temperature was varied from 300 K to 10 K. The emission wavelength spectrum showed from 350 nm to 55 nm under various radiation sources. Also the CeF3-doped glass scintillator have one decay component as 34 ns at room temperature.

  4. Crystal growth and characterization of Ce:Gd3(Ga,Al)5O12 single crystal using floating zone method in different O2 partial pressure

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Fujimoto, Yutaka; Yamaji, Akihiro; Kurosawa, Shunsuke; Pejchal, Jan; Sugiyama, Makoto; Wakahara, Shingo; Futami, Yoshisuke; Yokota, Yuui; Kamada, Kei; Yubuta, Kunio; Shishido, Toetsu; Nikl, Martin

    2013-09-01

    Multicomponent garnet Ce:Gd3(Ga,Al)5O12 (Ce:GAGG) single crystals show very high light yield with reasonably fast scintillation response. Therefore, they can be promising scintillators for gamma-ray detection. However, in the decay curve a very slow component does exist. Therefore, it is necessary to optimize further the crystal growth technology of Ce:GAGG. In this study, Ce:GAGG single crystals were grown by the floating zone (FZ) method under atmospheres of various compositions such as Ar 100%, Ar 80% + O2 20%, Ar 60% + O2 40% and O2 100%. Radioluminescence spectra are dominated by the band at about 540 nm due to Ce3+ 5d1-4f transition. The Ce:GAGG single crystal grown under Ar atmosphere shows an intense slower decay component. It can be related to the processes of the delayed radiative recombination and thermally induced ionization of 5d1 level of Ce3+ center possibly further affected by oxygen vacancies. This slower decay process is significantly suppressed in the samples grown under the O2 containing atmosphere.

  5. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  6. Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area.

    PubMed

    Khan, Aysha Masood; Yusoff, Ismail; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Alias, Yatimah

    2016-12-01

    A study was carried out to determine the level of rare earth elements (REEs) in water and sediment samples from ex-mining lakes and River in Kinta Valley, Perak, Malaysia. Surface water and sediments from an ex-mining lake and Kinta River water samples were analyzed for REEs by inductively coupled plasma mass spectrometry. The total concentration of REEs in the ex-mining lake water samples and sediments were found to be 3685 mg/l and 14159 mg/kg, respectively, while the total concentration of REEs in Kinta River water sample was found to be 1224 mg/l. REEs in mining lake water were found to be within 2.42 mg/l (Tb) to 46.50 mg/l (Ce), while for the Kinta River, it was 1.33 mg/l (Ho) to 29.95 mg/l (Ce). Sediment samples were also found with REEs from 9.81 mg/kg (Ho) to 765.84 mg/kg (Ce). Ce showed the highest average concentrations for mining lake (3.88 to 49.08 mg/l) and Kinta River (4.44 to 33.15 mg/l) water samples, while the concentration of La was the highest (11.59 to 771.61 mg/kg) in the mining lake sediment. Lu was shown to have the highest enrichment of REEs in ex-mining lake sediments (107.3). Multivariate statistical analyses such as factor analysis and principal component analysis indicated that REEs were associated and controlled by mixed origin, with similar contributions from anthropogenic and geogenic sources. The speciation study of REEs in ex-tin mining sediments using a modified five-stage sequential extraction procedure indicated that yttrium (Y), gadolinium (Gd), and lanthanum (La) were obtained at higher percentages from the adsorbed/exchanged/carbonate fraction. The average potential mobility of the REEs was arranged in a descending order: Yb > Gd > Y = Dy > Pr > Er > Tm > Eu > Nd > Tb > Sc > Lu > Ce > La, implying that under favorable conditions, these REEs could be released and subsequently pollute the environment.

  7. Scintillation properties of Li6Y0.5Gd0.5(BO3)3: Ce3+ single crystal

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Rooh, Gul; Kim, H. J.; Park, H.; Kim, Sunghwan; Khan, Sajid

    2015-01-01

    The Ce3+ doped mixed crystals of Li6Y(BO3)3 and Li6Gd(BO3)3 are grown by Czochralski technique with equal mole ratios of both Yttrium and Gadolinium i.e. Li6Y0.5Gd0.5(BO3)3. The grown crystals have the dimensions of ∅10×30 mm2. Powder X-ray diffraction (XRD) analysis confirmed single phase of the grown crystals. X-ray and laser induced luminescence spectra are presented. Scintillation properties such as energy resolution, light yield, decay time and α/β ratio under the excitation of 137Cs γ-ray photons and 241Am α-particles are also reported in this article.

  8. Gold in the layered structures of R 3Au 7Sn 3: From relativity to versatility

    DOE PAGES

    Provino, Alessia; Steinberg, Simon Alexander; Smetana, Volodymyr; ...

    2016-07-11

    A new isotypic series of ternary rare earth element-gold-tetrel intermetallic compounds has been synthesized and their structures and properties have been characterized. R 3Au 7Sn 3 (R = Y, La-Nd, Sm, Gd-Tm, Lu) crystallize with the hexagonal Gd 3Au 7Sn 3 prototype (Pearson symbol hP26; P6 3/m, a = 8.110-8.372 Å, c = 9.351-9.609 Å, V cell = 532.7-583.3 Å3, Z = 2), an ordered variant of the Cu 10Sn 3-type. Their structure is built up by GdPt 2Sn-type layers, which feature edge-sharing Sn@Au 6 trigonal antiprisms connected by trigonal R3 groups. Additional insertion of gold atoms leads to themore » formation of new homoatomic Au clusters, Au@Au 6; alternatively, the structure can be considered as a superstructural polyhedral packing of the ZrBeSi-type. The magnetization, heat ca-pacity and electrical resistivity have been measured for R 3Au 7Sn 3 (R = Ce, Pr, Nd and Tb). All four compounds order antiferromagnetically with the highest T N of 13 K for Tb 3Au 7Sn 3. In Ce 3Au 7Sn 3, which has a T N of 2.9 K, the heat capacity and electrical resistivity data in zero and applied fields indicate the presence of Kondo interactions. The coefficient of the linear term in the electronic heat capacity, γ, derived from the heat capacity data below 0.5 K is 211 mJ/Ce mol K 2 suggesting strong electronic correlations due to the Kondo interaction. The electronic structure calculations based on the projector augmented wave method for particular representatives of the series suggest different tendencies of the localized R-4f AOs to hybridize with the valence states. LMTO-based bonding analysis on the non-magnetic La 3Au 7Sn 3 indicates that the integrated crystal orbital Hamilton popu-lations (COHPs) are dominated by the heteroatomic Au–Sn contacts; however, contributions from La–Au and La–Sn separations are significant, both together exceeding 40 % in the overall bonding. Furthermore, homoatomic Au–Au interactions are evident for the Au@Au 6 units but, despite of the high atomic concentration of Au in the compound, they do not dominate the entire bonding picture.« less

  9. Gold in the layered structures of R 3Au 7Sn 3: From relativity to versatility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provino, Alessia; Steinberg, Simon Alexander; Smetana, Volodymyr

    A new isotypic series of ternary rare earth element-gold-tetrel intermetallic compounds has been synthesized and their structures and properties have been characterized. R 3Au 7Sn 3 (R = Y, La-Nd, Sm, Gd-Tm, Lu) crystallize with the hexagonal Gd 3Au 7Sn 3 prototype (Pearson symbol hP26; P6 3/m, a = 8.110-8.372 Å, c = 9.351-9.609 Å, V cell = 532.7-583.3 Å3, Z = 2), an ordered variant of the Cu 10Sn 3-type. Their structure is built up by GdPt 2Sn-type layers, which feature edge-sharing Sn@Au 6 trigonal antiprisms connected by trigonal R3 groups. Additional insertion of gold atoms leads to themore » formation of new homoatomic Au clusters, Au@Au 6; alternatively, the structure can be considered as a superstructural polyhedral packing of the ZrBeSi-type. The magnetization, heat ca-pacity and electrical resistivity have been measured for R 3Au 7Sn 3 (R = Ce, Pr, Nd and Tb). All four compounds order antiferromagnetically with the highest T N of 13 K for Tb 3Au 7Sn 3. In Ce 3Au 7Sn 3, which has a T N of 2.9 K, the heat capacity and electrical resistivity data in zero and applied fields indicate the presence of Kondo interactions. The coefficient of the linear term in the electronic heat capacity, γ, derived from the heat capacity data below 0.5 K is 211 mJ/Ce mol K 2 suggesting strong electronic correlations due to the Kondo interaction. The electronic structure calculations based on the projector augmented wave method for particular representatives of the series suggest different tendencies of the localized R-4f AOs to hybridize with the valence states. LMTO-based bonding analysis on the non-magnetic La 3Au 7Sn 3 indicates that the integrated crystal orbital Hamilton popu-lations (COHPs) are dominated by the heteroatomic Au–Sn contacts; however, contributions from La–Au and La–Sn separations are significant, both together exceeding 40 % in the overall bonding. Furthermore, homoatomic Au–Au interactions are evident for the Au@Au 6 units but, despite of the high atomic concentration of Au in the compound, they do not dominate the entire bonding picture.« less

  10. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  11. A Systematic Study on the Generation of Multimetallic Lanthanide Fullerene ions by Laser Ablation Mass Spectrometry.

    PubMed

    Wang, Yiyun; Ma, LiFu; Mu, Lei; Ren, Juan; Kong, Xianglei

    2018-06-01

    Laser ablation masss spectromety has been previously proved to be a powerful tool for studying endohedro metallofullerene (EMF) ions. Our previous study showed the possiblity of forming multi-metallofullerene ions containg more than six metal atoms for La, Y and Lu. Thus, it is important to conduct a systematic study on the generation of multi-metallofullerenes and their distribuitons for all lanthanide elements. Experiments were performed on a 7.0 T Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer. Laser ablation mass spectra were obtained by laser irradiation on mixtures of graphene and MCl 3 on a stainless steel plate, applying a 355 nm Nd: YAG laser with a typical energy of 2.5 mJ/pulse. Reaction test experiments were performed by introducing O 2 into the FT ICR cell with a pulse valve. Multi-metallofullerene ions Ce2-4C2m+, Pr2-4C2m+, Gd2-4C2m+, Nd3C2m+, Dy2-3C2m+, Tb2-7C2m+, Ho2-6C2m+ were observed in the mass spectra. For metal Sm and Eu, no multi-metallofullerene ion was observed. No reaction with O 2 was observed in the reaction experiments, verifying that these species had endohedral structures. For the observed series of multi-metallofullerene ions, tri-metallofullerene ions dominated their mass spectra. The results were further compared with previously generated EMF ions for La, Er, Tm, Yb and Lu. Endohedral lanthanide metallofullerene ions were generated by laser ablation of graphene and the corresponding metal salts MCl 3 (M = Ce, Pr, Nd, Gd, Tb, Dy and Ho) and studied with a FT ICR mass spectrometer. Typically, multi-metallofullerene ions of TbnC2m+2≤n≤780≤2m≤176, Ho6C2m+2≤n≤674≤2m≤162 were observed. The results show that the formation of multi-EMF ions containing lanthanides that have +3 and +4 oxidation states is easier than those containing +2 oxidation states in the process of laser ablation. This article is protected by copyright. All rights reserved.

  12. Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors

    NASA Astrophysics Data System (ADS)

    Pang, Tao; Wang, Jiajun

    2018-01-01

    The hexagonal NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors are synthesized by a hydrothermal method. Under 980 nm excitation, the phosphor emits green, red and far-red light in the visible wavelength region, corresponding to the 5S2/5F4 → 5I8, 5F5 → 5I8 and 5S2/5F4 → 5I7 transitions of Ho3+ ions, respectively. When adjusting the Ce3+ concentration from 0% to 16%, the dominant wavelength shifts ˜43 nm toward the longer wavelength. Two cross-relaxation processes between Ho3+ and Ce3+ are responsible for the change in chromaticity. Also, the ability of the Ce3+ concentration to regulate the luminescence color depends on the pumping power and temperature of samples. More interestingly, the phosphors are potentially applicable as the optical thermometric materials. In the case of 16% Ce3+ doping, the maximum sensitivity (0.1446 K-1) about 4-35 times as high as the reported values of several typical thermometric materials is obtained.

  13. Electrical and magnetic properties of superconducting-insulating Pr-doped GdBa2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    1997-10-01

    An extensive study of magnetic, electrical transport, and structural properties of the normal and superconducting states of Gd1-xPrxBa2Cu3O7-y (GdPr-123) are presented. Ceramic compounds have been synthesized by the solid-state reaction technique, and characterized by x-ray-diffraction, scanning-electron-microscopy, thermogravimetric, and differential-thermal analyses. The superconducting transition temperature is reduced with increasing Pr content x in a nonlinear manner, in contrast to Abrikosov-Gor'kov pair-breaking theory. Magnetic susceptibility measurements show that the nominal Pr valence is 3.86+, independently of x. A metal-insulator transition is observed at xcr~0.45, similar to that in the oxygen-deficient RBa2Cu3O7-y (R-123) system. Based on this resemblance, we suggest that both Pr doping and oxygen deficiency act through the same mechanism. Hence, the environment surrounding the CuO2 layers is important to high-Tc superconductivity (HTSC). In this sense, HTSC cannot completely be a two-dimentional feature. A chain-plane-correlation effect is plausible.

  14. Structural Characterization and Absolute Luminescence Efficiency Evaluation of Gd2O2S High Packing Density Ceramic Screens Doped with Tb3+ and Eu3+ for further Applications in Radiology

    NASA Astrophysics Data System (ADS)

    Dezi, Anna; Monachesi, Elenasophie; D'Ignazio, Michela; Scalise, Lorenzo; Montalto, Luigi; Paone, Nicola; Rinaldi, Daniele; Mengucci, Paolo; Loudos, George; Bakas, Athanasios; Michail, Christos; Valais, Ioannis; Fountzoula, Christine; Fountos, George; David, Stratos

    2017-11-01

    Rare earth activators are impurities added in the phosphor material to enhance probability of visible photon emission during the luminescence process. The main activators employed are rare earth trivalent ions such as Ce+3, Tb+3, Pr3+ and Eu+3. In this work, four terbium-activated Gd2O2S (GOS) powder screens with different thicknesses (1049 mg/cm2, 425.41 mg/cm2, 313 mg/cm2 and 187.36 mg/cm2) and one europium-activated GOS powder screen (232.18 mg/cm2) were studied to investigate possible applications for general radiology detectors. Results presented relevant differences in crystallinity between the GOS:Tb doped screens and GOS:Eu screens in respect to the dopant agent present. The AE (Absolute efficiency) was found to rise (i) with the increase of the X-ray tube voltage with the highest peaking at 110kVp and (ii) with the decrease of the thickness among the four GOS:Tb. Comparing similar thickness values, the europium-activated powder screen showed lower AE than the corresponding terbium-activated.

  15. Li+, Na+ and K+ co-doping effects on scintillation properties of Ce:Gd3Ga3Al2O12 single crystals

    NASA Astrophysics Data System (ADS)

    Yoshino, Masao; Kamada, Kei; Kochurikhin, Vladimir V.; Ivanov, Mikhail; Nikl, Martin; Okumura, Satoshi; Yamamoto, Seiichi; Yeom, Jung Yeol; Shoji, Yasuhiro; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2018-06-01

    Ce0.5%: Ce:Gd3Ga3Al2O12(GGAG) single crystals co-doped with 500at.ppm Li+, Na+ and K+ were grown by using the micro-pulling down method. The smooth Ce4+ charge transfer absorption below 350 nm and decay time acceleration were observed in Li co-doped sample. Na+ and K+ co-doping did not show a large effect on the acceleration of decay time compared with Li co-doping. Ce0.5%:GGAG single crystals co-doped with 500 at.ppm Li+ were also grown by the Czochralski method. Optical, scintillation properties and timing performance were evaluated to investigate the effect of univalent alkali metal ions co-doping on Ce:GGAG scintillators. The scintillation decay curves were accelerated by Li co-doping: the decay time was significantly accelerated to 54.8 ns (47%) for the faster component and 158 ns (53%) for the slower component. The light output was 94% of the non co-doped Ce:GGAG standard. The coincidence time resolution was improved to 258 ps by Li co-doping.

  16. Epitaxial Growth of LuAG:Ce and LuAG:Ce,Pr Films and Their Scintillation Properties

    NASA Astrophysics Data System (ADS)

    Douissard, Paul-Antoine; Martin, Thierry; Riva, Federica; Zorenko, Yuriy; Zorenko, Tetiana; Paprocki, Kazimierz; Fedorov, Alexander; Bilski, Pawel; Twardak, Anna

    2016-06-01

    We performed the growth by Liquid Phase Epitaxy (LPE) of Ce and Ce-Pr doped Lu3Al5O12 (LuAG) Single Crystalline Films (SCFs) onto LuAG and Y3Al5O12 (YAG) substrates. The structural properties of LuAG:Ce and LuAG:Ce,Pr SCFs were examined by X-ray diffraction. The optical properties of the SCFs were studied through cathodoluminescence (CL) spectra, scintillation Light Yield (LY), decay kinetic under α-particle (Pu239) excitation, X-ray excited luminescence, thermostimulated luminescence (TSL) and afterglow measurements. The SCFs grown on LuAG substrates displayed good surface quality and structural perfection, whereas the SCFs grown on YAG substrates showed a rough surface and poorer crystalline quality, due to a large lattice mismatch between the film and the substrate (0.82%). Under α-particle excitation, the LY of LuAG:Ce SCF exceeded by 2 times that of the best YAG:Ce SCF sample used as reference. Under X-ray excitation, the LuAG:Ce SCF with optimized Ce concentration showed LY close (77%) to a reference YAG:Ce Single Crystal (SC) scintillator. The afterglow of LuAG:Ce and LuAG:Ce,Pr SCFs was lower (by 1 decade) than that of the tested reference LuAG:Ce SC. However there is not a complete suppression of the afterglow at room temperature (RT), despite the fact that the SCFs present much lower concentration of antisite and vacancy type defects than their SC counterparts. This can be explained by the presence in the films of other trap centers responsible for TSL above RT.

  17. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Luo, Zhaohua; Jiang, Haochuan; Meng, Fang; Koschan, Merry; Melcher, Charles L.

    2015-04-01

    Multicomponent garnet materials can be made in optical ceramic as well as single crystal form due to their cubic crystal structure. In this work, high-quality Gd3Ga3Al2O12:0.2 at% Ce (GGAG:Ce) single crystal and (Gd,Lu)3Ga3Al2O12:1 at% Ce (GLuGAG:Ce) optical ceramics were fabricated by the Czochralski method and a combination of hot isostatic pressing (HIPing) and annealing treatment, respectively. Under optical and X-ray excitation, the GLuGAG:Ce optical ceramic exhibits a broad Ce3+ transition emission centered at 550 nm, while the emission peak of the GGAG:Ce single crystal is centered at 540 nm. A self-absorption effect in GLuGAG:Ce optical ceramic results in this red-shift of the Ce3+ emission peak compared to that in the GGAG:Ce single crystal. The light yield under 662 keV γ-ray excitation was 45,000±2500 photons/MeV and 48,200±2410 photons/MeV for the GGAG:Ce single crystal and GLuGAG:Ce optical ceramic, respectively. An energy resolution of 7.1% for 662 keV γ-rays was achieved in the GLuGAG:Ce optical ceramic with a Hamamatsu R6231 PMT, which is superior to the value of 7.6% for a GGAG:Ce single crystal. Scintillation decay time measurements under 137Cs irradiation show two exponential decay components of 58 ns (47%) and 504 ns (53%) for the GGAG:Ce single crystal, and 84 ns (76%) and 148 ns (24%) for the GLuGAG:Ce optical ceramic. The afterglow level after X-ray cutoff in the GLuGAG:Ce optical ceramic is at least one order of magnitude lower than in the GGAG:Ce single crystal.

  18. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).

    PubMed

    Stacey, R Greg; Skinnider, Michael A; Scott, Nichollas E; Foster, Leonard J

    2017-10-23

    An organism's protein interactome, or complete network of protein-protein interactions, defines the protein complexes that drive cellular processes. Techniques for studying protein complexes have traditionally applied targeted strategies such as yeast two-hybrid or affinity purification-mass spectrometry to assess protein interactions. However, given the vast number of protein complexes, more scalable methods are necessary to accelerate interaction discovery and to construct whole interactomes. We recently developed a complementary technique based on the use of protein correlation profiling (PCP) and stable isotope labeling in amino acids in cell culture (SILAC) to assess chromatographic co-elution as evidence of interacting proteins. Importantly, PCP-SILAC is also capable of measuring protein interactions simultaneously under multiple biological conditions, allowing the detection of treatment-specific changes to an interactome. Given the uniqueness and high dimensionality of co-elution data, new tools are needed to compare protein elution profiles, control false discovery rates, and construct an accurate interactome. Here we describe a freely available bioinformatics pipeline, PrInCE, for the analysis of co-elution data. PrInCE is a modular, open-source library that is computationally inexpensive, able to use label and label-free data, and capable of detecting tens of thousands of protein-protein interactions. Using a machine learning approach, PrInCE offers greatly reduced run time, more predicted interactions at the same stringency, prediction of protein complexes, and greater ease of use over previous bioinformatics tools for co-elution data. PrInCE is implemented in Matlab (version R2017a). Source code and standalone executable programs for Windows and Mac OSX are available at https://github.com/fosterlab/PrInCE , where usage instructions can be found. An example dataset and output are also provided for testing purposes. PrInCE is the first fast and easy-to-use data analysis pipeline that predicts interactomes and protein complexes from co-elution data. PrInCE allows researchers without bioinformatics expertise to analyze high-throughput co-elution datasets.

  19. Comparative investigation of N donor ligand-lanthanide complexes from the metal and ligand point of view

    NASA Astrophysics Data System (ADS)

    Prüßmann, T.; Denecke, M. A.; Geist, A.; Rothe, J.; Lindqvist-Reis, P.; Löble, M.; Breher, F.; Batchelor, D. R.; Apostolidis, C.; Walter, O.; Caliebe, W.; Kvashnina, K.; Jorissen, K.; Kas, J. J.; Rehr, J. J.; Vitova, T.

    2013-04-01

    N-donor ligands such as n-Pr-BTP (2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine) studied here preferentially bind An(III) over Ln(III) in liquid-liquid separation of trivalent ac-tinides from spent nuclear fuel. The chemical and physical processes responsible for this selectivity are not yet well understood. We present systematic comparative near-edge X-ray absorption structure (XANES) spectroscopy investigations at the Gd L3 edge of [GdBTP3](NO3)3, [Gd(BTP)3](OTf)3, Gd(NO3)3, Gd(OTf)3 and N K edge of [Gd(BTP)3](NO3)3, Gd(NO3)3 complexes. The pre-edge absorption resonance in Gd L3 edge high-energy resolution X-ray absorption near edge structure spectra (HR-XANES) is explained as arising from 2p3/2 → 4f/5d electronic transitions by calculations with the FEFF9.5 code. Experimental evidence is found for higher electronic density on Gd in [Gd(BTP)3](NO3)3 and [Gd(BTP)3](OTf)3 compared to Gd in Gd(NO3)3 and Gd(OTf)3, and on N in [Gd(BTP)3](NO3)3 compared to n-Pr-BTP. The origin of the pre-edge structure in the N K edge XANES is explained by density functional theory (DFT) with the ORCA code. Results at the N K edge suggest a change in ligand orbital occupancies and mixing upon complexation but further work is necessary to interpret observed spectral variations.

  20. Standard reference water samples for rare earth element determinations

    USGS Publications Warehouse

    Verplanck, P.L.; Antweiler, Ronald C.; Nordstrom, D. Kirk; Taylor, Howard E.

    2001-01-01

    Standard reference water samples (SRWS) were collected from two mine sites, one near Ophir, CO, USA and the other near Redding, CA, USA. The samples were filtered, preserved, and analyzed for rare earth element (REE) concentrations (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by inductively coupled plasma-mass spectrometry (ICP-MS). These two samples were acid mine waters with elevated concentrations of REEs (0.45-161 ??g/1). Seventeen international laboratories participated in a 'round-robin' chemical analysis program, which made it possible to evaluate the data by robust statistical procedures that are insensitive to outliers. The resulting most probable values are reported. Ten to 15 of the participants also reported values for Ba, Y, and Sc. Field parameters, major ion, and other trace element concentrations, not subject to statistical evaluation, are provided.

  1. Trapping effect on a small molecular drug with vascular-disrupting agent CA4P in rodent H22 hepatic tumor model: in vivo magnetic resonance imaging and postmortem inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Gao, Meng; Yao, Nan; Huang, Dejian; Jiang, Cuihua; Feng, Yuanbo; Li, Yue; Lou, Bin; Peng, Fei; Sun, Ziping; Ni, Yicheng; Zhang, Jian

    2015-06-01

    The aim of the present study is to verify the trapping effect of combretastatin A-4-phosphate (CA4P) on small molecular drugs in rodent tumors. Mice with H22 hepatocarcinoma were randomized into groups A and B. Magnetic resonance imaging (MRI) of T1WI, T2WI, and DWI was performed as baseline. Mice in group A were injected with Gd-DTPA and PBS. Mice in group B were injected with Gd-DTPA and CA4P. All mice undergo CE-T1WI at 0 h, 3 h, 6 h, 12 h, and 24 h. Enhancing efficacy of the two groups on CE-T1WI was compared with the signal-to-noise ratio (SNR) calculated. Concentrations of gadolinium measured by ICP-AES in the tumor were compared between groups. On the early CE-T1WI, tumors were equally enhanced in both groups. On the delayed CE-T1WI, the enhancing effect of group A was weaker than that of group B. The SNR and the concentration of gadolinium within the tumor of group A were lower than that of group B at 6 h, 12 h, and 24 h after administration. This study indicates that CA4P could improve the retention of Gd-DTPA in the tumor and MRI allowed dynamically monitoring trapping effects of CA4P on local retention of Gd-DTPA as a small molecular drug.

  2. Structural and magnetic properties of two branches of the tripod-kagome-lattice family A2R3Sb3O14 (A = Mg, Zn; R = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb)

    NASA Astrophysics Data System (ADS)

    Dun, Z. L.; Trinh, J.; Lee, M.; Choi, E. S.; Li, K.; Hu, Y. F.; Wang, Y. X.; Blanc, N.; Ramirez, A. P.; Zhou, H. D.

    2017-03-01

    We present a systematic study of the structural and magnetic properties of two branches of the rare-earth tripod-kagome-lattice (TKL) family A2R3Sb3O14 (A = Mg, Zn; R = Pr, Nd, Gd, Tb, Dy, Ho, Er, Yb; here, we use abbreviation A-R, as in MgPr for Mg2Pr3Sb3O14 ), which complements our previously reported work on MgDy, MgGd, and MgEr [Z. L. Dun et al., Phys. Rev. Lett. 116, 157201 (2016), 10.1103/PhysRevLett.116.157201]. The present susceptibility (χdc, χac) and specific-heat measurements reveal various magnetic ground states, including the nonmagnetic singlet state for MgPr, ZnPr; long-range orderings (LROs) for MgGd, ZnGd, MgNd, ZnNd, and MgYb; a long-range magnetic charge ordered state for MgDy, ZnDy, and potentially for MgHo; possible spin-glass states for ZnEr, ZnHo; the absence of spin ordering down to 80 mK for MgEr, MgTb, ZnTb, and ZnYb compounds. The ground states observed here bear both similarities as well as striking differences from the states found in the parent pyrochlore systems. In particular, while the TKLs display a greater tendency towards LRO, the lack of LRO in MgHo, MgTb, and ZnTb can be viewed from the standpoint of a balance among spin-spin interactions, anisotropies, and non-Kramers nature of single-ion state. While substituting Zn for Mg changes the chemical pressure, and subtly modifies the interaction energies for compounds with larger R ions, this substitution introduces structural disorder and modifies the ground states for compounds with smaller R ions (Ho, Er, Yb).

  3. Thermodynamic Stability of Heterodimetallic [LnLn'] Complexes: Synthesis and DFT Studies

    DOE PAGES

    Gonzalez-Fabra, Joan; Bandeira, Nuno A. G.; Velasco, Veronica; ...

    2017-03-27

    The solid-state and solution configurations of the heterodimetallic complexes (Hpy)[LaEr(HL) 3(NO 3)(py)(H 2O)] (1), (Hpy)[CeEr(HL) 3(NO 3)(py)(H 2O)] (2), (Hpy)[CeGd(HL) 3(NO 3)(py)(H 2O)] (3), (Hpy)[PrSm(HL) 3(NO 3)(py)(H 2O)] (4), and (Hpy) 2[LaYb(HL) 3(NO 3)(H 2O)](NO 3) (5), in which H 3L is 6-(3-oxo-3-(2-hydroxyphenyl)propionyl)pyridine-2-carboxylic acid and py is pyridine, were analyzed experimentally and by using DFT calculations. Complexes 3, 4, and 5 are described here for the first time, and were analyzed by using single-crystal X-ray diffraction and mass spectrometry. The theoretical study was also extended to the [LaCe] and [LaLu] analogues. The results are consistent with a remarkable selectivity ofmore » the metal distribution within the molecule in the solid state, enhanced by the size difference between the different ions. This selectivity was reduced in solution, particularly for ions with the most similar radii. This unique entry into 4f–4f" heterometallic chemistry establishes for the first time the difference between the selectivity in solution and that in the solid state, as a result of changes to the coordination that follow the dissociation of terminal ligands upon dissolution of the complexes.« less

  4. Molecular dynamics simulation of fast particle irradiation to the Gd2O3-doped CeO2

    NASA Astrophysics Data System (ADS)

    Sasajima, Y.; Ajima, N.; Osada, T.; Ishikawa, N.; Iwase, A.

    2013-12-01

    The structural relaxation caused by the high-energy-ion irradiation of CeO2 with Gd2O3 addition was simulated by the molecular dynamics method. The amount of Gd2O3 was changed from 0 to 25 mol% by 5 mol%. As the initial condition, high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order radius located in the center of the specimen. The potential proposed by Inaba et al. was utilized to calculate interaction between atoms [H. Inaba, R. Sagawa, H. Hayashi, K. Kawamura, Solid State Ionics 122 (1999) 95-103]. The supplied thermal energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it dissipated in the specimen. By increasing the concentration of Gd2O3, more structural disorder was observed in the sample, which is consistent to the actual experiment.

  5. Accumulation of rare earth elements in human bone within the lifespan.

    PubMed

    Zaichick, Sofia; Zaichick, Vladimir; Karandashev, Vasilii; Nosenko, Sergey

    2011-02-01

    For the first time, the contents of rare earth elements (REEs) in a rib bone of a healthy human were determined. The mean value of the contents of Ce, Dy, Er, Gd, La, Nd, Pr, Sm, Tb, and Yb (10 elements out of 17 total REEs), as well as the upper limit of means for Ho, Lu, Tm, and Y (4 elements) were measured in the rib bone tissue of 38 females and 42 males (15 to 55 years old) using inductively coupled plasma mass spectrometry (ICP-MS). We found age-related accumulation of REEs in the bone tissue of healthy individuals who lived in a non-industrial region. It was calculated that during a lifespan the content of REEs in a skeleton of non-industrial region residents may increase by one to two orders of magnitude. Using our results as indicative normal values and published data we estimated relative Gd accumulation in the bone tissue of patients according to magnetic resonance imaging with contrast agent and La accumulation in the bone tissue of patients receiving hemodialysis after treatment with lanthanum carbonate as a phosphate binder. It was shown that after such procedures contents of Gd and La in the bone tissue of patients are two to three orders of magnitude higher than normal levels. In our opinion, REEs incorporation may affect bone quality and health similar to other potentially toxic trace metals. The impact of elevated REEs content on bone physiology, biochemistry and morphology requires further investigation.

  6. Charge deformation and orbital hybridization: intrinsic mechanisms on tunable chromaticity of Y3Al5O12:Ce3+ luminescence by doping Gd3+ for warm white LEDs

    PubMed Central

    Chen, Lei; Chen, Xiuling; Liu, Fayong; Chen, Haohong; Wang, Hui; Zhao, Erlong; Jiang, Yang; Chan, Ting-Shan; Wang, Chia-Hsin; Zhang, Wenhua; Wang, Yu; Chen, Shifu

    2015-01-01

    The deficiency of Y3Al5O12:Ce (YAG:Ce) luminescence in red component can be compensated by doping Gd3+, thus lead to it being widely used for packaging warm white light-emitting diode devices. This article presents a systematic study on the photoluminescence properties, crystal structures and electronic band structures of (Y1−xGdx)3Al5O12: Ce3+ using powerful experimental techniques of thermally stimulated luminescence, X-ray diffraction, X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS) and ultraviolet photoelectron spectra (UPS) of the valence band, assisted with theoretical calculations on the band structure, density of states (DOS), and charge deformation density (CDD). A new interpretation from the viewpoint of compression deformation of electron cloud in a rigid structure by combining orbital hybridization with solid-state energy band theory together is put forward to illustrate the intrinsic mechanisms that cause the emission spectral shift, thermal quenching, and luminescence intensity decrease of YAG: Ce upon substitution of Y3+ by Gd3+, which are out of the explanation of the classic configuration coordinate model. The results indicate that in a rigid structure, the charge deformation provides an efficient way to tune chromaticity, but the band gaps and crystal defects must be controlled by comprehensively accounting for luminescence thermal stability and efficiency. PMID:26175141

  7. Structural and magnetic properties of RTiNO{sub 2} (R=Ce, Pr, Nd) perovskite nitride oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Spencer H.; Huang, Zhenguo, E-mail: zhenguo@uow.edu.au; Cheng, Zhenxiang

    2015-03-15

    Neutron powder diffraction indicates that CeTiNO{sub 2} and PrTiNO{sub 2} crystallize with orthorhombic Pnma symmetry (Ce: a=5.5580(5), b=7.8369(7), and c=5.5830(4) Å; Pr: a=5.5468(5), b=7.8142(5), and c=5.5514(5) Å) as a result of a{sup –}b{sup +}a{sup –} tilting of the titanium-centered octahedra. Careful examination of the NPD data, confirms the absence of long range anion order in both compounds, while apparent superstructure reflections seen in electron diffraction patterns provide evidence for short range anion order. Inverse magnetic susceptibility plots reveal that the RTiNO{sub 2} (R=Ce, Pr, Nd) compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. Effective magneticmore » moments for RTiNO{sub 2} (R=Ce, Pr, Nd) are 2.43 μ{sub B}, 3.63 μ{sub B}, and 3.47 μ{sub B}, respectively, in line with values expected for free rare-earth ions. Deviations from Curie–Weiss behavior that occur below 150 K for CeTiNO{sub 2} and below 30 K for NdTiNO{sub 2} are driven by magnetic anisotropy, spin–orbit coupling, and crystal field effects. - Graphical abstract: The structure and magnetism of the oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr, Nd) have been explored. The average symmetry is shown to be Pnma with a random distribution of oxide and nitride ions and a{sup −}b{sup +}a{sup −} tilting of the titanium-centered octahedra, but electron diffraction shows evidence for short range anion order. All three compounds are paramagnetic but deviations from the Curie Weiss law are seen below 150 K for R=Ce and below 30 K for R=Nd. - Highlights: • The oxide nitride perovskites RTiNO{sub 2} (R=Ce, Pr) have been prepared and their structures determined. • Diffraction measurements indicate short range cis-order of O and N, but no long range order. • Compounds are paramagnetic with Weiss constants that vary from −28 to −42 K. • CeTiO{sub 2}N and NdTiO{sub 2}N deviate from Curie–Weiss behavior below 150 and 30 K, respectively.« less

  8. Electrical and magnetic properties of superconducting-insulating Pr-doped GdBa{sub 2}Cu{sub 3}O{sub 7{minus}y}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamani, Z.; Akhavan, M.

    1997-10-01

    An extensive study of magnetic, electrical transport, and structural properties of the normal and superconducting states of Gd{sub 1{minus}x}Pr{sub x}Ba{sub 2}Cu{sub 3}O{sub 7{minus}y} (GdPr-123) are presented. Ceramic compounds have been synthesized by the solid-state reaction technique, and characterized by x-ray-diffraction, scanning-electron-microscopy, thermogravimetric, and differential-thermal analyses. The superconducting transition temperature is reduced with increasing Pr content x in a nonlinear manner, in contrast to Abrikosov-Gor{close_quote}kov pair-breaking theory. Magnetic susceptibility measurements show that the nominal Pr valence is 3.86+, independently of x. A metal-insulator transition is observed at x{sub cr}{approx}0.45, similar to that in the oxygen-deficient RBa{sub 2}Cu{sub 3}O{sub 7{minus}y} (R-123) system.more » Based on this resemblance, we suggest that both Pr doping and oxygen deficiency act through the same mechanism. Hence, the environment surrounding the CuO{sub 2} layers is important to high-T{sub c} superconductivity (HTSC). In this sense, HTSC cannot completely be a two-dimentional feature. A chain-plane-correlation effect is plausible. {copyright} {ital 1997} {ital The American Physical Society}« less

  9. Gadolinium-doped hollow CeO2-ZrO2 nanoplatform as multifunctional MRI/CT dual-modal imaging agent and drug delivery vehicle.

    PubMed

    Wei, Zuwu; Wu, Ming; Li, Zuanfang; Lin, Zhan; Zeng, Jinhua; Sun, Haiyan; Liu, Xiaolong; Liu, Jingfeng; Li, Buhong; Zeng, Yongyi

    2018-11-01

    Developing multifunctional nanoparticle-based theranostic platform for cancer diagnosis and treatment is highly desirable, however, most of the present theranostic platforms are fabricated via complicated structure/composition design and time-consuming synthesis procedures. Herein, the multifunctional Gd/CeO 2 -ZrO 2 /DOX-PEG nanoplatform with single nano-structure was fabricated through a facile route, which possessed MR/CT dual-model imaging and chemotherapy ability. The nanoplatform not only exhibited well-defined shapes, tunable compositions and narrow size distributions, but also presented a well anti-cancer effect and MR/CT imaging ability. Therefore, the Gd/CeO 2 -ZrO 2 /DOX-PEG nanoplatform could be applied for chemotherapy as well as dual-model MR/CT imaging.

  10. Scintillation properties of selected oxide monocrystals activated with Ce and Pr

    NASA Astrophysics Data System (ADS)

    Wojtowicz, Andrzej J.; Drozdowski, Winicjusz; Wisniewski, Dariusz; Lefaucheur, Jean-Luc; Galazka, Zbigniew; Gou, Zhenhui; Lukasiewicz, Tadeusz; Kisielewski, Jaroslaw

    2006-01-01

    In the last 10-15 years there has been a significant effort toward development of new, more efficient and faster materials for detection of ionizing radiation. A growing demand for better scintillator crystals for detection of 511 keV gamma particles has been due mostly to recent advances in modern imaging systems employing positron emitting radionuclides for medical diagnostics in neurology, oncology and cardiology. While older imaging systems were almost exclusively based on BGO and NaI:Tl crystals the new systems, e.g., ECAT Accel, developed by Siemens/CTI, are based on recently discovered and developed LSO (Lu 2SiO 5:Ce, Ce-activated lutetium oxyorthosilicate) crystals. Interestingly, despite very good properties of LSO, there still is a strong drive toward development of new scintillator crystals that would show even better performance and characteristics. In this presentation we shall review spectroscopic and scintillator characterization of new complex oxide crystals, namely LSO, LYSO, YAG, LuAP (LuAlO 3, lutetium aluminate perovskite) and LuYAP activated with Ce and Pr. The LSO:Ce crystals have been grown by CTI Inc (USA), LYSO:Ce, LuAP:Ce and LuYAP:Ce crystals have been grown by Photonic Materials Ltd., Scotland (PML is the only company providing large LuAP:Ce crystals on a commercial scale), while YAG:Pr and LuAP:Pr crystals have been grown by Institute of Electronic Materials Technology (Poland). All these crystals have been characterized at Institute of Physics, N. Copernicus University (Poland). We will review and compare results of measurements of radioluminescence, VUV spectroscopy, scintillation light yields, scintillation time profiles and low temperature thermoluminescence performed on these crystals. We will demonstrate that all experiments clearly indicate that there is a significant room for improvement of LuAP, LuYAP and YAG. While both Ce-activated LSO and LYSO perform very well, we also note that LuYAP:Ce, LuAP:Ce and YAG:Pr offer some advantages and, after a likely improvement of some parameters, may also present a viable and desired alternative in applications that require high counting rates or better time resolution. Unfortunately, LuAP:Pr, although the fastest among all the materials studied, may be seriously limited in its achievable light yield by inherent physical processes that are responsible for nonradiative quenching of scintillation light in this material.

  11. Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market.

    PubMed

    Santato, Alessandro; Bertoldi, Daniela; Perini, Matteo; Camin, Federica; Larcher, Roberto

    2012-09-01

    A broad elemental profile incorporating 54 elements (Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt, Au, Hg, Tl, Pb, Bi and U) in combination with δ(2) H, δ(13) C, δ(15) N and δ(18) O was used to characterise the composition of 62 green arabica (Coffea arabica) and robusta (Coffea canephora) coffee beans grown in South and Central America, Africa and Asia, the four most internationally renowned areas of production. The δ(2) H, Mg, Fe, Co and Ni content made it possible to correctly assign 95% of green coffee beans to the appropriate variety. Canonical discriminant analysis, performed using δ(13) C, δ(15) N, δ(18) O, Li, Mg, P, K, Mn, Co, Cu, Se, Y, Mo, Cd, La and Ce correctly traced the origin of 98% of coffee beans. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Determination of K-shell absorption jump factors and jump ratios for La2O3, Ce and Gd using two different methods

    NASA Astrophysics Data System (ADS)

    Akman, Ferdi; Durak, Rıdvan; Kaçal, Mustafa Recep; Turhan, Mehmet Fatih; Akdemir, Fatma

    2015-02-01

    The K shell absorption jump factors and jump ratios for La2O3, Ce and Gd samples have been determined using the gamma or X-ray attenuation and EDXRF methods. It is the first time that the K shell absorption jump factor and jump ratio have been discussed for present elements using two different methods. To detect K X-rays, a high resolution Si(Li) detector was used. The experimental results of K shell absorption jump factors and jump ratios were compared with the theoretically calculated ones.

  13. Role of Gd{sup 3+} ion on downshifting and upconversion emission properties of Pr{sup 3+}, Yb{sup 3+} co-doped YNbO{sub 4} phosphor and sensitization effect of Bi{sup 3+} ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, A.; Rai, S. B., E-mail: sbrai49@yahoo.co.in; Mishra, Kavita

    Dual-mode luminescence (downshifting-DS and upconversion-UC) properties of Pr{sup 3+}/Yb{sup 3+} co-doped Y{sub 1−x}Gd{sub x}NbO{sub 4} (x = 0.0, 0.5, and 1.0) phosphors synthesized by solid state reaction technique have been explored with and without Gd{sup 3+} ion. The structural characterizations (XRD, SEM, and FTIR) confirm the pure phase of YNbO{sub 4} phosphor. Further, with the Gd{sup 3+} ion co-doping, the YNbO{sub 4} phosphors having a random shape and the large particle size are found to be transformed into nearly spherical shape particles with the reduced particle size. The optical band gaps (E{sub g}) of Y{sub 1−x}Gd{sub x}NbO{sub 4} (x = 0.00, 0.25, 0.50, andmore » 1.00) calculated from UV-Vis-NIR measurements are ∼3.69, 4.00, 4.38, and 4.44 eV, respectively. Moreover, YNbO{sub 4} phosphor is a promising blue emitting material, whereas Y{sub 1−x−y−z}Pr{sub y}Yb{sub z}Gd{sub x}NbO{sub 4} phosphor gives intense green, blue, and red emissions via dual-mode optical processes. The broad blue emission arises due to (NbO{sub 4}){sup 3−} group of the host with λ{sub ex} = 264 nm, whereas Pr{sup 3+} doped YNbO{sub 4} phosphor gives dominant red and blue emissions along with comparatively weak green emission on excitation with λ{sub ex} = 300 nm and 491 nm. The concentration dependent variation in emission intensity at 491 nm ({sup 3}P{sub 0}→{sup 3}H{sub 4} transition) and 612 nm ({sup 1}D{sub 2}→{sup 3}H{sub 4} transition); at 612 nm ({sup 1}D{sub 2}→{sup 3}H{sub 4} transition) and 658 nm ({sup 3}P{sub 0}→{sup 3}F{sub 2} transition) of Pr{sup 3+} ion in YNbO{sub 4} phosphor with λ{sub ex} = 300 nm and 491 nm excitations, respectively, has been thoroughly explored and explained by the cross-relaxation process through different channels. The sensitization effect of Bi{sup 3+} ion co-doping on DS properties of the phosphor has also been studied. The observed DS results have been optimized by varying the concentration of Pr{sup 3+} and Bi{sup 3+} ions, and the results are explained by the well-known simple band structure model. The study of Gd{sup 3+} co-doping reveals noticeable differences in DS characteristics of Y{sub 1−x}Pr{sub x}NbO{sub 4} phosphors: the overall decrement and increment (except for 612 nm emission) in intensity of DS emission on excitation with λ{sub ex} = 264 nm and 491 nm, respectively. These observations have been thoroughly explained, and the {sup 1}D{sub 2}→{sup 3}H{sub 4} transition (612 nm) of Pr{sup 3+} ion is found to be strongly dependent on surrounding environment of the host matrix. The UC properties of Y{sub 0.95−x}Pr{sub x}Yb{sub 0.05}NbO{sub 4} phosphors have been explored using Near Infra-Red (NIR) excitation. The material gives intense green and relatively weak blue and red UC emissions with λ{sub ex} = 980 nm. Interestingly, the UC emission intensity is further enhanced in the case of Y{sub 0.949−x}Pr{sub 0.001}Yb{sub 0.05}Gd{sub x}NbO{sub 4} phosphors. In addition, the less explored laser induced heating effect with the pump power as well as the irradiation time on the UC emission has been explored in Y{sub 0.949−x}Pr{sub 0.001}Yb{sub 0.05}Gd{sub x}NbO{sub 4} (x = 0, 0.5, and 0.949) phosphor samples, and subsequently, this feature has been found to be superior for Gd{sub 0.949}Pr{sub 0.001}Yb{sub 0.05}NbO{sub 4} phosphor. The comparative study between the two hosts, viz., YNbO{sub 4} and GdNbO{sub 4} shows that GdNbO{sub 4} is better than YNbO{sub 4} for UC emission behavior; however, a reverse is observed as for as DS behavior is concerned only for the particular excitation wavelength (λ{sub ex} = 264 nm).« less

  14. Scintillation properties of Ce-doped (Gd0.32Y0.68)3Al5O12 transparent ceramics

    NASA Astrophysics Data System (ADS)

    Hirano, Shotaro; Okada, Go; Kawaguchi, Noriaki; Yagi, Hideki; Yanagitani, Takagimi; Yanagida, Takayuki

    2017-04-01

    In this work, we have investigated optical and scintillation properties of 0.35-0.65% Ce:(Gd0.32Y0.68)3Al5O12 (Ce:GYAG) transparent ceramics prepared by the vacuum sintering method. Obtained samples showed high transmittance in the spectral region longer than 500 nm, and two strong absorption bands were clearly observed below 380 nm and between 400 and 500 nm due to the 4f-5d transitions of Ce3+. Under UV and X-rays, we have also observed emission due to the 5d-4f transitions of Ce3+ which appeared around 500-700 nm. The emission decay profile of PL consisted of a single exponential decay component with the decay time of 62.7-64.1 ns while the scintillation decay profile was approximated by a second-order exponential decay function with the decay times of 87.3-100 ns and 1.14-1.32 μs. In addition, it has been revealed that 0.65% Ce:GYAG transparent ceramic showed a notable light yield of 18,000 ph/MeV and low afterglow (13 ppm).

  15. Comparative study of blue laser diode driven cerium-doped single crystal phosphors in application of high-power lighting and display technologies

    NASA Astrophysics Data System (ADS)

    Balci, Mustafa H.; Chen, Fan; Cunbul, A. Burak; Svensen, Øyvind; Akram, M. Nadeem; Chen, Xuyuan

    2018-02-01

    Cerium-doped single crystals (Ce:LuAG, Ce:YAG, Ce:GAGG, Ce:GdYAG) have been investigated as stationary phosphor candidates for blue laser driven solid-state lighting without heat sink. The luminous properties of the single crystals are superior compared to the commercial ceramic powder phosphor wheels (Ce3+: Y3Al5O12). The high-power blue laser diode driven temperature increase of the crystals versus quantum efficiency is experimentally measured and discussed. We have carried out realistic measurements at high excitation power levels and at high temperatures. Limitation of phosphors as stationary sources is determined for commercial usage. The measurements were done without any heat sink to see the relative comparison of SCPs in the worst-case scenarios. The results indicate that Gd and Ga addition decreases the luminescence quenching temperature. Based on their superior properties, these single crystals can serve as potential phosphor candidates for high-power blue diode laser driven picture projectors for the green and red channels.

  16. Synthesis, magnetic and electrical properties of R3AlCx (R = Ce, Pr and Nd)

    NASA Astrophysics Data System (ADS)

    Ghule, S. S.; Garde, C. S.; Ramakrishnan, S.; Singh, S.; Rajarajan, A. K.; Laad, Meena; Karmakar, Koushik

    2017-09-01

    R3AlCx (R = Ce, Pr and Nd; x = 0-1) series has been synthesized by arc melting. Rietveld analysis of x-ray powder diffraction reveals cubic (Pm-3m) structure. A Kondo temperature TK 1 K is estimated for Ce3AlC0.65 from the susceptibility and resistivity data. Magnetic susceptibility measurements indicate antiferromagnetic (AFM) order for R = Pr (x = 0.8 and 1) and Nd (x = 0.6, 0.8 and 1) and ferromagnetic (FM) for Nd3Al. Metamagnetic behaviour in the magnetization curve indicates complex magnetic structure. Band structure calculations indicate growth of a pseudo-gap in the density of states (DOS) from Ce3AlC to Pr3AlC to Nd3AlC. The DOS calculations predict a metallic behaviour which is consistent with the resistivity measurements.

  17. New tetragonal derivatives of cubic NaZn13-type structure: RNi6Si6 compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd-Yb)

    NASA Astrophysics Data System (ADS)

    Pani, M.; Manfrinetti, P.; Provino, A.; Yuan, Fang; Mozharivskyj, Y.; Morozkin, A. V.; Knotko, A. V.; Garshev, A. V.; Yapaskurt, V. O.; Isnard, O.

    2014-02-01

    Novel RNi6Si6 compounds adopt the new CeNi6Si6-type structure for R=La-Ce (tP52, space group P4/nbm N 125-1) and new YNi6Si6-type structure for R=Y, Sm, Gd-Yb (tP52, space group P4barb2N 117) that are tetragonal derivative of NaZn13-type structure, like LaCo9Si4-type. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi6Si6 does not follow Curie-Weiss law. The DyNi6Si6 shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μB/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K. The CeNi6Si6, GdNi6Si6, TbNi6Si6, DyNi6Si6 and HoNi6Si6 compounds are Curie-Weiss paramagnets down to ~30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi6Si6 with K=[±1/4, ±1/4, 0] wave vector below ~10 K.

  18. Efficient multicolor tunability of ultrasmall ternary-doped LaF3 nanoparticles: energy conversion and magnetic behavior.

    PubMed

    Shrivastava, Navadeep; Khan, L U; Vargas, J M; Ospina, Carlos; Coaquira, J A Q; Zoppellaro, Giorgio; Brito, H F; Javed, Yasir; Shukla, D K; Felinto, M C F C; Sharma, Surender K

    2017-07-19

    Luminescence-tunable multicolored LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ (x = 5; y = 1, 5, 10, and 15 mol%) nanoparticles have been synthesized via a low cost polyol method. Powder X-ray diffraction and high-resolution transmission electron microscopy studies confirm the hexagonal phase of the LaF 3 :xCe 3+ ,xGd 3+ ,yEu 3+ nanophosphors with average sizes (oval shape) ranging from 5 to 7 nm. Energy-dispersive X-ray spectroscopy analyses show the uniform distribution of Ce 3+ , Gd 3+ , and Eu 3+ dopants in the LaF 3 host matrix. The photoluminescence spectra and electron paramagnetic resonance measurements guarantee the presence of Eu 2+ , corroborated through DC susceptibility measurements of the samples displaying paramagnetic behavior at 300 K, whereas weak ferromagnetic ordering is shown at 2 K. The non-radiative energy transfer processes from the 4f( 2 F 5/2 ) → 5d state (Ce 3+ ) to the intraconfigurational 4f excited levels of rare earth ions and simultaneous emissions in the visible region from the 4f 6 5d 1 (Eu 2+ ) and 5 D 0 (Eu 3+ ) emitting levels, leading to overlapped broad and narrow emission bands, have been proclaimed. The energy transfer mechanism proposes involvement of the Gd 3+ ion sub-lattice as the bridge and finally trapping by Eu 2+/3+ , upon excitation of the Ce 3+ ion. The calculation of experimental intensity parameters (Ω 2,4 ) has been discussed and the highest emission quantum efficiency (η = 85%) of the Eu 3+ ion for the y = 10 mol% sample is reported. The advantageous existence of the Eu 2+ /Eu 3+ ratio along with variously doped nanomaterials described in this work, results in tunable emission color in the blue-white-red regions, highlighting the potential application of the samples in solid-state lighting devices, scintillation devices, and multiplex detection.

