The Mathematics of Go to Telescopes
ERIC Educational Resources Information Center
Teets, Donald
2007-01-01
This article presents the mathematics involved in finding and tracking celestial objects with an electronically controlled telescope. The essential idea in solving this problem is to choose several different coordinate systems that simplify the various motions of the earth and other celestial objects. These coordinate systems are then related by…
Applications of laser ranging and VLBI observations for selenodetic control
NASA Technical Reports Server (NTRS)
Fajemirokun, F. A.
1971-01-01
The observation equations necessary to utilize lunar laser ranging and very long baseline interferometry measurements were developed for the establishment of a primary control network on the moon. The network consists of coordinates of moon points in the selenodetic Cartesian coordinate system, which is fixed to the lunar body, oriented along the three principal axes of inertia of the moon, and centered at the lunar center of mass. The observation equations derived are based on a general model in which the unknown parameters included: the selenodetic Cartesian coordinates, the geocentric coordinates of earth stations, parameters of the orientation of the selenodetic coordinate system with respect to a fixed celestial system, the parameters of the orientation of the average terrestrial coordinate system with respect to a fixed celestial coordinate system, and the geocentric coordinates of the center of mass of the moon, given by a lunar ephemeris.
NASA Astrophysics Data System (ADS)
Song, W. M.; Fan, D. W.; Su, L. Y.; Cui, C. Z.
2017-11-01
Calculating the coordinate parameters recorded in the form of key/value pairs in FITS (Flexible Image Transport System) header is the key to determine FITS images' position in the celestial system. As a result, it has great significance in researching the general process of calculating the coordinate parameters. By combining CCD related parameters of astronomical telescope (such as field, focal length, and celestial coordinates in optical axis, etc.), astronomical images recognition algorithm, and WCS (World Coordinate System) theory, the parameters can be calculated effectively. CCD parameters determine the scope of star catalogue, so that they can be used to build a reference star catalogue by the corresponding celestial region of astronomical images; Star pattern recognition completes the matching between the astronomical image and reference star catalogue, and obtains a table with a certain number of stars between CCD plane coordinates and their celestial coordinates for comparison; According to different projection of the sphere to the plane, WCS can build different transfer functions between these two coordinates, and the astronomical position of image pixels can be determined by the table's data we have worked before. FITS images are used to carry out scientific data transmission and analyze as a kind of mainstream data format, but only to be viewed, edited, and analyzed in the professional astronomy software. It decides the limitation of popular science education in astronomy. The realization of a general image visualization method is significant. FITS is converted to PNG or JPEG images firstly. The coordinate parameters in the FITS header are converted to metadata in the form of AVM (Astronomy Visualization Metadata), and then the metadata is added to the PNG or JPEG header. This method can meet amateur astronomers' general needs of viewing and analyzing astronomical images in the non-astronomical software platform. The overall design flow is realized through the java program and tested by SExtractor, WorldWide Telescope, picture viewer, and other software.
It All Depends on Your Attitude.
ERIC Educational Resources Information Center
Kastner, Bernice
1992-01-01
Presents six learning exercises that introduce students to the mathematics used to control and track spacecraft attitude. Describes the geocentric system used for Earthbound location and navigation, the celestial sphere, the spacecraft-based celestial system, time-dependent angles, observer-fixed coordinate axes, and spacecraft rotational axes.…
NASA Astrophysics Data System (ADS)
van Altena, William F.
Part I. Astrometry in the Twenty-First Century: 1. Opportunities and challenges for astrometry in the twenty-first century M. Perryman; 2. Astrometric satellites L. Lindegren; 3. Ground-based opportunities for astrometry N. Zacharias; Part II. Relativistic Foundations of Astrometry and Celestial Mechanics: 4. Vectors in astrometry, an introduction L. Lindegren; 5. Relativistic principles of astrometry and celestial mechanics S. Klioner; 6. Celestial mechanics of the N-body problem S. Klioner; 7. Celestial coordinate systems and positions N. Capitaine and M. Stavinschi; 8. Fundamental algorithms for celestial coordinates and positions P. Wallace; Part III. Observing through the Atmosphere: 9. The Earth's atmosphere: refraction, turbulence, delays and limitations to astrometic precision W. van Altena and E. Fomalont; 10. Astrometry with ground-based diffraction-limited imaging A. Ghez; 11. Optical interferometry A. Glindermann; 12. Radio interferometry E. Fomalont; Part VI. From Detected Photons to the Celestial Sphere: 13. Geometrical optics and astrometry D. Schroeder; 14. CCD imaging detectors S. Howell; 15. Using CCDs in the time-delayed integration mode D. Rabinowitz; 16. Statistical astronomy A. Brown; 17. Analyzing poorly-sampled images: HST imaging astrometry J. Anderson; 18. Image deconvolution J. Nuñez; 19. From measures to celestial coordinates Z. H. Tang and W. van Altena; 20. Astrometric catalogs: concepts, history and necessity C. López; 21. Trigonometric parallaxes F. Benedict and B. McArthur; Part V. Applications of Astrometry to Topics in Astrophysics: 22. Galactic structure astrometry R. Méndez; 23. Binary and multiple stars E. Horch; 24. Binaries: HST, Hipparcos and Gaia D. Pourbaix; 25. Star clusters I. Platais; 26. Solar System astrometry F. Mignard; 27. Extrasolar planets A. Sozzetti; 28. Astrometric measurement and cosmology R. Easther; Appendices; Index.
NASA Astrophysics Data System (ADS)
van Altena, William F.
2012-11-01
Part I. Astrometry in the Twenty-First Century: 1. Opportunities and challenges for astrometry in the twenty-first century M. Perryman; 2. Astrometric satellites L. Lindegren; 3. Ground-based opportunities for astrometry N. Zacharias; Part II. Relativistic Foundations of Astrometry and Celestial Mechanics: 4. Vectors in astrometry, an introduction L. Lindegren; 5. Relativistic principles of astrometry and celestial mechanics S. Klioner; 6. Celestial mechanics of the N-body problem S. Klioner; 7. Celestial coordinate systems and positions N. Capitaine and M. Stavinschi; 8. Fundamental algorithms for celestial coordinates and positions P. Wallace; Part III. Observing through the Atmosphere: 9. The Earth's atmosphere: refraction, turbulence, delays and limitations to astrometic precision W. van Altena and E. Fomalont; 10. Astrometry with ground-based diffraction-limited imaging A. Ghez; 11. Optical interferometry A. Glindermann; 12. Radio interferometry E. Fomalont; Part VI. From Detected Photons to the Celestial Sphere: 13. Geometrical optics and astrometry D. Schroeder; 14. CCD imaging detectors S. Howell; 15. Using CCDs in the time-delayed integration mode D. Rabinowitz; 16. StaStatistical astronomy A. Brown; 17. Analyzing poorly-sampled images: HST imaging astrometry J. Anderson; 18. Image deconvolution J. Nuñez; 19. From measures to celestial coordinates Z. H. Tang and W. van Altena; 20. Astrometric catalogs: concepts , history and necessity C. Löpez; 21. Trigonometric parallaxes F. Benedict and B. McArthur; Part V. Applications of Astrometry to Topics in Astrophysics: 22. Galactic structure astrometry R. Méndez; 23. Binary and multiple stars E. Horch; 24. Binaries: HST, Hipparcos and Gaia D. Pourbaix; 25. Star clusters I. Platais; 26. Solar System astrometry F. Mignard; 27. Extrasolar planets A. Sozzetti; 28. Astrometric measurement and cosmology R. Easther; Appendices; Index.
Research on the error model of airborne celestial/inertial integrated navigation system
NASA Astrophysics Data System (ADS)
Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang
2015-02-01
Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.
Difference method to search for the anisotropy of primary cosmic radiation
NASA Astrophysics Data System (ADS)
Pavlyuchenko, V. P.; Martirosov, R. M.; Nikolskaya, N. M.; Erlykin, A. D.
2018-01-01
The original difference method used in the search for an anisotropy of primary cosmic radiation at the knee region of its energy spectrum is considered. Its methodical features and properties are analyzed. It is shown that this method, in which properties of particle fluxes (rather than an intensity) are investigated, is stable against random experimental errors and allows one to separate anomalies connected with the laboratory coordinate system from anomalies in the celestial coordinate system. The method uses the multiple scattering of charged particles in the magnetic fields of the Galaxy to study the whole celestial sphere, including the regions outside the line of sight of the installation.
NASA Astrophysics Data System (ADS)
Bulatova, Dr.
2012-04-01
Modern research in the domains of Earth sciences is developing from the descriptions of each individual natural phenomena to the systematic complex research in interdisciplinary areas. For studies of its kind in the form numerical analysis of three-dimensional (3D) systems, the author proposes space-time Technology (STT), based on a Ptolemaic geocentric system, consist of two modules, each with its own coordinate system: (1) - 3D model of a Earth, the coordinates of which provides databases of the Earth's events (here seismic), and (2) - a compact model of the relative motion of celestial bodies in space - time on Earth known as the "Method of a moving source" (MDS), which was developed in MDS (Bulatova, 1998-2000) for the 3D space. Module (2) was developed as a continuation of the geocentric Ptolemaic system of the world, built on the astronomical parameters heavenly bodies. Based on the aggregation data of Space and Earth Sciences, systematization, and cooperative analysis, this is an attempt to establish a cause-effect relationship between the position of celestial bodies (Moon, Sun) and Earth's seismic events.
NASA Astrophysics Data System (ADS)
Capitaine, N.; Folgueira, M.
2012-12-01
In a previous paper (Capitaine et al. 2006), referred here as Paper I, we demonstrated the possibility of integrating the Earth's rotational motion in terms of the coordinates (X, Y ) of the celestial intermediate pole (CIP) unit vector in the Geocentric celestial reference system (GCRS). Here, we report on the approach that has been followed for solving the equations in the case of an axially symmetric rigid Earth and the semi-analytical (X, Y ) solution obtained from the expression of the external torque acting on the Earth derived from the most complete semi-analytical solutions for the Earth, Moon and planets.
Concise CIO based precession-nutation formulations
NASA Astrophysics Data System (ADS)
Capitaine, N.; Wallace, P. T.
2008-01-01
Context: The IAU 2000/2006 precession-nutation models have precision goals measured in microarcseconds. To reach this level of performance has required series containing terms at over 1300 frequencies and involving several thousand amplitude coefficients. There are many astronomical applications for which such precision is not required and the associated heavy computations are wasteful. This justifies developing smaller models that achieve adequate precision with greatly reduced computing costs. Aims: We discuss strategies for developing simplified IAU 2000/2006 precession-nutation procedures that offer a range of compromises between accuracy and computing costs. Methods: The chain of transformations linking celestial and terrestrial coordinates comprises frame bias, precession-nutation, Earth rotation and polar motion. We address the bias and precession-nutation (NPB) portion of the chain, linking the Geocentric Celestial Reference System (GCRS) with the Celestial Intermediate Reference System (CIRS), the latter based on the Celestial Intermediate Pole (CIP) and Celestial Intermediate Origin (CIO). Starting from direct series that deliver the CIP coordinates X,Y and (via the quantity s + XY/2) the CIO locator s, we look at the opportunities for simplification. Results: The biggest reductions come from truncating the series, but some additional gains can be made in the areas of the matrix formulation, the expressions for the nutation arguments and by subsuming long period effects into the bias quantities. Three example models are demonstrated that approximate the IAU 2000/2006 CIP to accuracies of 1 mas, 16 mas and 0.4 arcsec throughout 1995-2050 but with computation costs reduced by 1, 2 and 3 orders of magnitude compared with the full model. Appendices A to G are only available in electronic form at http://www.aanda.org
Time References in US and UK Astronomical and Navigational Almanacs
2011-01-01
are also compatible with Teph and TDB. 2.4. Terrestrial and Barycentric Dynamic Times An apparent place, or equivalently the geocentric intermediate...right ascension and declination with respect to the CIO and equator of date, is defined in the Geocentric Celestial Reference System where the... Geocentric Coordinate Time (TCG) nor Barycentric Coordinate Time (TCB) is used in the US and UK almanacs for different reasons. TCG is a coordinate time
Considering Time-Scale Requirements for the Future
2013-05-01
geocentric reference frame with the SI second realized on the rotating geoid as the scale unit. It is a continuous atomic time scale that was...the B8lycentric and Geocentric Celestial Reference Systems, two time scales, Barycentric Coor- dinate Time (TCB) and Geocentric Coordinate Time (TCG...defined in 2006 as a linear scaling of TCB having the approximate rate of TT. TCG is the time coordinate for the four dimensional geocentric coordinate
On the definition and use of the ecliptic in modern astronomy
NASA Astrophysics Data System (ADS)
Capitaine, N.; Soffel, M.
2015-08-01
The ecliptic was a fundamental reference plane for astronomy from antiquity to the realization and use of the FK5 reference system. The situation has changed considerably with the adoption of the International Celestial Reference system (ICRS) by the IAU in 1998 and the IAU resolutions on reference systems that were adopted from 2000 to 2009. First, the ICRS has the property of being independent of epoch, ecliptic or equator. Second, the IAU 2000 resolutions, which specified the systems of space-time coordinates within the framework of General Relativity, for the solar system (the Barycentric Celestial Reference System, BCRS) and the Earth (the Geocentric Celestial Reference System, GCRS), did not refer to any ecliptic and did not provide a definition of a GCRS ecliptic. These resolutions also provided the definition of the pole of the nominal rotation axis (the Celestial intermediate pole, CIP) and of new origins on the equator (the Celestial and Terrestrial intermediate origins, CIO and TIO), which do not require the use of an ecliptic. Moreover, the models and standards adopted by the IAU 2006 and IAU 2009 resolutions are largely referred to the ICRS, BCRS, GCRS as well as to the new pole and origins. Therefore, the ecliptic has lost much of its importance. We review the consequences of these changes and improvements in the definition and use of the ecliptic and we discuss whether the concept of an ecliptic is still needed for some specific use in modern astronomy.
Celestial dynamics and astrometry in expanding universe
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei
2012-08-01
Post - Newtonian theory of motion of celestial bodies and propagation of light was instrumental in conducting the critical experimental tests of general relativity and in building the astronomical ephemerides of celestial bodies in the solar system with an unparalleled precision. The cornerstone of the theory is the postulate that the solar system is gravitationally isolated from the rest of the universe and the background spacetime is asymptotically flat. The present talk abolishes this postulate and lays down the principles of celestial dynamics of particles and light moving in gravitational field of a localized astronomical system embedded to the expanding universe. We formulate the precise mathematical concept of the Newtonian limit of Einstein ’s field equations in the conformally - flat spacetime and analyse the geodesic equations of motion o f particles and light in this limit. We demonstrate that the equations of motion of particles and light can be reduced to their Newtonian counterparts by doing conformal transformations of time and space coordinates. However, the Newtonian equations for particles and light differ by terms of the first order in the Hubble constant. This leads to the important conclusion that the equations of motion used currently by Space Navigation Centres and Astronomical Observatories for calculating orbits of celestial bodies, are incomplete and missing some terms of cosmological origin. We explicitly identify the missing terms and demonstrate that they bring about a noticeable discrepancy between the observed and calculated astronomical ephemerides. We argue that a number of observed celestial anomalies in the solar system can be explained as caused by the Hubble expansion of the universe.
Tracking Planets around the Sun
ERIC Educational Resources Information Center
Riddle, Bob
2008-01-01
In earlier columns, the celestial coordinate system of hour circles of right ascension and degrees of declination was introduced along with the use of an equatorial star chart (see SFA Star Charts in Resources). This system shows the planets' motion relative to the ecliptic, the apparent path the Sun follows during the year. An alternate system,…
Celestial Navigation with the Stereographic Projection
ERIC Educational Resources Information Center
Hutton, D. R.
1977-01-01
Presented is an exercise in the ability to navigate by the stars. It applies difficult concepts of positional astronomy concerning coordinate systems and time. Stereographic projection is utilized because it allows rapid completion of calculations and measurements and keeps the concepts clear to the students. (MA)
Determination of celestial bodies orbits and probabilities of their collisions with the Earth
NASA Astrophysics Data System (ADS)
Medvedev, Yuri; Vavilov, Dmitrii
In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.
Relativistic problems on astronomical constants.
NASA Astrophysics Data System (ADS)
Tao, Jinhe; Huang, Tianyi
1999-06-01
The fact that modern astronomical observational technique has made rapid progress and the 1PN approximation of general relativity has been extensively applied in celestial mechanics and astrometry, makes it is necessary to investigate and examine the system of astronomical constants carefully and rigorously in the relativistic framework. The mass of a celestial body in the solar system should be defined as its BD mass that changes relatively in an amount less than 10-19 and could be considered as a constant. The equations satisfied by the gravitational potentials are not Poisson equations anymore but depend on the choice of the coordinate gauge. Therefore the gravitational potentials cannot be expanded in the traditional harmonics. It is neccessary to choose the coordinate gauge and take BD multipole moments as astronomical constants. The obliquity of the ecliptic has been determined in high precision and it would be neccessary to give a conventional definition of the 1PN ecliptic. A relativistic definition of the geoid is important and left to be discussed. The astronomical constants that relate the units of time and length have been clearly defined but need to be clarified to avoid their misuse.
NASA Astrophysics Data System (ADS)
Heinkelmann, R.; Belda-Palazon, S.; Ferrándiz, J.; Schuh, H.
2015-08-01
For applications in Earth sciences, navigation, and astronomy the celestial (ICRF) and terrestrial (ITRF) reference frames as well as the orientation among them, the Earth orientation parameters (EOP), have to be consistent at the level of 1 mm and 0.1 mm/yr (GGOS recommendations). We assess the effect of unmodelled geophysical signals in the regularized coordinates and the sensitivity with respect to different a priori EOP and celestial reference frames. The EOP are determined using the same VLBI data but with station coordinates fixed on different TRFs. The conclusion is that within the time span of data incorporated into ITRF2008 (Altamimi, et al., 2011) the ITRF2008 and the IERS 08 C04 are consistent. This consistency involves that non-linear station motion such as unmodelled geophysical signals partly affect the IERS 08 C04 EOP. There are small but not negligible inconsistencies between the conventional celestial reference frame, ICRF2 (Fey, et al., 2009), the ITRF2008 and the conventional EOP that are quantified by comparing VTRF2008 (Böckmann, et al., 2010) and ITRF2008.
A Deep Space Orbit Determination Software: Overview and Event Prediction Capability
NASA Astrophysics Data System (ADS)
Kim, Youngkwang; Park, Sang-Young; Lee, Eunji; Kim, Minsik
2017-06-01
This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for highfidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.
NASA Astrophysics Data System (ADS)
Shirenin, A. M.; Mazurova, E. M.; Bagrov, A. V.
2016-11-01
The paper presents a mathematical algorithm for processing an array of angular measurements of light beacons on images of the lunar surface onboard a polar artificial lunar satellite (PALS) during the Luna-Glob mission and coordinate-time referencing of the PALS for the development of reference selenocentric coordinate systems. The algorithm makes it possible to obtain angular positions of point light beacons located on the surface of the Moon in selenocentric celestial coordinates. The operation of measurement systems that determine the position and orientation of the PALS during its active existence have been numerically simulated. Recommendations have been made for the optimal use of different types of measurements, including ground radio trajectory measurements, navigational star sensors based on the onboard star catalog, gyroscopic orientation systems, and space videos of the lunar surface.
The Determination of Earth Orientation by VLBI and GNSS: Principles and Results
NASA Astrophysics Data System (ADS)
Capitaine, Nicole
2017-10-01
The Earth Orientation Parameters (EOP) connect the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Reference System (GCRS). These parameters, i.e., Universal Time, UT1, and pole coordinates in the ITRS and in the GCRS, describe the irregularities of the Earth's rotation. They are mainly determined by two modern astro-geodetic techniques, VLBI (Very Long Baseline Radio Interferometry) on extragalactic radio sources, which is used to realize and maintain the International Celestial Reference System (ICRS), and Global Navigation Satellite System (GNSS), especially GPS (Global Positioning System), which has an important contribution to the realization of the ITRS. The aim of this presentation is twofold: to present the modern bases for the consider- ation of Earth orientation and to discuss how the principles of VLBI and GPS give access to the measure of different components of the EOP variations, especially UT1. The accuracy that can be achieved is based on the improved concepts, definitions, and models that have been adopted by IAU/IUGG resolutions on reference systems and Earth's rotation, as well as on the refined strategy of the observations.
On the foundations of general relativistic celestial mechanics
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Esposito, Giampiero; Dell'Agnello, Simone
2017-09-01
Towards the end of nineteenth century, Celestial Mechanics provided the most powerful tools to test Newtonian gravity in the solar system and also led to the discovery of chaos in modern science. Nowadays, in light of general relativity, Celestial Mechanics leads to a new perspective on the motion of satellites and planets. The reader is here introduced to the modern formulation of the problem of motion, following what the leaders in the field have been teaching since the nineties, in particular, the use of a global chart for the overall dynamics of N bodies and N local charts describing the internal dynamics of each body. The next logical step studies in detail how to split the N-body problem into two sub-problems concerning the internal and external dynamics, how to achieve the effacement properties that would allow a decoupling of the two sub-problems, how to define external-potential-effacing coordinates and how to generalize the Newtonian multipole and tidal moments. The review paper ends with an assessment of the nonlocal equations of motion obtained within such a framework, a description of the modifications induced by general relativity on the theoretical analysis of the Newtonian three-body problem, and a mention of the potentialities of the analysis of solar-system metric data carried out with the Planetary Ephemeris Program.
NASA Astrophysics Data System (ADS)
Heafner, Joe
2018-03-01
Most introductory physics courses begin with the concept of an object (usually a particle) having a precise position or location in space (I will not address spacetime here) relative to something else, the origin of a three-dimensional coordinate system perhaps. My experience has been that physics students are inherently at home with this concept. In astronomy, we often begin by thinking about the sky. For the purposes of this article, I will simply define it as that which we see when we look away from Earth's surface. It appears almost as a two-dimensional plane, perhaps even a curved surface. When we look at something in the sky, we really have no sense of distance. Indeed, when astronomers need the "position" of a star or planet in the sky, the quantity is two dimensional. Because the sky appears to wrap around Earth, celestial positions can be given entirely by angular quantities. Astronomers use right ascension and declination, respectively, as analogs of terrestrial longitude and latitude. Right ascension is the angular distance eastward around the celestial equator (the projection of Earth's equator onto the celestial sphere) from the vernal equinox (where the celestial equator and the ecliptic intersect such that the Sun is moving from the Southern Hemisphere to the Northern Hemisphere) to the object and declination is the object's angular distance north or south of the celestial equator. So to an astronomer, for the purposes of aiming a telescope, position refers to a two-dimensional quantity because in the sky there is no direct sense of depth or distance.
NASA Astrophysics Data System (ADS)
Duke, Dennis W.
2002-07-01
In his "Histoire de l'Astronomie Ancienne" Delambre concludes unequivocally that Hipparchus knew and used a definite system of celestial spherical coordinates, namely the right ascension and declination system that we use today. The basis of Delambre's conclusion was disarmingly simple: he pointed out that in the "Commentary to Aratus" Hipparchus actually quotes the positions of numerous stars directly in right ascension and declination (or more often its complement, polar distance). Nearly two centuries later, in his "A History of Ancient Mathematical Astronomy", Neugebauer not only completely ignores Delambre's conclusion on this issue, but goes further to propose his own, as we shall see quite fanciful, theory that begins "From the Commentary to Aratus, it is quite obvious that at Hipparchus' time a definite system of spherical coordinates for stellar positions did not yet exist." and concludes "...nowhere in Greek astronomy before the catalogue of stars in the Almagest is it attested that orthogonal spherical coordinates are used to determine stellar positions." Today it is clear that Neugebauer's theory is conventionally accepted. It is the purpose of this paper to offer fresh arguments that Delambre was correct.
Time scales in the context of general relativity.
Guinot, Bernard
2011-10-28
Towards 1967, the accuracy of caesium frequency standards reached such a level that the relativistic effect could not be ignored anymore. Corrections began to be applied for the gravitational frequency shift and for distant time comparisons. However, these corrections were not applied to an explicit theoretical framework. Only in 1991 did the International Astronomical Union provide metrics (then improved in 2000) for a definition of space-time coordinates in reference systems centred at the barycentre of the Solar System and at the centre of mass of the Earth. In these systems, the temporal coordinates (coordinate times) can be realized on the basis of one of them, the International Atomic Time (TAI), which is itself a realized time scale. The definition and the role of TAI in this context will be recalled. There remain controversies regarding the name to be given to the unit of coordinate times and to other quantities appearing in the theory. However, the idea that astrometry and celestial mechanics should adopt the usual metrological rules is progressing, together with the use of the International System of Units, among astronomers.
On the co-existence of maximal and whiskered tori in the planetary three-body problem
NASA Astrophysics Data System (ADS)
Pinzari, Gabriella
2018-05-01
In this paper, we discuss about the possibility of the coexistence of stable and unstable quasi-periodic Kolmogorov-Arnold-Moser (kam) tori in a region of the phase space of the three-body problem. The argument of proof goes along kam theory and, especially, the production of two non-smoothly related systems of canonical coordinates in the same region of the phase space, the possibility of which is foreseen, for "properly degenerate" systems, by a theorem of Nekhoroshev and Miščenko and Fomenko. The two coordinate systems are alternative to the classical reduction of the nodes by Jacobi, described, e.g., in Arnold ["Small denominators and problems of stability of motion in classical and celestial mechanics," 18, 85-191 (1963)].
The search of the anisotropy of the primary cosmic radiation by the difference method
NASA Astrophysics Data System (ADS)
Pavlyuchenko, Victor; Martirosov, Romen; Nikolskaya, Natalia; Erlykin, Anatoly
2017-06-01
On the basis of experimental data obtained in the knee energy region with the GAMMA array an anomaly has been found in the mass composition of primary cosmic rays coming from the region of the VELA cluster. We used an original difference method which has high sensitivity, stability against accidental experimental errors and the possibility to separate anomalies connected with the laboratory coordinate system from anomalies observed in the celestial coordinates. The multiple scattering of the charged particles in the galactic magnetic fields makes it possible to study regions of the sky outside the direct visibility of the array.
Orbital motion (3rd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Roy, A. E.
The fundamental principles of celestial mechanics are discussed in an introduction for students of astronomy, aerospace engineering, and geography. Chapters are devoted to the dynamic structure of the universe, coordinate and timekeeping systems, the reduction of observational data, the two-body problem, the many-body problem, general and special perturbations, and the stability and evolution of the solar system. Consideration is given to lunar theory, artificial satellites, rocket dynamics and transfer orbits, interplanetary and lunar trajectories, orbit determination and interplanetary navigation, binaries and other few-body systems, and many-body systems of stars. Diagrams, graphs, tables, and problems with solutions are provided.
Flight software operation of the Hubble Space Telescope fine guidance sensor
NASA Technical Reports Server (NTRS)
Rodden, J. J.; Dougherty, H. J.; Cormier, D. J.
1988-01-01
The Hubble Space Telescope (HST) is to carry five major scientific instruments to collect imagery, spectrographic, and photometric astronomical data. The Pointing Control System is designed to achieve pointing accuracies and line of sight jitter levels an order of magnitude less than can be achieved with ground mounted telescopes. This paper describes the operation of the pointing control system flight software in targeting a celestial object in a science instrument aperture and in performing the coordinate transformations necessary for commanding the fine guidance sensor and determining the attitude-error corrections.
Optical monitoring of QSO in the framework of the Gaia space mission
NASA Astrophysics Data System (ADS)
Taris, F.; Damljanovic, G.; Andrei, A.; Klotz, A.; Vachier, F.
2015-08-01
The Gaia astrometric mission of the European Space Agency has been launched the 19th December 2013. It will provide an astrometric catalogue of 500 000 extragalactic sources that could be the basis of a new optical reference frame. On the other hand, the current International Celestial Reference Frame (ICRF) is based on the observations of extragalactic sources at radio wavelength. The astrometric coordinates of sources in these two reference systems will have roughly the same uncertainty. It is then mandatory to observe a set of common targets at both optical and radio wavelength to link the ICRF with what could be called the GCRF (Gaia Celestial Reference Frame). We will show in this paper some results obtained with the TJO, Telescopi Juan Oro, from Observatori Astronomic del Montsec in Spain. It also presents some results obtained with the Lomb-Scargle and CLEAN algorithm methods applied to optical magnitude obtained with the TAROT telescopes.
A Kalman filter approach for the determination of celestial reference frames
NASA Astrophysics Data System (ADS)
Soja, Benedikt; Gross, Richard; Jacobs, Christopher; Chin, Toshio; Karbon, Maria; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald
2017-04-01
The coordinate model of radio sources in International Celestial Reference Frames (ICRF), such as the ICRF2, has traditionally been a constant offset. While sufficient for a large part of radio sources considering current accuracy requirements, several sources exhibit significant temporal coordinate variations. In particular, the group of the so-called special handling sources is characterized by large fluctuations in the source positions. For these sources and for several from the "others" category of radio sources, a coordinate model that goes beyond a constant offset would be beneficial. However, due to the sheer amount of radio sources in catalogs like the ICRF2, and even more so with the upcoming ICRF3, it is difficult to find the most appropriate coordinate model for every single radio source. For this reason, we have developed a time series approach to the determination of celestial reference frames (CRF). We feed the radio source coordinates derived from single very long baseline interferometry (VLBI) sessions sequentially into a Kalman filter and smoother, retaining their full covariances. The estimation of the source coordinates is carried out with a temporal resolution identical to the input data, i.e. usually 1-4 days. The coordinates are assumed to behave like random walk processes, an assumption which has already successfully been made for the determination of terrestrial reference frames such as the JTRF2014. To be able to apply the most suitable process noise value for every single radio source, their statistical properties are analyzed by computing their Allan standard deviations (ADEV). Additional to the determination of process noise values, the ADEV allows drawing conclusions whether the variations in certain radio source positions significantly deviate from random walk processes. Our investigations also deal with other means of source characterization, such as the structure index, in order to derive a suitable process noise model. The Kalman filter CRFs resulting from the different approaches are compared among each other, to the original radio source position time series, as well as to a traditional CRF solution, in which the constant source positions are estimated in a global least squares adjustment.
An Overview of Major Terrestrial, Celestial, and Temporal Coordinate Systems for Target Tracking
2016-08-10
interp and Subroutines) http://hpiers.obspm.fr/eop-pc/index.php?index=models General Software for Astronomy and Time Conversions The IAU’s Standards...of Fundamental Astronomy Software [146] http://www.iausofa.org Software for Optimal 2D Assignment An overview of 2D assignment algorithms; the... Astronomy (SOFA) library were used to change the epoch of the data. The points in red are at the epoch of the Hipparcos catalog (1994.25 TT), and 20
NASA Astrophysics Data System (ADS)
Aoki, Shinko
The equations of motion for a rigid earth under the influence of the sun and moon are solved analytically up to the second-order perturbation, and the results are used to elucidate the relationship between the celestial and terrestrial reference systems. The derivations are given in detail, and consideration is given to celestial-ephemeris and instantaneous-rotation poles, wobble, the departure point as the origin of the local inertial system, the precession-nutation matrix, and techniques for improving the celestial reference system.
NASA Astrophysics Data System (ADS)
Harp, D. Isaiah; Liebe, Carl Christian; Craig, William; Harrison, Fiona; Kruse-Madsen, Kristin; Zoglauer, Andreas
2010-07-01
The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will make the first sensitive images of the sky in the high energy X-ray band (6 - 80 keV). The NuSTAR observatory consists of two co-aligned grazing incidence hard X-ray telescopes with a ~10 meter focal length, achieved by the on-orbit extension of a deployable mast. A principal science objective of the mission is to locate previously unknown high-energy X-ray sources to an accuracy of 10 arcseconds (3-sigma), sufficient to uniquely identify counterparts at other wavelengths. In order to achieve this, a star tracker and laser metrology system are an integral part of the instrument; in conjunction, they will determine the orientation of the optics bench in celestial coordinates and also measure the flexures in the deployable mast as it responds to the varying on-orbit thermal environment, as well as aerodynamic and control torques. The architecture of the NuSTAR system for solving the attitude and aspect problems differs from that of previous X-ray telescopes, which did not require ex post facto reconstruction of the instantaneous observatory alignment on-orbit. In this paper we describe the NuSTAR instrument metrology system architecture and implementation, focusing on the systems engineering challenges associated with validating the instantaneous transformations between focal plane and celestial coordinates to within the required accuracy. We present a mathematical solution to photon source reconstruction, along with a detailed error budget that relates component errors to science performance. We also describe the architecture of the instrument simulation software being used to validate the end-to-end performance model.
NASA Astrophysics Data System (ADS)
Chapront, J.; Chapront-Touzé, M.; Francou, G.
1999-03-01
An analysis of Lunar Laser Ranging (LLR) observations from January 1972 till March 1998 is performed using the lunar theory ELP 2000-96 and the completed Moons' theory of the lunar libration. The LLR station coordinates, polar motion and Universal Time are provided by the International Earth Rotation Service (IERS). In Solution 1 the precession-nutation transformation is given by recent analytical theories, while in Solution 2 it is derived from the IERS daily corrections. Orbital and free libration parameters of the Moon, and coordinates of the reflectors are obtained in both cases. The position of the inertial mean ecliptic of J2000.0 with respect to the equator of the mean Celestial Ephemeris Pole (CEP) of J2000.0 (in Solution 1) and to the International Celestial Reference System (ICRS), the IERS celestial reference system, (in Solution 2) are fit. The position of the mean CEP equator of J2000.0 and of several dynamical reference planes and origins, with respect to ICRS, are derived from these fits (Fig. 1). The leading results are the following: 0farcs057 60+/- 0farcs000 20 (in the equator) for the separation of the origin of right ascensions in ICRS from the ascending node of the inertial mean ecliptic of J2000.0 on the reference plane of ICRS, -0farcs0460 +/- 0farcs0008 (in the ecliptic) for the separation of the latter point from the inertial dynamical mean equinox of J2000.0, -0farcs015 19+/- 0farcs000 35 (in the equator) for the separation of the inertial dynamical mean equinox of J2000.0 from the J2000.0 right ascension origin derived from IERS polar motion and Universal Time and from precise theories of precession-nutation, and 23degr26 arcmin21 farcs405 22+/- 0farcs000 07 for the inertial obliquity of J2000.0. A correction of -0farcs3437 +/- 0farcs0040 /cy to the IAU 1976 value of the precession constant is also obtained (the errors quoted are formal errors).
Microarsecond models for the celestial motions of the CIP and CEO
NASA Astrophysics Data System (ADS)
Capitaine, N.
2004-09-01
The Celestial intermediate pole (CIP) and Celestial ephemeris (orintermediate) origin (CEO/CIO) have been adopted by the IAU (c.f. IAU2000 Resolution B1.8) as the celestial pole and origin, respectively,to be used for realizing the intermediate celestial system between theInternational Terrestrial System (ITRS) and Geocentric CelestialReference System (GCRS). Resolution B1.8 has also recommended that theInternational Earth Rotation and Reference Systems Service (IERS)continue to provide users with data and algorithms for the conventionaltransformation. The IAU 2000 Resolutions have been implemented in theIERS 2003 Conventions including Tables and routines that provide thecelestial motions of the CIP and the CEO with a theoretical accuracy ofone microarcsecond after one century using either the classical or thenew transformation. This paper reports on the method used for achievingthis accuracy in the positions of the CIP and CIO and on the differencebetween this rigorous procedure and the pre-2003 classical one.
astroplan: An Open Source Observation Planning Package in Python
NASA Astrophysics Data System (ADS)
Morris, Brett M.; Tollerud, Erik; Sipőcz, Brigitta; Deil, Christoph; Douglas, Stephanie T.; Berlanga Medina, Jazmin; Vyhmeister, Karl; Smith, Toby R.; Littlefair, Stuart; Price-Whelan, Adrian M.; Gee, Wilfred T.; Jeschke, Eric
2018-03-01
We present astroplan—an open source, open development, Astropy affiliated package for ground-based observation planning and scheduling in Python. astroplan is designed to provide efficient access to common observational quantities such as celestial rise, set, and meridian transit times and simple transformations from sky coordinates to altitude-azimuth coordinates without requiring a detailed understanding of astropy’s implementation of coordinate systems. astroplan provides convenience functions to generate common observational plots such as airmass and parallactic angle as a function of time, along with basic sky (finder) charts. Users can determine whether or not a target is observable given a variety of observing constraints, such as airmass limits, time ranges, Moon illumination/separation ranges, and more. A selection of observation schedulers are included that divide observing time among a list of targets, given observing constraints on those targets. Contributions to the source code from the community are welcome.
Design of all-weather celestial navigation system
NASA Astrophysics Data System (ADS)
Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng
2018-03-01
In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.
Guide star catalogue data retrieval software 2
NASA Technical Reports Server (NTRS)
Smirnov, O. M.; Malkov, O. YU.
1992-01-01
The Guide Star Catalog (GSC), being the largest astronomical catalog to date, is widely used by the astronomical community for all sorts of applications, such as statistical studies of certain sky regions, searches for counterparts to observational phenomena, and generation of finder charts. It's format (2 CD-ROM's) requires minimum hardware and is ideally suited for all sorts of conditions, especially observations. Unfortunately, the actual GSC data is not easily accessible. It takes the form of FITS tables, and the coordinates of the objects are given in one coordinate system (equinox 2000). The included reading software is rudimentary at best. Thus, even generation of a simple finder chart is not a trivial undertaking. To solve this problem, at least for PC users, GUIDARES was created. GUIDARES is a user-friendly program that lets you look directly at the data in the GSC, either as a graphical sky map or as a text table. GUIDARES can read a sampling of GSC data from a given sky region, store this sampling in a text file, and display a graphical map of the sampled region in projected celestial coordinates (perfect for finder charts). GUIDARES supports rectangular and circular regions defined by coordinates in the equatorial, ecliptic (any equinox) or galactic systems.
Numeric calculation of celestial bodies with spreadsheet analysis
NASA Astrophysics Data System (ADS)
Koch, Alexander
2016-04-01
The motion of the planets and moons in our solar system can easily be calculated for any time by the Kepler laws of planetary motion. The Kepler laws are a special case of the gravitational law of Newton, especially if you consider more than two celestial bodies. Therefore it is more basic to calculate the motion by using the gravitational law. But the problem is, that by gravitational law it is not possible to calculate the state of motion with only one step of calculation. The motion has to be numerical calculated for many time intervalls. For this reason, spreadsheet analysis is helpful for students. Skills in programmes like Excel, Calc or Gnumeric are important in professional life and can easily be learnt by students. These programmes can help to calculate the complex motions with many intervalls. The more intervalls are used, the more exact are the calculated orbits. The sutdents will first get a quick course in Excel. After that they calculate with instructions the 2-D-coordinates of the orbits of Moon and Mars. Step by step the students are coding the formulae for calculating physical parameters like coordinates, force, acceleration and velocity. The project is limited to 4 weeks or 8 lessons. So the calcualtion will only include the calculation of one body around the central mass like Earth or Sun. The three-body problem can only be shortly discussed at the end of the project.
NASA Astrophysics Data System (ADS)
Sun, Xiaochun
The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.
Realization of ETRF2000 as a New Terrestrial Reference Frame in Republic of Serbia
NASA Astrophysics Data System (ADS)
Blagojevic, D.; Vasilic, V.
2012-12-01
The International Earth Rotation and Reference Systems Service (IERS) is a joint service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU), which provides the scientific community with the means for computing the transformation from the International Celestial Reference System (ICRS) to the International Terrestrial Reference System (ITRS). It further maintains the realizations of these systems by appropriate coordinate sets called "frames". The densification of terrestrial frame usually serves as official frame for positioning and navigation tasks within the territory of particular country. One of these densifications was recently performed in order to establish new reference frame for Republic of Serbia. The paper describes related activities resulting in ETRF2000 as a new Serbian terrestrial reference frame.
Consistent realization of Celestial and Terrestrial Reference Frames
NASA Astrophysics Data System (ADS)
Kwak, Younghee; Bloßfeld, Mathis; Schmid, Ralf; Angermann, Detlef; Gerstl, Michael; Seitz, Manuela
2018-03-01
The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005-2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of Δ UT1 results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μas. Moreover, the CRF is influenced by up to 50 μas if the station coordinates and EOP are dominated by the satellite techniques.
Dynamical configurations of celestial systems comprised of multiple irregular bodies
NASA Astrophysics Data System (ADS)
Jiang, Yu; Zhang, Yun; Baoyin, Hexi; Li, Junfeng
2016-09-01
This manuscript considers the main features of the nonlinear dynamics of multiple irregular celestial body systems. The gravitational potential, static electric potential, and magnetic potential are considered. Based on the three established potentials, we show that three conservative values exist for this system, including a Jacobi integral. The equilibrium conditions for the system are derived and their stability analyzed. The equilibrium conditions of a celestial system comprised of n irregular bodies are reduced to 12n - 9 equations. The dynamical results are applied to simulate the motion of multiple-asteroid systems. The simulation is useful for the study of the stability of multiple irregular celestial body systems and for the design of spacecraft orbits to triple-asteroid systems discovered in the solar system. The dynamical configurations of the five triple-asteroid systems 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC, and the six-body system 134340 Pluto are calculated and analyzed.
Inertial Pointing and Positioning System
NASA Technical Reports Server (NTRS)
Yee, Robert (Inventor); Robbins, Fred (Inventor)
1998-01-01
An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.
Arrival direction distribution of cosmic rays of energy 10 (18) eV
NASA Technical Reports Server (NTRS)
Eames, P. V.; Lloyd-Evans, J.; Morello, C.; Reid, R. J. O.; Watson, A. A.
1985-01-01
The Haverah Park air-shower experiment recorded over 8500 events with primary energy 10 to the 18th power eV between 1963 and 1983. An analysis of these events for anisotropies in celestial and galactic coordinates is reported. No very striking anisotropies are observed.
Celestial mechanics - Methods of the theory of motion of 'artificial' celestial bodies
NASA Astrophysics Data System (ADS)
Duboshin, G. N.
This book is concerned with the translational motion of 'artificial' celestial bodies. The difference between natural celestial bodies, which are ordinarily considered by celestial mechanics, and 'artificial' celestial bodies is discussed, taking into account hypothetical celestial bodies introduced in connection with mathematical developments and problems, invisible celestial bodies whose existence can be assumed on the basis of some plausible hypothesis, and man-made satellites of the earth. The book consists of two parts. The first part presents introductory material, and examines a number of general mathematical questions to provide a basis for the studies conducted in the second part. Subjects considered in the first part are related to basic problems, integration methods, and perturbation theory. In the second part, attention is given to the motion of artificial celestial bodies in the gravitational field of the basic planet, external perturbations regarding the motion of these bodies, the motion of the bodies in the earth-moon system, and periodic solutions.
NASA Technical Reports Server (NTRS)
Schmitz, M.; Brown, L. W.; Mead, J. M.; Nagy, T. A.
1978-01-01
A compilation of equatorial coordinates, spectral types, magnitudes, and fluxes from five catalogues of infrared observations is presented. This first edition of the Merged Infrared Catalogue contains 11,201 oservations from the Two-Micron Sky Survey, Observations of Infrared Radiation from Cool Stars, the Air Force Geophysics Laboratory four Color Infrared Sky Survey and its Supplemental Catalog, and from Catalog of 10 micron Celestial Objects (HALL). This compilation is a by-product of a computerized infrared data base under development at Goddard Space Flight Center; the objective is to maintain a complete and current record of all infrared observations from 1 micron m to 1000 micron m of nonsolar system objects. These observations are being placed into a standardized system.
The terrestrial gravitational wave environment from known sources
NASA Technical Reports Server (NTRS)
Webbink, Ronald F.
1993-01-01
The objective of this project was to produce a gravitational wave spectral line list of all known binary stars producing expected strain amplitudes at Earth in excess of h = 10 (exp -21), or gravitational wave fluxes in excess of F = 10 (exp -12) erg cm(exp -2) s(exp -1). These strain and flux limits lie above the anticipated detection thresholds for space-borne laser interferometers capable of detecting gravitational radiation in the 10 micron Hz to 1 Hz frequency range. The source list was intended to provide frequency (including each harmonic), amplitude and phase (for each polarization and harmonic), and celestial coordinates for each system, lacking only the orientation of the principal polarization axis with respect to the pole of the coordinate system, and the sign of the source phase and frequency (or, equivalently, of the sense of rotation of the strain tensor with time) from providing a complete source description. Such a spectral line list would lay essential groundwork for high-sensitivity, low-frequency searches for gravitational radiation.
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei; Xie, Yi
2010-11-01
We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth-Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.
A study on making a Honsang using the star catalogue from 『Seong Gyeong』
NASA Astrophysics Data System (ADS)
Ham, Seon Young; Kim, Sang Hyuk; Lee, Yong Sam
2016-01-01
The first record of Honsang (Celestial globe) was found in 『Sejong Sillok』 in Korea. Since then, there were records that Honsang was restored during the reign of King Jungjong and King Myungjong, and then restored again in the reign of King Seonjo. The only existing Honsang was made by Yi Hwang (1501-1570) in the 16th century for education of his followers. After then, Hong Dae Yong's (1731-1783) Honsangui, which was made in 18th century, had been passed down only through the literature. The constellations in Honsang and the scale system of each ring changed after 17th century when Western science began to affect Joseon dynasty. Since that time, the constellations, realized on Honsang globe, changed from constellations in the old method to ones in the new method. Furthermore, the scale system of rings on Honsang was changed from 365.25 Do, Jucheondo (Celestial globe circumference), to 360°. In this study, Honsang with constellations in the new method was made using star catalogue from 『Seong Gyeong』 published in 1861, which represented the constellations in the new method of Joseon dynasty. In order to realized the constellations from the star catalogue in 『Seong Gyeong』 on Honsang globe, the plane star chart and circular star chart of the area near the South and North Poles were drawn using spherical trigonometry. Using these star charts, the constellations in whole sky including stars near the South Pole were realized on Honsang globe. Also, equatorial coordinates and ecliptic coordinates were realized on Honsang globe simultaneously, and scales of Honsang's rings were marked as 360°.
Position determination systems. [using orbital antenna scan of celestial bodies
NASA Technical Reports Server (NTRS)
Shores, P. W. (Inventor)
1976-01-01
A system for an orbital antenna, operated at a synchronous altitude, to scan an area of a celestial body is disclosed. The antenna means comprises modules which are operated by a steering signal in a repetitive function for providing a scanning beam over the area. The scanning covers the entire area in a pattern and the azimuth of the scanning beam is transmitted to a control station on the celestial body simultaneous with signals from an activated ground beacon on the celestial body. The azimuth of the control station relative to the antenna is known and the location of the ground beacon is readily determined from the azimuth determinations.
Modelling of celestial backgrounds
NASA Astrophysics Data System (ADS)
Hickman, Duncan L.; Smith, Moira I.; Lim, Jae-Wan; Jeon, Yun-Ho
2018-05-01
For applications where a sensor's image includes the celestial background, stars and Solar System Bodies compromise the ability of the sensor system to correctly classify a target. Such false targets are particularly significant for the detection of weak target signatures which only have a small relative angular motion. The detection of celestial features is well established in the visible spectral band. However, given the increasing sensitivity and low noise afforded by emergent infrared focal plane array technology together with larger and more efficient optics, the signatures of celestial features can also impact performance at infrared wavelengths. A methodology has been developed which allows the rapid generation of celestial signatures in any required spectral band using star data from star catalogues and other open-source information. Within this paper, the radiometric calculations are presented to determine the irradiance values of stars and planets in any spectral band.
Autonomous orbital navigation using Kepler's equation
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1974-01-01
A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.
Astrometry of Single-Chord Occultations: Application to the 1993 Triton Event
NASA Technical Reports Server (NTRS)
Olkin, Catherine B.; Elliot, J. L.; Bus, Schelte J.; McDonald, Stephen W.; Dahn, Conrad C.
1996-01-01
This paper outlines a method for reducing astrometric data to derive the closest approach time and distance to the center of an occultation shadow for a single observer. The method applies to CCD frames, strip scans or photographic plates and uses a set of field stars of unknown positions to define a common coordinate system for all frames. The motion of the occulting body is used to establish the transformation between this common coordinate system and the celestial coordinate system of the body's ephemeris. This method is demonstrated by application to the Tr6O occultation by Triton on 1993 July 10 UT. Over an interval of four nights that included the occultation time, 80 frames of Triton and Tr6O were taken near the meridian with the U.S. Naval Observatory (USNO) 61-inch astrometric reflector. Application of the method presented here to these data yields a closest approach distance of 359 +/- 133 km (corresponding to 0.017 +/- 0.006 arcsec) for the occultation chord obtained with the Kuiper Airborne Observatory (KAO). Comparison of the astrometric closest approach time with the KAO light-curve midtime shows a difference of 2.2 +/- 4.1 s. Relative photometry of Triton and Tr6O, needed for photometric calibration of the occultation light curve, is also presented.
EDITORIAL: XVI Brazilian Colloquium on Orbital Dynamics
NASA Astrophysics Data System (ADS)
de Melo, Cristiano F.; Macau, Elbert E. N.; Prado, Antonio B. A.; Hetem Jnr, Annibal
2013-10-01
The XVI Brazilian Colloquium on Orbital Dynamics was held from 26-30 November 2012, at the Biazi Grand Hotel, Serra Negra, São Paulo, Brazil. The Brazilian Colloquia on Orbital Dynamics are scientific events that occur bi-annually and are designed to develop those areas of research in celestial mechanics, orbital dynamics, planetary science, fundamental astronomy, aerospace engineering, and nonlinear systems and chaos. The meeting has been held for 30 years and it brings together researchers, professors and students from South American and also from other continents. Acknowledgements National Council for Scientific and Technological Development - CNPq Coordination for the Improvement of Higher Level - CAPES São Paulo Research Foundation - FAPESP
NASA Astrophysics Data System (ADS)
Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.
2017-10-01
This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.
VLBI tracking of GNSS satellites: recent achievements
NASA Astrophysics Data System (ADS)
Liu, Li; Heinkelmann, Robert; Tornatore, Vincenza; Li, Jinling; Mora-Diaz, Julian; Nilsson, Tobias; Karbon, Maria; Raposo-Pulido, Virginia; Soja, Benedikt; Xu, Minghui; Lu, Cuixian; Schuh, Harald
2014-05-01
While the ITRF (International Terrestrial Reference Frame) is realized by the combination of the various space geodetic techniques, VLBI (Very Long Baseline Interferometry) is the only technique for determining the ICRF (International Celestial Reference Frame) through its observations of extragalactic radio sources. Therefore, small inconsistencies between the two important frames do exist. According to recent comparisons of parameters derived by GNSS (Global Navigation Satellite Systems) and VLBI (e.g. troposphere delays, gradients, UT1-UTC), evidences of discrepancies obtained by the vast amounts of data become obvious. Terrestrial local ties can provide a way to interlink the otherwise independent technique-specific reference frames but only to some degree. It is evident that errors in the determination of the terrestrial ties, e.g. due to the errors when transforming the locally surveyed coordinates into global Cartesian three dimensional coordinates, introduce significant errors in the combined analysis of space geodetic techniques. A new concept for linking the space geodetic techniques might be to introduce celestial ties, e.g. realized by technique co-location on board of satellites. A small satellite carrying a variety of space geodetic techniques is under investigation at GFZ. Such a satellite would provide a new observing platform with its own additional unknowns, such as the orbit or atmospheric drag parameters. A link of the two techniques VLBI and GNSS might be achieved in a more direct way as well: by VLBI tracking of GNSS satellites. Several tests of this type of observation were already successfully carried out. This new kind of hybrid VLBI-GNSS observation would comprise a new direct inter-technique tie without the involvement of surveying methods and would enable improving the consistency of the two space geodetic techniques VLBI and GNSS, in particular of their celestial frames. Recently the radio telescopes Wettzell and Onsala have successfully observed a GNSS satellite for the first time, using also new receiver developments, done at Wettzell. In this contribution we want to develop the motivation for this kind of innovative observation and we will show first results of the test observations.
Determination of the observation conditions of celestial bodies with the aid of the DISPO system
NASA Technical Reports Server (NTRS)
Kazakov, R. K.; Krivov, A. V.
1984-01-01
The interactive system for determining the observation conditions of celestial bodies is described. A system of programs was created containing a part of the DISPO Display Interative System of Orbit Planning. The system was used for calculating the observatiion characteristics of Halley's comet during its approach to Earth in 1985-86.
Optical technologies for space sensor
NASA Astrophysics Data System (ADS)
Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun
2015-10-01
Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.