  19. Redox cycling induced Ni exsolution in Gd0.1Ce0.8Ni0.1O2 - (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 composite solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Shen, X.; Chen, T.; Bishop, S. R.; Perry, N. H.; Tuller, H. L.; Sasaki, K.

    2017-12-01

    Oxide anodes composed of 60 wt% Gd0.1Ce0.8Ni0.1O2 (GDCN)- 40 wt% (Sr0.9La0.1)0.9Ti0.9Ni0.1O3 (SLTN) composites were prepared and tested on (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (SSZ) electrolyte-supported SOFC cells utilizing a (La0.75Sr0.25)0.98MnO3 (LSM)-SSZ cathode, in 3%-humidified hydrogen fuel at 800 °C. Improved electrochemical performance was found compared to the cell using Ni-free 60 wt% Gd0.1Ce0.9O2 (GDC) - 40 wt % Sr0.9La0.1TiO3 (SLT) that was attributed to the exsolution of nano-sized Ni particles from the Ni-doped system. This exsolution process represents a simpler, more attractive method to improve performance than the more conventional but more complicated infiltration method for introducing catalytic nanoparticles. Redox cycling testing was performed to investigate the performance and structural stability of the Ni-doped GDC-SLT anode. The results indicated that the Ni exsolution and aggregation occurred while redox cycling proceeded, resulting in a gradually reduced anodic overvoltage. Symmetric cells with dense thin film Gd0.1Ce0.9-xNixO2 (x = 0, 0.05, 0.1, 0.15) electrodes were also tested, demonstrating lower area-specific resistances with increasing Ni content on the surface under reducing conditions. The steady improvement during redox cycling, despite Ni agglomeration, is related to the continuous increase in the overall Ni content on the anode surface, which may be enabled by kinetic limitations to Ni re-dissolving under oxidizing transients.

  20. Enrichment of rare earth metal ions by the highly selective adsorption of phytate intercalated layered double hydroxide.

    PubMed

    Jin, Cheng; Liu, Huimin; Kong, Xianggui; Yan, Hong; Lei, Xiaodong

    2018-02-27

    Phytate intercalated MgAl layered double hydroxide (MgAl-LDH) was prepared by an anion exchange method with the precursor NO 3 - containing MgAl-LDH. The final as-synthesized product [Mg 0.69 Al 0.31 (OH) 2 ] (phytateNa 6 ) 0.05 (NO 3 ) 0.01 ·mH 2 O (phytate-LDH) has highly selective adsorption ability for some metal ions and can be used to enrich rare earth metal ions in mixed solution, such as Pr 3+ and Ce 3+ from a mixed solution of them with Pb 2+ and Co 2+ . At first, phytate-LDH has good adsorption performance for these ions in single metal ion solutions. At low concentration (below 10 mg L -1 ), all the capture rates of the four metal ions were more than 97%, for highly toxic Pb 2+ it was even up to nearly 100%, and a high capture rate (99.87%) was maintained for Pb 2+ at a high concentration (100 mg L -1 ). When all the four metal ions are co-existing in aqueous solution, the selectivity order is Pb 2+ ≫ Pr 3+ ≈ Ce 3+ > Co 2+ . In a solution containing mixtures of the three metal ions of Pr 3+ , Ce 3+ , and Co 2+ , the selectivity order is Pr 3+ ≈ Ce 3+ ≫ Co 2+ , and in a solution containing mixtures of Pr 3+ with Co 2+ and Ce 3+ with Co 2+ , the selectivity orders are Pr 3+ ≫ Co 2+ and Ce 3+ ≫ Co 2+ , respectively. The high selectivity and adsorption capacities for Pb 2+ , Co 2+ , Pr 3+ , and Ce 3+ result in the efficient removal of Pb 2+ and enrichment of the rare earth metal ions Pr 3+ and Ce 3+ by phytate-LDH. Based on the elemental analysis, it is found that the difference of the adsorption capacities is mainly due to the different coordination number of them with phytate-LDH. With molecular simulation, we believe that the adsorption selectivity is due to the difference of the binding energy between the metal ion and phytate-LDH. Therefore, the phytate-LDH is promising for the enrichment and/or purification of the rare earth metal ions and removal of toxic metal ions from waste water.

  1. Lanthanide co-doped paramagnetic spindle-like mesocrystals for imaging and autophagy induction

    NASA Astrophysics Data System (ADS)

    Xu, Yun-Jun; Lin, Jun; Lu, Yang; Zhong, Sheng-Liang; Wang, Lei; Dong, Liang; Wu, Ya-Dong; Peng, Jun; Zhang, Li; Pan, Xiao-Feng; Zhou, Wei; Zhao, Yang; Wen, Long-Ping; Yu, Shu-Hong

    2016-07-01

    We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy.We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy. Electronic supplementary information (ESI) available: Size distribution, HRTEM image and additional cellular data. See DOI: 10.1039/c6nr03171d

  2. Morphologically well-defined Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber with an enhanced triple phase boundary as cathode for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Chanho; Park, Hyunjung; Jang, Inyoung; Kim, Sungmin; Kim, Kijung; Yoon, Heesung; Paik, Ungyu

    2018-02-01

    Controlling triple phase boundary (TPB), an intersection of the ionic conductor, electronic conductor and gas phase as a major reaction site, is a key to improve cell performances for low-temperature solid oxide fuel cells. We report a synthesis of morphologically well-defined Gd0.1Ce0.9O1.95 (GDC) embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) nanofibers and their electrochemical performances as a cathode. Electrospun fibers prepared with a polymeric solution that contains crystalline Ba0.5Sr0.5Co0.8Fe0.2O3-δ particles in ∼200 nm size and Gd(NO3)3/Ce(NO3)3 precursors in an optimized weight ratio of 3 to 2 result in one dimensional structure without severe agglomeration and morphological collapse even after a high calcination at 1000 °C. As-prepared nanofibers have fast electron pathways along the axial direction of fibers, a higher surface area of 7.5 m2 g-1, and more oxygen reaction sites at TPBs than those of GDC/BSCF composite particles and core-shell nanofibers. As a result, the Gd0.1Ce0.9O1.95 embedded Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofiber cell shows excellent performances of the maximum power density of 0.65 W cm-2 at 550 °C and 1.02 W cm-2 at 600 °C, respectively.

  3. Electron doped layered nickelates: Spanning the phase diagram of the cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botana, Antia S.; Pardo, Victor; Norman, Michael R.

    2017-07-01

    Pr4Ni3O8 is an overdoped analog of hole-doped layered cuprates. Here we show via ab initio calculations that Ce-doped Pr4Ni3O8 (Pr3CeNi3O8) has the same electronic structure as the antiferromagnetic insulating phase of parent cuprates.We find that substantial Ce doping should be thermodynamically stable and that other 4+ cations would yield a similar antiferromagnetic insulating state, arguing this configuration is robust for layered nickelates of low-enough valence. The analogies with cuprates at different d fillings suggest that intermediate Ce-doping concentrations near 1/8 should be an appropriate place to search for superconductivity in these low-valence Ni oxides.

  4. Fermi-surface topology of the heavy-fermion system Ce2PtIn8

    NASA Astrophysics Data System (ADS)

    Klotz, J.; Götze, K.; Green, E. L.; Demuer, A.; Shishido, H.; Ishida, T.; Harima, H.; Wosnitza, J.; Sheikin, I.

    2018-04-01

    Ce2PtIn8 is a recently discovered heavy-fermion system structurally related to the well-studied superconductor CeCoIn5. Here we report on low-temperature de Haas-van Alphen-effect measurements in high magnetic fields in Ce2PtIn8 and Pr2PtIn8 . In addition, we performed band-structure calculations for localized and itinerant Ce-4 f electrons in Ce2PtIn8 . Comparison with the experimental data of Ce2PtIn8 and of the 4 f -localized Pr2PtIn8 suggests the itinerant character of the Ce-4 f electrons. This conclusion is further supported by the observation of effective masses in Ce2PtIn8 , which are strongly enhanced with up to 26 bare electron masses.

  5. Significant Improvement of Thermal Stability for CeZrPrNd Oxides Simply by Supercritical CO2 Drying

    PubMed Central

    Fan, Yunzhao; Wang, Zizi; Xin, Ying; Li, Qian; Zhang, Zhaoliang; Wang, Yingxia

    2014-01-01

    Pr and Nd co-doped Ce-Zr oxide solid solutions (CZPN) were prepared using co-precipitation and microemulsion methods. It is found that only using supercritical CO2 drying can result in a significant improvement of specific surface area and oxygen storage capacity at lower temperatures for CZPN after aging at 1000°C for 12 h in comparison with those using conventional air drying and even supercritical ethanol drying. Furthermore, the cubic structure was obtained in spite of the fact that the atomic ratio of Ce/(Ce+Zr+Pr+Nd) is as low as 29%. The high thermal stability can be attributed to the loosely aggregated morphology and the resultant Ce enrichment on the nanoparticle surface, which are caused by supercritical CO2 drying due to the elimination of surface tension effects on the gas-liquid interface. PMID:24516618

  6. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS.

    PubMed

    Li, Yan; Yu, Hua; Zheng, Siqian; Miao, Yang; Yin, Shi; Li, Peng; Bian, Ying

    2016-03-22

    Rare earth elements (REEs) have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs ((89)Y, (139)La, (140)Ce, (141)Pr, (146)Nd, (147)Sm, (153)Eu, (157)Gd, (159)Tb, (163)Dy, (165)Ho, (166)Er, (169)Tm, (172)Yb and (175)Lu) in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001-1.000 μg ∙ L(-1) with r² > 0.997. The limits of detection and quantification for this method were in the range of 0.009-0.010 μg ∙ L(-1) and 0.029-0.037 μg ∙ L(-1), the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg ∙ L(-1)), Ce (1.492 ± 0.995 μg ∙ L(-1)), Nd (0.014 ± 0.009 μg ∙ L(-1)) and Gd (0.023 ± 0.010 μg ∙ L(-1)) among the exposed workers were significantly higher (p < 0.05) than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and the control subjects show a higher trend than previous reports.

  7. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS

    PubMed Central

    Li, Yan; Yu, Hua; Zheng, Siqian; Miao, Yang; Yin, Shi; Li, Peng; Bian, Ying

    2016-01-01

    Rare earth elements (REEs) have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs (89Y, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb and 175Lu) in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001–1.000 μg∙L−1 with r2 > 0.997. The limits of detection and quantification for this method were in the range of 0.009–0.010 μg∙L−1 and 0.029–0.037 μg∙L−1, the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg∙L−1), Ce (1.492 ± 0.995 μg∙L−1), Nd (0.014 ± 0.009 μg∙L−1) and Gd (0.023 ± 0.010 μg∙L−1) among the exposed workers were significantly higher (p < 0.05) than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and the control subjects show a higher trend than previous reports. PMID:27011194

  8. Electronic structure of R Sb ( R = Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    DOE PAGES

    Wu, Yun; Lee, Yongbin; Kong, Tai; ...

    2017-07-15

    Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less

  9. Electronic structure of R Sb ( R = Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Lee, Yongbin; Kong, Tai

    Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less

  10. Investigation of thick PLD-GdBCO and ZrO2 doped GdBCO coated conductors with high critical current on PLD-CeO2 capped IBAD-GZO substrate tapes

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Kobayashi, H.; Yamada, Y.; Ibi, A.; Fukushima, H.; Konishi, M.; Miyata, S.; Shiohara, Y.; Kato, T.; Hirayama, T.

    2006-09-01

    In order to increase the critical current, Ic, we have fabricated thick GdBa2Cu3O7-δ (GdBCO) coated conductors (CCs) by the pulsed laser deposition (PLD) method on PLD-CeO2/ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO)/hastelloy metal substrate tapes. The highest critical current value was 522 A cm-1 for a thickness of 3.6 µm in self-field at 77 K. It was found that a low volume fraction of a-axis orientated grains was obtained in the thick GdBCO CCs, compared to YBa2Cu3O7-δ (YBCO) CCs. Consequently, the GdBCO CCs showed higher critical current density (Jc) than YBCO CCs in all thicknesses from 0.2 to 3.6 µm. Furthermore, we have succeeded in improving Ic in a magnetic field by the introduction of artificial pinning centres using a 5 mol% ZrO2 doped GdBCO target. In the measurement of the Ic dependence on the magnetic field angle, θ, Ic was much improved, especially at 0°, i.e., with the magnetic field parallel to the c-axis. The Ic value at 3 T was 59.5 A cm-1 at 0° and it showed a minimum of 42.3 A cm-1 at 82° for 2.28 µm thick CC. The minimum value in the angular dependence of Ic at 3 T was about five times higher than that of YBCO CC and two times higher than that of pure GdBCO CC.

  11. Development of a thick GdBCO and ZrO 2-doped GdBCO film with a high critical current on a PLD-CeO 2/IBAD-GZO metal substrate

    NASA Astrophysics Data System (ADS)

    Kinoshita, A.; Takahashi, K.; Kobayashi, H.; Yamada, Y.; Ibi, A.; Fukushima, H.; Konishi, M.; Miyata, S.; Shiohara, Y.; Kato, T.; Hirayama, T.

    2007-10-01

    In order to obtain a high critical current, Ic, we have fabricated a thick GdBa2Cu3O7-x (GdBCO) film by the pulsed laser deposition (PLD) method on a PLD-CeO2/ion-beam assisted deposition (IBAD)-Gd2Zr2O7 (GZO)/hastelloy metal substrate. The film of a 3.6 μm thickness exhibited the highest critical current of 522 A/cm at self-field and at 77 K. It was found that a low volume fraction of a-axis oriented grains was obtained in the thick GdBCO films, compared to YBa2Cu3O7-x (YBCO) films. The GdBCO films showed a higher critical current density (Jc), than YBCO films in all thicknesses from 0.2 to 3.6 μm. Furthermore, we have improved Ic in a magnetic field by the introduction of artificial pinning centers using a 5 mol% ZrO2-doped GdBCO target. In the measurement of angular dependence of Ic, which was much improved at 0°, the magnetic field was parallel to the c-axis. The Ic value at 3 T was 59.5 A/cm at 0° and showed a minimum of 42.3 A/cm at 82° for the film of a 2.3 μm thickness. The minimum value at 3 T in angular dependence of Ic was about five times higher than that of the YBCO film and two times higher than that of pure the GdBCO film.

  12. Novel chromium doped perovskites A2ZnTiO6 (A = Pr, Gd): Synthesis, crystal structure and photocatalytic activity under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Chen, Kai; Guan, Ming; Tang, Chao; Zhang, Lina; Wang, Meng

    2017-01-01

    Double perovskite related oxides A2ZnTiO6 (A = Pr, Gd) have been successfully synthesized by solid state reaction and investigated as photocatalysts for the first time. The two layered titanates mainly demonstrate absorbances under UV irradiation, except for several sharp absorption bands above 400 nm for Pr2ZnTiO6. Therefore, a series of photocatalysts by doping A2ZnTiO6 (A = Pr, Gd) with Cr have been developed in the hope to improve their absorption in the visible light region. The successful incorporation of Cr was detected by XRD and XPS, and the prepared samples have also been characteriazed by SEM, UV-vis DRS and PL. The characterization results suggested that Cr was present mainly in the form of Cr3+, with only a small amount of Cr6+ species. It served as an efficient dopant for the extension of visible light absorbance and improved photocatalytic activities under solar light irradiation. For both Pr2ZnTiO6 and Gd2ZnTiO6, the valence band (VB) was composed of hybridized states of the Zn 3d, O 2p and the conduction band (CB) has major contribution from Zn 4s, Ti 3d orbitals. For Cr doped samples, the newly formed spin-polarized valence band in the middle of the band gap that primarily arises from Cr 3d orbitals was responsible for the improved optical and photocatalytic properties.

  13. Covalency in lanthanides. An X-ray absorption spectroscopy and density functional theory study of LnCl6(x-) (x = 3, 2).

    PubMed

    Löble, Matthias W; Keith, Jason M; Altman, Alison B; Stieber, S Chantal E; Batista, Enrique R; Boland, Kevin S; Conradson, Steven D; Clark, David L; Lezama Pacheco, Juan; Kozimor, Stosh A; Martin, Richard L; Minasian, Stefan G; Olson, Angela C; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Zehnder, Ralph A

    2015-02-25

    Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).

  14. Pr:Ca1-xRxF2+x (R=Y or Gd) crystals: Modulated blue, orange and red emission spectra with the proportion of R3+ ions

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Qian, Xiaobo; Guo, Linyang; Jiang, Dapeng; Wu, Qinghui; Tang, Fei; Su, Liangbi; Ju, Qiangwen; Wang, Jingya; Xu, Jun

    2018-04-01

    The spectroscopic properties of 0.6at.%:Pr:Ca1-xRxF2+x (R = Y, Gd; x = 0,0.006, 0.012, 0.03, 0.06) crystals were investigated and compared. The XRD tests were conducted and the cell dimensions of the crystals were calculated. Room temperature absorption spectra have been registered and analyzed. The emission spectra and decay curves of the crystals were obtained at room temperature. Increasing the proportion of the lattice regulators of Y3+ or Gd3+ ions could significantly enhance the luminescence intensity of all visible emission bands with different ratios. Particularly, the emission intensity ratio of orange to red increased from 0.15 to 1.9 in Pr:Ca1-xYxF2+x crystals and to 1.02 in Pr:Ca1-xGdxF2+x crystals, respectively. Furthermore, Pr:Ca1-xGdxF2+x crystals have substantially strong emission at orange and red region of 580-660 nm, comparable with blue light at 482 nm. The quantum efficiency of the crystals increased rapidly with the increment of R3+ concentration, and finally tend to be 100%.

  15. White-emission in single-phase Ba2Gd2Si4O13:Ce3 +,Eu2 +,Sm3 + phosphor for white-LEDs

    NASA Astrophysics Data System (ADS)

    Jiang, Xiumin; Zhang, Yuqian; Zhang, Jia

    2018-03-01

    To develop new white-light-emitting phosphor, a series of Ce3 +-Eu2 +-Sm3 + doped Ba2Gd2Si4O13 (BGS) phosphors were prepared by the solid-state reaction method, and their photoluminescence properties were studied. The Ce3 + and Eu2 + single-doped BGS show broad emission bands around in the region of 350-550 and 420-650 nm, respectively. By co-doping Ce3 +-Eu2 + into BGS, the energy transfer (ET) from Ce3 + to Eu2 + is inefficient, which could be due to the competitive absorption between the two activator ions. The Sm3 +-activated BGS exhibits an orangey-red emission in the region of 550-750 nm. To achieve white emission, the BGS:0.06Ce3 +,0.04Eu2 +,ySm3 + (0 ≤ y ≤ 0.18) phosphors were designed, in which the ET from Ce3 +/Eu2 + to Sm3 + was observed. The emission color can be tuned by controlling the Sm3 + concentration, and white emission was obtained in the BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample. The investigation of thermal luminescence stability for the typical BGS:0.06Ce3 +,0.04Eu2 +,0.06Sm3 + sample reveals that the emission intensities of both Eu2 + and Sm3 + demonstrate continuous decrease but the Ce3 + emission is enhanced gradually with increasing temperature. The corresponding reason has been discussed.

  16. Hydrothermal synthesis and photoluminescent properties of hierarchical GdPO4·H2O:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+) flower-like clusters

    NASA Astrophysics Data System (ADS)

    Amurisana, Bao.; Zhiqiang, Song.; Haschaolu, O.; Yi, Chen; Tegus, O.

    2018-02-01

    3D hierarchical GdPO4·H2O:Ln3+ (Ln3+ = Eu3+, Ce3+, Tb3+) flower clusters were successfully prepared on glass slide substrate by a simple, economical hydrothermal process with the assistance of disodium ethylenediaminetetraacetic acid (Na2H2L, where L4- = (CH2COO)2N(CH2)2N(CH2COO)24-). In this process, Na2H2L was used as both a chelating agent and a structure-director. The hierarchical flower clusters have an average diameter of 7-12 μm and are composed of well-aligned microrods. The influence of the molar ratio of Na2H2L/Gd3+ and reaction time on the morphology was systematically studied. A possible crystal growth and formation mechanism of hierarchical flower clusters is proposed based on the evolution of morphology as a function of reaction time. The self-assembled GdPO4·H2O:Ln3+ superstructures exhibit strong orange-red (Eu3+, 5D0 → 7F1), green (Tb3+, 5D4 → 7F5) and near ultraviolet emissions (Ce3+, 5d → 7F5/2) under ultraviolet excitation, respectively. This study may provide a new channel for building hierarchically superstructued oxide micro/nanomaterials with optical and new properties.

  17. Raman scattering in the RTiO3 family of Mott-Hubbard insulators

    NASA Astrophysics Data System (ADS)

    Reedyk, M.; Crandles, D. A.; Cardona, M.; Garrett, J. D.; Greedan, J. E.

    1997-01-01

    Raman-scattering measurements have been carried out for crystals of the RTiO3 (R=La,Ce,Pr,Nd,Sm,Gd) system whose members are Mott-Hubbard insulators. RTiO3 has an orthorhombically distorted perovskite unit cell. The distortion increases systematically from LaTiO3 to GdTiO3 and is accompanied by changes in electronic structure (decreasing W/U ratio). As a consequence of the changing electronic properties, the Raman spectrum shows an interesting evolution of both the phonon features and the electronic continuum. Most notable are (1) a redistribution in the spectral shape of the electronic background, (2) a systematic change in line shape, and a dramatic increase in the center frequency of one of the phonon modes from 287 cm-1 in LaTiO3 to 385 cm-1 in GdTiO3, and (3) the observation of resonance effects in the most insulating members of the series. The appearance of a free-carrier component in the electronic-scattering background, which seems to be related to systematic self-energy effects of the phonon near 300 cm-1, is unexpected. It is likely the result of increased doping due to a greater facility for rare-earth vacancies to form in large R3+ ionic radius members of the series. A systematic increase in the continuum scattering rate is also observed and indicates that the free carriers are not scattering off rare-earth vacancies but rather that the scattering mechanism originates from changes in electronic structure.

  18. The laser-diode-excited 5 d-4 f luminescence of Ce3+ and Pr3+ ions embedded into a BaR2F8 matrix

    NASA Astrophysics Data System (ADS)

    Pushkar', A. A.; Uvarova, T. V.; Kozlova, N. S.; Kuznetsov, S. Yu.; Uvarova, A. G.

    2013-06-01

    We show the possibility of obtaining UV luminescence from 5 d-4 f transitions of rare-earth ions in the BaY2F8: (Yb3+, Pr3+, Ce3+) crystal under upconversion excitation by standard laser diodes with lasing wavelengths of 960, 808, and 840 nm. Various upconversion mechanisms of pumping for populating the higher-lying energy levels of the active ions, as well as methods of adaptation of the active medium BaY2F8: (Yb3+, Pr3+, Ce3+) to these mechanisms, are considered.

  19. Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce(3+) doping.

    PubMed

    Yi, Zhigao; Zeng, Tianmei; Xu, Yaru; Lu, Wei; Qian, Chao; Liu, Hongrong; Zeng, Songjun; Hao, Jianhua

    2015-09-25

    A simple strategy of Ce(3+) doping is proposed to realize multicolor tuning and predominant red emission in BaLnF5:Yb(3+)/Ho(3+) (Ln(3+) = Gd(3+), Y(3+), Yb(3+)) systems. A tunable upconversion (UC) multicolor output from green/yellow to red can be readily achieved in a fixed Yb(3+)/Ho(3+) composition by doping Ce(3+), providing an effective route for multicolor tuning widely used for various optical components. Moreover, compared with Ce(3+)-free UC nanoparticles (UCNPs), a remarkable enhancement of the red-to-green (R/G) ratio is observed by doping 30% Ce(3+), arising from the two largely promoted cross-relaxation (CR) processes between Ce(3+) and Ho(3+). UCNPs with pure red emission are selected as in vivo UC bioimaging agents, demonstrating the merits of deep penetration depth, the absence of autofluorescence and high contrast in small animal bioimaging. Moreover, such fluorescence imaging nanoprobes can also be used as contrast agents for three-dimensional (3D) x-ray bioimaging by taking advantage of the high K-edge values and x-ray absorption coefficients of Ba(2+), Gd(3+), and Ce(3+) in our designed nanoprobes. Thus, the simultaneous realization of multicolor output, highly enhanced R/G ratio, and predominant red emission makes the Ce(3+)-doped UCNPs very useful for widespread applications in optical components and bioimaging.

  20. [Effects of rare earth compounds on human peripheral mononuclear cell telomerase and apoptosis].

    PubMed

    Yu, Li; Dai, Yu-Cheng; Yuan, Zhao-Kang; Li, Jie

    2004-07-01

    To study the effects of rare earth exposure on human telomerase and apoptosis of human peripheral mononuclear cells (PBMNs). Rare earth mine lot in Xunwu county, the biggest ion absorptive rare earth mine lot of China, was selected as the study site. Another village of Xunwu county, with comparable geological structure and social environment was selected as the control site. Thirty healthy adults were randomly selected from the study site as exposure group and another 30 healthy adults randomly selected from the control site as control group. The blood content of 15 rare earth elements, including La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y, were determined by inductive coupled plasma-source mass spectrometry (ICP-MS). The total contents of rare earth elements in the blood were calculated. The TRAP and FCM assays were carried out to analyse the telomerase and apoptosis of human PBMNCs respectively. In the exposure group, the concentration of La, Ce, Dy and Y were significantly higher (P<0.001), and Pr, Nd, Sm, Gd and Yb were higher than those in the control group (P<0.05). The total content of rare earth in the blood of exposure group showed significant difference compared with control group (P<0.001). Telomerase activity in PBMNs of the exposure group was higher than that in the control group (P<0.05); there were 11 adults in the exposure group (30 adults) and 5 adults in control group (30 adults) showed positive telomerase activity. The average age of the exposure group was (38.69 +/- 8.02) years-old, while the control group was (40.45 +/- 9.02) years-old (P >0.05). It was found that there was a significant relationship between telomerase activity and the total content of rare earth elements (P <0.01). 3. The proportion of apoptosis was not different between the two groups (P >0.05), but the cells in the S-phase and G2-M phase were increased (P <0.01) in the exposed group. The telomerase activity of PBMNs in the rare earth elements exposed group was higher than that of the control group, and there is no effect on apoptotic rate of PBMNs, but may promote the diploid DNA replication, and increase the percentage of G2/M and S phase cells.

  1. Thermopower of CexR1-xB6 (R=La, Pr and Nd)

    NASA Astrophysics Data System (ADS)

    Kim, Moo‑Sung; Nakai, Yuki; Tou, Hideki; Sera, Masafumi; Iga, Fumitoshi; Takabatake, Toshiro; Kunii, Satoru

    2006-06-01

    The thermopower, S, of CexR1-xB6 (R=La, Pr, Nd) was investigated. S with a positive sign shows a typical behavior observed in the Ce Kondo system, an increase with decreasing temperature at high temperatures and a maximum at low temperatures. The S values of all the systems at high temperatures are roughly linearly dependent on the Ce concentration, indicating the conservation of the single-impurity character of the Kondo effect in a wide x range. However, the maximum value of S, Smax, and the temperature, Tmax, at which Smax is observed exhibit different x dependences between CexLa1-xB6 and CexR1-xB6 (R=Pr, Nd). In CexLa1-xB6, Tmax, which is ˜8 K in CeB6, decreases with decreasing x and converges to ˜1 K in a very dilute alloy and Smax shows an increase below x ˜ 0.1 after decreasing with decreasing x. In CexR1-xB6 (R=Pr, Nd), Tmax shows a weak x dependence but Smax shows a roughly linear decrease in x. These results are discussed from the standpoint of the chemical pressure effect and the Ce-Ce interaction. S in the long-range ordered phase shows very different behaviors between CexPr1-xB6 and CexNd1-xB6.

  2. Radio- and VUV - Excited Luminescence of YAP:Ce, YAP:Pr and YAG:Pr

    DTIC Science & Technology

    2001-01-01

    Pr 3+ ions.", Acta Physica Polonica A, 90 pp.407-10, 1996. 6. C. Pedrini, D. Bouttet, C. Dujardin, B. Moine, I. Dafinei, P. Lecoq, M. Koselja, K...34Spectroscopy and thermoluminescence of LuAIO 3:Ce" Acta Physica Polonica A,.90, pp.377-383, 1996 17. A.J. Wojtowicz, J. Glodo, W. Drozdowski, K.R. Przegietka...Malinowski, M.F. Joubert, B. Jacquier. "Simultaneous laser action at blue and orange wavelengths in YAG:Pr 3+ Physica Status Solidi A, 140, pp.K49-52, 1993 5

  3. Enhanced UVB emission and analysis of chemical states of Ca5(PO4)3OH:Gd3+,Pr3+ phosphor prepared by co-precipitation

    NASA Astrophysics Data System (ADS)

    Mokoena, P. P.; Nagpure, I. M.; Kumar, Vinay; Kroon, R. E.; Olivier, E. J.; Neethling, J. H.; Swart, H. C.; Ntwaeaborwa, O. M.

    2014-08-01

    Hydroxyapatite (Ca5(PO4)3OH) is a well-known bioceramic material used in medical applications because of its ability to form direct chemical bonds with living tissues. This mineral is currently used as a host for rare-earth ions (e.g. Gd3+, Pr3+, Tb3+, etc.) to prepare phosphors that can be used in light emitting devices of different types. In this study Ca5(PO4)3OH:Gd3+,Pr3+ phosphors were prepared by the co-precipitation method and were characterised by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and photoluminescence spectroscopy. The x-ray diffraction pattern was consistent with the hexagonal phase of Ca5(PO4)3OH referenced in JCPDS card number 73-0293. The x-ray photoelectron spectroscopy data indicated that Ca2+ occupied two different lattice sites, referred to as Ca1 and Ca2. The photoluminescence data exhibited a narrowband emission located at 313 nm, which is associated with the 6P7/2→8S7/2 transition of the Gd3+ ion. This emission is classified as ultraviolet B and it is suitable for use in phototherapy lamps to treat various skin diseases. The photoluminescence intensity of the 313 nm emission was enhanced considerably by Pr3+ co-doping.

  4. Calculation and measurement of 144Ce-144Pr β-spectrum

    NASA Astrophysics Data System (ADS)

    Atroschenko, V.; Kopeikin, V.; Litvinovich, E.; Lukyanchenko, L.; Machulin, I.; Skorokhvatov, M.; Titov, O.

    2017-12-01

    We calculate beta spectrum of Ce-Pr-144 taking into account several types of corrections. The result is compared with the experimental data obtained at NRC Kurchatov Institute. Using this comparison we estimate the reliability of theoretical calculations for electron and antineutrino spectra from beta decay.

  5. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    PubMed

    Dybczyński, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with γ-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. AFLOWLIB.ORG: a Distributed Materials Properties Repository from High-throughput Ab initio Calculations

    DTIC Science & Technology

    2011-11-15

    uncle) fcc (uncle) hcp (uncle) phase-diagram Ag Al Al Au Au Bi Bi Ca Ca Cd Cd Ce Ce Co Co Cr Cr Cu Cu Fe Fe Ga Ga Gd Gd Ge Ge Hf...Hf Hg Hg In In Ir Ir La La Li Li Mg Mg Mn Mn Mo Mo Na Na Nb Nb Ni Ni Os Os Pb Pb Pd Pd Pt Pt Rb Rb Re Re Rh Rh Ru Ru Sb Sb Sc...2 S. Curtarolo, A. N. Kolmogorov, and F. H. Cocks, High-throughput ab initio analysis of the Bi-In, Bi- Mg , Bi-Sb, In- Mg , In-Sb, and Mg -Sb systems

  7. Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Nikl, Martin; Kurosawa, Shunsuke; Beitlerova, Alena; Nagura, Aya; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-03-01

    The Mg and Ca co-doped Ce:Gd3Al2Ga3O12 single crystals were prepared by micro pulling down method with a wide concentration range 0-1000 ppm of the codopants. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Mg and Ca co-doping. The scintillation decays were accelerated by both Mg and Ca codopants. Comparing to Ca co-doping, the Mg co-doped samples showed much faster decay and comparatively smaller light output decrease with increasing Mg dopant concentration.

  8. Room temperature synthesis of hydrophilic Ln(3+)-doped KGdF4 (Ln = Ce, Eu, Tb, Dy) nanoparticles with controllable size: energy transfer, size-dependent and color-tunable luminescence properties.

    PubMed

    Yang, Dongmei; Li, Guogang; Kang, Xiaojiao; Cheng, Ziyong; Ma, Ping'an; Peng, Chong; Lian, Hongzhou; Li, Chunxia; Lin, Jun

    2012-06-07

    In this paper, we demonstrate a simple, template-free, reproducible and one-step synthesis of hydrophilic KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) nanoparticles (NPs) via a solution-based route at room temperature. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and cathodoluminescence (CL) spectra are used to characterize the samples. The results indicate that the use of water-diethyleneglycol (DEG) solvent mixture as the reaction medium not only allows facile particle size control but also endows the as-prepared samples with good water-solubility. In particular, the mean size of NPs is monotonously reduced with the increase of DEG content, from 215 to 40 nm. The luminescence intensity and absolute quantum yields for KGdF(4): Ce(3+), Tb(3+) NPs increase remarkably with particle sizes ranging from 40 to 215 nm. Additionally, we systematically investigate the magnetic and luminescence properties of KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) NPs. They display paramagnetic and superparamagnetic properties with mass magnetic susceptibility values of 1.03 × 10(-4) emu g(-1)·Oe and 3.09 × 10(-3) emu g(-1)·Oe at 300 K and 2 K, respectively, and multicolor emissions due to the energy transfer (ET) process Ce(3+)→ Gd(3+)→ (Gd(3+))(n)→ Ln(3+), in which Gd(3+) ions play an intermediate role in this process. Representatively, it is shown that the energy transfer from Ce(3+) to Tb(3+) occurs mainly via the dipole-quadrupole interaction by comparison of the theoretical calculation and experimental results. This kind of magnetic/luminescent dual-function materials may have promising applications in multiple biolabels and MR imaging.

  9. Chemical reaction mechanisms between Y2O3 stabilized ZrO2 and Gd doped CeO2 with PH3 in coal syngas

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Kishimoto, Haruo; Yamaji, Katsuhiko; Kuramoto, Koji; Gong, Mingyang; Liu, Xingbo; Hackett, Gregory; Gerdes, Kirk; Horita, Teruhisa

    2014-12-01

    To clarify the chemical stability of the key materials exposed to coal syngas (CSG) containing PH3 contaminant atmosphere, exposure tests of Y2O3 8 mol.% stabilized ZrO2 (YSZ) and Gd doped CeO2 (GDC) are carried out in simulated CSG with different concentrations of PH3. Significant reaction between YSZ and 10 ppm PH3 in CSG atmosphere is confirmed, and no obvious reaction is detected on the surface of YSZ after exposed in CSG with 1 ppm PH3. YPO4, Zr2.25(PO4)3 and monoclinic Y partial stabilized ZrO2 (m-PSZ) are identified on the YSZ pellet surface after exposed in CSG with 10 ppm PH3. GDC reacted with PH3 even at 1 ppm concentration. A (Ce0.9Gd0.1)PO4 layer is formed on the surface of GDC pellet after exposure in CSG with 10 ppm PH3. Possible reaction mechanisms between YSZ and GDC with PH3 in CSG are clarified. Compared with GDC, YSZ exhibits sufficient phosphorus resistance for devices directly exposed to a coal syngas atmosphere containing low concentration of PH3.

  10. Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2

    NASA Astrophysics Data System (ADS)

    Averchenko, E. A.; Kavok, N. S.; Klochkov, V. K.; Malyukin, Yu. V.

    2014-11-01

    We have used luminol-dependent chemiluminescence with Fenton's reagent to study the effect of nanoparticles based on rare-earth elements of different sizes and shapes on free-radical processes in abiotic and biotic cell-free systems, and also in isolated cells in vitro. We have estimated the effects of rare-earth orthovanadate nanoparticles of spherical (GdYVO4:Eu3+, 1-2 nm), spindle-shaped (GdVO4:Eu3+, 25 ×8 nm), and rod-shaped (LaVO4:Eu3+, 57 × (6-8) nm) nanoparticles and spherical CeO2 nanoparticles (sizes 1-2 nm and 8-10 nm). We have shown that in contrast to the abiotic system, in which all types of nanoparticles exhibit antiradical activity, in the presence of biological material, extra-small spherical (1-2 nm) nanoparticles of both types exhibit pro-oxidant activity, and also enhance pro-oxidant induced oxidative stress (for the pro-oxidants hydrogen peroxide and tert-butyl hydroperoxide). The effect of rare-earth orthovanadate spindle and rod shaped nanoparticles in this system was neutral; a moderate antioxidant effect was exhibited by 8-10 nm CeO2 nanoparticles.

  11. Synthesis, characterization and mechanical properties of NiO - GDC20 (Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9}) nano composite anode for solid oxide fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, M. Narsimha, E-mail: mnreddy57@gmail.com; Rao, P. Vijaya Bhaskar; Sharma, R. K.

    2016-05-06

    In the present research work, X (NiO) +1-X(Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9}) where X = 30,40 and 45 wt% Nano Composite Anodes are synthesized for low temperature operating solid oxide fuel cells (SOFC). NiO and Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} (GDC20) are synthesized by sol-gel citrate method and the nanopowders of NiO, GDC20 were calcined from 650 °c to 750 °c. For anode materials, pelletized the nanocomposites of X(NiO)+ (1-X) GDC20 (X = 30,40,45 wt.%) and sintered at 1200 °c. systematic study of atomic structure, purity, phase and structural parameters such as Lattice parameters, crystallite size of as-synthesized nanopowders and anode materialsmore » were carried out by XRD and SEM. For mechanical strength, Vickers micro-hardness of anode composites were estimated and observed that micro-hardness of composites were increasing with NiO wt.% and the density of sintered samples, which is varying from 4.35 to 5.54 Gpa at 500g load.« less

  12. Experimental evaluation of Gd3Al2Ga3O12:Ce (GAGG:Ce) single crystals coupled to a silicon photomultiplier (SiPM) under high gamma ray irradiation conditions

    NASA Astrophysics Data System (ADS)

    Metallinos, A.; Kefalidis, E.; Kandarakis, I.; David, S.

    2017-11-01

    Cerium (Ce) ion doped scintillators are of high interest in Medical Imaging systems and radiation monitoring devices, due to their very fast response and very good emission characteristics. In this study, a series of measurements regarding the energy resolution, photofraction, sensitivity, as well as the figure of merit, of Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillator crystals, is presented. All GAGG:Ce crystals have a surface area of 3x3 mm2 with varying thicknesses, from 4 up to 20 mm (4, 5, 6, 8, 10, 15 and 20 mm). These crystals were exposed to γ radiation, using two different radioactive sources: 137Cs (0.662 MeV) and 60Co (1.173 MeV and 1.332 MeV). Each crystal was measured individually and was optically coupled to a KETEK PM3350 SiPM, an optical sensor with high gain, suitable to operate in room temperature. The digitization of the pulses was accomplished using CAEN DT5720 desktop digitizer and its corresponding digital pulse processing (DPP) firmware. Each measurement was performed in a light-tight box and had duration of 30 min. The best energy resolution value was measured for the GAGG:Ce crystal with dimensions 3x3x15mm3, equal to 3.9% at 1.332 MeV. Results were evaluated and compared to previous published data.

  13. Centrosymmetry vs noncentrosymmetry in La2Ga0.33SbS5 and Ce4GaSbS9 based on the interesting size effects of lanthanides: Syntheses, crystal structures, and optical properties

    NASA Astrophysics Data System (ADS)

    Zhao, Hua-Jun

    2016-05-01

    Two new quaternary sulfides La2Ga0.33SbS5 and Ce4GaSbS9 have been prepared from stoichiometric elements at 1223 K in an evacuated silica tube. Interestingly, La2Ga0.33SbS5 crystallizes in the centrosymmetric structure, while Ce4GaSbS9 crystallizes in the noncentrosymmetric structure, which show obvious size effects of lanthanides on the crystal structures of these two compounds. Ce4GaSbS9 belongs to RE4GaSbS9 (RE=Pr, Nd, Sm, Gd-Ho) structure type with a=13.8834(9) Å, b=14.3004(11) Å, c=14.4102(13) Å, V=2861.0(4) Å3. The structure features infinite chains of [Ga2Sb2S1110-]∞ propagating along a direction separated by Ce3+ cations and S2- anions. La2Ga0.33SbS5 adopts the family of La4FeSb2S10-related structure with a=7.5193(6) Å, c=13.4126(17) Å, V=758.35(13) Å3. Its structure is built up from the alternate stacking of La/Sb/S and La/Ga/S 2D building blocks. The La/Sb/S slabs consist of teeter-totter chains of Sb1S4 seesaws, which are connected via sharing the apexes of μ4-S1. Moreover, La1 is positionally disordered with Sb1 and stabilized in a bicapped trigonal prismatic coordination sphere. Between these La/Sb/S slabs, La2S8 square antiprisms are connected via edge-sharing into 2D building blocks, creating tetrahedral sites partially occupied by the Ga1 atoms. UV/Vis diffuse reflectance spectroscopy study shows that the optical gap of La2Ga0.33SbS5 is about 1.76 eV.

  14. Transparent ceramic scintillators for gamma spectroscopy and MeV imaging

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Swanberg, E. L.; Beck, P. R.; Schneberk, D. J.; Stone, G.; Perry, R.; Wihl, B.; Fisher, S. E.; Hunter, S. L.; Thelin, P. A.; Thompson, R. R.; Harvey, N. M.; Stefanik, T.; Kindem, J.

    2015-09-01

    We report on the development of two new mechanically rugged, high light yield transparent ceramic scintillators: (1) Ce-doped Gd-garnet for gamma spectroscopy, and (2) Eu-doped Gd-Lu-bixbyite for radiography. GYGAG(Ce) garnet transparent ceramics offer ρ = 5.8g/cm3, Zeff = 48, principal decay of <100 ns, and light yield of 50,000 Ph/MeV. Gdgarnet ceramic scintillators offer the best energy resolution of any oxide scintillator, as good as R(662 keV) = 3% (Si-PD readout) for small sizes and typically R(662 keV) < 5% for cubic inch sizes. For radiography, the bixbyite transparent ceramic scintillator, (Gd,Lu,Eu)2O3, or "GLO," offers excellent x-ray stopping, with ρ = 9.1 g/cm3 and Zeff = 68. Several 10" diameter by 0.1" thickness GLO scintillators have been fabricated. GLO outperforms scintillator glass for high energy radiography, due to higher light yield (55,000 Ph/MeV) and better stopping, while providing spatial resolution of >8 lp/mm.

  15. Magnetic performance change of multi-main-phase Nd-Ce-Fe-B magnets by diffusing (Nd, Pr)H x

    NASA Astrophysics Data System (ADS)

    Ma, Tianyu; Zhang, Wenying; Peng, Baixing; Liu, Yongsheng; Chen, Yongjie; Wang, Xinhua; Yan, Mi

    2018-02-01

    The grain boundary diffusion process (GBDP) is effective to enhance coercivity of the single-main-phase (SMP) RE2Fe14B (rare earth (RE)) magnets through forming magnetic hardening shells surrounding the hard grain cores. Here, the GBDP was applied to the multi-main-phase (MMP) (Nd, Pr)22.3Ce8.24FebalM1.0B1.0 (wt.%) magnets prepared by sintering the mixture of Ce-free and Ce-containing 2:14:1 powders, which have shown superior magnetic properties, especially coercivity, to the SMP ones at the same average composition. The remanence of the (Nd, Pr)H x diffused magnets increases gradually with the increase of diffusion temperature from 480 to 880 °C, the coercivity, however, slightly decreases. The highest (BH)max of 350.1 kJ m-3 is achieved when diffusing at 680 °C, which is 9.2% higher than 320.7 kJ m-3 for the as-prepared magnet. The remanence increment is due to the diffusion of Nd/Pr into the 2:14:1 phase grains, enlarging the intrinsic saturation magnetic polarization. The slight coercivity reduction is due to the gradual homogenization of RE distribution within the 2:14:1 grains of the undiffused parts, i.e. approaching the ‘close to equilibrium (or SMP)’ state, which offsets the positive contributions from the enrichment of Nd/Pr in the Ce-rich 2:14:1 phase and the formation of continuous RE-rich intergranular phase. These findings suggest that the GBDP effect on coercivity of the MMP Nd-Ce-Fe-B magnets is distinctly different from the SMP ones, and that the chemical heterogeneity should be carefully controlled to improve the magnetic properties of such high cost-performance permanent magnets.

  16. Effect of Ga content on luminescence and defects formation processes in Gd3(Ga,Al)5O12:Ce single crystals

    NASA Astrophysics Data System (ADS)

    Grigorjeva, L.; Kamada, K.; Nikl, M.; Yoshikawa, A.; Zazubovich, S.; Zolotarjovs, A.

    2018-01-01

    Luminescence characteristics of Ce3+ - doped Gd3GaxAl5-xO12 single crystals with different Ga contents (x = 1, 2, 3, 4, 5) are studied in the 9-500 K temperature range. The spectra of the afterglow, photoluminescence, radioluminescence, and thermally stimulated luminescence (TSL) of each crystal coincide. The increase of the Ga content results in the high-energy shift of the spectra while the radioluminescence intensity at 9 K remains practically constant up to x = 4. No Ce3+ emission is observed in case of x = 5. The total TSL intensity drastically increases, reaches the maximum value around x = 2-3, and then decreases due to the thermal quenching of the Ce3+ emission. The TSL glow curve maxima are gradually shifting to lower temperatures, and the dependence of the maxima positions and the corresponding trap depths on the Ga content is close to linear. However, the activation energy of the TSL peaks creation under irradiation of the crystals in the 4f - 5d1 absorption band of Ce3+ decreases drastically with the increasing Ga content (especially in the range of x = 1-2), and this dependence is found to be strongly nonlinear. Possible reasons of the nonlinearity are discussed.

  17. Electrochemical oxygen pumps. Final CRADA report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, J. D.

    2009-10-01

    All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies ofmore » mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.« less

  18. Engineering the defect state and reducibility of ceria based nanoparticles for improved anti-oxidation performance

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Jie; Dong, Hao; Lyu, Guang-Ming; Zhang, Huai-Yuan; Ke, Jun; Kang, Li-Qun; Teng, Jia-Li; Sun, Ling-Dong; Si, Rui; Zhang, Jing; Liu, Yan-Jun; Zhang, Ya-Wen; Huang, Yun-Hui; Yan, Chun-Hua

    2015-08-01

    Due to their excellent anti-oxidation performance, CeO2 nanoparticles receive wide attention in pharmacological application. Deep understanding of the anti-oxidation mechanism of CeO2 nanoparticles is extremely important to develop potent CeO2 nanomaterials for anti-oxidation application. Here, we report a detailed study on the anti-oxidation process of CeO2 nanoparticles. The valence state and coordination structure of Ce are characterized before and after the addition of H2O2 to understand the anti-oxidation mechanism of CeO2 nanoparticles. Adsorbed peroxide species are detected during the anti-oxidation process, which are responsible for the red-shifted UV-vis absorption spectra of CeO2 nanoparticles. Furthermore, the coordination number of Ce in the first coordination shell slightly increased after the addition of H2O2. On the basis of these experimental results, the reactivity of coordination sites for peroxide species is considered to play a key role in the anti-oxidation performance of CeO2 nanoparticles. Furthermore, we present a robust method to engineer the anti-oxidation performance of CeO2 nanoparticles through the modification of the defect state and reducibility by doping with Gd3+. Improved anti-oxidation performance is also observed in cell culture, where the biocompatible CeO2-based nanoparticles can protect INS-1 cells from oxidative stress induced by H2O2, suggesting the potential application of CeO2 nanoparticles in the treatment of diabetes.Due to their excellent anti-oxidation performance, CeO2 nanoparticles receive wide attention in pharmacological application. Deep understanding of the anti-oxidation mechanism of CeO2 nanoparticles is extremely important to develop potent CeO2 nanomaterials for anti-oxidation application. Here, we report a detailed study on the anti-oxidation process of CeO2 nanoparticles. The valence state and coordination structure of Ce are characterized before and after the addition of H2O2 to understand the anti-oxidation mechanism of CeO2 nanoparticles. Adsorbed peroxide species are detected during the anti-oxidation process, which are responsible for the red-shifted UV-vis absorption spectra of CeO2 nanoparticles. Furthermore, the coordination number of Ce in the first coordination shell slightly increased after the addition of H2O2. On the basis of these experimental results, the reactivity of coordination sites for peroxide species is considered to play a key role in the anti-oxidation performance of CeO2 nanoparticles. Furthermore, we present a robust method to engineer the anti-oxidation performance of CeO2 nanoparticles through the modification of the defect state and reducibility by doping with Gd3+. Improved anti-oxidation performance is also observed in cell culture, where the biocompatible CeO2-based nanoparticles can protect INS-1 cells from oxidative stress induced by H2O2, suggesting the potential application of CeO2 nanoparticles in the treatment of diabetes. Electronic supplementary information (ESI) available: Size distribution of prepared CeO2-based NPs, HRTEM of prepared CeO2-based NPs, XPS analysis of prepared CeO2-based NPs, EELS analysis of prepared CeO2-based NPs, TG curves and FT-IR spectra of CeO2-based NPs, XANES spectra of CeO2 NPs during the reaction with H2O2, Raman spectrum of CeO2 NPs during the reaction with H2O2 for the second and third cycle, ESR analysis during the reaction, the red shift of UV-vis spectra of CeO2-based NPs after the addition of H2O2, H2-TPR test of CeO2 and CeO2:20%Gd NPs, In vitro cytotoxicity of CeO2-based NPs in INS-1 cells. See DOI: 10.1039/c5nr02588e

  19. Pressure tuning of structure, superconductivity, and novel magnetic order in the Ce-underdoped electron-doped cuprate T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guguchia, Z.; Adachi, T.; Shermadini, Z.

    High-pressure neutron powder diffraction, muon-spin rotation, and magnetization studies of the structural, magnetic, and the superconducting properties of the Ce-underdoped superconducting (SC) electron-doped cuprate system with the Nd 2 CuO 4 (the so-called T ' ) structure T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 with x = 0.1 are reported. A strong reduction of the in-plane and out-of-plane lattice constants is observed under pressure. However, no indication of any pressure-induced phase transition from T ' to the K 2 NiF 4 (the so-called T) structure is observed up to the maximum applied pressure ofmore » p = 11 GPa. Large and nonlinear increase of the short-range magnetic order temperature T so in T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ) was observed under pressure. Simultaneous pressure causes a nonlinear decrease of the SC transition temperature T c . All these experiments establish the short-range magnetic order as an intrinsic and competing phase in SC T ' - Pr 1.3 - x La 0.7 Ce x CuO 4 ( x = 0.1 ). The observed pressure effects may be interpreted in terms of the improved nesting conditions through the reduction of the in-plane and out-of-plane lattice constants upon hydrostatic pressure.« less

  20. Electrochemical characterization of B-site cation-excess Pr 2Ni 0.75Cu 0.25Ga 0.05O 4+δ cathode for IT-SOFCs

    DOE PAGES

    Meng, Xiangwei; Lü, Shiquan; Liu, Shouxiu; ...