Magnetic information affects the stellar orientation of young bird migrants
NASA Astrophysics Data System (ADS)
Weindler, Peter; Wiltschko, Roswitha; Wiltschko, Wolfgang
1996-09-01
WHEN young birds leave on their first migration, they are guided by innate information about their direction of migration. It is generally assumed that this direction is represented twice, namely with respect to celestial rotation and with respect to the Earth's magnetic field1,2. The interactions between the two cue systems have been analysed by exposing hand-raised young birds during the premigratory period to cue-conflict situations, in which celestial rotation and the magnetic field provided different information. Celestial rotation altered the course with respect to the magnetic field3-7, whereas conflicting magnetic information did not seem to affect the course with respect to the stars8,9. Celestial information thus seemed to dominate over magnetic information. Here we report that the interaction between the two cue systems is far more complex than this. Celestial rotation alone seems to provide only a tendency to move away from its centre (towards geographical south), which is then modified by information from the magnetic field to establish the distinctive, population-specific migratory direction.
NASA Astrophysics Data System (ADS)
Soja, B.; Krasna, H.; Boehm, J.; Gross, R. S.; Abbondanza, C.; Chin, T. M.; Heflin, M. B.; Parker, J. W.; Wu, X.
2017-12-01
The most recent realizations of the ITRS include several innovations, two of which are especially relevant to this study. On the one hand, the IERS ITRS combination center at DGFI-TUM introduced a two-level approach with DTRF2014, consisting of a classical deterministic frame based on normal equations and an optional coordinate time series of non-tidal displacements calculated from geophysical loading models. On the other hand, the JTRF2014 by the combination center at JPL is a time series representation of the ITRF determined by Kalman filtering. Both the JTRF2014 and the second level of the DTRF2014 are thus able to take into account short-term variations in the station coordinates. In this study, based on VLBI data, we combine these two approaches, applying them to the determination of both terrestrial and celestial reference frames. Our product has two levels like DTRF2014, with the second level being a Kalman filter solution like JTRF2014. First, we compute a classical TRF and CRF in a global least-squares adjustment by stacking normal equations from 5446 VLBI sessions between 1979 and 2016 using the Vienna VLBI and Satellite Software VieVS (solution level 1). Next, we obtain coordinate residuals from the global adjustment by applying the level-1 TRF and CRF in the single-session analysis and estimating coordinate offsets. These residuals are fed into a Kalman filter and smoother, taking into account the stochastic properties of the individual stations and radio sources. The resulting coordinate time series (solution level 2) serve as an additional layer representing irregular variations not considered in the first level of our approach. Both levels of our solution are implemented in VieVS in order to test their individual and combined performance regarding the repeatabilities of estimated baseline lengths, EOP, and radio source coordinates.
Modular Mount Control System for Telescopes
NASA Astrophysics Data System (ADS)
Mooney, J.; Cleis, R.; Kyono, T.; Edwards, M.
The Space Observatory Control Kit (SpOCK) is the hardware, computers and software used to run small and large telescopes in the RDS division of the Air Force Research Laboratories (AFRL). The system is used to track earth satellites, celestial objects, terrestrial objects and aerial objects. The system will track general targets when provided with state vectors in one of five coordinate systems. Client-toserver and server-to-gimbals communication occurs via human-readable s-expressions that may be evaluated by the computer language called Racket. Software verification is achieved by scripts that exercise these expressions by sending them to the server, and receiving the expressions that the server evaluates. This paper describes the adaptation of a modular mount control system developed primarily for LEO satellite imaging on large and small portable AFRL telescopes with a goal of orbit determination and the generation of satellite metrics.
THE CELESTIAL REFERENCE FRAME AT 24 AND 43 GHz. I. ASTROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanyi, G. E.; Jacobs, C. S.; Naudet, C. J.
2010-05-15
We present astrometric results for compact extragalactic objects observed with the Very Long Baseline Array at radio frequencies of 24 and 43 GHz. Data were obtained from ten 24 hr observing sessions made over a five-year period. These observations were motivated by the need to extend the International Celestial Reference Frame (ICRF) to higher radio frequencies to enable improved deep space navigation after 2016 and to improve state-of-the-art astrometry. Source coordinates for 268 sources were estimated at 24 GHz and for 131 sources at 43 GHz. The median formal uncertainties of right ascension and declination at 24 GHz are 0.08more » and 0.15 mas, respectively. Median formal uncertainties at 43 GHz are 0.20 and 0.35 mas, respectively. Weighted root-mean-square differences between the 24 and 43 GHz positions and astrometric positions based on simultaneous 2.3 and 8.4 GHz Very Long Baseline Interferometry observations, such as the ICRF, are less than about 0.3 mas in both coordinates. With observations over five years we have achieved a precision at 24 GHz approaching that of the ICRF but unaccounted systematic errors limit the overall accuracy of the catalogs.« less
NASA Technical Reports Server (NTRS)
Aldcroft, T.; Karovska, M.; Cresitello-Dittmar, M.; Cameron, R.
2000-01-01
The aspect system of the Chandra Observatory plays a key role in realizing the full potential of Chandra's x-ray optics and detectors. To achieve the highest spatial and spectral resolution (for grating observations), an accurate post-facto time history of the spacecraft attitude and internal alignment is needed. The CXC has developed a suite of tools which process sensor data from the aspect camera assembly and gyroscopes, and produce the spacecraft aspect solution. In this poster, the design of the aspect pipeline software is briefly described, followed by details of aspect system performance during the first eight months of flight. The two key metrics of aspect performance are: image reconstruction accuracy, which measures the x-ray image blurring introduced by aspect; and celestial location, which is the accuracy of detected source positions in absolute sky coordinates.
Simultaneous calibrations of Voyager celestial and inertial attitude control systems in flight
NASA Technical Reports Server (NTRS)
Jahanshahi, M. H.
1982-01-01
A mathematical description of the data reduction technique used to simultaneously calibrate the Voyager celestial and inertial attitude control subsystems is given. It is shown that knowledge of the spacecraft limit cycle motion, as measured by the celestial and the inertial sensors, is adequate to result in the estimates of a selected number of errors which adversely affect the spacecraft attitude knowledge.
Wavelength dependence of position angle in polarization standards. [of stellar systems
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Tapia, S.
1986-01-01
Eleven of the 15 stars on Serkowski's (1974) list of 'Standard Stars with Large Interstellar Polarization' were investigated to determine whether the orientation of the plane of their linear polarization showed any dependence on wavelength. Nine of the eleven stars exhibited a statistically significant wavelength dependence of position angle when measured with an accuracy of about 0.1 deg standard deviation. For the majority of these stars, the effect is caused primarily by intrinsic polarization. The calibration of polarimeter position angles in a celestial coordinate frame must evidently be done at the 0.1 deg level of accuracy by using only carefully selected standard stars or by using other astronomical or laboratory methods.
The depth of the honeybee's backup sun-compass systems.
Dovey, Katelyn M; Kemfort, Jordan R; Towne, William F
2013-06-01
Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation.
Background Oriented Schlieren Using Celestial Objects
NASA Technical Reports Server (NTRS)
Haering, Edward, A., Jr. (Inventor); Hill, Michael A (Inventor)
2017-01-01
The present invention is a system and method of visualizing fluid flow around an object, such as an aircraft or wind turbine, by aligning the object between an imaging system and a celestial object having a speckled background, taking images, and comparing those images to obtain fluid flow visualization.
Determination of the Beagle2 landing site
NASA Astrophysics Data System (ADS)
Trautner, R.; Manaud, N.; Michael, G.; Griffiths, A.; Beauvivre, S.; Koschny, D.; Coates, A.; Josset, J.-L.
2004-02-01
Beagle2 is the UK-led lander element on ESA's Mars Express mission, which will reach Mars in late December 2003. After separation from the Mars Express orbiter 6 days before the atmospheric entry, Beagle2 will descend to the Martian surface by means of ablative heat shields and parachutes. The impact will be cushioned by a set of airbags. The selected landing site at 11.6 deg N/90.75 deg E (IAU 2000 coordinates) is situated in the south-east of the center of Isidis Planitia, a sedimentary basin which is expected to meet the requirements of Beagle's scientific mission, the lander operations, and the entry, descent and landing systems. The exact determination of the Beagle2 landing site is important not only for the Beagle2 and MEX orbiter science investigations, but also for the reconstruction of Beagle's entry and descent trajectory. A precise determination of the Beagle2 position is not possible via the MELACOM radio link. Instead, a novel method based on celestial navigation is employed, which utilizes the Stereo Camera System on the lander for imaging the Martian night sky. The position data is then refined by comparing the landing site panorama images with high resolution orbiter images and laser altimeter data. This combination of celestial navigation with image data analysis for precision position determination will be applicable for many future missions as well.
Solar system lithograph set for earth and space science
NASA Technical Reports Server (NTRS)
1995-01-01
A color lithographs of many of the celestial bodies within our solar system are contained in this educational set of materials. Printed on the back of each lithograph is information regarding the particular celestial body. A sheet with information listing NASA resources and electronic resources for education is included.
1986-02-10
determination of space stations’ coordinates. We are also con- ducting scientific studies of celestial mechanics here." The Maksutov-Sobolev camera ...ionosphere, through which the signals propagated. The trajectories of the spacecraft "Vega-1" and "Vega-2" themselves were determined with high...source. The contents of this publication in no way represent the poli- cies, views or attitudes of the U.S. Government. PROCUREMENT OF
NASA Astrophysics Data System (ADS)
Pásztor, Emília
2011-06-01
Celestial events often exerted a great or even decisive influence on the life of ancient communities. They may provide some of the foundations on which an understanding of the deeper meaning of mythologies, religious systems and even folk tales can be based. These influences are reflected and may be detected in the archaeological material as well. There is good evidence that celestial (especially solar and perhaps lunar) phenomena played a particularly important rôle in the worldview of prehistoric Europe. To reveal the social and ideational significance of concepts relating to the celestial bodies in the prehistory of the Carpathian Basin, complex investigations on orientations of houses and graves, prestige archaeological finds and iconography have been accomplished. The results indicate ideological and/or social changes, which developed into a likely organized ideological system in large part of Central Europe including the Carpathian Basin by the Late Bronze Age. It might also be the first period in prehistory when people became really interested in celestial phenomena.
NASA Astrophysics Data System (ADS)
Dvorak, R.; Henrard, J.
1996-03-01
The following topics were dealt with: celestial mechanics, dynamical astronomy, planetary systems, resonance scattering, Hamiltonian mechanics non-integrability, irregular periodic orbits, escape, dynamical system mapping, fast Fourier method, precession-nutation, Nekhoroshev theorem, asteroid dynamics, the Trojan problem, planet-crossing orbits, Kirkwood gaps, future research, human comprehension limitations.
A Native Intelligence Metric for Artificial Systems
2002-08-01
an example to help clarify the GCEA. Say we are S and we stumble upon Stonehenge . We don’t wonder whether humans carried the stones (some...stones S encounters that may be exhibiting alignment with celestial bodies at certain seasonal times. S determines that the designer of Stonehenge had...matching of the stones with particular celestial events. The various celestial events and our prehistoric Stonehenge designer’s awareness of these events
Re-calibration of the magnetic compass in hand-raised European robins (Erithacus rubecula)
Alert, Bianca; Michalik, Andreas; Thiele, Nadine; Bottesch, Michael; Mouritsen, Henrik
2015-01-01
Migratory birds can use a variety of environmental cues for orientation. A primary calibration between the celestial and magnetic compasses seems to be fundamental prior to a bird’s first autumn migration. Releasing hand-raised or rescued young birds back into the wild might therefore be a problem because they might not have established a functional orientation system during their first calendar year. Here, we test whether hand-raised European robins that did not develop any functional compass before or during their first autumn migration could relearn to orient if they were exposed to natural celestial cues during the subsequent winter and spring. When tested in the geomagnetic field without access to celestial cues, these birds could orient in their species-specific spring migratory direction. In contrast, control birds that were deprived of any natural celestial cues throughout remained unable to orient. Our experiments suggest that European robins are still capable of establishing a functional orientation system after their first autumn. Although the external reference remains speculative, most likely, natural celestial cues enabled our birds to calibrate their magnetic compass. Our data suggest that avian compass systems are more flexible than previously believed and have implications for the release of hand-reared migratory birds. PMID:26388258
Record-Breaking Radio Astronomy Project to Measure Sky with Extreme Precision
NASA Astrophysics Data System (ADS)
2009-11-01
Astronomers will tie together the largest collection of the world's radio telescopes ever assembled to work as a single observing tool in a project aimed at improving the precision of the reference frame scientists use to measure positions in the sky. The National Science Foundation's Very Long Baseline Array (VLBA) will be a key part of the project, which is coordinated by the International VLBI Service for Geodesy and Astrometry. For 24 hours, starting Wednesday, November 18, and ending Thursday, November 19, 35 radio telescopes located on seven continents will observe 243 distant quasars. The quasars, galaxies with supermassive black holes at their cores, are profuse emitters of radio waves, and also are so distant that, despite their actual motions in space, they appear stationary as seen from Earth. This lack of apparent motion makes them ideal celestial landmarks for anchoring a grid system, similar to earthly latitude and longitude, used to mark the positions of celestial objects. Data from all the radio telescopes will be combined to make them work together as a system capable of measuring celestial positions with extremely high precision. The technique used, called very long baseline interferometry (VLBI), has been used for decades for both astronomical and geodetic research. However, no previous position-measuring observation has used as many radio telescopes or observed as many objects in a single session. The previous record was a 23-telescope observation. At a meeting in Brazil last August, the International Astronomical Union adopted a new reference frame for celestial positions that will be used starting on January 1. This new reference frame uses a set of 295 quasars to define positions, much like surveyor's benchmarks in a surburban subdivision. Because even with 35 radio telescopes around the world, there are some gaps in sky coverage, the upcoming observation will observe 243 of the 295. By observing so many quasars in a single observing session, problems of linking positions from one observing session to another can be avoided, the astronomers say. The result will be a much stronger, more precise, reference grid. Telescopes in Asia, Australia, Europe, North America, South America, Antarctica, and in the Pacific will participate. Improving the celestial positional grid will allow astronomers better to pinpoint the locations and measure the motions of objects in the sky. As astronomers increasingly study objects using multiple telescopes observing at different wavelengths, such as visible light, radio, infrared, etc., the improved positional grid will allow more accurate overlaying of the different images. The improved celestial reference frame also strengthens a terrestrial reference frame used for radio-telescope measurements that contribute to geophysical research. The precise geodetic measurements help geophysicists understand phenomena such as plate tectonics, earth tides, and processes that affect our planet's orientation in space. The VLBA is a continent-wide radio telescope system with 10, 240-ton dish antennas ranging from Hawaii to the Virgin Islands. Operated from the National Radio Astronomy Observatory's Pete V. Domenici Science Operations Center in Socorro, New Mexico, the VLBA offers the greatest resolving power, or ability to see fine detail, of any telescope in astronomy. The multi-telescope observation will be accompanied by public-outreach activities in celebration of the International Year of Astronomy. A public web page devoted to the observation will be hosted at Bordeaux Observatory, and some of the participating telescopes will have webcams available.
Contemplation and Calculation: The Universe Discovered.
ERIC Educational Resources Information Center
Solovyov, Yury
1992-01-01
Discusses how early notions about celestial mechanics were restructured, one by one, involving the following concepts: the celestial sphere and its rotation; the spherical earth; planetary motion; and models for the solar system initiated by Eudoxus, Hipparchus, Ptolemy, and Copernicus. (JJK)
Mimicking Celestial Mechanics in Metamaterials
2009-09-01
permittivities and permeabilities and could be related to light dynamics in curved space through the invariance of Maxwell’s equations under coordinate...transformations brings the equivalence between curved spacetime and local optical response through spatially dependent permeability and permittivity tensors...with local permeability and permittivity tensors given as µij = εij = δij h1h2h3 hi √g00 where hi= √gii are the Lame coefficients of the transformation
Long-Term Variations of the EOP and ICRF2
NASA Technical Reports Server (NTRS)
Zharov, Vladimir; Sazhin, Mikhail; Sementsov, Valerian; Sazhina, Olga
2010-01-01
We analyzed the time series of the coordinates of the ICRF radio sources. We show that part of the radio sources, including the defining sources, shows a significant apparent motion. The stability of the celestial reference frame is provided by a no-net-rotation condition applied to the defining sources. In our case this condition leads to a rotation of the frame axes with time. We calculated the effect of this rotation on the Earth orientation parameters (EOP). In order to improve the stability of the celestial reference frame we suggest a new method for the selection of the defining sources. The method consists of two criteria: the first one we call cosmological and the second one kinematical. It is shown that a subset of the ICRF sources selected according to cosmological criteria provides the most stable reference frame for the next decade.
Galaxy Redshifts from Discrete Optimization of Correlation Functions
NASA Astrophysics Data System (ADS)
Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi
2016-12-01
We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.
The observation and coverage analysis of the moon-based ultraviolet telescope on CE-3 lander
NASA Astrophysics Data System (ADS)
wang, f.; wen, w.-b.; liu, d.-w.; geng, l.; zhang, x.-x.; zhao, s.
2017-09-01
Through the analysis of all the observed images of MUVT, it is found that in the celestial coordinate system, all the images of the survey are concentrated at Latitude 65 degrees and Longtitude -90 degrees as the center, a ring of 15 degrees width. The observation data analysis: the coverage of the northern area is up to 2263.8 square degrees, accounting for about 5.487% of the all area. The task is completed the observation target. For the first time, the MUVT in a long time has carried out the astronomical observations, and accumulated abundant observational data for basic research on the evolution of stars, compact star and high energy astrophysics and so on.
The Celestial Vault: The Magic of Astrology
NASA Astrophysics Data System (ADS)
McGaha, J.
2004-11-01
Astrology is a "Geocentric System" that supports the "Astrological Principle". This principle, that human beings and their actions are influenced by the positions of celestial objects, is not objectively supported. The "planetary gods" found in the heavens provided order to help explain the chaotic events in life on earth. Is this why many people think their horoscopes are correct, with the "stars" taking credit? Do "celestial movements" foretell the future? What is the evidence for Astrology? The historical, psychological and physical foundations of astrology will be discussed.
NASA Astrophysics Data System (ADS)
Stamatakos, N. G.; McCarthy, D. D.
2016-12-01
A CONVENTIONAL MEAN POLE PATH The gradual drift of the pole associated with the rotational axis of the Earth in a terrestrial reference frame is characterized by the motion of a "mean pole." The IERS Conventions (2010) does not provide a formal definition of such a "mean pole." In its glossary it defines the terminology "mean pole" in the celestial frame by using the definition "the position on the celestial sphere towards which the Earth's axis points at a particular epoch, with the oscillations due to precession-nutation removed." The need for a terrestrial mean pole is mentioned in Section 7.1.4 of the IERS Conventions, which outlines the procedure to account for the variation in terrestrial site coordinates caused by the pole tide. It states, that an estimate of the wander of the mean pole to within about 10 milliarc-seconds is needed to ensure that the geopotential field is aligned to the long term mean pole. Historically the angular coordinates of this "mean pole" were calculated by averaging the observed angular coordinates of the rotational pole over six years, the beat period of the annual and approximately 14-month Chandler motions of the rotational pole. The IERS Conventions (2010) realization of the mean pole is composed of a cubic fit of the polar coordinates valid over 1976-2010 and a linear model for extrapolation after 2010.0. Further it notes that in the future, the IERS conventional mean pole will be revised as needed with sufficient advance notice. However, this document leaves open the formal definition of a conventional terrestrial mean pole, the spectral frequency content to be expected in such a definition and a procedure to be used to realize the coordinates of the path for users. Background is provided regarding past realizations of a "mean pole," and the requirements for a realization of a mean pole path are reviewed. Possible definitions and potential mathematical models to provide mean pole coordinates in the future are outlined. In addition, the authors hope that this poster will serve to open a discussion, which will identify geodesy disciplines that require a mean pole and what type of definition would be suitable to their needs.
GNSS-derived Geocenter Coordinates Viewed by Perturbation Theory
NASA Astrophysics Data System (ADS)
Meindl, Michael; Beutler, Gerhard; Thaller, Daniela; Dach, Rolf; Jäggi, Adrian; Rothacher, Markus
2013-04-01
Time series of geocenter coordinates were determined with data of the two global navigation satellite systems (GNSS) GPS and GLONASS. The data was recorded in the years 2008-2011 by a global network of 92 combined GPS/GLONASS receivers. Two types of solutions were generated for each system, one including the estimation of geocenter coordinates and one without these parameters. A fair agreement for GPS and GLONASS estimates was found in the x- and y-coordinate series of the geocenter. Artifacts do, however, clearly show up in the z-coordinate. Large periodic variations in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system. A detailed analysis revealed that these artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). This effect can be explained by first-order perturbation theory of celestial mechanics. The relation between the geocenter z-coordinate and the corresponding SRP parameters will be presented. Our theory is applicable to all satellite observing techniques. In addition to GNSS, we applied it to satellite laser ranging (SLR) solutions based on LAGEOS observations. The correlation between geocenter and SRP parameters is not a critical issue for SLR, because these parameters do not have to be estimated. This basic difference between SLR and GNSS analyses explains why SLR is an excellent tool to determine geodetic datum parameters like the geocenter coordinates. The correlation between orbit parameters and the z-component of the geocenter is not limited to a particular orbit model, e.g., that of CODE. The issue should be studied for alternative (e.g., box-wing) models: As soon as non-zero mean values (over one revolution) of the out-of-plane force component exist, one has to expect biased geocenter estimates. The insights gained here should be seriously taken into account in the orbit modeling discussion currently taking place within the IGS.
A celestial assisted INS initialization method for lunar explorers.
Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng
2011-01-01
The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors' biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface.
A Celestial Assisted INS Initialization Method for Lunar Explorers
Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng
2011-01-01
The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors’ biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface. PMID:22163998
NASA Astrophysics Data System (ADS)
Golovashchenko, V. A.; Kolomiyets, S. V.
As a result of dynamic evolution of IT industry and astronomical research in the XXI century, which have resulted in obtaining large and complex data sets known as Big Data (e.g. data from the European Space Agency missions, such as GAIA mission, etc.), as well as due to rapid development of computer technologies, astronomy and computer science have become closely linked to each other. In the XXI century, Information technology has become an essential part of understanding the world around. This paper presents a solution to the problem of meteor data representation in the second equatorial coordinate (RA-Dec) system using Information Technology. Such a visualisation solution is needed to analyse the results of experiments based on the radar observations conducted in 1972-1978 (stage 1 - the data obtained in 1972 comprise 10,247 meteor orbits), which have been accumulated and stored in the Meteor Database of the Kharkiv National University of Radio Electronics (KNURE). A sample set of data with their characteristics and details about their delivery has been presented by (Kashcheyev & Tkachuk, 1980). An electronic calculator application was developed by employing the model of data visualisation in the form of celestial hemispheres using the object-oriented programming language C#.
Formation flying for electric sails in displaced orbits. Part II: Distributed coordinated control
NASA Astrophysics Data System (ADS)
Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping
2017-09-01
We analyze a cooperative control framework for electric sail formation flying around a heliocentric displaced orbit, aiming at observing the polar region of a celestial body. The chief spacecraft is assumed to move along an elliptic displaced orbit, while each deputy spacecraft adjusts its thrust vector (that is, both its sail attitude and characteristic acceleration) in order to track a prescribed relative trajectory. The relative motion of the electric sail formation system is formulated in the chief rotating frame, where the control inputs of each deputy are the relative sail attitude angles and the relative lightness number with respect to those of the chief. The information exchange among the spacecraft, characterized by the communication topology, is represented by a weighted graph. Two typical cases, according to whether the communication graph is directed or undirected, are discussed. For each case, a distributed coordinated control law is designed in such a way that each deputy not only tracks the chief state, but also makes full use of information from its neighbors, thus increasing the redundancy and robustness of the formation system in case of failure among the communication links. Illustrative examples show the effectiveness of the proposed approach.
UBVRI PHOTOMETRIC STANDARD STARS AROUND THE CELESTIAL EQUATOR: UPDATES AND ADDITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landolt, Arlo U.
2009-05-15
New broadband UBVRI photoelectric observations on the Johnson-Kron-Cousins photometric system have been made of 202 stars around the sky, and centered at the celestial equator. These stars constitute both an update of and additions to a previously published list of equatorial photometric standard stars. The list is capable of providing, for both celestial hemispheres, an internally consistent homogeneous broadband standard photometric system around the sky. When these new measurements are included with those previously published by Landolt (1992), the entire list of standard stars in this paper encompasses the magnitude range 8.90 < V < 16.30, and the color indexmore » range -0.35 < (B - V) < +2.30.« less
Estimating the Geocenter from GNSS Observations
NASA Astrophysics Data System (ADS)
Dach, Rolf; Michael, Meindl; Beutler, Gerhard; Schaer, Stefan; Lutz, Simon; Jäggi, Adrian
2014-05-01
The satellites of the Global Navigation Satellite Systems (GNSS) are orbiting the Earth according to the laws of celestial mechanics. As a consequence, the satellites are sensitive to the coordinates of the center of mass of the Earth. The coordinates of the (ground) tracking stations are referring to the center of figure as the conventional origin of the reference frame. The difference between the center of mass and center of figure is the instantaneous geocenter. Following this definition the global GNSS solutions are sensitive to the geocenter. Several studies demonstrated strong correlations of the GNSS-derived geocenter coordinates with parameters intended to absorb radiation pressure effects acting on the GNSS satellites, and with GNSS satellite clock parameters. One should thus pose the question to what extent these satellite-related parameters absorb (or hide) the geocenter information. A clean simulation study has been performed to answer this question. The simulation environment allows it in particular to introduce user-defined shifts of the geocenter (systematic inconsistencies between the satellite's and station's reference frames). These geocenter shifts may be recovered by the mentioned parameters - provided they were set up in the analysis. If the geocenter coordinates are not estimated, one may find out which other parameters absorb the user-defined shifts of the geocenter and to what extent. Furthermore, the simulation environment also allows it to extract the correlation matrix from the a posteriori covariance matrix to study the correlations between different parameter types of the GNSS analysis system. Our results show high degrees of correlations between geocenter coordinates, orbit-related parameters, and satellite clock parameters. These correlations are of the same order of magnitude as the correlations between station heights, troposphere, and receiver clock parameters in each regional or global GNSS network analysis. If such correlations are accepted in a GNSS analysis when estimating station coordinates, geocenter coordinates must be considered as mathematically estimable in a global GNSS analysis. The geophysical interpretation may of course become difficult, e.g., if insufficient orbit models are used.
Introduction to orbital flight planning (1)
NASA Technical Reports Server (NTRS)
Blackwell, H. E. (Editor); Davis, E. L.; Dell, D. D.
1981-01-01
This workbook is designed for students interested in space flight planning, who after training, may serve as flight planning aides. Routine flight planning activities requiring engineering-type calculations and analysis are covered. Practice exercises and brief instructions are given for the programming and use of the hand calculator as well as the calculation of position and velocity in the orbital plane. Calculation of relative orbital position is also covered with emphasis upon celestial coordinates and time measurement.
Doppler frequency in interplanetary radar and general relativity
NASA Technical Reports Server (NTRS)
Mcvittie, G. C.
1972-01-01
The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.
NASA Astrophysics Data System (ADS)
Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.
2015-08-01
We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.
The astronomy of Andean myth: The history of a cosmology
NASA Astrophysics Data System (ADS)
Sullivan, William F.
It is shown that Andean myth, on one level, represents a technical language recording astronomical observations of precession and, at the same time, an historical record of simultaneous social and celestial transformations. Topographic and architectural terms of Andean myth are interpreted as a metaphor for the organization of and locations on the celestial sphere. Via ethoastronomical date, mythical animals are identified as stars and placed on the celestial sphere according to their topographical location. Tested in the planetarium, these arrays generate cluster of dates - 200 B.C. and 650 A.D. Analysis of the names of Wiraqocha and Manco Capac indicates they represent Saturn and Jupiter and that their mythical meeting represents their conjunction in 650 A.D. The astronomy of Andean myth is then used as an historical tool to examine how the Andean priest-astronomers recorded the simultaneous creation of the avllu and of this distinctive astronomical system about 200 B.C. The idea that the agricultural avllu, with its double descent system stressing the importance of paternity, represents a transformation of society from an earlier matrilineal/horticultural era is examined in light of the sexual imagery employed in myth. Wiraqocha's androgyny and the division of the celestial sphere into male (ecliptic) and female (celestial equator = earth) are interpreted as cosmological validations of the new social structure.
Schwarz, Sebastian; Albert, Laurence; Wystrach, Antoine; Cheng, Ken
2011-03-15
Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landmark learning and path integration. We conducted experiments to reveal the role of ocelli in the perception and use of celestial compass information and landmark guidance. Ants with directional information from their path integration system were tested with covered compound eyes and open ocelli on an unfamiliar test field where only celestial compass cues were available for homing. These full-vector ants, using only their ocelli for visual information, oriented significantly towards the fictive nest on the test field, indicating the use of celestial compass information that is presumably based on polarised skylight, the sun's position or the colour gradient of the sky. Ants without any directional information from their path-integration system (zero-vector) were tested, also with covered compound eyes and open ocelli, on a familiar training field where they have to use the surrounding panorama to home. These ants failed to orient significantly in the homeward direction. Together, our results demonstrated that M. bagoti could perceive and process celestial compass information for directional orientation with their ocelli. In contrast, the ocelli do not seem to contribute to terrestrial landmark-based navigation in M. bagoti.
NASA Astrophysics Data System (ADS)
Ma, Chopo; MacMillan, Daniel; Gordon, David
2015-08-01
The Second Realization of the International Celestial Reference Frame (ICRF) used dual-frequency VLBI data acquired for geodetic and astrometric purposes from 1979-2009 by organizations now coordinated by the International VLBI Service for Geodesy and Astrometry (IVS) and analyzed according to the Conventions of the International Earth Rotation and Reference Systems Service (IERS). Since 2009 the data set has been significantly broadened, especially by observations in the Southern Hemisphere, and modeling of astronomical, geophysical and tropospheric effects has progressed. The new southern data appear to cause a systematic zonal declination change in the catalog positions. Over the three decades of the ICRF data set the effect of galactic aberration may be significant. Geophysical and tropospheric models also may affect the source positions. All these effects need to be addressed in preparation for ICRF-3.
Akesson, Susanne; Wehner, Rüdiger
2002-07-01
Central-place foraging insects such as desert ants of the genus Cataglyphis use both path integration and landmarks to navigate during foraging excursions. The use of landmark information and a celestial system of reference for nest location was investigated by training desert ants returning from an artificial feeder to find the nest at one of four alternative positions located asymmetrically inside a four-cylinder landmark array. The cylindrical landmarks were all of the same size and arranged in a square, with the nest located in the southeast corner. When released from the compass direction experienced during training (southeast), the ants searched most intensely at the fictive nest position. When instead released from any of the three alternative directions of approach (southwest, northwest or northeast), the same individuals instead searched at two of the four alternative positions by initiating their search at the position closest to the direction of approach when entering the landmark square and then returning to the position at which snapshot, current landmark image and celestial reference information were in register. The results show that, in the ants' visual snapshot memory, a memorized landmark scene can temporarily be decoupled from a memorized celestial system of reference.
Synergies in Astrometry: Predicting Navigational Error of Visual Binary Stars
NASA Astrophysics Data System (ADS)
Gessner Stewart, Susan
2015-08-01
Celestial navigation can employ a number of bright stars which are in binary systems. Often these are unresolved, appearing as a single, center-of-light object. A number of these systems are, however, in wide systems which could introduce a margin of error in the navigation solution if not handled properly. To illustrate the importance of good orbital solutions for binary systems - as well as good astrometry in general - the relationship between the center-of-light versus individual catalog position of celestial bodies and the error in terrestrial position derived via celestial navigation is demonstrated. From the list of navigational binary stars, fourteen such binary systems with at least 3.0 arcseconds apparent separation are explored. Maximum navigational error is estimated under the assumption that the bright star in the pair is observed at maximum separation, but the center-of-light is employed in the navigational solution. The relationships between navigational error and separation, orbital periods, and observers' latitude are discussed.
The parametrization of radio source coordinates in VLBI and its impact on the CRF
NASA Astrophysics Data System (ADS)
Karbon, Maria; Heinkelmann, Robert; Mora-Diaz, Julian; Xu, Minghui; Nilsson, Tobias; Schuh, Harald
2016-04-01
Usually celestial radio sources in the celestial reference frame (CRF) catalog are divided in three categories: defining, special handling, and others. The defining sources are those used for the datum realization of the celestial reference frame, i.e. they are included in the No-Net-Rotation (NNR) constraints to maintain the axis orientation of the CRF, and are modeled with one set of totally constant coordinates. At the current level of precision, the choice of the defining sources has a significant effect on the coordinates. For the ICRF2 295 sources were chosen as defining sources, based on their geometrical distribution, statistical properties, and stability. The number of defining sources is a compromise between the reliability of the datum, which increases with the number of sources, and the noise which is introduced by each source. Thus, the optimal number of defining sources is a trade-off between reliability, geometry, and precision. In the ICRF2 only 39 of sources were sorted into the special handling group as they show large fluctuations in their position, therefore they are excluded from the NNR conditions and their positions are normally estimated for each VLBI session instead of as global parameters. All the remaining sources are classified as others. However, a large fraction of these unstable sources show other favorable characteristics, e.g. large flux density (brightness) and a long history of observations. Thus, it would prove advantageous including these sources into the NNR condition. However, the instability of these objects inhibit this. If the coordinate model of these sources would be extended, it would be possible to use these sources for the NNR condition as well. All other sources are placed in the "others" group. This is the largest group of sources, containing those which have not shown any very problematic behavior, but still do not fulfill the requirements for defining sources. Studies show that the behavior of each source can vary dramatically in time. Hence, each source would have to be modeled individually. Considering this, the shear amount of sources, in our study more than 600 are included, sets practical limitations. We decided to use the multivariate adaptive regression splines (MARS) procedure to parametrize the source coordinates, as they allow a great deal of automation as it combines recursive partitioning and spline fitting in an optimal way. The algorithm finds the ideal knot positions for the splines and thus the best number of polynomial pieces to fit the data. We investigate linear and cubic splines determined by MARS to "human" determined linear splines and their impact on the CRF. Within this work we try to answer the following questions: How can we find optimal criteria for the definition of the defining and unstable sources? What are the best polynomials for the individual categories? How much can we improve the CRF by extending the parametrization of the sources?
The Celestial Basis of Civilization
NASA Astrophysics Data System (ADS)
Masse, W. B.
Scholars have long puzzled over the reasons for the ubiquity of celestial images in the residue of the world's earliest civilizations: in art, myth, religious cosmology, iconography, cosmogony, eschatological beliefs, and as portents for the conduct of royal and chiefly power. The general consensus is that these images represented a need by early societies to use the fixed celestial heavens in order to regulate ritual and agricultural cycles, and to satisfy a psychological need by people to relate themselves to their surrounding Universe. Such explanations are facile and miss an important aspect of the celestial heavens. The fixed celestial heavens served as the back-drop for a large number of often spectacular temporary naked-eye visible celestial events which animated the night and sometimes the daytime sky, and which created an 'otherworld' for virtually all cultural groups. In this paper I present a model derived from the detailed analysis of Hawaiian oral traditions and culture history in relation to historic astronomical records of temporary celestial events, and then apply this model to cultural traditions from Mesoamerica and other geographic regions in order to demonstrate that novae, supernovae, variable stars, comets, great meteor showers, aurorae, solar and lunar eclipses, and impacting Solar System debris, together played a critical role in the artistic, intellectual, and political development of early civilizations. These data not only provide important insights into the development of civilization, but also provide important details and longitudinal records of astronomical events and phenomena which are otherwise not readily available for scientific scrutiny.
NASA Astrophysics Data System (ADS)
Podestá, R.; Pacheco, A. M.; Alvis Rojas, H.; Quinteros, J.; Podestá, F.; Albornoz, E.; Navarro, A.; Luna, M.
2018-01-01
This work shows the strategy followed for the co-location of the Satellite Laser Ranging (SLR) ILRS 7406 telescope and the antenna of the permanent Global Positioning System (GPS) station, located at the Félix Aguilar Astronomical Observatory (OAFA) in San Juan, Argentina. The accomplishment of the co-location consisted in the design, construction, measurement, adjustment and compensation of a geodesic net between the stations SLR and GPS, securing support points solidly built in the soil. The co-location allows the coordinates of the station to be obtained by combining the data of both SLR and GPS techniques, achieving a greater degree of accuracy than individually. The International Earth Rotation and Reference Systems Service (IERS) considers the co-located stations as the most valuable and important points for the maintenance of terrestrial reference systems and their connection with the celestial ones. The 3 mm precision required by the IERS has been successfully achieved.
Solar oscillation time delay measurement assisted celestial navigation method
NASA Astrophysics Data System (ADS)
Ning, Xiaolin; Gui, Mingzhen; Zhang, Jie; Fang, Jiancheng; Liu, Gang
2017-05-01
Solar oscillation, which causes the sunlight intensity and spectrum frequency change, has been studied in great detail, both observationally and theoretically. In this paper, owing to the existence of solar oscillation, the time delay between the sunlight coming from the Sun directly and the sunlight reflected by the other celestial body such as the satellite of planet or asteroid can be obtained with two optical power meters. Because the solar oscillation time delay is determined by the relative positions of the spacecraft, reflective celestial body and the Sun, it can be adopted as the navigation measurement to estimate the spacecraft's position. The navigation accuracy of single solar oscillation time delay navigation system depends on the time delay measurement accuracy, and is influenced by the distance between spacecraft and reflective celestial body. In this paper, we combine it with the star angle measurement and propose a solar oscillation time delay measurement assisted celestial navigation method for deep space exploration. Since the measurement model of time delay is an implicit function, the Implicit Unscented Kalman Filter (IUKF) is applied. Simulations demonstrate the effectiveness and superiority of this method.
NASA Astrophysics Data System (ADS)
Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.
2010-12-01
Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional precision of these humpback whale track segments is far better than the ±25°-40° precision of the avian magnetic compass. The positional and directional orientation data presented suggests signal transduction provides spatial information to migrating animals with better than 1° precision.
NASA Astrophysics Data System (ADS)
Yamada, Y.; Shimokawa, T.; Shinomoto, S. Yano, T.; Gouda, N.
2009-09-01
For the purpose of determining the celestial coordinates of stellar positions, consecutive observational images are laid overlapping each other with clues of stars belonging to multiple plates. In the analysis, one has to estimate not only the coordinates of individual plates, but also the possible expansion and distortion of the frame. This problem reduces to a least-squares fit that can in principle be solved by a huge matrix inversion, which is, however, impracticable. Here, we propose using Kalman filtering to perform the least-squares fit and implement a practical iterative algorithm. We also estimate errors associated with this iterative method and suggest a design of overlapping plates to minimize the error.
Synthetic guide star generation
Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA
2008-06-10
A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.
Synthetic guide star generation
Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.
2004-03-09
A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.
NASA Technical Reports Server (NTRS)
1974-01-01
Photographs of the surface of the planet Mars which were obtained by the Mariner 9 space probe are presented. Areas of investigation during the Mariner 9 flight involved television coverage, ultraviolet spectroscopy, infrared spectroscopy, infrared radiometry, S-band occultation, and celestial mechanics. Descriptions of the photographs are provided to further identify the surface features and the coordinates of the area photographed are included. Emphasis is placed on the visual evidence of the effects of wind in shaping the Martian surface. Photographs of cloud formations and dust storms are analyzed.
The Migration Matrix: Marine Vertebrate Movements in Magnetic Coordinate Space
NASA Astrophysics Data System (ADS)
Horton, T. W.; Holdaway, R. N.; Clapham, P. J.; Zerbini, A. N.; Andriolo, A.; Hays, G. C.; Egevang, C.; Domeier, M. L.; Lucas, N.
2011-12-01
Determining how vertebrates navigate during their long-distance migrations remains one of the most enduring and fundamental challenges of behavioral ecology. It is widely accepted that spatial orientation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and a variety of viable positional and directional orientation cues, including the sun, stars, and magnetic field, have been documented experimentally. However, a fundamental question remains unanswered: Are empirically observed migratory movements compatible with modern theoretical frameworks of spatial orientation? To address this question, we analysed leatherback turtle (Dermochelys coriacea), arctic tern (Sterna paradisaea), humpback whale (Megaptera novaeangliae), and great white shark (Carcharodon carcharias) track maps, frequency distribution diagrams and time-series plots of animal locations in spherical magnetic coordinate space. Our analyses indicates that, although individual migration tracks are spatially and temporally distinct, vertebrate movements are non-randomly distributed in all three spherical magnetic coordinates (i.e. intensity, inclination, and declination). Stop-over locations, migratory destinations, and re-orientation points occur at similar magnetic coordinate locations, relative to tagging areas, in all four species, suggesting that a common system of magnetic orientation likely informs the navigational behaviors of these phylogenetically diverse taxa. Although our analyses demonstrate that the experiment-derived 'magnetic map' goal orientation theoretical framework of animal navigation is compatible with remotely-sensed migration track data, they also indicate that magnetic information is complemented by spatially and temporally contingent celestial stimuli during navigation.
Method for deploying multiple spacecraft
NASA Technical Reports Server (NTRS)
Sharer, Peter J. (Inventor)
2007-01-01
A method for deploying multiple spacecraft is disclosed. The method can be used in a situation where a first celestial body is being orbited by a second celestial body. The spacecraft are loaded onto a single spaceship that contains the multiple spacecraft and the spacecraft is launched from the second celestial body towards a third celestial body. The spacecraft are separated from each other while in route to the third celestial body. Each of the spacecraft is then subjected to the gravitational field of the third celestial body and each of the spacecraft assumes a different, independent orbit about the first celestial body. In those situations where the spacecraft are launched from Earth, the Sun can act as the first celestial body, the Earth can act as the second celestial body and the Moon can act as the third celestial body.
General Methodology for Designing Spacecraft Trajectories
NASA Technical Reports Server (NTRS)
Condon, Gerald; Ocampo, Cesar; Mathur, Ravishankar; Morcos, Fady; Senent, Juan; Williams, Jacob; Davis, Elizabeth C.
2012-01-01
A methodology for designing spacecraft trajectories in any gravitational environment within the solar system has been developed. The methodology facilitates modeling and optimization for problems ranging from that of a single spacecraft orbiting a single celestial body to that of a mission involving multiple spacecraft and multiple propulsion systems operating in gravitational fields of multiple celestial bodies. The methodology consolidates almost all spacecraft trajectory design and optimization problems into a single conceptual framework requiring solution of either a system of nonlinear equations or a parameter-optimization problem with equality and/or inequality constraints.
The astronomical data base and retrieval system at NASA
NASA Technical Reports Server (NTRS)
Mead, J. M.; Nagy, T. A.; Hill, R. S.; Warren, W. H., Jr.
1982-01-01
More than 250 machine-readable catalogs of stars and extended celestial objects are now available at the NASA/Goddard Space Flight Center (GSFC) as the result of over a decade of catalog acquisition, verification and documentation. Retrieval programs are described which permit the user to obtain from a remote terminal bibliographical listings for stars; to find all celestial objects from a given list that are within a defined angular separation from each object in another list; to plot celestial objects on overlays for sky survey plate areas; and to search selected catalogs for objects by criteria of position, identification number, magnitude or spectral type.
The rotational elements of Mars and its satellites
NASA Astrophysics Data System (ADS)
Jacobson, R. A.; Konopliv, A. S.; Park, R. S.; Folkner, W. M.
2018-03-01
The International Astronomical Union (IAU) defines planet and satellite coordinate systems relative to their axis of rotation and the angle about that axis. The rotational elements of the bodies are the right ascension and declination of the rotation axis in the International Celestial Reference Frame and the rotation angle, W, measured easterly along the body's equator. The IAU specifies the location of the body's prime meridian by providing a value for W at epoch J2000. We provide new trigonometric series representations of the rotational elements of Mars and its satellites, Phobos and Deimos. The series for Mars are from a least squares fit to the rotation model used to orient the Martian gravity field. The series for the satellites are from a least squares fit to rotation models developed in accordance with IAU conventions from recent ephemerides.
VizieR Online Data Catalog: SONYC census of substellar objects in Lupus 3 (Muzic+, 2014)
NASA Astrophysics Data System (ADS)
Muzic, K.; Scholz, A.; Geers, V. C.; Jayawardhana, R.; Lopez Marti, B.
2017-06-01
The near-infrared observations were designed to provide J- and KS photometry in the area slightly larger than the one covered with MOSAIC-II. We used NEWFIRM at the CTIO 4 m telescope, providing an FOV of 28'x28' and a pixel scale of 0.4". The NEWFIRM detector is a mosaic of four 2048x2048 Orion InSb arrays, organized in a 2x2 grid. Data reduction was performed using the NEWFIRM pipeline. The data were dark- and sky-subtracted and were corrected for bad pixels and flat-field effects. The astrometry was calibrated with respect to the 2MASS (Skrutskie et al. 2006AJ....131.1163S, Cat. VII/233) coordinate system, and each detector quadrant was re-projected onto an undistorted celestial tangent plane. (3 data files).
Hartung's Astronomical Objects for Southern Telescopes
NASA Astrophysics Data System (ADS)
Malin, David; Frew, David J.
1995-10-01
Many of the most spectacular astronomical objects are found in the southern skies. With this up-to-date, superbly illustrated handbook, both the amateur with binoculars and the expert with a telescope can make discoveries about new and interesting objects. Professor E. J. Hartung first produced his comprehensive and highly respected guide in 1968. Now the book has been greatly expanded and thoroughly revised, enhancing its character as an indispensable information source. With over 150 illustrations, new material is included on constellations and celestial coordinate systems as well as more modern descriptions of stars, nebulae and galaxies. The authors have included a new "southern Messier" list of objects. The authors' passion for their subject make this a unique and inspirational book. Many of the beautiful photographs were taken by David Malin, the world's leading astronomical photographer. The result will fascinate active and armchair astronomers alike.
Celestial Navigation in the 21st Century
NASA Astrophysics Data System (ADS)
Kaplan, George H.
2014-05-01
Despite the ubiquity of GPS receivers in modern life for both timekeeping and geolocation, other forms of navigation remain important because of the weakness of the GPS signals (and those from similar sat-nav systems) and the ease with which they can be jammed. GPS jammers are available for sale on the Internet. The defense and civil aviation communities are particularly concerned about “GPS denial”, whether intentional or accidental, during critical operations.Automated star trackers for navigation have been available since the 1950s. Modern compact observing systems, operating in the far-red and near-IR bands, can detect useful numbers of stars even in the daytime at sea level. A capability to measure the directions of stars relative to some local set of coordinate axes is advantageous for many types of vehicles, whether on the ground, at sea, in the air, or in space, because it provides a direct connection to the inertial reference system represented by current star catalogs. Such a capability can yield precise absolute orientation information not available in any other way. Automated celestial observing systems can be effectively coupled to inertial navigation systems (INS), providing “truth” data for constraining the drift in the INS navigation solution, even if stellar observations are not continuously available due to weather. However, obtaining precise latitude and longitude from stellar observations alone, on a moving platform, remains a challenge, because it requires a determination of the direction to the center of the Earth, i.e., the gravity vertical. General relativity tells us that on-board (“lab”) measurements cannot separate the acceleration of gravity from the acceleration of the platform. Various schemes for overcoming this fundamental problem have been used in the past, at low accuracy, and better ones have been proposed for modern applications. This paper will review some recent developments in this rapidly advancing field.
The role of the sun in the celestial compass of dung beetles
Dacke, M.; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily
2014-01-01
Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day. PMID:24395963
The role of the sun in the celestial compass of dung beetles.
Dacke, M; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily
2014-01-01
Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day.
VizieR Online Data Catalog: M33 molecular clouds and young stellar clusters (Corbelli+, 2017)
NASA Astrophysics Data System (ADS)
Corbelli, E.; Braine, J.; Bandiera, R.; Brouillet, N.; Combes, F.; Druard, C.; Gratier, P.; Mata, J.; Schuster, K.; Xilouris, M.; Palla, F.
2017-04-01
Table 5 : Physical parameters for the 566 molecular clouds identified through the IRAM 30m CO J=2-1 survey of the star forming disk of M33. For each cloud the cloud type and the following properties are listed: celestial coordinates, galactocentric radius, cloud deconvolved effective radius and its uncertainty, CO(2-1) line velocity dispersion from CPROPS and its uncertainty, line velocity dispersion from a Gaussian fit, CO luminous mass and its uncertainty, and virial mass from a Gaussian fit. In the last column the identification number of the young stellar cluster candidates associated with the molecular cloud are listed. Notes: We identify up to four young stellar cluster candidates (YSCCs) associated with each molecular cloud and we list them according to the identification number of Sharma et al. (2011, Cat. J/A+A/545/A96) given also in Table 6. Table 6 : Physical parameters for the 630 young stellar cluster candidates identified via their mid-infrared emission in the star forming disk of M33. For each YSCC we list the type of source, the identified number of the molecular clouds associated with it (if any) and the corresponding cloud classes. In addition, for each YSCC we give the celestial coordinates, the bolometric, total infrared, FUV and Halpha luminosities, the estimated mass and age, the visual extinction, the galactocentric radius, the source size, and its flux at 24μm. (2 data files).
NASA Astrophysics Data System (ADS)
Carter, W. E.; Robertson, D. S.; Nothnagel, A.; Nicolson, G. D.; Schuh, H.
1988-12-01
High-accuracy geodetic very long baseline interferometry measurements between the African, Eurasian, and North American plates have been analyzed to determine the terrestrial coordinates of the Hartebeesthoek observatory to better than 10 cm, to determine the celestial coordinates of eight Southern Hemisphere radio sources with milliarc second (mas) accuracy, and to derive quasi-independent polar motion, UTI, and nutation time series. Comparison of the earth orientation time series with ongoing International Radio Interferometric Surveying project values shows agreement at about the 1 mas of arc level in polar motion and nutation and 0.1 ms of time in UTI. Given the independence of the observing sessions and the unlikeliness of common systematic error sources, this level of agreement serves to bound the total errors in both measurement series.
Contributions to reference systems from Lunar Laser Ranging using the IfE analysis model
NASA Astrophysics Data System (ADS)
Hofmann, Franz; Biskupek, Liliane; Müller, Jürgen
2018-01-01
Lunar Laser Ranging (LLR) provides various quantities related to reference frames like Earth orientation parameters, coordinates and velocities of ground stations in the Earth-fixed frame and selenocentric coordinates of the lunar retro-reflectors. This paper presents the recent results from LLR data analysis at the Institut für Erdmessung, Leibniz Universität Hannover, based on all LLR data up to the end of 2016. The estimates of long-periodic nutation coefficients with periods between 13.6 days and 18.6 years are obtained with an accuracy in the order of 0.05-0.7 milliarcseconds (mas). Estimations of the Earth rotation phase Δ UT are accurate at the level of 0.032 ms if more than 14 normal points per night are included. The tie between the dynamical ephemeris frame to the kinematic celestial frame is estimated from pure LLR observations by two angles and their rates with an accuracy of 0.25 and 0.02 mas per year. The estimated station coordinates and velocities are compared to the ITRF2014 solution and the geometry of the retro-reflector network with the DE430 solution. The given accuracies represent 3 times formal errors of the parameter fit. The accuracy for Δ UT is based on the standard deviation of the estimates with respect to the reference C04 solution.
Celestial ephemerides in an expanding universe
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.
2012-09-01
The post-Newtonian theory of motion of celestial bodies and propagation of light was instrumental in conducting the critical experimental tests of general relativity and in building the astronomical ephemerides of celestial bodies in the Solar System with unparalleled precision. The cornerstone of the theory is the postulate that the Solar System is gravitationally isolated from the rest of the Universe and the background spacetime is asymptotically flat. The present article extends this theoretical concept and formulates the principles of celestial dynamics of particles and light moving in the gravitational field of a localized astronomical system embedded to the expanding Friedmann-Lemaître-Robertson-Walker universe. We formulate the precise mathematical concept of the Newtonian limit of Einstein’s field equations in the conformally flat Friedmann-Lemaître-Robertson-Walker spacetime and analyze the geodesic motion of massive particles and light in this limit. We prove that by doing conformal spacetime transformations, one can reduce the equations of motion of particles and light to the classical form of the Newtonian theory. However, the time arguments in the equations of motion of particles and light differ from each other in terms being proportional to the Hubble constant H. This leads to the important conclusion that the equations of light propagation used currently by space navigation centers for fitting range and Doppler-tracking observations of celestial bodies are missing some terms of the cosmological origin that are proportional to the Hubble constant H. We also analyze the effect of the cosmological expansion on motion of electrons in atoms. We prove that the Hubble expansion does not affect the atomic frequencies and hence does not affect the atomic time scale used in the creation of astronomical ephemerides. We derive the cosmological correction to the light travel time equation and argue that its measurement opens an exciting opportunity to determine the local value of the Hubble constant H in the Solar System independently of cosmological observations.
NASA Astrophysics Data System (ADS)
Liu, J.-C.; Malkin, Z.; Zhu, Z.
2018-03-01
The International Celestial Reference Frame (ICRF) is currently realized by the very long baseline interferometry (VLBI) observations of extragalactic sources with the zero proper motion assumption, while Gaia will observe proper motions of these distant and faint objects to an accuracy of tens of microarcseconds per year. This paper investigates the difference between VLBI and Gaia quasar proper motions and it aims to understand the impact of quasar proper motions on the alignment of the ICRF and Gaia reference frame. We use the latest time series data of source coordinates from the International VLBI Service analysis centres operated at Goddard Space Flight Center (GSF2017) and Paris observatory (OPA2017), as well as the Gaia auxiliary quasar solution containing 2191 high-probability optical counterparts of the ICRF2 sources. The linear proper motions in right ascension and declination of VLBI sources are derived by least-squares fits while the proper motions for Gaia sources are simulated taking into account the acceleration of the Solar system barycentre and realistic uncertainties depending on the source brightness. The individual and global features of source proper motions in GSF2017 and OPA2017 VLBI data are found to be inconsistent, which may result from differences in VLBI observations, data reduction and analysis. A comparison of the VLBI and Gaia proper motions shows that the accuracies of the components of rotation and glide between the two systems are 2-4 μas yr- 1 based on about 600 common sources. For the future alignment of the ICRF and Gaia reference frames at different wavelengths, the proper motions of quasars must necessarily be considered.
NASA Astrophysics Data System (ADS)
Bradstreet, David H.; Huggins, S. L.
2010-01-01
Astronomy education received a huge boost from the Space Program in the 1960's and early 1970's as evidenced by a large increase in school planetariums built nationwide at that time. But with the waning of manned explorations so also went the push for astronomy in the schools, and many school planetariums are underutilized or not used at all. This poster will discuss and illustrate some of the new Fulldome Curriculum that has been developed specifically for the Spitz SciDome digital planetarium powered by Starry Night. It is now possible to teach astronomical concepts in new and exciting ways and present topics that were extremely difficult to convey to lay audiences in the past. One of the strongest advantages of the SciDome is that, since it uses Starry Night as its astronomical engine, students can create their own astronomical configurations in the computer lab or at home using the PC or Mac version and then simply load them onto the SciDome planetarium system and display them for the class on the dome. Additionally, the instructor can create artificial bodies to pose "What if” scenarios, for example, "What would the Moon look like if it didn't rotate synchronously?", or "What would the analemma look like if the Earth's orbit were circular and not an ellipse?" Topics covered in the series include The Moon, Seasons, Coordinate Systems, Roemer's Method of Measuring the Speed of Light, Analemmas in the Solar System, Precession, Mimas and the Cassini Division, Halley's Comet in 1910, Dog Days, Galactic Distributions of Celestial Bodies, Retrograde Paths of Mars, Mercury's Orbit and the Length of the Mercurian Day, Altitude of the North Celestial Pole, Why Polaris Appears Mostly Stationary, Circumpolar Contellations, Planet Definition, Scale of the Solar System, Stonehenge, The Changing Aspect of Saturn's Appearance and Scorpio's Claws.
Nonuniformity of the Earth's rotation and the motion of the poles
NASA Technical Reports Server (NTRS)
Sidorenkov, N. S.
1983-01-01
The study of the nonuniformity of the Earth's rotation and the motion of the poles has great practical and theoretical significance. This study makes it possible to determine the coordinates of celestial and terrestrial objects, and to gain information in many domains of earth science. This paper reviews studies of rotation nonuniformity and polar motion, giving attention to astronomical data; the nature of periodic oscillations of the Earth's rotation; the nature of long-period variations of the Earth's rotation rate; and the use of Earth-rotation data in hydrometeorology.
Observation of GEO Satellite Above Thailand’s Sky
NASA Astrophysics Data System (ADS)
Kasonsuwan, K.; Wannawichian, S.; Kirdkao, T.
2017-09-01
The direct observations of Geostationary Orbit (GEO) satellites above Thailand’s sky by 0.7-meters telescope were proceeded at Inthanon Mt., Chiang Mai, Thailand. The observation took place at night with Sidereal Stare Mode (SSM). With this observing mode, the moving object will appear as a streak. The star identification for image calibration is based on (1) a star catalogue, (2) the streak detection of the satellite using the software and (3) the extraction of the celestial coordinate of the satellite as a predicted position. Finally, the orbital elements for GEO satellites were calculated.
Observations of Anomalous Refraction with Co-housed Telescopes
NASA Astrophysics Data System (ADS)
Taylor, Malinda S.; McGraw, J. T.; Zimmer, P. C.
2013-01-01
Anomalous refraction is described as a low frequency, large angular scale motion of the entire image plane with respect to the celestial coordinate system as observed and defined by previous astrometric catalogs. These motions of typically several tenths of an arcsecond with timescales on the order of ten minutes are ubiquitous to drift-scan ground-based astrometric measurements regardless of location or telescopes used and have been attributed to meter scale slowly evolving coherent dynamical structures in the boundary-layer below 60 meters. The localized nature of the effect and general inconsistency of the motions seen by even closely spaced telescopes in individual domes has led to the hypothesis that the dome or other type of telescope housing may be responsible. This hypothesis is tested by observing anomalous refraction using two telescopes housed in a single roll-off roof observatory building with the expected outcome that the two telescopes will see correlated anomalous refraction induced motions.
Deep data fusion method for missile-borne inertial/celestial system
NASA Astrophysics Data System (ADS)
Zhang, Chunxi; Chen, Xiaofei; Lu, Jiazhen; Zhang, Hao
2018-05-01
Strap-down inertial-celestial integrated navigation system has the advantages of autonomy and high precision and is very useful for ballistic missiles. The star sensor installation error and inertial measurement error have a great influence for the system performance. Based on deep data fusion, this paper establishes measurement equations including star sensor installation error and proposes the deep fusion filter method. Simulations including misalignment error, star sensor installation error, IMU error are analyzed. Simulation results indicate that the deep fusion method can estimate the star sensor installation error and IMU error. Meanwhile, the method can restrain the misalignment errors caused by instrument errors.
Risk of Adverse Health and Performance Effects of Celestial Dust Exposure
NASA Technical Reports Server (NTRS)
Scully, Robert R.; Meyers, Valerie E.
2015-01-01
Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline silica (Permissible Exposure Limit [PEL] 0.05 mg/m3) but more toxic than the nuisance dust titanium dioxide (TiO2 [PEL 5.0 mg/m3]). A PEL for episodic exposure to airborne lunar dust during a six-month stay on the lunar surface was established, in consultation with an independent, extramural panel of expert pulmonary toxicologists, at 0.3 mg/m3. The PEL provided for lunar dust is limited to the conditions and exposure specified therefore additional research remains to be accomplished with lunar dust to further address the issues of activation, address other areas of more unique lunar geology (Glotch et al., 2010; Greenhagen et al., 2010), examine potential toxicological effects of inhaled or ingested dust upon other organ systems, such cardiovascular, nervous systems, and examine effects of acute exposure to massive doses of dust such as may occur during off-nominal situations. Work to support the establishment of PELs for Martian dust and dusts of asteroids remains to be accomplished. The literature that describes health effects of exposure to toxic terrestrial dusts provides substantial basis for concern that prolonged exposure to respirable celestial dust could be detrimental to human health. Celestial bodies where a substantial portion of the dust is in the respirable range or where the dusts have large reactive surface areas or contain transition metals or volatile organics, represent greater risks of adverse effects from exposure to the dust. It is possible that in addition to adverse effects to the respiratory system, inhalation and ingestion of celestial dusts could pose risks to other systems
NASA Astrophysics Data System (ADS)
Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng
2016-01-01
High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.
Naval Observatory Vector Astrometry Software (NOVAS) Version 3.1:Fortran, C, and Python Editions
NASA Astrophysics Data System (ADS)
Kaplan, G. H.; Bangert, J. A.; Barron, E. G.; Bartlett, J. L.; Puatua, W.; Harris, W.; Barrett, P.
2012-08-01
The Naval Observatory Vector Astrometry Software (NOVAS) is a source - code library that provides common astrometric quantities and transformations to high precision. The library can supply, in one or two subroutine or function calls, the instantaneous celestial position of any star or planet in a variety of coordinate systems. NOVAS also provides access to all of the building blocks that go into such computations. NOVAS is used for a wide variety of applications, including the U.S. portions of The Astronomical Almanac and a number of telescope control systems. NOVAS uses IAU recommended models for Earth orientation, including the IAU 2006 precession theory, the IAU 2000A and 2000B nutation series, and diurnal rotation based on the celestial and terrestrial intermediate origins. Equinox - based quantities, such as sidereal time, are also supported. NOVAS Earth orientation calculations match those from SOFA at the sub - microarcsecond level for comparable transformations. NOVAS algorithms for aberration an d gravitational light deflection are equivalent, at the microarcsecond level, to those inherent in the current consensus VLBI delay algorithm. NOVAS can be easily connected to the JPL planetary/lunar ephemerides (e.g., DE405), and connections to IMCCE and IAA planetary ephemerides are planned. NOVAS Version 3.1 introduces a Python edition alongside the Fortran and C editions. The Python edition uses the computational code from the C edition and currently mimics the function calls of the C edition. Future versions will expand the functionality of the Python edition to exploit the object - oriented features of Python. In the Version 3.1 C edition, the ephemeris - access functions have been revised for use on 64 - bit systems and for improved performance in general. NOVAS source code, auxiliary files, and documentation are available from the USNO website (http://aa.usno.navy.mil/software/novas/novas_info.php).
Perceptual Strategies of Pigeons to Detect a Rotational Centre—A Hint for Star Compass Learning?
Helduser, Sascha; Mouritsen, Henrik; Güntürkün, Onur
2015-01-01
Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy. PMID:25807499
Finite element analysis of space debris removal by high-power lasers
NASA Astrophysics Data System (ADS)
Xue, Li; Jiang, Guanlei; Yu, Shuang; Li, Ming
2015-08-01
With the development of space station technologies, irradiation of space debris by space-based high-power lasers, can locally generate high-temperature plasmas and micro momentum, which may achieve the removal of debris through tracking down. Considered typical square-shaped space debris of material Ti with 5cm×5cm size, whose thermal conductivity, density, specific heat capacity and emissivity are 7.62W/(m·°C), 4500kg/m3, 0.52J/(kg·°C) and 0.3,respectively, based on the finite element analysis of ANSYS, each irradiation of space debris by high-power lasers with power density 106W/m2 and weapons-grade lasers with power density 3000W/m2 are simulated under space environment, and the temperature curves due to laser thermal irradiation are obtained and compared. Results show only 2s is needed for high-power lasers to make the debris temperature reach to about 10000K, which is the threshold temperature for plasmas-state conversion. While for weapons-grade lasers, it is 13min needed. Using two line elements (TLE), and combined with the coordinate transformation from celestial coordinate system to site coordinate system, the visible period of space debris is calculated as 5-10min. That is, in order to remove space debris by laser plasmas, the laser power density should be further improved. The article provides an intuitive and visual feasibility analysis method of space debris removal, and the debris material and shape, laser power density and spot characteristics are adjustable. This finite element analysis method is low-cost, repeatable and adaptable, which has an engineering-prospective applications.
Science Planning and Orbit Classification for Solar Probe Plus
NASA Astrophysics Data System (ADS)
Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.
2016-12-01
There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.
NASA Technical Reports Server (NTRS)
Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor); Sheikh, Suneel I. (Inventor)
2015-01-01
A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.
Analysis of the Effect of UTI-UTC to High Precision Orbit
NASA Astrophysics Data System (ADS)
Shin, Dongseok; Kwak, Sunghee; Kim, Tag-Gon
1999-12-01
As the spatial resolution of remote sensing satellites becomes higher, very accurate determination of the position of a LEO (Low Earth Orbit) satellite is demanding more than ever. Non-symmetric Earth gravity is the major perturbation force to LEO satellites. Since the orbit propagation is performed in the celestial frame while Earth gravity is defined in the terrestrial frame, it is required to convert the coordinates of the satellite from one to the other accurately. Unless the coordinate conversion between the two frames is performed accurately the orbit propagation calculates incorrect Earth gravitational force at a specific time instant, and hence, causes errors in orbit prediction. The coordinate conversion between the two frames involves precession, nutation, Earth rotation and polar motion. Among these factors, unpredictability and uncertainty of Earth rotation, called UTI-UTC, is the largest error source. In this paper, the effect of UTI-UTC on the accuracy of the LEO propagation is introduced, tested and analzed. Considering the maximum unpredictability of UTI-UTC, 0.9 seconds, the meaningful order of non-spherical Earth harmonic functions is derived.
Observation of Celestial Phenomena in Ancient China
NASA Astrophysics Data System (ADS)
Sun, Xiaochun
Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.
Investigation on navigation patterns of inertial/celestial integrated systems
NASA Astrophysics Data System (ADS)
Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan
2014-11-01
It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.
Dynamics of Natural and Artificial Celestial Bodies
NASA Astrophysics Data System (ADS)
Pretka-Ziomek, Halina; Wnuk, Edwin; Seidelmann, P. Kenneth; Richardson, David.
2002-01-01
This volume contains papers presented at the US/European Celestial Mechanics Workshop organized by the Astronomical Observatory of Adam Mickiewicz University in Poznan, Poland and held in Poznan, from 3 to 7 July 2000. The purpose of the workshop was to identify future research in celestial mechanics and astrometry and encourage collaboration among scientists from eastern and western countries. Also an emphasis was placed on attracting young members of the fields from around the world and encouraging them to undertake new research efforts needed for advancements in those fields. There was a full program of invited and contributed presentations on selected subjects and each day ended with a discussion period on a general subject in celestial mechanics. The discussion topics and the leaders were: Resonances and Chaos -- A. Morbidelli; Artificial Satellite Orbits -- K.T. Alfriend; Near Earth Objects -- K. Muinonen; Small Solar System Bodies -- I. Williams; and Summary -- P.K. Seidelmann. The goal of the discussions was to identify what we did not know and how we might further our knowledge. It was felt, in addition, that Poznan, Poland, with a core of scientists covering a range of ages, would provide an example of how a research and educational group could be developed elsewhere. Also, Poznan is a central location convenient to eastern and western countries. Thus, the gathering of people and the papers presented are to be the bases for building the future of astrometry and celestial mechanics. Link: http://www.wkap.nl/prod/b/1-4020-0115-0
VizieR Online Data Catalog: C/2012 F6 (Lemmon) and C/2012 S1 (ISON) maps (Cordiner+, 2014)
NASA Astrophysics Data System (ADS)
Cordiner, M. A.; Remijan, A. J.; Boissier, J.; Milam, S. N.; Mumma, M. J.; Charnley, S. B.; Paganini, L.; Villanueva, G.; Bockelee-Morvan, D.; Kuan, Y.-J.; Chuang, Y.-L.; Lis, D. C.; Biver, N.; Crovisier, J.; Minniti, D.; Coulson, I. M.
2017-04-01
WCS-calibrated fits image files of the molecular flux maps shown in Figure 1 for HCN, HNC and H2CO observed in comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON) using ALMA. The files are labeled with the corresponding comet and molecule names. The files are standard two-dimensional fits images, which can be opened in fits image viewers such as SAOimage DS9, CASA viewer, or Starlink Gaia. GIMP and Adobe Photoshop can also be used, provided the appropriate plugins are present. The images contain flux values (in units of Jansky km/s per beam), as a function of celestial coordinate in the J2000 equatorial system. Due to the cometary motions, the absolute coordinate systems are accurate only at the start of the observations (dates and times are given in Table 1). These images are the result of integrating the (3D) ALMA data cubes over the full widths of the observed spectral lines (equivalent to collapsing the data cubes along their respective spectral/velocity axes). The beam dimensions (BMAJ and BMIN), corresponding to the angular resolution of the images, are given in the image headers in units of degrees. object.dat : -------------------------------------------------------------------------------- Code Name Elem q e i H1 d AU deg mag -------------------------------------------------------------------------------- C/2012 F6 Lemmon 2456375.5 0.7312461 0.9985125 82.607966 7.96 C/2012 S1 Ison 2456624.5 0.0124515 0.9998921 64.401571 6.11 (2 data files).
NASA Astrophysics Data System (ADS)
Walker, M.
2012-05-01
Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.
The High Energy Astronomy Observatory X-ray Telescope
NASA Technical Reports Server (NTRS)
Miller, R.; Austin, G.; Koch, D.; Jagoda, N.; Kirchner, T.; Dias, R.
1978-01-01
The High Energy Astronomy Observatory-Mission B (HEAO-B) is a satellite observatory for the purpose of performing a detailed X-ray survey of the celestial sphere. Measurements will be made of stellar radiation in the range 0.2 through 20 keV. The primary viewing requirement is to provide final aspect solution and internal alignment information to correlate an observed X-ray image with the celestial sphere to within one-and-one-half arc seconds. The Observatory consists of the HEAO Spacecraft together with the X-ray Telescope. The Spacecraft provides the required attitude control and determination system, data telemetry system, space solar power system, and interface with the launch vehicle. The X-ray Telescope includes a high resolution mirror assembly, optical bench metering structure, X-ray detectors, detector positioning system, detector electronics and aspect sensing system.
Grob, Robin; Fleischmann, Pauline N.; Grübel, Kornelia; Wehner, Rüdiger; Rössler, Wolfgang
2017-01-01
Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system. PMID:29184487
Grob, Robin; Fleischmann, Pauline N; Grübel, Kornelia; Wehner, Rüdiger; Rössler, Wolfgang
2017-01-01
Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance-presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.
Muheim, Rachel; Moore, Frank R; Phillips, John B
2006-01-01
Migratory birds use multiple sources of compass information for orientation, including the geomagnetic field, the sun, skylight polarization patterns and star patterns. In this paper we review the results of cue-conflict experiments designed to determine the relative importance of the different compass mechanisms, and how directional information from these compass mechanisms is integrated. We focus on cue-conflict experiments in which the magnetic field was shifted in alignment relative to natural celestial cues. Consistent with the conclusions of earlier authors, our analyses suggest that during the premigratory season, celestial information is given the greatest salience and used to recalibrate the magnetic compass by both juvenile and adult birds. Sunset polarized light patterns from the region of the sky near the horizon appear to provide the calibration reference for the magnetic compass. In contrast, during migration, a majority of experiments suggest that birds rely on the magnetic field as the primary source of compass information and use it to calibrate celestial compass cues, i.e. the relative saliency of magnetic and celestial cues is reversed. An alternative possibility, however, is suggested by several experiments in which birds exposed to a cue conflict during migration appear to have recalibrated the magnetic compass, i.e. their response is similar to that of birds exposed to cue conflicts during the premigratory season. The general pattern to emerge from these analyses is that birds exposed to the cue conflict with a view of the entire sunset sky tended to recalibrate the magnetic compass, regardless of whether the cue conflict occurred during the premigratory or migratory period. In contrast, birds exposed to the cue conflict in orientation funnels and registration cages that restricted their view of the region of sky near the horizon (as was generally the case in experiments carried out during the migratory season) did not recalibrate the magnetic compass but, instead, used the magnetic compass to calibrate the other celestial compass systems. If access to critical celestial cues, rather than the timing of exposure to the cue conflict (i.e. premigratory vs migratory), determines whether recalibration of the magnetic compass occurs, this suggests that under natural conditions there may be a single calibration reference for all of the compass systems of migratory birds that is derived from sunset (and possibly also sunrise) polarized light cues from the region of sky near the horizon. In cue-conflict experiments carried out during the migratory season, there was also an interesting asymmetry in the birds' response to magnetic fields shifted clockwise and counterclockwise relative to celestial cues. We discuss two possible explanations for these differences: (1) lateral asymmetry in the role of the right and left eye in mediating light-dependent magnetic compass orientation and (2) interference from the spectral and intensity distribution of skylight at sunset with the response of the light-dependent magnetic compass.
Almanac services for celestial navigation
NASA Astrophysics Data System (ADS)
Nelmes, S.; Whittaker, J.
2015-08-01
Celestial navigation remains a vitally important back up to Global Navigation Satellite Systems (GNSS) and relies on the use of almanac services. HM Nautical Almanac Office (HMNAO) provides a number of these services. The printed book, The Nautical Almanac, produced yearly and now available as an electronic publication, is continuously being improved, making use of the latest ideas and ephemerides to provide the user with their required data. HMNAO also produces NavPac, a software package that assists the user in calculating their position as well as providing additional navigational and astronomical tools. A new version of NavPac will be released in 2015 that will improve the user experience. The development of applications for mobile devices is also being considered. HMNAO continues to combine the latest improvements and theories of astrometry with the creation of books and software that best meet the needs of celestial navigation users.
Protection of celestial environments and the law of outer space
NASA Astrophysics Data System (ADS)
Tennen, Leslie; Race, Margaret
The law of outer space expressly addresses the matter of preservation and protection of natural celestial environments from harmful contamination and disruption by mankind in the explo-ration and use of outer space, including the moon and other celestial bodies. The Outer Space Treaty, however, does not prohibit all human impact to an extraterrestrial environment, but rather permits a wide range of activities that could have significant environmental ramifications. This legal regime may be in conflict with the interests of preserving celestial environments for scientific research, especially when considered in relation to activities conducted for commercial purposes. Nevertheless, the Moon Agreement provides a mechanism by which special protective measures can be implemented to protect particular areas of the moon and other celestial bodies for scientific investigation. This paper examines the current status of the law of outer space vis-a-vis the protection and preservation of natural celestial environments. Particular emphasis is placed on the policies on which the legal obligations are based, together with consideration of the non-appropriation principle, and the commercial use of lunar and other celestial resources and areas. In addition, the concepts of international scientific preserves, special regions, keep out zones, and planetary parks are compared and evaluated as potential means to limit the disturbance to celestial environments caused by the activities of mankind.
The eikonal function: the commom concept in ray optics and particle mechanics
NASA Astrophysics Data System (ADS)
Krautter, Martin
1993-04-01
The habit of teaching the movements of masses first, and propagation of light later, as an electromagnetic phenomenon was widespread. Looking further back into the history of physics, however, we see earlier the concepts for understanding light rays, and later their successful application to particle trajectories, leading to the highly developed celestial mechanics towards the end of the 19th century. And then, 1905, Karl Schwarzschild transferred the technique of `canonical coordinates,' named so by C.G.J. Jacobi in 1837, back to light rays in imaging systems. I would like to point to the chief steps in the evolution. The learning process for handling both particle and wave propagation aspects continues up to our time: Richard Feynman 1918 - 1988. We may judge each contribution: whether it opens our mind to a unifying theory, or whether it hardens partial understanding. And we can notice where the understanding of light propagation led the evolution, and how the theory for movement of masses caught up.
NASA Technical Reports Server (NTRS)
Werthimer, D.; Tarter, J.; Bowyer, S.
1985-01-01
Serendip II is an automated system designed to perform a real time search for narrow band radio signals in the spectra of sources in a regularly scheduled, non-Seti, astronomical observing program. Because Serendip II is expected to run continuously without requiring dedicated observing time, it is hoped that a large portion of the sky will be surveyed at high sensitivity and low cost. Serendip II will compute the power spectrum using a 65,536 channel fast Fourier transform processor with a real time bandwidth of 128 KHz and 2 Hz per channel resolution. After searching for peaks in a 100 KHz portion of the radio telescope's IF band, Serendip II will move to the next 100 KHz portion using a programmable frequency synthesizer; when the whole IF band has been scanned, the process will start again. Unidentified peaks in the power spectra are candidates for further study and their celestial coordinates will be recorded along with the time and power, IF and RF frequency, and bandwidth of the peak.
NASA Astrophysics Data System (ADS)
Eneev, T. M.; Akhmetshin, R. Z.; Efimov, G. B.
2012-04-01
The concept of "space patrol" is considered, aimed at discovering and cataloging the majority of celestial bodies that constitute a menace for the Earth [1, 2]. The scheme of "optical barrier" formed by telescopes of the space patrol is analyzed, requirements to the observation system are formulated, and some schemes of sighting the optical barrier region are suggested (for reliable detection of the celestial bodies approaching the Earth and for determination of their orbits). A comparison is made of capabilities of electro-jet engines and traditional chemical engines for arrangement of patrol spacecraft constellation in the Earth's orbit.
Daytime Celestial Navigation for the Novice
NASA Astrophysics Data System (ADS)
Sadler, Philip M.; Night, Christopher
2010-03-01
What kinds of astronomical lab activities can high school and college astronomy students carry out easily in daytime? The most impressive is the determination of latitude and longitude from observations of the Sun. The ``shooting of a noon sight'' and its ``reduction to a position'' grew to become a daily practice at the start of the 19th century1 following the perfection of the marine chronometer by John Harrison and its mass production.2 This technique is still practiced by navigators in this age of GPS. Indeed, the U.S. Coast Guard exams for ocean-going licenses include celestial navigation.3 These techniques continue to be used by the military and by private sailors as a backup to all-too-fallible and jammable electronic navigation systems. A sextant, a nautical almanac,4 special sight reduction tables,5 and involved calculations are needed to determine position to the nearest mile using the Sun, Moon, stars, or planets. Yet, finding latitude and longitude to better than 30 miles from measurements of the Sun's altitude is easily within the capability of those taking astronomy or physics for the first time by applying certain basic principles. Moreover, it shows a practical application of astronomy in use the world over. The streamlined method described here takes advantage of the similar level of accuracy of its three components: 1.Observations using a homemade quadrant6 (instead of a sextant), 2. Student-made graphs of the altitude of the Sun over a day7 (replacing lengthy calculation using sight reduction tables), and 3. An averaged 20-year analemma used to find the Sun's navigational coordinates8,9 (rather than the 300+ page Nautical Almanac updated yearly).
2016-03-01
squared RMS root mean squared GCRF Geocentric Celestial Reference Frame xi List of Figures Figure Page 1 Geometry of single observation...RA and DEC in the celestial sphere. The Geocentric Celestial Reference Frame (GCRF) is the standard geocentric frame that measures the RA east in the...Figure 2. Right ascension (α) and declination (δ) in the celestial sphere[6] 7 made between geocentric and topocentric angles. Geocentric is referred to
Work on a New Solar-System Ephemeris: Status Report
NASA Astrophysics Data System (ADS)
Mai, Enrico; Müller, Jürgen
2014-05-01
Currently, within a coordinated project in Germany, integrated methods and procedures for a consistent definition and realization of reference systems on Earth and in space are being developed. Barycentric ephemerides represent a dynamical realization of the Barycentric Celestial Reference System (BCRS), which is fundamental not only for the problem of interplanetary navigation but through its intimate relation to the Geocentric Celestial Reference System (GCRS). In accordance with existing renowned ephemerides (INPOP, DE, EPM) we want to lay the foundation for a new solar-system ephemeris. We collected available observational data for the planets as well as high-precise tracking data to various spacecrafts (interplanetary probes, planetary orbiters and landers). Furthermore, we set up the usual relativistic (post-Newtonian) force model in line with the latest French INPOP ephemeris, with a few exceptions. The focus in modeling is on the lunar librations and asteroid perturbations. Regarding the treatment of the Moon, we draw upon the elaborated modeling within the existing LLR analysis software at IfE and its ongoing improvements. Nowadays, any modern ephemeris, besides perturbations due to general mass inhomogeneities (at least for the Earth and the Moon) and solar flattening, respective figure-figure interactions and tidal effects, proper rotations and librations etc., has to account for the significant gravitational effect of the vast number of minor bodies in the solar-system (especially within the major asteroid belt between Mars and Jupiter) on the long-term evolution of planetary orbits. Due to limited computational resources, one is able to integrate the equations of motion (EOM) of only a comparatively small selection of asteroids simultaneously with the EOM of the major solar-system bodies (i.e., planets, Sun, Moon). On the other hand, one can efficiently account for the remaining asteroids by the introduction of at least one mass ring, the parameters of which (radius, total mass) have to be carefully modeled. Regarding the latter issue we will test the usability of an evolution strategy instead of a simple Monte Carlo method. In future, asteroid modeling will strongly benefit from observational data of the recently started GAIA mission. Here we present a few statistics on the collected observational data, the fundamental force model of the EOM in detail, and first computational results in comparison with the INPOP ephemeris.
A Snapshot-Based Mechanism for Celestial Orientation.
El Jundi, Basil; Foster, James J; Khaldy, Lana; Byrne, Marcus J; Dacke, Marie; Baird, Emily
2016-06-06
In order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2-8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9, 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a "celestial snapshot," even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the "dance," a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Frontiers in Relativistic Celestial Mechanics, Vol. 2, Applications and Experiments
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei
2014-08-01
Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Müller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review
Geocenter coordinates estimated from GNSS data as viewed by perturbation theory
NASA Astrophysics Data System (ADS)
Meindl, Michael; Beutler, Gerhard; Thaller, Daniela; Dach, Rolf; Jäggi, Adrian
2013-04-01
Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S. GPS (Global Positioning System) and the Russian GLONASS (Global'naya Nawigatsionnaya Sputnikowaya Sistema). The data was recorded in the years 2008-2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solutions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these parameters.A fair agreement for GPS and GLONASS was found in the geocenter x- and y-coordinate series. Our tests, however, clearly reveal artifacts in the z-component determined with the GLONASS data. Large periodic excursions in the GLONASS geocenter z-coordinates of about 40 cm peak-to-peak are related to the maximum elevation angles of the Sun above/below the orbital planes of the satellite system and thus have a period of about 4 months (third of a year). A detailed analysis revealed that the artifacts are almost uniquely governed by the differences of the estimates of direct solar radiation pressure (SRP) in the two solution series (with and without geocenter estimation). A simple formula is derived, describing the relation between the geocenter z-coordinate and the corresponding parameter of the SRP. The effect can be explained by first-order perturbation theory of celestial mechanics. The theory also predicts a heavy impact on the GNSS-derived geocenter if once-per-revolution SRP parameters are estimated in the direction of the satellite's solar panel axis. Specific experiments using GPS observations revealed that this is indeed the case.Although the main focus of this article is on GNSS, the theory developed is applicable to all satellite observing techniques. We applied the theory to satellite laser ranging (SLR) solutions using LAGEOS. It turns out that the correlation between geocenter and SRP parameters is not a critical issue for the SLR solutions. The reasons are threefold: The direct SRP is about a factor of 30-40 smaller for typical geodetic SLR satellites than for GNSS satellites, allowing it in most cases to not solve for SRP parameters (ruling out the correlation between these parameters and the geocenter coordinates); the orbital arc length of 7 days (which is typically used in SLR analysis) contains more than 50 revolutions of the LAGEOS satellites as compared to about two revolutions of GNSS satellites for the daily arcs used in GNSS analysis; the orbit geometry is not as critical for LAGEOS as for GNSS satellites, because the elevation angle of the Sun w.r.t. the orbital plane is usually significantly changing over 7 days.
The HEAO-A Scanning Modulation Collimator instrument
NASA Technical Reports Server (NTRS)
Roy, A.; Ballas, J.; Jagoda, N.; Mckinnon, P.; Ramsey, A.; Wester, E.
1977-01-01
The Scanning Modulation Collimator X-ray instrument for the HEAO-A satellite was designed to measure celestial radiation in the range between 1 and 15 KeV and to resolve, and correlate, the position of X-ray sources with visible light sources on the celestial sphere to within 5 arc seconds. The positional accuracy is made possible by mechanical collimation of the X-ray sources viewed by the instrument. High sensitivity is provided from two systems each containing four gas filled proportional counters followed by preamplification, signal summing, pulse height analysis, pulse shape discrimination, X-ray event accumulators and telemetry processing electronics.
NASA Astrophysics Data System (ADS)
Zubarev, A. E.; Nadezhdina, I. E.; Brusnikin, E. S.; Karachevtseva, I. P.; Oberst, J.
2016-09-01
The new technique for generation of coordinate control point networks based on photogrammetric processing of heterogeneous planetary images (obtained at different time, scale, with different illumination or oblique view) is developed. The technique is verified with the example for processing the heterogeneous information obtained by remote sensing of Ganymede by the spacecraft Voyager-1, -2 and Galileo. Using this technique the first 3D control point network for Ganymede is formed: the error of the altitude coordinates obtained as a result of adjustment is less than 5 km. The new control point network makes it possible to obtain basic geodesic parameters of the body (axes size) and to estimate forced librations. On the basis of the control point network, digital terrain models (DTMs) with different resolutions are generated and used for mapping the surface of Ganymede with different levels of detail (Zubarev et al., 2015b).
The General History of Astronomy
NASA Astrophysics Data System (ADS)
Taton, René; Wilson, Curtis; Hoskin, editor Michael, , General
2009-09-01
Part V. Early Phases in the Reception of Newton's Theory: 14. The vortex theory in competition with Newtonian celestial dynamics Eric J. Aiton; 15. The shape of the Earth Seymour L. Chapin; 16. Clairaut and the motion of the lunar apse: The inverse-square law undergoes a test Craig B. Waff; 17. The precession of the equinoxes from Newton to d'Alembert and Euler Curtis Wilson; 18. The solar tables of Lacaille and the lunar tables of Mayer Eric G. Forbes and Curtis Wilson; 19. Predicting the mid-eighteenth-century return of Halley's Comet Craig B. Waff; Part VI. Celestial Mechanics During the Eighteenth Century: 20. The problem of perturbation analytically treated: Euler, Clairaut, d'Alembert Curtis Wilson; 21. The work of Lagrange in celestial mechanics Curtis Wilson; 22. Laplace Bruno Morando; Part VII. Observational Astronomy and the Application of Theory in the Late Eighteenth and Early Nineteenth Century: 23. Measuring solar parallax: The Venus transits of 1761 and 1769 and their nineteenth-century sequels Albert Van Helden; 24. The discovery of Uranus, the Titius-Bode and the asteroids Michael Hoskin; 25. Eighteenth-and nineteenth century developments in the theory and practice of orbit determination Brian G. Marsden; 26. The introduction of statistical reasoning into astronomy: from Newton to Poincaré Oscar Sheynin; 27. Astronomy and the theory of errors: from the method of averages to the method of least squares F. Schmeidler; Part VIII. The Development of Theory During the Nineteenth Century: 28. The golden age of celestial mechanics Bruno Morando; Part IX. The Application of Celestial Mechanics to the Solar System to the End of the Nineteenth Century: 29. Three centuries of lunar and planetary ephemerides and tables Bruno Morando; 30. Satellite ephemerides to 1900 Yoshihide Kozai; Illustrations; Combined index for Parts 2A and 2B.
Planetary cores, their energy flux relationship, and its implications
NASA Astrophysics Data System (ADS)
Johnson, Fred M.
2018-02-01
Integrated surface heat flux data from each planet in our solar system plus over 50 stars, including our Sun, was plotted against each object's known mass to generate a continuous exponential curve at an R-squared value of 0.99. The unexpected yet undeniable implication of this study is that all planets and celestial objects have a similar mode of energy production. It is widely accepted that proton-proton reactions require hydrogen gas at temperatures of about 15 million degrees, neither of which can plausibly exist inside a terrestrial planet. Hence, this paper proposes a nuclear fission mechanism for all luminous celestial objects, and uses this mechanism to further suggest a developmental narrative for all celestial bodies, including our Sun. This narrative was deduced from an exponential curve drawn adjacent to the first and passing through the Earth's solid core (as a known prototype). This trend line was used to predict the core masses for each planet as a function of its luminosity.
Legge, Eric L G; Wystrach, Antoine; Spetch, Marcia L; Cheng, Ken
2014-12-01
Insects typically use celestial sources of directional information for path integration, and terrestrial panoramic information for view-based navigation. Here we set celestial and terrestrial sources of directional information in conflict for homing desert ants (Melophorus bagoti). In the first experiment, ants learned to navigate out of a round experimental arena with a distinctive artificial panorama. On crucial tests, we rotated the arena to create a conflict between the artificial panorama and celestial information. In a second experiment, ants at a feeder in their natural visually-cluttered habitat were displaced prior to their homing journey so that the dictates of path integration (feeder to nest direction) based on a celestial compass conflicted with the dictates of view-based navigation (release point to nest direction) based on the natural terrestrial panorama. In both experiments, ants generally headed in a direction intermediate to the dictates of celestial and terrestrial information. In the second experiment, the ants put more weight on the terrestrial cues when they provided better directional information. We conclude that desert ants weight and integrate the dictates of celestial and terrestrial information in determining their initial heading, even when the two directional cues are highly discrepant. © 2014. Published by The Company of Biologists Ltd.
IVS: Current Status and Future Plans
NASA Astrophysics Data System (ADS)
Behrend, D.; Nothnagel, A.; Petrachenko, W. T.; Tuccari, G.
2016-12-01
The International VLBI Service for Geodesy and Astrometry (IVS) is a globally operating service that coordinates and performs Very Long Baseline Interferometry (VLBI) activities through its constituent components. The VLBI activities are associated with the creation, provision, dissemination, and archiving of relevant VLBI data and products. The products mostly pertain to the determination of the celestial and terrestrial reference frames, the Earth orientation parameters (EOP), atmospheric parameters as well as other ancillary parameters. The IVS observational network currently consists of about 40 radio telescopes worldwide. Subsets of these telescopes (8-12 stations) participate in 24-hour observing sessions that are run several times per week and in 1-hour intensive sessions for UT1 determination every day. The current VLBI network was developed mainly in the 1970s and 1980s. A number of factors, including aging infrastructure and demanding new scientific requirements, started to challenge its future sustainability and relevance. In response, the IVS and other groups developed and started implementing the next generation VLBI system, called VGOS (VLBI Global Observing System), at existing and new sites. The VGOS network is expected to reach maturity in the early 2020s. We describe the current status, progress, and anticipated prospects of geodetic/astrometric VLBI and the IVS.
Relativistic Celestial Mechanics of the Solar System
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George
2011-09-01
The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new commission are to: * clarify the geometrical and dynamical concepts of fundamental astronomy within a relativistic framework, * provide adequate mathematical and physical formulations to be used in fundamental astronomy, * deepen the understanding of relativity among astronomers and students of astronomy, and * promote research needed to accomplish these tasks. The present book is intended to make a theoretical contribution to the efforts undertaken by this commission. The first three chapters of the book review the foundations of celestial mechanics as well as those of special and general relativity. Subsequent chapters discuss the theoretical and experimental principles of applied relativity in the solar system. The book is written for graduate students and researchers working in the area of gravitational physics and its applications inmodern astronomy. Chapters 1 to 3 were written by Michael Efroimsky and Sergei Kopeikin, Chapters 4 to 8 by Sergei Kopeikin, and Chapter 9 by George Kaplan. Sergei Kopeikin also edited the overall text. It hardly needs to be said that Newtonian celestial mechanics is a very broad area. In Chapter 1, we have concentrated on derivation of the basic equations, on explanation of the perturbed two-body problem in terms of osculating and nonosculating elements, and on discussion of the gauge freedom in the six-dimensional configuration space of the orbital parameters. The gauge freedom of the configuration space has many similarities to the gauge freedom of solutions of the Einstein field equations in general theory of relativity. It makes an important element of the Newtonian theory of gravity, which is often ignored in the books on classic celestial mechanics. Special relativity is discussed in Chapter 2. While our treatment is in many aspects similar to the other books on special relativity, we have carefully emphasised the explanation of the Lorentz and Poincaré transformations, and the appropriate transformation properties of geometric objects like vectors and tensors, for example, the velocity, acceleration, force, electromagnetic field, and so on. Chapter 3 is devoted to general relativity. It explains the main ideas of the tensor calculus on curved manifolds, the theory of the affine connection and parallel transport, and the mathematical and physical foundations of Einstein's approach to gravity. Within this chapter, we have also included topics which are not well covered in standard books on general relativity: namely, the variational analysis on manifolds and the multipolar expansion of gravitational radiation. Chapter 4 introduces a detailed theory of relativistic reference frames and time scales in an N-body system comprised of massive, extended bodies - like our own solar system. Here, we go beyond general relativity and base our analysis on the scalar-tensor theory of gravity. This allows us to extend the domain of applicability of the IAU resolutions on relativistic reference frames, which in their original form were applicable only in the framework of general relativity. We explain the principles of construction of reference frames, and explore their relationship with the solutions of the gravitational field equations. We also discuss the post-Newtonian multipolemoments of the gravitational field from the viewpoint of global and local coordinates. Chapter 5 discusses the principles of derivation of transformations between reference frames in relativistic celestial mechanics. The standard parameterized post-Newtonian (PPN) formalism by K. Nordtevdt and C. Will operates with a single coordinate frame covering the entire N-body system, but it is insufficient for discussion of more subtle relativistic effects showing up in orbital and rotational motion of extended bodies. Consideration of such effects require, besides the global frame, the introduction of a set of local frames needed to properly treat each body and its internal structure and dynamics. The entire set of global and local frames allows us to to discover and eliminate spurious coordinate effects that have no physical meaning. The basic mathematical technique used in our theoretical treatment is based on matching of asymptotic post-Newtonian expansions of the solutions of the gravity field equations. In Chapter 6, we discuss the principles of relativistic celestial mechanics of massive bodies and particles. We focus on derivation of the post-Newtonian equations of orbital and rotational motion of an extended body possessing multipolar moments. These moments couple with the tidal gravitational fields of other bodies, making the motion of the body under consideration very complicated. Simplification is possible if the body can be assumed spherically symmetric. We discuss the conditions under which this simplification can be afforded, and derive the equations of motion of spherically-symmetric bodies. These equations are solved in the case of the two-body problem, and we demonstrate the rich nature of the possible coordinate presentations of such a solution. The relativistic celestial mechanics of light particles (photons) propagating in a time-dependent gravitational field of an N-body system is addressed in Chapter 7. This is a primary subject of relativistic astrometry which became especially important for the analysis of space observations from the Hipparcos satellite in the early 1990s. New astrometric space missions, orders of magnitude more accurate than Hipparcos, for example, Gaia, SIM, JASMINE, and so on, will require even more complete developments. Additionally, relativistic effects play an important role in other areas of modern astronomy, such as, pulsar timing, very long baseline radio interferometry, cosmological gravitational lensing, and so on. High-precision measurements of gravitational light bending in the solar system are among the most crucial experimental tests of the general theory of relativity. Einstein predicted that the amount of light bending by the Sun is twice that given by a Newtonian theory of gravity. This prediction has been confirmed with a relative precision about 0.01%. Measurements of light bending by major planets of the solar system allow us to test the dynamical characteristics of spacetime and draw conclusions about the ultimate speed of gravity as well as to explore the so-called gravitomagnetic phenomena. Chapter 8 deals with the theoretical principles and methods of the high-precision gravimetry and geodesy, based on the framework of general relativity. A gravitational field and the properties of geocentric and topocentric reference frames are described by the metric tensor obtained from the Einstein equations with the help of post-Newtonian iterations. Bymatching the asymptotic, post-Newtonian expansions of the metric tensor in geocentric and topocentric coordinates, we derive the relationship between the reference frames, and relativistic corrections to the Earth's force of gravity and its gradient. Two definitions of a relativistic geoid are discussed, and we prove that these geoids coincide under the condition of a constant rigid-body rotation of the Earth.We consider, as a model of the Earth's matter, the notion of the relativistic level surface of a self-gravitating perfect fluid. We discover that, under conditions of constant rigid rotation of the fluid and hydrostatic behavior of tides, the post-Newtonian equation of the level surface is the same as that of the relativistic geoid. In the conclusion of this chapter, a relativistic generaisation of the Clairaut's equation is obtained. Chapter 9 is a practical guide to the relativistic resolutions of the IAU, with enough background information to place these resolutions into the context of the late twentieth century positional astronomy. These resolutions involve the definitions of reference systems, time scales, and Earth rotationmodels; and some of the resolutions are quite detailed. Although the recommended Earth rotation models have not been developed ab initio within the relativistic framework presented in the other resolutions (in that regard, there still exist some difficult problems to solve), their relativistic terms are accurate enough for all the current and near-future observational techniques. At that level, the Earth rotation models are consistent with the general relativity framework recommended by the IAU and considered in this book. The chapter presents practical algorithms for implementing the recommended models. The appendices to the book contain a list of astronomical constants and the original text of the relevant IAU resolutions adopted by the IAU General Assemblies in 1997, 2000, 2006, and 2009. Numerous colleagues have contributed to this book in one way or or another. It is a pleasure for us to acknowledge the enlightening discussions which one or more of the authors had on different occasions with Victor A. Brumberg of the Institute of Applied Astronomy (St. Petersburg, Russia); Tianyi Huang and Yi Xie of Nanjing University (China); Edward B. Fomalont of the National Radio Astronomical Observatory (USA); Valeri V. Makarov, William J. Tangren, and James L. Hilton of the US Naval Observatory; Gerhard Schäfer of the Institute of Theoretical Physics (Jena, Germany); Clifford M. Will of Washington University (St. Louis, USA); Ignazio Ciufolini of the Università del Salento and INFN Sezione di Lecce (Italy); and Patrick Wallace, retired from Her Majesty's Nautical Almanac Office (UK). We also would like to thank Richard G. French of Wellesley College (Massachusetts, USA); Michael Soffel and Sergei Klioner of the Technical University of Dresden; Bahram Mashhoon of the University of Missouri-Columbia; John D. Anderson, retired from the Jet Propulsion Laboratory (USA); the late Giacomo Giampieri, also of JPL; Michael Kramer, Axel Jessner, and Norbert Wex of the Max-Planck-Institut für Radioastronomie (Bonn, Germany); Alexander F. Zakharov of the Institute of Theoretical and Experimental Physics (Moscow, Russia); the late Yuri P. Ilyasov from Astro Space Center of Russian Academy of Science; Michael V. Sazhin, Vladimir A. Zharov, and Igor Yu. Vlasov of the Sternberg Astronomical Institute (Moscow, Russia); and Vladimir B. Braginsky of Moscow State University (Russia) for their remarks and comments, all of which helped us to properly formulate the theoretical concepts and other material presented in this book. The discussions among themembers of the IAU Worki! ng Group on Relativity in Celestial Mechanics and Astrometry as well as those within the Working Group on Nomenclature for Fundamental Astronomy have also been quite valuable and have contributed to what is presented here. The numerous scientific papers written by Nicole Capitaine of the Paris Observatory and her collaborators have been essential references. Victor Slabinski and Dennis D. McCarthy of the US Naval Observatory, P. Kenneth Seidelmann of the University of Virginia, Catherine Y. Hohenkerk of Her Majesty's Nautical Almanac Office, and E. Myles Standish, retired from the Jet Propulsion Laboratory, reviewed early drafts of the material that became Chapter 9 and made many substantial suggestions for improvement. We were, of course, influenced by many other textbooks available in this field. We would like to pay particular tribute to: C.W. Misner, K. S. Thorne and J. A. Wheeler "Gravitation" V.A. Brumberg "Essential Relativistic Celestial Mechanics" B.F. Schutz "Geometrical Methods of Mathematical Physics" M.H. Soffel "Relativity in Celestial Mechanics, Astrometry and Geodesy" C.M. Will "Theory and Experiment in Gravitational Physics". There are many other books and influential papers that are important as well which are referenced in the relevant parts of the present book. Not one of our aforementioned colleagues is responsible for any remaining errors or omissions in this book, for which, of course, the authors bear full responsibility. Last, but by nomeans least,Michael Efroimsky and George Kaplan wish to thank John A. Bangert of the US Naval Observatory for the administrative support which he so kindly provided to the project during all of its stages. Sergei Kopeikin is sincerely grateful to the Research Council of the University of Missouri-Columbia for the generous financial support (grants RL-08-027, URC-08-062B, SRF-09-012) that was essential for the successful completion of the book.
Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaffe, D.E.; Bishai, M.; Diwan, M.V.
2010-10-10
The shadowing of cosmic ray primaries by the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 {sigma} level and the shadow of the sun at the 3.8 {sigma} level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 {+-} 0.12{sup o}. Hints of interplanetary magnetic field effects were observed in both the sun and moon shadow.
Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, P.; /Fermilab; Andreopoulos, C.
2010-08-01
The shadowing of cosmic ray primaries by the the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 {sigma} level and the shadow of the sun at the 3.8 {sigma} level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 {+-} 0.12{sup o}. Hints of Interplanetary Magnetic Field effects were observed in both the sun and moon shadow.
Wavelength dependence of position angle in polarization standards
NASA Astrophysics Data System (ADS)
Dolan, J. F.; Tapia, S.
1986-08-01
Eleven of the 15 stars on Serkowski's (1974) list of "Standard Stars with Large Interstellar Polarization" were investigated to determine whether the orientation of the plane of their linear polarization showed any dependence on wavelength. Nine of the eleven stars exhibited a statistically significant wavelength dependence of position angle when measured with an accuracy of ≡0°.1 standard deviation. For the majority of these stars, the effect is caused primarily by intrinsic polarization. The calibration of polarimeter position angles in a celestial coordinate frame must evidently be done at the 0°.1 level of accuracy by using only carefully selected standard stars or by using other astronomical or laboratory methods.
NASA Astrophysics Data System (ADS)
Ma, Chopo; MacMillan, Daniel; Le Bail, Karine; Gordon, David
2016-12-01
The Second Realization of the International Celestial Reference Frame (ICRF2) used dual-frequency VLBI data acquired for geodetic and astrometric purposes from 1979-2009 by organizations coordinated by the IVS and various precursor networks. Since 2009 the data set has been significantly broadened, especially by observations in the southern hemisphere. While the new southern data have ameliorated the north/south imbalance of observations, they appear to produce a systematic zonal declination change in the catalog positions. Over the 35 years of the ICRF data set the effect of galactic aberration may be significant. Geophysical and tropospheric models also may affect the source positions. All these effects need to be addressed in preparation for ICRF-3.
Celestial bodies macroscopic movement is due to the radiation
NASA Astrophysics Data System (ADS)
Yongquan, Han
2016-03-01
The star is radiate, also as the planet. In fact, all the real objects are radiate, but the strength of the radiation is different. Radiation will reduce the quality of the object, but time is not long enough to reduce the mass of the subject, so it is difficult for us to observe. Due to the large object lifecycle, to study the changing rule of the object, we must consider the radiation on the quality of the celestial bodies, and the outer space radiate particles' motion, also consider objects interact with objects of radiation. The reason Celestial bodies moves is that the radiation of those Celestial bodies Interact with each other, Celestial bodies macroscopic movement is due to the radiation. The earth's rotation and revolution is a measure of the survive ability. Author: hanyongquan TEL: 15611860790
Focal plane transport assembly for the HEAO-B X-ray telescope
NASA Technical Reports Server (NTRS)
Brissette, R.; Allard, P. D.; Keller, F.; Strizhak, E.; Wester, E.
1979-01-01
The High Energy Astronomy Observatory - Mission B (HEAO-B), an earth orbiting X-ray telescope facility capable of locating and imaging celestial X-ray sources within one second of arc in the celestial sphere, is considered. The Focal Plane Transport Assembly (FPTA) is one of the basic structural elements of the three thousand pound HEAO-B experiment payload. The FPTA is a multifunctional assembly which supports seven imaging X-ray detectors circumferentially about a central shaft and accurately positions any particular one into the focus of a high resolution mirror assembly. A drive system, position sensor, rotary coupler, and detent alignment system, all an integral part of the rotatable portion which in turn is supported by main bearings to the stationary focal plane housing are described.
NASA Technical Reports Server (NTRS)
1971-01-01
The feasibility of using the Scanning Celestial Attitude Determination System (SCADS) during Earth Resources Technology Satellite (ERTS) missions to compute an accurate spacecraft attitude by use of stellar measurements is considered. The spacecraft is local-vertical-stabilized. A heuristic discussion of the SCADS concept is first given. Two concepts are introduced: a passive system which contains no moving parts, and an active system in which the reticle is caused to rotate about the sensor's axis. A quite complete development of the equations of attitude motions is then given. These equations are used to generate the true attitude which in turn is used to compute the transit times of detectable stars and to determine the errors associated with the SCADS attitude. A more complete discussion of the analytical foundation of SCADS concept and its use for the geometries particular to this study, as well as salient design parameters for the passive and active systems are included.
Wehner, Rüdiger; Müller, Martin
2006-08-15
As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This "signature" of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant's compound eyes and is channeled into two rather separate systems of navigation.