    2015-06-15

    In this paper, the B-site cation-excess K 2NiF 4-type structure oxide, Pr 2Ni 0.75Cu 0.25Ga 0.05O 4+δ (PNCG) is investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD result shows that PNCG cathode is chemically compatible with the electrolyte Gd 0.1Ce 0.9O 2-δ (GDC) at 900 °C for 5 h. The PNCG material exhibits a semiconductor to metal transition around 425 °C. The thermal expansion coefficient (TEC) of the PNCG sample is 12.72×10 -6 K -1 between 30 and 850 °C in air. The polarization resistance (R p) of PNCG cathode on GDC electrolyte is 0.105, 0.197more » and 0.300 Ω cm 2 at 800, 750, 700 °C, respectively. A maximum power density of 371 mW cm -2 is obtained at 800 °C for single-cell with 300 μm thick GDC electrolyte and PNCG cathode. Finally, the results of this study demonstrate that PNCG can be a promising cathode material for IT-SOFCs.« less

  1. Gadolinium-free MR in coarctation-can contrast-enhanced MR angiography be replaced?

    PubMed

    Kalmar, Peter I; Koestenberger, Martin; Marterer, Robert; Tschauner, Sebastian; Sorantin, Erich

    2016-01-01

    To determine the difference in vessel measurements, signal-to-noise ratio (SNR), and voxel size between contrast-enhanced and noncontrast magnetic resonance techniques in patients with coarctation of the aorta (CoA). In 39 patients, vessel size, SNR, and voxel size were compared in cine magnetic resonance imaging (MRI), gadolinium-free magnetic resonance angiography (Gd-free MRA), and contrast-enhanced MRA (ce-MRA). There was no significant difference in measurement and SNR, but there was a significant difference in voxel size (P<.001). Our results show that, in CoA patients, monitoring of vessel size using cine MRI and Gd-free MRA is equivalent to ce-MRA while being less invasive. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Le syndrome d'embolie graisseuse post traumatique

    PubMed Central

    Berdai, Adnane Mohamed; Shimi, Abdelkarim; Khatouf, Mohammed

    2014-01-01

    Le syndrome d'embolie graisseuse est une complication grave des fractures des os longs, il est la conséquence de la dissémination des particules graisseuses dans la microcirculation. L'objectif de ce travail est de déterminer le profil épidémiologique, la présentation clinique et paraclinique de ce syndrome et sa prise en charge thérapeutique. Notre étude porte sur 11 cas de syndrome d'embolie graisseuse colligés au service de réanimation A1 au centre hospitalier universitaire Hassan II de Fès, de Janvier 2009 à Juin 2012. Le diagnostic positif est basé sur les critères de Gurd. Les cas collectés se caractérisent par la prédominance du sexe masculin, d'un âge inférieur à 40 ans, présentant une fracture fémorale. Ce syndrome survient souvent dans les 72 heures après le traumatisme. La présentation clinique est dominée par l'hypoxémie et les troubles de conscience. Sur le plan biologique: l'anémie et la thrombopénie sont les manifestations les plus fréquentes. La prise en charge est symptomatique, 63% des patients ont nécessité l'intubation et la ventilation. L’évolution n'est pas toujours bénigne. Nos résultats confirme le polymorphisme de la présentation clinique et paraclinique du syndrome d'embolie graisseuse. Le diagnostic de ce syndrome se base sur des critères cliniques, mais reste essentiellement un diagnostic d’élimination. La prise en charge est symptomatique. La prévention de ce syndrome est essentielle et se base sur une fixation précoce des fractures des os longs. PMID:25452829

  3. Geochemistry of rare earth elements within waste rocks from the Montviel carbonatite deposit, Québec, Canada.

    PubMed

    Edahbi, Mohamed; Plante, Benoît; Benzaazoua, Mostafa; Pelletier, Mia

    2018-04-01

    Several rare earth element (REE) mine projects around the world are currently at the feasibility stage. Unfortunately, few studies have evaluated the contamination potential of REE and their effects on the environment. In this project, the waste rocks from the carbonatites within the Montviel proterozoic alkaline intrusion (near Lebel-sur-Quévillon, Quebec, Canada) are assessed in this research. The mineralization is mainly constituted by light REE (LREE) fluorocarbonates (qaqarssukite-Ce, kukharenkoite-Ce), LREE carbonates (burbankite, Sr-Ba-Ca-REE, barytocalcite, strontianite, Ba-REE-carbonates), and phosphates (apatite, monazite). The gangue minerals are biotites, chlorite, albite, ankerite, siderite, and calcite. The SEM-EDS analyses show that (i) the majority of REE are associated with the fine fraction (< 106 μm), (ii) REE are mainly associated with carbonates, (iii) all analyzed minerals preferably contain LREE (La, Ce, Pr, Nd, Sm, Eu), (iv) the sum of LREE in each analyzed mineral varies between ~ 3 and 10 wt%, (v) the heavy REE (HREE) identified are Gd and Yb at < 0.4 wt%, and (vi) three groups of carbonate minerals were observed containing variable concentrations of Ca, Na, and F. Furthermore, the mineralogical composition of REE-bearing minerals, REE mobility, and REE speciation was investigated. The leachability and geochemical behavior of these REE-bearing mine wastes were tested using normalized kinetic testing (humidity cells). Leachate results displayed higher LREE concentrations, with decreasing shale-normalized patterns. Thermodynamical equilibrium calculations suggest that the precipitation of secondary REE minerals may control the REE mobility.

  4. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    NASA Astrophysics Data System (ADS)

    Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.

    2018-04-01

    Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  5. Complexation studies with lanthanides and humic acid analyzed by ultrafiltration and capillary electrophoresis-inductively coupled plasma mass spectrometry.

    PubMed

    Kautenburger, Ralf; Beck, Horst Philipp

    2007-08-03

    For the long-term storage of radioactive waste, detailed information about geo-chemical behavior of radioactive and toxic metal ions under environmental conditions is necessary. Humic acid (HA) can play an important role in the immobilisation or mobilisation of metal ions due to complexation and colloid formation. Therefore, we investigate the complexation behavior of HA and its influence on the migration or retardation of selected lanthanides (europium and gadolinium as homologues of the actinides americium and curium). Two independent speciation techniques, ultrafiltration and capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) have been compared for the study of Eu and Gd interaction with (purified Aldrich) HA. The degree of complexation of Eu and Gd in 25 mg l(-1) Aldrich HA solutions was determined with a broad range of metal loading (Eu and Gd total concentration between 10(-6) and 10(-4) mol l(-1)), ionic strength of 10 mM (NaClO4) and different pH-values. From the CE-ICP-MS electropherograms, additional information on the charge of the Eu species was obtained by the use of 1-bromopropane as neutral marker. To detect HA in the ICP-MS and separate between HA complexed and non complexed metal ions in the CE-ICP-MS, we have halogenated the HA with iodine as ICP-MS marker.

  6. Designed synthesis of multi-functional PEGylated Yb2O3:Gd@SiO2@CeO2 islands core@shell nanostructure.

    PubMed

    Li, Junqi; Yao, Shuang; Song, Shuyan; Wang, Xiao; Wang, Yinghui; Ding, Xing; Wang, Fan; Zhang, Hongjie

    2016-07-28

    Nanomaterials that can restrain or reduce the production of excessive reactive oxygen species such as H2O2 to defend and treat against Alzheimer's disease (AD) have attracted much attention. In this paper, we adopt the strategy of layer-by-layer deposition; namely, first synthesizing available gadolinium-doped ytterbia nanoparticles (Yb2O3:Gd NPs) as cores, and then coating them with silica via the classical Stöber method to prevent leakage and act as a carrier for subsequent ceria deposition and PEGylation, and finally obtain the expected core@shell-structured nanocomposite of PEGylated Yb2O3:Gd@SiO2@CeO2 islands. The nanomaterial has proved not only to be a high-performance dual-modal contrast agent for use in MRI and CT, but also to exhibit excellent catalase mimetic activity, which may help the prognosis, diagnosis and treatment of AD in the future. In addition, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy characterization have revealed the successful design and synthesis of the cores with remarkable size uniformity, with well-distributed CeO2 islands decorated on the surface of SiO2 shells, and tightly immobilized PEG.

  7. An optimal method for phosphorylation of rare earth chlorides in LiCl-KCl eutectic based waste salt

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Kim, J. H.; Cho, Y. Z.; Choi, J. H.; Lee, T. K.; Park, H. S.; Park, G. I.

    2013-11-01

    A study on an optimal method for the phosphorylation of rare earth chlorides in LiCl-KCl eutectic waste salt generated the pyrochemical process of spent nuclear fuel was performed. A reactor with a pitched four blade impeller was designed to create a homogeneous mixing zone in LiCl-KCl eutectic salt. A phosphorylation test of NdCl3 in the salt was carried out by changing the operation conditions (operation temperature, stirring rate, agent injection amount). Based on the results of the test, a proper operation condition (450 °C, 300 rpm, 1 eq. of phosphorylation agent) for over a 0.99 conversion ratio of NdCl3 to NdPO4 was determined. Under this condition, multi-component rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Y) chlorides were effectively converted into phosphate forms. It was confirmed that the existing regeneration process of LiCl-KCl eutectic waste salt can be greatly improved and simplified through these phosphorylation test results.

  8. Manganite perovskite ceramics, their precursors and methods for forming

    DOEpatents

    Payne, David Alan; Clothier, Brent Allen

    2015-03-10

    Disclosed are a variety of ceramics having the formula Ln.sub.1-xM.sub.xMnO.sub.3, where 0.Itoreq.x.Itoreq.1 and where Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or Y; M is Ca, Sr, Ba, Cd, or Pb; manganite precursors for preparing the ceramics; a method for preparing the precursors; and a method for transforming the precursors into uniform, defect-free ceramics having magnetoresistance properties. The manganite precursors contain a sol and are derived from the metal alkoxides: Ln(OR).sub.3, M(OR).sub.2 and Mn(OR).sub.2, where R is C.sub.2 to C.sub.6 alkyl or C.sub.3 to C.sub.9 alkoxyalkyl, or C.sub.6 to C.sub.9 aryl. The preferred ceramics are films prepared by a spin coating method and are particularly suited for incorporation into a device such as an integrated circuit device.

  9. Determination of natural line widths of Kα X-ray lines for some elements in the atomic range 50≤Z≤65 at 59.5 keV

    NASA Astrophysics Data System (ADS)

    Kündeyi, Kadriye; Aylıkcı, Nuray Küp; Tıraşoǧlu, Engin; Kahoul, Abdelhalim; Aylıkcı, Volkan

    2017-02-01

    The semi-empirical determination of natural widths of Kα X-ray lines (Kα1 and Kα2) were performed for Sn, Sb, Te, I, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd and Tb. For the semi-empirical determination of the line widths, K shell fluorescence yields of elements were measured. The samples were excited by 59.5 keV γ rays from a 241Am annular radioactive source in order to measure the K shell fluorescence yields. The emitted K X-rays from the samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The measured K shell fluorescence yields were used for the calculation of K shell level widths. Finally, the natural widths of K X-ray lines were determined as the sums of levels which involved in the transition. The obtained values were compared with earlier studies.

  10. Intra-regional classification of grape seeds produced in Mendoza province (Argentina) by multi-elemental analysis and chemometrics tools.

    PubMed

    Canizo, Brenda V; Escudero, Leticia B; Pérez, María B; Pellerano, Roberto G; Wuilloud, Rodolfo G

    2018-03-01

    The feasibility of the application of chemometric techniques associated with multi-element analysis for the classification of grape seeds according to their provenance vineyard soil was investigated. Grape seed samples from different localities of Mendoza province (Argentina) were evaluated. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of twenty-nine elements (Ag, As, Ce, Co, Cs, Cu, Eu, Fe, Ga, Gd, La, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Rb, Sm, Te, Ti, Tl, Tm, U, V, Y, Zn and Zr). Once the analytical data were collected, supervised pattern recognition techniques such as linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k-nearest neighbors (k-NN), support vector machine (SVM) and Random Forest (RF) were applied to construct classification/discrimination rules. The results indicated that nonlinear methods, RF and SVM, perform best with up to 98% and 93% accuracy rate, respectively, and therefore are excellent tools for classification of grapes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Herpes B Virus Utilizes Human Nectin-1 but Not HVEM or PILRα for Cell-Cell Fusion and Virus Entry

    PubMed Central

    Fan, Qing; Amen, Melanie; Harden, Mallory; Severini, Alberto; Griffiths, Anthony

    2012-01-01

    To investigate the requirements of herpesvirus entry and fusion, the four homologous glycoproteins necessary for herpes simplex virus (HSV) fusion were cloned from herpes B virus (BV) (or macacine herpesvirus 1, previously known as cercopithecine herpesvirus 1) and cercopithecine herpesvirus 2 (CeHV-2), both related simian simplexviruses belonging to the alphaherpesvirus subfamily. Western blots and cell-based enzyme-linked immunosorbent assay (ELISA) showed that glycoproteins gB, gD, and gH/gL were expressed in whole-cell lysates and on the cell surface. Cell-cell fusion assays indicated that nectin-1, an HSV-1 gD receptor, mediated fusion of cells expressing glycoproteins from both BV and CeHV-2. However, herpesvirus entry mediator (HVEM), another HSV-1 gD receptor, did not facilitate BV- and CeHV-2-induced cell-cell fusion. Paired immunoglobulin-like type 2 receptor alpha (PILRα), an HSV-1 gB fusion receptor, did not mediate fusion of cells expressing glycoproteins from either simian virus. Productive infection with BV was possible only with nectin-1-expressing cells, indicating that nectin-1 mediated entry while HVEM and PILRα did not function as entry receptors. These results indicate that these alphaherpesviruses have differing preferences for entry receptors. The usage of the HSV-1 gD receptor nectin-1 may explain interspecies transfer of the viruses, and altered receptor usage may result in altered virulence, tropism, or pathogenesis in the new host. A heterotypic cell fusion assay resulting in productive fusion may provide insight into interactions that occur to trigger fusion. These findings may be of therapeutic significance for control of deadly BV infections. PMID:22345445

  12. Acidic 1,3-propanediaminetetraacetato lanthanides with luminescent and catalytic ester hydrolysis properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mao-Long; Shi, Yan-Ru; Yang, Yu-Chen

    2014-11-15

    In acidic solution, a serials of water-soluble coordination polymers (CPs) were isolated as zonal 1D-CPs 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]{sub n}·2Cl{sub n}·3nH{sub 2}O [Ln=La, 1; Ce, 2; Pr, 3; Nd, 4; Sm, 5] (1,3-H{sub 4}pdta=1,3-propanediaminetetraacetic acid, C{sub 11}H{sub 18}N{sub 2}O{sub 8}) in high yields. When 1 eq. mol potassium hydroxide was added to the solutions of 1D-CPs, respectively, two 1D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 3}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=Sm, 6; Gd, 7] were isolated at room temperature and seven 2D-CPs [Ln(1,3-H{sub 2}pdta)(H{sub 2}O){sub 2}]{sub n}·Cl{sub n}·2nH{sub 2}O [Ln=La, 8; Ce, 9; Pr, 10; Nd, 11; Sm, 12; Eu, 13; Gd,more » 14] were isolated at 70 °C. When the crystals of 1–4 were hydrothermally heated at 180 °C with 1–2 eq. mol potassium hydroxide, four 3D-CPs [Ln(1,3-Hpdta)]{sub n}·nH{sub 2}O [Ln=La, 15; Ce, 16; Pr, 17; Nd, 18] were obtained. The two 2D-CPs [Ln(1,3-Hpdta)(H{sub 2}O)]{sub n}·4nH{sub 2}O (Sm, 19; Eu, 20) were isolated in similar reaction conditions. With the increments of pH value in the solution and reaction temperature, the structure becomes more complicated. 1–5 are soluble in water and 1 was traced by solution {sup 13}C({sup 1}H) NMR technique, the water-soluble lanthanides 1 and 5 show catalytic activity to ester hydrolysis reaction respectively, which indicate their important roles in the hydrolytic reaction. The europium complexes 13 and 20 show visible fluorescence at an excitation of 394 nm. The structure diversity is mainly caused by the variation of coordinated ligand in different pH values and lanthanide contraction effect. Acidic conditions are favorable for the isolations of lanthanide complexes in different structures and this may helpful to separate different lanthanides. The thermal stability investigations reveal that acidic condition is favorable to obtain the oxides at a lower temperature. - Graphical abstract: A series of water-soluble acidic 1,3-propanediaminetetraacetato lanthanides [Ln(1,3-H{sub 3}pdta)(H{sub 2}O){sub 5}]n·2Cl{sub n}·3nH{sub 2}O have been converted to their 2D and 3D lanthanides, which are active for the catalytic conversion of ester hydrolysis. - Highlights: • Novel acidic propanediaminetetraacetato lanthanides. • Water-soluble 1D coordination polymers. • Acidic conditions are suitable for the isolations of lanthanide complexes in different structures. • 1 and 5 show good catalytic activity to ester hydrolysis. • Europium coordination polymers 13 and 20 give visible fluorescence.« less

  13. Electron microscope studies of nano-domain structures in Ru-based magneto-superconductors: RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212).

    PubMed

    Yokosawa, Tadahiro; Awana, V P S Veer Pal Singh; Kimoto, Koji; Takayama-Muromachi, Eiji; Karppinen, Maarit; Yamauchi, Hisao; Matsui, Yoshio

    2004-01-01

    Microstructures of the RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212) magneto-superconductors have been investigated by using selected-area electron diffraction, convergent-beam electron diffraction, dark-field electron microscopy and high-resolution electron microscopy at room temperature. Both Ru-1212 and Ru-1222 consist of nm-size domains stacked along the [Formula: see text] direction, where the domains are formed by two types of superstructures due to ordering of rotated RuO(6) octahedra about the c-axis. In Ru-1212, both primitive-and body-centered tetragonal superstructures (the possible space groups: P4/mbm and I4/mcm) are derived to form the corresponding nm-domains. It is of great interest that Ru-1212 consists of domains of two crystallographically different superstructures, while the similar domains observed in Ru-1222 have crystallographically identical superstructure with an orthorhombic symmetry (possible space group: Aeam), related by 90 degrees rotation around the c-axis (Yokosawa et al., 2003, submitted for publication).

  14. Electron spin resonance of Gd3+ in the intermetallic Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds

    NASA Astrophysics Data System (ADS)

    Mendonça, E. C.; Silva, L. S.; Mercena, S. G.; Meneses, C. T.; Jesus, C. B. R.; Duque, J. G. S.; Souza, J. C.; Pagliuso, P. G.; Lora-Serrano, R.; Teixeira-Neto, A. A.

    2017-10-01

    In this work, experiments of X-ray diffraction, magnetic susceptibility, heat capacitance, and Electron Spin Resonance (ESR) carried out in the Gd1-xYxNi3Ga9 (0 ≤ x ≤ 0.90) compounds grown through a Ga self flux method are reported. The X-ray diffraction data indicate that these compounds crystallize in a trigonal crystal structure with a space group R32. This crystal structure is unaffected by Y-substitution, which produces a monotonic decrease of the lattice parameters. For the x = 0 compound, an antiferromagnetic phase transition is observed at TN = 19.2 K, which is continuously suppressed as a function of the Y-doping and extrapolates to zero at x ≈ 0.85. The ESR data, taken in the temperature range 15 ≤ T ≤ 300 K, show a single Dysonian Gd3+ line with nearly temperature independent g-values. The linewidth follows a Korringa-like behavior as a function of temperature for all samples. The Korringa rates (b = ΔH /ΔT ) are Y-concentration-dependent indicating a "bottleneck" regime. For the most diluted sample (x = 0.90), when it is believed that the "bottleneck" effect is minimized, we have calculated the q-dependent effective exchange interactions between Gd3+ local moments and the c-e of 〈Jf-ce 2(q ) 〉 1 /2 = 18(2) meV and Jf -c e(q =0 ) = 90(10) meV.

  15. High quantum-yield phosphors via quantum splitting and upconversion

    NASA Astrophysics Data System (ADS)

    Jeong, Joayoung

    The Gd3+ ion has been used to induce quantum splitting in luminescent materials by using cross-relaxation energy transfer (CRET). In Nd:LiGdF4, quantum splitting results from a two-step CRET between Gd3+ and Nd3+, first involving a transition 6G→6I on Gd3+ and an excitation within the 4f3 configuration of Nd3+ followed by a second CRET that brings Gd3+ to 6P7/2. The excited Nd3+ ion rapidly relaxes nonradiatively to the emitting 4F3/2. The excited Gd3+ ion then transfers its energy back to Nd3+, which gives rise to the second photon. The result is a quantum yield of 1.05 +/- 0.35 with emission in the NIR following excitation at 175 nm. GdF3:Pr3+, Eu 3+ also exhibits quantum splitting, but only at very low concentration of Pr3+ (0.3%) and Eu3+ (0.2%), resulting in a quantum yield of approximately 20% under 160-nm excitation. Host intrinsic emission via a self-trapped exciton (STE) was also examined as a means to sensitize Gd3+ emission. The material ScPO4:Gd 3+ exhibits a high absolute quantum yield of 0.9 +/- 0.2 under 170-nm excitation, demonstrating a potentially new and efficient pathway for exciting quantum splitting phosphors. Single crystals of the material GdZrF7 were grown, and its structure was established via single-crystal X-ray diffraction methods. Doped samples of GdZrF7:Yb3+, Er3+ exhibit bright up-conversion luminescence with light output that is up to twice that of a commercial material based on the host Gd2O2S. When doped with Eu3+, the fluoride also emits a nearly white color under vacuum ultraviolet excitation with an absolute quantum yield near 0.9. The new compound Gd4.67(SiO4)3S was synthesized and studied. The structure was established via single-crystal X-ray methods, and the luminescence of Tb3+ samples was investigated.

  16. Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks

    NASA Astrophysics Data System (ADS)

    Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger

    2015-02-01

    The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.

  17. Plant-based oral delivery of β-glucocerebrosidase as an enzyme replacement therapy for Gaucher's disease.

    PubMed

    Shaaltiel, Yoseph; Gingis-Velitski, Svetlana; Tzaban, Salit; Fiks, Nadia; Tekoah, Yoram; Aviezer, David

    2015-10-01

    Gaucher's disease (GD), a lysosomal storage disorder caused by mutations in the gene encoding glucocerebrosidase (GCD), is currently treated by enzyme replacement therapy (ERT) using recombinant GCD that is administered intravenously every 2 weeks. However, intravenous administration includes discomfort or pain and might cause local and systemic infections that may lead to low patient compliance. An orally administered drug has the potential to alleviate these problems. In this study, we describe the potential use of plant cells as a vehicle for the oral delivery of recombinant human GCD (prGCD) expressed in carrot cells. The in vitro results demonstrate that the plant cells protect the recombinant protein in the gastric fluids and may enable absorption into the blood. Feeding experiments, with rat and pig as model animals, using carrot cells containing prGCD, show that active recombinant prGCD was found in the digestive tract and blood system and reached both, liver and spleen, the target organs in GD. These results demonstrate that the oral administration of proteins encapsulated in plant cells is feasible. Specifically, carrot cells containing recombinant human prGCD can be used as an oral delivery system and are a feasible alternative to intravenous administration of ERT for GD. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Electron localization mechanism in the normal state of high- T c superconductors

    NASA Astrophysics Data System (ADS)

    Yamani, Z.; Akhavan, M.

    The ceramic compounds Gd 1- xPr xCu 3O 7- y (GdPr-123) with 0.0 ≤ x≤1.0, were synthesized by standard solid state reaction technique. XRD analysis shows a predominantly single phase perovskite structure with the orthorhombic Pmmm symmetry. The samples have been examined for superconductivity by measuring electrical resistivity within the temperature range 10-300 K. These measurements show a suppression of superconductivity with increasing x. It is observed that the critical Pr concentration ( x cr) required to suppress superconductivity is about 0.45, the samples with x < 0.45 become superconducting and are metallic in their normal state, the samples with x ≥ 0.45 do not become superconducting and show a semiconducting behavior above 10 K. To interpret the normal state properties of the samples, the quantum percolation theory based on localized states is applied. A cross-over between variable-range hopping (VRH) and Coulomb gap (CG) mechanisms is observed as a result of decreasing the Pr content.

  19. Photoemission study of the electronic structure (Pr 0.2La 0.8)(Ba 1.875La 0.125)Cu 3O 7- gd

    NASA Astrophysics Data System (ADS)

    Lindberg, P. A. P.; Shen, Z.-X.; Lindau, I.; Spicer, W. E.; Mitzi, D. B.; Kapitulnik, A.

    1989-11-01

    Photoemission results from the Pr and La doped 1 2 3 system (Pr 0.2La 0.8) (Ba 1.875La 0.125)Cu 3O 7-gd are reported. The core level spectra show strong resemblance to those of other compounds of the 1 2 3 and 2 1 4 systems. The Cu 2 p satellite intensity is found to be ˜ 35% of the main Cu 2 p line, and the O 1 s core level spectra, exhibiting a clear doublet, show evidence of extrinsic oxygen. The clear correlation between the intensities of certain features in the valence band and the amount of extrinsic oxygen, as monitored by the O 1 s core level spectra, is explicitly addressed.

  20. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China.

    PubMed

    Sun, Guangyi; Li, Zhonggen; Liu, Ting; Chen, Ji; Wu, Tingting; Feng, Xinbin

    2017-12-01

    The content levels, distribution characteristics, and health risks associated with 15 rare earth elements (REEs) in urban street dust from an industrial city, Zhuzhou, in central China were investigated. The total REE content (∑REE) ranged from 66.1 to 237.4 mg kg -1 , with an average of 115.9 mg kg -1 , which is lower than that of Chinese background soil and Yangtze river sediment. Average content of the individual REE in street dust decreased in the order Ce > La > Nd > Y > Pr > Sm > Gd > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The chondrite-normalized REE pattern indicated light REE (LREE) enrichment, a relatively steep LREE trend, heavy REE (HREE) depletion, a flat HREE trend, a Eu-negative anomaly and a Ce-positive anomaly. Foremost heavy local soil and to less degree anthropogenic pollution are the main sources of REE present in street dust. Health risk associated with the exposure of REE in street dust was assessed based on the carcinogenic and non-carcinogenic effect and lifetime average daily dose. The obtained cancer and non-cancer risk values prompt for no augmented health hazard. However, children had greater health risks than that of adults.

  1. Effect of ligand substitution on the SMM properties of three isostructural families of double-cubane Mn4Ln2 coordination clusters.

    PubMed

    Akhtar, Muhammad Nadeem; Lan, Yanhua; AlDamen, Murad A; Zheng, Yan-Zhen; Anson, Christopher E; Powell, Annie K

    2018-03-06

    Three isostructural lanthanide series with a core of MnMnLn 2 are reported. These three families have the formulae of [MnMnLn 2 (μ 4 -O) 2 (H 2 edte) 2 (piv) 6 (NO 3 ) 2 ] {no crystallization solvent, Ln = La, Ce, Pr, Nd, Eu (1-4, 6); solv = 3MeCN, Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y (5, 7-13)}, where H 2 edte = N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine and piv = pivalate; [MnMnLn 2 (μ 4 -O) 2 (H 2 edte) 2 (benz) 6 (NO 3 ) 2 ], where benz = benzoate, or [MnMnLn 2 (μ 4 -O) 2 (edteH 2 ) 2 (benz) 6 (NO 3 ) 2 ]·2MeCN {Ln = Gd, Tb, Dy (14-16); and [MnMnLn 2 (μ 4 -O) 2 (edteH 2 ) 2 (piv) 8 ].solv {solv = 4MeCN, Ln = La (17); solv = 2MeCN·tol·H 2 O, Ln = Pr, Nd, Sm, Tb (18-20, 22); solv = 2MeCN·H 2 O, Ln = Gd (21). These compounds crystallize in two different systems, namely, monoclinic in the space groups P2 1 /n for 1-4, 6, and 14-16 and C2/c for 5, 7-13, 18-20, and 22 and triclinic in the space group P1[combining macron] for 17 and 21. The crystal structures of these compounds display a face-fused dicubane structure connected by different types of bridged oxygen atoms. Solid-state dc magnetic susceptibility characterization was carried out for 1-22, and fitting showed that Mn III Mn III is antiferromagnetically (AF) coupled and Mn II Mn III , Mn II Ln and Mn III Ln are weakly ferromagnetically coupled. In addition, ac measurements were carried out and showed that only 7, 15, and 22 for Tb, 8 and 16 for Dy, and 20 for Sm exhibited slow magnetization relaxation. In the case of 15, it was possible to determine the energy barrier of the slow-relaxation behavior by fitting peak temperatures to the Arrhenius law, which gave a value of U eff = 21.2 K and a pre-exponential factor of τ 0 = 4.0 × 10 -9 s.

  2. Enthalpies of melting of LnSF compounds (Ln = La, Ce, Pr, Nd, Sm)

    NASA Astrophysics Data System (ADS)

    Andreev, P. O.; Mikhalkina, O. G.; Andreev, O. V.; Elyshev, A. V.

    2015-05-01

    The melting temperatures and enthalpies of such congruently melting compounds as LaSF ( T m = 1713 ± 7 K, Δ H = 45.7 ± 4.6 kJ/mol), CeSF ( T m = 1683 ± 7 K, Δ H = 40.7 ± 4.1 kJ/mol), PrSF ( T m = 1661 ± 7 K, Δ H = 39.7 ± 4.0 kJ/mol), NdSF ( T m = 1654 ± 7 K, Δ H = 40.2 ± 4.0 kJ/mol), and SmSF ( T m = 1587 ± 7 K, Δ H = 36.1 ± 3.6 kJ/mol) are determined via synchronous thermal analysis. The tetrad effect is evident in the change of the melting temperatures and enthalpies of LnSF compounds (Ln = La, Ce, Pr, Nd, Sm) depending on r(Ln3+).

  3. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease.

    PubMed

    Zhang, Qiulei; Li, Yang; Zhang, Yi; Wu, Chuanbao; Wang, Shengnan; Hao, Li; Wang, Shengyuan; Li, Tianzhong

    2017-01-01

    MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple ( Malus × domestica ). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1 , and MdPR10-2 . In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26 . In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.

  4. Measurement of Rare Earth and Uranium Elements Using Laser-Induced Breakdown Spectroscopy (LIBS) in an Aerosol System for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Williams, Ammon Ned

    The primary objective of this research is to develop an applied technology and provide an assessment for remotely measuring and analyzing the real time or near real time concentrations of used nuclear fuel (UNF) elements in electroreners (ER). Here, Laser-Induced Breakdown Spectroscopy (LIBS) in UNF pyroprocessing facilities was investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis; (ii) Direct detection of elements and impurities in the system with low limits of detection (LOD); and (iii) Little to no sample preparation is required. One important challenge to overcome is achieving reproducible spectral data over time while being able to accurately quantify fission products, rare earth elements, and actinides in the molten salt. Another important challenge is related to the accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment within an argon gas atmosphere. This dissertation aims to address these challenges and approaches in the following phases with their highlighted outcomes: 1. Aerosol-LIBS system design and aqueous testing: An aerosol-LIBS system was designed around a Collison nebulizer and tested using deionized water with Ce, Gd, and Nd concentrations from 100 ppm to 10,000 ppm. The average %RSD values between the sample repetitions were 4.4% and 3.8% for the Ce and Gd lines, respectively. The univariate calibration curve for Ce using the peak intensities of the Ce 418.660 nm line was recommended and had an R 2 value, LOD, and RMSECV of 0.994, 189 ppm, and 390 ppm, respectively. The recommended Gd calibration curve was generated using the peak areas of the Gd 409.861 nm line and had an R2, LOD, and RMSECV of 0.992, 316 ppm, and 421 ppm, respectively. The partial least squares (PLS) calibration curves yielded similar results with RMSECV of 406 ppm and 417 ppm for the Ce and Gd curves, respectively. 2. High temperature aerosol-LIBS system design and CeCl3 testing: The aerosol-LIBS system was transitioned to a high temperature and used to measure Ce in molten LiCl-KCl salt within a glovebox environment. The concentration range studied was from 0.1 wt% to 5 wt% Ce. Normalization was necessary due to signal degradation over time; however, with the normalization the %RSD values averaged 5% for the mid and upper concentrations studied. The best univariate calibration curve was generated using the peak areas of the Ce 418.660 nm line. The LOD for this line was 148 ppm with the RMSECV of 647 ppm. The PLS calibration curve was made using 7 latent variables (LV) and resulting in the RMSECV of 622 ppm. The LOD value was below the expected rare earth concentration within the ER. 3. Aerosol-LIBS testing using UCl3: Samples containing UCl 3 with concentrations ranging from 0.3 wt% to 5 wt% were measured. The spectral response in this range was linear. The best univariate calibration curves were generated using the peak areas of the U 367.01 nm line and had an R2 value of 0.9917. Here, the LOD was 647 ppm and the RMSECV was 2,290 ppm. The PLS model was substantially better with a RMSECV of 1,110 ppm. The LOD found here is below the expected U concentrations in the ER. The successful completion of this study has demonstrated the feasibility of using an aerosol-LIBS analytical technique to measure rare earth elements and actinides in the pyroprocessing salt.

  5. Effects of annealing process on magnetic properties and structures of Nd-Pr-Ce-Fe-B melt-spun powders

    NASA Astrophysics Data System (ADS)

    Pei, Kun; Lin, Min; Yan, Aru; Zhang, Xing

    2016-05-01

    The effects of annealing process on magnetic properties and structures of Nd-Pr-Ce-Fe-B melt-spun powders have been investigated. The magnetic properties improve a lot when the annealing temperature is 590-650 °C and the annealing time exceeds 1 min. The magnetic properties is stable when the annealing time is 590-650 °C. The powders contains obvious grains when the annealing time is only 1 min, while the grains grow up obviously, leading to the decrease of Br and (BH)max, when the annealing time is more than 9 min. The Hcj changes little for different annealing time. The cooling rate also affects the magnetic properties of powders with different Ce-content. Faster cooling rate is favorable to improve magnetic properties with low Ce-content powders, while high Ce-content powders need slower cooling rate.

  6. Interplay of structure and magnetism in ruthenocuprates: a Raman scattering and dilatometry study

    NASA Astrophysics Data System (ADS)

    Fainstein, A.; Ramos, C. A.; Pregliasco, R. G.; Butera, A.; Trodahl, H. J.; Williams, G. V. M.; Tallon, J. L.

    2002-07-01

    We present a Raman scattering and dilatometry study of polycrystalline samples of the magnetic superconducting ruthenocuprates RuSr 2Gd 2- xCe xCu 2O 10+ δ (RuGd 1222) and RuSr 2GdCu 2O 8 (RuGd 1212). In the Raman spectra a high-temperature diffusive-like laser-tail develops below the magnetic ordering temperature ( TM) into an underdamped peak which shifts up to ˜130 cm-1. A line assigned to O(Ru) phonons hardens, narrows and strengthens strongly below TM. Finally, a phonon peak appears below TM at ˜590 cm-1. These three magnetic-order-dependent features are observed for RuGd 1212 and for RuGd 1222 with x=1.0, but do not appear for x=0.5. Dilatometry measurements, on the other hand, evidence a change of the expansion coefficient at TM. These results point to a structural effect accompanying the magnetic order, and suggest a complex interplay of spin and lattice degrees of freedom in these ruthenocuprates.

  7. Composition engineering of single crystalline films based on the multicomponent garnet compounds

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Bilski, Paweł; Twardak, Anna; Voznyak, Taras; Sidletskiy, Oleg; Gerasimov, Yaroslav; Gryniov, Boris; Fedorov, Alexandr

    2016-11-01

    The paper demonstrates our last achievement in development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped multicomponent garnets using the Liquid Phase Epitaxy (LPE) method. We report in this work the optimized content and excellent scintillation properties of SCF of Lu3-xGdxAl5-yGayO12, Lu3-xTbxAl5-yGayO12 and TbxGdxAl5-yGayO12 garnet compounds grown by the LPE method from PbOsbnd B2O3 based melt-solution onto Gd3Al2.5Ga2.5O12 and YAG substrates. We also show that the Tb1.5Gd1.5Al2.5Ga2.5O12:Ce SCF possess the highest light yield (LY) in comparison with all ever grown garnet SCF scintillators. Namely, the LY of these SCF exceeds by 3.8 and 1.85 times the LY values of the best samples of YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCF samples of the mentioned compounds show low thermoluminescence in the above room temperature range and relatively fast scintillation decay time t1/e in the 180-200 ns range.

  8. Determination of the position of the 5d excited levels of Ce3+ ions with respect to the conduction band in the epitaxial films of the multicomponent (Lu,Gd)3(Ga,Al)5O12:Ce garnets

    NASA Astrophysics Data System (ADS)

    Babin, V.; Hanus, M.; Krasnikov, A.; Kučera, M.; Nikl, M.; Zazubovich, S.

    2016-12-01

    Temperature dependences of the intensity and decay kinetics of the Ce3+ - related photoluminescence and characteristics of thermally stimulated luminescence are investigated in the 77-500 K temperature range for the epitaxial films of the multicomponent garnets of the type of Lu3-xGdxGayAl5-yO12:Ce with Ce content of 0.3-0.7 at. %, where x varies from 0.14 to 3 and y varies from 0 to 3.54. Different methods are used for the determination of energy distances between the excited 5d1 and 5d2 levels of Ce3+ ions and the conduction band (CB) and their applicability is compared. The dependences of the 5d1,2 - CB energy distances on the multicomponent garnet composition are clarified. The 5d1 - CB energy distance is found to decrease by about an order of magnitude with the increasing Ga3+ content. The most drastic decrease, observed at the Ga3+ content around y ≈ 1.7, is suggested to arise from the change in the Ga3+ position from the smaller tetrahedral to larger octahedral Al3+ sites. This effect is explained by the lattice distortion due to the substitution of smaller Lu3+ and Al3+ ions by larger Gd3+ and Ga3+ ions. Application potential of these epitaxial films for fast 2D-imaging is discussed.

  9. XPS studies of Mg doped GDC (Ce0.8Gd0.2O2-δ) for IT-SOFC

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Rao, P. Koteswara; Wani, B. N.

    2018-04-01

    Fuel Cells have gained much attention as efficient and environment friendly device for both stationary as well as mobile applications. For intermediate temperature SOFC (IT-SOFC), ceria based electrolytes are the most promising one, due to their higher ionic conductivity at relatively lower temperatures. Gd doped ceria is reported to be having the highest ionic conductivity. In the present work, Mg is codoped along with Gd and the electronic structure of the constituents is studied by XPS. XPS confirm that the Cerium is present in +4 oxidation state only which indicates that electronic conduction can be completely avoided.

  10. Unusual Phase Diagram of CeOs 4Sb 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, P. -C.; Goddard, P. A.; Maple, M. B.

    2017-03-01

    Filled skutterudite compounds, with the formula MT 4X 12, where M is an alkali metal, alkaline-earth, lanthanide, or actinide, T is Fe, Ru, or Os, and X is P, As, or Sb, display a wide variety of interesting phenomena caused by strong electron correlations [1]. Among these, the three compounds CeOs 4Sb 12, PrOs 4Sb 12, and NdOs 4Sb 12, formed by employing Periodic Table neighbors for M, span the range from an antiferromagnetic (AFM) semimetal (M = Ce) via a 1.85 K unconventional (quadrupolar-fluctuation mediated) superconductor (M = Pr) to a 1 K ferromagnet (FM; M = Nd). Inmore » the course of an extended study of these compounds, we uncovered an unusual phase diagram for CeOs 4Sb 12.« less

  11. CeSOX: An experimental test of the sterile neutrino hypothesis with Borexino

    NASA Astrophysics Data System (ADS)

    Gromov, M.; Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Caprioli, S.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; Cloué, O.; Collica, L.; Cribier, M.; D'Angelo, D.; Davini, S.; Derbin, A.; Ding, X. F.; Di Ludovico, A.; Di Noto, L.; Drachnev, I.; Durero, M.; Farinon, S.; Fischer, V.; Fomenko, K.; Formozov, A.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gschwender, M.; Ghiano, C.; Giammarchi, M.; Goretti, A.; Guffanti, D.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jonquères, N.; Jany, A.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kornoukhov, V.; Kryn, D.; Lachenmaier, T.; Lasserre, T.; Laubenstein, M.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Lukyanchenko, L.; Machulin, I.; Manuzio, G.; Marcocci, S.; Maricic, J.; Mention, G.; Martyn, J.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Muratova, V.; Musenich, R.; Neumair, B.; Oberauer, L.; Opitz, B.; Orekhov, V.; Ortica, F.; Pallavicini, M.; Papp, L.; Penek, Ö.; Pilipenko, N.; Pocar, A.; Porcelli, A.; Ranucci, G.; Razeto, A.; Re, A.; Redchuk, M.; Romani, A.; Roncin, R.; Rossi, N.; Rottenanger, S.; Schönert, S.; Scola, L.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stokes, L. F. F.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Trantel, A.; Unzhakov, E.; Veyssiére, C.; Vishneva, A.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2017-12-01

    The third phase of the Borexino experiment that’s referred to as SOX is devoted to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline (~5-10m). The experimental measurement will be made with artificial sources namely with a 144Ce-144Pr antineutrino source at the first stage (CeSOX) and possibly with a 51Cr neutrino source at the second one. The fixed 144Ce-144Pr sample will be placed beneath the detector in a special pit and the initial activity will be about 100 - 150 kCi. The start of data taking is scheduled for April 2018. The article gives a short description of the preparation for the first stage and shows the expected sensitivity.

  12. Rare-earth elements in human colostrum milk.

    PubMed

    Poniedziałek, Barbara; Rzymski, Paweł; Pięt, Małgorzata; Niedzielski, Przemysław; Mleczek, Mirosław; Wilczak, Maciej; Rzymski, Piotr

    2017-11-01

    Rare-earth elements (REEs) are used in a growing number of applications, and their release to environment has increased over the decades. Knowledge of REEs in human milk and factors that could possibly influence their concentration is scarce. This study evaluated the concentrations of 16 REEs (Ce, Eu, Er, Gd, La, Nd, Pr, Sc, Sm, Dy, Ho, Lu, Tb, Tm, Y, and Yb) in human colostrum milk collected from Polish women (n = 100) with the ICP-OES technique. The concentrations (mean ± SD) of Pr (41.9 ± 13.2 μg L -1 ), Nd (11.0 ± 4.0 μg L -1 ), La (7.1 ± 5.2 μg L -1 ), and Er (2.2 ± 0.8 μg L -1 ) were found above detection limits. The total mean ± SD concentration of detected REEs was 60.9 ± 17.8 μg L -1 . Current smokers displayed significantly increased Nd concentrations compared to women who had never smoked. No other associations between REEs in colostrum milk and age, diet in pregnancy (food supplement use and frequency of fish, meat, and vegetable consumption) or place of living (urban/rural) were found. This study adds to general understanding of the occurrence and turnover of REEs in women and human fluids.

  13. First principles electronic and thermal properties of some AlRE intermetallics

    NASA Astrophysics Data System (ADS)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B 2-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grüneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grüneisen model and compared with the others’ theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Li-Ping; Zhang, Qiang; State Key Laboratory of Pollution Control and Resource Reuse

    Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: • Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is used for synthesis. • Barium rare earth fluoride nanocrystals are synthesized comprehensively. • Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H{sub 2}O–OA (EDA)–O-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF{sub 5} (RE = Ce, Pr,more » Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba{sub 2}REF{sub 7} (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 °C, 6 h) is lower than those of them using OA (220 °C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd{sup 3+}, Eu{sup 3+}, Tb{sup 3+}) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba{sub 2}LaF{sub 7}:Yb, Tm(Er), Ba{sub 2}REF{sub 7}:Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed.« less

  15. Thermal and electric properties of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y)

    NASA Technical Reports Server (NTRS)

    Lim, Z. S.; Han, K. H.; Lee, Sung-Ik; Jeong, Yoon H.; Song, Y. S.; Park, Y. W.

    1990-01-01

    Electric resistivity, magnetic susceptibility, thermoelectric power, and Hall coefficient of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) whose onset temperature of the superconductivity are 24 K and 23 K were measured. Experimental results show many interesting features. In particular, the Hall coefficients are negative and relatively flat as a function of temperature. However, the temperature dependence of the thermoelectric power (TEP) for these two samples shows the positive sign for both samples in contrast to the previous results. Moreover TEP for both samples remains flat in the normal state below 250 K, but decreases rapidly above 250 K. TEP of only Pr(1.85)Ce(0.15)CuO(4-y) shows a peak near 50 K. Finally onset temperatures of sudden drop of TEP are higher than those of resistance drop. The physical properties of these samples produced at different conditions such as different heat treatment temperatures, atmospheres were also measured. TEP and resistance measurement show that oxygen deficiency is essential to produce better superconducting samples. Correlation between TEP and superconductivity for these different samples will be discussed.

  16. Thermal and electric properties of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y)

    NASA Technical Reports Server (NTRS)

    Lim, Z. S.; Han, K. H.; Lee, Sung-Ik; Jeong, Yoon H.; Song, Y. S.; Park, Y. W.

    1991-01-01

    Electric resistivity, magnetic susceptibility, thermoelectric power, and Hall coefficient of Nd(1.85)Ce(0.15)CuO(4-y) and Pr(1.85)Ce(0.15)CuO(4-y) whose onset temperature of the superconductivity are 24 and 23 K were measured. Experimental results show many interesting features. In particular, the Hall coefficients are negative and relatively flat as a function of temperature. However, the temperature dependence of the thermoelectric power (TEP) for these two samples shows the positive sign for both samples in contrast to the previous results. Moreover, TEP for both samples remains flat in the normal state below 250 K, but decreases rapidly above 250 K. TEP of only Pr(1.85)Ce(0.15)CuO(4-y) shows a peak near 50 K. Finally, onset temperatures of sudden drop of TEP are higher than those of resistance drop. The physical properties of these samples produced at different conditions such as different heat treatment temperatures, atmospheres were also measured. TEP and resistance measurement show that oxygen deficiency is essential to produce better superconducting samples. Correlation between TEP and superconductivity for these different samples are discussed.

  17. A determination of the oxygen non-stoichiometry of the oxygen storage materials LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeamjumnunja, Kannika; Gong, Wenquan; Makarenko, Tatyana

    The A-site ordered double-perovskite oxides, LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr), were synthesized and investigated to understand the effect of A site cation substitution on the oxygen storage properties of these materials. The present results are compared with our previous data for YBaMn{sub 2}O{sub 5+δ}. The results clearly reveal that changing the Ln cation strongly influences the oxidation/reduction behavior of LnBaMn{sub 2}O{sub 5+δ}. Based on thermogravimetric analysis data, oxygen uptake begins at lower temperatures in both air and oxygen in compounds with Ln{sup 3+} ions larger than Y{sup 3+}. These oxides exhibit almost complete and reversible oxygen uptake/release between fully-reduced LnBaMn{submore » 2}O{sub 5} and fully-oxidized LnBaMn{sub 2}O{sub 6} during changes of the oxygen partial pressure between air and 1.99% H{sub 2}/Ar. In addition, the oxygen non-stoichiometries of GdBaMn{sub 2}O{sub 5+δ} and PrBaMn{sub 2}O{sub 5+δ} were determined as a function of pO{sub 2} at 600, 650, 700 and 750 °C by Coulometric titration at near-equilibrium conditions. The results confirm that these materials have two distinct phases on oxidation/reduction with δ≈0, 0.5 and a third phase with a range of composition with an oxygen content (5+δ) approaching ~6. The stabilities of the LnBaMn{sub 2}O{sub 5+δ} phases extend over a wide range of oxygen partial pressures (∼10{sup −25}≤pO{sub 2} (atm)≤∼1) depending on temperature. Isothermal experiments show that the larger the Ln{sup 3+} cation the lower pO{sub 2} for phase conversion. At some temperatures and pO{sub 2} conditions, the LnBaMn{sub 2}O{sub 5+δ} compounds are unstable with respect to decomposition to BaMnO{sub 3−δ} and LnMnO{sub 3}. This instability is more apparent in Coulometric titration experiments than in thermogravimetric analysis. The Coulometric titration experiments are necessarily slow in order to achieve equilibrium oxygen compositions. - Graphical abstract: Structure of LnBaMn{sub 2}O{sub 5.5} and the variation of stoichiometry of GdBaMn{sub 2}O{sub 5+x} with −log(pO{sub 2}) Display Omitted - Highlights: • Determination of the oxygen non-stoichiometry of GdBaMn{sub 2}O{sub 5+δ} and PrBaMn{sub 2}O{sub 5+δ} as a function of pO{sub 2} and T. • Establishment of pO{sub 2} ranges of stability of O{sub 5} and O{sub 5.5} at 600 °C, 650 °C, 700 °C and 750 °C. • Investigation of the kinetic instability of LnBaMn{sub 2}O{sub 5+δ} (Ln=Gd, Pr) with respect to decomposition to BaMnO{sub 3−x} and LnMnO{sub 3} • Comparison of the thermodynamics of the oxidation of LnBaMnO{sub 5} (Ln=Y, Gd, Pr) as a function of the rare earth cation size.« less

  18. Systematic syntheses and metalloligand doping of flexible porous coordination polymers composed of a Co(III)-metalloligand.

    PubMed

    Kobayashi, Atsushi; Suzuki, Yui; Ohba, Tadashi; Ogawa, Tomohiro; Matsumoto, Takeshi; Noro, Shin-ichiro; Chang, Ho-Chol; Kato, Masako

    2015-03-16

    A series of flexible porous coordination polymers (PCPs) RE-Co, composed of a Co(III)-metalloligand [Co(dcbpy)3](3-) (Co; H2dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) and lanthanide cations (RE(3+) = La(3+), Ce(3+), Pr(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Er(3+)), was systematically synthesized. X-ray crystallographic analysis revealed that the six carboxylates at the top of each coordination octahedron of Co(III)-metalloligand were commonly bound to RE(3+) cations to form a rock-salt-type porous coordination framework. When RE-Co contains a smaller and heavier RE(3+) cation than Nd(3+), the RE-Co crystallized in the cubic Fm-3m space group, whereas the other three RE-Co with larger RE(3+) crystallized in the lower symmetrical orthorhombic Fddd space group, owing to the asymmetric 10-coordinated bicapped square antiprism structure of the larger RE(3+) cation. Powder X-ray diffraction and vapor-adsorption isotherm measurements revealed that all synthesized RE-Co PCPs show reversible amorphous-crystalline transitions, triggered by water-vapor-adsorption/desorption. This transition behavior strongly depends on the kind of RE(3+); the transition of orthorhombic RE-Co was hardly observed under exposure to CH3OH vapor, but the RE-Co with smaller cations such as Gd(3+) showed the transition under exposure to CH3OH vapors. Further tuning of vapor-adsorption property was examined by doping of Ru(II)-metalloligands, [Ru(dcbpy)3](4-), [Ru(dcbpy)2Cl2](4-), [Ru(dcbpy)(tpy)Cl](-), and [Ru(dcbpy)(dctpy)](3-) (abbreviated as RuA, RuB, RuC, and RuD, respectively; tpy = 2,2':6',2″-terpyridine, H2dctpy = 4,4″-dicarboxy-2,2':6',2″-terpyridine), into the Co(III)-metalloligand site of Gd-Co to form the Ru(II)-doped PCP RuX@Gd-Co (X = A, B, C, or D). Three Ru(II)-metalloligands, RuA, RuB, and RuD dopants, were found to be uniformly incorporated into the Gd-Co framework by replacing the original Co(III)-metalloligand, whereas the doping of RuC failed probably because of the less number of coordination sites. In addition, we found that the RuA doping into the Gd-Co PCP had a large effect on vapor-adsorption due to the electrostatic interaction originating from the negatively charged RuA sites in the framework and the charge-compensating Li(+) cations in the porous channel.

  19. Phase relationships and cation disorder in RE{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7+{delta}}, RE = Pr, Nd, Sm, Gd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, M.J.; Wu, H.; Dennis, K.W.

    1995-12-31

    Unlike Y123 which forms only a stoichiometric compound, the light arare earth elements (LRE) form a solid solution LRE{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7+{delta}} (LRE123ss), with increasing substitution of the LRE{sup 3+} for the Ba{sup 2+} as the ionic radii of the LRE increases. The sub-solidus phase relationships around the LRE123ss change for La, Pr and Nd, but are similar for Sm and Gd. However, the solubility limit decreases with decreasing ionic radii. In addition, the solubility limits for Sm and Gd are strongly influenced by PO{sub 2} during high temperature annealing. The range of solubility is, for any given LREmore » system, strongly dependent on the oxygen partial pressure (PO{sub 2}) providing a new means by which to control the microstructure in the RE123 system.« less

  20. Magnetic properties of the doubly ordered perovskite NaLnCoWO6 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) family

    NASA Astrophysics Data System (ADS)

    Zuo, Peng; Klein, Holger; Darie, Céline; Colin, Claire V.

    2018-07-01

    The focus of this study is on the magnetic properties of the very recently synthesized doubly ordered perovskite family NaLnCoWO6 (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb). Magnetic characterizations were performed by magnetic susceptibility vs. temperature, isothermal magnetization and heat capacity measurements. All these compounds have been determined as antiferromagnets with Néel temperatures from 4 K to 13.1 K. When the lanthanide is magnetic, additional transitions were observed below the Néel temperature which are attributed to the polarization of the magnetic Ln3+ sublattice by the ordered Co2+ one. Taking into account the magnetic ordering found in this study and the polar structure in the nine compounds NaLnCoWO6 (Ln = Y, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Yb) reported before, these compounds can be classified as new Type I multiferroics.

  1. Polycrystalline nanowires of gadolinium-doped ceria via random alignment mediated by supercritical carbon dioxide

    PubMed Central

    Kim, Sang Woo; Ahn, Jae-Pyoung

    2013-01-01

    This study proposes a seed/template-free method that affords high-purity semiconducting nanowires from nanoclusters, which act as basic building blocks for nanomaterials, under supercritical CO2 fluid. Polycrystalline nanowires of Gd-doped ceria (Gd-CeO2) were formed by CO2-mediated non-oriented attachment of the nanoclusters resulting from the dissociation of single-crystalline aggregates. The unique formation mechanism underlying this morphological transition may be exploited for the facile growth of high-purity polycrystalline nanowires. PMID:23572061

  2. Crystal Structure and Magnetic Properties of New Cubic Quaternary Compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe)

    NASA Astrophysics Data System (ADS)

    Isikawa, Yosikazu; Mizushima, Toshio; Ejiri, Jun-ichi; Kitayama, Shiori; Kumagai, Keigou; Kuwai, Tomohiko; Bordet, Pierre; Lejay, Pascal

    2015-07-01

    The new cubic quaternary intermetallic compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe) were synthesized by the mixture-metal flux method using Zn and Sn. The crystal structure was investigated by powder X-ray diffraction and with a four-circle X-ray diffractometer using single crystals. The space group of the compounds is Fdbar{3}m (No. 227). The rare-earth atom is at the cubic site which is the center of a cage composed of Zn and Sn atoms. The crystal structure is the same as the CeCr2Al20-type crystal structure except the atoms at the 16c site, i.e., the Zn atoms at the 16c site are completely replaced by Sn atoms, indicating that the compounds are crystallographically new ordered quaternary compounds. The lattice parameter a and the physical properties of the magnetic susceptibility χ, the magnetization M, and the specific heat C of these cubic caged compounds were investigated. LaCo2Sn2Zn18 and LaFe2Sn2Zn18 are enhanced Pauli paramagnets that originate from the Co and Fe itinerant 3d electrons. CeCo2Sn2Zn18 and CeFe2Sn2Zn18 are also enhanced Pauli paramagnets that originate from both the 3d electrons and Ce 4f electrons. PrCo2Sn2Zn18 and PrFe2Sn2Zn18 are nonmagnetic materials with huge values of C divided by temperature, which indicates that the ground state of Pr ions is a non-Kramers' doublet. NdCo2Sn2Zn18 and NdFe2Sn2Zn18 are magnetic materials with the Néel temperatures of 1.0 and 3.8 K, respectively. All eight compounds have large magnetic moments of Co/Fe in the paramagnetic temperature region, and thus their magnetic moments are inferred to be magnetically frustrating owing to the pyrochlore lattice in the low-temperature region.

  3. MR-Guided Unfocused Ultrasound Disruption of the Rat Blood-Brain Barrier

    NASA Astrophysics Data System (ADS)

    Townsend, Kelly A.; King, Randy L.; Zaharchuk, Greg; Pauly, Kim Butts

    2011-09-01

    Therapeutic ultrasound with microbubbles can temporarily disrupt the blood-brain barrier (BBB) for drug delivery. Contrast-enhanced MRI (CE-MRI) can visualize gadolinium passage into the brain, indicating BBB opening. Previous studies used focused ultrasound, which is appropriate for the targeted delivery of drugs. The purpose of this study was to investigate unfocused ultrasound for BBB opening across the whole brain. In 10 rats, gadolinium-based MR contrast agent (Gd; 0.25 ml) was administered concurrent with ultrasound microbubbles (Optison, 0.25 ml) and circulated for 20 sec before sonication. A 753 kHz planar PZT transducer, diameter 1.8 cm, sonicated each rat brain with supplied voltage of 300, 400, or 500 mVpp for 10 sec in continuous wave mode, or at 500 mVpp at 20% duty cycle at 10 Hz for 30-300 sec. After sonication, coronal T1-weighted FSE CE-MRI images were acquired with a 3in surface coil. The imaging protocol was repeated 3-5 times after treatment. One control animal was given Gd and microbubbles, but not sonicated, and the other was given Gd and sonicated without microbubbles. Signal change in ROIs over the muscle, mesencephalon/ventricles, and the cortex/striatum were measured at 3-5 time points up to 36 min after sonication. Signal intensity was converted to % signal change compared to the initial image. In the controls, CE-MRI showed brightening of surrounding structures, but not the brain. In the continuous wave subjects, cortex/striatum signal did not increase, but ventricle/mesenchephalon signal did. Those that received pulsed sonications showed signal increases in both the cortex/striatum and ventricles/mesenchephalon. In conclusion, after pulsed unfocused ultrasound sonication, the BBB is disrupted across the whole brain, including cortex and deep grey matter, while continuous wave sonication affects only the ventricles and possibly deeper structures, without opening the cortex BBB. As time passes, the timeline of Gd passage into the brain can be visualized.

  4. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  5. Luminescence and Scintillation Properties of Czochralski Grown LYGBO Crystals

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Kim, Hong Joo; Park, H.; Kim, Sunghwan; Khan, Sajid

    2016-06-01

    Mixed crystals Li6YxGd1-x(BO3)3:Ce3+ (LYGBO) (where, x = 0.0, 0.2, 0.5, 0.8, 1.0) are grown by using Czochralski method with different proportions of Li6Y(BO3)3 and Li6Gd(BO3)3. All crystals are doped with 3 mole% optimized concentrations of Ce3+ ions. The grown crystals are 20-70 mm in length and 5-10 mm in diameter. Detailed sintering and crystal growth procedure is presented in this study. The required phase of the grown crystals is confirmed by powder X-ray diffraction (XRD) analysis. Ultraviolet (UV) photoluminescence and X-ray induced luminescence of the grown crystals at room temperature are measured. Various scintillation properties such as energy resolution, light yield, α/β ratio and fluorescence decay time under the excitation by 137Cs γ-ray and 241Am particles are also presented.

  6. Flame-ion chemistry of the lanthanide metals Ce, Pr and Nd

    NASA Astrophysics Data System (ADS)

    Patterson, Patricia M.; Goodings, John M.

    1996-01-01

    A pair of premixed, H2---O2---Ar flames of fuel-rich (FR) and fuel-lean (FL) composition, both at atmospheric pressure and 2425 K, were doped with about 10-6 mol fraction of the lanthanide metals La, Ce, Pr and Nd; from a previous study, La was used as a benchmark. The metals produce solid particles in the flames and gaseous metallic species. The latter include metallic atoms A near the flame reaction zone, but only the monoxide AO, the oxide hydroxide OAOH and, in some cases, the dioxide AO2 further downstream at equilibrium. Metallic ions (< 1% of the total metal) were observed by sampling the flames through a nozzle into a mass spectrometer. All of the observed ions can be represented by four hydrate series: (a) major signals of AO+·nH2O (n = 0-3) for La, Ce, Pr and Nd; (b) small signals of AO2H+·nH2O (n = 0-2) for Ce, Pr and Nd; (c) still smaller signals of AO2+·nH2O (n = 0, 1) for Ce, Pr and Nd in the FL flame only; and (d) tiny signals of AOH+·nH2O (n = 0, 1) for Pr and Nd in the FR flame only. The actual structures of some of these ions may not correspond to simple hydrates: e.g. AO+·H2O = A(OH)2+ = protonated OAOH; AO2H+·H2O = A(OH)3+, etc. Since hydrogen flames contain essentially no natural ionization, a major objective was to consider probable ionization mechanisms for the metals. The primary reactions include both chemi-ionization, and thermal (collisional) ionization of AO whose ionization energy is low (about 5 eV). Some of the ions are formed by secondary ion/molecule reactions including three-body hydration, proton transfer, electron (charge) transfer, H atom abstraction by radicals and oxidation. In addition, the chemical ionization of the metallic species by H3O+ was investigated. The flame-ion chemistry of these metals is discussed in detail.

  7. Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator

    NASA Astrophysics Data System (ADS)

    Tamulaitis, G.; Vaitkevičius, A.; Nargelas, S.; Augulis, R.; Gulbinas, V.; Bohacek, P.; Nikl, M.; Borisevich, A.; Fedorov, A.; Korjik, M.; Auffray, E.

    2017-10-01

    The influence of co-doping of Gd3Al2GA3O12:Ce (GAGG:Ce) scintillator with magnesium on the rise time of luminescence response was studied in two GAGG:Ce crystals grown in nominally identical conditions except of Mg co-doping in one of them. Time-resolved photoluminescence spectroscopy and free carrier absorption techniques were exploited. It is evidenced that the Mg co-doping decreases the rise time down to sub-picosecond domain. Meanwhile, the light yield decreases by ∼20%. Thus, the feasibility of exploitation of the fast rise edge in luminescence response for ultrafast timing in scintillation detectors is demonstrated. The role of Mg impurities in facilitating the excitation transfer to radiative recombination centers is discussed.

  8. R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd): Crystal structures with nets of Ir atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarema, Maksym; Swiss Federal Laboratories for Materials Science and Technology; Zaremba, Oksana

    The crystal structures of the new ternary compounds Sm{sub 4}Ir{sub 13}Ge{sub 9} and LaIr{sub 3}Ge{sub 2} were determined and refined on the basis of single-crystal X-ray diffraction data. They belong to the Ho{sub 4}Ir{sub 13}Ge{sub 9} (oP52, Pmmn) and CeCo{sub 3}B{sub 2} (hP5, P6/mmm) structure types, respectively. The formation of isotypic compounds R{sub 4}Ir{sub 13}Ge{sub 9} with R=La, Ce, Pr, Nd, and RIr{sub 3}Ge{sub 2} with R=Ce, Pr, Nd, was established by powder X-ray diffraction. The RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) compounds exist only in as-cast samples and decompose during annealing at 800 Degree-Sign C with the formationmore » of R{sub 4}Ir{sub 13}Ge{sub 9}. The structure of Sm{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting, slightly puckered nets of Ir atoms (4{sup 4})(4{sup 3}.6){sub 2}(4.6{sup 2}){sub 2} and (4{sup 4}){sub 2}(4{sup 3}.6){sub 4}(4.6{sup 2}){sub 2} that are perpendicular to [0 1 1] as well as to [0 -1 1] and [0 0 1]. The Ir atoms are surrounded by Ge atoms that form tetrahedra or square pyramids (where the layers intersect). The Sm and additional Ir atoms (in trigonal-planar coordination) are situated in channels along [1 0 0] (short translation vector). In the structure of LaIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets (3.6.3.6) perpendicular to [0 0 1]. These nets alternate along the short translation vector with layers of La and Ge atoms. - Graphical abstract: The crystal structures contain the nets of Ir atoms as main structural motif: R{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting slightly puckered nets of Ir atoms, whereas in the structure of RIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets. Highlights: Black-Right-Pointing-Pointer The Ir-rich ternary germanides R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) have been synthesized. Black-Right-Pointing-Pointer The RIr{sub 3}Ge{sub 2} compounds exist only in as-cast samples and decompose during annealing at 800 Degree-Sign C with the formation of R{sub 4}Ir{sub 13}Ge{sub 9}. Black-Right-Pointing-Pointer The structure of R{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting slightly puckered nets of Ir atoms. Black-Right-Pointing-Pointer In the structure of RIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets.« less

  9. Dependencies of microstructure and stress on the thickness of GdBa2Cu3O7 − δ thin films fabricated by RF sputtering

    PubMed Central

    2013-01-01

    GdBa2Cu3O7 − δ (GdBCO) films with different thicknesses from 200 to 2,100 nm are deposited on CeO2/yttria-stabilized zirconia (YSZ)/CeO2-buffered Ni-W substrates by radio-frequency magnetron sputtering. Both the X-ray diffraction and scanning electron microscopy analyses reveal that the a-axis grains appear at the upper layers of the films when the thickness reaches to 1,030 nm. The X-ray photoelectron spectroscopy measurement implies that the oxygen content is insufficient in upper layers beyond 1,030 nm for a thicker film. The Williamson-Hall method is used to observe the variation of film stress with increasing thickness of our films. It is found that the highest residual stresses exist in the thinnest film, while the lowest residual stresses exist in the 1,030-nm-thick film. With further increasing film thickness, the film residual stresses increase again. However, the critical current (Ic) of the GdBCO film first shows a nearly linear increase and then shows a more slowly enhancing to a final stagnation as film thickness increases from 200 to 1,030 nm and then to 2,100 nm. It is concluded that the roughness and stress are not the main reasons which cause the slow or no increase in Ic. Also, the thickness dependency of GdBa2Cu3O7 − δ films on the Ic is attributed to three main factors: a-axis grains, gaps between a-axis grains, and oxygen deficiency for the upper layers of a thick film. PMID:23816137

  10. A microdot multilayer oxide device: let us tune the strain-ionic transport interaction.

    PubMed

    Schweiger, Sebastian; Kubicek, Markus; Messerschmitt, Felix; Murer, Christoph; Rupp, Jennifer L M

    2014-05-27

    In this paper, we present a strategy to use interfacial strain in multilayer heterostructures to tune their resistive response and ionic transport as active component in an oxide-based multilayer microdot device on chip. For this, fabrication of strained multilayer microdot devices with sideways attached electrodes is reported with the material system Gd0.1Ce0.9O(2-δ)/Er2O3. The fast ionic conducting Gd0.1Ce0.9O(2-δ) single layers are altered in lattice strain by the electrically insulating erbia phases of a microdot. The strain activated volume of the Gd0.1Ce0.9O(2-δ) is investigated by changing the number of individual layers from 1 to 60 while keeping the microdot at a constant thickness; i.e., the proportion of strained volume was systematically varied. Electrical measurements showed that the activation energy of the devices could be altered by Δ0.31 eV by changing the compressive strain of a microdot ceria-based phase by more than 1.16%. The electrical conductivity data is analyzed and interpreted with a strain volume model and defect thermodynamics. Additionally, an equivalent circuit model is presented for sideways contacted multilayer microdots. We give a proof-of-concept for microdot contacting to capture real strain-ionic transport effects and reveal that for classic top-electrode contacting the effect is nil, highlighting the need for sideways electric contacting on a nanoscopic scale. The near order ionic transport interaction is supported by Raman spectroscopy measurements. These were conducted and analyzed together with fully relaxed single thin film samples. Strain states are described relative to the strain activated volumes of Gd0.1Ce0.9O(2-δ) in the microdot multilayer. These findings reveal that strain engineering in microfabricated devices allows altering the ionic conduction over a wide range beyond classic doping strategies for single films. The reported fabrication route and concept of strained multilayer microdots is a promising path for applying strained multilayer oxides as active new building blocks relevant for a broad range of microelectrochemical devices, e.g., resistive switching memory prototypes, resistive or electrochemical sensors, or as active catalytic solid state surface components for microfuel cells or all-solid-state batteries.

  11. Tuning charge transfer in the LaTiO3/RO/LaNiO3 (R = rare-earth) superlattices by the rare-earth oxides interfaces from a first-principles calculation

    NASA Astrophysics Data System (ADS)

    Yao, Fen; Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Zhang, Xiong; Zhang, Wenwen; Meng, Jian; Zhang, Hongjie

    2018-03-01

    We investigate the internal charge transfer at the isopolar interfaces in LaTiO3/RO/LaNiO3 (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) superlattices by means of density functional theory calculations. The charge transfer from Ti sites to Ni sites in all superlattices is induced by the electronegativity difference between the elements Ti and Ni, and the lanthanide oxides interfaces can modulate the amount of charge transfer. Comparison of the perovskite heterostructures with the different rare-earth interfaces shows that increasing the deviations of bond angles from 180.0° and the oxygen motions near the interfaces enhance charge transfer. The 4f electrons themselves of rare-earth elements have faint influences on charge transfer. In addition, the reasons why our calculated 4f states of Sm and Tm elements disagree with the experimental systems have been provided. It is hoped that all the calculated results could be used to design new functional nanoelectronic devices in perovskite oxides.

  12. Lanthanides determination in red wine using ultrasound assisted extraction, flow injection, aerosol desolvation and ICP-MS.

    PubMed

    Bentlin, Fabrina R S; dos Santos, Clarissa M M; Flores, Erico M M; Pozebon, Dirce

    2012-01-13

    This paper deals with the determination of the fourteen naturally occurring elements of the lanthanide series in red wine. Ultrasound (US) was used for sample preparation prior lanthanides determination using ICP-MS. Flow injection (FI) and pneumatic nebulization/aerosol desolvation were used for nebulization of aliquots of 50 μL of sample and its subsequent transportation to plasma. Sample preparation procedures, matrix interference and time of sonication were evaluated. Better results for lanthanides in red wine were obtained by sonication with US probe for 90 s and sample 10-fold diluted. The limits of detection of La, Ce, Nd, Sm, Gd, Pr, Eu, Tb, Dy, Ho, Er, Tm, Lu and Yb were 6.57, 10.8, 9.97, 9.38, 2.71, 1.29, 1.22, 0.52, 2.35, 0.96, 2.30, 0.45, 0.24 and 1.35 ng L(-1), respectively. Red wines of different varieties from three countries of South America were discriminated according to the country of origin by means of multivariate analysis of lanthanides concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Low energy ion-solid interactions and chemistry effects in a series of pyrochlores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Liyuan; Li, Yuhong; Devanathan, Ram

    The effect of chemistry on low energy recoil events was investigated at 10 K for each type of atom in pyrochlores using molecular dynamics simulation. Contour plots of the threshold displacement energy (Ed) in Gd2Zr2O7 have been produced along more than 80 directions for each individual species. The Ed surface for each type of atom in Gd2Zr2O7 is highly anisotropic; Ed of Zr exhibits the largest degree of anisotropy, while that of O8b exhibits the smallest. The recommended values of Ed in Gd2Zr2O7 based on the observed minima are 56, 94 and 25 eV, respectively for Gd, Zr and O.more » The influence of cation radius on Ed in pyrochlores A2B2O7 (with A-site ranging from Lu3+ to La3+ and B-site ranging from Ti4+ to Ce4+) was also investigated along three directions [100], [110] and [111]. The Ed in pyrochlores strongly depended on the atom type, atom mass, knock-on direction, and lattice position. The defects produced after low energy displacement events included cation antisite defects, cation Frenkel pairs, anion Frenkel pairs, various vacancies and interstitials. Ce doping in pyrochlores may affect the radiation response, because it resulted in drastic changes in cation and anion displacement energies and formation of an unusual type of anti-site defect. This work demonstrates links between Ed and amorphization resistance.« less

  14. A comparative study of the luminescence properties of LYSO:Ce, LSO:Ce, GSO:Ce and BGO single crystal scintillators for use in medical X-ray imaging.

    PubMed

    Valais, I; Michail, C; David, S; Nomicos, C D; Panayiotakis, G S; Kandarakis, I

    2008-06-01

    The present study is a comparative investigation of the luminescence properties of (Lu,Y)(2)SiO(5):Ce (LYSO:Ce), Lu(2)SiO(5):Ce (LSO:Ce), Gd(2)SiO(5):Ce (GSO:Ce) and (Bi(4)Ge(3)O(12)) BGO single crystal scintillators under medical X-ray excitation. All scintillating crystals have dimensions of 10 x 10 x 10 mm(3) are non-hygroscopic exhibiting high radiation absorption efficiency in the energy range used in medical imaging applications. The comparative investigation was performed by determining the absolute luminescence efficiency (emitted light flux over incident X-ray exposure) in X-ray energies employed in general X-ray imaging (40-140 kV) and in mammographic X-ray imaging (22-49 kV). Additionally, light emission spectra of crystals at various X-ray energies were measured, in order to determine the spectral compatibility to optical photon detectors incorporated in medical imaging systems and the overall efficiency (effective efficiency) of a scintillator-optical detector combination. The light emission performance of LYSO:Ce and LSO:Ce scintillators studied was found very high for X-ray imaging.

  15. Influence of Pt substitution on magnetic properties of multipolar ordering compounds Ce(Pd,Pt)3S4

    NASA Astrophysics Data System (ADS)

    Michimura, S.; Nishikawa, Ushio; Shimizu, Akihide; Kosaka, Masashi; Numakura, Ryosuke; Iizuka, Ryosuke; Katano, Susumu

    2018-05-01

    We have studied the magnetic properties of the multipolar ordering compounds Ce(Pd1-xPtx) 3S4 with 0.00 ≤ x ≤ 0.53 by means of magnetic susceptibility and magnetization measurements. In CePd3S4 , a simultaneous phase transition of the antiferro quadrupolar (AFQ) ordering and ferro magnetic (FM) ordering has been observed at 6.3 K. It has been suggested that the primary order parameter of CePd3S4 is the quadrupole moments, and it has not been understood why the FM ordering occurs at very high temperature which is almost the same magnetic transition temperature of GdPd3S4 . GdPd3S4 shows an antiferromagnetic (AFM) transition at 5.8 K. With increasing Pt substitution in CePd3S4 , the FM transition temperature TC (x) is rapidly suppressed to 2.4 K for x ≃ 0.3 and approaches asymptotically to 1.9 K (x = 0.53) . The results of magnetization curve suggest that the ordered state below TC (x) remains FM and AFQ ordered state for the whole range of x. For x ≥ 0.29 , TC (x) reaches at around 2 K, a new AFM transition was observed at TN (x) ≃ 7 K . We determined the T - x phase diagram, and discuss the phase transitions at TC (x) and TN (x) . The results suggest the possibility of the presence of the correlation between the magnetic interaction and the quadrupole interaction, and the correlation is not understood based on the previous multipolar model.

  16. Stoneflies of the genus Zwicknia Murányi, 2014 (Plecoptera: Capniidae) from western Switzerland.

    PubMed

    Reding, Jean-Paul G

    2018-02-21

    Le genre Zwicknia Murányi, de la famille des Capniidae, a récemment été proposé pour inclure Capnia bifrons (Newman), ce qui a rendu nécessaire la révision du matériel collecté en Suisse occidentale et identifié précédemment comme correspondant à cette espèce. Cette révision, qui a depuis abouti à la description d'une espèce nouvelle pour la science, Zwicknia ledoarei Reding et al., est maintenant complétée, permettant de signaler la présence de deux espèces supplémentaires, Z. bifrons et Z. westermanni Boumans Murányi, la dernière nouvelle pour la Suisse. Des informations sur la distribution, les préférences écologiques, la zoogéographie et le statut de conservation de ces espèces en Suisse occidentale sont également apportées. Finalement, une clé d'identification pour les larves et les adultes mâles des espèces précitées est proposée.

  17. Electronic self-organization in the single-layer manganite $$\\rm Pr_{1-x}Ca_{1+x}MnO4$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Feng; Chi, Songxue; Fernandez-Baca, Jaime A

    We use neutron scattering to investigate the doping evolution of the magnetic correlations in the single-layer manganitemore » $$\\rm Pr_{\\it 1-x}Ca_{\\it 1+x}MnO_4$$, away from the $x=0.5$ composition where the CE-type commensurate antiferromagnetic (AF) structure is stable. We find that short-range incommensurate spin correlations develop as the system is electron doped ($x<0.5$), which coexist with the CE-type AF order. This suggests that electron doping in this system induces an inhomogeneous electronic self-organization, where commensurate AF patches with $x=0.5$ are separated by electron-rich domain walls with short range magnetic correlations. This behavior is strikingly different than for the three-dimensional $$\\rm Pr_{\\it 1-x}Ca_{\\it x}MnO_3$$, where the long-range CE-type commensurate AF structure is stable over a wide range of electron or hole doping around $x=0.5$.« less

  18. A Computational Approach to the Quantification of Animal Camouflage

    DTIC Science & Technology

    2014-06-01

    radiometry and photometry. McGraw-Hill, Inc., Boggs CL, Watt WB, Ehrlich PR (2003) Butterflies: ecology and evolution taking flight. University of...Rowland HM, Ruxton GD (2010) The evolution and ecology of masquerade. Biological Journal of the Linnean Society 99:1-8 Skelhorn J, Ruxton GD (2011...applications have previously been explored, albeit disjointly, in ecology (Levin et al. 2005), environmental sciences (De La Barrera and Smith 2009

  19. Positive MRI contrast enhancement in THP-1 cells with Gd2O3 nanoparticles.

    PubMed

    Klasson, Anna; Ahrén, Maria; Hellqvist, Eva; Söderlind, Fredrik; Rosén, Anders; Käll, Per-Olov; Uvdal, Kajsa; Engström, Maria

    2008-01-01

    There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s(-1) mm(-1) for cell culture medium. The r2 was 17.4 and 12.9 s(-1) mm(-1), respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (p(r1) = 0.36), but r2 was significantly different for the two different series (p(r2) = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells. Copyright 2008 John Wiley & Sons, Ltd.

  20. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 2: guinea pigs challenged with soman.

    PubMed

    Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D

    2011-03-01

    This report, the second in a series of five, directly compares the efficacy of Reactive Skin Decontamination Lotion (RSDL), the M291 Skin Decontamination Kit (SDK), 0.5% bleach (sodium or calcium hypochlorite solution), 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to soman (GD). In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with GD and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Positive control animals were challenged with GD in the same manner as the treated animals, except that they received no treatment. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the derived probit dose-response curves established for each treatment group and nontreated control animals. SERPACWA was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with GD. After a 2-hour challenge, any remaining GD was blotted off the animal, but no additional decontamination was done. Significance in this report is defined as p <.05. Neat (undiluted) GD was used to challenge all animals in these studies. In the standard 2-minute GD decontamination experiments, the calculated PRs for RSDL, 0.5% bleach, 1% soapy water, and M291 SDK were 14, 2.7, 2.2, and 2.6, respectively. RSDL was by far the most effective decontamination product tested and significantly better than any of the other products. Bleach, soapy water, and the M291 SDK provided equivalent and modest protection. Since only RSDL provided at least good protection (PR > 5), it was the only decontamination product evaluated for delayed decontamination. In the GD delayed-decontamination experiments, the calculated LT(50) (the delayed-decontamination time at which 50% of the animals die in the test population following a 5-LD(50) challenge) value for RSDL was only 4.0 minutes. Several conclusions can be drawn from this study: 1) Reactive Skin Decontamination Lotion provided superior protection against GD compared with the other products tested; 2) The 0.5% bleach solution, the 1% soapy water solution, and the M291 SDK were less effective than RSDL, but still provided modest (2 < PR < 5) protection against GD; 3) Reactive Skin Decontamination Lotion, the best product tested, did not provide significant protection against GD when decontamination was delayed for more than 3 minutes; 4) Skin Exposure Reduction Paste Against Chemical Warfare Agents provided significant, but modest, protection against GD; 5) There was good correlation between using the rabbit model and the guinea pig model for decontamination efficacy evaluations; and 6) Soman (GD) is an agent of real concern because it is very difficult to decontaminate and the effects of exposure are difficult to treat.

  1. Rare earth substitutional impurities in germanium: A hybrid density functional theory study

    NASA Astrophysics Data System (ADS)

    Igumbor, E.; Omotoso, E.; Tunhuma, S. M.; Danga, H. T.; Meyer, W. E.

    2017-10-01

    The Heyd, Scuseria, and Ernzerhof (HSE06) hybrid functional by means of density functional theory has been used to model the electronic and structural properties of rare earth (RE) substitutional impurities in germanium (REGe) . The formation and charge state transition energies for the REGe (RE = Ce, Pr, Er and Eu) were calculated. The energy of formation for the neutral charge state of the REGe lies between -0.14 and 3.13 eV. The formation energy result shows that the Pr dopant in Ge (PrGe) has the lowest formation energy of -0.14 eV, and is most energetically favourable under equilibrium conditions. The REGe induced charge state transition levels within the band gap of Ge. Shallow acceptor levels were induced by both the Eu (EuGe) and Pr (PrGe) dopants in Ge. The CeGe and ErGe exhibited properties of negative-U ordering with effective-U values of -0.85 and -1.07 eV, respectively.

  2. Synthesis of Green-Emitting (La,Gd)OBr:Tb3+ Phosphors

    PubMed Central

    Kim, Sun Woog; Jyoko, Kazuya; Masui, Toshiyuki; Imanaka, Nobuhito

    2010-01-01

    Green-emitting phosphors based on lanthanum-gadolinium oxybromide were synthesized in a single phase form by the conventional solid state reaction method, and photoluminescence properties of them were characterized. The excitation peak wavelength of (La1-xGdx)OBr:Tb3+ shifted to the shorter wavelength side with the increase in the crystal field around the Tb3+ ions by doping Gd3+ ions into the La3+ site, and, as a result, the green emission intensity was successfully enhanced. The maximum emission intensity was obtained for (La0.95Gd0.05)OBr:5%Tb3+, where the relative emission intensity was 45% of that of a commercial green-emitting LaPO4:Ce3+,Tb3+ phosphor.

  3. Characterization of mixed-conducting barium cerate-based perovskites for potential fuel cell applications

    NASA Astrophysics Data System (ADS)

    Mukundan, R.

    Chemical modifications of barium cerium gadolinium oxide through the substitution of Bi, Tb, Pr, Nb and Ta were attempted in an effort to increase the p-type or n-type conductivity, and to develop new mixed-conducting electrodes that are chemically compatible with the Ba(Cesb{1-x}Gdsb{x})Osb{3-x/2} electrolyte. The structure, oxygen non-stoichiometry, electronic and ionic-conductivity of several compositions in the doped-barium cerate systems were studied by X-ray diffraction, TGA, DC and AC conductivity, and EMF measurements. The cathodic overpotential of the mixed (electronic/ionic) conducting compositions in this system, on a Ba(Cesb{0.8}Gdsb{0.2})Osb{2.9} electrolyte, were also studied using Current Interruption and AC impedance techniques. The substitution of Bi into Ba(Cesb{0.9}Gdsb{0.1})Osb{2.95} lead to a significant increase in the electronic conductivity, and a total conductivity of about 0.94 S/cm was obtained for Ba(Bisb{0.5}Cesb{0.4}Gdsb{0.1})Osb3 at 800sp°C in air. However, the concentration of oxygen-ion vacancies and hence the ionic conductivity decreased due to the oxidation of Bi to the 5sp{+} state. Compositions in the Ba(Bisb{0.5}Cesb{x}Gdsb{0.5-x})Osb3 system also exhibited significant oxygen non-stoichiometry depending upon the ordering of the B-site cations and the relative concentrations of Ce and Gd. However, the absence of any detectable EMF in the non-stoichiometric compositions implied that the oxygen vacancies are strongly associated with the Bisp{3+} cations. Although highly conductive, chemically stable compositions were prepared in the Ba(Bisb{x}Cesb{y}Gdsb{1-(x+y)})Osb{3-d} system, their ionic conductivities were low. The mixed-conduction properties of Ba(Cesb{1-x}Gdsb{x})Osb{3-d} were enhanced under cathode conditions (600-800sp°C in air) by the substitution of Ce by Tb and Pr. While the substitution of Tb resulted in a decrease in the total conductivity, Pr induced a significant increase in the total conductivity at high Pr levels (≥40 mole%) due to an enhancement of the electronic conductivity. The Ba(Prsb{0.8}Gdsb{0.2})Osb{2.9} sample was found to have the best mixed-conducting properties of all the perovskites evaluated, sigmasb{T}=0.75 S/cm in air at 800sp°C, tsb{H+}=0.15 in a wet argon//dry argon gradient, and tsb{0.2-}≈ 0.05 in a dry air//dry argon gradient. The cathodic overpotentials of the mixed-conducting Pr-doped barium cerates were low, and decreased with increasing ionic and electronic conductivity of the electrode. The lowest overpotential was obtained for the Ba(Prsb{0.8}Gdsb{0.2})Osb{2.9}, cathode, and at low current densities was comparable to that of an optimized porous Pt-electrode. While the substitution of Nb and Ta for Ce lead to an enhancement in the electronic conductivity under reducing conditions associated with the increased reduction of Cesp{4+} to Cesp{3+}, the ionic-conductivity of these perovskites was low. There was no evidence for any protonic conductivity in the 15 mole% Nb and Ta substituted barium cerates. Moreover the anodic overpotential and the anode resistance of these perovskites on a Ba(Cesb{0.8}Gdsb{0.2})Osb{2.9} electrolyte were both high.

  4. NEW NEUTRON-CAPTURE MEASUREMENTS IN 23 OPEN CLUSTERS. I. THE r -PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overbeek, Jamie C.; Friel, Eileen D.; Jacobson, Heather R., E-mail: joverbee@indiana.edu

    2016-06-20

    Neutron-capture elements, those with Z > 35, are the least well understood in terms of nucleosynthesis and formation environments. The rapid neutron-capture, or r -process, elements are formed in the environments and/or remnants of massive stars, while the slow neutron-capture, or s -process, elements are primarily formed in low-mass AGB stars. These elements can provide much information about Galactic star formation and enrichment, but observational data are limited. We have assembled a sample of 68 stars in 23 open clusters that we use to probe abundance trends for six neutron-capture elements (Eu, Gd, Dy, Mo, Pr, and Nd) with clustermore » age and location in the disk of the Galaxy. In order to keep our analysis as homogeneous as possible, we use an automated synthesis fitting program, which also enables us to measure multiple (3–10) lines for each element. We find that the pure r -process elements (Eu, Gd, and Dy) have positive trends with increasing cluster age, while the mixed r - and s -process elements (Mo, Pr, and Nd) have insignificant trends consistent with zero. Pr, Nd, Eu, Gd, and Dy have similar, slight (although mostly statistically significant) gradients of ∼0.04 dex kpc{sup −1}. The mixed elements also appear to have nonlinear relationships with R {sub GC}.« less

  5. Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Li-Mei; Liu, Jing-Xin, E-mail: jxliu411@ahut.edu.cn

    A series of compounds based on the macrocyclic ligand cyclohexanocucurbit[6]uril (Cy6Q[6]) with formulas (Ln(H{sub 2}O){sub 6}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·xH{sub 2}O [isomorphous with Ln=La (1), Ce (2), Pr (3) and Nd (4), x=11 (1), 11 (2), 10 (3) and 11 (4)], (Sm(H{sub 2}O){sub 5}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·10H{sub 2}O (5) and (Ln(H{sub 2}O){sub 5}(NO{sub 3})@Cy6Q[6])·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with Ln=Gd (6), Tb (7) and Dy (8), x=8 (6), 6 (7) and 6 (8)], have been successfully synthesized by the self-assembly of Cy6Q[6] with the corresponding lanthanide nitrate under hydrochloric acid aqueous solution in the presence of CdCl{sub 2}. Single-crystal X-ray diffraction analyses revealedmore » that compounds 1–8 all crystallize in monoclinic space group P2{sub 1}/c, and display 1D coordination polymer structures. The lanthanide contraction effect on the structures of 1–8 has also been investigated and discussed in detail. In contrast, the reaction of Cy6Q[6] with the Ho(NO){sub 3}, Tm(NO){sub 3}, Yb(NO){sub 3} under the same conditions resulted in the compounds 9–11 with formulas Cy6Q[6]·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with x=10 (9), 10 (10), and 9 (11)], in which no lanthanide cations are observed. The structural difference of these compounds indicates that the Cy6Q[6] may be used in the separation of lanthanide cations. - Graphical abstract: The reaction of cyclohexanocucurbit[6]uril with lanthanide ions (La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+}) under hydrochloric acid in the presence of CdCl{sub 2} resulted in eleven compounds, which demonstrate interesting lanthanide contraction effect and provide a means of separating lanthanide ions. - Highlights: • Eleven compounds of the Ln{sup 3+} with the Cy6Q[6] were synthesized and described. • Compounds 1-8 demonstrate interesting lanthanide contraction effect. • In solid-state structures of compounds 9-11, no lanthanide ions were observed. • This study provides a means of separating lanthanides cations.« less

  6. Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions.

    PubMed

    Kovalevsky, A V; Yaremchenko, A A; Populoh, S; Thiel, P; Fagg, D P; Weidenkaff, A; Frade, J R

    2014-12-28

    Donor-substituted strontium titanate ceramics demonstrate one of the most promising performances among n-type oxide thermoelectrics. Here we report a marked improvement of the thermoelectric properties in rare-earth substituted titanates Sr0.9R0.1TiO3±δ (R = La, Ce, Pr, Nd, Sm, Gd, Dy, Y) to achieve maximal ZT values of as high as 0.42 at 1190 K < T < 1225 K, prepared via a conventional solid state route followed by sintering under strongly reducing conditions (10%H2-90%N2, 1773 K). As a result of complex defect chemistry, both electrical and thermal properties were found to be dependent on the nature of the rare-earth cation and exhibit an apparent correlation with the unit cell size. High power factors of 1350-1550 μW m(-1) K(-2) at 400-550 K were observed for R = Nd, Sm, Pr and Y, being among the largest reported so far for n-type conducting bulk-ceramic SrTiO3-based materials. Attractive ZT values at high temperatures arise primarily from low thermal conductivity, which, in turn, stem from effective phonon scattering in oxygen-deficient perovskite layers formed upon reduction. The results suggest that highly-reducing conditions are essential and should be employed, whenever possible, in other related micro/nanostructural engineering approaches to suppress the thermal conductivity in target titanate-based ceramics.

  7. Flux Crystal Growth of the RE 2Ru 3Ge 5 ( RE = La, Ce, Nd, Gd, Tb) Series and Their Magnetic and Metamagnetic Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugaris, Daniel E.; Malliakas, Christos D.; Bud?ko, Sergey L.

    Previously synthesized only as powders, single crystals of the RE 2Ru 3Ge 5 (RE = La, Ce, Nd, Gd, Tb) series of compounds have been now been obtained from molten In. We report that these materials crystallize with the U 2Co 3Si 5-type structure in orthorhombic space group Ibam with lattice parameters a ~ 10.00-9.77 Å (La-Tb), b ~ 12.51-12.35 Å, and c ~ 5.92-5.72 Å. The structure is a three-dimensional framework consisting of RuGe 5 and RuGe 6 units, as well as Ge-Ge zigzag chains. This structure type, along with the other five (Sc 2Fe 3Si 5, Lu 2Comore » 3Si 5, Y 2Rh 3Sn 5, Yb 2Ir 3Ge 5, and Yb 2Pt 3Sn 5) to compose the RE 2T 3X 5 phase space, are discussed in depth. For the three compounds with RE = Nd, Gd, and Tb, multiple magnetic transitions and metamagnetic behavior are observed. Lastly, electronic band structure calculations performed on La 2Ru 3Ge 5 indicate that these materials have a negative band gap and are semimetallic in nature.« less

  8. Flux Crystal Growth of the RE 2Ru 3Ge 5 ( RE = La, Ce, Nd, Gd, Tb) Series and Their Magnetic and Metamagnetic Transitions

    DOE PAGES

    Bugaris, Daniel E.; Malliakas, Christos D.; Bud?ko, Sergey L.; ...

    2017-11-21

    Previously synthesized only as powders, single crystals of the RE 2Ru 3Ge 5 (RE = La, Ce, Nd, Gd, Tb) series of compounds have been now been obtained from molten In. We report that these materials crystallize with the U 2Co 3Si 5-type structure in orthorhombic space group Ibam with lattice parameters a ~ 10.00-9.77 Å (La-Tb), b ~ 12.51-12.35 Å, and c ~ 5.92-5.72 Å. The structure is a three-dimensional framework consisting of RuGe 5 and RuGe 6 units, as well as Ge-Ge zigzag chains. This structure type, along with the other five (Sc 2Fe 3Si 5, Lu 2Comore » 3Si 5, Y 2Rh 3Sn 5, Yb 2Ir 3Ge 5, and Yb 2Pt 3Sn 5) to compose the RE 2T 3X 5 phase space, are discussed in depth. For the three compounds with RE = Nd, Gd, and Tb, multiple magnetic transitions and metamagnetic behavior are observed. Lastly, electronic band structure calculations performed on La 2Ru 3Ge 5 indicate that these materials have a negative band gap and are semimetallic in nature.« less

  9. Quantum-splitting oxide-based phosphors, method of producing, and rules for designing the same

    DOEpatents

    Setlur, Anant Achyut; Comanzo, Holly Ann; Srivastava, Alok Mani

    2003-09-16

    Strontium and strontium calcium aluminates and lanthanum and lanthanum magnesium borates activated with Pr.sup.3+ and Mn.sup.2+ exhibit characteristics of quantum-splitting phosphors. Improved quantum efficiency may be obtained by further doping with Gd.sup.3+. Refined rules for designing quantum-splitting phosphors include the requirement of incorporation of Gd.sup.3+ and Mn.sup.2+ in the host lattice for facilitation of energy migration.

  10. Mid-temperature deep removal of hydrogen sulfide on rare earth (RE = Ce, La, Sm, Gd) doped ZnO supported on KIT-6: Effect of RE dopants and interaction between active phase and support matrix

    NASA Astrophysics Data System (ADS)

    Li, Lu; Zhou, Pin; Zhang, Hongbo; Meng, Xianglong; Li, Juexiu; Sun, Tonghua

    2017-06-01

    Rare earth oxides (RE = Ce, La, Sm and Gd) doped ZnO supported on KIT-6 sorbents (RE-ZnO/KIT-6) were synthesized by sol-gel method and their performance for deep removal of H2S (bellow 0.1 ppmv) from gas stream at medium temperature was tested. The RE dopants (except Ce) significantly enhance the deep desulfurization capacity of ZnO/KIT-6 sorbent and maintained higher sulfur uptake capacities upon multiple cycles of regeneration by a simple thermal oxidation in 10 v% of O2 in N2 atmosphere. The results of SAXS, XRD, N2 physisorption, TEM, FIIR, and XPS implied that the KIT-6 structure of loading metal oxides remained intact. It was found that RE could hinder the ZnO crystal ripening during calcination resulted in smaller ZnO particles, enhance the interaction of ZnO and silica matrix to improve the dispersion of active phase on KIT-6. Furthermore, by increasing the outlayer electron density of Zn atom and oxygen transfer ability, the synergistic effect considered to be favorable for RE-ZnO/KIT-6 sulfidation. Even though the performance of improving ZnO dispersion was weaker than that of Sm and Gd, La-ZnO/KIT-6 performs the best deep desulfurizers by changing the surface chemical atmosphere for ZnO. Steam in the gas stream inhibited the capture of H2S by ZnO in the sorbents, in the case of La-ZnO/KIT-6, the steam content should control as lower as 5 v% to ensure the desulfurization efficiency and precision.

  11. Basic performance evaluation of a Si-PM array-based LGSO phoswich DOI block detector for a high-resolution small animal PET system.

    PubMed

    Yamamoto, Seiichi

    2013-07-01

    The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd(2)SiO(5) (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu(1.9)Gd(0.1)Si0(5) (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems.

  12. Effects of rare earth oxide nanoparticles on root elongation of plants.

    PubMed

    Ma, Yuhui; Kuang, Linglin; He, Xiao; Bai, Wei; Ding, Yayun; Zhang, Zhiyong; Zhao, Yuliang; Chai, Zhifang

    2010-01-01

    The phytotoxicity of four rare earth oxide nanoparticles, nano-CeO(2), nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) on seven higher plant species (radish, rape, tomato, lettuce, wheat, cabbage, and cucumber) were investigated in the present study by means of root elongation experiments. Their effects on root growth varied greatly between different nanoparticles and plant species. A suspension of 2000 mg L(-1) nano-CeO(2) had no effect on the root elongation of six plants, except lettuce. On the contrary, 2000 mg L(-1) suspensions of nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) severely inhibited the root elongation of all the seven species. Inhibitory effects of nano-La(2)O(3), nano-Gd(2)O(3), and nano-Yb(2)O(3) also differed in the different growth process of plants. For wheat, the inhibition mainly took place during the seed incubation process, while lettuce and rape were inhibited on both seed soaking and incubation process. The fifty percent inhibitory concentrations (IC(50)) for rape were about 40 mg L(-1) of nano-La(2)O(3), 20mg L(-1) of nano-Gd(2)O(3), and 70 mg L(-1) of nano-Yb(2)O(3), respectively. In the concentration ranges used in this study, the RE(3+) ion released from the nanoparticles had negligible effects on the root elongation. These results are helpful in understanding phytotoxicity of rare earth oxide nanoparticles. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Studies on supercritical hydrothermal syntheses of uranium and lanthanide oxide particles and their reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Hwang, DongKi; Tsukahara, Takehiko; Tanaka, Kosuke; Osaka, Masahiko; Ikeda, Yasuhisa

    2015-11-01

    In order to develop preparation method of raw metal oxide particles for low decontaminated MOX fuels by supercritical hydrothermal (SH) treatments, we have investigated behavior of aqueous solutions dissolving U(VI), Ln(III) (Ln: lanthanide = Ce, Pr, Nd, Sm, Tb), Cs(I), and Sr(II) nitrate or chloride compounds under SH conditions (temperature = 400-500 °C, pressure = 30-40 MPa). As a result, it was found that Ln(NO3)3 (Ln = Ce, Pr, Tb) compounds produce LnO2, that Ln(NO3)3 (Ln = Nd, Sm) compounds are hardly converted to their oxides, and that LnCl3 (Ln = Ce, Pr, Nd, Sm, Tb), CsNO3, and Sr(NO3)2 do not form their oxide compounds. Furthermore, HNO2 species were detected in the liquid phase obtained after treating HNO3 aqueous solutions containing Ln(NO3)3 (Ln = Ce, Pr, Tb) under SH conditions, and also NO2 and NO compounds were found to be produced by decomposition of HNO3. From these results, it was proposed that the Ln oxide (LnO2) particles are directly formed with oxidation of Ln(III) to Ln(IV) by HNO3 and HNO2 species in the SH systems. Moreover, the uranyl ions were found to form U3O8 and UO3 depending on the concentration of HNO3. From these results, it is expected that the raw metal oxide particles for low decontaminated MOX fuels are efficiently prepared by the SH method.

  14. Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide(III) DOTA complexes.

    PubMed

    Tei, Lorenzo; Baranyai, Zsolt; Gaino, Luca; Forgács, Attila; Vágner, Adrienn; Botta, Mauro

    2015-03-28

    A complete thermodynamic and kinetic solution study on lanthanide(III) complexes with monoacetamide (DOTAMA, L1) and monopropionamide (DOTAMAP, L2) derivatives of DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) was undertaken with the aim to elucidate their stability and inertness in aqueous media. The stability constants of GdL1 and GdL2 are comparable, whereas a more marked difference is found in the kinetic inertness of the two complexes. The formation of the Eu(III) and Ce(III) complexes takes place via the formation of the protonated intermediates which can deprotonate and transform into the final complex through a OH(-) assisted pathway. GdL2 shows faster rates of acid catalysed decomplexation with respect to GdL1, which has a kinetic inertness comparable to GdDOTA. Nevertheless, GdL2 is one order of magnitude more inert than GdDO3A. A novel DOTAMAP-based bifunctional chelating ligand and its deoxycholic acid derivative (L5) were also synthesized. Since the coordinated water molecule in GdL2 is characterized by an exchange rate ca. two orders of magnitude greater than in GdL1, the relaxivity of the macromolecular derivatives of L5 should not be limited by the slow water exchange process. The relaxometric properties of the supramolecular adduct of GdL5 with human serum albumin (HSA) were investigated in aqueous solution by measuring the magnetic field dependence of the (1)H relaxivity which, at 20 MHz and 298 K, shows a 430% increase over that of the unbound GdL5 chelate. Thus, Gd(III) complexes with DOTAMAP macrocyclic ligands can represent good candidates for the development of stable and highly effective bioconjugate systems for molecular imaging applications.

  15. Helium defectoscopy of cerium gadolinium ceramics Ce0.8Gd0.2O1.9 with a submicrocrystalline structure in the impurity disorder region

    NASA Astrophysics Data System (ADS)

    Koromyslov, A. V.; Zhiganov, A. N.; Kovalenko, M. A.; Kupryazhkin, A. Ya.

    2013-12-01

    The concentration of impurity anion vacancies formed upon the dissociation of gadolinium-vacancy complexes has been determined using helium defectoscopy of the cerium gadolinium ceramics Ce0.8Gd0.2O1.9 with a submicrocrystalline structure in the temperature range T = 740-1123 K and at saturation pressures ranging from 0.05 to 15 MPa. It has been found that the energy of dissociation of gadoliniumvacancy complexes is E {eff/ D }= 0.26 ± 0.06 eV, and the energy of dissolution of helium in anion vacancies in the impurity disorder region is E P = -0.31 ± 0.09 eV. The proposed mechanism of dissolution has been confirmed by the investigation of the electrical conductivity of the cerium gadolinium ceramics, as well as by the high-speed molecular dynamics simulation of the dissociation of gadolinium-vacancy complexes. It has been assumed that a decrease in the effective dissolution energy in comparison with the results of the previously performed low-temperature investigations is caused by the mutual repulsion of vacancies formed upon the dissociation of gadolinium-vacancy complexes in highly concentrated solutions of gadolinium in CeO2 with increasing temperature.

  16. Magnetic and fluorescence properties of cerium-doped yttrium gadolinium aluminum iron garnet crystals

    NASA Astrophysics Data System (ADS)

    Aoki, Daichi; Shima, Mutsuhiro

    2014-11-01

    Magnetic and fluorescence properties of chemically synthesized Ce:Gd-YAIG (Ce0.05GdxY2.95-xAl5-yFeyO12) nanocrystals have been investigated. The structural characterization by X-ray diffraction (XRD) shows that a garnet phase has been identified in samples with 0 ≤ x ≤ 2.95 and 0 ≤ y ≤ 3.0. When y = 0, only garnet peaks are observed for 0 ≤ x ≤ 2.5, while both garnet and perovskite phases are present for x > 2.5. It is found from XRD Rietveld analyses that the site occupancy of Fe3+ at the tetrahedral and octahedral sites in the garnet is independent of the amount of Y3+ substituted by Ce3+ and Gd3+ at the dodecahedral sites. The saturation magnetization for the sample with x = 0 and y = 3.0 is 4.35 emu/g, while that with x = 2.5 and y = 3.0 is 87.5 emu/g. When the Fe3+ composition y is varied from 0 to 3.0 at x = 2.5, the intensity of fluorescence at the emission wavelength ˜570 nm significantly decreases presumably due to absorption by Fe3+ that is increased in the crystal.

  17. 3.0 Tesla high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) of the pulmonary circulation: initial experience with a 32-channel phased array coil using a high relaxivity contrast agent.

    PubMed

    Nael, Kambiz; Fenchel, Michael; Krishnam, Mayil; Finn, J Paul; Laub, Gerhard; Ruehm, Stefan G

    2007-06-01

    To evaluate the technical feasibility of high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) with highly accelerated parallel acquisition at 3.0 T using a 32-channel phased array coil, and a high relaxivity contrast agent. Ten adult healthy volunteers (5 men, 5 women, aged 21-66 years) underwent high spatial resolution CE-MRA of the pulmonary circulation. Imaging was performed at 3 T using a 32-channel phase array coil. After intravenous injection of 1 mL of gadobenate dimeglumine (Gd-BOPTA) at 1.5 mL/s, a timing bolus was used to measure the transit time from the arm vein to the main pulmonary artery. Subsequently following intravenous injection of 0.1 mmol/kg of Gd-BOPTA at the same rate, isotropic high spatial resolution data sets (1 x 1 x 1 mm3) CE-MRA of the entire pulmonary circulation were acquired using a fast gradient-recalled echo sequence (TR/TE 3/1.2 milliseconds, FA 18 degrees) and highly accelerated parallel acquisition (GRAPPA x 6) during a 20-second breath hold. The presence of artifact, noise, and image quality of the pulmonary arterial segments were evaluated independently by 2 radiologists. Phantom measurements were performed to assess the signal-to-noise ratio (SNR). Statistical analysis of data was performed by using Wilcoxon rank sum test and 2-sample Student t test. The interobserver variability was tested by kappa coefficient. All studies were of diagnostic quality as determined by both observers. The pulmonary arteries were routinely identified up to fifth-order branches, with definition in the diagnostic range and excellent interobserver agreement (kappa = 0.84, 95% confidence interval 0.77-0.90). Phantom measurements showed significantly lower SNR (P < 0.01) using GRAPPA (17.3 +/- 18.8) compared with measurements without parallel acquisition (58 +/- 49.4). The described 3 T CE-MRA protocol in addition to high T1 relaxivity of Gd-BOPTA provides sufficient SNR to support highly accelerated parallel acquisition (GRAPPA x 6), resulting in acquisition of isotopic (1 x 1 x 1 mm3) voxels over the entire pulmonary circulation in 20 seconds.

  18. Dynamics and Thermochemistry of Oxygen Uptake by a Mixed Ce-Pr Oxide

    NASA Astrophysics Data System (ADS)

    Sinev, M. Yu.; Fattakhova, Z. T.; Bychkov, V. Yu.; Lomonosov, V. I.; Gordienko, Yu. A.

    2018-03-01

    The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2-x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from 60 to 40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce-Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).

  19. Upper critical field measurements in high-Tc superconducting oxides

    NASA Astrophysics Data System (ADS)

    Ousset, J. C.; Bobo, J. F.; Ulmet, J. P.; Rakoto, H.; Cheggour, N.

    We present upper critical field measurements on the superconducting oxides RE Ba2Cu3O7-δ (RE = Y, Gd) performed in a pulsed magnetic field up to 43 T. Values for Hc2 as high as 52 T and 77 T for Y and Gd respectively, are expected at 77 K. However, in order to observe no resistive behaviour up to 43 T the temperature must be decreased down to 50 K. In the case of oxygen deficient systems the magnetoresistance reveals two superconducting phases wich could be related to two different orders of oxygen vacancies. Nous présentons des mesures de champ critique Hc2 sur les supraconducteurs TR Ba 2Cu3O7-δ (TR = Y, Gd) réalisées en champ magnétique pulsé jusqu'à 43 T. Elles permettent de prévoir des valeurs de H c2 de 52 T et 77 T respectivement pour Y et Gd à 77 K. Cependant, pour ne pas observer de comportement résistif jusqu'au champ maximum, il est nécessaire de refroidir l'échantillon jusqu'à 50 K. Dans le cas des systèmes déficients en oxygène (δ important) nous mettons en évidence l'existence de deux phases supraconductrices qui pourraient être dues à deux ordres différents des lacunes d'oxygène.

  20. Syntheses, structures, and physical properties of CsRE(2)Ag(3)Te(5) (RE = Pr, Nd, Sm, Gd-Er) and RbR(2)Ag(3)Te(5) (RE = Sm, Gd-Dy).