Searching for Super Massive Binary Black Holes in the VLBA Calibrator Survey
NASA Astrophysics Data System (ADS)
High, Brittney C.; Peck, Alison B.; Beasley, Anthony J.
2016-01-01
Due to its incredible resolving power, the Very Long Baseline Array (VLBA) allows astronomers to view radio emission from celestial objects in incredible detail. This makes the VLBA the best instrument for studying the dynamics of active galactic nuclei, or compact regions at the centers of galaxies where black holes are thought to reside. Since most galaxies harbor supermassive black holes at their centers, and some galaxies merge with others, supermassive binary black hole systems arise. Though a number of these systems have been found, only one system contains black holes within 10 pc apart. During the summer, we analyzed new observations from the VLBA Calibrator Survey (VCS) on approximately 2200 sources in the hopes of detecting more close supermassive binary black hole candidates. Here we present the results from reducing and categorizing these sources. We also discuss the importance of the VCS and its role in enabling observations of the most distant celestial objects.
Neural coding underlying the cue preference for celestial orientation
el Jundi, Basil; Warrant, Eric J.; Byrne, Marcus J.; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie
2015-01-01
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity. PMID:26305929
Neural coding underlying the cue preference for celestial orientation.
el Jundi, Basil; Warrant, Eric J; Byrne, Marcus J; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie
2015-09-08
Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.
2016-11-01
This article, like our previous one [1], is devoted to advanced space technology concepts. It evaluates the potential for developing active systems to conduct a remote elemental analysis of surface rocks on an atmosphereless celestial body. The analysis is based on the spectrometry of characteristic X-rays (CXR) artificially excited in the surface soil layer. It has been proposed to use an electron beam injected from aboard a spacecraft orbiting the celestial body (or moving in a flyby trajectory) to excite the CXR elements contained in surface rocks. The focus is on specifying technical requirements to the parameters of payloads for a global mapping of the composition of lunar rocks from aboard of a low-orbiting lunar satellite. This article uses the results obtained in [2], our first study that shows the potential to develop an active system for a remote elemental analysis of lunar surface rocks using the above method. Although there has been interest in our research on the part of leading national academic institutions and space technology developers in the Soviet Union, the studies were discontinued because of the termination of the Soviet lunar program and the completion of the American Apollo program.
NASA Technical Reports Server (NTRS)
Torbett, M.; Smoluchowski, R.
1982-01-01
The motion of the Jovian commensurability resonances during the early evolution of the solar system induced by the dissipation of the accretion disk results in fundamental differences in the celestial mechanics of objects over which a resonance passes from that observed for a stationary resonance. Objects experiencing resonance passage acquire irreversible increases of average eccentricity to large values accounting for the present-day random velocities of the asteroids. Semi-major axes are similarly irreversibly decreased by amounts capable of clearing the Kirkwood gaps. The gap widths are in agreement with observation.
Spatial water maze learning using celestial cues by the meadow vole, Microtus pennsylvanicus.
Kavaliers, M; Galea, L A
1994-03-31
The Morris water maze is widely used to evaluate to evaluate the spatial learning ability of rodents under laboratory settings. The present study demonstrates that reproductive male meadow voles, Microtus pennsylvanicus, are able to acquire and retain a spatial water maze task using celestial cues. Voles were able to acquire a modified outdoor Morris water maze task over 4 trials per day, whereby they had to learn and remember the location of a submerged hidden platform, using the position of the sun and associated celestial cues. Their proficiency on this task was related to the availability of the celestial cues, with voles displaying significantly poorer spatial navigation on overcast than clear days and when the testing time (and position of the sun and associated celestial cues) was shifted from morning to afternoon. These findings with meadow voles support the ecological relevance of the water maze task.
NASA Astrophysics Data System (ADS)
Zhamkov, A. S.; Zharov, V. E.
2017-05-01
This paper is concerned with improvement of the state vector of the Spektr-R spacecraft of the RadioAstron mission. The state vector includes three coordinates of the position of the spacecraft and three components of its velocity in the Geocentric Celestial Reference System. Improvement of the orbit of the spacecraft is understood as improvement of the state vector. The results are compared with the original orbits determined at the Keldysh Institute of Applied Mathematics (IAM). The paper considers both using the Kalman filter based on a single set of radio-range and Doppler data from ground-based stations and the analysis of conditions that will lead to improvement of the orbit. It has been shown that using three ground-based stations that perform simultaneous measurements the problem is solved completely, even when a poor initial approximation is used. Based on the results, a list of requirements is obtained that will provide more accurate information on the orbit of the Spektr-R spacecraft.
Extending the ICRF to Higher Radio Frequencies
NASA Technical Reports Server (NTRS)
Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.
2002-01-01
The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.
Stellar Gyroscope for Determining Attitude of a Spacecraft
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Hancock, Bruce; Liebe, Carl; Mellstrom, Jeffrey
2005-01-01
A paper introduces the concept of a stellar gyroscope, currently at an early stage of development, for determining the attitude or spin axis, and spin rate of a spacecraft. Like star trackers, which are commercially available, a stellar gyroscope would capture and process images of stars to determine the orientation of a spacecraft in celestial coordinates. Star trackers utilize chargecoupled devices as image detectors and are capable of tracking attitudes at spin rates of no more than a few degrees per second and update rates typically <5 Hz. In contrast, a stellar gyroscope would utilize an activepixel sensor as an image detector and would be capable of tracking attitude at a slew rate as high as 50 deg/s, with an update rate as high as 200 Hz. Moreover, a stellar gyroscope would be capable of measuring a slew rate up to 420 deg/s. Whereas a Sun sensor and a three-axis mechanical gyroscope are typically needed to complement a star tracker, a stellar gyroscope would function without them; consequently, the mass, power consumption, and mechanical complexity of an attitude-determination system could be reduced considerably.
NASA Astrophysics Data System (ADS)
Urban, Sean E.
2015-08-01
Astronomy is often called a "gateway" science because it inspires appreciation and awe among children and non-scientists. Applied astronomy, with practical, real-world applications, can entice even the most utilitarian people to take notice and learn about the subject. Traditional celestial navigation is an astronomy topic that captures the attention of the public. The U.S. Naval Observatory has led the development of a publicly available online celestial navigation educational module titled, "Principles of Celestial Navigation". It can be used world-wide to introduce people to astronomy. This poster describes some of the aspects of this teaching module.
Wang, Hao; Jiang, Jie; Zhang, Guangjun
2017-04-21
The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters.
Wang, Hao; Jiang, Jie; Zhang, Guangjun
2017-01-01
The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters. PMID:28430132
NASA Astrophysics Data System (ADS)
Meindl, Michael; Beutler, Gerhard; Thaller, Daniela; Dach, Rolf; Schaer, Stefan; Jäggi, Adrian
2015-02-01
Meindl et al. (Adv Space Res 51(7):1047-1064, 2013) showed that the geocenter -component estimated from observations of global navigation satellite systems (GNSS) is strongly correlated to a particular parameter of the solar radiation pressure (SRP) model developed by Beutler et al. (Manuscr Geod 19:367-386, 1994). They analyzed the forces caused by SRP and the impact on the satellites' orbits. The authors achieved their results using perturbation theory and celestial mechanics. Rebischung et al. (J Geod doi: 10.1016/j.asr.2012.10.026, 2013) also deal with the geocenter determination with GNSS. The authors carried out a collinearity diagnosis of the associated parameter estimation problem. They conclude "without much exaggerating that current GNSS are insensitive to any component of geocenter motion". They explain this inability by the high degree of collinearity of the geocenter coordinates mainly with satellite clock corrections. Based on these results and additional experiments, they state that the conclusions drawn by Meindl et al. (Adv Space Res 51(7):1047-1064, 2013) are questionable. We do not agree with these conclusions and present our arguments in this article. In the first part, we review and highlight the main characteristics of the studies performed by Meindl et al. (Adv Space Res 51(7):1047-1064, 2013) to show that the experiments are quite different from those performed by Rebischung et al. (J Geod doi: 10.1016/j.asr.2012.10.026, 2013) . In the second part, we show that normal equation (NEQ) systems are regular when estimating geocenter coordinates, implying that the covariance matrices associated with the NEQ systems may be used to assess the sensitivity to geocenter coordinates in a standard way. The sensitivity of GNSS to the components of the geocenter is discussed. Finally, we comment on the arguments raised by Rebischung et al. (J Geod doi: 10.1016/j.asr.2012.10.026, 2013) against the results of Meindl et al. (Adv Space Res 51(7):1047-1064, 2013).
A long time span relativistic precession model of the Earth
NASA Astrophysics Data System (ADS)
Tang, Kai; Soffel, Michael H.; Tao, Jin-He; Han, Wen-Biao; Tang, Zheng-Hong
2015-04-01
A numerical solution to the Earth's precession in a relativistic framework for a long time span is presented here. We obtain the motion of the solar system in the Barycentric Celestial Reference System by numerical integration with a symplectic integrator. Special Newtonian corrections accounting for tidal dissipation are included in the force model. The part representing Earth's rotation is calculated in the Geocentric Celestial Reference System by integrating the post-Newtonian equations of motion published by Klioner et al. All the main relativistic effects are included following Klioner et al. In particular, we consider several relativistic reference systems with corresponding time scales, scaled constants and parameters. Approximate expressions for Earth's precession in the interval ±1 Myr around J2000.0 are provided. In the interval ±2000 years around J2000.0, the difference compared to the P03 precession theory is only several arcseconds and the results are consistent with other long-term precession theories. Supported by the National Natural Science Foundation of China.
The Astronomical Instruments from the Tomb of Xiahou Zao (? - 165BCE) Revisited
NASA Astrophysics Data System (ADS)
Shi, Yunli
2012-09-01
In 1977, archaeologists unearthed a piece of lacquerware from the tomb of Xiahou Zao (?--165BCE), the 2nd Marquis of Ruyin of the Western Han dynasty (206BCE--24ACE). It has been named ``A Lacquerware Article of Unkown Name" for no one understands its function. Our analysis shows that the article is actually a gnomon for the determination of 4 major seasons in ancient Chinese calendar, viz. Spring Equinox, Summer Solstice, Autumn Equinox and Winter Solstice, and the size and function of the article coincide quite well with those of the ``Earth Gnomon-Scale" as described in the Rites of Zhou, a Confucian Classic appeared in the middle of the 2nd century BCE. This is the earliest example of its kind that we have hitherto seen in a complete form. Moreover, the "Disks with 28 Lunar Lodges" from the same tomb have caused a lasting dispute over their possible function. While some scholars believe it to be a pure astrological instrument, others guess that it was an instrument for the measurement of celestial coordinates. Our analysis shows that, with the so-called ``Supporting Frame for the Cosmic Boards" unearthed from the same tomb, the disks can actually be mounted onto the plane of the celestial equator and thus form the earliest and definitely dated example of an equatorial device for astronomical observation that still can be seen in the world.
A precompiler for the formula manipulation system TRIGMAN.
NASA Technical Reports Server (NTRS)
Jefferys, W. H.
1972-01-01
Discussion of a translator designed to simplify the programming of problems involving the TRIGMAN formula manipulation system. The translator allows for the introduction of a new data type, SERIES, into a FORTRAN program and translates a user's program into legal FORTRAN. The translator is adaptable to other formula manipulation systems presently used in celestial mechanics.
The Astronomical Instrument, So-Gahui Invented During King Sejong Period
NASA Astrophysics Data System (ADS)
Lee, Yong-Sam Lee; Kim, Sang-Hyuk
2002-09-01
So-ganui, namely small simplified armillary sphere, was invented as an astronomical instrument by Lee Cheon, Jeong Cho, Jung In-Ji under 16 years' rule of King Sejong. We collect records and observed data on So-ganui. It is designed to measure position of celestial sphere and to determine time. It also can be transformed equatorial to horizontal, and horizontal to equatorial coordinate. It can measure the right ascension, declination, altitude and azimuth. It is composed of Sayu-hwan (Four displacements), Jeokdo-hwan (Equatorial dial), Baekgak-hwan (Ring with one hundred-interval quarters), Gyuhyeong (Sighting aliadade), Yongju (Dragon-pillar) and Bu (Stand). So-ganui was used conveniently portable surveying as well as astronomical instrument and possible to determine time during day and night.
NASA Astrophysics Data System (ADS)
Tafreshi, Babak A.
2011-06-01
The World at Night (TWAN) is a global program to produce, collect, and present stunning photographs and time-lapse videos of the world's most beautiful and historic sites against the night-time backdrop of stars, planets, and celestial events. TWAN is a bridge between art, science and humanity to bring the message of peace, concealed in the sky. Organised by ``Astronomers Without Borders'', the project consist of world's best night sky photographers in over countries and coordinators, regional event organisers, and consultants. TWAN was also designated as a Special Project of the International Year of Astronomy 2009. While the project's global exhibitions and educational events peaked during IYA2009, TWAN is planned for long term in several phases and will continue to create and exhibit images in the next years.
Gravitational mechanism of active life of the Earth, planets and satellites
NASA Astrophysics Data System (ADS)
Barkin, Yury
2010-05-01
From positions of geodynamic model of the forced gravitational swing, wobble and displacements of shells of a planet are studied and fundamental problems of geodynamics, geology, geophysics, planetary sciences are solved etc.: 1) The mechanism of cyclic variations of activity of natural processes in various time scales. 2) The power of endogenous activity of planetary natural processes on planets and satellites. 3) The phenomenon of polar inversion of natural processes on planets and satellites. 4) Spasmodic and catastrophic changes of activity of natural processes. 5) The phenomenon of twisting of hemispheres (latitude zones or belts) of celestial bodies. 6) Formation of the pear-shaped form of celestial bodies and the mechanism of its change. 7) The ordered planetary structures of geological formations. 8) The phenomena of bipolarity of celestial bodies and antipodality of geology formations. Mechanism. The fundamental feature of a structure of celestial bodies is their shell structure. The most investigated is the internal structure of the Earth. For the Moon and wide set of other bodies of solar system models of an internal structure have been constructed on the basis of the data of observations obtained at studying of their gravitational fields as a result of realization of the appropriate space missions. The basic components for the majority of celestial bodies are the core, the mantle and the crust. To other shells we concern atmospheres (for example, at Venus, Mars, the Titan etc.) and oceanic shells (the Titan, the Earth, Enceladus etc.). Shells are the complex (composite) formations. Planets and satellites are not spherical celestial bodies. The centers of mass of shells of the given planet (or the satellite) and their appropriate principal axes of inertia do not coincide. Accordingly, all their shells are characterized by the certain dynamic oblatenesses. Differences of dynamical oblatenesses results in various forced influences of external celestial bodies on shells of the given body. Dynamical oblatenesses of shells, thus, characterize the endogenous activity of a planet by external celestial bodies. Other important factor of endogenous activity of a planet is a eccentric position of the centers of mass of the shells (for example, of the core and the mantle). The eccentricity of the shells is inherited during geological evolution of a planet as system of shells (Barkin, 2002). Consequences of exitation of the Earth system. The new tides (Barkin, 2005) are caused by relative displacements of the core and mantle. These displacements are reflected in variations of many natural processes due to gravitational action of the core. The displacing core causes deformations of all layers of viscous-elastic mantle. In the given work from more general positions the mechanisms of excitation of a system of shells of the Earth under action of a gravitational attraction of the Sun, the Moon and planets, the phenomena of their relative swings, translational displacements and turns relatively from each other, and the wide list geodynamical consequences of the specified excitation of the Earth are studied. At once we shall emphasize, that the developed geodynamic model has allowed to carry out the important dynamic researches of displacements of shells of the Earth, their deformations and changes, and variations of its natural processes and for the first time to explain the nature of such fundamental phenomena and processes in geodynamics, geology and geophysics as: cyclicity of natural processes and its mechanism; power of processes in various time scales; unity of cyclic processes and universality of their frequency bases; synchronism of geodynamic, geophysical, biophysical and social events; inversion, contrast and opposite directed changes of activity of natural processes in opposite hemispheres of the Earth; step-by-step variations of natural processes, sawtooth course of activity of natural processes in various time scales; orderliness in an distribution of geological formations on the Earth, planets and satellites; existence of antipodal formations on planets and satellites; the phenomenon of twisting of hemispheres of bodies of solar system, twisting of layers and latitudinal zones of shells of celestial bodies including inner layers and shells, etc. All the specified phenomena from the resulted list to some extent are discussed in the given work and illustrated on the basis of modern researches in Earth's sciences and the researches executed by means of space missions. In a complex, the executed researches have shown universality of discussed mechanisms and their important role in dynamics and geoevolution of planets and satellites in other planetary systems, and also stars and pulsars with the systems of planets (Barkin, 2009). Cyclicity. The excitation on the part of external celestial bodies of the system core-mantle depends from relative positions of external celestial bodies, from particularities of their perturbed orbital motions and from rotary motion of the planet. The specified motions have a cyclic nature which is shown in various time scales. Hence, and excitation of shells and their layers will have also cyclic character and to be shown in various time scales. Hence, cyclic variations of all planetary natural processes in all the variety widely should be observed, as takes place in reality. The periods of variations are characterized by extremely wide range - from hours up to tens and hundreds millions years. If the core makes slow secular drift relatively to the mantle all layers and shells of the Earth test secular deformation, thermodynamic and other changes. The cavity of the core and its flows are changed slowly that results in secular variations of a magnetic field (Barkin, 2002, 2009). Inversion and asymmetry of cyclic and secular variations of natural processes. The essence of it rather wide distributed phenomena is, that activity of natural processes varies in an antiphase in opposite hemispheres of the Earth (first of all in northern and southern hemispheres). Told concerns to all geodynamic and geophysical processes, to variations of physical fields, to tectonic and geodetic reorganizations of layers of the Earth, to redistributions of atmospheric, oceanic and other fluid masses of the Earth. The certain asymmetry of displays of processes in northern and southern hemispheres on the other hand is marked. So secular trends of some processes are contrast in northern and southern hemispheres, i.e. velocities of secular changes are essentially different. All described phenomena are caused first of all by cyclic oscillations and secular drift of the core to the north (in present epoch). In longer time scales the similar phenomena of inversion, dissymmetry also have place and determine a nature and style of displacements of continents and lithospheric plates, planetary magmatic activity and plume tectonics as a whole, formation of mountains, elevations and depressions, systems of lineaments and cracks, regressions and transgressions of sea level (Barkin, 2002). Synchronous steps of activity of natural processes. 'For an explanation of observably step-by-step variations of geodynamic and geophysical processes the mechanism of sharp sporadic relative displacements of the core and the mantle and deformations of the mantle in the certain periods of time (the phenomenon of "galloping of the core') is offered.
Tests of the equivalence principle and gravitation theory using solar system bodies
NASA Technical Reports Server (NTRS)
Nordtvedt, K., Jr.
1971-01-01
The M sub g/M sub i ratio (ratio of body acceleration to gravitation field) of celestial bodies was measured. Deep probes of the post-Newtonian structure of gravitational theories are indicated. Kepler's third law is considered for the Sun-Jupiter system.
"Bridging the Gap" through Australian Cultural Astronomy
NASA Astrophysics Data System (ADS)
Hamacher, Duane W.; Norris, Ray P.
2011-01-01
For more than 50,000 years, Indigenous Australians have incorporated celestial events into their oral traditions and used the motions of celestial bodies for navigation, time-keeping, food economics, and social structure. In this paper, we explore the ways in which Aboriginal people made careful observations of the sky, measurements of celestial bodies, and incorporated astronomical events into complex oral traditions by searching for written records of time-keeping using celestial bodies, the use of rising and setting stars as indicators of special events, recorded observations of variable stars, the solar cycle, and lunar phases (including ocean tides and eclipses) in oral tradition, as well as astronomical measurements of the equinox, solstice, and cardinal points.
Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies
NASA Astrophysics Data System (ADS)
Popova, E.
2017-12-01
The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.
Establishing a celestial VLBI reference frame. 1: Searching for VLBI sources
NASA Technical Reports Server (NTRS)
Preston, R. A.; Morabito, D. D.; Williams, J. G.; Slade, M. A.; Harris, A. W.; Finley, S. G.; Skjerve, L. J.; Tanida, L.; Spitzmesser, D. J.; Johnson, B.
1978-01-01
The Deep Space Network is currently engaged in establishing a new high-accuracy VLBI celestial reference frame. The present status of the task of finding suitable celestial radio sources for constructing this reference frame is discussed. To date, 564 VLBI sources were detected, with 166 of these lying within 10 deg of the ecliptic plane. The variation of the sky distribution of these sources with source strength is examined.
Voyager Saturn encounter attitude and articulation control experience
NASA Technical Reports Server (NTRS)
Carlisle, G.; Hill, M.
1981-01-01
The Voyager attitude and articulation control system is designed for a three-axis stabilized spacecraft; it uses a biasable sun sensor and a Canopus Star Tracker (CST) for celestial control, as well as a dry inertial reference unit, comprised of three dual-axis dry gryos, for inertial control. A series of complex maneuvers was required during the first of two Voyager spacecraft encounters with Saturn (November 13, 1980); these maneuvers involved rotating the spacecraft simultaneously about two or three axes while maintaining accurate pointing of the scan platform. Titan and Saturn earth occulation experiments and a ring scattering experiment are described. Target motion compensation and the effects of celestial sensor interference are also considered. Failure of the CST, which required an extensive reevaluation of the star reference and attitude control mode strategy, is discussed. Results analyzed thus far show that the system performed with high accuracy, gathering data deeper into Saturn's atmosphere than on any previous planetary encounter.
Mobile Cubesat Command and Control (Mc3) 3-Meter Dish Calibration and Capabilities
2014-06-01
accuracy of this simple calibration is tested by tracking the sun, an easily accessible celestial body. To track the sun, a Systems Tool Kit ( STK ... visually verified. The shadow created by the dish system when it is pointed directly at the sun is symmetrical. If the dish system is not pointed
Wehner, Rüdiger; Müller, Martin
2006-01-01
As textbook knowledge has it, bees and ants use polarized skylight as a backup cue whenever the main compass cue, the sun, is obscured by clouds. Here we show, by employing a unique experimental paradigm, that the celestial compass system of desert ants, Cataglyphis, relies predominantly on polarized skylight. If ants experience only parts of the polarization pattern during training but the full pattern in a subsequent test situation, they systematically deviate from their true homeward courses, with the systematics depending on what parts of the skylight patterns have been presented during training. This “signature” of the polarization compass remains unaltered, even if the ants can simultaneously experience the sun, which, if presented alone, enables the ants to select their true homeward courses. Information provided by direct sunlight and polarized skylight is picked up by different parts of the ant’s compound eyes and is channeled into two rather separate systems of navigation. PMID:16888039
NASA Astrophysics Data System (ADS)
Aoki, Shinko
1987-03-01
A relation between the Celestial Reference System (CRS) and the Terrestrial Reference System is established theoretically by solving the equations of motion of a rigid Earth under the influence of the Sun and the Moon up to the second order perturbation. The solutions include not only nutation including Oppolzer terms but also the right ascension of the dynamical departure point (DP), as well as the wobble matrix. We have found that the kinematical definition of the Non-Rotating Origin NRO (for which our term is DP) given by Capitaine, Guinot and Souchay (1987) is not entirely equivalent to that included in the solutions of the equations of motion but shows perturbation, in particular when this is taken on the instantaneous equator. Besides this serious fault, we feel little merit in taking the DP as reference: (1) Unnecessary spurious mixed secular terms appear which come from the geometrical configuration that the DP leaves far and far from the ecliptic. (2) the DP moves secularly as well as oscillating with respect to space; this literally contradicts the term ‘NRO’, or is at least misleading. (3) It does not free us from the precession uncertainty to adopt DP as reference, since we cannot avoid virtual proper motions in terms of the current CRS. (4) No terms ignored hitherto are introduced, even if we take the DP properly chosen, i.e., on the equator of the celestial ephemeris pole. The transformation is only mathematical. There is no sufficient reason to take it instead of the equinox, which is observable in principle, as reference at the cost of the labor of changing all the textbooks, ephemerides, data and computer software now existing.
Post-Newtonian celestial dynamics in cosmology: Field equations
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.; Petrov, Alexander N.
2013-02-01
Post-Newtonian celestial dynamics is a relativistic theory of motion of massive bodies and test particles under the influence of relatively weak gravitational forces. The standard approach for development of this theory relies upon the key concept of the isolated astronomical system supplemented by the assumption that the background spacetime is flat. The standard post-Newtonian theory of motion was instrumental in the explanation of the existing experimental data on binary pulsars, satellite, and lunar laser ranging, and in building precise ephemerides of planets in the Solar System. Recent studies of the formation of large-scale structures in our Universe indicate that the standard post-Newtonian mechanics fails to describe more subtle dynamical effects in motion of the bodies comprising the astronomical systems of larger size—galaxies and clusters of galaxies—where the Riemann curvature of the expanding Friedmann-Lemaître-Robertson-Walker universe interacts with the local gravitational field of the astronomical system and, as such, cannot be ignored. The present paper outlines theoretical principles of the post-Newtonian mechanics in the expanding Universe. It is based upon the gauge-invariant theory of the Lagrangian perturbations of cosmological manifold caused by an isolated astronomical N-body system (the Solar System, a binary star, a galaxy, and a cluster of galaxies). We postulate that the geometric properties of the background manifold are described by a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker metric governed by two primary components—the dark matter and the dark energy. The dark matter is treated as an ideal fluid with the Lagrangian taken in the form of pressure along with the scalar Clebsch potential as a dynamic variable. The dark energy is associated with a single scalar field with a potential which is hold unspecified as long as the theory permits. Both the Lagrangians of the dark matter and the scalar field are formulated in terms of the field variables which play a role of generalized coordinates in the Lagrangian formalism. It allows us to implement the powerful methods of variational calculus to derive the gauge-invariant field equations of the post-Newtonian celestial mechanics of an isolated astronomical system in an expanding universe. These equations generalize the field equations of the post-Newtonian theory in asymptotically flat spacetime by taking into account the cosmological effects explicitly and in a self-consistent manner without assuming the principle of liner superposition of the fields or a vacuole model of the isolated system, etc. The field equations for matter dynamic variables and gravitational field perturbations are coupled in the most general case of an arbitrary equation of state of matter of the background universe. We introduce a new cosmological gauge which generalizes the de Donder (harmonic) gauge of the post-Newtonian theory in asymptotically flat spacetime. This gauge significantly simplifies the gravitational field equations and allows one to find out the approximations where the field equations can be fully decoupled and solved analytically. The residual gauge freedom is explored and the residual gauge transformations are formulated in the form of the wave equations for the gauge functions. We demonstrate how the cosmological effects interfere with the local system and affect the local distribution of matter of the isolated system and its orbital dynamics. Finally, we worked out the precise mathematical definition of the Newtonian limit for an isolated system residing on the cosmological manifold. The results of the present paper can be useful in the Solar System for calculating more precise ephemerides of the Solar System bodies on extremely long time intervals, in galactic astronomy to study the dynamics of clusters of galaxies, and in gravitational wave astronomy for discussing the impact of cosmology on generation and propagation of gravitational waves emitted by coalescing binaries and/or merging galactic nuclei.
NASA Astrophysics Data System (ADS)
Shustov, B. M.; Shugarov, A. S.; Naroenkov, S. A.; Prokhorov, M. E.
2015-10-01
A new definition of hazardous celestial bodies (HCBs) is introduced, in which the lower limit of the size of a HCB is reduced to 10 m. A new definition for threatening and collisional orbits of DCBs is introduced. The main astronomical factors that must be taken into account when creating systems for the detection of HCBs are analyzed. The most important of these are the uniformity of the distribution of points (regions) for the appearance of HCBs on the celestial sphere in near-Earth space and the practical limit for the velocity of approach of a HCB of 20 km/s (for 90% of bodies). It is shown that the creation of a system for the nearby detection of asteroids and comets arriving from the daytime sky requires the use of a space-based system. A concept for such a system, in which one or several optical telescopes are placed in the vicinity of the libration point L1 for the Sun—Earth system, is developed. Preliminary plans for such a system, called the System for the Detection of Daytime Asteroids (SDDA), are briefly described.
14 CFR 63.55 - Experience requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...
14 CFR 63.55 - Experience requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...
14 CFR 63.55 - Experience requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...
14 CFR 63.55 - Experience requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...
14 CFR 63.55 - Experience requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...
Using a Celestial Sphere to Test Scientific Theories.
ERIC Educational Resources Information Center
Carter, Karl C.; Stewart, Bruce R.
1990-01-01
Presented is an astronomy activity in which students use an apparatus to illustrate the various positions and movements of the sun, earth, planets, stars, and constellations. A test of the heliocentric theory of the solar system is included. (CW)
Sommer, Stefan; Wehner, Rüdiger
2005-10-01
Foraging desert ants navigate primarily by path integration. They continually update homing direction and distance by employing a celestial compass and an odometer. Here we address the question of whether information about travel distance is correctly used in the absence of directional information. By using linear channels that were partly covered to exclude celestial compass cues, we were able to test the distance component of the path-integration process while suppressing the directional information. Our results suggest that the path integrator cannot process the distance information accumulated by the odometer while ants are deprived of celestial compass information. Hence, during path integration directional cues are a prerequisite for the proper use of travel-distance information by ants.
Terrestrial passage theory of the moon illusion.
Reed, C F
1984-12-01
Theories of the celestial, or moon, illusion have neglected geometric characteristics of movement along and above the surface of the earth. The illusion occurs because the characteristics of terrestrial passage are attributed to celestial passage. In terrestrial passage, the visual angle subtended by an object changes discriminably as an essentially invariant function of elevation above the horizon. In celestial passage, by contrast, change in visual angle is indiscriminable at all elevations. If a terrestrial object gains altitude, its angular subtense fails to follow the expansion projected for an orbital course: Angular diminution or constancy is equivalent to distancing. On the basis of terrestrial projections, a similar failure of celestial objects in successive elevations is also equivalent to distancing. The illusion occurs because of retinal image constancy, not--as traditionally stated--despite it.
Space Geodesy, VLBI, and the Fourth Pillar of Geodesy - Spacetime Curvature
NASA Astrophysics Data System (ADS)
Combrinck, Ludwig
2014-12-01
Typically geodesy is described as having ``three pillars'': the variations in Earth's shape, gravity field, and rotation. These pillars form the conceptual and observational basis for the celestial and terrestrial reference frames required for Earth and space observations. However, it is no longer adequate to base the conceptual and observational basis on only three pillars. Spacetime curvature as described by the General Theory of Relativity (GTR) is an integral component of all space geodesy techniques and influences all measurements, techniques, and data reduction. Spacetime curvature is therefore the fourth pillar. It is the measurement of the shape of spacetime and its variations. Due to accuracies of Very Long Baseline Interferometry (VLBI) and optical celestial reference frame measurements reaching the tens of micro-arcsecond level in the near future, it is essential to recognize the impact of spacetime seeing on the accuracy objectives of the Global Geodetic Observing System. Spacetime seeing (resulting from spacetime curvature) is analogous to astronomical seeing (resulting from atmospheric conditions), as all of spacetime is affected by microlensing/weak lensing to some extent as a result of mass (normal baryonic and darkmatter) distribution, placing a limit on the realization of the celestial reference frame.
Motions of Celestial Bodies; Computer simulations
NASA Astrophysics Data System (ADS)
Butikov, Eugene
2014-10-01
This book is written for a wide range of graduate and undergraduate students studying various courses in physics and astronomy. It is accompanied by the award winning educational software package 'Planets and Satellites' developed by the author. This text, together with the interactive software, is intended to help students learn and understand the fundamental concepts and the laws of physics as they apply to the fascinating world of the motions of natural and artificial celestial bodies. The primary aim of the book is the understanding of the foundations of classical and modern physics, while their application to celestial mechanics is used to illustrate these concepts. The simulation programs create vivid and lasting impressions of the investigated phenomena, and provide students and their instructors with a powerful tool which enables them to explore basic concepts that are difficult to study and teach in an abstract conventional manner. Students can work with the text and software at a pace they can enjoy, varying parameters of the simulated systems. Each section of the textbook is supplied with questions, exercises, and problems. Using some of the suggested simulation programs, students have an opportunity to perform interesting mini-research projects in physics and astronomy.
Different orders of lives in the universe
NASA Astrophysics Data System (ADS)
Sikdar, M. K.
2014-08-01
In this article, main life sensitive elements involved in life creating processes on earth have been explored. An in-depth study has been made to search out material abundances of all life sensitive elements in the periodic table mainly on earth, celestial bodies like star, binary stars, extra-solar system, extra solar planets and galaxies etc. at large. Extensive review has been made to project how life processes are being triggered in our earth and intakes required for continuous metabolism, mutation, reproducibility etc. Finally on the basis of ideas developed about the life processes on earth, other life chains that may happen to exist on other celestial bodies have been predicted. The constraints and barriers that stand in the way of communications have also been pointed out.
Periodic solutions of a spring-pendulum system.
NASA Technical Reports Server (NTRS)
Broucke, R.; Baxa, P. A.
1973-01-01
A study has been made of a dynamical system composed of a pendulum and a harmonic oscillator, in order to show the remarkable resemblance with many classical celestial mechanics problems, in particular, the restricted three-body problem. It is shown that the well-known investigations of periodic orbits can be applied to the present dynamics problem.
Embodying Earth's Place in the Solar System
ERIC Educational Resources Information Center
Plummer, Julia
2015-01-01
Elementary students find it difficult to connect the apparent motion of objects in the sky with how celestial objects actually move in the solar system. As a university astronomy education researcher, the author has been investigating methods to help children learn astronomy through workshops and summer camps at science museums and planetariums.…
Osculating Keplerian Elements for Highly Non-Keplerian Orbits
2017-03-27
1.52133 2 McInnes, C. R., “The Existence and Stability of Families of Displacement Two-Body Orbits”, Celestial Mechanics and Dynamical Astronomy , Vol...j.actaastro.2011.08.012 5 Xu, M. and Xu, S., “Nonlinear dynamical analysis for displaced orbits above a planet”, Celestial Mechanics and Dynamical Astronomy ...Celestial Mechanics and Dynamical Astronomy , Vol. 110, No. 3, 2011, pp. 199-215. doi: 10.1007/s10569-011-9351-5 7 Macdonald, M., McKay, R. J., Vasile, M
The Hands of the Pleiades: The Celestial Clock in the Classical Arabic Poetry of Dhū al-Rumma
NASA Astrophysics Data System (ADS)
Adams, W. B.
2011-06-01
In the desert poetry of Dhū al-Rumma (d. 117 AH/735 CE), astronomical phenomena sometimes function as familiar celestial timepieces that indicate the poetic timeframe literally and accurately. The literary, lexical, floral and astronomical analyses of a selection from this poetry illustrate the role of the Pleiades star cluster as a celestial clock and illuminate the utility of naked-eye astronomy in interpreting Arabic poetry of the early Islamic period.
A more general system for Poisson series manipulation.
NASA Technical Reports Server (NTRS)
Cherniack, J. R.
1973-01-01
The design of a working Poisson series processor system is described that is more general than those currently in use. This system is the result of a series of compromises among efficiency, generality, ease of programing, and ease of use. The most general form of coefficients that can be multiplied efficiently is pointed out, and the place of general-purpose algebraic systems in celestial mechanics is discussed.
Students' development of astronomy concepts across time
NASA Astrophysics Data System (ADS)
Plummer, Julia Diane
2006-02-01
The National Science Education Standards (NRC, 1996) recommend that students understand the apparent patterns of motion of the sun, moon and stars visible by the end of early elementary school. However, little information exists on students' knowledge of apparent celestial motion or instruction in this area. The goals of this dissertation were to describe children's knowledge of apparent celestial motion across elementary and middle school, explore early elementary students' ability to learn these topics through planetarium instruction, and begin the development of a learning progression for these concepts, First, third, and eighth grade students (N=60) were interviewed using a planetarium-like setting that allowed the students to demonstrate their ideas both verbally and with their own motions on an artificial sky. Analysis of these interviews suggests that students are not making the types of observations of the sky necessary to learn apparent celestial motion and any instruction they may have received has not helped them reach an accurate understanding of most topics. Most students at each grade level could not accurately describe the patterns of motion. Though the older students were more accurate in most of their descriptions than the younger students, in several areas the eighth grade students showed no improvement over the third grade students. The use of kinesthetic learning techniques in a planetarium program was also explored as a method to improve understanding of celestial motion. Pre- and post-interviews were conducted with participants from seven classes of first and second grade students (N=63). Students showed significant improvement in all areas of apparent celestial motion covered by the planetarium program and surpassed the middle school students' understanding of these concepts in most areas. This suggests that students in early elementary school are capable of learning the accurate description of apparent celestial motion. The results demonstrate the value of both kinesthetic learning techniques and the rich visual environment of the planetarium for improved understanding of celestial motion. Based on the results of these studies, I developed a learning progression describing how children may progress through successively more complex ways of understanding apparent celestial motion across elementary grades.
132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, ...
132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, BUDOCKS, OCTOBER 14, 1943. QP ACC 9689. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI
Celestial Seasonings: Astronomy and Rock Art in the American Southwest
NASA Astrophysics Data System (ADS)
Krupp, E. C.
1994-12-01
Astronomical interpretations of prehistoric rock art have played a significant part in the development of modern archaeoastronomy since 1975, when interest was renewed in the possibility that the Crab supernova explosion of 1054 A.D. was represented in rock art of the American Southwest. (This hypothesis was actually first formulated in 1955.) In the last two decades, a variety of astronomical functions for rock art have been proposed and investigated. These include representation of specific historical celestial events, symbolic representation of elements of celestial myths, star maps, markers for astronomical observing stations markers for celestially tempered shrines, images intended to invoke and exploit cosmo-magical power, seasonally significant light-and-shadow displays. Examples of astronomical connotations in prehistoric rock art from the Southwest and California illustrate the necessity of understanding the culture in any attempt to understand its astronomy.
Adding source positions to the IVS Combination
NASA Astrophysics Data System (ADS)
Bachmann, S.; Thaller, D.
2016-12-01
Simultaneous estimation of source positions, Earth orientation parameters (EOPs) and station positions in one common adjustment is crucial for a consistent generation of celestial and terrestrial reference frame (CRF and TRF, respectively). VLBI is the only technique to guarantee this consistency. Previous publications showed that the VLBI intra-technique combination could improve the quality of the EOPs and station coordinates compared to the individual contributions. By now, the combination of EOP and station coordinates is well established within the IVS and in combination with other space geodetic techniques (e.g. inter-technique combined TRF like the ITRF). Most of the contributing IVS Analysis Centers (AC) now provide source positions as a third parameter type (besides EOP and station coordinates), which have not been used for an operational combined solution yet. A strategy for the combination of source positions has been developed and integrated into the routine IVS combination. Investigations are carried out to compare the source positions derived from different IVS ACs with the combined estimates to verify whether the source positions are improved by the combination, as it has been proven for EOP and station coordinates. Furthermore, global solutions of source positions, i.e., so-called catalogues describing a CRF, are generated consistently with the TRF similar to the IVS operational combined quarterly solution. The combined solutions of the source positions time series and the consistently generated TRF and CRF are compared internally to the individual solutions of the ACs as well as to external CRF catalogues and TRFs. Additionally, comparisons of EOPs based on different CRF solutions are presented as an outlook for consistent EOP, CRF and TRF realizations.
NASA Astrophysics Data System (ADS)
Karbon, Maria; Heinkelmann, Robert; Mora-Diaz, Julian; Xu, Minghui; Nilsson, Tobias; Schuh, Harald
2017-07-01
The radio sources within the most recent celestial reference frame (CRF) catalog ICRF2 are represented by a single, time-invariant coordinate pair. The datum sources were chosen mainly according to certain statistical properties of their position time series. Yet, such statistics are not applicable unconditionally, and also ambiguous. However, ignoring systematics in the source positions of the datum sources inevitably leads to a degradation of the quality of the frame and, therefore, also of the derived quantities such as the Earth orientation parameters. One possible approach to overcome these deficiencies is to extend the parametrization of the source positions, similarly to what is done for the station positions. We decided to use the multivariate adaptive regression splines algorithm to parametrize the source coordinates. It allows a great deal of automation, by combining recursive partitioning and spline fitting in an optimal way. The algorithm finds the ideal knot positions for the splines and, thus, the best number of polynomial pieces to fit the data autonomously. With that we can correct the ICRF2 a priori coordinates for our analysis and eliminate the systematics in the position estimates. This allows us to introduce also special handling sources into the datum definition, leading to on average 30 % more sources in the datum. We find that not only the CPO can be improved by more than 10 % due to the improved geometry, but also the station positions, especially in the early years of VLBI, can benefit greatly.
Landsat-7 Simulation and Testing Environments
NASA Technical Reports Server (NTRS)
Holmes, E.; Ha, K.; Hawkins, K.; Lombardo, J.; Ram, M.; Sabelhaus, P.; Scott, S.; Phillips, R.
1999-01-01
A spacecraft Attitude Control and Determination Subsystem (ACDS) is heavily dependent upon simulation throughout its entire development, implementation and ground test cycle. Engineering simulation tools are typically developed to design and analyze control systems to validate the design and software simulation tools are required to qualify the flight software. However, the need for simulation does not end here. Operating the ACDS of a spacecraft on the ground requires the simulation of spacecraft dynamics, disturbance modeling and celestial body motion. Sensor data must also be simulated and substituted for actual sensor data on the ground so that the spacecraft will respond by sending commands to the actuators as they will on orbit. And finally, the simulators is the primary training tool and test-bed for the Flight Operations Team. In this paper various ACDS simulation, developed for or used by the Landsat 7 project will be described. The paper will include a description of each tool, its unique attributes, and its role in the overall development and testing of the ACDS. Finally, a section is included which discusses how the coordinated use of these simulation tools can maximize the probability of uncovering software, hardware and operations errors during the ground test process.
1985 ACSM-ASPRS Fall Convention, Indianapolis, IN, September 8-13, 1985, Technical Papers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
Papers are presented on Landsat image data quality analysis, primary data acquisition, cartography, geodesy, land surveying, and the applications of satellite remote sensing data. Topics discussed include optical scanning and interactive color graphics; the determination of astrolatitudes and astrolongitudes using x, y, z-coordinates on the celestial sphere; raster-based contour plotting from digital elevation models using minicomputers or microcomputers; the operational techniques of the GPS when utilized as a survey instrument; public land surveying and high technology; the use of multitemporal Landsat MSS data for studying forest cover types; interpretation of satellite and aircraft L-band synthetic aperture radar imagery; geological analysismore » of Landsat MSS data; and an interactive real time digital image processing system. Consideration is given to a large format reconnaissance camera; creating an optimized color balance for TM and MSS imagery; band combination selection for visual interpretation of thematic mapper data for resource management; the effect of spatial filtering on scene noise and boundary detail in thematic mapper imagery; the evaluation of the geometric quality of thematic mapper photographic data; and the analysis and correction of Landsat 4 and 5 thematic mapper sensor data.« less
Elliptical Chandler pole motions of the Earth and Mars
NASA Astrophysics Data System (ADS)
Barkin, Yury; Ferrandiz, Jose
2010-05-01
In the work the values of the period and eccentricity of Chandler motion of poles of axes of rotation of the Earth and Mars have been determined. The research has been carried out on the basis of developed earlier by authors an intermediate rotary Chandler-Euler motion of the weakly deformable celestial bodies (Barkin, Ferrandiz and Getino, 1996; Barkin, 1998). An influence of a liquid core on Chandler motion of a pole in the given work has not considered. The periods of the specified pole motions make 447.1 d for the Earth and 218.1 d for Mars. In comparison with Euler motions of poles because of elastic properties of planets the Chandler periods are increased accordingly on 142.8 d (about 46.9 %) for the Earth and on 26.2 d (on 13.7 %) for Mars. Values of eccentricities of specified Chandler motions of pole e = √b2 --a2- b (here a both b are smaller and big semi-axes of Chandler ellipse) make 0.09884 for the Earth and 0.3688 for Mars (accordingly, on 21.1 % and 6.2 % more than the appropriate values of eccentricities for models of planets as rigid non-spherical bodies). Axes of an ellipse a also b correspond to the principal equatorial axes of inertia of a planet Ox and Oyfor which the moments of inertia have the smallest valueA and middle value B. The pole of the principal axis of inertia Ox for the Earth is displaced to the west on the angle 14°9285, and the pole of the principal axis of inertia Ox for Mars is displaced to the west on the angle 105°0178 (in the appropriate basic geographical systems of coordinates of the given planets). For ellipticties of Chandler trajectories ɛ = (b- a)-b the values 0.004897 (for the Earth) and 0.07048 (for Mars) have been obtained. The specified values surpass by Euler values of appropriate ellipticties on 46.8 % (in case of the Earth) and on 13.3 % (in the case of Mars). Love number k2describing the elastic properties of planets, were accepted equal 0.30 for the Earth and 0.153 for Mars. Estimations of Chandler periods will well be coordinated to similar estimations of other authors for models of elastic planet in 200-212 d (Konopliv et al., 2006; Zharkov, Gudkova, 2009). The values of eccentricity and ellipticity of Chandler pole motion of the Earth will be coordinated to earlier estimations e=0.096-0.098 and ɛ=0.0046-0.0048 (Barkin, 1998; Barkin, Ferrandiz, 2004), and for Mars have been obtained for the first time. The account of influence of a liquid core on considered parameters of motion of poles of planet with elastic mantle also is discussed in report on the base of author's approach developed in the paper (Ferrandiz, Barkin, 2001). The Barkin's work partially was finacially accepted by Spanish grants, Japanise-Russian grant N-09-02-92113-JF and by RFBR grant N 08-02-00367. References Barkin Yu.V., Ferrandiz J.M., J. Getino (1996) About Applications Angle-Action Variables in Rotation Dynamics of the Deformable Celestial Bodies. (Eds. S. Ferraz-Mello, B. Morrando, J.-E. Arlot) Dynamics, ephemerides and astrometry of the solar system. Proceedings. 172 nd Symposium of the International Astronomical Union, Paris ( France), 3-8 Jul. 1995. 1996, pp. 243-244. Barkin Yu.V. (1998) Unperturbed Chandler's Motion and Perturbation Theory of the Rotational Motion of the Deformable Celestial Bodies. Astronomical and Astrophysical Transactions, v. 17, N3, pp. 431-475. Barkin Yu.V., Ferrandiz J.M. (2004) Some dynamical effects in unperturbed and perturbed Earth rotation caused by elastic properties of the mantle. Journees 2004 'Systems de reference spatio temporals' (20-22 September, 2004, Paris, France). Fundamental Astronomy: New concepts and models for high accuracy observations. Book of abstracts, Observatoire de Paris, pp. 15-16. Ferrandiz, J.M. and Barkin, Yu.V. (2001) Dynamics of the rotational motion of the planet with the elastic mantle, liquid core and with the changeable external shell. Proceedings of International Conference «AstroKazan-2001». Astronomy and geodesy in new millennium (24-29 September 2001), Kazan State University: Publisher «DAS», pp. 123-129. Konopliv A.S., Yoder C.F., Standish E.M., Yuan D.-N. and Sjogren W.L. (2006) A global solution for Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus, V. 182, pp. 23-50. Zarkov V.N., Gudkova T.V. (2009) The period and Q of the Chandler wobble of Mars. Planetary and Space Science (in press).
NASA Astrophysics Data System (ADS)
2016-12-01
The 2016 Paolo Farinella Prize has been awarded to Greek physicist Kleomenis Tsiganis at the Aristotle University of Thessaloniki, for his work on the applications of celestial mechanics to the dynamics of planetary systems, including the development of the “Nice model”, which describes the migrations of Jupiter, Saturn, Uranus and Neptune during the early phases of the solar system's evolution.
The AFJROTC Program at Hopewell High School
ERIC Educational Resources Information Center
Schultes, Charles R., Jr.
1975-01-01
Describes the textbooks, the curricular, and co-curricular activities in the AFJROTC program at Hopewell High School. Includes a description of a specialized, fourth-year course extension which includes celestial navigation, communicative techniques, computer systems, meteorology, and Air Force Role in National Defense. (MLH)
NASA Technical Reports Server (NTRS)
Olsen, E.; Backus, C.; Gulkis, S.; Levin, S.
1993-01-01
The NASA High Resolution Microwave Survey (HRMS) Sky Survey component will survey the entire celestial sphere over the microwave frequency band to search for signals of intelligent origin which originate from beyond our solar system.
Relative Navigation of Formation-Flying Satellites
NASA Technical Reports Server (NTRS)
Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, J. Russell; Grambling, Cheryl
2002-01-01
This paper compares autonomous relative navigation performance for formations in eccentric, medium and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS), crosslink, and celestial object measurements. For close formations, the relative navigation accuracy is highly dependent on the magnitude of the uncorrelated measurement errors. A relative navigation position accuracy of better than 10 centimeters root-mean-square (RMS) can be achieved for medium-altitude formations that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 15 meters RMS can be achieved for high-altitude formations that have sparse tracking of the GPS signals. The addition of crosslink measurements can significantly improve relative navigation accuracy for formations that use sparse GPS tracking or celestial object measurements for absolute navigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Jauncey, D. L.; Johnston, H. M.
2011-11-15
We present the results of spectroscopic observations of the optical counterparts of 47 southern radio sources from the candidate International Celestial Reference Catalogue as part of a very long baseline interferometry (VLBI) program to strengthen the celestial reference frame, especially in the south. We made the observations with the 3.58 m European Southern Observatory New Technology Telescope. We obtained redshifts for 30 quasars and one radio galaxy, with a further seven objects being probable BL Lac objects with featureless spectra. Of the remainder, four were clear misidentifications with Galactic stars and five had low signal-to-noise spectra and could not bemore » classified. These results, in combination with new VLBI data of the radio sources with redshifts more than 2, add significantly to the existing data needed to refine the distribution of source proper motions over the celestial sphere.« less
A consistent time frame for Chaucer's Canterbury Pilgrimage
NASA Astrophysics Data System (ADS)
Kummerer, K. R.
2001-08-01
A consistent time frame for the pilgrimage that Geoffrey Chaucer describes in The Canterbury Tales can be established if the seven celestial assertions related to the journey mentioned in the text can be reconciled with each other and the date of April 18 that is also mentioned. Past attempts to establish such a consistency for all seven celestial assertions have not been successful. The analysis herein, however, indicates that in The Canterbury Tales Chaucer accurately describes the celestial conditions he observed in the April sky above the London(Canterbury region of England in the latter half of the fourteenth century. All seven celestial assertions are in agreement with each other and consistent with the April 18 date. The actual words of Chaucer indicate that the Canterbury journey began during the 'seson' he defines in the General Prologue and ends under the light of the full Moon on the night of April 18, 1391.
The Future of Past Skies: Historical Celestial Cartography at the Adler Planetarium
NASA Astrophysics Data System (ADS)
Raposo, Pedro M. P.
2018-01-01
The Adler Planetarium is home to a world-class collection of scientific instruments, rare books and works on paper. Since 2014, Adler staff has been digitizing a wide selection of items relating to celestial cartography, including: more than 236 rare books and atlases; 97 works on paper; globes and other artifacts, amounting to 58 objects; and approximately 3,750 Carte du Ciel prints. This work has been carried out under the auspices of the Celestial Cartography Digitization Project (CCDP), which is sponsored by the National Endowment for the Humanities. This poster presentation will include: 1) an update on the project; 2) a description of related resources and tools available to the research community; 3) examples of how the Adler Planetarium is integrating the history of celestial cartography with its public programs; 4) an overview of a prospective citizen science project involving the identification of constellations in historical atlases and charts.
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Brown, A.; Brown, J.