    PubMed

    Meng, Chang-Yu; Chen, Hong; Wang, Peng

    2014-07-07

    A new series of quaternary CsRE2Ag3Te5 (RE = Pr, Nd, Sm, Gd-Er) and RbRE2Ag3Te5 (RE = Sm, Gd-Dy), which have been synthesized from the elemental mixtures in ACl flux (A = Rb, Cs) and crystallized in the orthorhombic space group Cmcm, with a = 4.620(2)-4.504(2) Å, b = 16.232(8)-16.027(8) Å, c = 18.84(1)-18.32(2) and Z = 4, are isostructural to RbSm2Ag3Se5. These isostructural ARE2Ag3Te5 feature a three-dimensional tunnel framework constructed by ionically bound RETe6 octahedron and covalently bound AgTe4 tetrahedron in which tunnels are filled by A. Typical semiconducting behavior is revealed by the electrical conductivity, Seebeck coefficient, optical band gap measurement, and the theoretical calculations. The undoped sintered polycrystalline pellets of CsRE2Ag3Te5 (containing 1.1-1.7% CsCl impurity) show very low electrical conductivity (σr.t. = 0.5-2.4 S/cm), very low thermal conductivity (kr,t = 0.66-0.53 W/(m·K)), and moderate Seebeck coefficient (160-200 μV/K at 700 K).

  1. Structural analysis of nickel doped cerium oxide catalysts for fuel reforming in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cavendish, Rio

    As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.

  2. Effect of Yb(3+) on the Crystal Structural Modification and Photoluminescence Properties of GGAG:Ce(3+).

    PubMed

    Luo, Zhao-Hua; Liu, Yong-Fu; Zhang, Chang-Hua; Zhang, Jian-Xin; Qin, Hai-Ming; Jiang, Hao-Chuan; Jiang, Jun

    2016-03-21

    Gadolinium gallium aluminum garnet (GGAG) is a very promising host for the highly efficient luminescence of Ce(3+) and shows potential in radiation detection applications. However, the thermodynamically metastable structure would be slanted against it from getting high transparency. To stabilize the crystal structure of GGAG, Yb(3+) ions were codoped at the Gd(3+) site. It is found that the decomposition of garnet was suppressed and the transparency of GGAG ceramic was evidently improved. Moreover, the photoluminescence of GGAG:Ce(3+),xYb(3+) with different Yb(3+) contents has been investigated. When the Ce(3+) ions were excited under 475 nm, a typical near-infrared region emission of Yb(3+) ions can be observed, where silicon solar cells have the strongest absorption. Basing on the lifetimes of Ce(3+) ions in the GGAG:Ce(3+),xYb(3+) sample, the transfer efficiency from Ce(3+) to Yb(3+) and the theoretical internal quantum efficiency can be calculated and reach up to 86% and 186%, respectively. This would make GGAG:Ce(3+),Yb(3+) a potential attractive downconversion candidate for improving the energy conversion efficiency of crystalline silicon (c-Si) solar cells.

  3. Protective efficacy of a high-growth reassortant swine H3N2 inactivated vaccine constructed by reverse genetic manipulation

    PubMed Central

    Wen, Feng; Ma, Ji-Hong; Yang, Fu-Ru; Huang, Meng; Zhou, Yan-Jun; Li, Ze-Jun

    2014-01-01

    Novel reassortant H3N2 swine influenza viruses (SwIV) with the matrix gene from the 2009 H1N1 pandemic virus have been isolated in many countries as well as during outbreaks in multiple states in the United States, indicating that H3N2 SwIV might be a potential threat to public health. Since southern China is the world's largest producer of pigs, efficient vaccines should be developed to prevent pigs from acquiring H3N2 subtype SwIV infections, and thus limit the possibility of SwIV infection at agricultural fairs. In this study, a high-growth reassortant virus (GD/PR8) was generated by plasmid-based reverse genetics and tested as a candidate inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice by challenging them with another H3N2 SwIV isolate [A/Swine/Heilongjiang/1/05 (H3N2) (HLJ/05)]. Prime and booster inoculation with GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting antibodies and IgG antibodies. Complete protection of mice against H3N2 SwIV was observed, with significantly reduced lung lesion and viral loads in vaccine-inoculated mice relative to mock-vaccinated controls. These results suggest that the GD/PR8 vaccine may serve as a promising candidate for rapid intervention of H3N2 SwIV outbreaks in China. PMID:24675833

  4. Superfluid phase stiffness in electron doped superconducting Gd-123

    NASA Astrophysics Data System (ADS)

    Das, P.; Ghosh, Ajay Kumar

    2018-05-01

    Current-voltage characteristics of Ce substituted Gd-123 superconductor exhibits nonlinearity below a certain temperature below the critical temperature. An exponent is extracted using the nonlinearity of current-voltage relation. Superfluid phase stiffness has been studied as a function of temperature following the Ambegaokar-Halperin-Nelson-Siggia (AHNS) theory. Phase stiffness of the superfluid below the superconducting transition is found to be sensitive to the change in the carrier concentration in superconducting system. There may be a crucial electron density which affects superfluid stiffness strongly. Electron doping is found to be effective even if the coupling of the superconducting planes is changed.

  5. Achieving High Strength and Good Ductility in As-Extruded Mg–Gd–Y–Zn Alloys by Ce Micro-Alloying

    PubMed Central

    Gao, Zhengyuan; Hu, Linsheng; Li, Jinfeng; An, Zhiguo; Li, Jun; Huang, Qiuyan

    2018-01-01

    In this study, the effect of Ce additions on microstructure evolution of Mg–7Gd–3.5Y–0.3Zn (wt %) alloys during the casting, homogenization, aging and extrusion processing are investigated, and novel mechanical properties are also obtained. The results show that Ce addition promotes the formation of long period stacking ordered (LPSO) phases in the as-cast Mg–Gd–Y–Zn–Ce alloys. A high content of Ce addition would reduce the maximum solubility of Gd and Y in the Mg matrix, which leads to the higher density of Mg12Ce phases in the as-homogenized alloys. The major second phases observed in the as-extruded alloys are micron-sized bulk LPSO phases, nano-sized stripe LPSO phases, and broken Mg12Ce and Mg5RE phases. Recrystallized grain size of the as-extruded 0.2Ce, 0.5Ce and 1.0Ce alloys can be refined to ~4.3 μm, ~1.0 μm and ~8.4 μm, respectively, which is caused by the synthesized effect of both micron phases and nano phases. The strength and ductility of as-extruded samples firstly increase and then decrease with increasing Ce content. As-extruded 0.5Ce alloy exhibits optimal mechanical properties, with ultimate strength of 365 MPa and ductility of ~15% simultaneously. PMID:29320471

  6. CAPILLARY ELECTROPHORESIS IMMUNOASSAY FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    A capillary electrophoresis (CE) immunoassay format for 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated. A fluorescent labeled 2,4-D analog competes with the analyte of interest for a finite number of binding sites provided by anti-2,4-D monoclonal antibodies. CE then pr...

  7. Enhancement of superconductivity near the pressure-induced semiconductor-metal transition in the BiS₂-based superconductors LnO₀.₅F₀.₅BiS₂ (Ln = La, Ce, Pr, Nd).

    PubMed

    Wolowiec, C T; White, B D; Jeon, I; Yazici, D; Huang, K; Maple, M B

    2013-10-23

    Measurements of electrical resistivity were performed between 3 and 300 K at various pressures up to 2.8 GPa on the BiS2-based superconductors LnO0.5F0.5BiS2 (Ln=Pr, Nd). At lower pressures, PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2 exhibit superconductivity with critical temperatures Tc of 3.5 and 3.9 K, respectively. As pressure is increased, both compounds undergo a transition at a pressure Pt from a low Tc superconducting phase to a high Tc superconducting phase in which Tc reaches maximum values of 7.6 and 6.4 K for PrO0.5F0.5BiS2 and NdO0.5F0.5BiS2, respectively. The pressure-induced transition is characterized by a rapid increase in Tc within a small range in pressure of ∼0.3 GPa for both compounds. In the normal state of PrO0.5F0.5BiS2, the transition pressure Pt correlates with the pressure where the suppression of semiconducting behaviour saturates. In the normal state of NdO0.5F0.5BiS2, Pt is coincident with a semiconductor-metal transition. This behaviour is similar to the results recently reported for the LnO0.5F0.5BiS2 (Ln=La, Ce) compounds. We observe that Pt and the size of the jump in Tc between the two superconducting phases both scale with the lanthanide element in LnO0.5F0.5BiS2 (Ln=La, Ce, Pr, Nd).

  8. GADOLINIUM(Gd)-BASED and Ion Oxide Nanoparticle Contrast Agents for Pre-Clinical and Clinical Magnetic Resonance Imaging (mri) Research

    NASA Astrophysics Data System (ADS)

    Ng, Thian C.

    2012-06-01

    It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.

  9. Radioluminescence studies of colloidal oleate-capped β-Na(Gd,Lu)F4:Ln3+ nanoparticles (Ln = Ce, Eu, Tb).

    PubMed

    Cooper, Daniel R; Capobianco, John A; Seuntjens, Jan

    2018-04-26

    We report on the synthesis, characterization, and radioluminescence quantification of several new varieties of nanoparticles with the general composition β-NaLnF4, incorporating known luminescent activator/sensitizer pairs. Using Monte Carlo modeling to complement luminescence measurements, we have calculated the radioluminescence yields and intrinsic conversion efficiencies of colloidally-dispersed nanoparticles by comparison to an organic liquid scintillator. While five of the compositions had low to modest radioluminescence yields relative to bulk materials, colloidal β-Na(Lu0.65Gd0.2Tb0.15)F4 displayed a strong output of 39 460 photons per MeV absorbed, comparable to some of the best non-hygroscopic bulk crystal scintillators and X-ray phosphors such as Gd2O2S:Tb. Measurements of β-Na(Lu0.65Gd0.2Tb0.15)F4 powder samples revealed persistent luminescence as well as stable charge trapping, warranting further investigation.

  10. Influence of Ca2+ doped on structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds

    NASA Astrophysics Data System (ADS)

    Lemdek, El Mokhtar; Benkhouja, Khalil; Touhtouh, Samira; Sbiaai, Khalid; Arbaoui, Abdezzahid; Bakasse, Mina; Hajjaji, Abdelowahed; Boughaleb, Yahia; Saez-Puche, Regino

    2013-11-01

    This paper investigates the effect of doping by Ca2+ ions on the structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds. A simple ceramic method in air at 900 °C was used to prepare all compounds. The structural characterization of compounds was carried out by using X-ray powder diffraction (XRD) and IR spectroscopy. Optical properties were characterized by reflectance spectral data and by colorimeter. The results reveal a single monazite phase for x values up to 0.4. The lattice parameters of the synthesized samples decrease linearly with the reduction of ionic radius of the Ce3+. These rare earth phosphates based materials have a potential to be adopted for the eco-friendly colorants for paints and plastics.

  11. AT1 receptor blockade in the central nucleus of the amygdala attenuates the effects of muscimol on sodium and water intake.

    PubMed

    Hu, B; Qiao, H; Sun, B; Jia, R; Fan, Y; Wang, N; Lu, B; Yan, J Q

    2015-10-29

    The blockade of the central nucleus of the amygdala (CeA) with the GABAA receptor agonist muscimol significantly reduces hypertonic NaCl and water intake by sodium-depleted rats. In the present study we investigated the effects of previous injection of losartan, an angiotensin II type-1 (AT1) receptor antagonist, into the CeA on 0.3M NaCl and water intake reduced by muscimol bilaterally injected into the same areas in rats submitted to water deprivation-partial rehydration (WD-PR) and in rats treated with the diuretic furosemide (FURO). Male Sprague-Dawley rats with stainless steel cannulas bilaterally implanted into the CeA were used. Bilateral injections of muscimol (0.2 nmol/0.5 μl, n=8 rats/group) into the CeA in WD-PR-treated rats reduced 0.3M NaCl intake and water intake, and pre-treatment of the CeA with losartan (50 μg/0.5 μl) reversed the inhibitory effect of muscimol. The negative effect of muscimol on sodium and water intake could also be blocked by pretreatment with losartan microinjected into the CeA in rats given FURO (n=8 rats/group). However, bilateral injections of losartan (50 μg/0.5 μl) alone into the CeA did not affect the NaCl or water intake. These results suggest that the deactivation of CeA facilitatory mechanisms by muscimol injection into the CeA is promoted by endogenous angiotensin II acting on AT1 receptors in the CeA, which prevents rats from ingesting large amounts of hypertonic NaCl and water. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Kramers non-magnetic superconductivity in LnNiAsO superconductors.

    PubMed

    Li, Yuke; Luo, Yongkang; Li, Lin; Chen, Bin; Xu, Xiaofeng; Dai, Jianhui; Yang, Xiaojun; Zhang, Li; Cao, Guanghan; Xu, Zhu-an

    2014-10-22

    We investigated a series of nickel-based oxyarsenides LnNiAsO (Ln=La, Ce, Pr, Nd, Sm) compounds. CeNiAsO undergoes two successive anti-ferromagnetic transitions at TN1=9.3 K and TN2=7.3 K; SmNiAsO becomes an anti-ferromagnet below TN≃3.5 K; NdNiAsO keeps paramagnetic down to 2 K but orders anti-ferromagnetically below TN≃1.3 K. Superconductivity was observed only in Kramers non-magnetic LaNiAsO and PrNiAsO with Tc=2.7 K and 0.93 K, respectively. The superconductivity of PrNiAsO is further studied by upper critical field and specific heat measurements, which reveal that PrNiAsO is a weakly coupled Kramers non-magnetic superconductor. Our work confirms that the nickel-based oxyarsenide superconductors are substantially different in mechanism to iron-based ones, and are likely to be described by the conventional superconductivity theory.

  13. Yb-doped Gd2O2CO3: Structure, microstructure, thermal and magnetic behaviour

    NASA Astrophysics Data System (ADS)

    Artini, Cristina; Locardi, Federico; Pani, Marcella; Nelli, Ilaria; Caglieris, Federico; Masini, Roberto; Plaisier, Jasper Rikkert; Costa, Giorgio Andrea

    2017-04-01

    Structural and microstructural features, as well as thermal and magnetic properties of Yb-doped Gd2O2CO3, were investigated with the aim to clarify the location and the oxidation state of Yb within the structure, and its role in driving the extent of the (Gd1-xYbx)2O2CO3 solid solution. Yb is found in the 3+ oxidation state and it enters the structure only at the rare earth atomic site; the solubility limit results to be located in the close vicinity of x=0.25, and thermal analyses reveal a linear decrease of the decomposition temperature with increasing the Yb amount, in agreement with literature data. The structural analysis allows to exclude long-range clusterization of Yb and Gd, since both rare earths randomly distribute over the 4f atomic position, but relying on the results of the microstructural analysis, the presence of compositional inhomogenities at the local scale cannot be excluded. Not all the structural forms are documented for the pure rare earth dioxycarbonates [1]; in particular, while form I exists for each lanthanide ion, form II is stable only for the largest ones (from La to Dy); moreover, even if II-Ho2O2CO3 (rHo3+ CN8=1.015 Å [6]) is not reported to be stable, the existence of II-Y2O2CO3 (rY3+ CN8=1.019 Å [6]) has been claimed [7]. Based on the described evidence, the stability of hexagonal Yb-doped Gd2O2CO3 is not expected along the whole compositional range. As a general remark, not all the rare earth mixed dioxycarbonates exist: (Ce, Gd)2O2CO3, for instance, could not be obtained at any composition [8]; moreover, all the structural forms can be observed only in some mixed systems, such as for example (Gd, Nd)2O2CO3, by varying temperature and tuning the composition [9]. Rare earth dioxycarbonates are studied mainly for their CO2 sensing properties [10,11], and for their emission when properly doped with a luminescent lanthanide ion [12-17]. Recently, a study of this research group [18] revealed in Gd2O2CO3:4% Yb a phenomenon of persistent luminescence, with the emission taking place at 970 nm in correspondence of the Yb3+2F7/2-2F5/2 transition, detectable up to 144 h after the end of irradiation. The origin of persistent luminescence is still substantially unclear, even if it is well known that excitation energy has to be stored in an intrinsic or extrinsic trap to be then slowly released. Extrinsic traps can derive from the presence of an aliovalent ion within the matrix; this should be the case of Yb-doped Gd2O2CO3, due to the valence instability of Yb, that is believed to be induced by irradiation [19,20]. In this respect, the precise knowledge of the dioxycarbonate crystal structure and its compositional extent, as well as the determination of the Yb location and its surroundings within the crystal structure, are of great importance. Also a microstructural approach can provide useful hints about the environment of the doping ion, even if it can not replace an investigation at the local scale. The synthetic route used for the preparation of hexagonal RE dioxycarbonates plays an important role in the obtainment of monophasic samples. The formation of the product via transformation of form I or Ia is documented for light lanthanides up to Sm [1], while thermal decomposition of Gd oxalate at 600 °C in static CO2 was performed to obtain hexagonal Gd2O2CO3[21]. The latter method is useful also for the synthesis of some mixed oxycarbonates, such as the ones containing Gd/Nd [9], but not Gd/Ce [8]. Carbonatation of RE2O3 is also reported as successful for RE≡La [1], Pr [1], Gd [21] and Nd [22]. The duration of the synthetic process is significantly shortened by adding the eutectic mixture Li2CO3-Na2CO3-K2CO3 to oxides, and by heating the whole mixture [7]. Nanostructured Yb- and Er-doped Gd2O2CO3 were also obtained, by coating with SiO2 the corresponding RE(OH)CO3·H2O nanoparticles [23]. In this work we present a structural, microstructural, thermal and magnetic study of a series of Yb-doped Gd2O2CO3 samples, performed by synchrotron x-ray diffraction, differential thermal analysis coupled to thermogravimetry (DTA-TG), and magnetization measurements. Specimens were prepared by a synthetic route that consists in the carbonatation of mixed oxides assisted by the aforementioned eutectic mixture. The structural investigation allowed to identify the solubility limit of Yb within Gd2O2CO3 and to derive its preferential position; moreover, a microstructural effect due to microstrain induced by the introduction of a foreign atom in the 4f site was detected. The extent of the Gd/Yb solid solution, as well as the decomposition temperature, is discussed in terms of dimensional issues of the involved atomic sites. Magnetic measurements allowed to exclude the presence of Yb2+ and to recognize the occurrence of weak antiferromagnetic correlations. From the results obtained in this study a significant aid is expected for the understanding of the mechanisms ruling persistent luminescence in these materials.

  14. Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil.

    PubMed

    de Campos, Francisco Ferreira; Enzweiler, Jacinta

    2016-05-01

    The concentrations of rare earth elements (REE), measured in water samples from Atibaia River and its tributary Anhumas Creek, Brazil, present excess of dissolved gadolinium. Such anthropogenic anomalies of Gd in water, already described in other parts of the world, result from the use of stable and soluble Gd chelates as contrast agents in magnetic resonance imaging. Atibaia River constitutes the main water supply of Campinas Metropolitan area, and its basin receives wastewater effluents. The REE concentrations in water samples were determined in 0.22-μm pore size filtered samples, without and after preconcentration by solid-phase extraction with bis-(2-ethyl-hexyl)-phosphate. This preconcentration method was unable to retain the anthropogenic Gd quantitatively. The probable reason is that the Gd chelates dissociate slowly in acidic media to produce the free ion that is retained by the phosphate ester. Strong correlations between Gd and constituents or parameters associated with effluents confirmed the source of most Gd in water samples as anthropogenic. The shale-normalized REE patterns of Atibaia River and Anhumas Creek water samples showed light and heavy REE enrichment trends, respectively. Also, positive Ce anomalies in many Atibaia River samples, as well as the strong correlations of the REE (except Gd) with terrigenous elements, imply that inorganic colloidal particles contributed to the REE measured values.

  15. White Light Emission and Enhanced Color Stability in a Single-Component Host.

    PubMed

    Li, Junhao; Liang, Qiongyun; Hong, Jun-Yu; Yan, Jing; Dolgov, Leonid; Meng, Yuying; Xu, Yiqin; Shi, Jianxin; Wu, Mingmei

    2018-05-30

    Eu 3+ ion can be effectively sensitized by Ce 3+ ion through an energy-transfer chain of Ce 3+ -(Tb 3+ ) n -Eu 3+ , which has contributed to the development of white light-emitting diodes (WLEDs) as it can favor more efficient red phosphors. However, simply serving for WLEDs as one of the multicomponents, the design of the Ce 3+ -(Tb 3+ ) n -Eu 3+ energy transfer is undoubtedly underused. Theoretically, white light can be achieved with extra blue and green emissions released from Ce 3+ and Tb 3+ . Herein, the design of the white light based on these three multicolor luminescence centers has been realized in GdBO 3 . It is the first time that white light is generated via accurate controls on the Ce 3+ -(Tb 3+ ) n -Eu 3+ energy transfer in such a widely studied host material. Because the thermal quenching rates of blue, green, and red emissions from Ce 3+ , Tb 3+ , and Eu 3+ , respectively, are well-matched in the host, this novel white light exhibits superior color stability and potential application prospect.

  16. Potentiometric study of binary complexes of 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride with some lanthanide ions in aqueous and mixed solutions

    NASA Astrophysics Data System (ADS)

    Sharma, S. S.; Kadia, M. V.

    2014-12-01

    The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (Δ G, Δ H, and Δ S) are also evaluated. Negative Δ G and Δ H values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the "gadolinium break." Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.

  17. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    PubMed

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  18. Identification of species of the Euterpe genus by rare earth elements using inductively coupled plasma mass spectrometry and linear discriminant analysis.

    PubMed

    Santos, Vívian Silva; Nardini, Viviani; Cunha, Luís Carlos; Barbosa, Fernando; De Almeida Teixeira, Gustavo Henrique

    2014-06-15

    The açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) produce similar fruits which are rich in energy, minerals, vitamins and natural compounds with antioxidant and anti-inflammatory properties. Although the drink obtained from these species is similar, it is important to develop tools to establish the identity of the fruit species and growing regions. To assess claims of origin and for other purposes, we use multivariate analysis to investigate the differentiation of açaí and juçara fruits based on rare earth element (REE) content determined by Inductively Coupled Plasma Mass Spectrometry. REE content, in particular Sm, Th, La, Pr, Gd, and especially Ce and Nd varied between species. PCA analysis was not efficient in differentiating açaí from juçara fruit samples. In contrast, LDA analysis permitted a correct differentiation between species with a predictive ability of 83.3%. The methodology that we have applied confirms that REE can be used to differentiate between açaí and juçara fruit samples and to identify their origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Rare earth niobate coordination polymers

    NASA Astrophysics Data System (ADS)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  20. MAGNETIC PROPERTIES OF RARE EARTH ALUMINUM COMPOUNDS WITH MgCu$sub 2$ STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, H.J.; Wernick, J.H.; Nesbitt, E.A.

    1962-03-01

    The magnetic moments of some RAl/sub 2/ (R = rare earth element) cubic Laves phase compounds were measured at temperatures from 1.4 to 300 deg K. The measurements indicate that the spin moments of the rare earth ions are coupled ferromagnetically. The Curie points of the RAl/sub 2/ compounds are found to be uniformly higher than the corresponding Laves compounds, ROs/sub 2/, Rlr/sub 2/ and RRu/sub 2/. Solid solutions of some of the compounds were also investigated. For example, in the Gd/sub x/Pr/sub (1-x)/Al/sub 2/ compounds, the magnetic moments of the Gd ions are antiparallel to those of the Prmore » ions because J is antiparallel to S in the ground state of the Pr ion. Compensation points were observed in this system. (auth)« less

  1. Pre-clinical evaluation of a nanoparticle-based blood-pool contrast agent for MR imaging of the placenta.

    PubMed

    Ghaghada, Ketan B; Starosolski, Zbigniew A; Bhayana, Saakshi; Stupin, Igor; Patel, Chandreshkumar V; Bhavane, Rohan C; Gao, Haijun; Bednov, Andrey; Yallampalli, Chandrasekhar; Belfort, Michael; George, Verghese; Annapragada, Ananth V

    2017-09-01

    Non-invasive 3D imaging that enables clear visualization of placental margins is of interest in the accurate diagnosis of placental pathologies. This study investigated if contrast-enhanced MRI performed using a liposomal gadolinium blood-pool contrast agent (liposomal-Gd) enables clear visualization of the placental margins and the placental-myometrial interface (retroplacental space). Non-contrast MRI and contrast-enhanced MRI using a clinically approved conventional contrast agent were used as comparators. Studies were performed in pregnant rats under an approved protocol. MRI was performed at 1T using a permanent magnet small animal scanner. Pre-contrast and post-liposomal-Gd contrast images were acquired using T1-weighted and T2-weighted sequences. Dynamic Contrast enhanced MRI (DCE-MRI) was performed using gadoterate meglumine (Gd-DOTA, Dotarem ® ). Visualization of the retroplacental clear space, a marker of normal placentation, was judged by a trained radiologist. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both single and averaged acquisitions. Images were reviewed by a radiologist and scored for the visualization of placental features. Contrast-enhanced CT (CE-CT) imaging using a liposomal CT agent was performed for confirmation of the MR findings. Transplacental transport of liposomal-Gd was evaluated by post-mortem elemental analysis of tissues. Ex-vivo studies in perfused human placentae from normal, GDM, and IUGR pregnancies evaluated the transport of liposomal agent across the human placental barrier. Post-contrast T1w images acquired with liposomal-Gd demonstrated significantly higher SNR (p = 0.0002) in the placenta compared to pre-contrast images (28.0 ± 4.7 vs. 6.9 ± 1.8). No significant differences (p = 0.39) were noted between SNR in pre-contrast and post-contrast liposomal-Gd images of the amniotic fluid, indicating absence of transplacental passage of the agent. The placental margins were significantly (p < 0.001) better visualized on post-contrast liposomal-Gd images. DCE-MRI with the conventional Gd agent demonstrated retrograde opacification of the placenta from fetal edge to the myometrium, consistent with the anatomy of the rat placenta. However, no consistent and reproducible visualization of the retroplacental space was demonstrated on the conventional Gd-enhanced images. The retroplacental space was only visualized on post-contrast T1w images acquired using the liposomal agent (SNR = 15.5 ± 3.4) as a sharply defined, hypo-enhanced interface. The retroplacental space was also visible as a similar hypo-enhancing interface on CE-CT images acquired using a liposomal CT contrast agent. Tissue analysis demonstrated undetectably low transplacental permeation of liposomal-Gd, and was confirmed by lack of permeation through a perfused human placental model. Contrast-enhanced T1w-MRI performed using liposomal-Gd enabled clear visualization of placental margins and delineation of the retroplacental space from the rest of the placenta; the space is undetectable on non-contrast imaging and on post-contrast T1w images acquired using a conventional, clinically approved Gd chelate contrast agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. High- and low-Am RE inclusion phases in a U-Np-Pu-Am-Zr alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn E.; Madden, James W.; O'Holleran, Thomas P.

    2015-03-01

    Structural, microstructural, and microchemical data were collected from rare-earth inclusions in an as-cast U-Pu-Zr alloy with ~3 at% Am, 2% Np, and 9% rare-earth elements (La, Ce, Pr, and Nd). Two RE phases with different concentrations of Am were identified. The composition of high-Am RE inclusions is ~2-5 at% La, 15-20 % Ce, 5-10% Pr, 25-45% Nd, 1% Np, 5-10% Pu, and 10-20% Am. Some areas also have O, although this does not appear to be an essential part of the high-Am RE phase. The inclusions have a face-centered cubic structure with a lattice parameter a ~ 0.54 nm. Themore » composition of the only low-Am RE inclusion studied in detail is ~~35-40 at% O, 40-45 % Nd, 1-2% Zr, 4-5% La, 9-10% Ce, and 6-7% Pr. This inclusion is an oxide with a crystal structure similar to the room-temperature structure of Nd 2O 3. Microstructural features suggest that oxidation occurred during casting, and that early crystallization of high-temperature oxides led to formation of two distinct RE phases.« less

  3. Single crystal Ce doped scintillator material with garnet structure sensitive to gamma ray and neutron radiation

    NASA Astrophysics Data System (ADS)

    Solodovnikov, D.; Weber, M. H.; Haven, D. T.; Lynn, K. G.

    2012-08-01

    A mixed garnet scintillator host material is obtained from the melt—Yttrium Gadolinium Gallium Aluminum Garnet (YGGAG). In addition to the high thermal and chemical stability and radiation hardness found in garnet crystals, it offers sensitivity to neutrons due to the presence of Gd atoms, has lower melting temperature than yttrium aluminum garnet, and similar crystallization behavior suitable for growth of large volume crystals. Crystals of YGGAG doped with Ce of 10×10×10 mm3 have already demonstrated energy resolution of 10% at 662 keV.

  4. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Kuo, Lewis; Li, Baozhen

    1999-01-01

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

  5. The electronic structures and work functions of (100) surface of typical binary and doped REB6 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang; Zhang, Xin; Xiao, Yixin; Zhang, Jiuxing

    2018-03-01

    The density function theory been used to calculate the electronic structures of binary and doped rare earth hexaborides (REB6), which exhibits the large density of states (DOS) near Fermi level. The d orbital elections of RE element contribute the electronic states of election emission near the Fermi level, which imply that the REB6 (RE = La, Ce, Gd) with wide distribution of high density d orbital electrons could provide a lower work function and excellent emission properties. Doping RE elements into binary REB6 can adjust DOS and the position of the Fermi energy level. The calculated work functions of considered REB6 (100) surface show that the REB6 (RE = La, Ce, Gd) have lower work function and doping RE elements with active d orbital electrons can significantly reduce work function of binary REB6. The thermionic emission test results are basically accordant with the calculated value, proving the first principles calculation could provide a good theoretical guidance for the study of electron emission properties of REB6.

  6. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Kuo, L.; Li, B.

    1999-06-29

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO[sub 3]. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La[sub w]Ca[sub x]Ln[sub y]Ce[sub z]MnO[sub 3], wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics. 10 figs.

  7. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Allan J.; Morgan, Dane; Grey, Clare

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B 2O 5+x, where A = rare earth ion, Y and B = Ba, Sr were studied.more » The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo 2O 5+x and NdBaCo 2O 5+x, PrBaCo 2-xFexO 6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO 6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr 3YCo 4O 10.5, YBaMn 2O 5+x. A 0.5A’ 0.5BO 3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr, Ba; and B= Fe, Co, Mn, Ni), Ba 2In 2O 5, and La 1 xSr xCoO 3-δ /(La 1-ySry) 2CoO 4±δ interfaces.« less

  8. Radiation imaging with a new scintillator and a CMOS camera

    NASA Astrophysics Data System (ADS)

    Kurosawa, S.; Shoji, Y.; Pejchal, J.; Yokota, Y.; Yoshikawa, A.

    2014-07-01

    A new imaging system consisting of a high-sensitivity complementary metal-oxide semiconductor (CMOS) sensor, a microscope and a new scintillator, Ce-doped Gd3(Al,Ga)5O12 (Ce:GAGG) grown by the Czochralski process, has been developed. The noise, the dark current and the sensitivity of the CMOS camera (ORCA-Flash4.0, Hamamatsu) was revised and compared to a conventional CMOS, whose sensitivity is at the same level as that of a charge coupled device (CCD) camera. Without the scintillator, this system had a good position resolution of 2.1 ± 0.4 μm and we succeeded in obtaining the alpha-ray images using 1-mm thick Ce:GAGG crystal. This system can be applied for example to high energy X-ray beam profile monitor, etc.

  9. Synchrotron X-ray diffraction and Raman spectroscopy of Ln{sub 3}NbO{sub 7} (Ln=La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siqueira, K.P.F.; Soares, J.C.; Granado, E.

    2014-01-15

    Ln{sub 3}NbO{sub 7} (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) ceramics were obtained by molten-salt synthesis and their structures were systematically investigated by synchrotron X-ray diffraction (SXRD), second harmonic generation (SHG) and Raman spectroscopy. It was observed that ceramics with the largest ionic radii (La, Pr, Nd) crystallized into the Pmcn space group, while the ceramics with intermediate ionic radii (Sm-Gd) exhibited a different crystal structure belonging to the Ccmm space group. For this last group of ceramics, this result was corroborated by SHG and Raman scattering and ruled out any possibility formore » the non-centrosymmetric C 222{sub 1} space group, solving a recent controversy in the literature. Finally, according to SXRD, Tb-Lu containing samples exhibited an average defect fluorite structure (Fm3{sup ¯}m space group). Nonetheless, broad scattering at forbidden Bragg reflections indicates the presence of short-range domains with lower symmetry. Vibrational spectroscopy showed the presence of six Raman-active modes, inconsistent with the average cubic fluorite structure, and in line with the existence of lower-symmetry nano-domains immersed in the average fluorite structure of these ceramics. - Graphical abstract: Raman spectrum for Sm{sub 3}NbO{sub 7} ceramics showing their 27 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. Display Omitted - Highlights: • Ln{sub 3}NbO{sub 7} ceramics were obtained by molten-salt synthesis. • SXRD, SHG and Raman scattering confirmed orthorhombic and cubic structures. • Ccmm instead of C222{sub 1} is the correct structure for Sm–Gd ceramics. • Pmcn space group was confirmed for La-, Pr- and Nd-based ceramics. • For Tb–Lu ceramics, ordered domains of a pyrochlore structure were observed.« less

  10. Scintillating screens based on the LPE grown Tb3Al5O12:Ce single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Douissard, Paul-Antoine; Martin, Thierry; Riva, Federica; Gorbenko, Vitaliy; Zorenko, Tetiana; Paprocki, Kazimierz; Iskalieva, Aizhan; Witkiewicz, Sandra; Fedorov, Alexander; Bilski, Paweł; Twardak, Anna

    2017-03-01

    We report in this work the creation of new heavy and efficient Tb3Al5O12:Ce (TbAG:Ce) single crystalline film (SCF) scintillators, grown by LPE method from PbO-B2O3 based flux onto Y3Al5O12 (YAG) and Gd3Ga2.5Al2.5O12 (GAGG) substrates, for different optoelectronic applications. The luminescent and scintillation properties of the TbAG:Ce SCF screens, grown onto different types of substrates, are studied and compared with the properties of the Lu3Al5O12:Ce (LuAG:Ce) and YAG:Ce SCF counterparts. TbAG:Ce SCFs show very high scintillation light yield (LY) under α-particles excitation, which overcomes by 30% the LY of high-quality LuAG:Ce SCF samples. In comparison with YAG:Ce and LuAG:Ce SCFs, TbAG:Ce SCF screens show also significantly lower afterglow (up to 10-4 level at X-ray burst duration of 0.1 s), which is comparable with the afterglow level of the best samples of LSO:Ce, Tb SCFs typically being used now for microimaging. Together with a high light output of X-ray excited luminescence, such extremely low afterglow of TbAG:Ce SCF is a very good reason for future development of scintillating screens based on the mentioned garnet. We also introduce the possibility to create new types of ;film-substrate; hybrid scintillators using the LPE method for simultaneous registration of different components of ionizing radiation and microimaging based on the TbAG:Ce SCF and GAGG:Ce substrates.

  11. Additive/Subtractive Manufacturing Research and Development in Europe

    DTIC Science & Technology

    2004-12-01

    electronic gates and switches. The idea is to attach a gold nanoparticle to a redox gate (molecule) that undergoes reduction and oxidation reactions...This is used to synthesize mixed metal oxides such as CeO2, Ce:Zr, ZrO2, and Pr:Ce and produce them in nanoparticle form. The fourth project that was...on glass. Laser patterning is followed by heating to diffuse the oxide into the glass. MMSC has used the direct-write of conductors on polymer

  12. The crystal structure of galgenbergite-(Ce), CaCe2(CO3)4•H2O

    NASA Astrophysics Data System (ADS)

    Walter, Franz; Bojar, Hans-Peter; Hollerer, Christine E.; Mereiter, Kurt

    2013-04-01

    Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is C{{a}_{1.00 }}{{( {C{{e}_{1.04 }}L{{a}_{0.42 }}N{{d}_{0.42 }}P{{r}_{0.12 }}} )}_{2.00 }}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O , and the simplified formula is CaC{{e}_2}{{( {C{{O}_3}} )}_4}\\cdot {{H}_2}O . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group Poverline{1},a=6.3916(5) , b = 6.4005(4), c = 12.3898(9) Å, α = 100.884(4), β = 96.525(4), γ = 100.492(4)°, V = 483.64(6) Å3, Z = 2. The eight strongest lines in the powder X-ray diffraction pattern are [ d calc in Å/( I)/ hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm-1, HOH bending mode at 1,607 cm-1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1 = 0.019 for 2,448 unique reflections ( I > 2 σ( I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile-like stacking of the CO3 groups. Perpendicular to (001) the double layers are connected to a triclinic framework structure with good cleavage parallel to (001) by a differently organized and more open part of the structure formed by Ce(3)(CO3)2(H2O). Based on the topology of the CaCe(CO3)2 single layer in galgenbergite-(Ce), structural relationships to rutherfordine, to aragonite and ancylite type minerals, and to lanthanite are outlined.

  13. Computational discovery of lanthanide doped and Co-doped Y{sub 3}Al{sub 5}O{sub 12} for optoelectronic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Kamal; Chernatynskiy, Aleksandr; Phillpot, Simon R.

    2015-09-14

    We systematically elucidate the optoelectronic properties of rare-earth doped and Ce co-doped yttrium aluminum garnet (YAG) using hybrid exchange-correlation functional based density functional theory. The predicted optical transitions agree with the experimental observations for single doped Ce:YAG, Pr:YAG, and co-doped Er,Ce:YAG. We find that co-doping of Ce-doped YAG with any lanthanide except Eu and Lu lowers the transition energies; we attribute this behavior to the lanthanide-induced change in bonding environment of the dopant atoms. Furthermore, we find infrared transitions only in case of the Er, Tb, and Tm co-doped Ce:YAG and suggest Tm,Ce:YAG and Tb,Ce:YAG as possible functional materials formore » efficient spectral up-conversion devices.« less

  14. Luminescence and luminescence quenching in Gd3(Ga,Al)5O12 scintillators doped with Ce3+.

    PubMed

    Ogiegło, Joanna M; Katelnikovas, Arturas; Zych, Aleksander; Jüstel, Thomas; Meijerink, Andries; Ronda, Cees R

    2013-03-28

    The optical properties of gadolinium gallium aluminum garnet, Gd3(Ga,Al)5O12, doped with Ce(3+) are investigated as a function of the Ga/Al ratio, aimed at an improved understanding of the energy flow and luminescence quenching in these materials. A decrease of both the crystal field strength and band gap with increasing content of Ga(3+) is observed and explained by the geometrical influence of Ga(3+) on the crystal field splitting of the 5d level in line with theoretical work of Muñoz-García et al. ( uñoz-García, A. B.; Seijo, L. Phys. Rev. B 2010, 82, 184118 ). Thermal quenching results in shorter decay times as well as reduced emission intensities for all samples in the temperature range from 100 to 500 K. An activation energy for emission quenching is calculated from the data. The band gap of the host is measured upon Ga substitution and the decrease in band gap is related to Ga(3+) substitution into tetrahedral sites after all octahedral sites are occupied in the garnet material. Based on the change in band gap and crystal field splitting, band diagrams can be constructed explaining the low thermal quenching temperatures in the samples with high Ga content. The highest luminescence intensity is found for Gd3(Ga,Al)5O12 with 40% of Al(3+) replaced by Ga(3+).

  15. Local profile dependence of coercivity in (MM0.3Nd0.7)-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoqiang; Zhu, Minggang; Liu, Weiqiang; Li, Wei; Sun, Yachao; Shi, Xiaoning; Yue, Ming

    2018-03-01

    Two magnets with the same nominal composition of (MM0.3Nd0.7)-Fe-B (Marked as A) and [(La0.27Ce0.53Pr0.03Nd0.17)0.3Nd0.7]-Fe-B (Marked as B) were prepared using traditional powder metallurgical process, respectively. In order to point out the difference between two magnets, the magnetic properties, microstructure and magnetic domain of both magnets were investigated. Both magnets have the same elements, but different raw materials of misch-metal (MM) and La/Ce/Pr/Nd pure metal, which induces different magnetic properties. The magnet A with Br of 13.1 kGs, Hcj of 7.6 kOe, (BH)max of 37.8 MGOe and magnet B with Br of 13.4 kGs, Hcj of 5.8 kOe, (BH)max of 34.5 MGOe are obtained. Although both magnets have the similar Br, magnet A has higher coercivity than that of magnet B. According to refined results of characteristic X-ray diffraction peaks, there is a hard magnetic main phase with higher magnetic anisotropy field (HA) in magnet A and opposite case happens on magnet B. SEM images demonstrate that magnet A has more continuous RE-rich phase and smaller grain size compared to that of magnet B, which contributes to enhancing the coercivity. In addition, two main phases of [Nd0.82(La, Ce)0.18]-Fe-B and [Nd0.75(La, Ce)0.25]-Fe-B were detected by the EDX calculation, and the two main phases in both magnets were observed by magnetic domains again. Compared to magnet B, 2:14:1 main phases in magnet A contain more [Nd0.82(La, Ce)0.18]-Fe-B main phases and less [Nd0.75(La, Ce)0.25]-Fe-B main phases, which also leads to higher coercivity due to the different HA among Nd2Fe14B, La2Fe14B and Ce2Fe14B phases. Therefore, it is concluded that MM substitution could exhibit better magnetic properties than (La0.27Ce0.53Pr0.03Nd0.17)-metal substitution. Furthermore, applications of MM are beneficial to fabricate (MM, Nd)-Fe-B permanent magnets with lower cost.

  16. Determination of Rare Earth Elements in multi-year high-resolution Arctic aerosol record by double focusing Inductively Coupled Plasma Mass Spectrometry with desolvation nebulizer inlet system.

    PubMed

    Giardi, Fabio; Traversi, Rita; Becagli, Silvia; Severi, Mirko; Caiazzo, Laura; Ancillotti, Claudia; Udisti, Roberto

    2018-02-01

    An inductively coupled plasma sector field mass spectrometer (ICP-SFMS) was used to develop an analytical method for the fast determination of Na, Al, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Y, Mo, Cd, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb in Arctic size-segregated aerosol samples (PM 10 ), after microwave acidic digestion. The ICP-SFMS was coupled with a microflow nebulizer and a desolvation system for the sample introduction, which reduced the isobaric interferences due to oxides and the required volume of sample solutions, compared to the usual nebulization chamber methods. With its very low limit of detection, and taking into account the level of blanks, this method allowed the quantification of many metals in very low concentration. Particular attention was given to Rare Earth Elements (REEs - La to Lu). The efficiency in the extraction of REEs was proved to be acceptable, with recoveries over 83% obtained with a Certified Reference Material (AMiS 0356). The analytical method was then applied to particulate matter samples, collected at ground level in Ny Ålesund (Svalbard Islands, Norway), during spring and summer, from 2010 to 2015, with daily resolution and using a low-volume device. Thus, for the first time, a large atmospheric concentrations dataset of metals in Arctic particulate matter at high temporal resolution is presented. On the basis of differences in LREE/HREE ratio and Ce and Eu anomalies in spring and summer samples, basic information to distinguish local and long-range transported dust were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Gas-phase reactivity of lanthanide cations with fluorocarbons: C-F versus C-H and C-C bond activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornehl, H.H.; Hornung, G.; Schwarz, H.

    1996-10-16

    The gas-phase reactivity of the fluorinated hydrocarbons CF{sub 4}, CHF{sub 3}, CH{sub 3}F, C{sub 2}F{sub 6}, 1,1-C{sub 2}H{sub 4}F{sub 2}, and C{sub 6}F{sub 6} with the lanthanide cations Ce{sup +}, Pr{sup +}, Sm{sup +}, Ho{sup +}, Tm{sup +}, and Yb{sup +} and the reactivity of C{sub 6}H{sub 5}F with all lanthanide cations Ln{sup +} (Ln = La-Lu, with the exception of Pm{sup +}) have been examined by Fourier-transform ion cyclotron resonance mass spectrometry. The perfluorinated compounds tetrafluoromethane and hexafluoroethane as well as trifluoromethane do not react with any lanthanide cation. Selective activation of the strong C-F bonds in fluoromethane, 1,1-difluoroethane,more » hexafluorobenzene, and fluorobenzene appears as a general reaction scheme along the 4f row. Experimental evidence is given for a `harpoon`-like mechanism for the F atom abstraction process which operates via an initial electron transfer from the lanthanide cation to the fluorinated substrate in the encounter complex Ln{sup +}RF. The most reactive lanthanides La{sup +}, Ce{sup +}, Gd{sup +}, and Tb{sup +} and also the formal closed-shell species Lu{sup +} exhibit additional C-H and C-C bond activation pathways in the reaction with fluorobenzene, namely dehydrohalogenation as well as loss of a neutral acetylene molecule. In the case of Tm{sup +} and Yb{sup +} the formation of neutral LnF{sub 3} is observed in a multistep process via C-C coupling and charge transfer. 17 refs., 2 figs., 2 tabs.« less

  18. Biogeochemistry of the rare-earth elements with particular reference to hickory trees

    USGS Publications Warehouse

    Robinson, W.O.; Bastron, H.; Murata, K.J.

    1958-01-01

    Hickory trees concentrate the rare-earth elements in their leaves to a phenomenal degree and may contain as much as 2300 p.p.m. of total rare earths based on the dry weight of the leaves. The average proportions of the individual elements (atomic percent of the total rare-earth elements) in the leaves are: Y 36, La 16, Ce 14, Pr 2, Nd 20, Sm 1, Eu 0.7, Gd 3, Tb 0.6, Dy 3, Ho 0.7, Er 2, Tm 0.2, Yb 1, and Lu 0.2. The similarity in the proportions of the rare-earth elements in the leaves and in the exchange complex of the soil on which the hickory trees grow indicates that the trees do not fractionate the rare earths appreciably. The variation of the rare-earth elements in the leaves and soils can be explained generally in terms of the relative abundance of the cerium group and the yttrium group, except for the element cerium. The large fluctuations in the proportion of cerium [Ce/(La + Nd) atomic ratios of 0.16 to 0.86] correlate with oxidation-reduction conditions in the soil profile. The substitution of dilute H2SO3 for dilute HC1 in the determination of available rare-earth elements brings about a large increase in the proportion of cerium that is extracted from an oxygenated subsoil. These relationships strongly suggest that quadrivalent cerium is present in oxygenated subsoil and is less available to plants than the other rare-earth elements that do not undergo such a change in valence. A few parts per billion of rare-earth elements have been detected in two samples of ground water. ?? 1958.

  19. Dispersion characteristic of photoluminescence decay times of phosphor YAG: Ce, Gd

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Ju, Yangyang; Stepanov, S. A.; Soschin, N. M.

    2017-05-01

    The dispersion of the characteristic decay times of gadolinium co-doped yttrium aluminum garnet doped with cerium phosphors were studied. In the present work, an ultraviolet semiconductor laser (λem=375 nm, τ = 1 ns) was used as excitation source for measuring kinetics characteristics of phosphor groups based on YAG with different content of cerium.

  20. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield

    NASA Astrophysics Data System (ADS)

    Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.

    2018-04-01

    This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.

  1. Low temperature synthesis of LnOF rare-earth oxyfluorides through reaction of the oxides with PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutton, S.E., E-mail: sdutton@princeton.edu; Hirai, D.; Cava, R.J.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Low temperature synthesis of LnOF rare-earth oxyfluorides from Ln{sub 2}O{sub 3} and PTFE (CF{sub 2}). Black-Right-Pointing-Pointer Rhombohedral LnOF is the major phase and forms as nanocrystals, 29-103 nm. Black-Right-Pointing-Pointer Expected lanthanide contraction observed in lattice parameters and bond lengths. Black-Right-Pointing-Pointer TbOF orders antiferromagnetically at 10 K and has a metamagnetic transition at 1.8 T. Black-Right-Pointing-Pointer GdOF orders antiferromagnetically at 5 K, other LnOF are paramagnetic. -- Abstract: A low temperature solid-state synthesis route, employing polytetrafluoroethylene (PTFE) and the rare-earth oxides, for the formation of the LnOF rare-earth oxyfluorides (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb,more » Dy, Ho, Er), is reported. With the exception of LaOF, which forms in a tetragonal variant, rhomobohedral LnOF is found to be the major product of the reaction. In the case of PrOF, a transition from the rhombohedral to the cubic fluorite phase is observed on heating in air to 500 Degree-Sign C. X-ray diffraction shows the expected lanthanide contraction in the lattice parameters and bond lengths. Magnetic susceptibility measurements show antiferromagnetic-like ordering in TbOF, T{sub m} = 10 K, with a metamagnetic transition at a field {mu}{sub 0}H{sub t} = 1.8 T at 2 K. An antiferromagnetic transition, T{sub N} = 4 K, is observed in GdOF. Paramagnetic behavior is observed above 2 K in PrOF, NdOF, DyOF, HoOF and ErOF. The magnetic susceptibility of EuOF is characteristic of Van Vleck paramagnetism.« less

  2. Phosphide oxides RE2AuP2O (RE = La, Ce, Pr, Nd): synthesis, structure, chemical bonding, magnetism, and 31P and 139La solid state NMR.

    PubMed

    Bartsch, Timo; Wiegand, Thomas; Ren, Jinjun; Eckert, Hellmut; Johrendt, Dirk; Niehaus, Oliver; Eul, Matthias; Pöttgen, Rainer

    2013-02-18

    Polycrystalline samples of the phosphide oxides RE(2)AuP(2)O (RE = La, Ce, Pr, Nd) were obtained from mixtures of the rare earth elements, binary rare earth oxides, gold powder, and red phosphorus in sealed silica tubes. Small single crystals were grown in NaCl/KCl fluxes. The samples were studied by powder X-ray diffraction, and the structures were refined from single crystal diffractometer data: La(2)AuP(2)O type, space group C2/m, a = 1515.2(4), b = 424.63(8), c = 999.2(2) pm, β = 130.90(2)°, wR2 = 0.0410, 1050 F(2) values for Ce(2)AuP(2)O, and a = 1503.6(4), b = 422.77(8), c = 993.0(2) pm, β = 130.88(2)°, wR2 = 0.0401, 1037 F(2) values for Pr(2)AuP(2)O, and a = 1501.87(5), b = 420.85(5), c = 990.3(3) pm, β = 131.12(1)°, wR2 = 0.0944, 1143 F(2) values for Nd(2)AuP(2)O with 38 variables per refinement. The structures are composed of [RE(2)O](4+) polycationic chains of cis-edge-sharing ORE(4/2) tetrahedra and polyanionic strands [AuP(2)](4-), which contain gold in almost trigonal-planar phosphorus coordination by P(3-) and P(2)(4-) entities. The isolated phosphorus atoms and the P(2) pairs in La(2)AuP(2)O could clearly be distinguished by (31)P solid state NMR spectroscopy and assigned on the basis of a double quantum NMR technique. Also, the two crystallographically inequivalent La sites could be distinguished by static (139)La NMR in conjunction with theoretical electric field gradient calculations. Temperature-dependent magnetic susceptibility measurements show diamagnetic behavior for La(2)AuP(2)O. Ce(2)AuP(2)O and Pr(2)AuP(2)O are Curie-Weiss paramagnets with experimental magnetic moments of 2.35 and 3.48 μ(B) per rare earth atom, respectively. Their solid state (31)P MAS NMR spectra are strongly influenced by paramagnetic interactions. Ce(2)AuP(2)O orders antiferromagnetically at 13.1(5) K and shows a metamagnetic transition at 11.5 kOe. Pr(2)AuP(2)O orders ferromagnetically at 7.0 K.

  3. Corrosion and magnetic properties of encapsulated carbonyl iron particles in aqueous suspension by inorganic thin films for magnetorheological finishing application

    NASA Astrophysics Data System (ADS)

    Esmaeilzare, Amir; Rezaei, Seyed Mehdi; Ramezanzadeh, Bahram

    2018-04-01

    Magnetorheological fluid is composed of micro-size carbonyl iron (CI) particles for polishing of optical substrates. In this paper, the corrosion resistance of carbonyl iron (CI) particles modified with three inorganic thin films based on rare earth elements, including cerium oxide (CeO2), lanthanum oxide (La2O3) and praseodymium oxide (Pr2O3), was investigated. The morphology and chemistry of the CI-Ce, CI-Pr and CI-La particles were examined by high resolution Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests were carried out to investigate the corrosion behavior of CI particles in aquatic environment. In addition, the Vibrating Sample Magnetometer (VSM) technique was utilized for determination of magnetic saturation properties of the coated particles. Afterwards, gas pycnometry and contact angle measurement methods were implemented to evaluate the density and hydrophilic properties of these particles. The results showed that deposition of all thin films increased the hydrophilic nature of these particles. In addition, it was observed that the amount of magnetic saturation properties attenuation for Pr2O3 and La2O3 films is greater than the CeO2 film. The EIS and polarization tests results confirmed that the CI-Ce had the maximum corrosion resistant among other samples. In addition, the thermogravimetric analysis (TGA) showed that the ceria coating provided particles with enhanced surface oxidation resistance.

  4. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model

    NASA Astrophysics Data System (ADS)

    Gysi, Alexander P.; Williams-Jones, Anthony E.

    2013-12-01

    Petrological and geochemical observations of pegmatites in the Strange Lake pluton, Canada, have been combined with numerical simulations to improve our understanding of fluid-rock interaction in peralkaline granitic systems. In particular, they have made it possible to evaluate reaction paths responsible for hydrothermal mobilization and mineralization of rare earth elements (REE) and Zr. The focus of the study was the B-Zone in the northwest of the pluton, which contains a pegmatite swarm and is the target of exploration for an economically exploitable REE deposit. Many of the pegmatites are mineralogically zoned into a border consisting of variably altered primary K-feldspar, arfvedsonite, quartz, and zirconosilicates, and a core rich in quartz, fluorite and exotic REE minerals. Textural relationships indicate that the primary silicate minerals in the pegmatites were leached and/or replaced during acidic alteration by K-, Fe- and Al-phyllosilicates, aegirine, hematite, fluorite and/or quartz, and that primary zirconosilicates (e.g., elpidite) were replaced by gittinsite and/or zircon. Reaction textures recording coupled dissolution of silicate minerals and crystallization of secondary REE-silicates indicate hydrothermal mobilization of the REE. The mobility of the light (L)REE was limited by the stability of REE-F-(CO2)-minerals (basnäsite-(Ce) and fluocerite-(Ce)), whereas zirconosilicates and secondary gadolinite-group minerals controlled the mobility of Zr and the heavy (H)REE. Hydrothermal fluorite and fluorite-fluocerite-(Ce) solid solutions are interpreted to indicate the former presence of F-bearing saline fluids in the pegmatites. Numerical simulations show that the mobilization of REE and Zr in saline HCl-HF-bearing fluids is controlled by pH, ligand activity and temperature. Mobilization of Zr is significant in both saline HF- and HCl-HF-bearing fluids at low temperature (250 °C). In contrast, the REE are mobilized by saline HCl-bearing fluids, particularly at high temperature (400 °C). The LREE are more mobile than the HREE in saline HCl-bearing fluids due to the greater stability of LREE-chloride complexes. The simulated mineralogy is consistent with the zonation observed in the pegmatites and with fluid-rock interaction at conditions that were rock-buffered in the pegmatite borders (low fluid/rock ratio; and pH > 4) and fluid-buffered in the cores (high fluid/rock ratio; pH ⩽ 2). We propose a model in which saline HCl-HF-bearing fluids created pathways during acidic alteration from the pegmatite cores outward. This led to the mobilization of REE and Zr due to progressive alteration of primary silicate minerals and increased acidity upon cooling. The key requirement for REE and Zr mobilization in peralkaline igneous intrusions is the formation of an acidic subsystem with high fluid/rock ratios that increases the overall permeability of the rocks. In these zones, the extent of late stage hydrothermal redistribution and concentration of REE and Zr depends on the buffering capacity of the rocks and the availability of fluids that may produce autometasomatic rock alteration, interact with external rock units and/or mix with fluids from other sources. b The detection limits of Yb were 1043 ppm for zircon, 380 ppm for gadolinite-group minerals and 380 ppm for REE-F-(CO2)-minerals. bAja et al. (1995). cMigdisov et al. (2011). dTagirov et al. (1997). eTagirov and Schott (2001). fMigdisov et al. (2009) with REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). b Calculated using the methods of the Chermak and Rimstidt (1989), Berman and Brown (1985) and Holland (1989) with molar volume of arfvedsonite from Hawthorne (1976). cZotov et al. (1998). d GEM-Selektor v.3 database (http://gems.web.psi.ch). eMigdisov et al. (2009).

  5. Post-depositional redistribution processes and their effects on middle rare earth element precipitation and the cerium anomaly in sediments in the South Korea Plateau, East Sea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Jeong, Kap-Sik; Cho, Jin Hyung; Lee, Jun Ho; Jang, Seok; Kim, Seong Ryul

    2014-03-01

    We sampled two box-core sediments from the slope of the eastern South Korea Plateau (SKP) in the East Sea (Sea of Japan) at water depths of 1400 and 1700 m. Two chemical fractions of extractable (hydroxylamine/acetic acid) and residual rare earth elements (REEs) together with Al, Ca, Fe, Mg, Mn, P, S, As, Mo, and U were analyzed to assess the post-depositional redistribution of REEs. Extractable Fe and Mn are noticeably abundant in the oxic topmost sediment layer (<3 cm). However, some trace elements (e.g., S, As, Mo, U) are more abundant at depth, where redox conditions are different. Analysis of upper continental crust (UCC)-normalized (La/Gd)UCC, (La/Yb)UCC, and (Ce/Ce*)UCC revealed that the extractable REE is characterized by middle REE (MREE) enrichment and a positive cerium (Ce) anomaly, different from the case of the residual fraction which shows slight enrichment in light REEs (LREEs) with no Ce anomaly. The extractable MREEs seem to have been incorporated into high-Mg calcite during reductive dissolution of Fe oxyhydroxides. In the top sediment layer, the positive Ce anomaly is attributed to Ce oxide, which can be mobilized in deeper oxygen-poor environments and redistributed in the sediment column. In addition, differential concentrations of Ce and other LREEs in pore water appear to result in variable (Ce/Ce*)UCC ratios in the extractable fraction at depth.

  6. Determination of rare earth and concomitant elements in magnesium alloys by inductively coupled plasma optical emission spectrometry.

    PubMed

    Fariñas, Juan C; Rucandio, Isabel; Pomares-Alfonso, Mario S; Villanueva-Tagle, Margarita E; Larrea, María T

    2016-07-01

    An Inductively Coupled Plasma Optical Emission Spectrometry method for simultaneous determination of Al, Ca, Cu, Fe, In, Mn, Ni, Si, Sr, Y, Zn, Zr and rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in magnesium alloys, including the new rare earth elements-alloyed magnesium, has been developed. Robust conditions have been established as nebulizer argon flow rate of 0.5mLmin(-1) and RF incident power of 1500W, in which matrix effects were significantly reduced around 10%. Three acid digestion procedures were performed at 110°C in closed PFA vessels heated in an oven, in closed TFM vessels heated in a microwave furnace, and in open polypropylene tubes with reflux caps heated in a graphite block. The three digestion procedures are suitable to put into solution the magnesium alloys samples. From the most sensitive lines, one analytical line with lack or low spectral interferences has been selected for each element. Mg, Rh and Sc have been studied as internal standards. Among them, Rh was selected as the best one by using Rh I 343.488nm and Rh II 249.078nm lines as a function of the analytical lines. The trueness and precision have been established by using the Certified Reference Material BCS 316, as well as by means of recovery studies. Quantification limits were between 0.1 and 9mgkg(-1) for Lu and Pr, respectively, in a 2gL(-1) magnesium matrix solution. The method developed has been applied to the commercial alloys AM60, AZ80, ZK30, AJ62, WE54 and AE44. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Spin-split fermi surfaces in CexLa1-xB6 and PrxLa1-xB6

    NASA Astrophysics Data System (ADS)

    Isshiki, T.; Endo, M.; Sugi, M.; Kimura, N.; Nakamura, S.; Nojima, T.; Aoki, H.; Kunii, S.

    2006-05-01

    We have performed the dHvA measurements on CexLa1-xB6 and PrxLa1-xB6 compounds to study spin splitting of the Fermi surfaces. In PrB 6 we have found new frequency branches to confirm that the Fermi surface splits into up and down spin Fermi surfaces, whereas no spin splitting has been found for x=0.25,0.5,0.75. We have also found several new frequency branches in CeB6. The new frequency branches imply that the Fermi surfaces of up and down spin conduction electrons are significantly different in CeB6 as well as in PrB6.

  8. CePd2Ga3 and CePd2Zn3 - Kondo lattices and magnetic behaviour

    NASA Astrophysics Data System (ADS)

    Bartha, A.; Vališka, M.; Míšek, M.; Proschek, P.; Kaštil, J.; Dušek, M.; Sechovský, V.; Prokleška, J.

    2018-05-01

    We report the single crystal properties of CePd2Zn3 and CePd2Ga3 compounds. The compounds were prepared by Bridgman method in high-frequency induction furnace. Both compounds adopt the hexagonal PrNi2Al3-type structure with a = 5.3914(2) Å, c = 4.3012(2) Å for CePd2Zn3 and a = 5.4106(8) Å, c = 4.2671(8) Å for CePd2Ga3, respectively. CePd2Zn3 orders antiferromagnetically below TN = 1.9 K. Magnetoresistance measurements revealed a crossover at Bc = 0.95 T. CePd2Ga3 orders ferromagnetically at TC = 6.7 K. Applied hydrostatic pressure reduces the value of the Curie-temperature (rate ∂TC / ∂ p = 0.9 K GPa -1) down to 3.9 K at 3.2 GPa. Both compounds display a strong magnetocrystalline anisotropy with easy axis of magnetization perpendicular to the c-axis in the hexagonal lattice.

  9. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm(-2) at 550 °C.

    PubMed

    Lee, Jin Goo; Park, Jeong Ho; Shul, Yong Gun

    2014-06-04

    Low-temperature operation is necessary for next-generation solid oxide fuel cells due to the wide variety of their applications. However, significant increases in the fuel cell losses appear in the low-temperature solid oxide fuel cells, which reduce the cell performance. To overcome this problem, here we report Gd0.1Ce0.9O1.95-based low-temperature solid oxide fuel cells with nanocomposite anode functional layers, thin electrolytes and core/shell fibre-structured Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Gd0.1Ce0.9O1.95 cathodes. In particular, the report describes the use of the advanced electrospinning and Pechini process in the preparation of the core/shell-fibre-structured cathodes. The fuel cells show a very high performance of 2 W cm(-2) at 550 °C in hydrogen, and are stable for 300 h even under the high current density of 1 A cm(-2). Hence, the results suggest that stable and high-performance solid oxide fuel cells at low temperatures can be achieved by modifying the microstructures of solid oxide fuel cell components.

  10. Evidence of Filamentary Switching in Oxide-based Memory Devices via Weak Programming and Retention Failure Analysis

    NASA Astrophysics Data System (ADS)

    Younis, Adnan; Chu, Dewei; Li, Sean

    2015-09-01

    Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective.

  11. Evidence of Filamentary Switching in Oxide-based Memory Devices via Weak Programming and Retention Failure Analysis

    PubMed Central

    Younis, Adnan; Chu, Dewei; Li, Sean

    2015-01-01

    Further progress in high-performance microelectronic devices relies on the development of novel materials and device architectures. However, the components and designs that are currently in use have reached their physical limits. Intensive research efforts, ranging from device fabrication to performance evaluation, are required to surmount these limitations. In this paper, we demonstrate that the superior bipolar resistive switching characteristics of a CeO2:Gd-based memory device can be manipulated by means of UV radiation, serving as a new degree of freedom. Furthermore, the metal oxide-based (CeO2:Gd) memory device was found to possess electrical and neuromorphic multifunctionalities. To investigate the underlying switching mechanism of the device, its plasticity behaviour was studied by imposing weak programming conditions. In addition, a short-term to long-term memory transition analogous to the forgetting process in the human brain, which is regarded as a key biological synaptic function for information processing and data storage, was realized. Based on a careful examination of the device’s retention behaviour at elevated temperatures, the filamentary nature of switching in such devices can be understood from a new perspective. PMID:26324073

  12. Reversible operation of microtubular solid oxide cells using La0.6Sr0.4Co0.2Fe0.8O3-δ-Ce0.9Gd0.1O2-δ oxygen electrodes

    NASA Astrophysics Data System (ADS)

    López-Robledo, M. J.; Laguna-Bercero, M. A.; Larrea, A.; Orera, V. M.

    2018-02-01

    Yttria stabilized zirconia (YSZ) based microtubular solid oxide fuel cells (mT-SOFCs) using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Ce0.9Gd0.1O2-δ (GDC) as the oxygen electrode, along with a porous GDC electrolyte-electrode barrier layer, were fabricated and characterized in both fuel cell (SOFC) and electrolysis (SOEC) operation modes. The cells were anode-supported, the NiO-YSZ microtubular supports being made by Powder Extrusion Moulding (PEM). The cells showed power densities of 695 mW cm-2 at 800 °C and 0.7 V in SOFC mode, and of 845 mA cm-2 at 800 °C and 1.3 V in SOEC mode. AC impedance experiments performed under different potential loads demonstrated the reversibility of the cells. These results showed that these cells, prepared with a method suitable for using on an industrial scale, are highly reproducible and reliable, as well as very competitive as reversible SOFC-SOEC devices operating at intermediate temperatures.

  13. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOEpatents

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  14. Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide.

    PubMed

    Westerhoff, Paul; Lee, Sungyun; Yang, Yu; Gordon, Gwyneth W; Hristovski, Kiril; Halden, Rolf U; Herckes, Pierre

    2015-08-18

    U.S. sewage sludges were analyzed for 58 regulated and nonregulated elements by ICP-MS and electron microscopy to explore opportunities for removal and recovery. Sludge/water distribution coefficients (KD, L/kg dry weight) spanned 5 orders of magnitude, indicating significant metal accumulation in biosolids. Rare-earth elements and minor metals (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) detected in sludges showed enrichment factors (EFs) near unity, suggesting dust or soils as likely dominant sources. In contrast, most platinum group elements (i.e., Ru, Rh, Pd, Pt) showed high EF and KD values, indicating anthropogenic sources. Numerous metallic and metal oxide colloids (<100-500 nm diameter) were detected; the morphology of abundant aggregates of primary particles measuring <100 nm provided clues to their origin. For a community of 1 million people, metals in biosolids were valued at up to US$13 million annually. A model incorporating a parameter (KD × EF × $Value) to capture the relative potential for economic value from biosolids revealed the identity of the 13 most lucrative elements (Ag, Cu, Au, P, Fe, Pd, Mn, Zn, Ir, Al, Cd, Ti, Ga, and Cr) with a combined value of US $280/ton of sludge.

  15. Rare earth niobate coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less

  16. Diffusivities of Redox-Sensitive Elements in Basalt vs. Oxygen Fugacity Determined by LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    Szumila, Ian; Danielson, Lisa; Trail, Dustin

    2017-01-01

    Several diffusion experiments were conducted in a piston cylinder device across a range of oxygen fugacities (FMQ-3 FMQ-1.2, FMQ+6) at 1 GPa and 1300 C. This was done to explore the effects of oxygen fugacity (fO2) on diffusivity of redox sensitive trace elements. This allows investigation of how these elements diffuse across the fO2 range encountered in different reservoirs on planets and moons in our solar system. The University of Rochester LA-ICP-MS system was used for analysis of samples. Analyses were conducted using an Agilent 7900 quadrupole mass spectrometer connected to a Photon Machines 193 nm G2 laser ablation (LA) system equipped with a HelEx 2-volume sample chamber. Spots used were 35 micrometers circles spaced at 65 micrometers intervals. Laser fluence was 7.81 J/cm^2 with a rep rate of 10 Hz. The iolite software package was used to reduce data collected from laser ablation analysis of experiments with Si-29 used as the internal standard isotope. Iolite's global fit module was used to simultaneously fit elements' diffusivities in each experiment while keeping the Matano interface constant. Elements analysed include V, Nb, W, Mo, La, Ce, Pr, Sm, Eu, Gd, Ta, and W. Figures

  17. Multielement fingerprinting as a tool in origin authentication of PGI food products: Tropea red onion.

    PubMed

    Furia, Emilia; Naccarato, Attilio; Sindona, Giovanni; Stabile, Gaetano; Tagarelli, Antonio

    2011-08-10

    Tropea red onion ( Allium cepa L. var. Tropea) is among the most highly appreciated Italian products. It is cultivated in specific areas of Calabria and, due to its characteristics, was recently awarded with the protected geographical indications (PGI) certification from the European Union. A reliable classification of onion samples in groups corresponding to "Tropea" and "non-Tropea" categories is now available to the producers. This important goal has been achieved through the evaluation of three supervised chemometric approaches. Onion samples with PGI brand (120) and onion samples not cultivated following the production regulations (80) were digested by a closed-vessel microwave oven system. ICP-MS equipped with a dynamic reaction cell was used to determine the concentrations of 25 elements (Al, Ba, Ca, Cd, Ce, Cr, Dy, Eu, Fe, Ga, Gd, Ho, La, Mg, Mn, Na, Nd, Ni, Pr, Rb, Sm, Sr, Tl, Y, and Zn). The multielement fingerprint was processed using linear discriminant analysis (LDA) (standard and stepwise), soft independent modeling of class analogy (SIMCA), and back-propagation artificial neural network (BP-ANN). The cross-validation procedure has shown good results in terms of the prediction ability for all of the chemometric models: standard LDA, 94.0%; stepwise LDA, 94.5%; SIMCA, 95.5%; and BP-ANN, 91.5%.

  18. Rare earth niobate coordination polymers

    DOE PAGES

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; ...

    2018-01-03

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. In this paper we described the synthesis of a heterometallic rare-earth coordination compound ((CH 3) 2SO) 3(RE)NbO(C 2O 4) 3 ((CH 3) 2SO) = dimethylsulfoxide, DMSO, (C 2O 2 = oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb =O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for themore » smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. Finally, we attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.« less

  19. Characterization of ceria electrolyte in solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Milliken, Christopher Edward

    The goal of this research effort is to characterize cation doped cerium dioxide for use as an electrolyte material in solid oxide fuel cell applications. A variety of analytical techniques including thermogravimetric analysis, controlled atmosphere dilatometry, and AC/DC electronic measurements on single cells and stacks have been coupled with thermodynamic calculations to evaluate the suitability of several doping schemes. The results of this analysis indicate that doping CeOsb2 with 20% SmOsb{1.5} or codoping with 19% GdOsb{1.5} + 1% PrOsb{1.83} provides the best combination of stability and performance. Under dual atmosphere fuel cell conditions, these dopants do not provide sufficient stabilization energy to prevent the reduction of ceria. A significant oxygen leakage current can be expected, particularly near open circuit conditions. Incorporation of 10% SrO provides similar short-term advantages to the lanthanide doped system but this electrolyte material undergoes an irreversible degradation mechanism that results in cell failure within 1500 hours of test. Under fuel cell conditions, the maximum efficiency of such systems in stacks will be below 40% at 200 mW/cmsp2 when operated on humidified hydrogen fuels. This compares to an expected efficiency of 45-50% at a similar power density for nonmixed conducting electrolyte (e.g., YSZ).

  20. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity.

    PubMed

    Dunnick, Katherine M; Pillai, Rajalekshmi; Pisane, Kelly L; Stefaniak, Aleksandr B; Sabolsky, Edward M; Leonard, Stephen S

    2015-07-01

    Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state.

  1. Performance comparison between ceramic Ce:GAGG and single crystal Ce:GAGG with digital-SiPM

    NASA Astrophysics Data System (ADS)

    Park, C.; Kim, C.; Kim, J.; Lee, Y.; Na, Y.; Lee, K.; Yeom, J. Y.

    2017-01-01

    The Gd3Al2Ga3O12 (Ce:GAGG) is a new inorganic scintillator known for its attractive properties such as high light yield, stopping power and relatively fast decay time. In this study, we fabricated a ceramic Ce:GAGG scintillator as a cost-effective alternative to single crystal Ce:GAGG and, for the first time, investigated their performances when coupled to the digital silicon photomultiplier (dSiPM)—a new type of photosensor designed for applications in medical imaging, high energy and astrophysics. Compared to 3 × 3 × 2 mm3 sized single crystal Ce:GAGG, the translucent ceramic Ce:GAGG, which has a much lower transmittance than the single crystal, was determined to give an output signal amplitude that is approximately 61% of single crystal Ce:GAGG. The energy resolution of the 511 keV annihilation peak of a 22Na source was measured to be 9.9 ± 0.2% and 13.0 ± 0.3% for the single and ceramic scintillators respectively. On the other hand, the coincidence resolving time (CRT) of ceramic Ce:GAGG was 307 ± 23 ps, better than the 465 ± 37 ps acquired with single crystals—probably attributed to its slightly faster decay time and higher proportion of the fast decay component. The ceramic Ce:GAGG may be a promising cost-effective candidate for applications that do not require thick scintillators such as x-ray detectors and charged particle detectors, and those that require time-of-flight capabilities.

  2. Multiple animal studies for medical chemical defense program in soldier/patient decontamination and drug development on task order 86-25: Evaluation of the effectiveness of two ROHM and HAAS candidate decontamination systems against percutaneous application of undiluted TGD, Gd, VX HD, and L on the laboratory albino rabbit. Final report, 1 September 1986-1 February 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, R.L.; Keys, W.B.; Harroff, H.H.

    1988-02-18

    A task was assigned to Battelle's Medical Research and Evaluation Facility(MREF) to evaluate the effectiveness of two candidate decontamination systems when compared to the standard dual component M258A1 decontamination system currently fielded by the U.S. Army. The chemical surety material (CSM) used in the evaluation were the organophosphates Soman (GD), polymer thickened GD (TGD), and VX, and the vesicants sulfur mustard (HD) and Lewisite (LS). The efficacies of the two candidate decontamination systems were evaluated in such a manner as to determine the LD50 and protective ratio (PR) for each decontaminant against each organophosphate CSM as compared to the standardmore » M258A1 decontamination system LD50. The PR constituted a comparison for each candidate system against the M258A1 standard. In the vesicant phase of the screen, the efficacies of the candidate systems were evaluated in a side-by-side comparison to the M258A1 decontamination system to determine whether the candidates were as good as or better than the standard dual component system.« less

  3. Magnetic behavior of R 2Co 14B hydrides (R = La, Pr, Sm, Gd, Tb and Y)

    NASA Astrophysics Data System (ADS)

    Zhang, L. Y.; Pourarian, F.; Wallace, W. E.

    1988-08-01

    The structure and magnetic properties of R 2Co 14B sysstems(R = La, Pr, Nd, Sm, Gd, Tb and Y) and their hydrides were studied by means of bulk magnetometry. All R 2Co 14B hydrides presently studied occur in the tetragonal Nd 2Fe 14B-type crystal structure. The composition-temperature isotherms measured fro selected Gd- and Nd- containing systems exhibit some indication of a platuau pressure at higher hydrogen concentrations. Hydrogenation expands the unit volume, Vc, by 1.5 to 3.0%, depending on the nature of R and the content of hydrogen. It was found that introduction of hydrogen into the lattice decreases Ms of the Co sublittice. This is attributed to the effect of electron charge transfer from Hto Co-3d sublittice. Hydrogennation significantly decreases the anistropy fields, HA, and the spin-reorientation transition temperatur, TSR, for Prand Tb-based intermetallics. The results indicates that the hydrogen makes the compounds magnetically softer, which is attributed to the influence of hydrogen on both the 3d and R sublittices. Two types of spin-reorientation transition for the Nd 2Co 14B system were observed. Hydrogenaration reduces both the low transition temperature, TSR 1, and the high transition temperature, TSR 2, which is explained using the Boltich-Wallace mechanism.

  4. Gemcitabine and docetaxel in relapsed and unresectable high-grade osteosarcoma and spindle cell sarcoma of bone.

    PubMed

    Palmerini, E; Jones, R L; Marchesi, E; Paioli, A; Cesari, M; Longhi, A; Meazza, C; Coccoli, L; Fagioli, F; Asaftei, S; Grignani, G; Tamburini, A; Pollack, S M; Picci, P; Ferrari, S

    2016-04-20

    Few new compounds are available for relapsed osteosarcoma. We retrospectively evaluated the activity of gemcitabine (G) plus docetaxel (D) in patients with relapsed high-grade osteosarcoma and high-grade spindle cell sarcoma of bone (HGS). Patients receiving G 900 mg/m(2) d 1, 8; D 75 mg/m(2) d 8, every 21 days were eligible. Primary end-point: progression-free survival (PFS) at 4 months; secondary end-point: overall survival (OS) and response rate. Fifty-one patients were included, with a median age of 17 years (8-71), 26 (51%) were pediatric patients. GD line of treatment: 2nd in 14 patients, ≥3rd in 37. 25 (49%) patients had metastases limited to lungs, 26 (51%) multiple sites. 40 (78%) osteosarcoma, 11 (22%) HGS. Eight (16%) patients achieved surgical complete response (sCR2) after GD. Four-month PFS rate was 46%, and significantly better for patients with ECOG 0 (ECOG 0: 54% vs ECOG 1: 43% vs ECOG 2: 0%; p = 0.003), for patients undergoing metastasectomy after GD (sCR2 75% vs no-sCR2 40 %, p = 0.02) and for osteosarcoma (osteosarcoma 56% vs HGS 18%; p = 0.05), with no differences according to age, line of treatment, and pattern of metastases. Forty-six cases had RECIST measurable disease: 6 (13%) patients had a partial response (PR), 20 (43%) had stable disease (SD) and 20 (43%) had progressive disease (PD). The 1-year OS was 30%: 67% for PR, 54% for SD and 20% for PD (p = 0.005). GD is an active treatment for relapsed high-grade osteosarcoma, especially for ECOG 0 patients, and should be included in the therapeutic armamentarium of metastatic osteosarcoma.

  5. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12)

    PubMed Central

    Li, Ji-Guang; Sakka, Yoshio

    2015-01-01

    This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out. PMID:27877750

  6. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12)

    NASA Astrophysics Data System (ADS)

    Li, Ji-Guang; Sakka, Yoshio

    2015-02-01

    This review article summarizes the recent achievements in stabilization of the metastable lattice of gadolinium aluminate garnet (Gd3Al5O12, GAG) and the related developments of advanced optical materials, including down-conversion phosphors, up-conversion phosphors, transparent ceramics, and single crystals. Whenever possible, the materials are compared with their better known YAG and LuAG counterparts to demonstrate the merits of the GAG host. It is shown that novel emission features and significantly improved luminescence can be attained for a number of phosphor systems with the more covalent GAG lattice and the efficient energy transfer from Gd3+ to the activator. Ce3+ doped GAG-based single crystals and transparent ceramics are also shown to simultaneously possess the advantages of high theoretical density, fast scintillation decay, and high light yields, and hold great potential as scintillators for a wide range of applications. The unresolved issues are also pointed out.

  7. Facile in-situ reduction: Crystal growth and magnetic studies of reduced vanadium (III/IV) silicates CaxLn1-xVSiO5 (Ln = Ce-Nd, Sm-Lu, Y)

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Dileka; Smith, Mark D.; Morrison, Gregory; Yeon, Jeongho; zur Loye, Hans-Conrad

    2018-04-01

    A series of lanthanide containing mixed-valent vanadium (III/IV) silicates of the type CaxLn1-xVSiO5 (Ln = Ce-Nd, Sm-Lu, Y) was synthesized as high quality single crystals from a molten chloride eutectic flux, BaCl2/NaCl. Utilizing Ca metal as the reducing agent, an in-situ reduction of V5+ to V3+/4+ as well as of Ce4+ to Ce3+ was achieved. The structures of 14 reported isostructural compounds were determined by single crystal X-ray diffraction. They crystallize in the tilasite (CaMgAsO4F) structure type in the monoclinic space group C2/c. The extended structure contains 1D chains of VO6 octahedra that are connected to each other via SiO4 groups and (Ca/Ln)O7 polyhedra. The magnetic susceptibility and the field dependent magnetization data were measured for CaxLn1-xVSiO5 (Ln = Ce-Nd, Sm, Gd-Lu, Y), and support the existence of antiferromagnetic behavior at low temperatures.

  8. Synthesis, structural and electrical studies of Ba1-xSrxCe0.65Zr0.25Pr0.1O3-δ electrolyte materials for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Madhuri Sailaja, J.; Murali, N.; Margarette, S. J.; Mammo, Tulu Wegayehu; Veeraiah, V.

    2018-03-01

    This paper is discussed Sr doping effect on the microstructure, chemical stability and conductivity of Ba1-xSrxCe0.65Zr0.25Pr0.1O3-δ (0 ≤ x ≤ 0.2) electrolyte prepared by sol-gel method. The lattice constants and unit cell volumes are found to decrease as Sr atomic percentage increased in accordance with the Vegard law, confirming the formation of solid solution with orthorhombic structure. Among them all the synthesized samples are showed a conductivity with different atmosphere values at 500 °C. Ba0.92Sr0.08Ce0.65Zr0.25Pr0.1O3-δ recorded highest conductivity with a value of 3.3 × 10-6 S/cm (dry air) & 3.41 × 10-6 S/cm (wet air with 3% relative humidity) at 500 °C due to its smaller lattice volume, larger grain size and lower activation energy that led to excessive increase in conductivity. All pellets exhibited good chemical stability when exposed to air and H2O atmospheres. This study elucidates that the composition will be a promising electrolyte material for use as SOFC at intermediate temperatures if Sr doping is limited to small amounts.

  9. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO{sub 2} fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumata, Toru, E-mail: katsumat@toyo.jp; Morita, Kentaro; Komuro, Shuji

    2014-08-15

    Visible light thermal radiation from SiO{sub 2} glass doped with Y, La, Ce, Pr, Nd, Eu, Tb, Dy, Ho, Er, Tm, Yb, and Lu were studied for the fiber-optic thermometer application based on the temperature dependence of thermal radiation. Thermal radiations according to Planck's law of radiation are observed from the SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu at the temperature above 1100 K. Thermal radiations due to f-f transitions of rare-earth ions are observed from the SiO{sub 2} fibers doped with Nd, Dy, Ho, Er, Tm, and Yb at the temperature above 900more » K. Peak intensities of thermal radiations from rare-earth doped SiO{sub 2} fibers increase sensitively with temperature. Thermal activation energies of thermal radiations by f-f transitions seen in Nd, Dy, Ho, Er, Tm, and Yb doped SiO{sub 2} fibers are smaller than those from SiO{sub 2} fibers doped with Y, La, Ce, Pr, Eu, Tb, and Lu. Thermal radiation due to highly efficient f-f transitions in Nd, Dy, Ho, Er, Tm, and Yb ions emits more easily than usual thermal radiation process. Thermal radiations from rare-earth doped SiO{sub 2} are potentially applicable for the fiber-optic thermometry above 900 K.« less

  10. Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.

    2013-09-01

    Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance.

  11. Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)

    NASA Astrophysics Data System (ADS)

    Antunes, I. M.; Ribeiro, A. F.

    2012-04-01

    The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Th and U contents) decreases along SE direction and increases along NE and SW directions. The probability of expression for principal component 2 (explaining pH, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr and Pb contents), decreases from central points (inside mine influence) to peripheral points (outside mine influence) and gradually increases along N and SW directions. The spatial distribution of tailing materials did not allowed a consistent spatial distribution. In general, the stream sediments are classified as unpolluted and not polluted or moderately polluted, according to geoaccumulation Müller index with exception of local samples, located inside mine influence. The soils cannot be used for public, private or residential uses according to the Canadian soil legislation. However, almost samples can be used for commercial or industrial occupation. According to the target values and intervention values for soils remediation, these soils need intervention. Tailing materials samples are much polluted in thorium (Th) and uranium (U) and they cannot be used for public, private or residential uses.

  12. Photoluminescence Characteristics of Yag:Ce, Gd Based Phosphors with Different Prehistories

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Soshchin, N. P.; Yang yang, Yu; Stepanov, S. A.; Lisitsyna, L. A.; Tulegenova, A. T.; Abdullin, Kh. A.

    2017-09-01

    Luminescence characteristics of yttrium-aluminum garnet based phosphor samples differed by their elemental composition and prehistory of synthesis are studied. The morphology, structure, and elemental composition of phosphor samples, their excitation and emission spectra, efficiency of phosphor conversion of chip emission, and kinetics of luminescence decay are measured. The emission characteristics of phosphors are compared with their structural properties and elemental composition.

  13. Influence of metal loading and humic acid functional groups on the complexation behavior of trivalent lanthanides analyzed by CE-ICP-MS.

    PubMed

    Kautenburger, Ralf; Hein, Christina; Sander, Jonas M; Beck, Horst P

    2014-03-13

    The complexation behavior of Aldrich humic acid (AHA) and a modified humic acid (AHA-PB) with blocked phenolic hydroxyl groups for trivalent lanthanides (Ln) is compared, and their influence on the mobility of Ln(III) in an aquifer is analyzed. As speciation technique, capillary electrophoresis (CE) was hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). For metal loading experiments 25 mg L(-1) of AHA and different concentrations (cLn(Eu+Gd)=100-6000 μg L(-1)) of Eu(III) and Gd(III) in 10mM NaClO4 at pH 5 were applied. By CE-ICP-MS, three Ln-fractions, assumed to be uncomplexed, weakly and strongly AHA-complexed metal can be detected. For the used Ln/AHA-ratios conservative complex stability constants log βLnAHA decrease from 6.33 (100 μg L(-1) Ln(3+)) to 4.31 (6000 μg L(-1) Ln(3+)) with growing Ln-content. In order to verify the postulated weaker and stronger humic acid binding sites for trivalent Eu and Gd, a modified AHA with blocked functional groups was used. For these experiments 500 μg L(-1) Eu and 25 mg L(-1) AHA and AHA-PB in 10mM NaClO4 at pH-values ranging from 3 to 10 have been applied. With AHA-PB, where 84% of the phenolic OH-groups and 40% of the COOH-groups were blocked, Eu complexation was significantly lower, especially at the strong binding sites. The log β-values decrease from 6.11 (pH 10) to 5.61 at pH 3 (AHA) and for AHA-PB from 6.01 (pH 7) to 3.94 at pH 3. As a potential consequence, particularly humic acids with a high amount of strong binding sites (e.g. phenolic OH- and COOH-groups) can be responsible for a higher metal mobility in the aquifer due to the formation of dissolved negatively charged metal-humate species. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Scintillating Screens Based on the Single Crystalline Films of Multicomponent Garnets: New Achievements and Possibilities

    NASA Astrophysics Data System (ADS)

    Zorenko, Yuriy; Gorbenko, Vitalii; Zorenko, Tetiana; Paprocki, Kazimierz; Nikl, Martin; Mares, Jiri A.; Bilski, Pawel; Twardak, Anna; Sidletskiy, Oleg; Gerasymov, Iaroslav; Grinyov, Boris; Fedorov, Alexandr

    2016-04-01

    The paper is dedicated to development of the novel scintillating screens based on single crystalline films (SCF) of Ce doped Lu3 - xTbxAl5 - yGayO12 multicomponent garnets at x = 2 - 3 and y = 0 - 2.5 onto Y3Al5O12 (YAG) and Gd3Al2.5Ga2.5O12 (GAGG) substrates using the liquid phase epitaxy (LPE) method. We report the optimized content and high scintillation figure of merit of SCF of these garnets grown by the LPE method with using PbO based flux. Namely, the Tb3Al2.5Ga2.5O12:Ce SCFs possess the highest values of light yield (LY) compared to all earlier investigated SCF samples, with their LY exceeding by 2.35 and 1.15 times the LY values for YAG:Ce and LuAG:Ce SCF scintillators, respectively. The SCFs of the mentioned compounds show very lower thermoluminescence in the above room temperature range and relatively fast scintillation decay.

  15. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shilin, V. A., E-mail: shilin@pnpi.spb.ru; Lebedev, V. T.; Sedov, V. P.

    2016-07-15

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C{sub 60} and C{sub 70} fullerenes and C{sub 60}(OH){sub 30} and C{sub 70}(OH){sub 30} fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C{sub 2n} endometallofullerenes is lower than that of the corresponding Gd@C{sub 2n}(OH){sub 38} fullerenols. The radiation resistance of mixtures of Me@C{sub 2n}(OH){sub 38} (Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C{sub 60}(OH){sub 30} is determined.more » The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.« less

  16. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    PubMed

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Characterization of 1.2×1.2 mm2 silicon photomultipliers with Ce:LYSO, Ce:GAGG, and Pr:LuAG scintillation crystals as detector modules for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Omidvari, N.; Sharma, R.; Ganka, T. R.; Schneider, F. R.; Paul, S.; Ziegler, S. I.

    2017-04-01

    The design of a positron emission tomography (PET) scanner is specially challenging since it should not compromise high spatial resolution, high sensitivity, high count-rate capability, and good energy and time resolution. The geometrical design of the system alongside the characteristics of the individual PET detector modules contributes to the overall performance of the scanner. The detector performance is mainly influenced by the characteristics of the photo-detector and the scintillation crystal. Although silicon photomultipliers (SiPMs) have already proven to be promising photo-detectors for PET, their performance is highly influenced by micro-cell structure and production technology. Therefore, five types of SiPMs produced by KETEK with an active area size of 1.2 × 1.2 mm2 were characterized in this study. The SiPMs differed in the production technology and had micro-cell sizes of 25, 50, 75, and 100 μm. Performance of the SiPMs was evaluated in terms of their breakdown voltage, temperature sensitivity, dark count rate, and correlated noise probability. Subsequently, energy resolution and coincidence time resolution (CTR) of the SiPMs were measured with five types of crystals, including two Ce:LYSO, two Ce:GAGG, and one Pr:LuAG. Two crystals with a geometry of 1.5 × 1.5 × 6 mm3 were available from each type. The best CTR achieved was ~ 240 ps, which was obtained with the Ce:LYSO crystals coupled to the 50 μm SiPM produced with the trench technology. The best energy resolution for the 511 keV photo-peak was ~ 11% and was obtained with the same SiPM coupled to the Ce:GAGG crystals.

  18. Magnetization and transport properties of single crystalline RPd 2P 2 (R=Y, La–Nd, Sm–Ho, Yb)

    DOE PAGES

    Drachuck, Gil; Böhmer, Anna E.; Bud'ko, Sergey L.; ...

    2016-05-27

    Single crystals of RPd 2P 2 (R=Y, La–Nd, Sm–Ho, Yb) were grown out of a high temperature solution rich in Pd and P and characterized by room-temperature powder X-ray diffraction, anisotropic temperature- and field-dependent magnetization and temperature-dependent in-plane resistivity measurements. In this series, YPd 2P 2 and LaPd 2P 2 YbPd 2P 2 (with Yb 2+) are non-local-moment bearing. Furthermore, YPd 2P 2 and LaPd 2P 2 are found to be superconducting with Tc≃0.75 and 0.96 K respectively. CePd 2P 2 and PrPd 2P 2 magnetically order at low temperature with a ferromagnetic component along the crystallographic c-axis. The rest of the series manifest low temperature antiferromagnetic ordering. EuPd 2P 2 has Eu 2+ ions and both EuPd 2P 2 and GdPd 2P 2 have isotropic paramagnetic susceptibilities consistent with L =0 and J=S=more » $$\\frac{7}{2}$$ and exhibit multiple magnetic transitions. For R=Eu–Dy, there are multiple, T>1.8 K transitions in zero applied magnetic field and for R=Nd, Eu, Gd, Tb, and Dy there are clear metamagnetic transitions at T=2.0 K for H< 55 kOe. Strong anisotropies arising mostly from crystal electric field (CEF) effects were observed for most magnetic rare earths with L≠0. The experimentally estimated CEF parameters B$$_2^0$$ were calculated from the anisotropic paramagnetic θ ab and θ c values and compared to theoretical trends across the rare earth series. Lastly, the ordering temperatures as well as the polycrystalline averaged paramagnetic Curie–Weiss temperature, θ ave, were extracted from magnetization and resistivity measurements, and compared to the de-Gennes factor.« less

  19. Magnetization and transport properties of single crystalline RPd 2P 2 (R=Y, La–Nd, Sm–Ho, Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drachuck, Gil; Böhmer, Anna E.; Bud'ko, Sergey L.

    Single crystals of RPd 2P 2 (R=Y, La–Nd, Sm–Ho, Yb) were grown out of a high temperature solution rich in Pd and P and characterized by room-temperature powder X-ray diffraction, anisotropic temperature- and field-dependent magnetization and temperature-dependent in-plane resistivity measurements. In this series, YPd 2P 2 and LaPd 2P 2 YbPd 2P 2 (with Yb 2+) are non-local-moment bearing. Furthermore, YPd 2P 2 and LaPd 2P 2 are found to be superconducting with Tc≃0.75 and 0.96 K respectively. CePd 2P 2 and PrPd 2P 2 magnetically order at low temperature with a ferromagnetic component along the crystallographic c-axis. The rest of the series manifest low temperature antiferromagnetic ordering. EuPd 2P 2 has Eu 2+ ions and both EuPd 2P 2 and GdPd 2P 2 have isotropic paramagnetic susceptibilities consistent with L =0 and J=S=more » $$\\frac{7}{2}$$ and exhibit multiple magnetic transitions. For R=Eu–Dy, there are multiple, T>1.8 K transitions in zero applied magnetic field and for R=Nd, Eu, Gd, Tb, and Dy there are clear metamagnetic transitions at T=2.0 K for H< 55 kOe. Strong anisotropies arising mostly from crystal electric field (CEF) effects were observed for most magnetic rare earths with L≠0. The experimentally estimated CEF parameters B$$_2^0$$ were calculated from the anisotropic paramagnetic θ ab and θ c values and compared to theoretical trends across the rare earth series. Lastly, the ordering temperatures as well as the polycrystalline averaged paramagnetic Curie–Weiss temperature, θ ave, were extracted from magnetization and resistivity measurements, and compared to the de-Gennes factor.« less

  20. Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yantasee, Wassana; Fryxell, Glen E.; Addleman, Raymond S.

    2009-09-15

    The increased demand for the lanthanides in commercial products result in increased production of lanthanide containing ores, increasing public exposure to the lanthanides, both from various commercial products and from production wastes/effluents. This work investigates lanthanide (La, Ce, Pr, Nd, Eu, Gd, Lu) binding properties of self-assembled monolayers on mesoporous silica supports (SAMMS®) that were functionalized with diphosphonic acid (DiPhos), acetamide phosphonic acid (AcPhos), propionamide phosphonic acid (ProPhos), and 1-hydroxy-2-pyridinone (1,2-HOPO) from natural waters (river, ground, and sea waters), acid solutions (to mimic certain industrial process streams), and dialysate and compares their performance to a high surface area activated carbon.more » The properties include sorption affinity, capacity, and sorption kinetics. Stability and regenerability of SAMMS materials were also investigated. Going from the acid side over to the alkaline side, the AcPhos- and DiPhos-SAMMS maintain their outstanding affinity for lanthanides, which enable the use of the materials in the systems where the pH may fluctuate. While the activated carbon is as effective as 1,2-HOPO-SAMMS for capturing lanthanides in natural (alkaline) waters, it has no affinity in acid solutions (pH 2.4) and low affinity in carbonate-rich dialysate. Over 99% of 100 ug/L of Gd in dialysate was removed by the ProPhos-SAMMS after ten minutes. SAMMS can be regenerated with an acid wash (0.5 M HCl) without losing the binding properties, for a number of regeneration cycles. In acid solutions, PhoPhos- and 1,2-HOPO-SAMMS have differing affinity along the lanthanide series, suggesting their potential for chromatographic lanthanide separations. Thus, SAMMS materials have a great potential to be used as sorbents in large scale treatment of lanthanides, lanthanide separation prior to analytical instruments, and sorbent dialyzers for lanthanide clearances.« less

  1. RFe{sub 2}Mg{sub x}Al{sub 8−x} (R=La–Nd and Sm; x≈0.8): Flux synthesis, structure, magnetic and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiaowei; Chai, Ping; Chen, Banghao

    2015-09-15

    Single crystals of Mg-substituted CeFe{sub 2}Al{sub 8} type intermetallics RFe{sub 2}Mg{sub x}Al{sub 8–x} (R=La–Nd and Sm; x≤1) were grown by reacting iron and rare earth metals in 1:1 Mg/Al mixed flux. The structure features mono-capped and bi-capped trigonal prismatic FeAl{sub 6} units. Electronic structure calculations indicate that magnesium substitution reduces the valence electron count, shifting the Fermi level away from a pseudo-gap. This changes the electronic nature of the cerium analog; the previously reported ternary CeFe{sub 2}Al{sub 8} shows strong hybridization between the cerium states and the conduction electrons, resulting in no magnetic moment on Ce atoms. On the othermore » hand, magnetic susceptibility measurements on CeFe{sub 2}Mg{sub x}Al{sub 8–x} indicates a localized moment on cerium. The newly synthesized Pr, Nd and Sm analogs exhibit antiferromagnetic ordering at 2.8 K, 7.8 K and 12 K respectively. Solid state {sup 27}Al NMR of LaFe{sub 2}Mg{sub x}Al{sub 8–x} exhibits a broad Knight shift at ~1200 ppm, consistent with the metallic behavior shown by electrical resistivity data. - Graphical abstract: Mg substitution into CeFe{sub 2}Al{sub 8} modifies cerium valence due to changing valence electron count. - Highlights: • RFe{sub 2}Mg{sub x}Al{sub 8−x} (R=La–Nd, Sm) grow as large crystals from reactions in Mg/Al flux. • Products are magnesium-substituted variants of CeFe{sub 2}Al{sub 8}, with CaCo{sub 2}Al{sub 8} structure. • Ce magnetic moment in CeFe{sub 2}Mg{sub x}Al{sub 8−x} varies from that in CeFe{sub 2}Al{sub 8} due to VEC change. • Antiferromagnetic ordering observed for Pr, Nd, Sm analogs of RFe{sub 2}Mg{sub x}Al{sub 8−x}.« less

  2. Rare earth elements (REE) and yttrium in stream waters, stream sediments, and Fe Mn oxyhydroxides: Fractionation, speciation, and controls over REE + Y patterns in the surface environment

    NASA Astrophysics Data System (ADS)

    Leybourne, Matthew I.; Johannesson, Karen H.

    2008-12-01

    We have collected ˜500 stream waters and associated bed-load sediments over an ˜400 km 2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into "dissolved" (<0.45 μm), labile (hydroxylamine) and detrital sediment fractions to investigate REE fractionation, and in particular, with respect to the development of Ce and Eu anomalies in oxygenated surface environments. Surface waters are typically LREE depleted ([La/Sm] NASC ranges from 0.16 to 5.84, average = 0.604, n = 410; where the REE are normalized to the North America Shale Composite), have strongly negative Ce anomalies ([Ce/Ce ∗] NASC ranges from 0.02 to 1.25, average = 0.277, n = 354), and commonly have positive Eu anomalies ([Eu/Eu ∗] NASC ranges from 0.295 to 1.77, average = 0.764, n = 84). In contrast, the total sediment have flatter REE + Y patterns relative to NASC ([La/Sm] NASC ranges from 0.352 to 1.12, average = 0.778, n = 451) and are slightly middle REE enriched ([Gd/Yb] NASC ranges from 0.55 to 3.75, average = 1.42). Most total sediments have negative Ce and Eu anomalies ([Ce/Ce ∗] NASC ranges from 0.097 to 2.12, average = 0.799 and [Eu/Eu ∗] NASC ranges from 0.39 to 1.43, average = 0.802). The partial extraction sediments are commonly less LREE depleted than the total sediments ([La/Sm] NASC ranges from 0.24 to 3.31, average = 0.901, n = 4537), more MREE enriched ([Gd/Yb] NASC ranges from 0.765 to 6.28, average = 1.97) and Ce and Eu anomalies (negative and positive) are more pronounced. The partial extraction recovered, on average ˜20% of the Fe in the total sediment, ˜80% of the Mn, and 21-29% of the REEs (Ce = 19% and Y = 32%). Comparison between REEs in water, partial extraction and total sediment analyses indicates that REEs + Y in the stream sediments have two primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO 2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.

  3. Dielectric and electromechanical properties of rare earth calcium oxyborate piezoelectric crystals at high temperatures.

    PubMed

    Yu, Fapeng; Zhang, Shujun; Zhao, Xian; Yuan, Duorong; Qin, Lifeng; Wang, Qing-Ming; Shrout, Thomas R

    2011-04-01

    The electrical resistivity, dielectric, and electromechanical properties of ReCa(4)O(BO(3))(3) (ReCOB; Re = Er, Y, Gd, Sm, Nd, Pr, and La) piezoelectric crystals were investigated as a function of temperature up to 1000 °C. Of the studied crystals, ErCOB and YCOB were found to possess extremely high resistivity (p): p > 3 × 10(7) ω.cm at 1000 °C. The property variation in ReCOB crystals is discussed with respect to their disordered structure. The highest electromechanical coupling factor κ(26) and piezoelectric coefficient d(26) at 1000°C, were achieved in PrCOB crystals, with values being on the order of 24.7% and 13.1 pC/N, respectively. The high thermal stability of the electromechanical properties, with variation less than 25%, together with the low dielectric loss (<46%) and high mechanical quality factor (>1500) at elevated temperatures of 1000 °C, make ErCOB, YCOB, and GdCOB crystals promising for ultrahigh temperature electromechanical applications. © 2011 IEEE

  4. Complementary rare earth element patterns in unique achondrites, such as ALHA 77005 and shergottites, and in the earth

    NASA Technical Reports Server (NTRS)

    Ma, M.-S.; Schmitt, R. A.; Laul, J. C.

    1982-01-01

    Abundances of major, minor, and trace elements are determined in the Antarctic achondrite Allan Hills (ALHA) 77005 via sequential instrumental and radiochemical neutron activation analysis. The rare earth element (REE) abundances of ALHA 77005 reveal a unique chondritic normalized pattern; that is, the REEs are nearly unfractionated from La to Pr at approximately 1.0X chondrites, monotonically increased from Pr to Gd at approximately 3.4X with no Eu anomaly, nearly unfractionated from Gd and Ho and monotonically decreased from Ho to Lu at approximately 2.2X. It is noted that this unique REE pattern of ALHA 77005 can be modeled by a melting process involving a continuous melting and progressive partial removal of melt from a light REE enriched source material. In a model of this type, ALHA 77005 could represent either a crystallized cumulate from such a melt or the residual source material. Calculations show that the parent liquids for the shergottites could also be derived from a light REE enriched source material similar to that for ALHA 77005.

  5. Search for neutrino transitions to sterile states using an intense beta source

    NASA Astrophysics Data System (ADS)

    Oralbaev, A. Yu.; Skorokhvatov, M. D.; Titov, O. A.

    2017-11-01

    The results of beta spectrum calculations for two 144Pr decay branches are presented, which are of interest for reconstructing the spectrum of antineutrinos from the 144Ce-144Pr source to be used in the SOX experiment on the search for sterile neutrinos. The main factors affecting the beta spectrum are analyzed, their calculation methods are given, and calculations are compared with experiment.

  6. Synthesis, structures and fluorescent properties of two novel lanthanide [Ln = Ce(III), Pr(III)] coordination polymers based on 1,3-benzenedicarboxylate and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ni, Liang; yao, Jia

    2012-09-01

    Two structurally diverse coordination polymers [Ce2(m-BDC)2(m-HBDC)2(MOPIP)2·3/2H2O]n (1) and [Pr2(m-BDC)3(MOPIP)2·H2O]n(2) have been synthesized by hydrothermal reaction of lanthanide chloride with mixed ligands benzene-1,3-dicarboxylic acid and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (MOPIP). The crystal structures of the complexes are zipper-like chains of octacoordinate Ln3+ ions, in which Ln3+ ions are bridged in different coordination modes by m-BDC2+ and decorated by MOPIP ligands. These chains are further assembled into three-dimensional supramolecular framework by π⋯π stacking and hydrogen bonding interactions. The fluorescent property and thermal stability were also investigated. Additionally, Natural bond orbital (NBO) analysis of complex 2 shows a weak covalent interaction between the coordinated atoms and Pr3+ ions.

  7. Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: Enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration

    NASA Astrophysics Data System (ADS)

    Nicollet, Clement; Waxin, Jenny; Dupeyron, Thomas; Flura, Aurélien; Heintz, Jean-Marc; Ouweltjes, Jan Pieter; Piccardo, Paolo; Rougier, Aline; Grenier, Jean-Claude; Bassat, Jean-Marc

    2017-12-01

    This paper reports the study of the densification of 20% Gd doped ceria (Ce0.8Gd0.2O1.9 (GDC)) interlayers in SOFC cathodes through two different routes: the well-known addition of sintering elements, and an innovative densification process by infiltration. First, Li, Cu, and Zn nitrates were added to GDC powders. The effect of these additives on the densification was studied by dilatometry on pellets, and show a large decrease of the sintering temperature from 1330 °C (pure GDC), down to 1080 °C, 950 °C, and 930 °C for Zn, Cu, and Li addition, respectively. However, this promising result does not apply to screen-printed layers, which are more porous than pellets and in which the shrinkage is constrained by the substrate. The second approach consists in preparing a pre-sintered GDC layer, which is subsequently infiltrated with Ce and Gd nitrates and sintered at 1250 °C to increase its density. Such an approach results in highly dense GDC interlayers. Using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as electrode, the influence of the interlayers on the cathode performance was studied. The addition of sintering aids dramatically increases the cell resistances, most likely because the additives increase the reactivity between GDC and either Yttria Stabilized Zirconia (YSZ) or LSCF, thus losing the expected benefit related to the decrease of sintering temperatures. The interlayers prepared by infiltration do not induce additional resistances in the cell, which results in power densities of single cells 40-50% higher than those of cells prepared with commercial GDC interlayers, making this approach a valuable alternative to sintering aids.