The paper describes the development and evaluation of a suite of advanced algorithms which provide significantly-improved capabilities for finding, fixing, and tracking multiple ballistic and flying low observable objects in highly stressing cluttered environments. The algorithms have been developed for use in satellite-based staring and scanning optical surveillance suites for applications including theatre and intercontinental ballistic missile early warning, trajectory prediction, and multi-sensor track handoff for midcourse discrimination and intercept. The functions performed by the algorithms include electronic sensor motion compensation providing sub-pixel stabilization (to 1/100 of a pixel), as well as advanced temporal-spatial clutter estimation and suppression to below sensor noise levels, followed by statistical background modeling and Bayesian multiple-target track-before-detect filtering. The multiple-target tracking is performed in physical world coordinates to allow for multi-sensor fusion, trajectory prediction, and intercept. Output of detected object cues and data visualization are also provided. The algorithms are designed to handle a wide variety of real-world challenges. Imaged scenes may be highly complex and infinitely varied -- the scene background may contain significant celestial, earth limb, or terrestrial clutter. For example, when viewing combined earth limb and terrestrial scenes, a combination of stationary and non-stationary clutter may be present, including cloud formations, varying atmospheric transmittance and reflectance of sunlight and other celestial light sources, aurora, glint off sea surfaces, and varied natural and man-made terrain features. The targets of interest may also appear to be dim, relative to the scene background, rendering much of the existing deployed software useless for optical target detection and tracking. Additionally, it may be necessary to detect and track a large number of objects in the threat cloud, and these objects may not always be resolvable in individual data frames. In the present paper, the performance of the developed algorithms is demonstrated using real-world data containing resident space objects observed from the MSX platform, with backgrounds varying from celestial to combined celestial and earth limb, with instances of extremely bright aurora clutter. Simulation results are also presented for parameterized variations in signal-to-clutter levels (down to 1/1000) and signal-to-noise levels (down to 1/6) for simulated targets against real-world terrestrial clutter backgrounds. We also discuss algorithm processing requirements and C++ software processing capabilities from our on-going MDA- and AFRL-sponsored development of an image processing toolkit (iPTK). In the current effort, the iPTK is being developed to a Technology Readiness Level (TRL) of 6 by mid-2010, in preparation for possible integration with STSS-like, SBIRS high-like and SBSS-like surveillance suites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finch, Charlie T.; Zacharias, Norbert; Wycoff, Gary L., E-mail: finch@usno.navy.mi
2010-06-15
Presented here are the details of the astrometric reductions from the x, y data to mean right ascension (R.A.), declination (decl.) coordinates of the third U.S. Naval Observatory CCD Astrograph Catalog (UCAC3). For these new reductions we used over 216,000 CCD exposures. The Two-Micron All-Sky Survey (2MASS) data are used extensively to probe for coordinate and coma-like systematic errors in UCAC data mainly caused by the poor charge transfer efficiency of the 4K CCD. Errors up to about 200 mas have been corrected using complex look-up tables handling multiple dependences derived from the residuals. Similarly, field distortions and sub-pixel phasemore » errors have also been evaluated using the residuals with respect to 2MASS. The overall magnitude equation is derived from UCAC calibration field observations alone, independent of external catalogs. Systematic errors of positions at the UCAC observing epoch as presented in UCAC3 are better corrected than in the previous catalogs for most stars. The Tycho-2 catalog is used to obtain final positions on the International Celestial Reference Frame. Residuals of the Tycho-2 reference stars show a small magnitude equation (depending on declination zone) that might be inherent in the Tycho-2 catalog.« less
NASA Astrophysics Data System (ADS)
MacMillan, D. S.
2014-12-01
Galactic aberration is due to the motion of the solar system barycenter around the galactic center. It results in a systematic pattern of apparent proper motion of radio sources observed by VLBI. This effect is not currently included in VLBI analysis. Estimates of the size of this effect indicate that it is important that this secular aberration drift be accounted for in order to maintain an accurate celestial reference frame and allow astrometry at the several microarcsecond level. Future geodetic observing systems are being designed to be capable of producing a future terrestrial reference frame with an accuracy of 1 mm and stability of 0.1 mm/year. We evaluate the effect galactic aberration on attaining these reference frame goals. This presentation will discuss 1) the estimation of galactic aberration from VLBI data and 2) the effect of aberration on the Terrestrial and Celestial Reference Frames and the Earth Orientation Parameters that connect these frames.
ERIC Educational Resources Information Center
Rosenkrantz, Kurt
2005-01-01
In the unit described in this article, students discover the main principles of navigation, build tools to observe celestial bodies, and apply their new skills to finding their position on Earth. Along the way students see how science, mathematics, technology, and history are intertwined.
Anania Shirakatsi's Cosmographical and Natural Philosophical Views
NASA Astrophysics Data System (ADS)
Danielyan, Eduard
2014-10-01
The observation of the heaven and celestial bodies has taken place since ancient times in the Armenian Highland. The notions of the sphericity of the Earth and celestial bodies, and other theses (about elements, comparative sizes of celestial bodies, antipodes, earthquakes, criticism of astrology, etc.) were reflected and elaborated in "Cosmography" of Anania Shirakatsi (VII century AD), as well as "Ashkharhatsoyts" ("Geography") of Movses Khorenatsi (V century AD) and his continuer Anania Shirakatsi. The road of observation and study of the Milky Way - the fundamental kernel of the development of astronomy - has led the human mind to galaxies, the cognition of the infinite capabilities of the development of matter, that is to say, from the studies of the elements constituting the Earth and other spherical bodies in the Universe (studied by Aristotle) to the Heliocentric system by Copernicus (1473-1543), from the cosmogonic ideas of Democritus (460-370 BC) about the multitude of worlds and the character of the Milky Way and their reflection in natural philosophic views of Anania Shirakatsi to the discovery of non-stationary objects and processes in the Universe owing to the activity of the nuclei of galaxies, according to the cosmogonic conception of academician Victor Ambartsumyan. Anania Shirakatsi's scientific heritage greatly contributed to the development of Armenian and world natural scientific thought.
Particular Solutions in Four body problem with solar wind drag
NASA Astrophysics Data System (ADS)
Kumari, Reena; Singh Kushvah, Badam
2012-07-01
To study the motion of a group of celestial objects/bodies interacting with each other under gravitational attraction. We formulated a four body problem with solar wind drag of one radiating body, rotating about their common center of mass with central configuration. We suppose that the governing forces of the motion of four body problems are mutual gravitational attractions of bodies and drag force of radiating body. Firstly, we derive the equations of motion using new co-ordinates for the four body problem. Again, we find the integrals of motions under different cases regarding to the mass of the bodies. Then we find the zero velocity surfaces and particular solutions. Finally, we examined the effect of solar wind drag on the motion of the four body problem. Keywords: Four Body Problem; Particular Solutions; Radiation Force; Zero Velocity Surfaces.
Celestial Pole Offsets: Conversion From (dX, dY) to (d(psi), d(epsilon). Version 3
2005-05-01
observed angular offset of the celestial pole from its modelled position, expressed in terms of changes in ecliptic longitude and obliquity . These...the mean obliquity of the ecliptic of date (≈ J2000.0). As the celestial pole precesses farther from the ICRS Z-axis, two effects must be accounted for...to only a few significant digits. With dX ′ and dY ′ in hand we compute dψ = dX ′/ sin ² d² = dY ′ (8) where ² is the mean obliquity of the ecliptic
On the Origin of Rotation of a Celestial Body
NASA Astrophysics Data System (ADS)
Vujičić, V. A.
1988-03-01
The differential equations of the self-rotation of a celestial body have been evaluated. From an integral of these equations a formula for angular velocity of the celestial body was obtained. This formula after being applied to the rotation of the Sun and of the Earth gives, respectively, the following angular velocity ranges: 0.588×10-6<ω<18, 187×10-6 and 0.7533×10-5<ω<12,4266×10-5. These are up to three times narrower than those previously obtained by Savić and Kašanin [1].
Relative Navigation of Formation Flying Satellites
NASA Technical Reports Server (NTRS)
Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)
2002-01-01
The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.
Terrestrial and Celestial Cartography,
1979-05-01
39 ANDROMEDA GALAXY.................................................. 39 DISCUSSION...boundary of the most visible region in each photograph. ANDROMEDA GALAXY The nearest spiral galaxy is in the Andromeda constellation. It is designated...Astrophysical Journal, 131, 265 (1960) 51 167. Photoelectmc Photometry of the Andromeda Nebula in the U, B, V System. G. de Vaucouleurs
Educating astrometry and celestial mechanics students for the 21st century
NASA Astrophysics Data System (ADS)
van Altena, W. F.; Stavinschi, M.
2008-07-01
Astrometry and Celestial Mechanics have entered a new era with the advent of Micro-arcsecond positions, parallaxes and proper motions. Cutting-edge science topics will be addressed that were far beyond our grasp only a few years ago. It will be possible to determine definitive distances to Cepheid variables, the center of our Galaxy, the Magellanic Clouds and other Local Group members. We will measure the orbital parameters of dwarf galaxies that are merging with the Milky Way, define the kinematics, dynamics and structure of our Galaxy and search for evidence of the Dark Matter that makes up most of the mass in the universe. Stellar masses will be determined routinely to 1% accuracy and we will be able to make full orbit solutions and mass determinations for Extrasolar planetary systems. If we are to take advantage of Micro-arcsecond astrometry, we need to reformulate our study of reference frames, systems and the equations of motion in the context of special and general relativity. Methods also need to be developed to statistically analyze our data and calibrate our instruments to levels beyond current standards. As a consequence, our curricula must be drastically revised to meet the needs of students in the 21st Century. With the above considerations in mind, we developed a syllabus for an introductory one-semester course in Astrometry and Celestial Mechanics. This course gives broad introductions to most topics in our fields and a base of knowledge from which a student can elect areas for self-study or attendance at centers where advanced courses, workshops or internships are available.
The International Celestial Reference Frame (ICRF) and the Relationship Between Frames
NASA Technical Reports Server (NTRS)
Ma, Chopo
2000-01-01
The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.
Celestial mechanics with geometric algebra
NASA Technical Reports Server (NTRS)
Hestenes, D.
1983-01-01
Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.
NASA Astrophysics Data System (ADS)
Taris, F.; Damljanovic, G.; Andrei, A.; Souchay, J.; Klotz, A.; Vachier, F.
2018-03-01
Context. The first release of the Gaia catalog is available since 14 September 2016. It is a first step in the realization of the future Gaia reference frame. This reference frame will be materialized by the optical positions of the sources and will be compared with and linked to the International Celestial Reference Frame, materialized by the radio position of extragalactic sources. Aim. As in the radio domain, it can be reasonably postulated that quasar optical flux variations can alert us to potential changes in the source structure. These changes could have important implications for the position of the target photocenters (together with the evolution in time of these centers) and in parallel have consequences for the link of the reference systems. Methods: A set of nine optical telescopes was used to monitor the magnitude variations, often at the same time as Gaia, thanks to the Gaia Observation Forecast Tool. The Allan variances, which are statistical tools widely used in the atomic time and frequency community, are introduced. Results: This work describes the magnitude variations of 47 targets that are suitable for the link between reference systems. We also report on some implications for the Gaia catalog. For 95% of the observed targets, new information about their variability is reported. In the case of some targets that are well observed by the TAROT telescopes, the Allan time variance shows that the longest averaging period of the magnitudes is in the range 20-70 d. The observation period by Gaia for a single target largely exceeds these values, which might be a problem when the magnitude variations exhibit flicker or random walk noises. Preliminary computations show that if the coordinates of the targets studied in this paper were affected by a white-phase noise with a formal uncertainty of about 1 mas (due to astrophysical processes that are put in evidence by the magnitude variations of the sources), it would affect the precision of the link at the level of 50 μas. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A52
INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.
We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributionsmore » the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.« less
Celestial Triple Treat on This Week @NASA – February 2, 2018
2018-02-02
Super Blue Blood Moon – a rare triple treat up in the sky, celebrating America’s first explorer in space, and smoke and fire – another Space Launch System engine test … a few of the stories to tell you about – This Week at NASA!
ERIC Educational Resources Information Center
Young, Donna L.
2005-01-01
To help students understand the connection that Earth and the solar system have with the cosmic cycles of stellar evolution, and to give students an appreciation of the beauty and elegance of celestial phenomena, the Chandra X-Ray Center (CXC) educational website contains a stellar evolution module that is available free to teachers. In this…
Students' Development of Astronomy Concepts across Time
NASA Astrophysics Data System (ADS)
Plummer, Julia
Students in Grades 1, 3, and 8 (N = 60) were interviewed while using a planetarium-like setting that allowed the students to demonstrate their ideas about apparent celestial motion both verbally and with their own motions. Though the older students were generally more accurate in many conceptual areas compared with the younger students, in several areas, the eighth-grade students showed no improvement over the third-grade students. The use of kinesthetic learning techniques in a planetarium program was also explored as a method to improve understanding of celestial motion. Pre- and postinterviews were conducted with participants from seven classes of first- and second-grade students (N = 63). Students showed significant improvement in all areas of apparent celestial motion covered by the planetarium program and surpassed the middle school students' understanding of these concepts in most areas. Based on the results of these studies, a learning progression was developed describing how children may progress through successively more complex ways of understanding apparent celestial motion across elementary grades.
The IAA Cosmic Study 'Protecting the Environment of Celestial Bodies'
NASA Astrophysics Data System (ADS)
Rettberg, Petra; Hofmann, Mahulena; Williamson, Mark
The study group tasked with producing this International Academy of Astronautics (IAA) `Cosmic Study' on Protecting the Environment of Celestial Bodies was formed under the aus-pices of IAA Commission V (Space Policy, Law Economy). The members of the international, multidisciplinary team assembled to undertake the Study accept, as a premise, the Planetary Protection Policy guidelines developed by COSPAR, which differentiate the degree of protec-tion according to the type of space activity and the celestial body under investigation (such that fly-by missions have less stringent requirements than lander missions, while Mars is `better protected' than the Moon). However, this Study goes deliberately beyond the interpretation of `Planetary Protection' as a set of methods for protecting the planets from biological con-tamination and extends consideration to the geophysical, industrial and cultural realms. The Study concludes that, from the perspective of current and future activities in outer space, present measures aimed at protecting the space environment are insufficient. Deficiencies in-clude a lack of suitable in-situ methods of chemical and biological detection and the absence of a systematic record of radioactive contaminants. Other issues identified by the Study include an insufficient legal framework, a shortage of effective economic tools and a lack of political will to address these concerns. It is expected that new detection methods under development, and the resultant increase in microbiological knowledge of the planetary surfaces, will lead to changes in the COSPAR planetary protection guidelines and bioburden limits. It is important, however, that any new approaches should not hamper future exploration and exploitation of celestial bodies more than absolutely necessary. The Study addresses the need to find a balance between protection and freedom of action. From a legal perspective, the Study concludes that a general consensus on protection of the environment of the Moon and other celestial bodies should be sought among spacefaring states, while the question of new laws and regulations should be deliberated in the UN and scientific organisations. In doing so, it is recommended that experience in formulating the Antarctic Treaty System and other terrestrial environmen-tal accords should be taken into account. In general terms, it is expected that the majority of space activities would remain untouched by any future policies and regulations, to ensure that space exploration and exploitation remains open to future generations. But this philosophy brings with it a responsibility to protect the freedoms of those future generations from the ill-conceived practices of the present. As a result, activities that threaten the environments of celestial bodies, and our cultural heritage, should be identified, mitigated and discouraged (either by policy or by law).
Engineering a Solution to Jupiter Exploration
NASA Technical Reports Server (NTRS)
Clark, Karla; Magner, Thomas; Lisano, Michael; Pappalardo, Robert
2010-01-01
The Europa Jupiter System Mission (EJSM) would be an international mission with the overall theme of investigating the emergence of habitable worlds around gas giants. Its goals are to (1) explore Europa to investigate its habitability, (2) characterize Ganymede as a planetary object including its potential habitability and (3) explore the Jupiter system as an archetype for gas giants. NASA and ESA have concluded a detailed joint study of a mission to Europa, Ganymede, and the Jupiter system with conceptual orbiters developed by NASA and ESA. The baseline EJSM architecture consists of two primary elements operating simultaneously in the Jovian system: the NASA-led Jupiter Europa Orbiter (JEO), and the ESA-led Jupiter Ganymede Orbiter (JGO). JEO and JGO would execute an intricately choreographed exploration of the Jupiter System before settling into orbit around Europa and Ganymede, respectively. EJSM would directly address themes concerning the origin and evolution of satellite systems and water-rich environments in icy satellites. The potential habitability of the ocean-bearing moons Europa and Ganymede would be investigated, by characterizing the geophysical, compositional, geological, and external processes that affect these icy worlds. EJSM would also investigate Io and Callisto, Jupiter's atmosphere, and the Jovian magnetosphere. By understanding the Jupiter system and unraveling its history, the formation and evolution of gas giant planets and their satellites would be better known. Most importantly, EJSM would shed new light on the potential for the emergence of life in the celestial neighborhood and beyond. The EJSM baseline architecture would provide opportunities for coordinated synergistic observations by JEO and JGO of the Jupiter and Ganymede magnetospheres, the volcanoes and torus of Io, the atmosphere of Jupiter, and comparative planetology of icy satellites. Each spacecraft would conduct both synergistic dual-spacecraft investigations and stand-alone measurements toward the overall mission theme and goals.
Collocation of equilibria in gravitational field of triangular body via mass redistribution
NASA Astrophysics Data System (ADS)
Burov, Alexander A.; Guerman, Anna D.; Nikonov, Vasily I.
2018-05-01
We consider a gravitating system with triangular mass distribution that can be used as approximation of gravitational field for small irregular celestial bodies. In such system, the locations of equilibrium points, that is, the points where the gravitational forces are balanced, are analyzed. The goal is to find the mass distribution which provides equilibrium in a pre-assigned location near the triangular system, and to study the stability of this equilibrium.
Opportunities of Teaching Archaeoastronomy in Thailand
ERIC Educational Resources Information Center
Anantasook, Sakanan; Yuenyong, Chokchai; Coll, Richard K.
2015-01-01
Ancient cultures around the world systematically observed the sky and noticed the motions of celestial objects including the stars, Moon, Sun, and planets. Many structural symbolic patterns were built to perceive, visualize and understand the celestial phenomena. They have used this knowledge, archaeoastronomy, to survive, and as bases for…
Thai student existing understanding about the solar system model and the motion of the stars
NASA Astrophysics Data System (ADS)
Anantasook, Sakanan; Yuenyong, Chokchai
2018-01-01
The paper examined Thai student existing understanding about the solar system model and the motion of the stars. The participants included 141 Grade 9 students in four different schools of the Surin province, Thailand. Methodology regarded interpretive paradigm. The tool of interpretation included the Student Celestial Motion Conception Questionnaire (SCMCQ) and informal interview. Given understandings in the SCMCQ were read through and categorized according to students' understandings. Then, students were further probed as informal interview. Students' understandings in each category were counted and percentages computed. Finally, students' understandings across four different schools were compared and contrasted using the percentage of student responses in each category. The findings revealed that most students understand about Sun-Moon-Earth (SME) system and solar system model as well, they can use scientific explanations to explain the celestial objects in solar system and how they orbiting. Unfortunately, most of students (more than 70%) never know about the Polaris, the North Star, and 90.1% of them never know about the ecliptic, and probably also the 12 zodiac constellations. These existing understanding suggested some ideas of teaching and learning about solar system model and the motion of the stars. The paper, then, discussed some learning activities to enhance students to further construct meaning about solar system model and the motion of the stars.
Inquiry and Astronomy: Preservice Teachers' Investigations of Celestial Motion
ERIC Educational Resources Information Center
Plummer, Julia D.; Zahm, Valerie M.; Rice, Rebecca
2010-01-01
This study investigated the impact of an open inquiry experience on elementary science methods students' understanding of celestial motion as well as the methods developed by students to answer their own research questions. Pre/post interviews and assessments were used to measure change in participants' understanding (N = 18). A qualitative…
NASA Astrophysics Data System (ADS)
Bykov, O. P.
Any CCD frames with stars or galaxies or clusters and other images must be studied for a searching of moving celestial objects, namely asteroids, comets, artificial Earth satellites inside them. At Pulkovo Astronomical Observatory, new methods and software were elaborated to solve this problem.
NASA Astrophysics Data System (ADS)
Capitaine, Nicole; Liu, Jia-Cheng
2014-12-01
The dynamical flattening H_{d} is a fundamental Earth's parameter and a crucial scale factor in constructing the precession-nutation models. Its value has generally been derived from astronomical observations of the luni-solar precession in longitude at epoch, or from geophysical determinations of the Earth's moment of inertia. It should be noted that the observed precession rates in longitude and obliquity result from several theoretical contributions, some of them, as well as the nutation amplitudes, being also dependent on H_{d}. This paper discusses the rigorous procedure to be used for deriving H_{d} from the best available astronomical observations. We use the IAU 2006/2000 precession-nutation and VLBI observations of the celestial pole offsets spanning about 32 years in order to calculate the observed position of the CIP (Celestial intermediate pole) in the GCRS (Geocentric celestial reference system). Then, the value of H_{d} is evaluated by a least squares method with a careful consideration of the various theoretical contributions to the precession rates and of the largest terms of nutation. We compare the results with an indirect fit of H_{d} to the estimated corrections to the linear term in precession and the 18.6-yr nutation. We discuss the limit of accuracy, given the characteristics of the available observations and the uncertainties in the models, as well as the parameters on which H_{d} is dependent.
Immersive Virtual Moon Scene System Based on Panoramic Camera Data of Chang'E-3
NASA Astrophysics Data System (ADS)
Gao, X.; Liu, J.; Mu, L.; Yan, W.; Zeng, X.; Zhang, X.; Li, C.
2014-12-01
The system "Immersive Virtual Moon Scene" is used to show the virtual environment of Moon surface in immersive environment. Utilizing stereo 360-degree imagery from panoramic camera of Yutu rover, the system enables the operator to visualize the terrain and the celestial background from the rover's point of view in 3D. To avoid image distortion, stereo 360-degree panorama stitched by 112 images is projected onto inside surface of sphere according to panorama orientation coordinates and camera parameters to build the virtual scene. Stars can be seen from the Moon at any time. So we render the sun, planets and stars according to time and rover's location based on Hipparcos catalogue as the background on the sphere. Immersing in the stereo virtual environment created by this imaged-based rendering technique, the operator can zoom, pan to interact with the virtual Moon scene and mark interesting objects. Hardware of the immersive virtual Moon system is made up of four high lumen projectors and a huge curve screen which is 31 meters long and 5.5 meters high. This system which take all panoramic camera data available and use it to create an immersive environment, enable operator to interact with the environment and mark interesting objects contributed heavily to establishment of science mission goals in Chang'E-3 mission. After Chang'E-3 mission, the lab with this system will be open to public. Besides this application, Moon terrain stereo animations based on Chang'E-1 and Chang'E-2 data will be showed to public on the huge screen in the lab. Based on the data of lunar exploration,we will made more immersive virtual moon scenes and animations to help the public understand more about the Moon in the future.
Source positions from VLBI combined solution
NASA Astrophysics Data System (ADS)
Bachmann, S.; Thaller, D.; Engelhardt, G.
2014-12-01
The IVS Combination Center at BKG is primarily responsible for combined Earth Orientation Parameter (EOP) products and the generation of a terrestrial reference frame based on VLBI observations (VTRF). The procedure is based on the combination of normal equations provided by six IVS Analysis Centers (AC). Since more and more ACs also provide source positions in the normal equations - beside EOPs and station coordinates - an estimation of these parameters is possible and should be investigated. In the past, the International Celestial Reference Frame (ICRF) was not generated as a combined solution from several individual solutions, but was based on a single solution provided by one AC. The presentation will give an overview on the combination strategy and the possibilities for combined source position determination. This includes comparisons with existing catalogs, quality estimation and possibilities of rigorous combination of EOP, TRF and CRF in one combination process.
Global Statistics of Bolides in the Terrestrial Atmosphere
NASA Astrophysics Data System (ADS)
Chernogor, L. F.; Shevelyov, M. B.
2017-06-01
Purpose: Evaluation and analysis of distribution of the number of meteoroid (mini asteroid) falls as a function of glow energy, velocity, the region of maximum glow altitude, and geographic coordinates. Design/methodology/approach: The satellite database on the glow of 693 mini asteroids, which were decelerated in the terrestrial atmosphere, has been used for evaluating basic meteoroid statistics. Findings: A rapid decrease in the number of asteroids with increasing of their glow energy is confirmed. The average speed of the celestial bodies is equal to about 17.9 km/s. The altitude of maximum glow most often equals to 30-40 km. The distribution law for a number of meteoroids entering the terrestrial atmosphere in longitude and latitude (after excluding the component in latitudinal dependence due to the geometry) is approximately uniform. Conclusions: Using a large enough database of measurements, the meteoroid (mini asteroid) statistics has been evaluated.
NASA Technical Reports Server (NTRS)
Dickey, J. M.
2010-01-01
In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.
NASA Astrophysics Data System (ADS)
Bu, Yanlong; Zhang, Qiang; Ding, Chibiao; Tang, Geshi; Wang, Hang; Qiu, Rujin; Liang, Libo; Yin, Hejun
2017-02-01
This paper presents an interplanetary optical navigation algorithm based on two spherical celestial bodies. The remarkable characteristic of the method is that key navigation parameters can be estimated depending entirely on known sizes and ephemerides of two celestial bodies, especially positioning is realized through a single image and does not rely on traditional terrestrial radio tracking any more. Actual Earth-Moon group photos captured by China's Chang'e-5T1 probe were used to verify the effectiveness of the algorithm. From 430,000 km away from the Earth, the camera pointing accuracy reaches 0.01° (one sigma) and the inertial positioning error is less than 200 km, respectively; meanwhile, the cost of the ground control and human resources are greatly reduced. The algorithm is flexible, easy to implement, and can provide reference to interplanetary autonomous navigation in the solar system.
The Universe in Armenian Mythological Perceptions
NASA Astrophysics Data System (ADS)
Vardumyan, Gohar
2016-12-01
Ancient Armenians' perceptions and knowledge about the Universe and cosmic phenomena are reflected in pre-Christian mythology. Thousands of years ago, myths were woven on celestial bodies, and, in the form of legends, they have reached the present day. Heathen Armenians, as other developed nations of the Ancient World, knew the five planets of the Solar System seen with the naked eye: Mercury, Venus, Mars, Jupiter, Saturn, each of them embodied in mythology by a god or a goddess. In pantheons formed during III-I millennia B.C. those planets of the starry sky are represented as worshipped, as well as the Sun, the Moon, the Milky Way, Hayk-Orion, Great Bear, Libra and other constellations. The perceptions of ancient Armenians about the Universe, the tangle of mythology and astronomy in their world view are revealed in the cults of gods and goddesses personifying celestial bodies and luminaries.
The Green Bank North Celestial Cap Pulsar Survey: New Pulsars and Future Prospects
NASA Astrophysics Data System (ADS)
Lynch, Ryan S.; Swiggum, Joe; Stovall, Kevin; Chawla, Pragya; DeCesar, Megan E.; Fonseca, Emmanuel; Levin, Lina; Cui, Bingyi; Kondratiev, Vlad; Archibald, Anne; Boyles, Jason; Hessels, Jason W. T.; Jenet, Fredrick; Kaplan, David; Karako-Argaman, Chen; Kaspi, Victoria; Martinez, Jose; McLaughlin, Maura; Ransom, Scott M.; Roberts, Mallory; Siemens, Xavier; Spiewak, Renee; Stairs, Ingrid; van Leeuwn, Joeri; Green Bank North Celestial Cap Survey Collaboration
2018-01-01
The Green Bank North Celestial Cap pulsar survey is the most successful low frequency pulsar survey ever. GBNCC uses the Green Bank telescope to cover the full visible sky at 350 MHz. With the survey over 70% complete, we have discovered over 150 pulsars, including 20 MSPs and 11 RRATs. I will report on the current status of the survey and plans for its completion in the coming years. I will also report on several discoveries including: timing solutions for dozens of new pulsars; new high precision MSPs and their suitability for inclusion in pulsar timing arrays; a new relativistic double neutron star system; new pulsar mass measurements; proper motion measurements for several MSPs; a new mode changing pulsar; interesting new MSP binaries; nulling fraction analyses; and possible implications of the lack of any fast radio bursts in the survey so far.
Visual interface for space and terrestrial analysis
NASA Technical Reports Server (NTRS)
Dombrowski, Edmund G.; Williams, Jason R.; George, Arthur A.; Heckathorn, Harry M.; Snyder, William A.
1995-01-01
The management of large geophysical and celestial data bases is now, more than ever, the most critical path to timely data analysis. With today's large volume data sets from multiple satellite missions, analysts face the task of defining useful data bases from which data and metadata (information about data) can be extracted readily in a meaningful way. Visualization, following an object-oriented design, is a fundamental method of organizing and handling data. Humans, by nature, easily accept pictorial representations of data. Therefore graphically oriented user interfaces are appealing, as long as they remain simple to produce and use. The Visual Interface for Space and Terrestrial Analysis (VISTA) system, currently under development at the Naval Research Laboratory's Backgrounds Data Center (BDC), has been designed with these goals in mind. Its graphical user interface (GUI) allows the user to perform queries, visualization, and analysis of atmospheric and celestial backgrounds data.
The South African Astronomical Observatory
NASA Technical Reports Server (NTRS)
1989-01-01
Topics discussed in the Overview of Year 1988 include the following: Supernova in the Large Magellanic Cloud; Galaxies; Ground based observations of celestial x ray sources; the Magellanic Clouds; Pulsating variables; Galactic structure; Binary star phenomena; The provision of photometric standards; Nebulae and interstellar matter; Stellar astrophysics; Astrometry; Solar system studies; Visitors programs; Publications; and General matters.
Spatial Thinking as the Dimension of Progress in an Astronomy Learning Progression
ERIC Educational Resources Information Center
Plummer, Julia D.
2014-01-01
The big idea of "celestial motion", observational astronomy phenomena explained by the relative position and motion of objects in the solar system and beyond, is central to astronomy in primary and secondary education. In this paper, I argue that students' progress in developing productive, scientific explanations for this class of…
NASA Technical Reports Server (NTRS)
Parmar, Devendra S.; Shams, Qamar A.
2002-01-01
The strategy of NASA to explore space objects in the vicinity of Earth and other planets of the solar system includes robotic and human missions. This strategy requires a road map for technology development that will support the robotic exploration and provide safety for the humans traveling to other celestial bodies. Aeroassist is one of the key elements of technology planning for the success of future robot and human exploration missions to other celestial bodies. Measurement of aerothermodynamic parameters such as temperature, pressure, and acceleration is of prime importance for aeroassist technology implementation and for the safety and affordability of the mission. Instrumentation and methods to measure such parameters have been reviewed in this report in view of past practices, current commercial availability of instrumentation technology, and the prospects of improvement and upgrade according to the requirements. Analysis of the usability of each identified instruments in terms of cost for efficient weight-volume ratio, power requirement, accuracy, sample rates, and other appropriate metrics such as harsh environment survivability has been reported.
Did a Comet Deliver the Chelyabinsk Meteorite?
NASA Astrophysics Data System (ADS)
Gladysheva, O. G.
2017-09-01
An explosion of a celestial body occurred on the fifteenth of February, 2013, near Chelyabinsk (Russia). The explosive energy was determined as 500 kt of TNT, on the basis of which the mass of the bolide was estimated at 107 kg, and its diameter at 19 m [1]. Fragments of the meteorite, such as LL5/S4-WO type ordinary chondrite [2] with a total mass only of 2•103 kg, fell to the earth's surface [3]. Here, we will demonstrate that the deficit of the celestial body's mass can be explained by the arrival of the Chelyabinsk chondrite on Earth by a significantly more massive but fragile ice-bearing celestial body.
AstroNavigation: Freely-available Online Instruction for Performing a Sight Reduction
NASA Astrophysics Data System (ADS)
Gessner Stewart, Susan; Grundstrom, Erika; Caudel, Dave
2015-08-01
A reliable method of obtaining your geographic location from observations of celestial bodies is globally available. This online learning module, developed through a collaboration between Vanderbilt University and the U.S. Naval Observatory, serves to address the need for freely-available comprehensive instruction in celestial navigation online. Specifically targeted are the steps of preforming a sight reduction to obtain a terrestrial position using this technique. Difficult concepts such as plotting on a navigational chart and the complexities of using navigation publications are facilitated through this online content delivery, rooted in effective course design principles. There is good potential in using celestial navigation as a tool for stimulating interest in astronomy given its resourcefulness and accessibility.
Pomozi, I; Horváth, G; Wehner, R
2001-09-01
One of the biologically most important parameters of the cloudy sky is the proportion P of the celestial polarization pattern available for use in animal navigation. We evaluated this parameter by measuring the polarization patterns of clear and cloudy skies using 180 degrees (full-sky) imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) ranges of the spectrum under clear and partly cloudy conditions. The resulting data were compared with the corresponding celestial polarization patterns calculated using the single-scattering Rayleigh model. We show convincingly that the pattern of the angle of polarization (e-vectors) in a clear sky continues underneath clouds if regions of the clouds and parts of the airspace between the clouds and the earth surface (being shady at the position of the observer) are directly lit by the sun. The scattering and polarization of direct sunlight on the cloud particles and in the air columns underneath the clouds result in the same e-vector pattern as that present in clear sky. This phenomenon can be exploited for animal navigation if the degree of polarization is higher than the perceptual threshold of the visual system, because the angle rather than the degree of polarization is the most important optical cue used in the polarization compass. Hence, the clouds reduce the extent of sky polarization pattern that is useful for animal orientation much less than has hitherto been assumed. We further demonstrate quantitatively that the shorter the wavelength, the greater the proportion of celestial polarization that can be used by animals under cloudy-sky conditions. As has already been suggested by others, this phenomenon may solve the ultraviolet paradox of polarization vision in insects such as hymenopterans and dipterans. The present study extends previous findings by using the technique of 180 degrees imaging polarimetry to measure and analyse celestial polarization patterns.
On-Board Perception System For Planetary Aerobot Balloon Navigation
NASA Technical Reports Server (NTRS)
Balaram, J.; Scheid, Robert E.; T. Salomon, Phil
1996-01-01
NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.
On transformation between international celestial and terrestrial reference systems
NASA Astrophysics Data System (ADS)
Bretagnon, P.; Brumberg, V. A.
2003-09-01
Based on the current IAU hierarchy of the relativistic reference systems, practical formulae for the transformation between barycentric (BCRS) and geocentric (GCRS) celestial reference systems are derived. BCRS is used to refer to ICRS, International Celestial Reference System. This transformation is given in four versions, dependent on the time arguments used for BCRS (TCB or TDB) and for GCRS (TCG or TT). All quantities involved in these formulae have been tabulated with the use of the VSOP theories (IMCCE theories of motion of the major planets). In particular, these formulae may be applied to account for the indirect relativistic third-body perturbations in motion of Earth's satellites and Earth's rotation problem. We propose to use the SMART theory (IMCCE theory of Earth's rotation) in constructing the Newtonian three-dimensional spatial rotation transformation between GCRS and ITRS, the International Terrestrial Reference System. This transformation is compared with two other versions involving extra angular variables currently used by IERS, the International Earth Rotation Service. It is shown that the comparison of these three forms of the same transformation may be greatly simplified by using the proposed composite rotation formula. Tables 1-20 of Appendix B containing the initial terms of the VSOP-based series for the BCRS<->GCRS transformation are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/387. The work on ICRS<->GCRS transformation with the use of VSOP theories was done in February-March 2002 during the stay of the second author in IMCCE. The authors hoped to complete the second part concerning GCRS<->ITRS transformation with the use of SMART theory in September 2002 during the visit of the first author to IAA. The grave disease of Pierre Bretagnon which tragically resulted in his death on November 17, 2002, did not permit us to complete this work. The aim to improve SMART theory by taking into account the indirect relativistic third-body perturbations as indicated in the paper also remains unachieved. The second author is publishing this paper in memoriam of
Orbit Modification of Earth-Crossing Asteroids/Comets Using Rendezvous Spacecraft and Laser Ablation
NASA Technical Reports Server (NTRS)
Park, Sang-Young; Mazanek, Daniel D.
2005-01-01
This report describes the approach and results of an end-to-end simulation to deflect a long-period comet (LPC) by using a rapid rendezvous spacecraft and laser ablation system. The laser energy required for providing sufficient deflection DELTA V and an analysis of possible intercept/rendezvous spacecraft trajectories are studied in this analysis. These problems minimize a weighted sum of the flight time and required propellant by using an advanced propulsion system. The optimal thrust-vector history and propellant mass to use are found in order to transfer a spacecraft from the Earth to a targeted celestial object. One goal of this analysis is to formulate an optimization problem for intercept/rendezvous spacecraft trajectories. One approach to alter the trajectory of the object in a highly controlled manner is to use pulsed laser ablative propulsion. A sufficiently intense laser pulse ablates the surface of a near-Earth object (NEO) by causing plasma blowoff. The momentum change from a single laser pulse is very small. However, the cumulative effect is very effective because the laser can interact with the object over long periods of time. The laser ablation technique can overcome the mass penalties associated with other nondisruptive approaches because no propellant is required to generate the DELTA V (the material of the celestial object is the propellant source). Additionally, laser ablation is effective against a wide range of surface materials and does not require any landing or physical attachment to the object. For diverting distant asteroids and comets, the power and optical requirements of a laser ablation system on or near the Earth may be too extreme to contemplate in the next few decades. A hybrid solution would be for a spacecraft to carry a laser as a payload to a particular celestial body. The spacecraft would require an advanced propulsion system capable of rapid rendezvous with the object and an extremely powerful electrical generator, which is likely needed for the propulsion system as well. The spacecraft would station-keep with the object at a small standoff distance while the laser ablation is performed.
The Amateur Astronomer's Introduction to the Celestial Sphere
NASA Astrophysics Data System (ADS)
Millar, William
2005-12-01
This introduction to the night sky is for amateur astronomers who desire a deeper understanding of the principles and observations of naked-eye astronomy. It covers topics such as terrestrial and astronomical coordinate systems, stars and constellations, the relative motions of the sky, sun, moon and earth leading to an understanding of the seasons, phases of the moon, and eclipses. Topics are discussed and compared for observers located in both the northern and southern hemispheres. Written in a conversational style, only addition and subtraction are needed to understand the basic principles and a more advanced mathematical treatment is available in the appendices. Each chapter contains a set of review questions and simple exercises to reinforce the reader's understanding of the material. The last chapter is a set of self-contained observation projects to get readers started with making observations about the concepts they have learned. William Charles Millar, currently Professor of Astronomy at Grand Rapids Community College in Michigan, has been teaching the subject for almost twenty years and is very involved with local amateur astronomy groups. Millar also belongs to The Planetary Society and the Astronomical Society of the Pacific and has traveled to Europe and South America to observe solar eclipses. Millar holds a Masters degree in Physics from Western Michigan University.
New VLBI2010 scheduling strategies and implications on the terrestrial reference frames.
Sun, Jing; Böhm, Johannes; Nilsson, Tobias; Krásná, Hana; Böhm, Sigrid; Schuh, Harald
In connection with the work for the next generation VLBI2010 Global Observing System (VGOS) of the International VLBI Service for Geodesy and Astrometry, a new scheduling package (Vie_Sched) has been developed at the Vienna University of Technology as a part of the Vienna VLBI Software. In addition to the classical station-based approach it is equipped with a new scheduling strategy based on the radio sources to be observed. We introduce different configurations of source-based scheduling options and investigate the implications on present and future VLBI2010 geodetic schedules. By comparison to existing VLBI schedules of the continuous campaign CONT11, we find that the source-based approach with two sources has a performance similar to the station-based approach in terms of number of observations, sky coverage, and geodetic parameters. For an artificial 16 station VLBI2010 network, the source-based approach with four sources provides an improved distribution of source observations on the celestial sphere. Monte Carlo simulations yield slightly better repeatabilities of station coordinates with the source-based approach with two sources or four sources than the classical strategy. The new VLBI scheduling software with its alternative scheduling strategy offers a promising option with respect to applications of the VGOS.
A new catalogue of Strömgren-Crawford uvbyβ photometry
NASA Astrophysics Data System (ADS)
Paunzen, E.
2015-08-01
Context. The uvbyβ photometric system is widely used for the study of various Galactic and extragalactic objects. It measures the colour due to temperature differences, the Balmer discontinuity, and blanketing absorption due to metals. Aims: A new all-sky catalogue of all available uvbyβ measurements from the literature was generated. Methods: The data for the individual stars were cross-checked on the basis of the Tycho-2 catalogue. This catalogue includes very precise celestial coordinates, but is magnitude and spatial resolution limited. However, the loss of objects is only marginal and is compensated for by the gain of homogeneity. Results: In total, 298 639 measurements of 60 668 stars were used to derive unweighted mean indices and their errors. Photoelectric and CCD observations were treated in the same way. Conclusions: The presented data set can be used for various applications such as new calibrations of astrophysical parameters, the standardization of new observations, and as additional information for ongoing and forthcoming all-sky surveys. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A23 http://vizier.u-strasbg.fr/viz-bin/VizieR
New VLBI2010 scheduling strategies and implications on the terrestrial reference frames
NASA Astrophysics Data System (ADS)
Sun, Jing; Böhm, Johannes; Nilsson, Tobias; Krásná, Hana; Böhm, Sigrid; Schuh, Harald
2014-05-01
In connection with the work for the next generation VLBI2010 Global Observing System (VGOS) of the International VLBI Service for Geodesy and Astrometry, a new scheduling package (Vie_Sched) has been developed at the Vienna University of Technology as a part of the Vienna VLBI Software. In addition to the classical station-based approach it is equipped with a new scheduling strategy based on the radio sources to be observed. We introduce different configurations of source-based scheduling options and investigate the implications on present and future VLBI2010 geodetic schedules. By comparison to existing VLBI schedules of the continuous campaign CONT11, we find that the source-based approach with two sources has a performance similar to the station-based approach in terms of number of observations, sky coverage, and geodetic parameters. For an artificial 16 station VLBI2010 network, the source-based approach with four sources provides an improved distribution of source observations on the celestial sphere. Monte Carlo simulations yield slightly better repeatabilities of station coordinates with the source-based approach with two sources or four sources than the classical strategy. The new VLBI scheduling software with its alternative scheduling strategy offers a promising option with respect to applications of the VGOS.
Determination of meteor flux distribution over the celestial sphere
NASA Technical Reports Server (NTRS)
Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.
1992-01-01
A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.
A Study of Planetarium Effectiveness on Student Achievement, Perceptions and Retention.
ERIC Educational Resources Information Center
Ridky, Robert William
Reported is a study to determine the effect of planetarium instruction in terms of immediate attainment, attitude, and retention in the teaching of selected celestial motion and non-celestial motion concepts, when contrasted to or combined with the inquiry activities utilized by the nationally developed science curricula. Observations were made on…
Connecting kinematic and dynamic reference frames by D-VLBI
NASA Astrophysics Data System (ADS)
Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes
2012-08-01
In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.
Improving Kepler Pipeline Sensitivity with Pixel Response Function Photometry.
NASA Astrophysics Data System (ADS)
Morris, Robert L.; Bryson, Steve; Jenkins, Jon Michael; Smith, Jeffrey C
2014-06-01
We present the results of our investigation into the feasibility and expected benefits of implementing PRF-fitting photometry in the Kepler Science Processing Pipeline. The Kepler Pixel Response Function (PRF) describes the expected system response to a point source at infinity and includes the effects of the optical point spread function, the CCD detector responsivity function, and spacecraft pointing jitter. Planet detection in the Kepler pipeline is currently based on simple aperture photometry (SAP), which is most effective when applied to uncrowded bright stars. Its effectiveness diminishes rapidly as target brightness decreases relative to the effects of noise sources such as detector electronics, background stars, and image motion. In contrast, PRF photometry is based on fitting an explicit model of image formation to the data and naturally accounts for image motion and contributions of background stars. The key to obtaining high-quality photometry from PRF fitting is a high-quality model of the system's PRF, while the key to efficiently processing the large number of Kepler targets is an accurate catalog and accurate mapping of celestial coordinates onto the focal plane. If the CCD coordinates of stellar centroids are known a priori then the problem of PRF fitting becomes linear. A model of the Kepler PRF was constructed at the time of spacecraft commissioning by fitting piecewise polynomial surfaces to data from dithered full frame images. While this model accurately captured the initial state of the system, the PRF has evolved dynamically since then and has been seen to deviate significantly from the initial (static) model. We construct a dynamic PRF model which is then used to recover photometry for all targets of interest. Both simulation tests and results from Kepler flight data demonstrate the effectiveness of our approach. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA’s Science Mission Directorate.Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA’s Science Mission Directorate.
Metrics in Keplerian orbits quotient spaces
NASA Astrophysics Data System (ADS)
Milanov, Danila V.
2018-03-01
Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.
Mariner 9 celestial mechanics experiment - A status report.
NASA Technical Reports Server (NTRS)
Lorell, J.; Shapiro, I. I.
1973-01-01
There are two basic efforts in the Mariner 9 celestial mechanics experiment: the determination of the gravity field of Mars and the performance of a very precise test of the theory of general relativity. In addition, there are a number of astrodynamic constants that are being determined. All the analyses are based on the Mariner 9 radio tracking data.
Relationships between log N-log S and celestial distribution of gamma-ray bursts
NASA Technical Reports Server (NTRS)
Nishimura, J.; Yamagami, T.
1985-01-01
The apparent conflict between log N-log S curve and isotropic celestial distribution of the gamma ray bursts is discussed. A possible selection effect due to the time profile of each burst is examined. It is shown that the contradiction is due to this selection effect of the gamma ray bursts.
Celestial Navigation for High School Students.
ERIC Educational Resources Information Center
Bell, Carroll Wilson
Reported is a study of a syllabus designed to teach students how to determine a position by celestial means. The syllabus was intended to augment existing curricula and be a topic for special interest groups and not designed as a semester-long course in itself. Each of the 14 lessons included was preceded by specific objectives written in…
2018-04-09
29 National Interests in Space – Commercial or State-Driven Celestial Expansion? ....... 31 Celestial Market Opportunities – When Will Commercial...Space Markets Open? ...... 38 Implications of Commercial Space Operations ............................................................ 45 Chapter 5...Successful development of competitiveness involves seeking to dominate or control an existing or emergent market . The development of market domination into
Gould, J L
1998-10-08
Navigating animals need to know both the bearing of their goal (the 'map' step), and how to determine that direction (the 'compass' step). Compasses are typically arranged in hierarchies, with magnetic backup as a last resort when celestial information is unavailable. Magnetic information is often essential to calibrating celestial cues, though, and repeated recalibration between celestial and magnetic compasses is important in many species. Most magnetic compasses are based on magnetite crystals, but others make use of induction or paramagnetic interactions between short-wavelength light and visual pigments. Though odors may be used in some cases, most if not all long-range maps probably depend on magnetite. Magnetitebased map senses are used to measure only latitude in some species, but provide the distance and direction of the goal in others.
Radio interferometry: Techniques for Geodesy. [conference
NASA Technical Reports Server (NTRS)
1980-01-01
Progress in the development and application of radio interferometry as a tool for geophysical research is reported and discussed. Among the topics reviewed are: Surveys of is the Seventies, Movements, Terrestrial and Celestial, Degrees Kelvin and Degrees of Phase, the Mark 3 VLBI System, Waves of the Future and other Emissions, and Adherence and Coherence in Networks, and Plans.
NASA Astrophysics Data System (ADS)
Wielgosz, Agata; Tercjak, Monika; Brzeziński, Aleksander
2016-06-01
Very Long Baseline Interferometry (VLBI) is the only space geodetic technique capable to realise the Celestial Reference Frame and tie it with the Terrestrial Reference Frame. It is also the only technique, which measures all the Earth Orientation Parameters (EOP) on a regular basis, thus the role of VLBI in determination of the universal time, nutation and polar motion and station coordinates is invaluable. Although geodetic VLBI has been providing observations for more than 30 years, there are no clear guidelines how to deal with the stations or baselines having significantly bigger post-fit residuals than the other ones. In our work we compare the common weighting strategy, using squared formal errors, with strategies involving exclusion or down-weighting of stations or baselines. For that purpose we apply the Vienna VLBI Software VieVS with necessary additional procedures. In our analysis we focus on statistical indicators that might be the criterion of excluding or down-weighting the inferior stations or baselines, as well as on the influence of adopted strategy on the EOP and station coordinates estimation. Our analysis shows that in about 99% of 24-hour VLBI sessions there is no need to exclude any data as the down-weighting procedure is sufficiently efficient. Although results presented here do not clearly indicate the best algorithm, they show strengths and weaknesses of the applied methods and point some limitations of automatic analysis of VLBI data. Moreover, it is also shown that the influence of the adopted weighting strategy is not always clearly reflected in the results of analysis.
Naval Observatory Vector Astrometry Software (NOVAS) Version 3.1, Introducing a Python Edition
NASA Astrophysics Data System (ADS)
Barron, Eric G.; Kaplan, G. H.; Bangert, J.; Bartlett, J. L.; Puatua, W.; Harris, W.; Barrett, P.
2011-01-01
The Naval Observatory Vector Astrometry Software (NOVAS) is a source-code library that provides common astrometric quantities and transformations. NOVAS calculations are accurate at the sub-milliarcsecond level. The library can supply, in one or two subroutine or function calls, the instantaneous celestial position of any star or planet in a variety of coordinate systems. NOVAS also provides access to all of the building blocks that go into such computations. NOVAS Version 3.1 introduces a Python edition alongside the Fortran and C editions. The Python edition uses the computational code from the C edition and, currently, mimics the function calls of the C edition. Future versions will expand the functionality of the Python edition to harness the object-oriented nature of the Python language, and will implement the ability to handle large quantities of objects or observers using the array functionality in NumPy (a third-party scientific package for Python). NOVAS 3.1 also adds a module to transform GCRS vectors to the ITRS; the ITRS to GCRS transformation was already provided in NOVAS 3.0. The module that corrects an ITRS vector for polar motion has been modified to undo that correction upon demand. In the C edition, the ephemeris-access functions have been revised for use on 64-bit systems and for improved performance in general. NOVAS, including documentation, is available from the USNO website (http://www.usno.navy.mil/USNO/astronomical-applications/software-products/novas).
Very Long Baseline Array Astrometric Observations of the Cassini Spacecraft at Saturn
NASA Astrophysics Data System (ADS)
Jones, Dayton L.; Fomalont, Ed; Dhawan, Vivek; Romney, Jon; Folkner, William M.; Lanyi, Gabor; Border, James; Jacobson, Robert A.
2011-02-01
The planetary ephemeris is an essential tool for interplanetary spacecraft navigation, studies of solar system dynamics (including, for example, barycenter corrections for pulsar timing ephemerides), the prediction of occultations, and tests of general relativity. We are carrying out a series of astrometric very long baseline interferometry observations of the Cassini spacecraft currently in orbit around Saturn, using the Very Long Baseline Array (VLBA). These observations provide positions for the center of mass of Saturn in the International Celestial Reference Frame (ICRF) with accuracies ~0.3 mas (1.5 nrad) or about 2 km at the average distance of Saturn. This paper reports results from eight observing epochs between 2006 October and 2009 April. These data are combined with two VLBA observations by other investigators in 2004 and a Cassini-based gravitational deflection measurement by Fomalont et al. in 2009 to constrain a new ephemeris (DE 422). The DE 422 post-fit residuals for Saturn with respect to the VLBA data are generally 0.2 mas, but additional observations are needed to improve the positions of all of our phase reference sources to this level. Over time we expect to be able to improve the accuracy of all three coordinates in the Saturn ephemeris (latitude, longitude, and range) by a factor of at least three. This will represent a significant improvement not just in the Saturn ephemeris but also in the link between the inner and outer solar system ephemerides and in the link to the inertial ICRF.
NASA Astrophysics Data System (ADS)
Goldstein, N.; Dressler, R. A.; Richtsmeier, S. S.; McLean, J.; Dao, P. D.; Murray-Krezan, J.; Fulcoly, D. O.
2013-09-01
Recent ground testing of a wide area camera system and automated star removal algorithms has demonstrated the potential to detect, quantify, and track deep space objects using small aperture cameras and on-board processors. The camera system, which was originally developed for a space-based Wide Area Space Surveillance System (WASSS), operates in a fixed-stare mode, continuously monitoring a wide swath of space and differentiating celestial objects from satellites based on differential motion across the field of view. It would have greatest utility in a LEO orbit to provide automated and continuous monitoring of deep space with high refresh rates, and with particular emphasis on the GEO belt and GEO transfer space. Continuous monitoring allows a concept of change detection and custody maintenance not possible with existing sensors. The detection approach is equally applicable to Earth-based sensor systems. A distributed system of such sensors, either Earth-based, or space-based, could provide automated, persistent night-time monitoring of all of deep space. The continuous monitoring provides a daily record of the light curves of all GEO objects above a certain brightness within the field of view. The daily updates of satellite light curves offers a means to identify specific satellites, to note changes in orientation and operational mode, and to queue other SSA assets for higher resolution queries. The data processing approach may also be applied to larger-aperture, higher resolution camera systems to extend the sensitivity towards dimmer objects. In order to demonstrate the utility of the WASSS system and data processing, a ground based field test was conducted in October 2012. We report here the results of the observations made at Magdalena Ridge Observatory using the prototype WASSS camera, which has a 4×60° field-of-view , <0.05° resolution, a 2.8 cm2 aperture, and the ability to view within 4° of the sun. A single camera pointed at the GEO belt provided a continuous night-long record of the intensity and location of more than 50 GEO objects detected within the camera's 60-degree field-of-view, with a detection sensitivity similar to the camera's shot noise limit of Mv=13.7. Performance is anticipated to scale with aperture area, allowing the detection of dimmer objects with larger-aperture cameras. The sensitivity of the system depends on multi-frame averaging and an image processing algorithm that exploits the different angular velocities of celestial objects and SOs. Principal Components Analysis (PCA) is used to filter out all objects moving with the velocity of the celestial frame of reference. The resulting filtered images are projected back into an Earth-centered frame of reference, or into any other relevant frame of reference, and co-added to form a series of images of the GEO objects as a function of time. The PCA approach not only removes the celestial background, but it also removes systematic variations in system calibration, sensor pointing, and atmospheric conditions. The resulting images are shot-noise limited, and can be exploited to automatically identify deep space objects, produce approximate state vectors, and track their locations and intensities as a function of time.