  8. Abstracts. 1978 AFOSR Contractors Meeting on Air-Breathing Combustion Dynamics and Kinetics, Ramada Inn-Downtown Dayton, Ohio, 10 - 13 October 1978

    DTIC Science & Technology

    1978-10-13

    Combustion in G.D. Smith, C.E. Peters High Speed Flows AEDC/ARO (PO-78-0012) 5:00 ADJOURN 6:30 Social Hour (Cash Bar) Ramada Inn Banquet 12 Oct. 78...which would sustain the instability structures observed in a number of problemA . During the initial phase of the development of the instabilities, the

  9. Optical properties and refractive indices of Gd3Al2Ga3O12:Ce3+ crystals

    NASA Astrophysics Data System (ADS)

    Kozlova, N. S.; Busanov, O. A.; Zabelina, E. V.; Kozlova, A. P.; Kasimova, V. M.

    2016-05-01

    Crystals of cerium-doped gadolinium-gallium-aluminum garnet have been grown by the Czochralski method. The transmission and reflection spectra of these crystals in the wavelength range of 250-800 nm have been obtained by optical spectroscopy. Refractive indices are calculated based on the measured Brewster angles, the experimental results are approximated using the Cauchy equation, and a dispersion dependence is obtained.

  10. Optimization of the electrochemical performance of a Ni/Ce0.9Gd0.1O2-δ-impregnated La0.57Sr0.15TiO3 anode in hydrogen

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Brüll, Annelise; Grimaud, Alexis; Fourcade, Sébastien; Mauvy, Fabrice; Zhao, Hui; Grenier, Jean-Claude; Bassat, Jean-Marc

    2014-09-01

    A-site deficient perovskite La0.57Sr0.15TiO3 (LSTO) materials are synthesized by a modified polyacrylamide gel route. X-ray diffraction pattern of LSTO indicates an orthorhombic structure. The thermal expansion coefficient of LSTO is 10.0 × 10-6 K-1 at 600 °C in 5%H2/Ar. LSTO shows an electrical conductivity of 2 S cm-1 at 600 °C in 3%H2O/H2. A new composite material, containing the porous LSTO backbone impregnated with small amounts of Ce0.9Gd0.1O2-δ (CGO) (3.4-8.3 wt.%) and Ni/Cu (2.0-6.3 wt.%), is investigated as an alternative anode for solid oxide fuel cells (SOFCs). Because of the substantial electro-catalytic activity of the fine and well-dispersed Ni particles on the surface of the ceramic framework, the polarization resistance of 6.3%Ni-8.3%CGO-LSTO anode reaches 0.73 Ω cm2 at 800 °C in 3%H2O/H2. In order to further improve the anodic performance, corn starch and carbon black are used as pore-formers to optimize the microstructure of anodes.

  11. Electrochemical performance of Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 cermet anodes with functionally graded structures for intermediate-temperature solid oxide fuel cell fueled with syngas

    NASA Astrophysics Data System (ADS)

    Miyake, Michihiro; Iwami, Makoto; Takeuchi, Mizue; Nishimoto, Shunsuke; Kameshima, Yoshikazu

    2018-06-01

    The electrochemical performance of layered Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 (GDC) cermet anodes is investigated for intermediate-temperature solid oxide fuel cells (IT-SOFCs) at 600 °C using humidified (3% H2O) model syngas with a molar ratio of H2/CO = 3/2 as the fuel. From the results obtained, the electrochemical performance of the functionally graded multi-layered anodes is found to be superior to the mono-layered anodes. The test cell with a bi-layered anode consisting of 100 mass% Ni0.8Cu0.2/0 mass% GDC (10M/0E) and 70 mass% Ni0.8Cu0.2/30 mass% GDC (7M/3E) exhibits high power density. The test cell with a tri-layered anode consisting of 10M/0E, 7M/3E, and 50 mass% Ni0.8Cu0.2/50 mass% GDC (5M/5E) exhibits an even higher power density, suggesting that 10M/0E and 5M/5E layers contribute to the current collecting part and active part, respectively.

  12. Effect of Dopants and Sintering Method on the Properties of Ceria-Based Electrolytes for IT-SOFCs Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Payal; Sharma, Chetan; Singh, Kanchan L.; Singh, Anirudh P.

    2018-05-01

    Doped and co-doped ceria ceramics are used as electrolyte materials in solid oxide fuel cells. In this work, ceria-based oxides, Ce0.90Gd0.06Y0.02M0.02O2-δ (M = Ca, Fe, La, and Sr) were prepared by conventional as well as microwave processing from the precursors prepared by the mixed oxide method. The consolidated calcined powders in pellet form were sintered in microwave energy at 1400°C for 20 min and in an electric furnace of IR radiation at 1400°C for 6 h. The x-ray diffraction analysis confirmed that all the compositions were crystallized into a cubic fluorite structure. Surface morphology of the sintered products was studied using scanning electron microscopy and the microhardness was investigated using the Vickers hardness test. The comparative results analysis shows that the microwave-sintered samples have uniform grain growth, higher density and higher microhardness than the corresponding conventionally sintered products. The microwave-sintered sample of composition Ce0.90Gd0.06Y0.02Sr0.02O2-δ was found to have the highest microhardness among the four compositions due to its high density and smallest grain size.

  13. Behavior of toxic metals and radionuclides during molten salt oxidation of chlorinated plastics.

    PubMed

    Yang, Hee-Chul; Cho, Yong-Jun; Eun, Hee-Chul; Yoo, Jae-Hyung; Kim, Joon-Hyung

    2004-01-01

    Molten salt oxidation is one of the promising alternatives to incineration for chlorinated organics without the emission of chlorinated organic pollutants. This study investigated the behavior of three hazardous metals (Cd, Pb, and Cr) and four radioactive metal surrogates (Cs, Ce, Gd, and Sm) in the molten Na2CO3 oxidation reactor during the destruction of PVC plastics. In the tested temperature ranges (1143 1223K) and NaCl content (0-10%), the impact of temperature on the retention of cadmium and lead in the molten salt reactor was very small, but that of the NaCl content for their retention was relatively higher. The influence of NaCl accumulation was, however, proven to be practically negligible due to the low-temperature operating characteristics of the molten salt oxidation system. Neither temperature increase nor chlorine accumulation in the MSO reactor reduced the retention of Cr, Ce, Gd, and Sm. Over 99.98% of these metals remained in the reactor. The influence of the temperature on the cesium behavior is relatively large for a chlorine addition, however, over 99.7% of cesium remained in the reactor throughout the entire test. The experimental metal entrainment rate and the entrained metal particle size distribution agree well with the theoretical equilibrium metal distributions.

  14. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature

    NASA Astrophysics Data System (ADS)

    Sauvet, A.-L.; Fouletier, J.

    The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.

  15. Effect of ca+2 addition on the properties of ce0.8gd0.2o2-δ for it-sofc

    NASA Astrophysics Data System (ADS)

    Koteswararao, P.; Buchi Suresh, M.; Wani, B. N.; Bhaskara Rao, P. V.; Varalaxmi, P.

    2018-03-01

    This paper reports the effect of Ca2+ addition on the structural and electrical properties of Ce0.8Gd0.2O2-δ(GDC) electrolyte for low temperature solid oxide fuel cell application. The Ca (0, 0.5, 1 and 2 mol %) doped GDC solid electrolytes have been prepared by solid state method. The sintered densities of the samples are greater than 95%. XRD study reveals the cubic fluorite structure. The microstructure of the samples sintered at 1400°C resulted into grain sizes in the range of 1.72 to 10.20 μm. Raman spectra show the presence of GDC single phase. AC impedance analysis is used to measure the ionic conductivity of the electrolyte. Among all the compositions, the highest conductivity is observed in the GDC sample with 0.5 mol% Ca addition. Nyquist plots resulted in multiple redoxation process such as grain and grain boundary conductions to final conductivity. Estimated blocking factor is lower for the GDC electrolyte with 0.5mol% Ca, indicating that Ca addition was promoted grain boundary conduction. Activation energies were calculated from Arrhenius plot and are found in the range of 1eV.

  16. Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tu, Hengyong; Liu, Xin; Yu, Qingchun

    2011-03-01

    Scandia ceria stabilized zirconia (10Sc1CeSZ) powders are synthesized by polymeric precursor method for use as the electrolyte of anode-supported solid oxide fuel cell (SOFC). The synthesized powders are characterized in terms of crystalline structure, particle shape and size distribution by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). 10Sc1CeSZ electrolyte films are deposited on green anode substrate by screen-printing method. Effects of 10Sc1CeSZ powder characteristics on sintered films are investigated regarding the integration process for application as the electrolytes in anode-supported SOFCs. It is found that the 10Sc1CeSZ films made from nano-sized powders with average size of 655 nm are very porous with many open pores. In comparison, the 10Sc1CeSZ films made from micron-sized powders with average size of 2.5 μm, which are obtained by calcination of nano-sized powders at higher temperatures, are much denser with a few closed pinholes. The cell performances are 911 mW cm-2 at the current density of 1.25 A cm-2 and 800 °C by application of Ce0.8Gd0.2O2 (CGO) barrier layer and La0.6Sr0.4CoO3 (LSC) cathode.

  17. Non-proportionality study of CaMoO4 and GAGG:Ce scintillation crystals using Compton coincidence technique.

    PubMed

    Kaewkhao, J; Limkitjaroenporn, P; Chaiphaksa, W; Kim, H J

    2016-09-01

    In this study, the CCT technique and nuclear instrument module (NIM) setup for the measurements of coincidence electron energy spectra of calcium molybdate (CaMoO4) and cerium doped gadolinium aluminium gallium garnet (Gd3Al2Ga3O12:Ce or GAGG:Ce) scintillation crystals were carried out. The (137)Cs irradiated gamma rays with an energy (Eγ) of 662keV was used as a radioactive source. The coincidence electron energy spectra were recorded at seven scattering angles of 30°-120°. It was found that seven corresponding electron energies were in the range of 100.5-435.4keV. The results show that, for all electron energies, the electron energy peaks of CaMoO4 crystal yielded higher number of counts than those of GAGG:Ce crystal. The electron energy resolution, the light yield and non-proportionality were also determined. It was found that the energy resolutions are inverse proportional to the square root of electron energy for both crystals. Furthermore, the results show that the light yield of GAGG:Ce crystal is much higher than that of CaMoO4 crystal. It was also found that both CaMoO4 and GAGG:Ce crystals demonstrated good proportional property in the electron energy range of 260-435.4keV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Performance of europium-doped strontium iodide, transparent ceramics and bismuth-loaded polymer scintillators

    NASA Astrophysics Data System (ADS)

    Cherepy, N. J.; Payne, S. A.; Sturm, B. W.; O'Neal, S. P.; Seeley, Z. M.; Drury, O. B.; Haselhorst, L. K.; Rupert, B. L.; Sanner, R. D.; Thelin, P. A.; Fisher, S. E.; Hawrami, R.; Shah, K. S.; Burger, A.; Ramey, J. O.; Boatner, L. A.

    2011-09-01

    Recently discovered scintillators for gamma ray spectroscopy - single-crystal SrI2(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics - offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI2(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu), offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single-crystal SrI2(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  19. Performance of Europium-Doped Strontium Iodide, Transparent Ceramics and Bismuth-loaded Polymer Scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, N J; Payne, S A; Sturm, B W

    2011-08-30

    Recently discovered scintillators for gamma ray spectroscopy, single crystal SrI{sub 2}(Eu), GYGAG(Ce) transparent ceramic and Bismuth-loaded plastics, offer resolution and fabrication advantages compared to commercial scintillators, such as NaI(Tl) and standard PVT plastic. Energy resolution at 662 keV of 2.7% is obtained with SrI{sub 2}(Eu), while 4.5% is obtained with GYGAG(Ce). A new transparent ceramic scintillator for radiographic imaging systems, GLO(Eu) offers high light yield of 70,000 Photons/MeV, high stopping, and low radiation damage. Implementation of single crystal SrI{sub 2}(Eu), Gd-based transparent ceramics, and Bi-loaded plastic scintillators can advance the state-of-the art in ionizing radiation detection systems.

  20. Supported catalyst systems and method of making biodiesel products using such catalysts

    DOEpatents

    Kim, Manhoe; Yan, Shuli; Salley, Steven O.; Ng, K. Y. Simon

    2015-10-20

    A heterogeneous catalyst system, a method of preparing the catalyst system and a method of forming a biodiesel product via transesterification reactions using the catalyst system is disclosed. The catalyst system according to one aspect of the present disclosure represents a class of supported mixed metal oxides that include at least calcium oxide and another metal oxide deposited on a lanthanum oxide or cerium oxide support. Preferably, the catalysts include CaO--CeO.sub.2ZLa.sub.2O.sub.3 or CaO--La.sub.2O.sub.3/CeO.sub.2. Optionally, the catalyst may further include additional metal oxides, such as CaO--La.sub.2O.sub.3--GdOxZLa.sub.2O.sub.3.

  1. Separation of Ce and La from Synthetic Chloride Leach Solution of Monazite Sand by Precipitation and Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Banda, Raju; Jeon, Ho Seok; Lee, Man Seung

    2014-12-01

    Precipitation and solvent extraction experiments have been performed to recover light rare earths from simulated monazite sand chloride leach solutions. Precipitation conditions were obtained to recover Ce by adding NaClO as an oxidant. Among some cationic extractants (PC 88A, D2EHPA, Cyanex 272, LIX 63), PC 88A showed the best performance to separate La from the resulting chloride solution. Furthermore, the mixture of PC 88A with other solvating (TBP, TOPO) and amine extractants (Alamine 336, Aliquat 336) was tested to increase the separation factor of La from Pr and Nd. The use of mixed extractants greatly enhanced the separation of La from the two other metals. McCabe-Thiele diagrams for the extraction of Pr and Nd with the PC 88A/Alamine 336 mixture were constructed.

  2. Préparation chimique et propriétés optiques de CeP 5O 14 triclinique

    NASA Astrophysics Data System (ADS)

    Rzaigui, Mohamed; Ariguib, N´jia Kbir

    1985-01-01

    Crystals of a new cerium(III)-ultraphosphate form, CeP 5O 14, have been grown from CeCl 3 · 7H 2O and NH 4H 2PO 4. Synthesis and structural characterization by X-ray diffraction and ir absorption spectroscopy are given. The new CeP 5O 14 crystallizes in a triclinic unit cell, P1, with parameters: a = 9.229(2), b = 8.879(1), c = 7.201(1) (Å), α = 110.27(1), β = 102.75(1), γ = 82.13(1)°, Z = 2, and D x = 3.20. This compound is piezoelectric and has no known structural analog. The excitation and emission spectrum of this Ce-ultraphosphate variety are reported. This material emits strongly in the near-uv. The emission band peaks at 322 nm and decays, at first, with τ 1 = 14 nsec, then, with τ 2 = 60 nsec.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Yahia, Hamdi, E-mail: benyahia.hamdi@voila.fr; Rodewald, Ute Ch.; Boulahya, Khalid

    Graphical abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. - Highlights: • We discovered the series of RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) compounds. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl single crystals were grown using NaCl/KCl flux. • The RE{sub 4}O{sub 4}[AsO{sub 4}]Cl structures were solved using single crystal X-ray diffraction data. • The layered RE{sub 4}O{sub 4}[AsO{sub 4}]Cl compounds were further characterized using HRTEMmore » and SAED. • We observed an alternation of ordered-[RE{sub 4}O{sub 4}]{sup 4+} and disordered-[ClAsO{sub 4}]{sup 4–} layers. - Abstract: The new compounds RE{sub 4}O{sub 4}[AsO{sub 4}]Cl (RE = La, Pr, Nd, Sm, Eu, Gd) were synthesised by solid state reaction via a salt flux route and investigated by HRTEM, SAED, and single crystal X-ray diffraction. The samples crystallise with a tetragonal cell, space group P4{sub 2}/mnm and Z = 2. Their crystal structure consists of an alternation of [RE{sub 4}O{sub 4}]{sup 4+} and [ClAsO{sub 4}]{sup 4–} layers. The [RE{sub 4}O{sub 4}]{sup 4+} layer contains ORE{sub 4/4} tetrahedra which share common edges. The anions AsO{sub 4}{sup 3–} and Cl{sup –} are located between these layers in disordered manner. SAED and HRTEM experiments confirmed this structural model and enabled us to propose an ordered model for the [ClAsO{sub 4}]{sup 4–} layers.« less

  4. Final Environmental Assessment/Overseas Environmental Assessment Joint Strile Fighter System Development and Demonstration Developmental Test Program

    DTIC Science & Technology

    2007-01-01

    tte r t es t a...ct iv iti es . Pr op os ed p er fo rm an ce te st s w ou ld c oi nc id e w ith F Q , f lu tte r, hi gh A ng le -o f- A tta ck ( A oA ), an...cl os el y in te gr at ed w ith th e FQ , f lu tte r, an d hi gh A oA te st s a nd w ou ld g en er al ly p ro ce ed in c on ce rt

  5. Pyrazolates advance cerium chemistry: a CeIII/CeIV redox equilibrium with benzoquinone.

    PubMed

    Werner, Daniel; Deacon, Glen B; Junk, Peter C; Anwander, Reiner

    2017-05-16

    Two stable cerium(iv) 3,5-dialkylpyrazolate complexes are presented, namely dimeric [Ce(Me 2 pz) 4 ] 2 (Me 2 pz = 3,5-dimethylpyrazolate) and monomeric Ce(tBu 2 pz) 4 (tBu 2 pz = 3,5-di-tert-butylpyrazolate) along with their trivalent counterparts [Ce(Me 2 pz) 3 ] and [Ce(tBu 2 pz) 3 ] 2 . All complexes were obtained from protonolysis reactions employing the silylamide precursors Ce[N(SiHMe 2 ) 2 ] 4 and Ce[N(SiMe 3 ) 2 ] 3 . Treatment of homoleptic Ce IV and Ce III Me 2 pz complexes with 1,4-hydroquinone (H 2 hq) or 1,4-benzoquinone (bq), respectively, ultimately gave the same trimetallic Ce III species via a cerium redox equilibrium. The Ce III complex Ce 3 (Me 2 pz) 5 (pchd) 2 (L) (pchd = 1,4-bis(3,5-dimethylpyrazol-1-yl)cyclohex-2,5-diene-1,4-diolato; L = Me 2 pzH or (thf) 2 ) results from a di-1,4-pyrazolyl attack on pre-coordinated bq. The reduction of bq by [Ce(Me 2 pz) 3 (thf)] 2 , and re-oxidation by the resulting Ce IV species was supported by UV-vis spectroscopic investigations. Comparisons with the redox-innocent complexes [Ln(Me 2 pz) 3 (thf)] 2 (Ln = La and Pr) revealed far less selective reactions with bq, giving hexametallic and octametallic rare-earth metal side products containing 2-Me 2 pz substituted hq ligands.

  6. High Performance Proton-Conducting Solid Oxide Fuel Cells with a Layered Perovskite GdBaCuCoO5+ x Cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhen; Jiang, Yuhua; Hu, Xuebing; Sun, Liangliang; Ling, Yihan

    2018-03-01

    Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+ x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm-2 was obtained for the anode supported NiO-BZCY/NiO-BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.

  7. Three-dimensional characterization of BaHfO3 precipitates in GdBa2Cu3O7-y flim using STEM tomography.

    PubMed

    Nishiyama, T; Kaneko, K; Yamada, K; Teranishi, R; Kato, T; Hirayama, T; Tobita, H; Izumi, T; Shiohara, Y

    2014-11-01

    IntroductionSince the discovery of REBa2Cu3O7-y (RE: Rare Earth element, REBCO) superconductors, they have been expected as the best candidates for the power cable application due to its high critical temperature (Tc) and critical current density (Jc). Among those REBCO superconductors, GdBa2Cu3O7-y (GdBCO) have been receiving great interest because they have higher Tc and Jc than YBa2Cu3O7-y [1].GdBCO with various types of precipitates as artificial pinning centers (APCs) have been proposed to minimize the anisotropy of Jc characteristics under the magnetic field. Among those precipitates, BaHfO3 (BHO) was found most effective precipitates as APCs in GdBCO film prepared by pulsed laser deposition (PLD) method [2]. It is therefore necessary to investigate not only the morphologies but also the dispersion of BHO precipitates within the GdBCO, to understand the role of BHO for the superconducting characteristics. In this study, morphologies and dispersions of BHO precipitates were characterized three-dimensional by scanning transmission electron tomography ExperimentalBHO dispersed GdBCO films were fabricated on Hastelloy C-276TM substrates with buffer layers of CeO2/LaMnO3/MgO/ Gd2ZrO7 by PLD method.To observe microstructure of GdBCO film with BHO precipitates, cross-section TEM specimens were prepared by FIB method using Quanta 3D-200 (FEI, USA) with acceleration voltage from 2 to 30 kV. Three-dimensional information such as morphology and dispersion, of BHO precipitates were characterized by electron tomography using STEM-HAADF. Result and discussionFigure 1 shows three-dimensional reconstructed volume of BHO precipitates in GdBCO, which revealed that fine BHO precipitates have rod- and plate-like morphologies with homogeneous dispersion in GdBCO. In addition, growth directions of these precipitates were found with wide angular distributions from growth direction of GdBCO. Anisotropy of Jc in the magnetic fields was probably enhanced by various growth directions and homogeneous dispersion of nanosized BHO within GdBCO.jmicro;63/suppl_1/i26/DFU080F1F1DFU080F1Fig. 1.Three-dimensional reconstructed volume of BHO. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Enhancement of the red emission in CaTiO 3:Pr 3+ by addition of rare earth oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Xianmin; Zhang, Jiahua; Zhang, Xia; Chen, Li; Luo, Yongshi; Wang, Xiao-jun

    2007-02-01

    Enhancement of the 1D 2- 3H 4 red emission of CaTiO 3:Pr 3+ with addition of rare earth oxides Ln 2O 3 (Ln = Lu, La, Gd) is reported. Ca 2+ and Ti 4+ in CaTiO 3 can be substituted by Ln 3+ ions as donors and acceptors, respectively. Ca 2+ and Ti 4+ vacancies, as quenching centers in the host, are effectively suppressed by the self-compensation, leading to the increase of lifetimes and then the emission efficiency of 1D 2. The red fluorescence intensity for CaTiO 3:Pr 3+ phosphor co-doped with 5 mol% Lu 2O 3 is nearly 3 times greater than that of the Lu-free samples.

  9. A Novel Synthesis Routine for Woodwardite and Its Affinity towards Light (La, Ce, Nd) and Heavy (Gd and Y) Rare Earth Elements.

    PubMed

    Consani, Sirio; Balić-Žunić, Tonci; Cardinale, Anna Maria; Sgroi, Walter; Giuli, Gabriele; Carbone, Cristina

    2018-01-14

    A synthetic Cu-Al-SO₄ layered double hydroxide (LDH), analogue to the mineral woodwardite [Cu 1-x Al x (SO₄) x/2 (OH)₂·nH₂O], with x < 0.5 and n ≤ 3x/2, was synthesised by adding a solution of Cu and Al sulphates to a solution with NaOH. The pH values were kept constant at 8.0 and 10.0 by a continuous addition of NaOH. The material obtained had poor crystallinity, turbostratic structure, and consisted of nanoscopic crystallites. The analyses performed in order to characterise the obtained materials (X-ray diffraction (XRD), thermogravimetry (TG), and Fourier Transform Infra-Red (FTIR) spectroscopy) showed that the Cu-Al-SO₄ LDH is very similar to woodwardite, although it has a smaller layer spacing, presumably due to a lesser water content than in natural samples. The synthesis was performed by adding light rare earth elements (LREEs) (La, Ce, and Nd) and heavy rare earth elements (HREEs) (Gd and Y) in order to test the affinity of the Cu-Al-SO₄ LDH to the incorporation of REEs. The concentration of rare earth elements (REEs) in the solid fraction was in the range of 3.5-8 wt %. The results showed a good affinity for HREE and Nd, especially for materials synthesised at pH 10.0, whereas the affinities for Ce and La were much lower or non-existent. The thermal decomposition of the REE-doped materials generates a mixture of Cu, Al, and REE oxides, making them interesting as precursors in REE oxide synthesis.

  10. A Novel Synthesis Routine for Woodwardite and Its Affinity towards Light (La, Ce, Nd) and Heavy (Gd and Y) Rare Earth Elements

    PubMed Central

    Consani, Sirio; Balić-Žunić, Tonci; Cardinale, Anna Maria; Sgroi, Walter; Giuli, Gabriele; Carbone, Cristina

    2018-01-01

    A synthetic Cu-Al-SO4 layered double hydroxide (LDH), analogue to the mineral woodwardite [Cu1−xAlx(SO4)x/2(OH)2·nH2O], with x < 0.5 and n ≤ 3x/2, was synthesised by adding a solution of Cu and Al sulphates to a solution with NaOH. The pH values were kept constant at 8.0 and 10.0 by a continuous addition of NaOH. The material obtained had poor crystallinity, turbostratic structure, and consisted of nanoscopic crystallites. The analyses performed in order to characterise the obtained materials (X-ray diffraction (XRD), thermogravimetry (TG), and Fourier Transform Infra-Red (FTIR) spectroscopy) showed that the Cu-Al-SO4 LDH is very similar to woodwardite, although it has a smaller layer spacing, presumably due to a lesser water content than in natural samples. The synthesis was performed by adding light rare earth elements (LREEs) (La, Ce, and Nd) and heavy rare earth elements (HREEs) (Gd and Y) in order to test the affinity of the Cu-Al-SO4 LDH to the incorporation of REEs. The concentration of rare earth elements (REEs) in the solid fraction was in the range of 3.5–8 wt %. The results showed a good affinity for HREE and Nd, especially for materials synthesised at pH 10.0, whereas the affinities for Ce and La were much lower or non-existent. The thermal decomposition of the REE-doped materials generates a mixture of Cu, Al, and REE oxides, making them interesting as precursors in REE oxide synthesis. PMID:29342887

  11. Pilot Performance Measurement: An Annotated Bibliography.

    DTIC Science & Technology

    1982-12-01

    Appropriate tests should be administered under conditions as similar to the operational context as possible. 841. Reising, J. M., and Krishnaiah , P. R...59 Novello, J.R. 72, 73 Kohl, G. 60 Obermayer, R.W. 74, 75, 76, 77, 97 Krendel, E.S. 61 Ogden, G.D. 78 Krishnaiah , P.R. 84 Ornstein, G.N. 35 Lane, W.P

  12. Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands.

    PubMed

    Vallejo, Julia; Cano, Joan; Castro, Isabel; Julve, Miguel; Lloret, Francesc; Fabelo, Oscar; Cañadillas-Delgado, Laura; Pardo, Emilio

    2012-08-11

    The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(III) ions in basic media in air affords a new family of carbonato-bridged M(2)(III) compounds (M = Pr, Gd and Dy), the Dy(2)(III) analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets.

  13. Chemically Inhomogeneous RE-Fe-B Permanent Magnets with High Figure of Merit: Solution to Global Rare Earth Criticality

    PubMed Central

    Jin, Jiaying; Ma, Tianyu; Zhang, Yujing; Bai, Guohua; Yan, Mi

    2016-01-01

    The global rare earth (RE) criticality, especially for those closely-relied Nd/Pr/Dy/Tb in the 2:14:1-typed permanent magnets (PMs), has triggered tremendous attempts to develop new alternatives. Prospective candidates La/Ce with high abundance, however, cannot provide an equivalent performance due to inferior magnetic properties of (La/Ce)2Fe14B to Nd2Fe14B. Here we report high figure-of-merit La/Ce-rich RE-Fe-B PMs, where La/Ce are inhomogeneously distributed among the 2:14:1 phase. The resultant exchange coupling within an individual grain and magnetostatic interactions across grains ensure much superior performance to the La/Ce homogeneously distributed magnet. Maximum energy product (BH)max of 42.2 MGOe is achieved even with 36 wt. % La-Ce incorporation. The cost performance, (BH)max/cost, has been raised by 27.1% compared to a 48.9 MGOe La/Ce-free commercial magnet. The construction of chemical heterogeneity offers recipes to develop commercial-grade PMs using the less risky La/Ce, and also provides a promising solution to the REs availability constraints. PMID:27553789

  14. Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin Junsheng; Department of Applied Chemistry, Jilin Institute of Chemical Technology, Jilin 132022; Du Dongying

    2011-02-15

    Reactions of the tripodal bridging ligand 5-(4-carboxy-phenoxy)-isophthalic acid (abbreviated as H{sub 3}cpia) with lanthanide salts lead to the formation of a family of different coordination polymers, that is, [Ln(cpia)(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (Ln=Ce (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Dy (7), Er (8), Tm (9) and Y (10)) in the presence of formic acid or diethylamine, which are characterized by elemental analysis, IR spectrum, thermogravimetric analysis (TGA), XRPD spectrum and single-crystal X-ray diffraction. Compounds 1-10 are isostructural and exhibit three-dimensional microporous frameworks. Furthermore, the photoluminescent properties of 4, 5 and 7 have been studiedmore » in detail. -- Graphical abstract: Reactions of the tripodal bridging ligand (H{sub 3}cpia) with lanthanide ions lead to the formation of a series of coordination polymers in the presence of formic acid or diethylamine. Display Omitted Research Highlights: {yields} Ten new lanthanides-based coordination polymers (1-10) have been synthesized. {yields} 1-10 exhibit 3D (4,8)-connected fluorite topology networks with 1D channel parallel to the b-axis. {yields} Compounds 4, 5 and 7 exhibit characteristic luminescence of Sm{sup 3+}, Eu{sup 3+} and Dy{sup 3+} ions, respectively.« less

  15. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-01

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu3 +) ion. Upon addition of Eu3 + ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y3 +, Ce3 +, Pr3 +, Nd3 +, Sm3 +, Gd3 +, Tb3 +, Dy3 +, Ho3 +, Er3 +, Yb3 + and Lu3 +, into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu3 + ions were investigated, including solution pH value, Eu3 + ion concentration and interfering substances. The detection mechanism of Eu3 + ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of EuIII-dtpa-bis(cytosine) at 375 nm in the concentration range of 0.50 × 10- 5 mol • L- 1-5.00 × 10- 5 mol • L- 1 of Eu3 + ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65 × 10- 7 mol • L- 1 and the corresponding correlation coefficient (R2) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu3 + ion.

  16. Rare earth elements and (87)Sr/(86)Sr isotopic characterization of Indian Basmati rice as potential tool for its geographical authenticity.

    PubMed

    Lagad, Rupali A; Singh, Sunil K; Rai, Vinai K

    2017-02-15

    The increasing demand for premium priced Indian Basmati rice (Oryza sativa) in world commodity market causing fraudulent activities like adulteration, mislabelling. In order to develop authentication method for Indian Basmati rice, (87)Sr/(86)Sr ratios and REEs composition of Basmati rice, soil and water samples were determined and evaluated their ability as geographical tracer in the present study. In addition, the possible source of Sr in rice plant has also been examined. Basmati rice samples (n=82) showed (87)Sr/(86)Sr ratios in the range 0.71143-0.73448 and concentrations of 10 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb) in ppb levels. Statistical analysis showed strong correlation between (87)Sr/(86)Sr ratios of rice, silicate and carbonate fractions of soil. Good correlation and closeness of (87)Sr/(86)Sr of rice with water indicate its uptake in rice from water. Rice grown in southern Uttar Pradesh contains higher (87)Sr/(86)Sr compared to other region of Indo-Gangetic Plain due to higher (87)Sr/(86)Sr of the Ganga compared to other rivers. (87)Sr/(86)Sr ratios can be used as a tracer for differentiating Indian Basmati rice from the other country originated rice samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Catalysts for the selective oxidation of hydrogen sulfide to sulfur

    DOEpatents

    Srinivas, Girish; Bai, Chuansheng

    2000-08-08

    This invention provides catalysts for the oxidation of hydrogen sulfide. In particular, the invention provides catalysts for the partial oxidation of hydrogen sulfide to elemental sulfur and water. The catalytically active component of the catalyst comprises a mixture of metal oxides containing titanium oxide and one or more metal oxides which can be selected from the group of metal oxides or mixtures of metal oxides of transition metals or lanthanide metals. Preferred metal oxides for combination with TiO.sub.2 in the catalysts of this invention include oxides of V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Tc, Ru, Rh, Hf, Ta, W, Au, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Catalysts which comprise a homogeneous mixture of titanium oxide and niobium (Nb) oxide are also provided. A preferred method for preparing the precursor homogenous mixture of metal hydroxides is by coprecipitation of titanium hydroxide with one or more other selected metal hydroxides. Catalysts of this invention have improved activity and/or selectivity for elemental sulfur production. Further improvements of activity and/or selectivity can be obtained by introducing relatively low amounts (up to about 5 mol %)of a promoter metal oxide (preferably of metals other than titanium and that of the selected second metal oxide) into the homogeneous metal/titanium oxide catalysts of this invention.

  18. Effect of the introduction of oxide ion vacancies into cubic fluorite-type rare earth oxides on the NO decomposition catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masui, Toshiyuki; Nagai, Ryosuke; Imanaka, Nobuhito, E-mail: imanaka@chem.eng.osaka-u.ac.jp

    2014-12-15

    Cubic fluorite-type solid solutions based on Pr{sub 6}O{sub 11} and CeO{sub 2} were synthesized and oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice through the charge compensating mechanism by Mg{sup 2+} and/or Ca{sup 2+} doping into their lattices. The oxide anion vacancies bring about positive effect on NO decomposition catalysis. The reason for the increase in the catalytic activity was attributed to defect fluorite-type structures close to the C-type cubic one, because C-type cubic rare earth oxides, in which one-quarter of the oxygen atoms in the fluorite-type structure are removed, show high NO decomposition activity. In particular,more » the positive effect of the formation of oxide anion vacancies was significant for Pr{sub 6}O{sub 11} and its solid solutions, because the molar volume of Pr{sub 6}O{sub 11} is larger than that of CeO{sub 2}, and Pr{sub 6}O{sub 11} contains Pr{sup 3+} as well as Pr{sup 4+} and thereby a small amount of oxide anion vacancies exist inherently in the lattice. - Graphical abstract: Oxide anion vacancies intentionally introduced into the cubic fluorite-type lattice bring about positive effect on NO decomposition catalysis. - Highlights: • Cubic fluorite-type solid solutions were synthesized. • Oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice. • The oxide anion vacancies bring about positive effect on NO decomposition catalysis. • The activity was enhanced by making the structure close to the C-type cubic one.« less

  19. Effet paradoxal du type d’excision sur la prise et le délai de cicatrisation des greffes expansées pour le traitement des brûlures aiguës: a propos de 1129 cas

    PubMed Central

    Guibert, M.; Chaouat, M.; Boccara, D.; Marco, O.; Lavocat, R.; Alameri, O.; Deslandes, E.; Montlahuc, C.; Mimoun, M.

    2016-01-01

    Summary La greffe de peau mince expansée est très employée dans le traitement des brûlures aiguës. Nous avons étudié l’influence de la préparation du sous-sol sur le taux de prise et le délai de cicatrisation des greffes expansées. Nous avons analysé rétrospectivement les 1 129 greffes expansées réalisées dans notre service entre 1995 et 2005 pour le traitement des brûlures aiguës. Leur taux de prise a été significativement meilleur après une préparation du sous-sol par avulsion (82%) par rapport à une préparation du sous-sol par excision tangentielle (75%). Ce taux était meilleur lorsque l’avulsion était pratiquée dans les 7 jours suivant la brûlure (83% vs 73%). Pour une prise en charge entre 7 et 21 jours, ce taux a semblé être meilleur après excision tangentielle, mais de façon non significative. La durée d’évolution jusqu’à cicatrisation était significativement raccourcie pour une préparation du sous-sol par excision tangentielle par rapport à une préparation du sous-sol par avulsion. Ces résultats montrent, paradoxalement, qu’une préparation du sous-sol par avulsion favorise la prise des greffes expansées mais rallonge leur délai de cicatrisation au contraire de l’excision tangentielle. PMID:28149235

  20. CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce- 144Pr electron antineutrino generator in KamLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gando, A; Gando, Y; Hayashida, S

    The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce- 144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Δmmore » $$2\\atop{new}$$ ≳ 0.1 eV 2 and sin 2(2θ new) > 0.05.« less

  1. Solid-solution stability and preferential site-occupancy in (R-R′){sub 2}Fe{sub 14}B compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colin, C. V.; Dempsey, N. M.; Univ. Grenoble Alpes, Inst NEEL, F-38000 Grenoble

    The rare-earth (R) uniaxial anisotropy of R{sub 2}Fe{sub 14}B compounds with magnetic R atoms (e.g., Nd or Pr) is at the origin of the exceptional hard magnetic properties achieved in magnets based on these compounds. The uniaxial anisotropy found in Ce{sub 2}Fe{sub 14}B is attributed mainly to the magnetism of Fe. Ce is the most abundant R element and there has been much recent effort to fabricate magnets in which Ce is partially substituted for Nd. In the present neutron study of (R{sub 1−x}Ce{sub x}){sub 2}Fe{sub 14}B (R = La or Nd), Ce is found to enter the R{sub 2}Fe{submore » 14}B phase over the entire composition range. The crystallographic parameters decrease with increasing Ce content and the Ce atoms preferentially occupy the smaller 4f sites. It is concluded that Ce in these (RR′){sub 2}Fe{sub 14}B compounds essentially maintains the intermediate valence character found in Ce{sub 2}Fe{sub 14}B. It is proposed that, in this intermediate valence state, Ce weakly contributes to uniaxial anisotropy, thus making a link with the fact that significant coercivity is preserved in Ce-substituted NdFeB magnets.« less

  2. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.

  3. Pentavalent Lanthanide Compounds: Formation and Characterization of Praseodymium(V) Oxides.

    PubMed

    Zhang, Qingnan; Hu, Shu-Xian; Qu, Hui; Su, Jing; Wang, Guanjun; Lu, Jun-Bo; Chen, Mohua; Zhou, Mingfei; Li, Jun

    2016-06-06

    The chemistry of lanthanides (Ln=La-Lu) is dominated by the low-valent +3 or +2 oxidation state because of the chemical inertness of the valence 4f electrons. The highest known oxidation state of the whole lanthanide series is +4 for Ce, Pr, Nd, Tb, and Dy. We report the formation of the lanthanide oxide species PrO4 and PrO2 (+) complexes in the gas phase and in a solid noble-gas matrix. Combined infrared spectroscopic and advanced quantum chemistry studies show that these species have the unprecedented Pr(V) oxidation state, thus demonstrating that the pentavalent state is viable for lanthanide elements in a suitable coordination environment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Concept Map Knowledge Model of Intelligence Analysis

    DTIC Science & Technology

    2011-05-01

    renseignement et rassemble un certain nombre de sujets pertinents. Les auteurs de ce modèle de schéma conceptuel de la connaissance aspirent à ce...d’analyse des renseignements, les auteurs ont étudié les documents disponibles sur l’analyse des renseignements et ont consulté des professionnels du...renseignement. La compréhension conceptuelle de l’analyse des renseignements des auteurs se présente sous la forme d’un modèle de schéma conceptuel

  5. Recherches sur l'histoire de l'astronomie ancienne

    NASA Astrophysics Data System (ADS)

    Tannery, Paul

    2015-04-01

    Préface; 1. Ce que les Hellènes ont appelé astronomie; 2. Ce que les Hellènes ont appelé astrologie (cont.); 3. Les mathématiciens alexandrins; 4. Les postulats de l'astronomie d'après Ptlolémée et les auteurs élémentaires; 5. La sphéricité de la terre et la mesure de sa circonférence; 6. Le mouvement général des planètes; 7. Les cercles de la sphère; 8. La longueur de l'année solaire; 9. Les tables du soleil; 10. Les périodes d'Hipparque pour les mouvements lunaires; 11. Les tables de la lune; 12. Les parallaxes du soleil et de la lune; 13. Les prédictions d'éclipses; 14. La théorie des planètes; 15. Le catalogue des fixes; Appendice; Errata.

  6. Long-range two-dimensional superstructure in the superconducting electron-doped cuprate Pr 0.88 LaCe 0.12 CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, B. J.; Rosenkranz, S.; Kang, H. J.

    2015-07-01

    Utilizing single-crystal synchrotron x-ray scattering, we observe distorted CuO 2 planes in the electron- doped superconductor Pr 1-xLaCe xCuO 4+δ , x =0.12. Resolution-limited rods of scattering are indicative of a long-range two-dimensional 2√2 × 2√2 superstructure in the a-b plane, adhering to planar space-group symmetry p4gm, which is subject to stacking disorder perpendicular to the planes. This superstructure is present only in annealed, superconducting samples, but not in the as-grown, nonsuperconducting samples. These long-range distortions of the CuO 2 planes, which are generally considered to be detrimental to superconductivity, have avoided detection to date due to the challenges ofmore » observing and interpreting subtle diffuse-scattering features.« less

  7. Conversion of lanthanide glutarate chlorides with interstitial THF into lanthanide glutarates with unprecedented topologies

    DOE PAGES

    Zehnder, Ralph A.; Jenkins, James; Zeller, Matthias; ...

    2017-11-26

    Here, using slow diffusion methods at room temperature (RT), we obtained four isomorphous lanthanide glutarate chlorides, accommodating interstitial THF and water molecules, [Ln 2(Glut) 2Cl 2(H 2O) 8]·2H 2O·THF, with Ln = La , Ce, Pr, Nd. They assemble as 3-dimensional (3D) lanthanide (Ln) coordination polymers with LnO 10 coordination polyhedra. Their topology was elucidated to be a 4-coordinated sql net. slowly dissolve in water liberating the entrapped THF molecules and reassemble as regular Ln-glutarate hydrates when the solution is deprived of THF and water by slow evaporation. The new products crystallize as [Ln 2(Glut) 3(H 2O) 3]·5H 2O, withmore » Ln = La, Ce, Pr, and [Nd 2(Glut) 3(H 2O) 2]·3.5H 2O.« less

  8. Conversion of lanthanide glutarate chlorides with interstitial THF into lanthanide glutarates with unprecedented topologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehnder, Ralph A.; Jenkins, James; Zeller, Matthias

    Here, using slow diffusion methods at room temperature (RT), we obtained four isomorphous lanthanide glutarate chlorides, accommodating interstitial THF and water molecules, [Ln 2(Glut) 2Cl 2(H 2O) 8]·2H 2O·THF, with Ln = La , Ce, Pr, Nd. They assemble as 3-dimensional (3D) lanthanide (Ln) coordination polymers with LnO 10 coordination polyhedra. Their topology was elucidated to be a 4-coordinated sql net. slowly dissolve in water liberating the entrapped THF molecules and reassemble as regular Ln-glutarate hydrates when the solution is deprived of THF and water by slow evaporation. The new products crystallize as [Ln 2(Glut) 3(H 2O) 3]·5H 2O, withmore » Ln = La, Ce, Pr, and [Nd 2(Glut) 3(H 2O) 2]·3.5H 2O.« less

  9. Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent

    2010-04-06

    Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with themore » starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.« less

  10. OMEGA System Performance Assessment and Coverage Evaluation (PACE) Workstation Design and Implementation. Volume 2

    DTIC Science & Technology

    1991-02-15

    picked, Ce11Pop" .xmonth, CeliPcpUpA .hour’ . Phase kND $80) = 0 ELSE IF (stationinfol36’ [stations. picked, CellIP-- CpA .n=nh, CeSUP pP.hour . Phiase...CellGrid, irt (322,24. 281,314, RightCeliGridAction, ShoCe11~ta, DcNot-hingPr-oc, bJii ne (lfepnIi lfs t.Xj05,efIghplit. Y4, 60,16,white, blak , black...8217.Hilite(oc,yy); with CellPI~p do begin if (SubCells (Hcnth,Hr] .X < (Get~4axX - RightsideStatsA .width - SubCellIs (Month, Hour) Width - SubCellP~ cpA

  11. Ion-irradiation resistance of the orthorhombic Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) series

    NASA Astrophysics Data System (ADS)

    Aughterson, Robert D.; Lumpkin, Gregory R.; Ionescu, Mihail; Reyes, Massey de los; Gault, Baptiste; Whittle, Karl R.; Smith, Katherine L.; Cairney, Julie M.

    2015-12-01

    The response of Ln2TiO5 (where Ln is a lanthanide) compounds exposed to high-energy ions was used to test their suitability for nuclear-based applications, under two different but complementary conditions. Eight samples with nominal stoichiometry Ln2TiO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy), of orthorhombic (Pnma) structure were irradiated, at various temperatures, with 1 MeV Kr2+ ions in-situ within a transmission electron microscope. In each case, the fluence was increased until a phase transition from crystalline to amorphous was observed, termed critical dose Dc. At certain elevated temperatures, the crystallinity was maintained irrespective of fluence. The critical temperature for maintaining crystallinity, Tc, varied non-uniformly across the series. The Tc was consistently high for La, Pr, Nd and Sm2TiO5 before sequential improvement from Eu to Dy2TiO5 with Tc's dropping from 974 K to 712 K. In addition, bulk Dy2TiO5 was irradiated with 12 MeV Au+ ions at 300 K, 723 K and 823 K and monitored via grazing-incidence X-ray diffraction (GIXRD). At 300 K, only amorphisation is observed, with no transition to other structures, whilst at higher temperatures, specimens retained their original structure. The improved radiation tolerance of compounds containing smaller lanthanides has previously been attributed to their ability to form radiation-induced phase transitions. No such transitions were observed here.

  12. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    NASA Astrophysics Data System (ADS)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to <= 400 kcps per channel. We selected Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  13. NiP black: vers l'utilisation d'un traitement plus noir que noir contre la lumière parasite

    NASA Astrophysics Data System (ADS)

    Mazuray, L.; Petilon, JF.

    2017-11-01

    Le NiP black est un alliage de Nickel-Phosphore poreux présentant un coefficient d'absorption exceptionnel de 0.998, permettant un gain en diffusion d'un facteur 10 à 20 par rapport à la meilleure des peintures noires utilisée sur les baffles et montures des instruments d'optique. L'industrialisation de ce procédé fait l'objet d'une collaboration entre le CNES, SODERN et MMS afin de répondre au mieux aux exigences des différents instruments spatiaux. Le faible niveau de diffusion des baffles et des montures des instruments optiques est un élément clé d'un faible niveau de lumière parasite et par voie de conséquence, des performances en détection, imagerie et d'analyse. Les essais réalisés en 98 et 99 sur des visières de senseurs solaires haute précision implantés sur les plate-formes telecom MMS ont confirmé les excellentes performances du senseur obtenues grâce à ce traitement. NiP Black s'incrit dans une démarche générale MMS d'amélioration des performances en lumière parasite des instruments optiques. Il est proposé de présenter le NiP Black et les performances réalisées sur des visières de senseurs implantés sur les plate-formes MMS, ainsi que son potentiel à venir.

  14. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype.

    PubMed

    Catalano, Onofrio Antonio; Horn, Gary Lloyd; Signore, Alberto; Iannace, Carlo; Lepore, Maria; Vangel, Mark; Luongo, Angelo; Catalano, Marco; Lehman, Constance; Salvatore, Marco; Soricelli, Andrea; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce Robert

    2017-03-28

    Differences in genetics and receptor expression (phenotypes) of invasive ductal breast cancer (IDC) impact on prognosis and treatment response. Immunohistochemistry (IHC), the most used technique for IDC phenotyping, has some limitations including its invasiveness. We explored the possibility of contrast-enhanced positron emission tomography magnetic resonance (CE-FDG PET/MR) to discriminate IDC phenotypes. 21 IDC patients with IHC assessment of oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor-2 (HER2), and antigen Ki-67 (Ki67) underwent CE-FDG PET/MR. Magnetic resonance-perfusion biomarkers, apparent diffusion coefficient (ADC), and standard uptake value (SUV) were compared with IHC markers and phenotypes, using a Student's t-test and one-way ANOVA. ER/PR- tumours demonstrated higher Kep mean and SUV max than ER or PR+ tumours. HER2- tumours displayed higher ADC mean , Kep mean , and SUV max than HER2+tumours. Only ADC mean discriminated Ki67⩽14% tumours (lower ADC mean ) from Ki67>14% tumours. PET/MR biomarkers correlated with IHC phenotype in 13 out of 21 patients (62%; P=0.001). Positron emission tomography magnetic resonance might non-invasively help discriminate IDC phenotypes, helping to optimise individual therapy options.

  15. Pain uncertainty in patients with fibromyalgia, yoga practitioners, and healthy volunteers.

    PubMed

    Bradshaw, David H; Donaldson, Gary W; Okifuji, Akiko

    2012-01-01

    Uncertainty about potentially painful events affects how pain is experienced. Individuals with fibromyalgia (FM) often exhibit anxiety and catastrophic thoughts regarding pain and difficulties dealing with pain uncertainty. The effects of pain uncertainty in predictably high odds (HO), predictably low odds (LO), and even odds (EO) conditions on subjective ratings of pain (PR) and skin conductance responses (SCR) following the administration of a painful stimulus were examined for individuals with fibromyalgia (IWFM), healthy volunteers (HVs), and yoga practitioners (YPs). We hypothesized IWFM would demonstrate the greatest physiological reactivity to pain uncertainty, followed by HVs and YPs, respectively. Nine IWFM, 7 YPs, and 10 HVs participated. Custom contrast estimates comparing responses for HO, LO, and EO pain conditions showed higher SCR for IWFM (CE = 1.27, p = 0.01) but not for HVs or for YPs. PR for the EO condition were significantly greater than for HO and LO conditions for IWFM (CE = 0.60, p = 0.012) but not for HVs or YPs. YPs had lower SCR and PR than did HVs. Results show that uncertainty regarding pain increases the experience of pain, whereas certainty regarding pain may reduce pain ratings for individuals with fibromyalgia.

  16. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy.

    PubMed

    Cicinelli, Ettore; Matteo, Maria; Tinelli, Raffaele; Lepera, Achiropita; Alfonso, Raffaello; Indraccolo, Ugo; Marrocchella, Sonia; Greco, Pantaleo; Resta, Leonardo

    2015-02-01

    What is the prevalence of chronic endometritis (CE) in women with repeated unexplained implantation failure (RIF) at IVF, and how does antibiotic treatment affect the reproductive outcome? Chronic endometritis, associated with infection with common bacteria or mycoplasma, is common in women complaining of RIF and antibiotic treatment significantly improves the reproductive outcome at a subsequent IVF cycle. We have reported that CE is a frequent finding in women with repeated pregnancy loss and a significantly higher rate of successful pregnancies was achieved after adequate antibiotic treatment. Moreover, CE was identified in 30.3% of patients with repeated implantation failure at IVF and women diagnosed with CE had lower implantation rates (11.5%) after IVF cycles. In contrast, other authors reported that the clinical implication of CE should be considered minimal and that the reproductive outcome at IVF/ICSI cycles was not negatively affected by CE. A retrospective study was performed from January 2009 through June 2012 on 106 women with unexplained infertility and a history of RIF. All patients underwent hysteroscopy and endometrial sampling for histology and microbiological investigations. Women diagnosed with CE underwent antibiotic treatment and the effect of treatment was confirmed by hysteroscopy with biopsy. Within 6 months after treatment all women had a further IVF attempt. The IVF outcomes were compared in women without signs of CE (Group 1) and persistent CE (Group 2) after antibiotic treatment. Clinical pregnancy rate (PR), and live birth rate (LBR) were compared at post-treatment IVF attempt. Seventy (66.0%) women were diagnosed with CE at hysteroscopy. In 61 (57.5%) CE was confirmed by histology and 48 (45.0%) by cultures. Common bacteria and mycoplasma were the most prevalent agents. In 46 (75.4%) out of 61 women, with diagnosis of CE at hysteroscopy and histology, examinations were normal after appropriate antibiotic treatment control (Group 1) while in 15 (24.6%) cases signs of CE were still present (Group 2). At IVF attempt after treatment, a significantly higher PR and LBR was reported in women from Group 1 compared with women from Group 2 (65.2 versus 33.0% P = 0.039; 60.8 versus 13.3%, P = 0.02, respectively). Possible biases related to retrospective studies and to preferential referral of patients with CE, and limited number of cases. A prospective randomized clinical trial is needed to confirm our findings but in women with RIF a hysteroscopic evaluation of the uterine cavity to exclude CE should be considered and appropriate antibiotic treatment should be given before submitting the patient to a further IVF attempt. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Thermal stability of mullite RMn₂O₅ (R  =  Bi, Y, Pr, Sm or Gd): combined density functional theory and experimental study.

    PubMed

    Li, Chenzhe; Thampy, Sampreetha; Zheng, Yongping; Kweun, Joshua M; Ren, Yixin; Chan, Julia Y; Kim, Hanchul; Cho, Maenghyo; Kim, Yoon Young; Hsu, Julia W P; Cho, Kyeongjae

    2016-03-31

    Understanding and effectively predicting the thermal stability of ternary transition metal oxides with heavy elements using first principle simulations are vital for understanding performance of advanced materials. In this work, we have investigated the thermal stability of mullite RMn2O5 (R  =  Bi, Pr, Sm, or Gd) structures by constructing temperature phase diagrams using an efficient mixed generalized gradient approximation (GGA) and the GGA  +  U method. Simulation predicted stability regions without corrections on heavy elements show a 4-200 K underestimation compared to our experimental results. We have found the number of d/f electrons in the heavy elements shows a linear relationship with the prediction deviation. Further correction on the strongly correlated electrons in heavy elements could significantly reduce the prediction deviations. Our corrected simulation results demonstrate that further correction of R-site elements in RMn2O5 could effectively reduce the underestimation of the density functional theory-predicted decomposition temperature to within 30 K. Therefore, it could produce an accurate thermal stability prediction for complex ternary transition metal oxide compounds with heavy elements.