Martian and Asteroid Dusts as Toxicological Risks for Human Exploration Missions
NASA Technical Reports Server (NTRS)
James, John T.
2012-01-01
As the lunar dust toxicity project winds down, our attention is drawn to the potential toxicity of dust present at the surface of more distant celestial objects. Lunar dust has proven to be surprisingly toxic to the respiratory systems of test animals, so one might expect dust from other celestial bodies to hold toxicological surprises for us. At this point all one can do is consider what should be known about these dusts to characterize their toxicity, and then ask to what extent that information is known. In an ideal world it might be possible to suggest an exposure standard based on the known properties of a celestial dust without direct testing of the dust in laboratory animals. Factors known to affect the toxicity of mineral dusts under some conditions include the following: particle size distribution, particle shape/porosity, mineralogical properties (crystalline vs. amorphous), chemical properties and composition, and surface reactivity. Data from a recent Japanese mission to the S-type asteroid Itokawa revealed some surprises about the dust found there, given that there is only a very week gravitational field to hold the dust on the surface. On Mars the reddish-brown dust is widely distributed by global dust storms and by local clusters of dust devils. Past surface probes have revealed some of the properties of dust found there. Contemporary data from Curiosity and other surface probes will be weighed against the data needed to set a defensible safe exposure limit. Gaps will emerge.
NASA Astrophysics Data System (ADS)
Lachièze-Rey, Marc; Luminet, Jean-Pierre
2001-07-01
Throughout history, the mysterious dark skies have inspired our imaginations in countless ways, influencing our endeavors in science and philosophy, religion, literature, and art. Filled with 380 full-color illustrations, Celestial Treasury shows the influence of astronomical theories and the richness of illustrations in Western civilization through the ages. The authors explore the evolution of our understanding of astronomy and weave together ancient and modern theories in a fascinating narrative. They incorporate a wealth of detail from Greek verse, medieval manuscripts and Victorian poetry with contemporary spacecraft photographs and computer-generated star charts. Celestial Treasury is more than a beautiful book: it answers a variety of questions that have intrigued scientists and laymen for centuries. -- How did philosophers and scientists try to explain the order that governs celestial motion? -- How did geometers and artists measure and map the skies? -- How many different answers have been proposed for the most fundamental of all questions: When and how did Earth come about? -- Who inhabits the heavens--gods, angels or extraterrestrials? No other book recounts humankind's fascination with the heavens as compellingly as Celestial Treasury. Marc Lachièze-Rey is a director of research at the Centre National pour la Récherche Scientifique and astrophysicist at the Centre d'Etudes de Saclay. He is the author of The Cosmic Background Radiation (Cambridge, 1999), and and The Quest for Unity, (Oxford, 1999 ), as well as many books in French. Jean-Pierre Luminet is a research director of the Centre National pour la Rechérche Scientifique, based at the Paris-Meudon observatory. He is the author of Black Holes, (Cambridge 1992), as well as science documentaries for television.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Stanford, Laura M.; Johnston, Helen M.
2013-07-01
Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less
Structure and evolutionary history of the solar system
NASA Technical Reports Server (NTRS)
Alfven, H.; Arrhenius, G.
1975-01-01
General principles and observational facts concerning the solar system are examined, taking into account the orbits of planets and satellites, the small bodies, the resonance structure, spin and tides, and postaccretional changes in the solar system. A description is given of the accretion of celestial bodies and the plasma phase is considered. Aspects of chemical differentiation and the matrix of the groups of bodies are also discussed, giving attention to chemical compositions in the solar system, meteorites and their precursor states, mass distribution and the critical velocity, and the structure of the groups.
Newton, Laplace, and The Epistemology of Systems Biology
Bittner, Michael L.; Dougherty, Edward R.
2012-01-01
For science, theoretical or applied, to significantly advance, researchers must use the most appropriate mathematical methods. A century and a half elapsed between Newton’s development of the calculus and Laplace’s development of celestial mechanics. One cannot imagine the latter without the former. Today, more than three-quarters of a century has elapsed since the birth of stochastic systems theory. This article provides a perspective on the utilization of systems theory as the proper vehicle for the development of systems biology and its application to complex regulatory diseases such as cancer. PMID:23170064
Dark Energy Survey finds more celestial neighbors | News
Energy Survey finds more celestial neighbors August 17, 2015 icon icon icon New dwarf galaxy candidates could mean our sky is more crowded than we thought The Dark Energy Survey has now mapped one-eighth of Survey Collaboration The Dark Energy Survey has now mapped one-eighth of the full sky (red shaded region
ERIC Educational Resources Information Center
Plummer, Julia D.; Wasko, Kyle D.; Slagle, Cynthia
2011-01-01
This study investigated elementary students' explanations for the daily patterns of apparent motion of the Sun, Moon, and stars. Third-grade students were chosen for this study because this age level is at the lower end of when many US standards documents suggest students should learn to use the Earth's rotation to explain daily celestial motion.…
Galileo Spacecraft Scan Platform Celestial Pointing Cone Control Gain Redesign
NASA Technical Reports Server (NTRS)
In, C-H. C.; Hilbert, K. B.
1994-01-01
During September and October 1991, pictures of the Gaspra asteroid and neighboring stars were taken by the Galileo Optical Navigation (OPNAV) Team for the purpose of navigation the spacecraft for a successful Gaspra encounter. The star tracks in these pictures showed that the scan platform celestial pointing cone controller performed poorly in compensating for wobble-induced cone offsets.
241. BUILDINGS 455, 456, 509, 510 AND 457 (CELESTIAL NAVIGATION ...
241. BUILDINGS 455, 456, 509, 510 AND 457 (CELESTIAL NAVIGATION COMPLEX), 1942-43. BUREAU OF YARDS AND DOCKS STANDARD PLANS. VIEW NORTH ACROSS WASP ST. SHOWING THE 4 TRAINING SILOS FROM LEFT TO RIGHT: BUILDINGS 455, 456, 509, AND 510; AND, BESIDE THEM, BUILDING 457. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI
Celestial mechanics during the last two decades
NASA Technical Reports Server (NTRS)
Szebehely, V.
1978-01-01
The unprecedented progress in celestial mechanics (orbital mechanics, astrodynamics, space dynamics) is reviewed from 1957 to date. The engineering, astronomical and mathematical aspects are synthesized. The measuring and computational techniques developed parallel with the theoretical advances are outlined. Major unsolved problem areas are listed with proposed approaches for their solutions. Extrapolations and predictions of the progress for the future conclude the paper.
Johannes Kepler and the Supernova of 1604
NASA Astrophysics Data System (ADS)
Boner, P. J.
2006-08-01
The brilliant luminary that first appeared in October 1604 was considered by many contemporaries to be a new star of unrivalled magnitude. Shining forth near the historic conjunction of Mars, Jupiter and Saturn, the new star held important implications for several areas of interest, notably astrology, astronomy, chronology and theology. Addressing all of these areas in his comprehensive book, De stella nova (1606), Johannes Kepler (1571-1630) studied the new star extensively under the aegis of Holy Roman Emperor Rudolf II (1552-1612) in Prague. The focus of the following presentation is Kepler's theory of the new star's origins in the celestial ether. Describing the heavens poetically as a fertile expanse of "liquid fields", Kepler suggested that the new star sprung from the celestial ether much like the numerous living beings in the sublunary realm which were spontaneously generated from the Earth. As evidence for his claim, Kepler pointed to the conspicuous mathematical patterns similarly observed in earthly and celestial entities. Kepler's efficient cause for this explanation, known as the animate faculty, accounted for both the generation and form of new phenomena in the celestial and terrestrial realms. The new star of 1604 proved to be no exception.
Mariner Mars 1971 attitude control subsystem
NASA Technical Reports Server (NTRS)
Edmunds, R. S.
1974-01-01
The Mariner Mars 1971 attitude control subsystem (ACS) is discussed. It is comprised of a sun sensor set, a Canopus tracker, an inertial reference unit, two cold gas reaction control assemblies, two rocket engine gimbal actuators, and an attitude control electronics unit. The subsystem has the following eight operating modes: (1) launch, (2) sun acquisition, (3) roll search, (4) celestial cruise, (5) all-axes inertial, (6) roll inertial, (7) commanded turn, and (8) thrust vector control. In the celestial cruise mode, the position control is held to plus or minus 0.25 deg. Commanded turn rates are plus or minus 0.18 deg/s. The attitude control logic in conjunction with command inputs from other spacecraft subsystems establishes the ACS operating mode. The logic utilizes Sun and Canopus acquisition signals generated within the ACS to perform automatic mode switching so that dependence of ground control is minimized when operating in the sun acquisition, roll search, and celestial cruise modes. The total ACS weight is 65.7 lb, and includes 5.4 lb of nitrogen gas. Total power requirements vary from 9 W for the celestial cruise mode to 54 W for the commanded turn mode.
Protection of the Lifeless Environment in the Solar System
NASA Astrophysics Data System (ADS)
Almar, I.
The main concern of planetary protection policy is how to protect the (hypothetical) extraterrestrial life against contamination and back-contamination. There is almost no interest in the preservation of the existing lifeless surfaces of extraterrestrial bodies, although some planetary transformation plans (in order to exploit hypothetical resources) were made public a long time ago. It should be remembered that planetary environments are practically unchanged since ages and damage caused by any human intervention would be irreversible. Our intention is not to prevent any commercial utilization of Solar System resources, but to make space exploration and exploitation of resources a controlled and well planned endeavor. The three main issues connected with the protection of the lifeless space environment are the following: 1/ The scientific aspect: a limited, well defined initiative to select by scientific investigation areas and objects of highest scientific priority on different celestial bodies. 2/ The legal aspect: to start the drafting of a declaration of principles supporting the protection of selected areas and objects on celestial bodies with a solid surface. It might evolve into an international legal instrument or treaty in order to limit the "free-for-all" intervention and use of Solar System resources. 3/ The societal aspect: to initiate a large scale discussion on the possible "ethical values" of the lifeless environment.
[The celestial phenomena in A. Dürer's engraving Melancholia I].
Weitzel, Hans
2009-01-01
The celestial body of Dürer's engraving Melencolia I is connected with his painting of a meteor, the Raveningham-painting; it is shown that the origin of this painting owns to the impact of the meteor of Ensisheim in 1492. Until now the celestial body, the balance, and the magic square are nearly consistently interpreted as the planet Saturn, the zodiac sign Libra, and the planet Jupiter, and the melancholy woman is subject to these heavenly bodies. Consequently, neoplatonic astrology has been the main focus of the engraving; including the rainbow, the engraving has also been interpreted biblically. The present paper, however, places emphasis on problems of the geometry as the reason of melancholy. Any astronomical meaning of the configuration of the numbers of the magic square is discarded.
Gessner, Samuel
2015-01-01
The aim of this paper is to examine the iconography on a set of star charts by Albrecht Dürer (1515), and celestial globes by Caspar Vopel (1536) and Christoph Schissler (1575). The iconography on these instruments is conditioned by strong traditions which include not only the imagery on globes and planispheres (star charts), but also ancient literature about the constellations. Where this iconography departs from those traditions, the change had to do with humanism in the sixteenth century. This "humanistic" dimension is interwoven with other concerns that involve both "social" and "technical" motivations. The interplay of these three dimensions illustrates how the iconography on celestial charts and globes expresses some features of the shared knowledge and shared culture between artisans, mathematicians, and nobles in Renaissance Europe.
NASA Astrophysics Data System (ADS)
Poisson, Eric; Will, Clifford M.
2014-05-01
Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.
Abilities of Celestial Observations in Astronomical Observatory of Physics Institute in Opole
NASA Astrophysics Data System (ADS)
Godłowski, W.; Szpanko, M.
2010-12-01
We present possibilities of astronomical investigation in Astronomical Observatory in Opole. Our observatory uses two telescopes: Celestron CGE-1400 XLT (35 cm) and Meade LX200 (30 cm) with spectrograph and CCD Camera. Main topic of our observational investigation is connected with observations of variable stars, minor bodies of the solar system, blazers and the Sun.
Schwarzschild, Karl (1873-1916)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
Mathematical physicist, born in Frankfurt am Main, Germany, at first worked on celestial mechanics, including POINCARÉ's theory of rotating bodies, the tidal deformation of moons and LAPLACE's origin of the solar system. He became professor at Göttingen and Potsdam. He wrote on relativity and quantum theory. He early on proposed that space was non-Euclidean, giving a lower limit for the radius of...
NASA Astrophysics Data System (ADS)
Harrington, Philip S.
2003-07-01
Your Passport to the Universe The night sky is alive with many wonders--distant planets, vast star clusters, glowing nebulae, and expansive galaxies, all waiting to be explored. Let respected astronomy writer Philip Harrington introduce you to the universe in Star Watch, a complete beginner's guide to locating, observing, and understanding these celestial objects. You'll start by identifying the surface features of the Moon, the banded cloud tops of Jupiter, the stunning rings of Saturn, and other members of our solar system. Then you'll venture out beyond our solar system, where you'll learn tips and tricks for finding outstanding deep-sky objects from stars to galaxies, including the entire Messier catalog--a primary goal of every serious beginner. Star Watch features a detailed physical description of each target, including size, distance, and structure, as well as concise directions for locating the objects, handy finder charts, hints on the best times to view each object, and descriptions of what you'll really see through a small telescope or binoculars and with the naked eye. Star Watch will transport you to the farthest depths of space--and return you as a well-traveled, experienced stargazer.
Antenna design and implementation for the future space Ultra-Long wavelength radio telescope
NASA Astrophysics Data System (ADS)
Chen, Linjie; Aminaei, Amin; Gurvits, Leonid I.; Wolt, Marc Klein; Pourshaghaghi, Hamid Reza; Yan, Yihua; Falcke, Heino
2018-04-01
In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth's ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole-type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 - 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.
ERIC Educational Resources Information Center
Plummer, Julia D.; Maynard, L.
2014-01-01
We present the development of a construct map addressing the reason for the seasons, as a subset of a larger learning progression on celestial motion. Five classes of 8th grade students (N?=?38) participated in a 10-day curriculum on the seasons. We revised a hypothetical seasons construct map using a Rasch model analysis of students'…
High-Resolution Structural Monitoring of Ionospheric Absorption Events
2013-07-01
ionospheric plasma conductivity 5 . This results in enhanced absorption of the cosmic high frequency (HF; typically 10 – 60 MHz) radio background ...7 riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of...riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of confusion
The ADS All Sky Survey: footprints of astronomy literature, in the sky
NASA Astrophysics Data System (ADS)
Pepe, Alberto; Goodman, A. A.; Muench, A. A.; Seamless Astronomy Group at the CfA
2014-01-01
The ADS All-Sky Survey (ADSASS) aims to transform the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource for astronomers, into a data resource. The ADS is not a data repository per se, but it implicitly contains valuable holdings of astronomical data, in the form of images, tables and object references contained within articles. The objective of the ADSASS effort is to extract these data and make them discoverable and available through existing data viewers. In this talk, the ADSASS viewer - http://adsass.org/ - will be presented: a sky heatmap of astronomy articles based on the celestial objects they reference. The ADSASS viewer is as an innovative research and visual search tool for it allows users to explore astronomical literature based on celestial location, rather than keyword string. The ADSASS is a NASA-funded initiative carried out by the Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics.
Suhai, Bence; Horváth, Gábor
2004-09-01
We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the solar elevation angle thetas. Our maps display those celestial areas at which the deviation deltaalpha = /alphameas - alphaRyleigh/ is below the threshold alphathres = 5 degrees, where alphameas is the angle of polarization of skylight measured by full-sky imaging polarimetry, and alphaRayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of deltaalpha = 5 degrees) the E-vector alignment of skylight. Depending on thetas, r is high for clear skies, especially for low solar elevations (40% < r < 70% for thetas < or = 13 degrees). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy conditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax = 69% for thetas = 0 degrees). The proportion r of the sky that follows the Rayleigh model is usually higher for shorter wavelengths under clear as well as cloudy sky conditions. This partly explains why the shorter wavelengths are generally preferred by animals navigating by means of the celestial polarization. We found that the celestial E-vector pattern generally follows the Rayleigh pattern well, which is a fundamental hypothesis in the studies of animal orientation and human navigation (e.g., in aircraft flying near the geomagnetic poles and using a polarization sky compass) with the use of the celestial alpha pattern.
Celestial polarization patterns during twilight.
Cronin, Thomas W; Warrant, Eric J; Greiner, Birgit
2006-08-01
Scattering of sunlight produces patterns of partially linearly polarized light in the sky throughout the day, and similar patterns appear at night when the Moon is bright. We studied celestial polarization patterns during the period of twilight, when the Sun is below the horizon, determining the degree and orientation of the polarized-light field and its changes before sunrise and after sunset. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden Sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. In the tropics, this pattern appears approximately 1 h before local sunrise or disappears approximately 1 h after local sunset (within 10 min. after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period.
NASA Technical Reports Server (NTRS)
Harrington, A. D.; McCubbin, F. M.
2018-01-01
Manned missions to the Moon highlight a major hazard for future human exploration of the Moon and beyond: surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust 'storm' generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness" . It was further reported that the allergic response to the dust worsened with each exposure. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment.
JPL VLBI Analysis Center IVS Annual Report for 2004
NASA Technical Reports Server (NTRS)
Jacobs, Chris
2005-01-01
This report describes the activities of the JPL VLBI analysis center for the year 2004. We continue to be celestial reference frame, terrestrial reference frame, earth orientation, and spacecraft navigation work using the VLBI technique. There are several areas of our work that are undergoing active development. In 2004 we demonstrated 1 mm level troposphere calibration on an intercontinental baseline. We detected our first X/Ka (8.4/32 GHz) VLBI fringes. We began to deploy Mark 5 recorders and to interface the Mark 5 units to our software correlator. We also have actively participated in the international VLBI community through our involvement in six papers at the February IVS meeting and by collaborating on a number of projects such as densifying the S/X celestial frame creating celestial frames at K (24 GHz) and Q-bands ($# GHz)>
Polarization characteristics of an altazimuth sky scanner
NASA Technical Reports Server (NTRS)
Garrison, L. M.; Blaszczak, Z.; Green, A. E. S.
1980-01-01
A theoretical description of the polarization characteristics of an altazimuth sky scanner optical system based on Mueller-Stokes calculus is presented. This computer-driven optical system was designed to perform laboratory studies of skylight and of celestial objects during day or night, and has no space limitations; however, the two parallel 45 deg tilt mirrors introduce some intrinsic polarization. Therefore, proper data interpretation requires a theoretical understanding of the polarization features of the instrument and accurate experimental determination of the Mueller-Stokes matrix elements describing the polarizing and depolarizing action of the system.
Aiming Instruments On The Space Station
NASA Technical Reports Server (NTRS)
Estus, Jay M.; Laskin, Robert; Lin, Yu-Hwan
1989-01-01
Report discusses capabilities and requirements for aiming scientific instruments carried aboard proposed Space Station. Addresses two issues: whether system envisioned for pointing instruments at celestial targets offers sufficiently low jitter, high accuracy, and high stability to meet scientific requirements; whether it can do so even in presence of many vibrations and other disturbances on Space Station. Salient conclusion of study, recommendation to develop pointing-actuator system including mechanical/fluid base isolator underneath reactionaless gimbal subsystem. This kind of system offers greatest promise of high performance, cost-effectiveness, and modularity for job at hand.
NASA Technical Reports Server (NTRS)
Barton, W. R.; Miller, R. B.
1975-01-01
The tracking and data system support of the planning, testing, launch, near-earth, and deep space phases of the Pioneer 11 Jupiter Mission are described, including critical phases of spacecraft flight and guidance. Scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields. Knowledge of the celestial mechanics of the solar system was improved through radiometric data gathering. Network performance, details of network support activity, and special support activities are discussed.
Relativistic Navigation: A Theoretical Foundation
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.
1996-01-01
We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the relativistic equations of satellite motion in the vicinity of the extended bodies. Anticipating improvements in radio and laser tracking technologies over the next few decades, we apply this method to spacecraft orbit determination. We emphasize the number of feasible relativistic gravity tests that may be performed within the context of the parameterized WFSMA. Based on the planeto-centric equations of motion of a spacecraft around the planet, we suggested a new null test of the Strong Equivalence Principle (SEP). The experiment to measure the corresponding SEP violation effect could be performed with the future Mercury Orbiter mission. We discuss other relativistic effects, including the perihelion advance and the redshift and geodetic precession of the orbiter's orbital plane about Mercury, as well as the possible future implementation of the proposed formalism in software codes developed for solar-system orbit determination. All the important calculations are completely documented, and the references contain an extensive list of cited literature.
Tree-level gluon amplitudes on the celestial sphere
NASA Astrophysics Data System (ADS)
Schreiber, Anders Ø.; Volovich, Anastasia; Zlotnikov, Michael
2018-06-01
Pasterski, Shao and Strominger have recently proposed that massless scattering amplitudes can be mapped to correlators on the celestial sphere at infinity via a Mellin transform. We apply this prescription to arbitrary n-point tree-level gluon amplitudes. The Mellin transforms of MHV amplitudes are given by generalized hypergeometric functions on the Grassmannian Gr (4 , n), while generic non-MHV amplitudes are given by more complicated Gelfand A-hypergeometric functions.
Measuring Angular Rate of Celestial Objects Using the Space Surveillance Telescope
2015-03-01
is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-019 MEASURING ANGULAR RATE OF CELESTIAL OBJECTS USING THE SPACE ...Hypothesis Test MHTOR Multi-Hypothesis Test with Outlier Removal NEAs Near Earth Asteroids NASA National Aeronautics and Space Administration OTF...capabilities to warfighters, protecting them from collision with space debris, meteors and microsatellites has become a top priority [19]. In general, EO
Astronomy, Divination, and Politics in the Neo-Assyrian Empire
NASA Astrophysics Data System (ADS)
Verderame, Lorenzo
Celestial divination had an important role in the complex political and military machine of the Neo-Assyrian empire. Thousand of cuneiform documents dealing with celestial divination have come to light from the excavated archives of this period, as the Assurbanipal's library. Among them letters and reports enlight the relation of the king with his experts (ummânu), who performed divination and apotropaic rituals for his protection.
NASA Astrophysics Data System (ADS)
Rees, W. G.
1986-06-01
The Moon illusion, or celestial illusion, is the illusion that the Moon near the horizon is larger than the Moon near the zenith, usually by a factor of about 2 in the diameter. The illusion has been known for over 2,000 years, and many explanations have been advanced for it. Four modern theories are discussed in this paper, and new data are presented which tend to confirm the common 'flattened celestial vault' hypothesis.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The angle between the planes of the ecliptic and the equator. On the celestial sphere, the angle at which the ecliptic intersects the celestial equator. The current (year 2000) value of the obliquity of ecliptic, which is denoted by the symbol ɛ, is 23° 26' 21''. Its value varies by ±9'' over a period of 18.6 years as a consequence of a phenomenon called nutation. Over a much longer period (abou...
Correlation analysis of 1 to 30 MeV celestial gamma rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, J.L.
1984-01-01
This paper outlines the development of a method of producing celestial sky maps from the data generated by the University of California, Riverside's double Compton scatter gamma ray telescope. The method makes use of a correlation between the telescope's data and theoretical calculated response functions. The results of applying this technique to northern hemisphere data obtained from a 1978 balloon flight from Palestine, Texas are included.
Efficient computer algorithms for infrared astronomy data processing
NASA Technical Reports Server (NTRS)
Pelzmann, R. F., Jr.
1976-01-01
Data processing techniques to be studied for use in infrared astronomy data analysis systems are outlined. Only data from space based telescope systems operating as survey instruments are considered. Resulting algorithms, and in some cases specific software, will be applicable for use with the infrared astronomy satellite (IRAS) and the shuttle infrared telescope facility (SIRTF). Operational tests made during the investigation use data from the celestial mapping program (CMP). The overall task differs from that involved in ground-based infrared telescope data reduction.
LDEF grappled by remote manipulator system (RMS) during STS-32 retrieval
1990-01-20
This view taken through overhead window W7 on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck shows the Long Duration Exposure Facility (LDEF) in the grasp of the remote manipulator system (RMS) during STS-32 retrieval activities. Other cameras at eye level were documenting the bus-sized spacecraft at various angles as the RMS manipulated LDEF for a lengthy photo survey. The glaring celestial body in the upper left is the sun with the Earth's surface visible below.
International Celestial Reference Frame (ICRF): mantenimiento y extensión
NASA Astrophysics Data System (ADS)
Ma, C.; Arias, E. F.; Eubanks, T.; Fey, A. L.; Gontier, A.-M.; Jacobs, C. S.; Sovers, O. J.; Archinal, B. A.; Charlot, P.
A partir de enero de 1998 el sistema de referencia celeste convencional está representado por el International Celestial Reference System (ICRS) y materializado a través de las coordenadas VLBI del conjunto de radiofuentes extragalácticas que conforman el International Celestial Reference Frame (ICRF). La primera realización del ICRF, fue elaborada en 1995 por un grupo de expertos designado por la IAU, la que encomendó al International Earth Rotation Service el mantenimiento del ICRS, del ICRF y del vínculo con marcos de referencia en otras frecuencias. Una primera extensión del ICRF se realizó entre abril y junio de 1999, con el objetivo primario de proveer posiciones de radiofuentes extragalácticas observadas a partir de julio de 1995 y de mejorar las posiciones de las fuentes ``candidatas" con la inclusión de observaciones adicionales. Objetivos secundarios fueron monitorear a las radiofuentes para verificar que siguen siendo adecuadas para realizar al ICRF y mejorar las técnicas de análisis de datos. Como resultado del nuevo análisis se obtuvo una solución a partir de la cual se construyó la primera extensión del ICRF, denominada ICRF - Ext.1. Ella representa al ICRS, sus fuentes de definición se mantienen con las mismas posiciones y errores que en la primera realización del ICRF; las demás radiofuentes tienen coordenadas mejor determinadas que en ICRF; el marco de referencia se densificó con el agregado de 59 nuevas radiofuentes.
Directions for Space-Based Low-Frequency Radio Astronomy 2. Telescopes
NASA Astrophysics Data System (ADS)
Basart, J. P.; Burns, J. O.; Dennison, B. K.; Weiler, K. W.; Kassim, N. E.; Castillo, S. P.; McCune, B. M.
Astronomical studies of celestial sources at low radio frequencies (0.3 to 30 MHz) lag far behind the investigations of celestial sources at high radio frequencies. In a companion paper [Basart et al., this issue] we discussed the need for low-frequency investigations, and in this paper we discuss the telescopes required to make the observations. Radio telescopes for use in the low-frequency range can be built principally from ``off-the-shelf'' components. For relatively little cost for a space mission, great strides can be made in deploying arrays of antennas and receivers in space that would produce data contributing significantly to our understanding of galaxies and galactic nebulae. In this paper we discuss an evolutionary sequence of telescopes, antenna systems, receivers, and (u,v) plane coverage. The telescopes are space-based because of the disruptive aspects of the Earth's ionosphere on low-frequency celestial signals traveling to the Earth's surface. Orbiting antennas consisting of array elements deposited on a Kevlar balloon have strong advantages of nearly identical multiple beams over 4π steradians and few mechanical aspects in deployment and operation. The relatively narrow beam width of these antennas can significantly help reduce the ``confusion'' problem. The evolutionary sequence of telescopes starts with an Earth-orbiting spectrometer to measure the low-frequency radio environment in space, proceeds to a two-element interferometer, then to an orbiting array, and ends with a telescope on the lunar farside. The sequence is in the order of increasing capability which is also the order of increasing complexity and cost. All the missions can be accomplished with current technology.
ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.
2013-03-15
More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on themore » order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.« less
NASA Technical Reports Server (NTRS)
Erickson, E. F.; Goorvitch, D.; Dix, M. G.; Hitchman, M. J.
1974-01-01
The telescope system was designed as a multi-user facility for observations of celestial objects at infrared wavelengths, where ground-based observations are difficult or impossible due to the effects of telluric atmospheric absorption. The telescope is mounted in a Lear jet model 24B which typically permits 70 min. of observing per flight at altitudes in excess of 45,000 ft (13 km). Telescope system installation is discussed, along with appropriate setup and adjustment procedures. Operation of the guidance system is also explained, and checklists are provided which pertain to the recommended safe operating and in-flight trouble-shooting procedures for the equipment.
Propagation Velocity of Solid Earth Tides
NASA Astrophysics Data System (ADS)
Pathak, S.
2017-12-01
One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.
X-ray astronomical spectroscopy
NASA Technical Reports Server (NTRS)
Holt, S. S.
1980-01-01
The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.
Development and Use of Numerical and Factual Data Bases
1983-10-01
the quantitative description of what has been accomplished by their scientific and technical endeavors. 1-3 overhead charge to the national treasury... Molecular properties calculated with the aid of quantum mechanics or the prediction of solar eclipses using celestial mechanics are examples of theoretical...system under study. Examples include phase diagrams, molecular models, geological maps, metabolic pathways. Symbolic data (F3) are data presented in
ERIC Educational Resources Information Center
Thornburgh, Bill R.; Tretter, Tom R.; Duckwall, Mark
2015-01-01
Space has fascinated and intrigued humans of all ages since time immemorial, and continues to do so today. The natural curiosity is engaged when looking up into the sky, notice patterns among celestial objects such as the Sun, Moon, and stars, and wonder. Scientific understanding of those patterns has progressed immensely over the span of human…
Brown dwarfs: at last filling the gap between stars and planets.
Zuckerman, B
2000-02-01
Until the mid-1990s a person could not point to any celestial object and say with assurance that "here is a brown dwarf." Now dozens are known, and the study of brown dwarfs has come of age, touching upon major issues in astrophysics, including the nature of dark matter, the properties of substellar objects, and the origin of binary stars and planetary systems.
Recent high energy gamma-ray results from SAS-2
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Ogelman, H. B.; Ozel, M. E.; Tumer, T.; Lamb, R. C.
1977-01-01
Recent developments in gamma-ray astronomy due to the results from SAS-2 have focused on two areas. First, the emission from the plane of the Galaxy is the dominant feature in the gamma-ray sky. The galactic latitude and longitude distributions are consistent with the concept that the high-energy radiation originates from cosmic rays interacting with interstellar matter, and the measurements support a galactic origin for cosmic rays. Second, searches of the SAS-2 data for emission from localized sources have shown three strong discrete gamma-ray sources: the Crab nebula and PSR 0531 + 21, the Vela supernova remnant and PSR 0833-45, and a source near galactic coordinates 193 deg longitude, +3 deg latitude, which does not appear to be associated with other known celestial objects. Evidence has also been found for pulsed gamma-ray emission from two other radio pulsars, PSR 1818-04 and PSR 1747-46. A localized source near longitudes 76-80 deg may be associated with the X-ray source Cyg X-3.
Introducing the Moon's Orbital Eccentricity
NASA Astrophysics Data System (ADS)
Oostra, Benjamin
2014-11-01
I present a novel way to introduce the lunar orbital eccentricity in introductory astronomy courses. The Moon is perhaps the clearest illustration of the general orbital elements such as inclination, ascending node, eccentricity, perigee, and so on. Furthermore, I like the students to discover astronomical phenomena for themselves, by means of a guided exercise, rather than just telling them the facts.1 The inclination and nodes may be found by direct observation, monitoring carefully the position of the Moon among the stars. Even the regression of the nodes may be discovered in this way2 To find the eccentricity from students' observations is also possible,3 but that requires considerable time and effort. if a whole class should discover it in a short time, here is a method more suitable for a one-day class or home assignment. The level I aim at is, more or less, advanced high school or first-year college students. I assume them to be acquainted with celestial coordinates and the lunar phases, and to be able to use algebra and trigonometry.
Killer rocks and the celestial police - The search for near-earth asteroids
NASA Technical Reports Server (NTRS)
Yeomans, Donald K.
1991-01-01
The discovery of asteroids near the earth as the result of search programs is detailed with attention given to methods for locating, tracking, and identifying asteroids. The concept of 'prediscovery' is discussed in which new asteroids are tracked backward in time through previous celestial observational data. The need for more comprehensive programs is identified in order to locate objects that present a clear danger of colliding with the earth.
General-relativistic celestial mechanics. 4: Theory of satellite motion
NASA Astrophysics Data System (ADS)
Damour, T.; Soffel, M.; Xu, C.
1993-09-01
The basic equations needed for developing a complete relativistic theory of artificial Earth satellites are explicitly written down. These equations are given both in a local, geocentric frame and in the global, barycentric one. They are derived within our recently introduced general-relativistic celestial mechanics framework. Our approach is more satisfactory than previous ones, especially with regard to its consistency, completeness, and flexibility. In particular, the problem of representing the relativistic gravitational effects associated with the quadrupole and higher multipole moments of the moving Earth, which caused difficulties in several other approaches, is easily dealth with in our approach, thanks to the use of previously developed tools: definition of relativistic multipole moments and transformation theory between reference frames. With this last paper in a series, we hope to indicate the way of using our formalism in specific problems in applied celestial mechanics and astrometry.
Polynomial equations for science orbits around Europa
NASA Astrophysics Data System (ADS)
Cinelli, Marco; Circi, Christian; Ortore, Emiliano
2015-07-01
In this paper, the design of science orbits for the observation of a celestial body has been carried out using polynomial equations. The effects related to the main zonal harmonics of the celestial body and the perturbation deriving from the presence of a third celestial body have been taken into account. The third body describes a circular and equatorial orbit with respect to the primary body and, for its disturbing potential, an expansion in Legendre polynomials up to the second order has been considered. These polynomial equations allow the determination of science orbits around Jupiter's satellite Europa, where the third body gravitational attraction represents one of the main forces influencing the motion of an orbiting probe. Thus, the retrieved relationships have been applied to this moon and periodic sun-synchronous and multi-sun-synchronous orbits have been determined. Finally, numerical simulations have been carried out to validate the analytical results.
Infrared radiation scene generation of stars and planets in celestial background
NASA Astrophysics Data System (ADS)
Guo, Feng; Hong, Yaohui; Xu, Xiaojian
2014-10-01
An infrared (IR) radiation generation model of stars and planets in celestial background is proposed in this paper. Cohen's spectral template1 is modified for high spectral resolution and accuracy. Based on the improved spectral template for stars and the blackbody assumption for planets, an IR radiation model is developed which is able to generate the celestial IR background for stars and planets appearing in sensor's field of view (FOV) for specified observing date and time, location, viewpoint and spectral band over 1.2μm ~ 35μm. In the current model, the initial locations of stars are calculated based on midcourse space experiment (MSX) IR astronomical catalogue (MSX-IRAC) 2 , while the initial locations of planets are calculated using secular variations of the planetary orbits (VSOP) theory. Simulation results show that the new IR radiation model has higher resolution and accuracy than common model.
Archaic artifacts resembling celestial spheres
NASA Astrophysics Data System (ADS)
Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.
We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.
Radio-Optical Reference Frame Link Using the U.S. Naval Observatory Astrograph and Deep CCD Imaging
NASA Astrophysics Data System (ADS)
Zacharias, N.; Zacharias, M. I.
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.
Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharias, N.; Zacharias, M. I., E-mail: nz@usno.navy.mil
2014-05-01
Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reducedmore » following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.« less
VLBI Observations of Geostationary Satellites
NASA Astrophysics Data System (ADS)
Artz, T.; Nothnagel, A.; La Porta, L.
2013-08-01
For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.
Rogers, A E; Cappallo, R J; Hinteregger, H F; Levine, J I; Nesman, E F; Webber, J C; Whitney, A R; Clark, T A; Ma, C; Ryan, J; Corey, B E; Counselman, C C; Herring, T A; Shapiro, I I; Knight, C A; Shaffer, D B; Vandenberg, N R; Lacasse, R; Mauzy, R; Rayhrer, B; Schupler, B R; Pigg, J C
1983-01-07
The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.
The College of Charleston's 400-Student Observational Lab Program
NASA Astrophysics Data System (ADS)
True, C. M.
2006-06-01
For over thirty years the College of Charleston has been teaching a year-long introductory astronomy course incorporating a mandatory 3 hour lab. Despite our location in a very light polluted, coastal, high humidity, and often cloudy metropolitan area we have emphasized observational activities as much as possible. To accommodate our population of between 300-400 students per semester, we have 28 8-inch Celestron Telescopes and 25 GPS capable 8-inch Meade LX-200 telescopes. Finally, we have a 16 DFM adjacent to our rooftop observing decks. For indoor activities we have access to 42 computers running a variety of astronomy education software. Some of the computer activities are based on the Starry Night software (Backyard and Pro), the CLEA software from Gettysburg College, and Spectrum Explorer from Boston University. Additionally, we have labs involving cratering, eclipses and phases, coordinate systems with celestial globes, the inverse square law, spectroscopy and spectral classification, as well as others. In this presentation we will discuss the difficulties in managing a program of this size. We have approximately 14 lab sections a week. The lab manager's task involves coordinating 8-10 lab instructors and the same number of undergraduate teaching assistants as well as trying to maintain a coherent experience between the labs and lecture sections. Our lab manuals are produced locally with yearly updates. Samples from the manuals will be available. This program has been developed by a large number of College of Charleston astronomy faculty, including Don Drost, Bob Dukes, Chris Fragile, Tim Giblin, Jon Hakkila, Bill Kubinec, Lee Lindner, Jim Neff, Laura Penny, Al Rainis, Terry Richardson, and D. J. Williams, as well as adjunct and visiting faculty Bill Baird, Kevin Bourque, Ethan Denault, Kwayera Davis, Francie Halter, and Alan Johnson. Part of this work has been funded by NSF DUE grants to the College of Charleston.
The Green Bank North Celestial Cap Pulsar Survey. III. 45 New Pulsar Timing Solutions
NASA Astrophysics Data System (ADS)
Lynch, Ryan S.; Swiggum, Joseph K.; Kondratiev, Vlad I.; Kaplan, David L.; Stovall, Kevin; Fonseca, Emmanuel; Roberts, Mallory S. E.; Levin, Lina; DeCesar, Megan E.; Cui, Bingyi; Cenko, S. Bradley; Gatkine, Pradip; Archibald, Anne M.; Banaszak, Shawn; Biwer, Christopher M.; Boyles, Jason; Chawla, Pragya; Dartez, Louis P.; Day, David; Ford, Anthony J.; Flanigan, Joseph; Hessels, Jason W. T.; Hinojosa, Jesus; Jenet, Fredrick A.; Karako-Argaman, Chen; Kaspi, Victoria M.; Leake, Sean; Lunsford, Grady; Martinez, José G.; Mata, Alberto; McLaughlin, Maura A.; Noori, Hind Al; Ransom, Scott M.; Rohr, Matthew D.; Siemens, Xavier; Spiewak, Renée; Stairs, Ingrid H.; van Leeuwen, Joeri; Walker, Arielle N.; Wells, Bradley L.
2018-06-01
We provide timing solutions for 45 radio pulsars discovered by the Robert C. Byrd Green Bank Telescope. These pulsars were found in the Green Bank North Celestial Cap pulsar survey, an all-GBT-sky survey being carried out at a frequency of 350 {MHz}. We include pulsar timing data from the Green Bank Telescope and Low Frequency Array. Our sample includes five fully recycled millisecond pulsars (MSPs, three of which are in a binary system), a new relativistic double neutron star system, an intermediate-mass binary pulsar, a mode-changing pulsar, a 138 ms pulsar with a very low magnetic field, and several nulling pulsars. We have measured two post-Keplerian parameters and thus the masses of both objects in the double neutron star system. We also report a tentative companion mass measurement via Shapiro delay in a binary MSP. Two of the MSPs can be timed with high precision and have been included in pulsar timing arrays being used to search for low-frequency gravitational waves, while a third MSP is a member of the black widow class of binaries. Proper motion is measurable in five pulsars, and we provide an estimate of their space velocity. We report on an optical counterpart to a new black widow system and provide constraints on the optical counterparts to other binary MSPs. We also present a preliminary analysis of nulling pulsars in our sample. These results demonstrate the scientific return of long timing campaigns on pulsars of all types.
NASA Astrophysics Data System (ADS)
Gerwig López, Susanne
2016-04-01
One of the most important successes in astronomical observations has been to determine the limit of the Solar System. It is said that the first man able to measure the distance Earth-Sun with only a very slight mistake, in the second century BC, was the wise Greek man Aristarco de Samos. Thanks to Newtońs law of universal gravitation, it was possible to measure, with a little margin of error, the distances between the Sun and the planets. Twelve-year old students are very interested in everything related to the universe. However, it seems too difficult to imagine and understand the real distances among the different celestial bodies. To learn the differences among the inner and outer planets and how far away the outer ones are, I have considered to make my pupils work on the sizes and the distances in our solar system constructing it to scale. The purpose is to reproduce our solar system to scale on a cardboard. The procedure is very easy and simple. Students of first year of ESO (12 year-old) receive the instructions in a sheet of paper (things they need: a black cardboard, a pair of scissors, colored pencils, a ruler, adhesive tape, glue, the photocopies of the planets and satellites, the measurements they have to use). In another photocopy they get the pictures of the edge of the sun, the planets, dwarf planets and some satellites, which they have to color, cut and stick on the cardboard. This activity is planned for both Spanish and bilingual learning students as a science project. Depending on the group, they will receive these instructions in Spanish or in English. When the time is over, the students bring their works on their cardboard to the class. They obtain a final mark: passing, good or excellent, depending on the accuracy of the measurements, the position of all the celestial bodies, the asteroids belts, personal contributions, etc. If any of the students has not followed the instructions they get the chance to remake it again properly, in order not to obtain the "failing" mark. When the teacher notices that some mistakes can be easily improved, students can do it. If the students have forgotten to write the names of the celestial bodies, they should add them. Finally, their works will be exposed in the classroom.
2017-12-18
Determination on Orbital Element Representations,” Celestial Mechanics and Dynamical Astronomy , Vol. 118, pp.165-195, 2014. [8] R. Weisman, M. Jah...Nonlinear Filtering,” Celestial Mechanics and Dynamical Astronomy , Vol. 118, pp.129-164, 2014. [10] R. Weisman, M. Majji, K. Alfriend, “Analytic...Conference on Mathematics and Astronomy : A Joint Long Journey, American Institute of Physics, 10.1063/1.3506064, Madrid, Spain, 2009. [33] X.L. Xu, Y.Q
Roach, Franklin E.; Carroll, Benjamin; Aller, Lawrence H.; Smith, Leroi
1972-01-01
Diffuse celestial sources of relatively low surface brightness such as the Milky Way, zodiacal light, and gegenschein (or contre lumière) can be studied most reliably from above the earth's atmosphere with equipment flown in artificial satellites. We review the techniques used and some of the difficulties encountered in day-time observations from satellites by the use of a special photometer and polarimeter flown in the orbiting skylab observatory, OSO-6. PMID:16591970
NASA Technical Reports Server (NTRS)
Harrington, A. D.; McCubbin, F. M.; Vander Kaaden, K. E.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.
2018-01-01
New initiatives to send humans to Mars within the next few decades are illustrative of the resurgence of interest in space travel. However, as with all exploration, there are risks. The Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts.
Barta, András; Farkas, Alexandra; Száz, Dénes; Egri, Ádám; Barta, Pál; Kovács, József; Csák, Balázs; Jankovics, István; Szabó, Gyula; Horváth, Gábor
2014-08-10
Using full-sky imaging polarimetry, we measured the celestial distribution of polarization during sunset and sunrise at partial (78% and 72%) and full (100%) moon in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We investigated the temporal change of the patterns of degree p and angle α of linear polarization of sunlit and moonlit skies at dusk and dawn. We describe here the position change of the neutral points of sky polarization, and present video clips about the celestial polarization transition at moonlit twilight. We found that at partial moon and at a medium latitude (47° 15.481' N) during this transition there is a relatively short (10-20 min) period when (i) the maximum of p of skylight decreases, and (ii) from the celestial α pattern neither the solar-antisolar nor the lunar-antilunar meridian can be unambiguously determined. These meridians can serve as reference directions of animal orientation and Viking navigation based on sky polarization. The possible influence of these atmospheric optical phenomena during the polarization transition between sunlit and moonlit skies on the orientation of polarization-sensitive crepuscular/nocturnal animals and the hypothesized navigation of sunstone-aided Viking seafarers is discussed.
An alternative model of free fall
NASA Astrophysics Data System (ADS)
Lattery, Mark
2018-03-01
In Two World Systems (Galileo 1632/1661 Dialogues Concerning Two New Sciences (New York: Prometheus)), Galileo attempted to unify terrestrial and celestial motions using the Aristotelian principle of circularity. The result was a model of free fall that correctly predicts the linear increase of the velocity of an object released from rest near the surface of the Earth. This historical episode provides an opportunity to communicate the nature of science to students.
USSR and Eastern Europe Scienitific Abstracts, Geophysics, Astronomy and Space. Number 399
1977-06-10
Orbit 47 TASS Announces Launching of "Molniya-3" Communications Satellite 47 Abstracts of Scientific Articles 49 Inhomogeneities of Electron...Directions in Space Technology 52 Motion of Body of Variable Rest Mass in Gravity Field 52 Orbits in Applied Problems of Celestial Mechanics..... 53...Satellite Oscillations in Plane of Elliptical Orbit 53 Submillimeter Radiation of Convective Cloud Systems 54 Combined Braking of Spacecraft in
Brown dwarfs: At last filling the gap between stars and planets
Zuckerman, Ben
2000-01-01
Until the mid-1990s a person could not point to any celestial object and say with assurance that “here is a brown dwarf.” Now dozens are known, and the study of brown dwarfs has come of age, touching upon major issues in astrophysics, including the nature of dark matter, the properties of substellar objects, and the origin of binary stars and planetary systems. PMID:10655468
Study of the long time-scale variability of cosmic rays with the ARGO-YBJ experiment
NASA Astrophysics Data System (ADS)
Cappa, Alba; James, Irina; Salvini, Paola
The long term modulation of the cosmic ray intensity includes both Sun and celestial anisotropies. The solar activity is due to high energy flares producing a decrease (known as Forbush Decrease, FD) in the cosmic ray intensity, with a time scale of the order of a few days, often accompained by a Ground Level Enhancement, due to direct Sun emission during the solar flare. The celestial anisotropies are due to the Earth motion in the cosmic rays reference system (solar anisotropy: Compton-Getting effect) and to the solar system location inside the Galaxy (sidereal anisotropies). These anisotropies are studied in ground-base experiments by means of EAS arrays, and the high energy solar emission is mainly studied from ground by neutron monitors. In the ARGO-YBJ experiment these phenomena are investigated by means of the "scaler mode" technique: the detector counting rates of four low multiplicity channels from singles to four-fold coincidences are recorded in a fixed time window of 0.5 s. The signal corresponds to a significant enhancement of the observed counting rate, after correcting the data for enviromental and instrumental parameters. In this paper we present the sensitivity of the ARGO-YBJ detector and the first results for both solar physics and cosmic ray anisotropy studies.
Comparison and Historical Evolution of Ancient Greek Cosmological Ideas and Mathematical Models
NASA Astrophysics Data System (ADS)
Pinotsis, Antonios D.
2005-12-01
We present a comparative study of the cosmological ideas and mathematical models in ancient Greece. We show that the heliocentric system introduced by Aristarchus of Samos was the outcome of much intellectual activity. Many Greek philosophers, mathematicians and astronomers such as Anaximander, Philolaus, Hicetas, Ecphantus and Heraclides of Pontus contributed to this. Also, Ptolemy was influenced by the cosmological model of Heraclides of Pontus for the explanation of the apparent motions of Mercury and Venus. Apollonius, who wrote the definitive work on conic sections, introduced the theory of eccentric circles and implemented them together with epicycles instead of considering that the celestial bodies travel in elliptic orbits. This is due to the deeply rooted belief that the orbits of the celestial bodies were normal circular motions around the Earth, which was still. There was also a variety of important ideas which are relevant to modern science. We present the ideas of Plato that are consistent with modern relativity theories, as well as Aristarchus' estimations of the size of the Universe in comparison with the size of the planetary system. As a first approximation, Hipparchus' theory of eccentric circles was equivalent to the first two laws of Kepler. The significance of the principle of independence and superposition of motions in the formulation of ancient cosmological models is also clarified.
Lunar Laser Ranging: Glorious Past And A Bright Future
NASA Astrophysics Data System (ADS)
Shelus, Peter J.
Lunar Laser Ranging (LLR), a part of the NASA Apollo program, has beenon-going for more than 30 years. It provides the grist for a multi-disciplinarydata analysis mill. Results exist for solid Earth sciences, geodesy and geodynamics,solar system ephemerides, terrestrial and celestial reference frames, lunar physics,general relativity and gravitational theory. Combined with other data, it treatsprecession of the Earth''s spin axis, lunar induced nutation, polar motion/Earthrotation, Earth orbit obliquity to the ecliptic, intersection of the celestial equatorwith the ecliptic, luni-solar solid body tides, lunar tidal deceleration, lunar physicaland free librations, structure of the moon and energy dissipation in the lunar interior.LLR provides input to lunar surface cartography and surveying, Earth station and lunar retroreflector location and motion, mass of the Earth-moon system, lunar and terrestrial gravity harmonics and Love numbers, relativistic geodesic precession, and the equivalence principle of general relativity. With the passive nature of the reflectors and steady improvement in observing equipment and data analysis, LLR continues to provide state-of-the-art results. Gains are steady as the data-base expands. After more than 30 years, LLR remains the only active Apollo experiment. It is important to recognize examples of efficient and cost effective progress of research. LLR is just such an example.
The Microwave Anisotropy Probe (MAP) Attitude Control System
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.
Profile fitting in crowded astronomical images
NASA Astrophysics Data System (ADS)
Manish, Raja
Around 18,000 known objects currently populate the near Earth space. These constitute active space assets as well as space debris objects. The tracking and cataloging of such objects relies on observations, most of which are ground based. Also, because of the great distance to the objects, only non-resolved object images can be obtained from the observations. Optical systems consist of telescope optics and a detector. Nowadays, usually CCD detectors are used. The information that is sought to be extracted from the frames are the individual object's astrometric position. In order to do so, the center of the object's image on the CCD frame has to be found. However, the observation frames that are read out of the detector are subject to noise. There are three different sources of noise: celestial background sources, the object signal itself and the sensor noise. The noise statistics are usually modeled as Gaussian or Poisson distributed or their combined distribution. In order to achieve a near real time processing, computationally fast and reliable methods for the so-called centroiding are desired; analytical methods are preferred over numerical ones of comparable accuracy. In this work, an analytic method for the centroiding is investigated and compared to numerical methods. Though the work focuses mainly on astronomical images, same principle could be applied on non-celestial images containing similar data. The method is based on minimizing weighted least squared (LS) error between observed data and the theoretical model of point sources in a novel yet simple way. Synthetic image frames have been simulated. The newly developed method is tested in both crowded and non-crowded fields where former needs additional image handling procedures to separate closely packed objects. Subsequent analysis on real celestial images corroborate the effectiveness of the approach.
NASA Technical Reports Server (NTRS)
Brown, D. C.
1971-01-01
The simultaneous adjustment of very large nets of overlapping plates covering the celestial sphere becomes computationally feasible by virtue of a twofold process that generates a system of normal equations having a bordered-banded coefficient matrix, and solves such a system in a highly efficient manner. Numerical results suggest that when a well constructed spherical net is subjected to a rigorous, simultaneous adjustment, the exercise of independently established control points is neither required for determinancy nor for production of accurate results.
Systems Engineering and Application of System Performance Modeling in SIM Lite Mission
NASA Technical Reports Server (NTRS)
Moshir, Mehrdad; Murphy, David W.; Milman, Mark H.; Meier, David L.