  18. Fabrication and electrochemical performance of a stable, anode supported thin BaCe0.4Zr0.4Y0.2O3-δ electrolyte Protonic Ceramic Fuel Cell

    NASA Astrophysics Data System (ADS)

    Nasani, Narendar; Ramasamy, Devaraj; Mikhalev, Sergey; Kovalevsky, Andrei V.; Fagg, Duncan P.

    2015-03-01

    The present work deals with the fabrication and electrochemical characterisation of a potential protonic ceramic fuel cell based on a Ni-BaZr0.85Y0.15O3-δ anode supported thin film proton conducting BaCe0.4Zr0.4Y0.2O3-δ electrolyte with a Pr2NiO4+δ cathode. Anode and electrolyte materials were prepared by an acetate-H2O2 combustion method. A thin (∼5 μm), dense and crack free BaCe0.4Zr0.4Y0.2O3-δ electrolyte film was successfully obtained on a porous anode support by spin coating and firing at 1450 °C. Maximum power densities of 234, 158, 102 and 63 mW cm-2 at 700, 650, 600 and 550 °C, respectively were achieved for the Ni-BaZr0.85Y0.15O3-δ/BaCe0.4Zr0.4Y0.2O3-δ/Pr2NiO4+δ single cell under fuel cell testing conditions. Electrode polarisation resistance was assessed at open circuit conditions by use of electrochemical impedance spectroscopy (EIS) and is shown to dominate the area specific resistance at low temperatures. Postmortem analysis by scanning electron microscopy (SEM), reveals that no delamination occurs at anode/electrolyte or electrolyte/cathode interfaces upon cell operation.

  19. Complex study on photoluminescence properties of YAG:Ce,Gd phosphors

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Ju, Yangyang; Stepanov, S. A.; Soschin, N. M.

    2017-05-01

    Luminescence characteristics of gadolinium co-doped yttrium aluminium garnet doped with cerium phosphors were studied. In this work, powder X-ray diffraction (XRD) spectra, elemental composition analyses, excitation and emission spectra, conversion efficiency of emission phosphor, corresponding (CIE) chromaticity colour coordinates and pulsed photoluminescence decay kinetic curves were investigated, all the measurements were performed at room temperature. The properties of the phosphors were studied by comparing the composition of the phosphors and their luminescent properties.

  20. Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-Gd0.1Ce0.9O1.95 composite cathode with three dimensional microstructure reconstruction

    NASA Astrophysics Data System (ADS)

    Kim, Y. T.; Jiao, Z.; Shikazono, N.

    2017-02-01

    In the present study, the polarization characteristics of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) - Gd0.1Ce0.9O1.95 (GDC) composite cathodes with different volume ratios were investigated. Samples with volume ratios of 20:80, 30:70, 50:50, 70:30 and 100:0 vol % were tested. The electrochemical impedance spectroscopy tests and current voltage curve measurements were carried out for the current densities from 0 to 0.2 Acm-2 with an interval of 0.05 Acm-2. The results showed that a volume ratio of LSCF:GDC = 30:70 composite cathode led to the lowest overpotential, and the overpotential increased in the order of 30:70, 50:50, 70:30, 100:0, 20:80 vol %. Three dimensional microstructures of composite cathodes were reconstructed and quantified by dual beam focused ion beam-scanning electron microscope (FIB-SEM). The results showed that neither LSCF surface area nor triple phase boundary (TPB) alone could explain the dependence of polarization characteristics on volume ratios. Current and electrochemical potential distributions were simulated by the Lattice Boltzmann method, in which both surface and TPB reactions were considered. Prediction considering both surface and TPB reactions could predict qualitatively the dependence of overpotentials on LSCF - GDC cathode composition.

  1. Influence of Microstructure and Surface Activation of Dual-Phase Membrane Ce 0.8 Gd 0.2 O 2-δ -FeCo 2 O 4 on Oxygen Permeation

    DOE PAGES

    Ramasamy, Madhumidha; Baumann, Stefan; Palisaitis, Justinas; ...

    2015-09-24

    In dual-phase oxygen transport membranes we noticed that there is fast-growing interest in research for oxyfuel combustion process application. One such potential candidate is CGO-FCO (60wt% Ce 0.8Gd 0.2O 2-δ-40wt% FeCo 2O4) identified to provide good oxygen permeation flux with substantial stability in harsh atmosphere. Dense CGO-FCO membranes of 1mm thickness were fabricated by sintering dry pellets pressed from powders synthesized by one-pot method (modified Pechini process) at 1200 degrees C for 10h. Microstructure analysis indicates presence of a third orthorhombic perovskite phase in the sintered composite. We also identified that the spinel phase tends to form an oxygen deficientmore » phase at the grain boundary of spinel and CGO phases. Surface exchange limitation of the membranes was overcome by La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) porous layer coating over the composite. Moreover, the oxygen permeation flux of the CGO-FCO screen printed with a porous layer of 10mthick LSCF is 0.11mL/cm 2 per minute at 850 degrees C with argon as sweep and air as feed gas at the rates of 50 and 250mL/min.« less

  2. New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub 6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pani, M.; Manfrinetti, P.; Provino, A.

    2014-02-15

    Novel RNi{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi{sub 6}Si{sub 6}-type structure for R=Y, Sm, Gd–Yb (tP52, space group P4{sup ¯}b2N 117) that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi{sub 6}Si{sub 6} does not follow Curie–Weiss law. The DyNi{sub 6}Si{sub 6}more » shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ{sub B}/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure and (Y, Sm, Gd–Yb) adopt the new YNi{sub 6}Si{sub 6}-type structure that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure. • The new (Y, Sm, Gd–Yb)Ni{sub 6}Si{sub 6} compounds adopt the new YNi{sub 6}Si{sub 6}-type structure. • TbNi{sub 6}Si{sub 6} has square modulated c-collinear antiferromagnetic ordering below ∼10 K.« less

  3. Percutaneous toxicity and decontamination of soman, VX, and paraoxon in rats using detergents.

    PubMed

    Misík, Jan; Pavliková, Růžena; Kuča, Kamil

    2013-06-01

    Highly toxic organophosphorus compounds (OPs) were originally developed for warfare or as agricultural pesticides. Today, OPs represent a serious threat to military personnel and civilians. This study investigates the in vivo decontamination of male Wistar rats percutaneously exposed to paraoxon and two potent nerve agents--soman (GD) and VX. Four commercial detergents were tested as decontaminants--Neodekont(TM), Argos(TM), Dermogel(TM), and FloraFree(TM). Decontamination performed 2 min after exposure resulted in a higher survival rate in comparison with non-decontaminated controls. The decontamination effectiveness was expressed as protective ratio (PR, median lethal dose of agent in decontaminated animals divided by the median lethal dose of agent in untreated animals). The highest decontamination effectiveness was consistently achieved with Argos(TM) (PR=2.3 to 64.8), followed by Dermogel(TM) (PR=2.4 to 46.1). Neodekont(TM) and FloraFree(TM) provided the lowest decontamination effectiveness, equivalent to distilled water (PR=1.0 to 43.2).

  4. Préface

    NASA Astrophysics Data System (ADS)

    Mazière, D.

    2002-04-01

    Faisant suite aux deux précédents colloques "Matériaux pour les machines thermiques" et "Matériaux pour le nucléaire" , le colloque 2001 de l'INSTN intitulé "Matériaux pour les énergies propres" s'est focalisé sur les problèmes de matériaux encore à résoudre dans ce secteur industriel. Le colloque de métallurgie est traditionnellement organisé par des ense ignants du DEA Métallurgie et Matériaux et un comité scientifique choisi chaq ue année en liaison avec le thème traité. Les étudiants de ce DEA, qui est hab ilité entre Paris XI, Paris VI, l'Ecole des Mines de Paris, l'Ecole Centrale de Pari s et l'INSTN, sont invités à participer à ce colloque et aux débats scientifiques qui s'y déroulent. Des conférences invitées à caractère péda gogique permettent d'introduire les différents thèmes abordés qui sont ensuite développés dans des présentations plus novatrices. Cette manifestation a pour ambition de favoriser la rencontre de scientifiques d'horizons divers venant de milieux académiques ou industriels entre eux et avec les étudiants et thésards. Cette 44e édition, dont les comptes rendus sont publiés ici, a fait le point sur les problèmes de matériaux rencontrés lors de la production, du stockage et de la conversion des énergies dites propres en englobant lesprogrès constants des industriels de l'automobile. Ce colloque a réuni, du 26 au 28 juin 2001, 63 participants provenant d'universités ou grandes écoles (18), du CEA (17), du CNRS (10) et de l'industrie ou de centres de recherche associés. L'ensemble des problèmes de matériaux de ce secteur ont été examinés au cours des six sessions ci-dessous : dépollution des gaz d'échappement ; combustion catalytique en production thermique ; nouvelles batteries ; piles à combustibles ; production et stockage d'hydrogène ; production et stockage d'énergie solaire. Vingt huit communications dont vingt deux orales ont illustré les dével oppements en cours. Dix-sept d'entre elles sont développées dans cet ouvrage. On pourra consulter avec profit le numéro 44 des Clefs CEA "Nouvelles Technologies de l'énergie" en complément du présent ouvrage.

  5. Arctic Planning Scenarios: Scenario #1: Defence Scenario

    DTIC Science & Technology

    2011-07-01

    scénarios pour la planification future et d’aider les commandements opérationnels dans leur interaction avec les autres centres d’opérations. Ce rapport...scénarios pour la planification future. Ce rapport présente l’un des scénarios, qui est axé sur une intervention centrée sur la défense. Résultats : Le...et d’autres personnes qui participent à la planification de la défense du Canada auront besoin d’un jeu complet de scénarios pour évaluer les

  6. Evaluation of GAGG:Ce scintillators for future space applications

    NASA Astrophysics Data System (ADS)

    Yoneyama, M.; Kataoka, J.; Arimoto, M.; Masuda, T.; Yoshino, M.; Kamada, K.; Yoshikawa, A.; Sato, H.; Usuki, Y.

    2018-02-01

    Cerium-doped Gd3(Ga, Al)5O12 (GAGG:Ce) is a promising novel scintillator for gamma-ray detectors. While GAGG:Ce has already been implemented in various commercial products, its detailed characteristics and response to high-energy particles and gamma rays remain unknown. In particular, knowledge is lacking on the radiation tolerance of this scintillator against the gamma-ray and proton irradiation expected in future space satellite mission applications. In this study, we first investigate the light-yield energy dependence, energy resolution, decay time, radiation tolerance, and afterglow of GAGG:Ce scintillators under various temperature conditions. We find excellent linearity of ±3% between light yields and deposited energy over a wide range of 30-1836 keV; however, a light-yield deficit of more than 10% is observed below 30 keV of deposited gamma ray energy. We confirm that the temperature dependence of the light yield, energy resolution, and scintillation decay time is within 5-20% between -20 and 20 oC. We also evaluate the GAGG:Ce activation characteristics under proton irradiation and the light-yield degradation by accumulated dose using a 60Co source. Moreover, we successfully identify various gamma-ray lines due to activation. Finally, we find a substantial afterglow for GAGG:Ce scintillators over a few hours; such an afterglow is only minimally observed in other scintillators such as CsI:Tl and Bi4Ge3O12 (BGO). However, the afterglow can be substantially reduced through additional co-doping with divalent metal ions, such as Mg ions. These results suggest that GAGG:Ce is a promising scintillator with potential application in space satellite missions in the near future.

  7. In-vivo Diagnosis of Breast Cancer Using Gamma Stimulated Emission Computed Tomography

    DTIC Science & Technology

    2011-04-01

    2006. [9] Floyd CE, Howell CR, Harrawood BP, Crowell AS, Kapadia AJ, Macri R, Xia JQ, Pedroni R, Bowsher J, Kiser MR, Tourassi GD, Tornow W , and...spin-sequence 0-1-2), with emitted gamma-ray energy 3448keV, 2601keV, 2657.562keV. In our simulation, w take tw m jor de-excitation parts into... Walter R, "Neutron Stimulated Emission Computed Tomography of Stable Isotopes," Proceedings of SPIE Medical Imaging 2004, vol. 5368, pp. 248-254. 17

  8. Transparent ceramic garnet scintillator optimization via composition and co-doping for high-energy resolution gamma spectrometers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Beck, Patrick R.; Swanberg, Erik L.; Hunter, Steven L.

    2016-09-01

    Breakthrough energy resolution, R(662keV) <4%, has been achieved with an oxide scintillator, Cerium-doped Gadolinium Yttrium Gallium Aluminum Garnet, or GYGAG(Ce), by optimizing fabrication conditions. Here we describe the dependence of scintillation light yield and energy resolution on several variables: (1) Stoichiometry, in particular Gd/Y and Ga/Al ratios which modify the bandgap energy, (2) Processing methods, including vacuum vs. oxygen sintering, and (3) Trace co-dopants that influence the formation of Ce4+ and modify the intra-bandgap trap distribution. To learn about how chemical composition influences the scintillation properties of transparent ceramic garnet scintillators, we have measured: scintillation decay component amplitudes; intensity and duration of afterglow; thermoluminescence glow curve peak positions and amplitudes; integrated light yield; light yield non-proportionality, as measured in the Scintillator Light Yield Non-Proportionality Characterization Instrument (SLYNCI); and energy resolution for gamma spectroscopy. Optimized GYGAG(Ce) provides R(662 keV) =3.0%, for 0.05 cm3 size ceramics with Silicon photodiode readout, and R(662 keV) =4.6%, at 2 in3 size with PMT readout.

  9. Application of Ce3+ single-doped complexes as solar spectral downshifters for enhancing photoelectric conversion efficiencies of a-Si-based solar cells

    NASA Astrophysics Data System (ADS)

    Song, Pei; Jiang, Chun

    2013-05-01

    The effect on photoelectric conversion efficiency of an a-Si-based solar cell by applying a solar spectral downshifter of rare earth ion Ce3+ single-doped complexes including yttrium aluminum garnet Y3Al5O12 single crystals, nanostructured ceramics, microstructured ceramics and B2O3-SiO2-Gd2O3-BaO glass is studied. The photoluminescence excitation spectra in the region 360-460 nm convert effectively into photoluminescence emission spectra in the region 450-550 nm where a-Si-based solar cells exhibit a higher spectral response. When these Ce3+ single-doped complexes are placed on the top of an a-Si-based solar cell as precursors for solar spectral downshifting, theoretical relative photoelectric conversion efficiencies of nc-Si:H and a-Si:H solar cells approach 1.09-1.13 and 1.04-1.07, respectively, by means of AMPS-1D numerical modeling, potentially benefiting an a-Si-based solar cell with a photoelectric efficiency improvement.

  10. Isotopic excesses of proton-rich nuclei related to space weathering observed in a gas-rich meteorite Kapoeta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidaka, Hiroshi; Yoneda, Shigekazu, E-mail: hidaka@hiroshima-u.ac.jp, E-mail: s-yoneda@kahaku.go.jp

    2014-05-10

    The idea that solar system materials were irradiated by solar cosmic rays from the early Sun has long been suggested, but is still questionable. In this study, Sr, Ba, Ce, Nd, Sm, and Gd isotopic compositions of sequential acid leachates from the Kapoeta meteorite (howardite) were determined to find systematic and correlated variations in their isotopic abundances of proton-rich nuclei, leading to an understanding of the irradiation condition by cosmic rays. Significantly large excesses of proton-rich isotopes (p-isotopes), {sup 84}Sr, {sup 130}Ba, {sup 132}Ba, {sup 136}Ce, {sup 138}Ce, and {sup 144}Sm, were observed, particularly in the first chemical separate, whichmore » possibly leached out of the very shallow layer within a few μm from the surface of regolith grains in the sample. The results reveal the production of p-isotopes through the interaction of solar cosmic rays with the superficial region of the regolith grains before the formation of the Kapoeta meteorite parent body, suggesting strong activity in the early Sun.« less

  11. Low- and high-spin excited states in 139Pr

    NASA Astrophysics Data System (ADS)

    Aryaeinejad, R.; McHarris, Wm. C.

    1988-05-01

    The level structure of the N=80 nucleus 139Pr has been studied in-beam by the 140Ce(p,2nγ)139Pr reaction using a 25-MeV p beam and by the 139La(α,4nγ)139Pr reaction using a 47-MeV α beam. γ-ray singles, γ-γ coincidence (prompt and delayed), and γ-ray angular distribution experiments were performed. We have assigned 41 γ rays deexciting 24 states in 139Pr from the (p,2nγ) reaction and 43 γ rays deexciting 31 (generally higher-spin) states from the (α,4nγ) reaction, for a total of 43 different states. These in-beam experiments, taken together with results from 139Ndm+g decay and the 141Pr(p,t)139Pr reaction, allowed Jπ assignments to be made for most of the states and allowed us to deduce the intrinsic configurations for many of them. These are discussed in terms of single-quasiparticle shell-model states and triaxial weak-coupled collective states and are compared with systematics for this nuclear region.

  12. Theory of dynamic spin susceptibility in terms of the t-J-V model: Comparison with neutron scattering data for Pr0.88LaCe0.12CuO4 - x and La2 - x Sr x CuO4

    NASA Astrophysics Data System (ADS)

    Andreev, A. I.; Eremin, I. M.; Eremin, M. V.

    2009-01-01

    A formula for the dynamic spin susceptibility is derived in terms of the t-J-V model. This formula makes it possible to explain the main features of recent experiments on neutron scattering in the electron-doped superconductor Pr0.88LaCe0.12CuO4 - x . In particular, the proposed theory reproduces well a V-shaped relief in the frequency behavior of the imaginary part χ″( Q, ω) of the susceptibility of the Pr0.88LaCe0.12CuO4 - x compound in the vicinity of the wave vector Q = (π,π) and the scaling behavior of the position of the maxima in the dependence of the function χ″( Q, ω) T on the quantity ω/ T. The magnetism of the high-temperature superconductors is dual. These materials contain charge carriers, on the one hand, and localized spins in the copper ion sublattice, on the other hand. Both these systems are strongly coupled to each other. The mode of collective oscillations is common. The magnetism of localized spins “freezes” with the appearance of the superconducting gap. The recently revealed double-peak structure of the imaginary part χ″( Q, ω) of the susceptibility in superconductors of the La1.84Sr0.16CuO4 type is explained. The low-frequency absorption peak is located within the superconducting gap and interpreted as a manifestation of the branch of spin excitons, and the high-frequency absorption peak predominantly corresponds to renormalized collective oscillations of localized spins.

  13. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    NASA Astrophysics Data System (ADS)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  14. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    NASA Astrophysics Data System (ADS)

    Zhuang, Gui-lin; Chen, Wu-lin; Zheng, Jun; Yu, Hui-you; Wang, Jian-guo

    2012-08-01

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H3SIDA) and Ln(NO3)3 (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd3+ ions for anti-anti and syn-anti carboxylate bridges are -1.0×10-3 and -5.0×10-3 cm-1, respectively, which reveals weak antiferromagnetic interaction in 4.

  15. Révision de la sous-famille des Metaracoelophryinae de Puytorac 1972 (Oligohymenophora : Hoplytophryida : Hoplytophryidae), ciliés astomes du tube digestif d’oligochètes terricoles d’Afrique : description de cinq espèces nouvelles

    PubMed Central

    Fokam, Z.; Ngassam, P.; Nana, P.A.; Bricheux, G.; Bouchard, P.; Sime Ngando, T.

    2012-01-01

    Cinq nouvelles espèces de ciliés astomes, présentes dans le tube digestif de vers oligochètes du genre Alma du Cameroun, ont été décrites. Les techniques utilisées sont : l’observation vitale, la coloration au DAPI, la microscopie électronique à balayage et les imprégnations argentiques selon Fernandez Galiano, 1966. Ce travail confirme la présence des genres Paracoelophrya et Dicoelophrya dans le tube digestif des oligochètes du genre Alma du Gabon et du Cameroun ; il permet de faire une synthèse récapitulative de la sous-famille des Metaracoelophryinae. De plus, est confirmée l’homogénéité de ce groupe, et est reposée la question de la parenté phylogénétique des Hoplitophryida. PMID:22314239

  16. High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4

    NASA Astrophysics Data System (ADS)

    Errandonea, D.; Gomis, O.; Rodríguez-Hernández, P.; Muñoz, A.; Ruiz-Fuertes, J.; Gupta, M.; Achary, S. N.; Hirsch, A.; Manjon, F. J.; Peters, L.; Roth, G.; Tyagi, A. K.; Bettinelli, M.

    2018-02-01

    Monazite-type BiPO4, LaPO4, CePO4, and PrPO4 have been studied under high pressure by ab initio simulations and Raman spectroscopy measurements in the pressure range of stability of the monazite structure. A good agreement between experimental and theoretical Raman-active mode frequencies and pressure coefficients has been found which has allowed us to discuss the nature of the Raman-active modes. Besides, calculations have provided us with information on how the crystal structure is modified by pressure. This information has allowed us to determine the equation of state and the isothermal compressibility tensor of the four studied compounds. In addition, the information obtained on the polyhedral compressibility has been used to explain the anisotropic axial compressibility and the bulk compressibility of monazite phosphates. Finally, we have carried out a systematic discussion on the high-pressure behavior of the four studied phosphates in comparison to results of previous studies.

  17. Oxygen chemisorption compressor study for cryogenic J-T refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary D.

    1987-01-01

    Over twenty potentially reversible heat-powered oxide reactions have been studied and/or tested to determine their potential use as thermochemical oxygen compressors for cryogenic J-T LO2 refrigerators. One gas-solid compound family, Pr(1-n)Ce(n)O(x), proved to be completely reversible with fast kinetics for all pressure ranges tested below 650 C. With a heat-powered charcoal/methane physical adsorption upper stage and a Pr(1-n)Ce(n)O(x) chemisorption lower stage, temperatures should be attainable in the 55-80 K range for less power and over five times less weight than for charcoal/nitrogen sorption refrigeration systems. Total system power requirements with a hydride chemisorption lower stage (10 K to 7 K minimum) are about three times less than any mechanical refrigerator, and spacecraft refrigeration weights are about twenty times less. Due to the lack of wear-related moving parts in sorption refrigerators, life expectancy is at least ten years, and there essentially no vibration.

  18. Measurement of Lα and Lβ1,3,4 fluorescence cross sections of La, Ce, Pr and Nd induced by photons of energies between 7.01 keV and 8.75 keV

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, J.; Miranda, J.

    2016-06-01

    This study presents measurement results of x-ray production cross sections of Lα and Lβ1,3,4 emitted by four lanthanoid elements (La, Ce, Pr and Nd), after irradiation with Kα and Kβ X rays of the elements Co, Ni, Cu, and Zn (covering energies between 7.01 keV and 8.75 keV). Primary x-rays were induced in turn by the irradiation of thick targets of these elements with a beam of x-rays produced by a tube with an Rh anode, operating at 50 kV and 850 μA. The experimental results are compared with theoretical cross sections predicted using known tabulations of photoelectric cross sections. Dirac-Hartree-Slater (DHS) atomic parameters were used for these calculations. An acceptable match between experiment and both sets of tabulated data is found.

  19. Shubnikov-de Haas quantum oscillations reveal a reconstructed Fermi surface near optimal doping in a thin film of the cuprate superconductor Pr 1.86 Ce 0.14 CuO 4 ± δ

    DOE PAGES

    Breznay, Nicholas P.; Hayes, Ian M.; Ramshaw, B. J.; ...

    2016-09-16

    In this work, we study magnetotransport properties of the electron-doped superconductor Pr 2-xCe xCuO 4±δ with x = 0.14 in magnetic fields up to 92 T, and observe Shubnikov-de Haas magnetic quantum oscillations. The oscillations display a single frequency F = 255 ± 10 T, indicating a small Fermi pocket that is ~1 % of the two-dimensional Brillouin zone and consistent with a Fermi surface reconstructed from the large holelike cylinder predicted for these layered materials. Despite the low nominal doping, all electronic properties including the effective mass and Hall effect are consistent with overdoped compounds. In conclusion, our studymore » demonstrates that the exceptional chemical control afforded by high quality thin films will enable Fermi surface studies deep into the overdoped cuprate phase diagram.« less

  20. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  1. Arthrite septique à Proteus mirabilis

    PubMed Central

    Sbiti, Mohammed; Bouhamidi, Bahia; Louzi, Lhoussaine

    2017-01-01

    L'arthrite septique aigue est une pathologie peu fréquente mais grevée d'un pronostic lourd en termes de mortalité et morbidité. Nous rapportons un cas d'arthrite septique à Proteus mirabilis survenue de façon spontanée chez un patient de 61 ansprésentant un diabète compliqué,associée à des hémoculturespositives et des cultures positives du liquide articulaire. L'évolution était favorable grâce au diagnostic précoce et à l'institution d'une antibiothérapie adéquate. L'arthrite septique à Proteus Mirabilis est rare, ce qui nous a incité à revoir dans la littérature des séries d'arthrites à pyogènes incluant Proteus mirabilis portant sur les facteurs de risque, la pathogénie, le traitement et l'évolution de ces pathologies. Le diagnostic est avant tout microbiologique, la ponction articulaire précoce est réalisée avant toute antibiothérapie, l'examen direct, la culture et l'antibiogramme qui va guider le choix d'une antibiothérapie. L'arthrite septique est une urgence diagnostique et thérapeutique, la prise en charge précoce de cette pathologie permet une guérison sans séquelles. PMID:28674590

  2. Development of novel UV emitting single crystalline film scintillators

    NASA Astrophysics Data System (ADS)

    Zorenko, Yu; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Nikl, M.; Mares, J. A.; Martin, T.; Douissard, P.-A.

    2011-04-01

    The work is dedicated to development of new types of UV -emitting scintillators based on single crystalline films (SCF) of aluminimum perovskites and garnets grown by the liquid phase epitaxy (LPE) method. The development of the following three types of UV SCF scintillators is considered in this work: i) Ce-doped SCF of Y-Lu-Al-perovskites with Ce3+ emission in the 360-370 nm range with a decay time of 16-17 ns; ii) Pr-doped SCF of Y-Lu-Al garnets with Pr3+ emission in the 300-400 nm range with a decay time of 13-17 ns; iii) La3+ and Sc3+ doped SCF of Y-Lu-Al-garnets, emitting in the 290-400 nm range due to formation of the LaY,Lu, ScY,Lu and ScAl centers with decay time of 250-575 ns. The results of testing the several novel UV-emitting SCFs scintillators for visualization of X-ray images at ESFR are presented. It is shown that the UV emission of the LuAG:Sc, LuAG:La and LuAG:Pr SCFs is efficient enough for conversion of X-ray to the UV light and that these scintillators can be used for improvement of the resolution of imaging detectors in synchrotron radiation applications.

  3. In Vitro and in Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopedic Implant Applications.

    PubMed

    Bian, Dong; Deng, Jiuxu; Li, Nan; Chu, Xiao; Liu, Yang; Li, Wenting; Cai, Hong; Xiu, Peng; Zhang, Yu; Guan, Zhenpeng; Zheng, Yufeng; Kou, Yuhui; Jiang, Baoguo; Chen, Rongshi

    2018-02-07

    Ternary magnesium alloys with low combined addition of elements gadolinium and zinc were developed in the present work, with their microstructures, mechanical properties, in vitro degradation behaviors, and cytotoxicity being systematically studied. Furthermore, the Mg-1.8Zn-0.2Gd alloy, with the best in vitro performance, was implanted into Sprague Dawley rats to examine its in vivo degradation performance for up to 6 months. It was found that Mg-1.8Zn-0.2Gd, composed of a single α-Mg phase, owned excellent strength and toughness that were comparable to the CE marked MAGNEZIX, the mischmetal added Mg alloy. Owing to the uniform single-phased microstructure, the degradation rate of this alloy was around 0.12 mm/y measured by electrochemical testing, which was comparable to high purity magnesium. Moreover, the Mg-1.8Zn-0.2Gd alloy exhibited no cytotoxicity to L929, MG63, and VSMC cells. In vivo degradation characterized by micro-computed tomography revealed that the Mg-1.8Zn-0.2Gd implant could maintain structural integrity in the first 2 months, and serious degradation could be observed after 6 months. A remarkable 100% survival rate of experimental animals was observed with no negative effects on bone tissues. The implant and the surrounding bone were well integrated within 2 months, implying good biocompatibility and osteoconductivity of the experimental alloy. On the basis of the above findings, the feasibility of Mg-Zn-Gd alloys for use as orthopedic implants was systematically discussed. This study provides a new strategy for development of high-performance Mg-rare earth (RE)-based alloys with superior mechanical properties and corrosion resistance while effectively avoiding the possible standing toxic effect of RE elements.

  4. Direct observation of the core/double-shell architecture of intense dual-mode luminescent tetragonal bipyramidal nanophosphors

    NASA Astrophysics Data System (ADS)

    Kim, Su Yeon; Jeong, Jong Seok; Mkhoyan, K. Andre; Jang, Ho Seong

    2016-05-01

    Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure has been proved by extensive scanning transmission electron microscopy (STEM) analysis. Colloidal LiYF4:Ce,Tb nanophosphors with a tetragonal bipyramidal shape are synthesized for the first time and they show intense DC green light via energy transfer from Ce3+ to Tb3+ under illumination with ultraviolet (UV) light. The LiYF4:Ce,Tb nanophosphors show 65 times higher photoluminescence intensity than LiYF4:Tb nanophosphors under illumination with UV light and the LiYF4:Ce,Tb is adapted into a luminescent shell of the tetragonal bipyramidal C/D-S nanophosphors. The formation of the DC shell on the core significantly enhances UC luminescence from the UC core under irradiation of near infrared light and concurrently generates DC luminescence from the core/shell nanophosphors under UV light. Coating with an inert inorganic shell further enhances the UC-DC dual-mode luminescence by suppressing the surface quenching effect. The C/D-S nanophosphors show 3.8% UC quantum efficiency (QE) at 239 W cm-2 and 73.0 +/- 0.1% DC QE. The designed C/D-S architecture in tetragonal bipyramidal nanophosphors is rigorously verified by an energy dispersive X-ray spectroscopy (EDX) analysis, with the assistance of line profile simulation, using an aberration-corrected scanning transmission electron microscope equipped with a high-efficiency EDX. The feasibility of these C/D-S nanophosphors for transparent display devices is also considered.Highly efficient downconversion (DC) green-emitting LiYF4:Ce,Tb nanophosphors have been synthesized for bright dual-mode upconversion (UC) and DC green-emitting core/double-shell (C/D-S) nanophosphors--Li(Gd,Y)F4:Yb(18%),Er(2%)/LiYF4:Ce(15%),Tb(15%)/LiYF4--and the C/D-S structure has been proved by extensive scanning transmission electron microscopy (STEM) analysis. Colloidal LiYF4:Ce,Tb nanophosphors with a tetragonal bipyramidal shape are synthesized for the first time and they show intense DC green light via energy transfer from Ce3+ to Tb3+ under illumination with ultraviolet (UV) light. The LiYF4:Ce,Tb nanophosphors show 65 times higher photoluminescence intensity than LiYF4:Tb nanophosphors under illumination with UV light and the LiYF4:Ce,Tb is adapted into a luminescent shell of the tetragonal bipyramidal C/D-S nanophosphors. The formation of the DC shell on the core significantly enhances UC luminescence from the UC core under irradiation of near infrared light and concurrently generates DC luminescence from the core/shell nanophosphors under UV light. Coating with an inert inorganic shell further enhances the UC-DC dual-mode luminescence by suppressing the surface quenching effect. The C/D-S nanophosphors show 3.8% UC quantum efficiency (QE) at 239 W cm-2 and 73.0 +/- 0.1% DC QE. The designed C/D-S architecture in tetragonal bipyramidal nanophosphors is rigorously verified by an energy dispersive X-ray spectroscopy (EDX) analysis, with the assistance of line profile simulation, using an aberration-corrected scanning transmission electron microscope equipped with a high-efficiency EDX. The feasibility of these C/D-S nanophosphors for transparent display devices is also considered. Electronic supplementary information (ESI) available: XRD patterns, PL and PLE spectra, SEM and HR-TEM images, PL decay times, photographs showing the transparent nanophosphor solutions and their dual-mode luminescence, and additional EDX data. See DOI: 10.1039/c5nr05722a

  5. Quaternary rare-earth arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} (RE=La–Nd, Sm, Gd–Dy) with tetragonal SrZnBi{sub 2}- and HfCuSi{sub 2}-type structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, Krishna K.; Genet, Clément; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2015-11-15

    Reactions of the elements at 800 °C with the nominal compositions REAg{sub 1−x}Zn{sub x}As{sub 2} resulted in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2} in which the combined Ag and Zn content deviates increasingly from unity in the Zn-richer phases, reflecting the transition from the fully stoichiometric ternary silver-containing arsenides REAgAs{sub 2} to the substoichiometric zinc-containing ones REZn{sub 0.67}As{sub 2}. Powder X-ray diffraction analysis indicated SrZnBi{sub 2}-type (space group I4/mmm, Z=4; RE=La, Ce) and HfCuSi{sub 2}-type structures (space group P4/nmm, Z=2; RE=Pr, Nd, Sm, Gd, Tb, Dy). Single-crystal X-ray diffraction analysis performed on LaAg{sub 0.5}Zn{sub 0.5}As{sub 2}, PrAg{sub 0.5}Zn{sub 0.5}As{sub 2},more » and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} indicated that the Ag and Zn atoms are disordered within metal-centred tetrahedra and provided no evidence for distortion of the square As nets. The small electron excess tolerated in these quaternary arsenides and the absence of distortion in the square nets can be traced to the occurrence of As–As states that are only weakly antibonding near the Fermi level. PrAg{sub 0.5}Zn{sub 0.5}As{sub 2} and NdAg{sub 0.5}Zn{sub 0.5}As{sub 2} are paramagnetic with effective magnetic moments consistent with trivalent RE species. - Graphical abstract: On proceeding from fully stoichiometric REAgAs{sub 2} to substoichiometric REZn{sub 0.67}As{sub 2}, deficiencies in Zn content become increasingly prominent in quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. - Highlights: • Ag and Zn atoms are disordered within quaternary arsenides REAg{sub 1−x}Zn{sub y}As{sub 2}. • In Zn-richer phases, Zn deficiencies develop to counteract electron excess. • Distortions of square As net appear to be suppressed.« less

  6. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) of the rare earth elements (REEs) in beneficiation rare earth waste from the gold processing: case study

    NASA Astrophysics Data System (ADS)

    Bieda, Bogusław; Grzesik, Katarzyna

    2017-11-01

    The study proposes an stochastic approach based on Monte Carlo (MC) simulation for life cycle assessment (LCA) method limited to life cycle inventory (LCI) study for rare earth elements (REEs) recovery from the secondary materials processes production applied to the New Krankberg Mine in Sweden. The MC method is recognizes as an important tool in science and can be considered the most effective quantification approach for uncertainties. The use of stochastic approach helps to characterize the uncertainties better than deterministic method. Uncertainty of data can be expressed through a definition of probability distribution of that data (e.g. through standard deviation or variance). The data used in this study are obtained from: (i) site-specific measured or calculated data, (ii) values based on literature, (iii) the ecoinvent process "rare earth concentrate, 70% REO, from bastnäsite, at beneficiation". Environmental emissions (e.g, particulates, uranium-238, thorium-232), energy and REE (La, Ce, Nd, Pr, Sm, Dy, Eu, Tb, Y, Sc, Yb, Lu, Tm, Y, Gd) have been inventoried. The study is based on a reference case for the year 2016. The combination of MC analysis with sensitivity analysis is the best solution for quantified the uncertainty in the LCI/LCA. The reliability of LCA results may be uncertain, to a certain degree, but this uncertainty can be noticed with the help of MC method.

  7. Investigation of spatial and historical variations of air pollution around an industrial region using trace and macro elements in tree components.

    PubMed

    Odabasi, Mustafa; Tolunay, Doganay; Kara, Melik; Ozgunerge Falay, Ezgi; Tuna, Gizem; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Elbir, Tolga

    2016-04-15

    Several trace and macro elements (n=48) were measured in pine needle, branch, bark, tree ring, litter, and soil samples collected at 27 sites (21 industrial, 6 background) to investigate their spatial and historical variation in Aliaga industrial region in Turkey. Concentrations generally decreased with distance from the sources and the lowest ones were measured at background sites far from major sources. Spatial distribution of anthropogenic trace elements indicated that their major sources in the region are the iron-steel plants, ship-breaking activities and the petroleum refinery. Patterns of 40 elements that were detected in most of the samples were also evaluated to assess their suitability for investigation of historical variations. Observed increasing trends of several trace and macro elements (As, Cr, Fe, Mo, Ni, V, Cu, Pb, Sb, Sn, and Hg) in the tree-ring samples were representative for the variations in anthropogenic emissions and resulting atmospheric concentrations in Aliaga region. It was shown that lanthanides (La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) could also be used for the investigation of historical variations due to specific industrial emissions (i.e., petroleum refining). Results of the present study showed that tree components, litter, and soil could be used to determine the spatial variations of atmospheric pollution in a region while tree rings could be used to assess the historical variations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Fast and simultaneously determination of light and heavy rare earth elements in monazite using combination of ultraviolet-visible spectrophotometry and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Anggraeni, Anni; Arianto, Fernando; Mutalib, Abdul; Pratomo, Uji; Bahti, Husein H.

    2017-05-01

    Rare Earth Elements (REE) are elements that a lot of function for life, such as metallurgy, optical devices, and manufacture of electronic devices. Sources of REE is present in the mineral, in which each element has similar properties. Currently, to determining the content of REE is used instruments such as ICP-OES, ICP-MS, XRF, and HPLC. But in each instruments, there are still have some weaknesses. Therefore we need an alternative analytical method for the determination of rare earth metal content, one of them is by a combination of UV-Visible spectrophotometry and multivariate analysis, including Principal Component Analysis (PCA), Principal Component Regression (PCR), and Partial Least Square Regression (PLS). The purpose of this experiment is to determine the content of light and medium rare earth elements in the mineral monazite without chemical separation by using a combination of multivariate analysis and UV-Visible spectrophotometric methods. Training set created 22 variations of concentration and absorbance was measured using a UV-Vis spectrophotometer, then the data is processed by PCA, PCR, and PLSR. The results were compared and validated to obtain the mathematical equation with the smallest percent error. From this experiment, mathematical equation used PLS methods was better than PCR after validated, which has RMSE value for La, Ce, Pr, Nd, Gd, Sm, Eu, and Tb respectively 0.095; 0.573; 0.538; 0.440; 3.387; 1.240; 1.870; and 0.639.

  9. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions.

    PubMed

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-15

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu 3+ ) ion. Upon addition of Eu 3+ ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Gd 3+ , Tb 3+ , Dy 3+ , Ho 3+ , Er 3+ , Yb 3+ and Lu 3+ , into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu 3+ ions were investigated, including solution pH value, Eu 3+ ion concentration and interfering substances. The detection mechanism of Eu 3+ ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of Eu III -dtpa-bis(cytosine) at 375nm in the concentration range of 0.50×10 -5 mol∙L -1 -5.00×10 -5 mol∙L -1 of Eu 3+ ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65×10 -7 mol∙L -1 and the corresponding correlation coefficient (R 2 ) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu 3+ ion. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf.

    PubMed

    Huang, Yaoyao; Hu, Yang; Chen, Lvcun; Yang, Tao; Huang, Hanfang; Shi, Runping; Lu, Peng; Zhong, Chenghua

    2018-01-01

    Low-cost biosorbents (ginkgo leaf, osmanthus leaf, banyan leaf, magnolia leaf, holly leaf, walnut shell, and grapefruit peel) were evaluated in the simultaneous removal of La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Yb3+, Lu3+, UO22+, Th4+, Y3+, Co2+, Zn2+, Ni2+, and Sr2+ from aqueous solutions. In single metal systems, all adsorbents exhibited good to excellent adsorption capacities toward lanthanides and actinides. In a simulated multicomponent mixed solution study, higher selectivity and efficiency were observed for Th4+ over other metal cations, with ginkgo leaves providing the highest adsorptivity (81.2%) among the seven biosorbents. Through optimization studies, the selectivity of Th4+ biosorption on ginkgo leaf was found to be highly pH-dependent, with optimum Th4+ removal observed at pH 4. Th4+ adsorption was found to proceed rapidly with an equilibrium time of 120 min and conform to pseudo-second-order kinetics. The Langmuir isotherm model best described Th4+ biosorption, with a maximum monolayer adsorption capacity of 103.8 mg g-1. Thermodynamic calculations indicated that Th4+ biosorption was spontaneous and endothermic. Furthermore, the physical and chemical properties of the adsorbent were determined by scanning electron microscopy, Brunauer-Emmett-Teller, X-ray powder diffraction, and Fourier transform infrared analysis. The biosorption of Th from a real sample (monazite mineral) was studied and an efficiency of 90.4% was achieved from nitric acid at pH 4 using ginkgo leaves.

  11. Nonstoichiometry in inorganic fluorides: I. Nonstoichiometry in MF m - RF n ( m < n ≤ 4) systems

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.

    2012-05-01

    The manifestation of gross nonstoichiometry in MF m - RF n systems ( m < n ≤ 4) has been studied. Fluorides of 34 elements, in the systems of which phases of practical interest are formed, are chosen. To search for new phases of complex composition, a program for studying the phase diagrams of the condensed state (˜200 systems) has been carried out at the Institute of Crystallography, Russian Academy of Sciences. The main products of high-temperature interactions of the fluorides of elements with different valences ( m ≠ n) are grossly nonstoichiometric phases of two structural types: fluorite (CaF2) and tysonite (LaF3). Systems of fluorides of 27 elements ( M 1+ = Na, K; M 2+ = Ca, Sr, Ba, Cd, Pb; R 3+ = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; R 4+ = Zr, Hf, Th, U) are selected; nonstoichiometric M 1 - x R x F m(1 - x) + nx phases, which are of greatest practical interest, are formed in these systems. The gross nonstoichiometry in inorganic fluorides is most pronounced in 80 MF2 - RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R are rare earth elements). The problems related to the growth of single crystals of nonstoichiometric phases and basic fields of their application as new fluoride multicomponent materials, the properties of which are controlled by the defect structure, are considered.

  12. Beta-spectrometer with Si-detectors for the study of 144Ce-144Pr decays

    NASA Astrophysics Data System (ADS)

    Alexeev, I. E.; Bakhlanov, S. V.; Bazlov, N. V.; Chmel, E. A.; Derbin, A. V.; Drachnev, I. S.; Kotina, I. M.; Muratova, V. N.; Pilipenko, N. V.; Semyonov, D. A.; Unzhakov, E. V.; Yeremin, V. K.

    2018-05-01

    Here we present the specifications of a newly developed beta-spectrometer, based on full absorption Si(Li) detector and thin transmission detector, allowing one to perform efficient separation beta-radiation and accompanying X-rays and gamma radiation. Our method is based on registration of coincident events from both detectors. The spectrometer can be used for precision measurements of various beta-spectra, namely for the beta-spectrum shape study of 144Pr, which is considered to be an advantageous anti-neutrino source for sterile neutrino searches.

  13. Ship Dynamics Identification Using Simulator and Sea Trial Data

    DTIC Science & Technology

    2002-04-29

    Committee "© Her Majesty the Queen as represented by the Minister of National Defence, 2002 "© Sa majest6 la reine, repr~sent~e par le ministre de la...cotes d’instructeurs. Le but du present rapport est de ddterminer la nature de la dynamique des navires virtuels et r6els de mani&re A ce que des...la dynamique du navire. Le pr6sent document pr6cise la dynamique du navire pour un navire de classe Bay des FC, ainsi que pour un navire simul6. Les

  14. Lanthanide Organophosphate Spiro Polymers: Synthesis, Structure, and Magnetocaloric Effect in the Gadolinium Polymer.

    PubMed

    Gupta, Sandeep K; Bhat, Gulzar A; Murugavel, Ramaswamy

    2017-08-07

    Spirocyclic lanthanide organophosphate polymers, {[Ln(dipp)(dippH)(CH 3 OH)(H 2 O) 2 ](CH 3 OH) 2 } n [Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Ho (10), Er (11)], have been prepared from the reaction of Ln(NO 3 ) 3 ·xH 2 O with sterically hindered 2,6-diisopropylphenyl phosphate (dippH 2 ) using aqueous NaOH as the base. The one-dimensional chainlike lanthanide (III) organophosphate coordination polymers have been characterized with the aid of analytical and spectroscopic methods. The single crystal structure determination of polymers (2-5 and 7-11) reveals that in these compounds the hydrophobic organic groups of the phosphate provide a protective coating for the inorganic lanthanide phosphate polymeric chain. The encapsulation of inorganic lanthanide phosphate core, which has very low solubility product, within the organic groups assists in the facile crystallization of the polymers. The di- and monoanionic organophosphate ligands dipp 2- and dippH - display [2.111] and [2.110] binding modes, respectively, in 2-5 and 7. However, they exhibit only [2.110] binding mode in the case of 8-11. This results in the formation of two different types of polymers. While the lighter rare-earth metal ions in 2-5 and 7 display eight coordinate biaugmented trigonal prismatic geometry, the heavier rare-earth metal ions in 9-11 exhibit a seven coordinate capped trigonal prismatic environment. The Tb(III) ion in 8 displays distorted pentagonal bipyramidal geometry. Magnetic studies reveal the presence of weak antiferromagnetic interactions between the Ln(III) ions through the organophosphate ligand. The isotropic Gd(III) polymer 7 exhibits a maximum entropy change of 17.83 J kg -1 K -1 for a field change of 7.0 T at 2.5 K, which is significant considering the high molecular weight of the organophosphate ligand. These polymers represent the first family of any structurally characterized rare-earth organophosphate polymers derived from monoesters of phosphoric acid.

  15. The reactivities of human erythrocyte autoantibodies anti-Pr2, anti-Gd, Fl and Sa with gangliosides in a chromatogram binding assay.

    PubMed Central

    Uemura, K; Roelcke, D; Nagai, Y; Feizi, T

    1984-01-01

    The thin layer chromatogram binding assay was used to study the reaction of several natural-monoclonal autoantibodies which recognize sialic acid-dependent antigens of human erythrocytes. Immunostaining of gangliosides derived from human and bovine erythrocytes was achieved with four autoantibodies designated anti-Pr2, anti-Gd, Sa and Fl, each of which has a different haemagglutination pattern with untreated and proteinase-treated erythrocytes and with cells of I and i antigen types. From the chromatogram binding patterns of anti-Pr2 with gangliosides of the neolacto and the ganglio series, it is deduced that this antibody reacts best with N-acetylneuraminic acid when it is alpha 2-3- or alpha 2-6-linked to a terminal Gal(beta 1-4)Glc/GlcNAc GlcNAc sequence and to a lesser extent when it is alpha 2-3-linked to a terminal Gal(beta 1-3)GalNAc sequence or to an internal galactose and when it is alpha 2-8-linked to another, internal N-acetylneuraminic acid residue. The other three antibodies differ from anti-Pr2 in their lack of reaction with glycolipids of the ganglio series. They react with the NeuAc(alpha 2-3)Gal(beta 1-4)Glc/GlcNAc sequence as found in GM3 and in glycolipids of the neolacto series, but show a preference for the latter, longer sequences. Thus all four antibodies react with sialylated oligosaccharides containing i type (linear) and I type (branched) neolacto backbones. Fl antibody differs from the other three in its stronger reaction with branched neolacto sequences in accordance with its stronger agglutination of erythrocytes of I rather than i type. The four antibodies show a specificity for N-acetyl- rather than N-glycolyl-neuraminic acid. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:6204642

  16. Radiation resistance of endohedral metallofullerenols under neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szhogina, A. A.; Shilin, V. A., E-mail: allin-ok2@mail.ru; Sedov, V. P.

    2016-07-15

    The endohedral metallofullerenols Me@C{sub 2n}(OH){sub 38–40} + C{sub 2n}(OH){sub 38–40} (Me = Tb, Sc, Gd, Fe, Pr, Mo) have been obtained and their radiation resistance under irradiation by a neutron flux of 8 × 10{sup 13} cm{sup –2} s{sup –1} has been studied. The factors affecting the radiation resistance of endohedral metallofullerenols are discussed.

  17. Ab initio study on rare-earth iron-pnictides RFeAsO (R = Pr, Nd, Sm, Gd) in low-temperature Cmma phase

    NASA Astrophysics Data System (ADS)

    Eryigit, Resul; Gurel, Tanju; Erturk, Esra; Lukoyanov, A. V.; Akcay, Guven; Anisimov, V. I.

    2014-03-01

    We present density functional theory calculations on iron-based pnictides RFeAsO (R = Pr, Nd, Sm, Gd). The calculations have been carried out using plane-waves and projector augmented wave (PAW) pseudopotential approach. Structural, magnetic and electronic properties are studied within generalized gradient approximation (GGA) and also within GGA+U in order to investigate the influence of electron correlation effects. Low-temperature Cmma structure is fully optimized by GGA considering both non-magnetic and magnetic cells. We have found that spin-polarized structure improves the agreement with experiments on equilibrium lattice parameters, particularly c lattice parameter and Fe-As bond-lengths. Electronic band structure, total density of states, and spin-dependent orbital-resolved density of states are also analyzed in the frameworks of GGA and GGA+U and discussed. For all materials, by including on-site Coulomb correction, rare earth 4f states move away from the Fermi level and the Fermi level features of the systems are found to be mostly defined by the 3d electron-electron correlations in Fe. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No. TBAG-111T796) and the Russian Foundation for Basic Research (Project No. 12-02-91371-CT_a).

  18. The Pragmatics of Critiquing

    DTIC Science & Technology

    2006-02-01

    philosophie (logique et argumentation), de la linguistique, de la psychologie et de la sociologie , ce document propose une étude de la critique...linguistique, de la psychologie et de la sociologie . Elle présente une revue exhaustive de l’analyse de l’argument et de l’argumentation qui nous

  19. Enhanced Electrochemical Activity and Chromium Tolerance of the Nucleation-Agent-Free La2Ni0.9Fe0.1O4+δ Cathode by Gd0.1Ce0.9O1.95 Incorporation

    NASA Astrophysics Data System (ADS)

    Ling, Yihan; Xie, Huixin; Liu, Zijing; Du, Xiaoni; Chen, Hui; Ou, Xuemei; Zhao, Ling; Budiman, Riyan Achmad

    2018-07-01

    For the sake of improving the electrochemical activity and chromium tolerance of the K2NiF4-type oxide, La2NiO4+δ (LNO), with nonnucleation agents like Mn and Sr elements, the electrochemical performance and degradation were comparatively studied at two cathodes La2Ni0.9Fe0.1O4+δ (LNF) and LNF-40wt%Gd0.1Ce0.9O1.95 (LNF-GDC) on the GDC electrolyte, where 5wt%Cr2O3 incorporation provides Cr-containing atmosphere. Compared with non-doped LNO, LNF shows a higher interstitial oxygen concentration (δ = 0.298) and a lower electrical conductivity, where bivalent Ni ion, {Ni}_{Ni}^{ × }, and trivalent Ni ion, {Ni}_{Ni}^{ \\cdot }, and trivalent Fe ion on Ni-site, {Fe}_{Ni}^{ \\cdot }, were observed from the XPS measurements. LNF-GDC shows greatly reduced interfacial polarization resistances (Rp), which are only half of those of LNF, indicating a better electrochemical performance. More importantly, no significant degradation of LNF-GDC in performance has been observed under exposure of Cr-containing atmosphere at 700 °C for 350 h, while Rp of LNF increased by nearly 20%, suggesting LNF by GDC incorporation can enhance the electrochemical performance as well as chromium tolerance for intermediate temperature solid oxide fuel cells (IT-SOFCs).

  20. From macro- to micro-single chamber solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Buergler, B. E.; Ochsner, M.; Vuillemin, S.; Gauckler, L. J.

    Single chamber solid oxide fuel cells (SC-SOFCs) with interdigitating electrodes were prepared and operated in CH 4/air mixtures. Both electrodes (Ni-Ce 0.8Gd 0.2O 1.9 cermet and Sm 0.5Sr 0.5CoO 3- δ perovskite) were placed on the same side of a Ce 0.8Gd 0.1O 1.95 electrolyte disc. The separating gap between the electrodes was varied from 1.2 to 0.27 mm and finally down to 10 μm. Screen-printing was used for the preparation of the cells with a gap in the millimetre range, whereas micromolding in capillaries (MIMIC) was used for the preparation of the micro-SC-SOFCs. The prepared micro-SC-SOFCs consisted of an array of 19 individual cells that were connected in parallel having 100 μm wide electrodes. An open circuit voltage of 0.65-0.75 V was measured in flowing mixtures of methane and air. The maximum power density of 17 mW cm -2 was limited by the ohmic resistance of the long conduction paths along the thin electrodes to the active sites of the individual cells. The feasibility of the micro-cell was demonstrated by comparing the performance with the performance of the cells having feature sizes in the millimetre range. The cell resistance of micro-SC-SOFCs may be significantly reduced when connecting the cells in series using interconnections between anode and cathodes of adjacent cells.

Top