2010-01-01
The SIM Lite Astrometric Observatory will be the first space-based Michelson interferometer operating in the visible wavelength, with the ability to perform ultra-high precision astrometric measurements on distant celestial objects. SIM Lite data will address in a fundamental way questions such as characterization of Earth-mass planets around nearby stars. To accomplish these goals it is necessary to rely on a model-based systems engineering approach - much more so than most other space missions. This paper will describe in further detail the components of this end-to-end performance model, called "SIM-sim", and show how it has helped the systems engineering process.
Celestial Software Scratches More Than the Surface
NASA Technical Reports Server (NTRS)
2005-01-01
While NASA is preparing to send humans back to the Moon by 2020 and then eventually to Mars, the average person can explore the landscapes of these celestial bodies much sooner, without the risk and training, and without even leaving the comfort of home. Geological data and imagery collected from NASA missions are enabling anybody with computer access to virtually follow the footsteps of Apollo astronauts who walked on the Moon or trace the tracks of the exploration rovers currently on Mars.
Use of Reference Frames for Interplanetary Navigation at JPL
NASA Technical Reports Server (NTRS)
Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue
2010-01-01
Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.
1983-08-04
IS CURRERTLY OFF; TRANSMITSTHE COM TO TURHE AN N; WAITS FO Procedures are valuable because they provide hCGMDTOTR PROPTION AN POCSSI OELAS...legal and Other Celestial Bodies ,!/ was a regime which has been created by brilliant accomplishment of the world international treaties. These legal...difficulty posed by some controversial provisions in the Agreement Governing the Activities of States on the Moon and Other Celestial Bodies and the
NASA Astrophysics Data System (ADS)
Andersen, P. H.
Forsvarets forskningsinstitutt (FFI, the Norwegian Defence Research Establishment) has during the last 17 years developed a software system called GEOSAT, for the analysis of any type of high precision space geodetic observations. A unique feature of GEOSAT is the possibility of combining any combination of different space geode- tic data at the observation level with one consistent model and one consistent strategy. This is a much better strategy than the strategy in use today where different types of observations are processed separately using analysis software developed specifically for each technique. The results from each technique are finally combined a posteriori. In practice the models implemented in the software packages differ at the 1-cm level which is almost one order of magnitude larger than the internal precision of the most precise techniques. Another advantage of the new proposed combination method is that for example VLBI and GPS can use the same tropospheric model with common parameterization. The same is the case for the Earth orientation parameters, the geo- center coordinates and other geodetic or geophysical parameters where VLBI, GPS and SLR can have a common estimate for each of the parameters. The analysis with GEOSAT is automated for the combination of VLBI, SLR and GPS observations. The data are analyzed in batches of one day where the result from each daily arc is a SRIF array (Square Root Information Filter). A large number of SRIF arrays can be combined into a multi-year solution using the CSRIFS program (Com- bination Square Root Information Filter and Smoother). Four parameter levels are available and any parameter can, at each level, either be represented as a constant or a stochastic parameter (white noise, colored noise, or random walk). The batch length (i.e. the time interval between the addition of noise to the SRIF array) can be made time- and parameter dependent. GEOSAT and CSRIFS have been applied in the analysis of selected VLBI and SLR data (LAGEOS I &II) from the period January 1993 to July 2001. A selected number of arcs also include GPS data. Earth orientation parameters, geocenter motion, sta- tion coordinates and velocities were estimated simultaneously with the coordinates of the radio sources and satellite orbital parameters. Recent software improvements and 1 results of analyses will be presented at the meeting. 2
Barta, András; Horváth, Gábor
2004-02-21
The perception of skylight polarization in the ultraviolet (UV) by many insect species for orientation purposes is rather surprising, because both the degree of linear polarization and the radiance of light from the clear sky are considerably lower in the UV than in the blue or green. In this work we call this the "UV-sky-pol paradox". Although in the past, several attempts have been made to resolve this paradox, none of them was convincing. We present here a possible quantitative resolution to the paradox. We show by a model calculation that if the air layer between a cloud and a ground-based observer is partly sunlit, the degree of linear polarization p of skylight originating from the cloudy region is highest in the UV, because in this spectral range the unpolarized UV-deficient cloudlight dilutes least the polarized light scattered in the air beneath the cloud. Similarly, if the air under foliage is partly sunlit, p of downwelling light from the canopied region is maximal in the UV, because in this part of spectrum the unpolarized UV-deficient green canopylight dilutes least the polarized light scattered in the air beneath the canopy. Therefore, the detection of polarization of downwelling light under clouds or canopies is most advantageous in the UV, in which spectral range the risk is the smallest that the degree of polarization p is lower than the threshold p(tr) of polarization sensitivity in animals. On the other hand, under clear skies there is no favoured wavelength for perception of celestial polarization, because p of skylight is high enough (p > p(tr)) at all wavelengths. We show that there is an analogy between the detection of UV skylight polarization and the polarotactic water detection in the UV. However, insects perceive skylight polarization by UV or blue or green receptors. The question, why they differ in the spectral channel used for the detection of celestial polarization cannot be answered at the present time, because data are insufficient. Nevertheless, we present here one possible atmospheric optical reason why certain visual systems involved in detecting celestial polarization, are specifically tuned to the UV part of the spectrum.
Expected Improvements in VLBI Measurements of the Earth's Orientation
NASA Technical Reports Server (NTRS)
Ma, Chopo
2003-01-01
Measurements of the Earth s orientation since the 1970s using space geodetic techniques have provided a continually expanding and improving data set for studies of the Earth s structure and the distribution of mass and angular momentum. The accuracy of current one-day measurements is better than 100 microarcsec for the motion of the pole with respect to the celestial and terrestrial reference frames and better than 3 microsec for the rotation around the pole. VLBI uniquely provides the three Earth orientation parameters (nutation and UTI) that relate the Earth to the extragalactic celestial reference frame. The accuracy and resolution of the VLBI Earth orientation time series can be expected to improve substantially in the near future because of refinements in the realization of the celestial reference frame, improved modeling of the troposphere and non-linear station motions, larger observing networks, optimized scheduling, deployment of disk-based Mark V recorders, full use of Mark IV capabilities, and e-VLBI. More radical future technical developments will be discussed.
Water in the trail of the Chelyabinsk bolide
NASA Astrophysics Data System (ADS)
Gladysheva, O. G.
2017-09-01
At 03:20 UTC on February 15, 2013 a very bright bolide entered Earth's atmosphere. Fragments of the meteorite fell to the earth's surface. Examination of these fragments revealed that several of them were located directly on the surface of the celestial body [1], while the majority lay at a depth of less than 2.5 m from the surface [2, 3]. The stone meteorite's durability, >15 MPa, corresponded to <1% of the initial mass, while the rest of the object possessed a low durability of 1 MPa [4]. Moreover, Fe3+ hydroxyls were discovered in meteorite samples, the formation of which required water [5]. The glow at the head of the bolide trail, lasting 8 seconds after the flight of the object, and the development of the cloud trail indicate that the celestial body carried water. The Chinese weather satellite Feng-Yun 2D discovered ice debris (water) in the bolide trail [6]. Here, we will demonstrate that the Chelyabinsk chondrite was delivered to the Earth by an ice-bearing celestial body.
Astrology: Science, Art or Prophesy
NASA Astrophysics Data System (ADS)
Yeghiazaryan, Anahit
2016-12-01
The subject in question is the link between humanity's two earliest disciplines - astronomy and astrology. Is it realistic to assume that the arrangement of celestial bodies, planets and stars can provide an opportunity to unequivocally predetermine the faith of the flora and fauna, of single individuals or entire nations living on planet Earth of the Solar System in the entirety of the Universe? Is it possible to ascertain whether astrology is science, art or prophesy?
Astrology: Science, Art or Prophesy
NASA Astrophysics Data System (ADS)
Yeghiazaryan, A. A.
2015-07-01
The subject in question is the link between humanity's two earliest disciplines - Astronomy and Astrology. Is it realistic to assume that the arrangement of celestial bodies, planets and stars can provide an opportunity to unequivocally predetermine the faith of the flora and fauna, of single individuals or entire nations living on planet Earth of the Solar System in the entirety of the Universe? Is it possible to ascertain whether astrology is science, art or prophesy?
NASA Astrophysics Data System (ADS)
Asada, Hideki
2006-11-01
There exists a very classical inverse problem regarding orbit determination of a binary system: "when an orbital plane of two bodies is inclined with respect to the line of sight, observables are their positions projected onto a celestial sphere. How do we determine the orbital elements from observations?" A "complete exact solution" has been found. It is reviewed with some related topics.
NASA Astrophysics Data System (ADS)
Stira, Salvatore
2016-04-01
Ceres is the largest object in the asteroid belt between Mars and Jupiter, and it was discovered on January 1, 1801, by the Italian astronomer Giuseppe Piazzi. The study of Ceres is especially relevant to my students because this celestial body was discovered in Palermo, in the astronomic observatory located in the UNESCO world heritage site "Palazzo dei Normanni", around 500 meters away from the institute where I teach, and because Ceres was considered the patron goddess of Sicily. Moreover, it received scientists and media attention recently because it was explored by the NASA Dawn spacecraft in 2015. The categorization of Ceres has changed more than once and has been the subject of some disagreement. It was originally considered a planet, but was reclassified as an asteroid in the 1850s when many other objects in similar orbits were discovered. Its status changed again in 2006 when it was promoted to dwarf planet, a classification it shares with Pluto and other Kuiper belt objects. The study of this celestial body has a notable educational value, since the uncertain identity of Ceres constitutes an occasion to reflect on the criterions of classification of the natural objects. The history of its discovery allows the students to understand as the scientific method doesn't always consist in the verification of hypothesis through experiments but it sometimes asks for the forecast of facts through mathematical calculations, repeated and methodic observations, the collaboration between scientists of different sectors and nationality. Furthermore, it is a particularly suitable topic for interdisciplinary connections, as regards both scientific and humanistic matters. In order to promote the scientific competences of my first class students, I have developed a learning unit on Ceres, thanks to good cooperation with the Palermo Observatory scientists, particularly active in the astronomic dissemination towards the schools and the citizens. The most meaningful activities of the learning units have been: 1) Working in groups: classification of solar system objects through the use of cards with figures and description of the celestial bodies. 2) A guided tour to Palermo Astronomic Observatory Museum, where stored instruments used by Piazzi for observation of Ceres and the original scientific documentation regarding this important discovery. 3) Internet search of information on the mission Dawn and implementation of Learning objects on this matter. 4) A guided visit to the exhibition "Cerere, da Piazzi a Dawn"; This learning unit, that has aroused interest and active participation among the students, cannot be regarded as closed, because it can be used for the discussion of other matters (for instance the search of the life on other celestial bodies).
Dacke, M; Srinivasan, M V
2008-10-01
Although several studies have examined how honeybees gauge and report the distance and direction of a food source to their nestmates, relatively little is known about how this information is combined to obtain a representation of the position of the food source. In this study we manipulate the amount of celestial compass information available to the bee during flight, and analyse the encoding of spatial information in the waggle dance as well as in the navigation of the foraging bee. We find that the waggle dance encodes information about the total distance flown to the food source, even when celestial compass cues are available only for a part of the journey. This stands in contrast to how a bee gauges distance flown when it navigates back to a food source that it already knows. When bees were trained to find a feeder placed at a fixed distance in a tunnel in which celestial cues were partially occluded and then tested in a tunnel that was fully open to the sky, they searched for the feeder at a distance that corresponds closely to the distance that was flown under the open sky during the training. Thus, when navigating back to a food source, information about distance travelled is disregarded when there is no concurrent input from the celestial compass. We suggest that bees may possess two different odometers - a 'community' odometer that is used to provide information to nestmates via the dance, and a 'personal' odometer that is used by an experienced individual to return to a previously visited source.
Update on the activities of the GGOS Bureau of Networks and Observations
NASA Technical Reports Server (NTRS)
Pearlman, Michael R.; Pavlis, Erricos C.; Ma, Chopo; Noll, Carey; Thaller, Daniela; Richter, Bernd; Gross, Richard; Neilan, Ruth; Mueller, Juergen; Barzaghi, Ricardo;
2016-01-01
The recently reorganized GGOS Bureau of Networks and Observations has many elements that are associated with building and sustaining the infrastructure that supports the Global Geodetic Observing System (GGOS) through the development and maintenance of the International Terrestrial and Celestial Reference Frames, improved gravity field models and their incorporation into the reference frame, the production of precision orbits for missions of interest to GGOS, and many other applications. The affiliated Service Networks (IVS, ILRS, IGS, IDS, and now the IGFS and the PSMSL) continue to grow geographically and to improve core and co-location site performance with newer technologies. Efforts are underway to expand GGOS participation and outreach. Several groups are undertaking initiatives and seeking partnerships to update existing sites and expand the networks in geographic areas void of coverage. New satellites are being launched by the Space Agencies in disciplines relevant to GGOS. Working groups now constitute an integral part of the Bureau, providing key service to GGOS. Their activities include: projecting future network capability and examining trade-off options for station deployment and technology upgrades, developing metadata collection and online availability strategies; improving coordination and information exchange with the missions for better ground-based network response and space-segment adequacy for the realization of GGOS goals; and standardizing site-tie measurement, archiving, and analysis procedures. This poster will present the progress in the Bureau's activities and its efforts to expand the networks and make them more effective in supporting GGOS.
The Neural Network In Coordinate Transformation
NASA Astrophysics Data System (ADS)
Urusan, Ahmet Yucel
2011-12-01
In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.
On a celestial occurrence recorded in the hagiography of St. Vladimir
NASA Astrophysics Data System (ADS)
Banjević, Boris
2002-04-01
There were recorded a number of celestial occurrences in Serbian early history. Amongst them are a few appearances of comets. One except from Bible bearing on life of king David, relating to a phenomenon that might be interpreted as a comet, is in some way similar to the quotation from the hagiography of St. Vladimir. There is possibility that Halley's comet was observed at some time. This affects the chronology of the reign of St. Vladimir by about 11 years. This author thinks that it was in the summer 989 AD.
Comparison of Measured Galactic Background Radiation at L-Band with Model
NASA Technical Reports Server (NTRS)
LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, William J.; Skou, Niels; Sobjaerg, Sten
2004-01-01
Radiation from the celestial sky in the spectral window at 1.413 GHz is strong and an accurate accounting of this background radiation is needed for calibration and retrieval algorithms. Modern radio astronomy measurements in this window have been converted into a brightness temperature map of the celestial sky at L-band suitable for such applications. This paper presents a comparison of the background predicted by this map with the measurements of several modern L-band remote sensing radiometer Keywords-Galactic background, microwave radiometry; remote sensing;
The Southern Hemisphere VLBI experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, R.A.; Meier, D.L.; Louie, A.P.
1989-07-01
Six radio telescopes were operated as the first Southern Hemisphere VLBI array in April and May 1982. Observations were made at 2.3 and 8.4 GHz. This array provided VLBI modeling and hybrid imaging of celestial radio sources in the Southern Hemisphere, high-accuracy VLBI geodesy between Southern Hemisphere sites, and subarcsecond radio astrometry of celestial sources south of declination -45 deg. The goals and implementation of the array are discussed, the methods of modeling and hybrid image production are explained, and the VLBI structure of the sources that were observed is summarized. 36 refs.
Celestial Mechanics: from the bases of the past to the challenges of the future
NASA Astrophysics Data System (ADS)
de Melo, C. F.; Prado, A. F. B. A.; Macau, E. E. N.; Winter, O. C.; Gomes, V. M.
2015-10-01
This special issue of Journal of Physics: Conference Series brings a set of 31 papers presented in the Brazilian Colloquium on Orbital Dynamics (CBDO), held on December 1 - 5, 2014, in the city of Águas de Lindoia, Brazil. CBDO is a traditional and important scientific meeting in the areas of Theoretical and Applied Celestial Mechanics. The meeting takes place every two years, when researchers from South America and also guests from other continents present their works and discuss the paths trodden by the space sciences.
NASA Technical Reports Server (NTRS)
Miller, R. B.
1974-01-01
The Tracking and Data System supported the deep space phases of the Pioneer 6, 7, 8, and 9 missions, with two spacecraft in an inward trajectory and two spacecraft in an outward trajectory from the earth in heliocentric orbits. During the period of this report, scientific instruments aboard each of the spacecraft continued to register information relative to interplanetary particles and fields, and radiometric data generated by the network continued to contribute to knowledge of the celestial mechanics of the solar system. In addition, to network support activity detail, network performance and special support activities are covered.
NASA Astrophysics Data System (ADS)
Bailey, M. E.; Clube, S. V. M.; Napier, W. M.
Theories of the nature and origin of comets are discussed in a historical review covering the period from ancient times to the present. Consideration is given to the ancient controversy as to the atmospheric or celestial nature of comets, Renaissance theories of comet orbits, superstitions regarding the effects of comets, Kant's (1755) theory of solar-system origin, the nineteenth-century discovery of the relationship between comets and meteor showers, and the continuing solar-system/interstellar debate. Oort's (1950) model of a comet swarm surrounding the solar system is examined in detail; arguments advanced to explain the formation of comets within this model are summarized; and the question of cometary catastrophism is addressed.
NASA Technical Reports Server (NTRS)
Renzetti, N. A.; Siegmeth, A. J.
1973-01-01
The Tracking and Data System supported the deep space phases of the Pioneer 6, 7, 8, and 9 missions, with two spacecraft in an inward trajectory and two spacecraft in an outward trajectory from the earth in heliocentric orbits. Scientific instruments aboard each of the spacecraft continued to register information relative to interplanetary particles and fields, and radio metric data generated by the network continued to improve our knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.
How to find home backwards? Navigation during rearward homing of Cataglyphis fortis desert ants.
Pfeffer, Sarah E; Wittlinger, Matthias
2016-07-15
Cataglyphis ants are renowned for their impressive navigation skills, which have been studied in numerous experiments during forward locomotion. However, the ants' navigational performance during backward homing when dragging large food loads has not been investigated until now. During backward locomotion, the odometer has to deal with unsteady motion and irregularities in inter-leg coordination. The legs' sensory feedback during backward walking is not just a simple reversal of the forward stepping movements: compared with forward homing, ants are facing towards the opposite direction during backward dragging. Hence, the compass system has to cope with a flipped celestial view (in terms of the polarization pattern and the position of the sun) and an inverted retinotopic image of the visual panorama and landmark environment. The same is true for wind and olfactory cues. In this study we analyze for the first time backward-homing ants and evaluate their navigational performance in channel and open field experiments. Backward-homing Cataglyphis fortis desert ants show remarkable similarities in the performance of homing compared with forward-walking ants. Despite the numerous challenges emerging for the navigational system during backward walking, we show that ants perform quite well in our experiments. Direction and distance gauging was comparable to that of the forward-walking control groups. Interestingly, we found that backward-homing ants often put down the food item and performed foodless search loops around the left food item. These search loops were mainly centred around the drop-off position (and not around the nest position), and increased in length the closer the ants came to their fictive nest site. © 2016. Published by The Company of Biologists Ltd.
Search for Open binaries in the Southern Celestial Hemisphere using SPM4
NASA Astrophysics Data System (ADS)
Dávila, E.; Vieira, K.; Rosales, K.
2018-01-01
Open binaries' weak gravitational binding makes them vulnerable to any perturbation, turning them into excellent probes of the gravitational field where they are located. Currently there are only a few hundreds known or suspected open binaries, therefore a search for more of these systems is highly encouraging by looking for pairs of stars with common proper motions in an extensive, deep, and high quality astrometric catalog such as the SPM4 (Girard et al. 2011).
The Origin Billions Star Survey: Galactic Explorer
2006-10-18
Using OBSS, it will be possible to measure proper motions of galaxies (the motion in the plane of the sky) out to the distance of the Virgo Cluster ...within the Milky Way, as well as the local group toward the Virgo Cluster , will also be discerned at the microarcsecond level. All of this will be...supercluster of galaxies, dark matter, star for- mation, open clusters , the solar system, and the celestial ref- erence frame. This research was supported by
The celestial mechanics approach: application to data of the GRACE mission
NASA Astrophysics Data System (ADS)
Beutler, Gerhard; Jäggi, Adrian; Mervart, Leoš; Meyer, Ulrich
2010-11-01
The celestial mechanics approach (CMA) has its roots in the Bernese GPS software and was extensively used for determining the orbits of high-orbiting satellites. The CMA was extended to determine the orbits of Low Earth Orbiting satellites (LEOs) equipped with GPS receivers and of constellations of LEOs equipped in addition with inter-satellite links. In recent years the CMA was further developed and used for gravity field determination. The CMA was developed by the Astronomical Institute of the University of Bern (AIUB). The CMA is presented from the theoretical perspective in (Beutler et al. 2010). The key elements of the CMA are illustrated here using data from 50 days of GPS, K-Band, and accelerometer observations gathered by the Gravity Recovery And Climate Experiment (GRACE) mission in 2007. We study in particular the impact of (1) analyzing different observables [Global Positioning System (GPS) observations only, inter-satellite measurements only], (2) analyzing a combination of observations of different types on the level of the normal equation systems (NEQs), (3) using accelerometer data, (4) different orbit parametrizations (short-arc, reduced-dynamic) by imposing different constraints on the stochastic orbit parameters, and (5) using either the inter-satellite ranges or their time derivatives. The so-called GRACE baseline, i.e., the achievable accuracy of the GRACE gravity field for a particular solution strategy, is established for the CMA.
NASA Unveils Celestial Fireworks as Official Image for Hubble 25th Anniversary
2015-04-23
The brilliant tapestry of young stars flaring to life resemble a glittering fireworks display in the 25th anniversary NASA Hubble Space Telescope image, released to commemorate a quarter century of exploring the solar system and beyond since its launch on April 24, 1990. “Hubble has completely transformed our view of the universe, revealing the true beauty and richness of the cosmos” said John Grunsfeld, astronaut and associate administrator of NASA’s Science Mission Directorate. “This vista of starry fireworks and glowing gas is a fitting image for our celebration of 25 years of amazing Hubble science.” The sparkling centerpiece of Hubble’s anniversary fireworks is a giant cluster of about 3,000 stars called Westerlund 2, named for Swedish astronomer Bengt Westerlund who discovered the grouping in the 1960s. The cluster resides in a raucous stellar breeding ground known as Gum 29, located 20,000 light-years away from Earth in the constellation Carina. Read more: www.nasa.gov/press-release/nasa-unveils-celestial-firewor... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Observatories of Sawai Jai Singh II
NASA Astrophysics Data System (ADS)
Johnson-Roehr, Susan N.
Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.
Astrodynamics. Volume 1 - Orbit determination, space navigation, celestial mechanics.
NASA Technical Reports Server (NTRS)
Herrick, S.
1971-01-01
Essential navigational, physical, and mathematical problems of space exploration are covered. The introductory chapters dealing with conic sections, orientation, and the integration of the two-body problem are followed by an introduction to orbit determination and design. Systems of units and constants, as well as ephemerides, representations, reference systems, and data are then dealt with. A detailed attention is given to rendezvous problems and to differential processes in observational orbit correction, and in rendezvous or guidance correction. Finally, the Laplacian methods for determining preliminary orbits, and the orbit methods of Lagrange, Gauss, and Gibbs are reviewed.
NASA Astrophysics Data System (ADS)
Dvorak, R.; Henrard, J.
1993-06-01
Topics addressed include planetary theories, the Sitnikov problem, asteroids, resonance, general dynamical systems, and chaos and stability. Particular attention is given to recent progress in the theory and application of symplectic integrators, a computer-aided analysis of the Sitnikov problem, the chaotic behavior of trajectories for the asteroidal resonances, and the resonant motion in the restricted three-body problem. Also discussed are the second order long-period motion of Hyperion, meteorites from the asteroid 6 Hebe, and least squares parameter estimation in chaotic differential equations.
The Microwave Anisotropy Probe (MAP) Mission
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.
The Microwave Anisotropy Probe (MAP) Mission
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.
NASA Astrophysics Data System (ADS)
Smith, D. M. P.; Young, A.; Davidson, D. B.
2017-07-01
Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imshennik, V. S., E-mail: imshennik@itep.r
2010-04-15
The standard problem of a radial motion of test particles in the stationary gravitational field of a spherically symmetric celestial body is solved and is used to determine the time features of this motion. The problem is solved for the equations of motion of general relativity (GR), and the time features are obtained in the post-Newtonian approximation, with linear GR corrections proportional to r{sub g}/r and {beta}{sup 2} (in the solution being considered, they are of the same order of smallness) being taken rigorously into account. Total times obtained by integrating the time differentials along the trajectories of motion aremore » considered as the time features in question. It is shown that, for any parameters of the motion, the proper time (which corresponds to watches comoving with a test particle) exceeds the time of watches at rest (watches at the surface of the celestial body being considered). The mass and the radius of the celestial body, as well as the initial velocity of the test particle, serve as arbitrary parameters of the motion. The time difference indicated above implies a leading role of the gravitational redshift, which decreases somewhat because of the opposite effect of the Doppler shift. The results are estimated quantitatively for the important (from the experimental point of view) case of vertical flights of rockets starting from the Earth's surface. In this case, the GR corrections, albeit being extremely small (a few microseconds for several hours of the flight), aremeasurable with atomic (quantum) watches.« less
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2003-07-01
We adapt J. G. Williams' expression of the precession and nutation using the 3-1-3-1 rotation to an arbitrary inertial frame of reference. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the planetary precession formula numerically determined from DE405 and by using a recent theory of the forced nutation of the nonrigid Earth by Shirai & Fukishima, we analyze the celestial pole offsets observed by VLBI for 1979-2000 and determine the best-fit polynomials of the lunisolar precession angles. We then translate the results into classical precession quantities and evaluate the difference due to the difference in the ecliptic definition. The combination of these formulae and the periodic part of the Shirai-Fukishima nutation theory serves as a good approximation of the precession-nutation matrix in the International Celestial Reference Frame. As a by-product, we determine the mean celestial pole offset at J2000.0 as X0=-(17.12+/-0.01) mas and Y0=-(5.06+/-0.02) mas. Also, we estimate the speed of general precession in longitude at J2000.0 as p=5028.7955"+/-0.0003" per Julian century, the mean obliquity at J2000.0 in the inertial sense as (ɛ0)I=84381.40621"+/-0.00001" and in the rotational sense as (ɛ0)R=84381.40955"+/-0.00001", and the dynamical flattening of Earth as Hd=(3.2737804+/-0.0000003)×10-3. Furthermore, we establish a fast way to compute the precession-nutation matrix and provide a best-fit polynomial of an angle to specify the mean Celestial Ephemeris Origin.
A Long Journey of Mathematics and Astronomy in Romania
NASA Astrophysics Data System (ADS)
Stavinschi, Magda
2010-10-01
Bucharest Astronomical Observatory celebrated recently its centenary. Its founders were all mathematicians or, better said, astronomers specialized in celestial mechanics. Their first doctoral theses were defended at Sorbonne, in the second half of the 19th century, under the guidance of the greatest specialists of the time. After they returned home, they continued what they had begun in Paris, namely celestial mechanics. The instruments they ordered and the first programmes of astronomical observations had an increasingly closer relation to mathematics, as they referred to astrometry and especially to stellar catalogues. Naturally, there were also astrophysical concerns, timid ones in the beginning, and then ever larger, especially beginning with the International Geophysical Year. The evolution of world astronomy, as well as that of Romania, seems to be following but one direction: astrophysics. The truth is that astrometry and celestial mechanics continue to lie at the basis of all astrophysical researches, actually in an entirely new and modern form. The astrometry schools recently organized, the new astrometry textbooks, as well as the IAU working groups dedicated to modern astrometry prove that the long journey of mathematics and astronomy is not over yet.
NASA Astrophysics Data System (ADS)
Hegedüs, Ramón; Åkesson, Susanne; Horváth, Gábor
2007-05-01
The effects of forest fire smoke on sky polarization and animal orientation are practically unknown. Using full-sky imaging polarimetry, we therefore measured the celestial polarization pattern under a smoky sky in Fairbanks, Alaska, during the forest fire season in August 2005. It is quantitatively documented here that the celestial polarization, a sky attribute that is necessary for orientation of many polarization-sensitive animal species, above Fairbanks on 17 August 2005 was in several aspects anomalous due to the forest fire smoke: (i) The pattern of the degree of linear polarization p of the reddish smoky sky differed considerably from that of the corresponding clear blue sky. (ii) Due to the smoke, p of skylight was drastically reduced (pmax≤14%, paverage≤8%). (iii) Depending on wavelength and time, the Arago, Babinet, and Brewster neutral points of sky polarization had anomalous positions. We suggest that the disorientation of certain insects observed by Canadian researchers under smoky skies during the forest fire season in August 2003 in British Columbia was the consequence of the anomalous sky polarization caused by the forest fire smoke.
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-04-09
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.
NASA Astrophysics Data System (ADS)
Eyer, L.; Dubath, P.; Saesen, S.; Evans, D. W.; Wyrzykowski, L.; Hodgkin, S.; Mowlavi, N.
2012-04-01
The measurement of the positions, distances, motions and luminosities of stars represents the foundations of modern astronomical knowledge. Launched at the end of the eighties, the ESA Hipparcos satellite was the first space mission dedicated to such measurements. Hipparcos improved position accuracies by a factor of 100 compared to typical ground-based results and provided astrometric and photometric multi-epoch observations of 118,000 stars over the entire sky. The impact of Hipparcos on astrophysics has been extremely valuable and diverse. Building on this important European success, the ESA Gaia cornerstone mission promises an even more impressive advance. Compared to Hipparcos, it will bring a gain of a factor 50 to 100 in position accuracy and of a factor of 10,000 in star number, collecting photometric, spectrophotometric and spectroscopic data for one billion celestial objects. During its 5-year flight, Gaia will measure objects repeatedly, up to a few hundred times, providing an unprecedented database to study the variability of all types of celestial objects. Gaia will bring outstanding contributions, directly or indirectly, to most fields of research in astrophysics, such as the study of our Galaxy and of its stellar constituents, and the search for planets outside the solar system.
2017-12-08
The star of this NASA/ESA Hubble Space Telescope image is a galaxy known as NGC 4656, located in the constellation of Canes Venatici (The Hunting Dogs). However, it also has a somewhat more interesting and intriguing name: the Hockey Stick Galaxy! The reason for this is a little unclear from this partial view, which shows the bright central region, but the galaxy is actually shaped like an elongated, warped stick, stretching out through space until it curls around at one end to form a striking imitation of a celestial hockey stick. This unusual shape is thought to be due to an interaction between NGC 4656 and a couple of near neighbors, NGC 4631 (otherwise known as The Whale Galaxy) and NGC 4627 (a small elliptical). Galactic interactions can completely reshape a celestial object, shifting and warping its constituent gas, stars, and dust into bizarre and beautiful configurations. Credit: ESA/Hubble & NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Interactions of the polarization and the sun compass in path integration of desert ants.
Lebhardt, Fleur; Ronacher, Bernhard
2014-08-01
Desert ants, Cataglyphis fortis, perform large-scale foraging trips in their featureless habitat using path integration as their main navigation tool. To determine their walking direction they use primarily celestial cues, the sky's polarization pattern and the sun position. To examine the relative importance of these two celestial cues, we performed cue conflict experiments. We manipulated the polarization pattern experienced by the ants during their outbound foraging excursions, reducing it to a single electric field (e-)vector direction with a linear polarization filter. The simultaneous view of the sun created situations in which the directional information of the sun and the polarization compass disagreed. The heading directions of the homebound runs recorded on a test field with full view of the natural sky demonstrate that none of both compasses completely dominated over the other. Rather the ants seemed to compute an intermediate homing direction to which both compass systems contributed roughly equally. Direct sunlight and polarized light are detected in different regions of the ant's compound eye, suggesting two separate pathways for obtaining directional information. In the experimental paradigm applied here, these two pathways seem to feed into the path integrator with similar weights.
MaMBA - a functional Moon and Mars Base Analog
NASA Astrophysics Data System (ADS)
Heinicke, C.; Foing, B.
2017-09-01
Despite impressive progress in robotic exploration of celestial bodies, robots are believed to never reach the effectiveness and efficiency of a trained human. Consequently, ESA proposes to build an international Moon Village in roughly 15 years and NASA plans for the first manned mission to Mars shortly after. One of the challenges still remaining is the need for a shelter, a habitat which allows human spacefarers to safely live and work on the surface of a celestial body. Although a number of prototype habitats has been built during the last decades and inhabited for various durations (e.g. MDRS, FMARS, HI-SEAS, M.A.R.S.), these habitats are typically equipped for studies on human factors and would not function in an extraterrestrial environment. Project MaMBA (Moon and Mars Base Analog) aims to build the first functional habitat based on the lessons learned from intermediate and long duration missions at the mentioned habitats. The habitat will serve for testing technologies like life support, power systems, and interplanetary communication. Special attention will be given to the development of the geoscience laboratory module. Crews will live and work inside the habitat to ensure its functionality.
The Use of the Nelder-Mead Method in Determining Projection Parameters for Globe Photographs
NASA Astrophysics Data System (ADS)
Gede, M.
2009-04-01
A photo of a terrestrial or celestial globe can be handled as a map. The only hard issue is its projection: the so-called Tilted Perspective Projection which, if the optical axis of the photo intersects the globe's centre, is simplified to the Vertical Near-Side Perspective Projection. When georeferencing such a photo, the exact parameters of the projections are also needed. These parameters depend on the position of the viewpoint of the camera. Several hundreds of globe photos had to be georeferenced during the Virtual Globes Museum project, which made necessary to automatize the calculation of the projection parameters. The author developed a program for this task which uses the Nelder-Mead Method in order to find the optimum parameters when a set of control points are given as input. The Nelder-Mead method is a numerical algorithm for minimizing a function in a many-dimensional space. The function in the present application is the average error of the control points calculated from the actual values of parameters. The parameters are the geographical coordinates of the projection centre, the image coordinates of the same point, the rotation of the projection, the height of the perspective point and the scale of the photo (calculated in pixels/km). The program reads the Global Mappers Ground Control Point (.GCP) file format as input and creates projection description files (.PRJ) for the same software. The initial values of the geographical coordinates of the projection centre are calculated as the average of the control points, while the other parameters are set to experimental values which represent the most common circumstances of taking a globe photograph. The algorithm runs until the change of the parameters sinks below a pre-defined limit. The minimum search can be refined by using the previous result parameter set as new initial values. This paper introduces the calculation mechanism and examples of the usage. Other possible other usages of the method are also discussed.
Guide star targeting success for the HEAO-B observatory
NASA Technical Reports Server (NTRS)
Farrenkopf, R. L.; Hoffman, D. P.
1977-01-01
The statistics associated with the successful selection and acquisition of guide stars as attitude benchmarks for use in reorientation maneuvers of the HEAO-B observatory are considered as a function of the maneuver angle, initial attitude uncertainties, and the pertinent celestial region. Success likelihoods in excess of 0.99 are predicted assuming anticipated gyro and star tracker error sources. The maneuver technique and guide star selection constraints are described in detail. The results presented are specialized numerically to the HEAO-B observatory. However, the analytical techniques developed are considered applicable to broader classes of spacecraft requiring celestial targeting.
Evaluation of optical data for Mars approach navigation.
NASA Technical Reports Server (NTRS)
Jerath, N.
1972-01-01
Investigation of several optical data types which can be obtained from science and engineering instruments normally aboard interplanetary spacecraft. TV cameras are assumed to view planets or satellites and stars for celestial references. Also, spacecraft attitude sensors are assumed to yield celestial references. The investigation of approach phases of typical Mars missions showed that the navigation accuracy was greatly enhanced with the addition of optical data to radio data. Viewing stars and the planet Mars was found most advantageous ten days before Mars encounter, and viewing Deimos or Phobos and stars was most advantageous within ten days of encounter.
The bee's map of the e-vector pattern in the sky.
Rossel, S; Wehner, R
1982-07-01
It has long been known that bees can use the pattern of polarized light in the sky as a compass cue even if they can see only a small part of the whole pattern. How they solve this problem has remained enigmatic. Here we show that the bees rely on a generalized celestial map that is used invariably throughout the day. We reconstruct this map by analyzing the navigation errors made by bees to which single e-vectors are displayed. In addition, we demonstrate how the bee's celestial map can be derived from the e-vector patterns in the sky.
NASA Astrophysics Data System (ADS)
Theodossiou, Efstratios; Manimanis, Vassilios N.; Dimitrijević, Milan S.; Mantarakis, Petros
In this article we consider the role of the three principal celestial bodies, the Earth (Gaia), the Sun (Helios) and the Moon (Selene), as well as the Sky (Ouranos) in the ancient Greek cosmogony. This is done by the analysis of antique Greek texts like Orphic Hymns and the literary remains of the writers and philosophers like Aeschylus, (Pseudo) Apollodorus, Apollonius Rhodius, Aristotle, Euripides, Hesiod, Homer, Hyginus, Nonnus, Pausanias, Pindar and Sophocles, as well as by the analysis of texts of Roman writers like Cicero, Ovid and Pliny.
NASA Technical Reports Server (NTRS)
Hill, Michael A.; Haering, Edward A., Jr.
2017-01-01
The Background Oriented Schlieren using Celestial Objects series of flights was undertaken in the spring of 2016 at National Aeronautics and Space Administration Armstrong Flight Research Center to further develop and improve a flow visualization technique which can be performed from the ground upon flying aircraft. Improved hardware and imaging techniques from previous schlieren tests were investigated. A United States Air Force T-38C and NASA B200 King Air aircraft were imaged eclipsing the sun at ranges varying from 2 to 6 nautical miles, at subsonic and supersonic speeds.
Evolution of Timescales from Astronomy to Physical Metrology
2011-07-20
2000 [7] recommended the use of the ‘non-rotating origin’ both in the Geocentric Celestial Reference System (GCRS) and the International Terrestrial...timescale defined in a geocentric reference frame with the SI second as realized on the rotating geoid as the scale unit’ [30, 31]. This meant that it was...of the new timescale for apparent geocentric ephemerides, will be 1977 January 1d.0003725 (1d 00h 00m 32.184s) exactly. (b) The unit of this timescale
Ancient Chinese Astronomy - An Overview
NASA Astrophysics Data System (ADS)
Shi, Yunli
Documentary and archaeological evidence testifies the early origin and continuous development of ancient Chinese astronomy to meet both the ideological and practical needs of a society largely based on agriculture. There was a long period when the beginning of the year, month, and season was determined by direct observation of celestial phenomena, including their alignments with respect to the local skyline. As the need for more exact study arose, new instruments for more exact observation were invented and the system of calendrical astronomy became entirely mathematized.
Application of the Deep Space Network (DSN) to the testing of general relativity
NASA Technical Reports Server (NTRS)
Anderson, J. D.; Levy, G. S.; Renzetti, N. A.
1986-01-01
The NASA Deep Space Network, a precision telecommunications and radio navigation facility, is described in detail. The first spacecraft relativity test with Mariner 6 and Mariner 7 at solar conjunction is discussed as well as more accurate tests using the Mariner 9 anchored to Mars. Consideration is also given to solar system tests of relativistic celestial mechanics and future prospects. It is noted that the NASA Mars Observer orbital mission is under development and is expected to reach Mars in 1991.
NASA Astrophysics Data System (ADS)
Testa, Italo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella
2015-12-01
In this paper, we report about the development and validation of a learning progression about the Celestial Motion big idea. Existing curricula, research studies on alternative conceptions about these phenomena, and students' answers to an open questionnaire were the starting point to develop initial learning progressions about change of seasons, solar and lunar eclipses, and Moon phases; then, a two-tier multiple choice questionnaire was designed to validate and improve them. The questionnaire was submitted to about 300 secondary students of different school levels (14 to 18 years old). Item response analysis and curve integral method were used to revise the hypothesized learning progressions. Findings support that spatial reasoning is a key cognitive factor for building an explanatory framework for the Celestial Motion big idea, but also suggest that causal reasoning based on physics mechanisms underlying the phenomena, as light flux laws or energy transfers, may significantly impact a students' understanding. As an implication of the study, we propose that the teaching of the three discussed astronomy phenomena should follow a single teaching-learning path along the following sequence: (i) emphasize from the beginning the geometrical aspects of the Sun-Moon-Earth system motion; (ii) clarify consequences of the motion of the Sun-Moon-Earth system, as the changing solar radiation flow on the surface of Earth during the revolution around the Sun; (iii) help students moving between different reference systems (Earth and space observer's perspective) to understand how Earth's rotation and revolution can change the appearance of the Sun and Moon. Instructional and methodological implications are also briefly discussed.
Book Review: Precession, Nutation, and Wobble of the Earth
NASA Astrophysics Data System (ADS)
Sterken, Christiaan; Dehant, V.; Mathews, P. M.
2016-10-01
This great book describes and explains observational and computational aspects of three apparently tiny changes in the Earth's motion and orientation, viz., precession, nutation, and wobble. The three introductory chapters of this book present fundamental definitions, elementary geodetic theory, and celestial/terrestrial reference systems - including transformations between reference frames. The next chapter on observational techniques describes the principle of accurate measurements of the orientation of the Earth's axis, as obtained from measurements of extra-galactic radio sources using Very Long Baseline Interferometry and GPS observations. Chapter 5 handles precession and nutation of the rigid Earth (i.e., a celestial body that cannot, by definition, deform) and the subsequent chapter takes deformation into consideration, viz., the effect of a centrifugal force caused by a constant-rate rotation that causes the Earth's shape and structure to become ellipsoidal. Deformations caused by external solar-system bodies are discussed in terms of deformability parameters. The next three chapters handle additional complex deviations: non-rigid Earth and more general Earth models, anelastic Earth parameters, and the effects of the fluid layers (i.e., ocean and atmosphere) on Earth rotation. Chapter 10 complements Chapter 7 with refinements that take into account diverse small effects such as the effect of a thermal conductive layer at the top of the core, Core Mantle and Inner Boundary coupling effects on nutation, electromagnetic coupling, and so-called topographic coupling. Chapter 11 covers comparison of observation and theory, and tells us that the present-date precision of the nutation theory is at the level of milliarcseconds in the time domain, and of a tenth of a microsecond in the frequency domain (with some exceptions). This chapter is followed by a 25-page chapter of definitions of equator, equinox, celestial intermediate pole and origin, stellar angle, universal time, and more. Chapter 13 treats the planet Mars, as it is also rapidly rotating, has an equatorial bulge and an obliquity that is comparable to that of the Earth. The last chapter is followed by three Appendices, viz., Rotation representation, Clairaut theory and Definitions of equinoxes. Appendix A deals with rotation vector and rotation matrix, specifically applied to small angles, such as in the case of rotation from change of pole position. Appendix B expresses the Earth's gravitational potential, and the first-order hypothesis that the Earth is in hydrostatic equilibrium, and that its uniformly-rotating surface is an equipotential corresponding to the mean sea level. Appendix C presents a set of definitions of equinoxes. This book is extremely well documented with more than 50 pages of references that are very up to date. The illustrations (exclusively line art diagrams) are all of good quality and the data tables are rich and well formatted. The language is clear and direct, but with nearly 1500 mathematical formulae, this reference work primarily appeals to the community of mathematically-schooled researchers, although anyone lecturing or teaching in celestial mechanics will see this jewel as a treasure trove to be visited on.
Dynamics and control simulation of the Spacelab Experiment Pointing Mount
NASA Technical Reports Server (NTRS)
Marsh, E. L.; Ward, R. S.
1977-01-01
Computer simulations were developed to evaluate the performance of four Experiment Pointing Mounts (EPM) being considered for Spacelab experiments in the 1980-1990 time frame. The system modeled compromises a multibody system consisting of the shuttle, a mechanical isolation device, the EPM, celestial and inertial sensors, bearings, gimbal torque motors and associated nonlinearities, the experiment payload, and control and estimator algorithms. Each mount was subjected to a common disturbance (shuttle vernier thruster firing and man push off) and command (stellar pointing or solar raster scan) input. The fundamental limitation common to all mounts was found to be sensor noise. System dynamics and hardware nonlinearities have secondary effects on pointing performance for sufficiently high bandwidth.
Sun-Earth Day: Growth and Impact of NASA E/PO Program
NASA Astrophysics Data System (ADS)
Hawkins, I.; Thieman, J.
2004-12-01
Over the past six years, the NASA Sun-Earth Connection Education Forum has sponsored and coordinated education public outreach events to highlight NASA Sun-Earth Connection research and discoveries. Our strategy involves using celestial phenomena, such as total solar eclipses and the Transit of Venus to celebrate Sun-Earth Day, a popular Education and Public Outreach international program. Sun-Earth Day also focuses attention on Equinoxes and Solstices to engage K-12 schools and the general public in space science activities, demonstrations, and interactions with space scientists. In collaboration with partners that include the Exploratorium, Maryland Science Center, NASA Connect, Sun-Earth Connection missions, Ideum, and others, we produce webcasts, other multi-media, and print resources for use by school and informal educators nation-wide. We provide training and professional development to K-12 educators, museum personnel, amateur astronomers, Girl Scout leaders, etc., so they can implement their own outreach programs taking advantage of our resources. A coordinated approach promotes multiple programs occurring each year under a common theme. We will report lessons learned from several years of experience, and strategies for growth and sustainability. We will also share our plans for "Ancient Observatories - Timeless Knowledge" our theme for Sun-Earth Day 2005, which will feature solar alignments at ancient sites that mark the equinoxes and/or solstices. The video and webcast programming will feature several sites including: Chaco Canyon (New Mexico), Hovenweep (Utah), and Chichen Itza (Mexico). Many of these sites present unique opportunities to develop authentic cultural connections to Native Americans, highlighting the importance of the Sun across the ages.
NASA Technical Reports Server (NTRS)
Siegmeth, A. J.; Purdue, R. E.; Ryan, R. E.
1973-01-01
The tracking and data system support of the launch, near-earth, and deep space phases of the Pioneer 10 mission, which sent a Pioneer spacecraft into a flyby of Jupiter that would eventually allow the spacecraft to escape the solar system is discussed. The support through the spacecraft's second trajectory correction is reported. During this period, scientific instruments aboard the spacecraft registered information relative to interplanetary particles and fields, and radiometric data generated by the network continued to improve knowledge of the celestial mechanics of the solar system. In addition to network support activity detail, network performance and special support activities are covered.
Application of microprocessors in an upper atmosphere instrument package
NASA Technical Reports Server (NTRS)
Lim, T. S.; Ehrman, C. H.; Allison, S.
1981-01-01
A servo-driven magnetometer table measuring offset from magnetic north has been developed by NASA to calculate payload azimuth required to point at a celestial target. Used as an aid to the study of gamma-ray phenomena, the high-altitude balloon-borne instrument determines a geocentric reference system, and calculates a set of pointing directions with respect to the system. Principal components include the magnetometer, stepping motor, microcomputer, and gray code shaft encoder. The single-chip microcomputer is used to control the orientation of the system, and consists of a central processing unit, program memory, data memory and input/output ports. Principal advantages include a low power requirement, consuming 6 watts, as compared to 30 watts consumed by the previous system.
Relativistic time transfer in the vicinity of the Earth and in the solar system
NASA Astrophysics Data System (ADS)
Nelson, Robert A.
2011-08-01
The algorithms for relativistic time transfer in the vicinity of the Earth and in the solar system are derived. The concepts of proper time and coordinate time are distinguished. The coordinate time elapsed during the transport of a clock and the propagation of an electromagnetic signal is analysed in three coordinate systems: an Earth-Centred Inertial (ECI) coordinate system, an Earth-Centred Earth-Fixed (ECEF) coordinate system and a barycentric coordinate system. The timescales of Geocentric Coordinate Time (TCG), Terrestrial Time (TT) and Barycentric Coordinate Time (TCB) are defined and their relationships are discussed. Some numerical examples are provided to illustrate the magnitudes of the effects.
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-01-01
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549
Verifying Galileo's discoveries: telescope-making at the Collegio Romano
NASA Astrophysics Data System (ADS)
Reeves, Eileen; van Helden, Albert
The Jesuits of the Collegio Romano in Rome, especially the mathematicians Clavius and Grienberger, were very interested in Galilei's discoveries. After they had failed to recognize with telescopes of own construction the celestial phenomena, they expressed serious doubts. But from November 1610 onward, after they had built a better telescope and had obtained from Venice another one in addition, and could verify Galilei's observations, they completely accepted them. Clavius, who stuck to the Ptolemaic system till his death in 1612, even pointed out these facts in his last edition of Sacrobosco's Sphaera. He as well as his conpatres, however, avoided any conclusions with respect to the planetary system.
Some Aspects of Artificial Bodies Stabilization and Orientation
NASA Astrophysics Data System (ADS)
Samardzija, B.; Segan, S.
2012-12-01
To increase energy resources, and thus the overall possibility of modern cosmic aircrafts, power supply was expanded by adding the (moving) wing area and antenna with complex orientation and design. It is clear that all of this, when there is a need to conduct a very accurate account of orbital elements of satellites, is a nightmare for the experts and scientists. In this paper we will give special attention to the system of stabilization and orientation of satellites, as well as to the importance of gyroscopic effects and the navigation systems of the artificial celestial bodies. Development of modified practical solutions based on knowledge and experience with gyroscopic effects is immeasurable.
Instability of meridional axial system in f( R) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Yousaf, Z.
2015-05-01
We analyze the dynamical instability of a non-static reflection axial stellar structure by taking into account the generalized Euler equation in metric f( R) gravity. Such an equation is obtained by contracting the Bianchi identities of the usual anisotropic and effective stress-energy tensors, which after using a radial perturbation technique gives a modified collapse equation. In the realm of the gravity model, we investigate instability constraints at Newtonian and post-Newtonian approximations. We find that the instability of a meridional axial self-gravitating system depends upon the static profile of the structure coefficients, while f( R) extra curvature terms induce the stability of the evolving celestial body.
Analysis of Sel-Gravitating Planetary Satellites in the Solar System
NASA Astrophysics Data System (ADS)
Yasenev, S. O.
As of today there have been more than 180 planetary satellites discovered in the Solar system, and the number of outer moons found continues to grow. Most of those natural satellites have insufficient mass and are able to retain their shape only due to the strength of the electromagnetic force. The purpose of this paper is to analyze the moons' physical properties. The analysis of planetary satellites as self-gravitating bodies, i.e. celestial bodies which rely on the weight of their own mass and resulting gravitational force to maintain their shape and tend to bring it closer to the hydrostatic equilibrium, was performed.
NASA Astrophysics Data System (ADS)
Busarev, Vladimir V.; Prokof'eva-Mikhailovskaya, Valentina V.; Bochkov, Valerii V.
2007-06-01
A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets.
Micro guidance and control technology overview
NASA Technical Reports Server (NTRS)
Kissel, Glen J.; Hadaegh, Fred Y.
1993-01-01
This paper gives an overview of micro-guidance and control technologies and in the process previews of the technology/user and systems issues presented in the guidance and control session at the workshop. We first present a discussion of the advantages of using micro-guidance and control components and then detail six micro-guidance and control thrusts that could have a revolutionary impact on space missions and systems. Specific technologies emerging in the micro-guidance and control field will be examined. These technologies fall into two broad categories: micro-attitude determination (inertial and celestial) and micro-actuation, control and sensing. Finally, the scope of the workshop's guidance and control panel are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.
2007-12-17
We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and Kuiper Belt strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. If detected, the {gamma}-ray emission by the Mainmore » Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic, especially near the Galactic center and for signals at high Galactic latitudes, such as the extragalactic {gamma}-ray emission. Additionally, it can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions, and the mass spectrum of small bodies in the Main Belt and Kuiper Belt. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center.« less
Accurate spin axes and solar system dynamics: Climatic variations for the Earth and Mars
NASA Astrophysics Data System (ADS)
Edvardsson, S.; Karlsson, K. G.; Engholm, M.
2002-03-01
Celestial mechanical simulations from a purely classical point of view of the solar system, including our Moon and the Mars moons - Phobos and Deimos - are carried out for 2 millions of years before present. Within the classical approximation, the results are derived at a very high level of accuracy. Effects from general relativity for a number of variables are investigated and found to be small. For climatic studies of about 1 Myr, general relativity can safely be ignored. Three different and independent integration schemes are used in order to exclude numerical anomalies. The converged results from all methods are found to be in complete agreement. For verification, a number of properties such as spin axis precession, nutation, and orbit inclination for Earth and Mars have been calculated. Times and positions of equinoxes and solstices are continously monitored. As also observed earlier, the obliquity of the Earth is stabilized by the Moon. On the other hand, the obliquity of Mars shows dramatic variations. Climatic influences due to celestial variables for the Earth and Mars are studied. Instead of using mean insolation as in the usual applications of Milankovitch theory, the present approach focuses on the instantaneous solar radiation power (insolation) at each summer solstice. Solar radiation power is compared to the derivative of the icevolume and these quantities are found to be in excellent agreement. Orbital precessions for the inner planets are studied as well. In the case of Mercury, it is investigated in detail.
NASA Technical Reports Server (NTRS)
Thompson, J. F.; Warsi, Z. U. A.; Mastin, C. W.
1982-01-01
A comprehensive review of methods of numerically generating curvilinear coordinate systems with coordinate lines coincident with all boundary segments is given. Some general mathematical framework and error analysis common to such coordinate systems is also included. The general categories of generating systems are those based on conformal mapping, orthogonal systems, nearly orthogonal systems, systems produced as the solution of elliptic and hyperbolic partial differential equations, and systems generated algebraically by interpolation among the boundaries. Also covered are the control of coordinate line spacing by functions embedded in the partial differential operators of the generating system and by subsequent stretching transformation. Dynamically adaptive coordinate systems, coupled with the physical solution, and time-dependent systems that follow moving boundaries are treated. References reporting experience using such coordinate systems are reviewed as well as those covering the system development.
A novel method of robot location using RFID and stereo vision
NASA Astrophysics Data System (ADS)
Chen, Diansheng; Zhang, Guanxin; Li, Zhen
2012-04-01
This paper proposed a new global localization method for mobile robot based on RFID (Radio Frequency Identification Devices) and stereo vision, which makes the robot obtain global coordinates with good accuracy when quickly adapting to unfamiliar and new environment. This method uses RFID tags as artificial landmarks, the 3D coordinate of the tags under the global coordinate system is written in the IC memory. The robot can read it through RFID reader; meanwhile, using stereo vision, the 3D coordinate of the tags under the robot coordinate system is measured. Combined with the robot's attitude coordinate system transformation matrix from the pose measuring system, the translation of the robot coordinate system to the global coordinate system is obtained, which is also the coordinate of the robot's current location under the global coordinate system. The average error of our method is 0.11m in experience conducted in a 7m×7m lobby, the result is much more accurate than other location method.
NASA Astrophysics Data System (ADS)
Stanley, Matthew
2010-07-01
The development of astronomical spectroscopy allowed amazing achievements in investigating the composition and motion of celestial bodies. But even beyond specific measurements and results, the fruitfulness and practice of spectroscopy had important ramifications on a more abstract level. This paper will discuss ways in which spectroscopy inspired or boosted new theories of the atom, life, and the Universe; redrew the boundaries among scientific disciplines; demonstrated the unity of terrestrial and celestial physical laws; changed what counted as scientific knowledge; and even revealed divine mysteries. Scientists and science writers from the first half-century of astronomical spectroscopy will be discussed, including James Clerk Maxwell, William Crookes, John Tyndall, Agnes Clerke, William Huggins and Norman Lockyer.
NASA Astrophysics Data System (ADS)
Stanley, Matthew
2010-01-01
The development of astronomical spectroscopy allowed amazing achievements in investigating the composition and motion of celestial bodies. But even beyond specific measurements and results, the fruitfulness and practice of spectroscopy had important ramifications on a more abstract level. This paper will discuss ways in which spectroscopy inspired or boosted new theories of the atom, life, and the universe; redrew the boundaries among scientific disciplines; demonstrated the unity of terrestrial and celestial physical laws; changed what counted as scientific knowledge; and even revealed divine mysteries. Scientists and science writers from the first half-century of astronomical spectroscopy will be discussed, including James Clerk Maxwell, William Thomson (Lord Kelvin), John Tyndall, Agnes Clerke, William Huggins, and Norman Lockyer.
Refraction effects of atmosphere on geodetic measurements to celestial bodies
NASA Technical Reports Server (NTRS)
Joshi, C. S.
1973-01-01
The problem is considered of obtaining accurate values of refraction corrections for geodetic measurements of celestial bodies. The basic principles of optics governing the phenomenon of refraction are defined, and differential equations are derived for the refraction corrections. The corrections fall into two main categories: (1) refraction effects due to change in the direction of propagation, and (2) refraction effects mainly due to change in the velocity of propagation. The various assumptions made by earlier investigators are reviewed along with the basic principles of improved models designed by investigators of the twentieth century. The accuracy problem for various quantities is discussed, and the conclusions and recommendations are summarized.
The Celestial Bodies in Traditional Armenian Nuptial Songs of Praise
NASA Astrophysics Data System (ADS)
Tigranyan, Marianna
2016-12-01
The universe and its structure have occupied people's minds since the beginning of time. The myths and legends of the ancient cultures are replete with tales about the myriad celestial bodies, planets and stars. Back then, the Ancient Sumerians were phenomenally successful in astronomy; their extensive knowledge is effectively used by astronomers today. The deities were featured as heavenly bodies and were eulogized and revered by the peoples of the Ancient World. At Armenian wedding ceremonies, the groom - traditionally the Crown wearer - was often likened to the Sun, and the bride to the Moon, or sometimes Venus. The newly-married couple was glorified by delightful songs of praise.
Advanced X-ray Astrophysics Facility (AXAF) science instruments
NASA Technical Reports Server (NTRS)
Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.
1991-01-01
The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.
How Galileo and Kepler Countered Aristotle's Cosmological Errors
NASA Astrophysics Data System (ADS)
Gingerich, O.
2009-08-01
Aristotle made two major common sense assumptions that ultimately had to be refuted to open the way to modern science. One was the dichotomy between celestial and terrestrial. The other was the separation of astronomy from physics. Galileo, particularly with his examination of the moon in the Sidereus nuncius, was a pioneer in destroying the first assumption, while Kepler, whose Astronomia nova was subtitled ``based on causes, or celestial physics,'' broke the stranglehold of the second. The importance of these fundamental contributions toward establishing the nature of modern science, which paved the way for Isaac Newton, is often overshadowed by their more specific contributions in optics or mechanics.
NASA Technical Reports Server (NTRS)
Lampton, M.; Cash, W.; Malina, R. F.; Bowyer, S.
1977-01-01
The design and performance of grazing incidence telescopes for celestial extreme ultraviolet (EUV) astronomy are described. The telescopes basically consist of a star tracker, collimator, grazing incidence mirror, vacuum box lid, vacuum housing, filters, a ranicon detector, an electronics box, and an aspect camera. For the survey mirror a Wolter-Schwarzschild type II configuration was selected. Diamond-turning was used for mirror fabrication, a technique which machines surfaces to the order of 10 microns over the required dimensions. The design of the EUV spectrometer is discussed with particular reference to the optics for a primarily spectroscopic application and the fabrication of the f/10 optics.
NASA Astrophysics Data System (ADS)
Wang, Xin; Gao, Jun; Fan, Zhiguo; Roberts, Nicholas W.
2016-06-01
We present a computationally inexpensive analytical model for simulating celestial polarization patterns in variable conditions. We combine both the singularity theory of Berry et al (2004 New J. Phys. 6 162) and the intensity model of Perez et al (1993 Sol. Energy 50 235-245) such that our single model describes three key sets of data: (1) the overhead distribution of the degree of polarization as well as the existence of neutral points in the sky; (2) the change in sky polarization as a function of the turbidity of the atmosphere; and (3) sky polarization patterns as a function of wavelength, calculated in this work from the ultra-violet to the near infra-red. To verify the performance of our model we generate accurate reference data using a numerical radiative transfer model and statistical comparisons between these two methods demonstrate no significant difference in almost all situations. The development of our analytical model provides a novel method for efficiently calculating the overhead skylight polarization pattern. This provides a new tool of particular relevance for our understanding of animals that use the celestial polarization pattern as a source of visual information.
Exogeoconservation: Protecting geological heritage on celestial bodies
NASA Astrophysics Data System (ADS)
Matthews, Jack J.; McMahon, Sean
2018-08-01
Geoconservation is an increasingly widely adopted theoretical, practical and administrative approach to the protection of geological and geomorphological features of special scientific, functional, historic, cultural, aesthetic, or ecological value. Protected sites on Earth include natural rocky outcrops, shorelines, river banks, and landscapes, as well as human-made structures such as road cuts and quarries exposing geological phenomena. However, geoconservation has rarely been discussed in the context of other rocky and icy planets, rings, moons, dwarf planets, asteroids, or comets, which present extraordinarily diverse, beautiful, and culturally, historically and scientifically important geological phenomena. Here we propose to adapt geoconservation strategies for protecting the geological heritage of these celestial bodies, and introduce the term 'exogeoconservation' and other associated terms for this purpose. We argue that exogeoconservation is acutely necessary for the scientific exploration and responsible stewardship of celestial bodies, and suggest how this might be achieved and managed by means of international protocols. We stress that such protocols must be sensitive to the needs of scientific, industrial, and other human activities, and not unduly prohibitive. However, with space exploration and exploitation likely to accelerate in coming decades, it is increasingly important that an internationally agreed, holistic framework be developed for the protection of our common 'exogeoheritage'.
Harbour seals (Phoca vitulina) can steer by the stars.
Mauck, Björn; Gläser, Nele; Schlosser, Wolfhard; Dehnhardt, Guido
2008-10-01
Offshore orientation in marine mammals is still a mystery. For visual orientation during night-time foraging and travelling in the open seas, seals cannot rely on distant terrestrial landmarks, and thus might use celestial cues as repeatedly shown for nocturnally migrating birds. Although seals detect enough stars to probably allow for astronavigation, it was unclear whether they can orient by the night sky. The widely accepted cognitive mechanism for bird night-time orientation by celestial cues is a time-independent star compass with learned geometrical star configurations used to pinpoint north as the rotational centre of the starry sky while there is no conclusive evidence for a time-compensated star compass or true star navigation. Here, we present results for two harbour seals orienting in a custom made swimming planetarium. Both seals learned to highly accurately identify a lodestar out of a pseudo-randomly oriented, realistic projection of the northern hemisphere night sky. Providing the first evidence for star orientation capability in a marine mammal, our seals' outstanding directional precision would allow them to steer by following lodestars of learned star courses, a celestial orientation mechanism that has been known to be used by Polynesian navigators but has not been considered for animals yet.
Dung beetles use the Milky Way for orientation.
Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J
2013-02-18
When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Need for Medical Geology in Space Exploration: Implications for the Journey to Mars and Beyond
NASA Technical Reports Server (NTRS)
Harrington, A. D.; Zeigler, R. A.; McCubbin, F. M.
2018-01-01
The previous manned missions to the Moon represent milestones in human ingenuity, perseverance, and intellectual curiosity. They also highlight a major hazard for future human exploration of the Moon and beyond: surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust "storm" generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness". It was further reported that the allergic response to the dust worsened with each exposure. The lower gravity environment exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. However, even then the returned samples could also put the Curators, technicians, and scientists at risk during processing and examination.
Enhancing communication by using the Coordinated Care Classification System.
O'Neal, P V; Kozeny, D K; Garland, P P; Gaunt, S M; Gordon, S C
1998-07-01
Because of the changes in our healthcare system, some clinical nurse specialists (CNSs) are having to expand their traditional roles of clinician, educator, consultant, leader, and researcher to include case management activities. The CNSs at Promina Gwinnett Health System in Lawrenceville, Georgia, have combined CNS and case manager activities and have adopted the title "CNS/Outcomes Coordinator." The CNS/Outcomes Coordinator is responsible for coordinating patient care, promoting team collaboration, and facilitating communication. To inform the healthcare team of the CNS/Outcomes Coordinator's patient responsibilities, the CNS/Outcomes Coordinators developed a Coordinated Care Classification System. This article describes how coordinating patient care, promoting team collaboration, and facilitating communication can be enhanced by the use of a classification system.
Precession-nutation procedures consistent with IAU 2006 resolutions
NASA Astrophysics Data System (ADS)
Wallace, P. T.; Capitaine, N.
2006-12-01
Context: .The 2006 IAU General Assembly has adopted the P03 model of Capitaine et al. (2003a) recommended by the WG on precession and the ecliptic (Hilton et al. 2006) to replace the IAU 2000 model, which comprised the Lieske et al. (1977) model with adjusted rates. Practical implementations of this new "IAU 2006" model are therefore required, involving choices of procedures and algorithms. Aims: .The purpose of this paper is to recommend IAU 2006 based precession-nutation computing procedures, suitable for different classes of application and achieving high standards of consistency. Methods: .We discuss IAU 2006 based procedures and algorithms for generating the rotation matrices that transform celestial to terrestrial coordinates, taking into account frame bias (B), P03 precession (P), P03-adjusted IAU 2000A nutation (N) and Earth rotation. The NPB portion can refer either to the equinox or to the celestial intermediate origin (CIO), requiring either the Greenwich sidereal time (GST) or the Earth rotation angle (ERA) as the measure of Earth rotation. Where GST is used, it is derived from ERA and the equation of the origins (EO) rather than through an explicit formula as in the past, and the EO itself is derived from the CIO locator. Results: .We provide precession-nutation procedures for two different classes of full-accuracy application, namely (i) the construction of algorithm collections such as the Standards Of Fundamental Astronomy (SOFA) library and (ii) IERS Conventions, and in addition some concise procedures for applications where the highest accuracy is not a requirement. The appendix contains a fully worked numerical example, to aid implementors and to illustrate the consistency of the two full-accuracy procedures which, for the test date, agree to better than 1 μas. Conclusions: .The paper recommends, for case (i), procedures based on angles to represent the PB and N components and, for case (ii), procedures based on series for the CIP X,Y. The two methods are of similar efficiency, and both support equinox based as well as CIO based applications.
The Galileoscope: From IYA 2009 to IYL 2015 & Beyond
NASA Astrophysics Data System (ADS)
Tresch Fienberg, Richard; Arion, Douglas N.; Pompea, Stephen M.; Sparks, Robert T.
2015-08-01
The Galileoscope (http://galileoscope.org) was originally developed as a cornerstone project of the International Year of Astronomy 2009 to solve a long-standing problem: the lack of an optically excellent but inexpensive telescope kit suitable for both optics education and celestial observation. Launched during the global economic crisis of 2008-09, the Galileoscope had a difficult birth. Over the last seven years the project has suffered through funding shortages, trademark disputes, legal challenges, and the dissolution of our manufacturing partner’s business. Nevertheless, it has survived ― even thrived!Remarkably for an effort funded and managed by volunteers, more than 235,000 Galileoscopes have been distributed to teachers, students, and astronomy enthusiasts in more than 100 countries to date. Nearly 35,000 have been distributed through our Telescopes4Teachers program, through which individual and institutional donors contributed kits at little or no cost to classroom teachers. We continue to seek sponsors to underwrite the distribution of large numbers of Galileoscopes and tripods to schools and to sponsor workshops for educators.The Galileoscope has been designated part of the International Year of Light’s “Cosmic Light” cornerstone project (http://www.light2015.org/Home/CosmicLight.html), coordinated by the International Astronomical Union. Emphasizing both optics and astronomy, the Galileoscope supports three of IYL 2015’s main themes: Science of Light, Light Technology, and Light in Nature. As students assemble the kit, they explore fundamental optical concepts such as how lenses form images. Then, with their completed 50-mm (2-inch) diameter, 25- to 50-power achromatic refractor — which attaches to any standard photo tripod — they enjoy crisp views of the same celestial objects that Galileo himself observed. The kit is augmented with free, standards-based optics-education and observing activities, many of them adapted from the US National Optical Astronomy Observatory’s Hands-On Optics program. These well-tested activities can be used by classroom and after-school teachers as well as informal educators to provide a rigorous approach to teaching science and the process of science.
Anisotropy in the all-sky distribution of galaxy morphological types
NASA Astrophysics Data System (ADS)
Javanmardi, Behnam; Kroupa, Pavel
2017-01-01
We present the first study of the isotropy of the all-sky distribution of morphological types of galaxies in the Local Universe out to around 200 Mpc using more than 60 000 galaxies from the HyperLeda database. We use a hemispherical comparison method where the sky is divided into two opposite hemispheres and the abundance distribution of the morphological types, T, are compared using the Kolmogorov-Smirnov (KS) test. By pointing the axis of symmetry of the hemisphere pairs to different directions in the sky, the KS statistic as a function of sky coordinates is obtained. For three samples of galaxies within around 100, 150, and 200 Mpc, we find a significant hemispherical asymmetry with a vanishingly small chance of occurring in an isotropic distribution. Astonishingly, regardless of this extreme significance, the observed hemispherical asymmetry for the three distance ranges is aligned with the celestial equator at the 97.1-99.8% confidence level and with the ecliptic at 94.6-97.6%, estimated using a Monte Carlo analysis. Shifting T values randomly within their uncertainties has a negligible effect on this result. When a magnitude limit of B ≤ 15 mag is applied to these samples, the galaxies within 100 Mpc show no significant anisotropy after randomization of T. However, the direction of the asymmetry in the samples within 150 and 200 Mpc and the same magnitude limit is found to be within an angular separation of 32 degrees from (l,b) = (123.7,24.6) with a 97.2% and 99.9% confidence level, respectively. This direction is only 2.6 degrees away from the celestial north pole. Unless the Local Universe has a significant anisotropic distribution of galaxy morphologies aligned with the orientation or the orbit of the Earth (which would be a challenge for the Cosmological Principle), our results show that there seems to be a systematic bias in the classification of galaxy morphological types between the data from the northern and the southern equatorial sky. Further studies are absolutely needed to find the exact source of this anisotropy.
Sjöberg, Sissel; Muheim, Rachel
2016-01-01
Migratory birds use multiple compass systems for orientation, including a magnetic, star and sun/polarized light compass. To keep these compasses in register, birds have to regularly update them with respect to a common reference. However, cue-conflict studies have revealed contradictory results on the compass hierarchy, favoring either celestial or magnetic compass cues as the primary calibration reference. Both the geomagnetic field and polarized light cues present at sunrise and sunset have been shown to play a role in compass cue integration, and evidence suggests that polarized light cues at sunrise and sunset may provide the primary calibration reference for the other compass systems. We tested whether migratory garden warblers recalibrated their compasses when they were exposed to the natural celestial cues at sunset in a shifted magnetic field, which are conditions that have been shown to be necessary for the use of a compass reference based on polarized light cues. We released the birds on the same evening under a starry sky and followed them by radio tracking. We found no evidence of compass recalibration, even though the birds had a full view of polarized light cues near the horizon at sunset during the cue-conflict exposure. Based on a meta-analysis of the available literature, we propose an extended unifying theory on compass cue hierarchy used by migratory birds to calibrate the different compasses. According to this scheme, birds recalibrate their magnetic compass by sunrise/sunset polarized light cues, provided they have access to the vertically aligned band of maximum polarization near the horizon and a view of landmarks. Once the stars appear in the sky, the birds then recalibrate the star compass with respect of the recalibrated magnetic compass. If sunrise and sunset information can be viewed from the same location, the birds average the information to get a true geographic reference. If polarized light information is not available near the horizon at sunrise or sunset, the birds temporarily transfer the previously calibrated magnetic compass information to the available celestial compasses. We conclude that the type of cue-conflict manipulation and the availability of stars can explain the discrepancies between studies.
Sjöberg, Sissel; Muheim, Rachel
2016-01-01
Migratory birds use multiple compass systems for orientation, including a magnetic, star and sun/polarized light compass. To keep these compasses in register, birds have to regularly update them with respect to a common reference. However, cue-conflict studies have revealed contradictory results on the compass hierarchy, favoring either celestial or magnetic compass cues as the primary calibration reference. Both the geomagnetic field and polarized light cues present at sunrise and sunset have been shown to play a role in compass cue integration, and evidence suggests that polarized light cues at sunrise and sunset may provide the primary calibration reference for the other compass systems. We tested whether migratory garden warblers recalibrated their compasses when they were exposed to the natural celestial cues at sunset in a shifted magnetic field, which are conditions that have been shown to be necessary for the use of a compass reference based on polarized light cues. We released the birds on the same evening under a starry sky and followed them by radio tracking. We found no evidence of compass recalibration, even though the birds had a full view of polarized light cues near the horizon at sunset during the cue-conflict exposure. Based on a meta-analysis of the available literature, we propose an extended unifying theory on compass cue hierarchy used by migratory birds to calibrate the different compasses. According to this scheme, birds recalibrate their magnetic compass by sunrise/sunset polarized light cues, provided they have access to the vertically aligned band of maximum polarization near the horizon and a view of landmarks. Once the stars appear in the sky, the birds then recalibrate the star compass with respect of the recalibrated magnetic compass. If sunrise and sunset information can be viewed from the same location, the birds average the information to get a true geographic reference. If polarized light information is not available near the horizon at sunrise or sunset, the birds temporarily transfer the previously calibrated magnetic compass information to the available celestial compasses. We conclude that the type of cue-conflict manipulation and the availability of stars can explain the discrepancies between studies. PMID:26941631
Analysis of Fractal Parameters of the Lunar Surface
NASA Astrophysics Data System (ADS)
Nefedyev, Yuri; Petrova, Natalia; Andreev, Alexey; Demina, Natalya; Demin, Sergey
2016-07-01
Analysis of complex selenographic systems is a complicatedissue. This fully applies to the lunar topography. In this report a new method of the comparative reliable estimation of thelunar mapsdata is represented. The estimation was made by the comparison of high-altitude lines using the fractal analysis. The influence of the lunar macrofigure variances were determined by the method of fractal dimensions comparison. It should be noted the investigations of the lunar figure and rotation implystudy itsmarginal zone charts constructionwith various methods and this is traditionally carried out at the Engelhardt Astronomical Observatory (EAO). In particular this research is important for lunar occultations reductions and on the basis of that it is possible to solve a number of astrometric and astrophysical problems. By now the highly accurate theories of the lunar movement have been obtained and stars coordinates have been determined on the basis of space measurements with the several multiarcseconds accuracy but there are factors highly influencingon the accuracy of the results of these observations. They are: exactitude of the occultation moment recording, errors of the stars coordinates, accuracy of lunar ephemeris positions and unreliability of lunar marginal zone charts. Therefore difficulties arise during the reduction process of lunar occultations by the reason of irregularities of lunar limb. Existing charts of the lunar marginal zone have some defects. The researching of lunar marginal zone maps is very difficult. First of all, it concernsthe reliability of maps data. To resolve this task thecomparison method in which the structure of the high-altitude lines of data appropriated with identical lunar coordinates can used. However, such comparison requires a lot of calculations. In addition there is a large number of the marginal zone maps constructed by different methods and the accuracy of their data causes many questions. In other words, the lunar relief has a very complex structure and traditional research methods are unacceptable. After considering this, it was decided to use the method of fractal dimensionsd comparisons. For this purpose lunar marginal zone maps made in the celestial coordinate system (maps N1) and oneconstructed on the basis of data obtained from heliometric observations with taking into account thefirst model of the figure of the Moon given by Jakovkin (maps N2) were taken. The charts contain isohypses of the lunar marginal zone extending over 10" on both sides of the mean position of the limb line. In order to find thevariations of irregularities for thelimb points above the mean level of lunar surface werecomputed the position angles of this pointsP (reckoned from the centre of the Moon's disc) and D coordinates. This coordinates introduced by Hayn: P is the selenocentric longitude reckoned along the mean limb from the north pole of the Moon, like the position angles, and D is the latitude counted positively for that part of the disc that is nearer to the observer. Thus the data of our studies was obtained by identical types. Then the first, segments of a lunar marginal zone for every 45" on P were considered. For each segment profile of the surface for a constant D were constructed with a step of 2". Thus 80 profiles were obtained. Secondly the fractal dimensions d for each considered structure was defined. Third the obtained values d werecompared with the othersmaps considered in this work. The obtained results show some well agreement between the mean fractal dimensions for maps N1 and N2. Thus it can be concluded that the using of fractal method for lunar maps analysis to determine the accuracy of the presented to themdata give good results. The work was supported by grants RFBR 15-02-01638-a, 16-32-60071-mol-dk-a and 16-02-00496-a.
Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning
NASA Astrophysics Data System (ADS)
Bradley, Ben K.
Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and orbit propagation, yielding savings in computation time and memory. Orbit propagation and position transformation simulations are analyzed to generate a complete set of recommendations for performing the ITRS/GCRS transformation for a wide range of needs, encompassing real-time on-board satellite operations and precise post-processing applications. In addition, a complete derivation of the ITRS/GCRS frame transformation time-derivative is detailed for use in velocity transformations between the GCRS and ITRS and is applied to orbit propagation in the rotating ITRS. EOP interpolation methods and ocean tide corrections are shown to impact the ITRS/GCRS transformation accuracy at the level of 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. The precession-nutation and EOP simplifications yield maximum propagation errors of approximately 2 cm and 1 m after 15 minutes and 6 hours in low-Earth orbit (LEO), respectively, while reducing computation time and memory usage. Finally, for orbit propagation in the ITRS, a simplified scheme is demonstrated that yields propagation errors under 5 cm after 15 minutes in LEO. This approach is beneficial for orbit determination based on GPS measurements. We conclude with a summary of recommendations on EOP usage and bias-precession-nutation implementations for achieving a wide range of transformation and propagation accuracies at several altitudes. This comprehensive set of recommendations allows satellite operators, astrodynamicists, and scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity.
Dramatic orientation shift of white-crowned sparrows displaced across longitudes in the high Arctic.
Akesson, Susanne; Morin, Jens; Muheim, Rachel; Ottosson, Ulf
2005-09-06
Advanced spatial-learning adaptations have been shown for migratory songbirds, but it is not well known how the simple genetic program encoding migratory distance and direction in young birds translates to a navigation mechanism used by adults. A number of convenient cues are available to define latitude on the basis of geomagnetic and celestial information, but very few are useful to defining longitude. To investigate the effects of displacements across longitudes on orientation, we recorded orientation of adult and juvenile migratory white-crowned sparrows, Zonotrichia leucophrys gambelii, after passive longitudinal displacements, by ship, of 266-2862 km across high-arctic North America. After eastward displacement to the magnetic North Pole and then across the 0 degrees declination line, adults and juveniles abruptly shifted their orientation from the migratory direction to a direction that would lead back to the breeding area or to the normal migratory route, suggesting that the birds began compensating for the displacement by using geomagnetic cues alone or together with solar cues. In contrast to predictions by a simple genetic migration program, our experiments suggest that both adults and juveniles possess a navigation system based on a combination of celestial and geomagnetic information, possibly declination, to correct for eastward longitudinal displacements.
Upgrading Our EPO Through Focused Astronomy Education Research
NASA Astrophysics Data System (ADS)
Slater, Stephanie J.; Dye, A.
2012-01-01
Not so long ago, astronomers visiting schools in Hawaii tried to build awareness among school children and teachers about how stars move across the sky, the nature of planets orbiting our sun, and the physical processes governing stars and galaxies. While these efforts were undertaken with all good intentions, they were often based on our collective understanding of how Mainland children come to know astronomy topics, and with a Western worldview. Research observations of Hawaiian elementary school children indicate that Hawaiian children understand far more about the skies than could have been predicted from the behavior of Mainland children, or from the body of literature on children's understanding of astronomy. Analysis of elementary students’ responses to a kumu's, or teacher's questions relating to the celestial sphere indicate that these students posses a deep knowledge of the night sky and celestial motions. This knowledge base is fluent across two cultural systems of constellations, and is predictive. In an era of curriculum development based upon learning progressions, it appears that Native Hawaiian students possess unexpected knowledge that is well poised to interfere with conventional educational and public outreach approaches if not taken into account. Further, these findings suggest that further inquiry must be made into the astronomical thinking of minority populations prior to the unilateral implementation of national science education standards.
Proposal MaMBA - Moon and Mars Base Analog
NASA Astrophysics Data System (ADS)
Heinicke, Christiane; Foing, Bernard
2017-04-01
Despite impressive progress in robotic exploration of celestial bodies, robots are believed to never reach the effectiveness and efficiency of a trained human. Consequently, ESA proposes to build an international Moon Village in roughly 15 years and NASA plans for the first manned mission to Mars shortly after. One of the challenges still remaining is the need for a shelter, a habitat which allows human spacefarers to safely live and work on the surface of a celestial body. Although various prototype habitats have been built and inhabited during the last decade, they typically share two fundamental flaws: First, they usually consist of a single space, which may become uninhabitable after depressurization due to just one single catastrophic event. Second, none of the habitats provides shielding against radiation, one of the major health concerns for spacefaring crews. Project MaMBA will address these two problems at the root and build an underground habitat comprised of five connected, but independent modules. The habitat will serve for testing technologies like life support, power systems, and interplanetary communication. Special attention will be given to the development of the geoscience laboratory module. In addition to the technological aspects, the envisioned habitat will serve as a unique test ground for studies on the effects of underground habitation on a crew.
Elbeze, Alexandre Chaloum
2013-01-01
Recent revised estimates of the Earth's surface heat flux are in the order of 47 TW. Given that its internal radiogenic (mantle and crust) heat production is estimated to be around 20 TW, the Earth has a thermal deficit of around 27 TW. This article will try to show that the action of the gravitational field of the Sun on the rotating masses of the Earth is probably the source of another heat production in order of 54TW, which would satisfy the thermal balance of our celestial body and probably explain the reduced heat flow Qo. We reach this conclusion within the framework of gravitation implied by Einstein's special and general relativity theory (SR, GR). Our results show that it might possible, in principle, to calculate the heat generated by the action of the gravitational field of celestial bodies on the Earth and planets of the Solar System (a phenomenon that is different to that of the gravitational tidal effect from the Sun and the Moon). This result should help physicists to improve and develop new models of the Earth's heat balance, and suggests that contrary to cooling, the Earth is in a phase of thermal balance, or even reheating.
RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211
NASA Astrophysics Data System (ADS)
Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.
2004-10-01
We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.
System definition phase and acquisition phase project plan for Small Astronomy Satellite SAS-D
NASA Technical Reports Server (NTRS)
1971-01-01
The objective of the SAS-D project is to conduct spectral distribution studies of celestial ultraviolet sources using an Explorer-class spacecraft launched by a Delta vehicle into a geosynchronous orbit in the last half of 1975. The telescope system is intended for use by guest astronomers for a major portion of the total observing time. The concept of the overall system, designed to resemble functionally the operation of a ground-based observatory, should maximize the usefulness of the instrument to the astronomical community by limiting the amount of special instruction needed to use the spaceborne telescope. The SAS-D mission will obtain information on what stars, nebulae, and galaxies are and how they develop.
JPL VLBI Analysis Center Report for 2012
NASA Technical Reports Server (NTRS)
Jacobs, Chris
2013-01-01
This report describes the activities of the JPL VLBI Analysis Center for the year 2012. The highlight of the year was the successful MSL rover Mars landing, which was supported by VLBI-based navigation using our combined spacecraft, celestial reference frame, terrestrial reference frame, earth orientation, and planetary ephemeris VLBI systems. We also supported several other missions with VLBI navigation measurements. A combined NASA-ESA network was demonstrated with first Ka-band fringes to ESA's Malargue, Argentina 35 m. We achieved first fringes with our new digital back end and Mark 5C recorders.
Source Detection with Bayesian Inference on ROSAT All-Sky Survey Data Sample
NASA Astrophysics Data System (ADS)
Guglielmetti, F.; Voges, W.; Fischer, R.; Boese, G.; Dose, V.
2004-07-01
We employ Bayesian inference for the joint estimation of sources and background on ROSAT All-Sky Survey (RASS) data. The probabilistic method allows for detection improvement of faint extended celestial sources compared to the Standard Analysis Software System (SASS). Background maps were estimated in a single step together with the detection of sources without pixel censoring. Consistent uncertainties of background and sources are provided. The source probability is evaluated for single pixels as well as for pixel domains to enhance source detection of weak and extended sources.
NASA Astrophysics Data System (ADS)
Pârv, Bazil
This paper deals with the Everhart numerical integration method, a well-known method in astronomical research. This method, a single-step one, is widely used for numerical integration of motion equation of celestial bodies. For an integration step, this method uses unequally-spaced substeps, defined by the roots of the so-called generating polynomial of Everhart's method. For this polynomial, this paper proposes and proves new recurrence formulae. The Maple computer algebra system was used to find and prove these formulae. Again, Maple seems to be well suited and easy to use in mathematical research.
2007-09-01
KENNEDY SPACE CENTER, FLA. -- This logo represents the mission of the Dawn spacecraft. During its nearly decade-long mission, Dawn will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. The mission hopes to unlock some of the mysteries of planetary formation, including the building blocks and the processes leading to their state today. The Dawn mission is managed by the Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., for NASA's Science Mission Directorate in Washington, D.C.
IPS guidestar selection for stellar mode (ASTRO)
NASA Technical Reports Server (NTRS)
Mullins, Larry; Wooten, Lewis
1988-01-01
This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.
Impact and Estimation of Balance Coordinate System Rotations and Translations in Wind-Tunnel Testing
NASA Technical Reports Server (NTRS)
Toro, Kenneth G.; Parker, Peter A.
2017-01-01
Discrepancies between the model and balance coordinate systems lead to biases in the aerodynamic measurements during wind-tunnel testing. The reference coordinate system relative to the calibration coordinate system at which the forces and moments are resolved is crucial to the overall accuracy of force measurements. This paper discusses sources of discrepancies and estimates of coordinate system rotation and translation due to machining and assembly differences. A methodology for numerically estimating the coordinate system biases will be discussed and developed. Two case studies are presented using this methodology to estimate the model alignment. Examples span from angle measurement system shifts on the calibration system to discrepancies in actual wind-tunnel data. The results from these case-studies will help aerodynamic researchers and force balance engineers to better the understand and identify potential differences in calibration systems due to coordinate system rotation and translation.
NASA Astrophysics Data System (ADS)
Newcomb, Simon
2011-10-01
Preface; Part I. The System of the World Historically Developed: Introduction; 1. The ancient astronomy, or the apparent motions of the heavenly bodies; 2. The Copernican system, or the true motions of the heavenly bodies; 3. Universal gravitation; Part II. Practical Astronomy: Introductory remarks; 1. The telescope; 2. Application of the telescope to celestial measurements; 3. Measuring distances in the heavens; 4. The motion of light; 5. The spectroscope; Part III. The Solar System: 1. General structure of the solar system; 2. The sun; 3. The inner group of planets; 4. The outer group of planets; 5. Comets and meteors; Part IV. The Stellar Universe: 1. The stars as they are seen; 2. The structure of the universe; 3. The cosmogony; Addendum to Part III chapter 2; Appendix; Index; Addendum II, the satellites of Mars; Explanation of the star maps.
An intelligent ground operator support system
NASA Technical Reports Server (NTRS)
Goerlach, Thomas; Ohlendorf, Gerhard; Plassmeier, Frank; Bruege, Uwe
1994-01-01
This paper presents first results of the project 'Technologien fuer die intelligente Kontrolle von Raumfahrzeugen' (TIKON). The TIKON objective was the demonstration of feasibility and profit of the application of artificial intelligence in the space business. For that purpose a prototype system has been developed and implemented for the operation support of the Roentgen Satellite (ROSAT), a scientific spacecraft designed to perform the first all-sky survey with a high-resolution X-ray telescope and to investigate the emission of specific celestial sources. The prototype integrates a scheduler and a diagnosis tool both based on artificial intelligence techniques. The user interface is menu driven and provides synoptic displays for the visualization of the system status. The prototype has been used and tested in parallel to an already existing operational system.
D Coordinate Transformation Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Konakoglu, B.; Cakır, L.; Gökalp, E.
2016-10-01
Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.
NASA Astrophysics Data System (ADS)
Baturin, A. P.
2010-12-01
The results of the experimental estimations on cluster "Skif Cyberia" of Everhart's numerical integration accuracy and rapidness are presented. The integration has been carried out for celestial bodies' equations of motion such as N-body problem equations and perturbed two-body problem equations. In the last case the perturbing bodies' coordinates are being taked during calculations from the ephemeris DE406. The accuracy and rapidness estimations have been made by means of forward and backward integrations with various values of Everhart method parameters of motion equations of the short-periodic comet Herschel-Rigollet. The optimal combinations of these parameters have been obtained. The research has been made both for 16-digit decimal accuracy and for 34-digit one.
The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0
NASA Astrophysics Data System (ADS)
Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.
2017-10-01
The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.
Gaia DR1 documentation Chapter 6: Variability
NASA Astrophysics Data System (ADS)
Eyer, L.; Rimoldini, L.; Guy, L.; Holl, B.; Clementini, G.; Cuypers, J.; Mowlavi, N.; Lecoeur-Taïbi, I.; De Ridder, J.; Charnas, J.; Nienartowicz, K.
2017-12-01
This chapter describes the photometric variability processing of the Gaia DR1 data. Coordination Unit 7 is responsible for the variability analysis of over a billion celestial sources. In particular the definition, design, development, validation and provision of a software package for the data processing of photometrically variable objects. Data Processing Centre Geneva (DPCG) responsibilities cover all issues related to the computational part of the CU7 analysis. These span: hardware provisioning, including selection, deployment and optimisation of suitable hardware, choosing and developing software architecture, defining data and scientific workflows as well as operational activities such as configuration management, data import, time series reconstruction, storage and processing handling, visualisation and data export. CU7/DPCG is also responsible for interaction with other DPCs and CUs, software and programming training for the CU7 members, scientific software quality control and management of software and data lifecycle. Details about the specific data treatment steps of the Gaia DR1 data products are found in Eyer et al. (2017) and are not repeated here. The variability content of the Gaia DR1 focusses on a subsample of Cepheids and RR Lyrae stars around the South ecliptic pole, showcasing the performance of the Gaia photometry with respect to variable objects.
The large bright quasar survey. 6: Quasar catalog and survey parameters
NASA Astrophysics Data System (ADS)
Hewett, Paul C.; Foltz, Craig B.; Chaffee, Frederic H.
1995-04-01
Positions, redshifts, and magnitudes for the 1055 quasars in the Large Bright Quasar Survey (LBQS) are presented in a single catalog. Celestial positions have been derived using the PPM catalog to provide an improved reference frame. J2000.0 coordinates are given together with improved b1950.0 positions. Redshifts calculated via cross correlation with a high signal-to-noise ratio composite quasar spectrum are included and the small number of typographic and redshift misidentifications in the discovery papers are corrected. Spectra of the 12 quasars added to the sample since the publication of the discovery papers are included. Discriptions of the plate material, magnitude calibration, quasar candidate selection procedures, and the identification spectroscopy are given. Calculation of the effective area of the survey for the 1055 quasars comprising the well-defined LBQS sample specified in detail. Number-redshift and number-magnitude relations for the quasars are derived and the strengths and limitastions of the LBSQ sample summarized. Comparison with existing surveys is made and a qualitative assessment of the effectiveness of the LBQS undertaken. Positions, magnitudes, and optical spectra of the eight objects (less than 1%) in the survey that remain unidentified are also presented.
NASA Astrophysics Data System (ADS)
Kohman, T. P.
1995-05-01
The design of a cosmic X- or gamma -ray telescope with least- squares image reconstruction and its simulated operation have been described (Rev. Sci. Instrum. 60, 3396 and 3410 (1989)). Use of an auxiliary open aperture ("limiter") ahead of the coded aperture limits the object field to fewer pixels than detector elements, permitting least-squares reconstruction with improved accuracy in the imaged field; it also yields a uniformly sensitive ("flat") central field. The design has been enhanced to provide for mask-antimask operation. This cancels and eliminates uncertainties in the detector background, and the simulated results have virtually the same statistical accuracy (pixel-by-pixel output-input RMSD) as with a single mask alone. The simulations have been made more realistic by incorporating instrumental blurring of sources. A second-stage least-squares procedure had been developed to determine the precise positions and total fluxes of point sources responsible for clusters of above-background pixels in the field resulting from the first-stage reconstruction. Another program converts source positions in the image plane to celestial coordinates and vice versa, the image being a gnomic projection of a region of the sky.
NASA Astrophysics Data System (ADS)
Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.
2017-04-01
In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.
Skylore of the Indigenous Peoples of Northern Eurasia
NASA Astrophysics Data System (ADS)
Frank, Roslyn M.
This chapter examines the skylore of the indigenous peoples of northern Eurasia, paying particular attention to the commonalities found among them as well as the differences. Special attention is placed on the motif of the Cosmic Hunt and its diverse manifestations across the study area as well as on the oral nature of the celestial beliefs of these groups. The stars of a variety of "Western" constellation figures are implicated in the narratives and in some cases are clearly utilized in social practice for celestial navigation. The role played by the underlying hunter-gatherer mode of subsistence in shaping their cultural conceptualizations, their skyscapes, and the overarching cosmology of these peoples is also addressed.
Compact optics for high resolution spectroscopy of celestial x-ray sources
NASA Astrophysics Data System (ADS)
Cash, W.; Lillie, C.; McEntaffer, R.; Zhang, W.
2011-05-01
The astronomy community has never flown a celestial source spectrograph that can resolve natural line widths in absorption the way the ultraviolet community since OAO-3 Copernicus in 1972. Yet there is important science to be mined there, and right now there are now missions on track to pursue it. We present a modified off-plane grating spectrograph design that will support high resolution (λ/δλ ~ 4000) in the soft x-ray band with a high packing density that will enable a modest cost space mission. We discuss the design for the WHIMEx mission which was proposed as an Explorer earlier this year with the goal of detecting high temperature oxygen in the Intergalactic Medium.
Archaeoastronomy and Calendar Cities
NASA Astrophysics Data System (ADS)
Campion, Nicholas
2016-02-01
The use of astronomy for collective purposes, both religious and political, is apparent in the earliest astronomical records, from the evidence for Palaeolithic lunar calendars to megalithic monuments and Mesopotamian celestial-omen reports. This paper will consider the application of the heavens to the organisation of the ‘Cosmic State’, the human polity modelled on the assumption of a close relationship between society on the one hand and planetary and stellar patterns on the other. I will also examine the foundation of Baghdad within the tradition of celestial town planning and argue that the city may be seen as a ‘talisman’, designed to connect heaven to Earth and ensure peace, stability and political success by harmonising time and space.
The Cosmology Gallery: Unity through diversity in a vast and awe-inspiring universe.
NASA Astrophysics Data System (ADS)
Goldsmith, John
2011-06-01
Scientists, artists, religious and cultural leaders have come together to create the Cosmology Gallery at the Gravity Discovery Centre (GDC) located 70 km north of Perth, Western Australia. The Cosmology Gallery exhibitions include the multicultural cosmology artworks, Celestial Visions astronomical photography exhibition and the Timeline of the Universe. The multicultural cosmology artworks are new artworks inspired by Australian Indigenous, Christian, Buddhist, Islamic, Hindu, scientific and technological perspectives of the universe. The Celestial Visions exhibition features astronomical events above famous landmarks, including Stonehenge and the Pyramids. The AUD 400,000+ project was funded by Lotterywest, Western Australia and the Cosmology Gallery was officially opened in July 2008 by the Premier of Western Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, O.; Stanford, Laura M.; Pursimo, T.
In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radiomore » sources.« less
NASA Astrophysics Data System (ADS)
Vulkov, K.
In consequence of the phenomenon of planetary precession there emerges a possibility for acquisition of power through utilisation of the rotary motions in the universe. The idea is to acquire useful power on the working shaft of a properly designed machine installed on a celestial body (planet), at the expense of the motional energy of the latter. Strange as it may appear, this is possible if only the regulation of the machine be brought in line with the parameters of the precession. The principle of action of such a planetary engine, including an energy balance, is put forward in the present paper.
NASA Technical Reports Server (NTRS)
Kumar, D.
1980-01-01
The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.
Monitoring of Earth Rotation by VLBI
NASA Technical Reports Server (NTRS)
Ma., Chopo; Macmillan, D. S.
2000-01-01
Monitoring Earth rotation with Very Long Baseline Interferometry (VLBI) has unique potential because of direct access to the Celestial Reference System (CRF and Terrestrial Reference System (TRF) and the feasibility of re-analyzing the entire data set. While formal precision of better than 0.045 mas for pole and 0.002 ms for UT 1 has been seen in the best 24-hr data, the accuracy of the Earth Orientation Parameter (EOP) time series as a whole is subject to logistical, operational, analytical and conceptual constraints. The current issues related to the VLBI data set and the CORE program for greater time resolution such as analysis consistency, network jitter and reference frame stability will be discussed.
NASA Astrophysics Data System (ADS)
Gerdt, V. P.; Tarasov, O. V.; Shirkov, Dmitrii V.
1980-01-01
The present state of analytic calculations on computers is reviewed. Several programming systems which are used for analytic calculations are discussed: SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL, AVTO-ANALITIK, MACSYMA, etc. It is shown that these systems can be used to solve a wide range of problems in physics and mathematics. Some physical applications are discussed in celestial mechanics, the general theory of relativity, quantum field theory, plasma physics, hydrodynamics, atomic and molecular physics, and quantum chemistry. Some mathematical applications which are discussed are evaluating indefinite integrals, solving differential equations, and analyzing mathematical expressions. This review is addressed to physicists and mathematicians working in a wide range of fields.
Multipole Structure and Coordinate Systems
ERIC Educational Resources Information Center
Burko, Lior M.
2007-01-01
Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the…
Orientations of the Villas at Tylissos on Crete and their Relationships to the Minoan Calendar
NASA Astrophysics Data System (ADS)
Henriksson, Göran; Blomberg, Mary
2015-05-01
The two Late Minoan I villas at Tylissos and an unknown earlier building at the site show similar relationships to the celestial bodies that we have encountered at all of the Minoan buildings that we have studied. They had orientations to celestial events relevant to the calendar, such as sunrise or sunset at the equinoxes and the solstices, and the heliacal risings and settings of bright stars. We also re-encountered the phenomenon that different places marked the beginning of one or more solar months, which suggests that certain months had special relevance for specific places, as if to honor a god or goddess or some other special event for that particular place. In addition, the orientations of the two Late Minoan I villas at Tylissos share the same complexity that we have met at two other sites, where diagonal lines were used to create shadows when marking the parts of the calendar that were specific for Tylissos. It now seems clear that an element of Minoan cosmology insisted on a close connection between their places on earth and the celestial sphere. It was the custom for the Mycenaeans and the Greeks, who later inhabited the island, to honor their deities in special months, and we may find the roots of this custom among the Minoans.
Time-Dependent Selection of an Optimal Set of Sources to Define a Stable Celestial Reference Frame
NASA Technical Reports Server (NTRS)
Le Bail, Karine; Gordon, David
2010-01-01
Temporal statistical position stability is required for VLBI sources to define a stable Celestial Reference Frame (CRF) and has been studied in many recent papers. This study analyzes the sources from the latest realization of the International Celestial Reference Frame (ICRF2) with the Allan variance, in addition to taking into account the apparent linear motions of the sources. Focusing on the 295 defining sources shows how they are a good compromise of different criteria, such as statistical stability and sky distribution, as well as having a sufficient number of sources, despite the fact that the most stable sources of the entire ICRF2 are mostly in the Northern Hemisphere. Nevertheless, the selection of a stable set is not unique: studying different solutions (GSF005a and AUG24 from GSFC and OPA from the Paris Observatory) over different time periods (1989.5 to 2009.5 and 1999.5 to 2009.5) leads to selections that can differ in up to 20% of the sources. Observing, recording, and network improvement are some of the causes, showing better stability for the CRF over the last decade than the last twenty years. But this may also be explained by the assumption of stationarity that is not necessarily right for some sources.
How dim is dim? Precision of the celestial compass in moonlight and sunlight
Dacke, M.; Byrne, M. J.; Baird, E.; Scholtz, C. H.; Warrant, E. J.
2011-01-01
Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dim—and the polarization pattern too weak—to provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision. PMID:21282173
Polarized light use in the nocturnal bull ant, Myrmecia midas.
Freas, Cody A; Narendra, Ajay; Lemesle, Corentin; Cheng, Ken
2017-08-01
Solitary foraging ants have a navigational toolkit, which includes the use of both terrestrial and celestial visual cues, allowing individuals to successfully pilot between food sources and their nest. One such celestial cue is the polarization pattern in the overhead sky. Here, we explore the use of polarized light during outbound and inbound journeys and with different home vectors in the nocturnal bull ant, Myrmecia midas . We tested foragers on both portions of the foraging trip by rotating the overhead polarization pattern by ±45°. Both outbound and inbound foragers responded to the polarized light change, but the extent to which they responded to the rotation varied. Outbound ants, both close to and further from the nest, compensated for the change in the overhead e-vector by about half of the manipulation, suggesting that outbound ants choose a compromise heading between the celestial and terrestrial compass cues. However, ants returning home compensated for the change in the e-vector by about half of the manipulation when the remaining home vector was short (1-2 m) and by more than half of the manipulation when the remaining vector was long (more than 4 m). We report these findings and discuss why weighting on polarization cues change in different contexts.
A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation
NASA Technical Reports Server (NTRS)
Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana
2011-01-01
The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.
Polarized light use in the nocturnal bull ant, Myrmecia midas
Lemesle, Corentin; Cheng, Ken
2017-01-01
Solitary foraging ants have a navigational toolkit, which includes the use of both terrestrial and celestial visual cues, allowing individuals to successfully pilot between food sources and their nest. One such celestial cue is the polarization pattern in the overhead sky. Here, we explore the use of polarized light during outbound and inbound journeys and with different home vectors in the nocturnal bull ant, Myrmecia midas. We tested foragers on both portions of the foraging trip by rotating the overhead polarization pattern by ±45°. Both outbound and inbound foragers responded to the polarized light change, but the extent to which they responded to the rotation varied. Outbound ants, both close to and further from the nest, compensated for the change in the overhead e-vector by about half of the manipulation, suggesting that outbound ants choose a compromise heading between the celestial and terrestrial compass cues. However, ants returning home compensated for the change in the e-vector by about half of the manipulation when the remaining home vector was short (1−2 m) and by more than half of the manipulation when the remaining vector was long (more than 4 m). We report these findings and discuss why weighting on polarization cues change in different contexts. PMID:28879002
More flexibility in representing geometric distortion in astronomical images
NASA Astrophysics Data System (ADS)
Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir
2012-09-01
A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.
Huang, B Y; Durrant, C J; Johnson, C W L; Murray, G M
2002-06-30
Previous studies have indicated that the location of a condylar point can significantly influence its trajectory. The aim of this investigation was to develop a method of registering the location of radiographically defined condylar points in the coordinate system of a six-degree-of-freedom jaw-tracking device and to determine the accuracy of this method by using a perspex model in one experiment and a dry skull in another. A direct measurement ('the gold standard') of condylar point coordinates in the coordinate system of JAWS3D was done using a three-dimensional (3D) digitizer (MicroScribe-3DX). The indirect measurement used a distributed fiducial marker as the interface between the coordinate system of MicroScribe-3DX (which was used to register the fiducial marker and the JAWS3D coordinate system) and the coordinate system of the CT scans (used to define condyle anatomy and the relation with the fiducial marker). The coordinates of condylar points could then be calculated in the coordinate system of JAWS3D. The results showed that the indirect method could register condylar point coordinates on either side to an accuracy of approximately 0.5 mm.
Europa Kinetic Ice Penetrator System for Hyper Velocity Instrument Deposition
NASA Astrophysics Data System (ADS)
Robinson, Tessa
Landing of a payload on any celestial body has only used a soft landing system. These systems use retro rockets and atmospheric components to match velocity and then overcome local gravity in order to land on the surface. This is a proposed system for depositing instrumentation on an icy surface at hypervelocity using the properties of different projectiles and ejecta properties that would negate the need for a soft landing system. This system uses two projectiles, a cylinder with inner aerodynamic surfaces and a payload section with a conical nose and aerodynamic surfaces. The cylinder lands first, creates a region of fractured ice, and directs that fractured material into a collimated ejecta stream. The payload travels through the ejecta and lands in the fractured region. The combination of the ejecta stream and the softened target material reduces the impact acceleration to within survivable levels.
Recommended coordinate systems for thin spherocylindrical lenses.
Deal, F C; Toop, J
1993-05-01
Because the set of thin spherocylindrical lenses forms a vector space, any such lens can be expressed in terms of its cartesian coordinates with respect to whatever set of basis lenses we may choose. Two types of cartesian coordinate systems have become prominent, those having coordinates associated with the lens power matrix and those having coordinates associated with the Humphrey Vision Analyzer. This paper emphasizes the value of a particular cartesian coordinate system of the latter type, and the cylindrical coordinate system related to it, by showing how it can simplify the trigonometry of adding lenses and how it preserves symmetry in depicting the sets of all spherical lenses, all Jackson crossed-cylinders, and all cylindrical lenses. It also discusses appropriate coordinates for keeping statistics on lenses and shows that an easy extension of the lens vector space to include general optical systems is not possible.