Sample records for celestial pole offset

  1. Celestial Pole Offsets: Conversion From (dX, dY) to (d(psi), d(epsilon). Version 3

    DTIC Science & Technology

    2005-05-01

    observed angular offset of the celestial pole from its modelled position, expressed in terms of changes in ecliptic longitude and obliquity . These...the mean obliquity of the ecliptic of date (≈ J2000.0). As the celestial pole precesses farther from the ICRS Z-axis, two effects must be accounted for...to only a few significant digits. With dX ′ and dY ′ in hand we compute dψ = dX ′/ sin ² d² = dY ′ (8) where ² is the mean obliquity of the ecliptic

  2. A New Precession Formula

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2003-07-01

    We adapt J. G. Williams' expression of the precession and nutation using the 3-1-3-1 rotation to an arbitrary inertial frame of reference. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the planetary precession formula numerically determined from DE405 and by using a recent theory of the forced nutation of the nonrigid Earth by Shirai & Fukishima, we analyze the celestial pole offsets observed by VLBI for 1979-2000 and determine the best-fit polynomials of the lunisolar precession angles. We then translate the results into classical precession quantities and evaluate the difference due to the difference in the ecliptic definition. The combination of these formulae and the periodic part of the Shirai-Fukishima nutation theory serves as a good approximation of the precession-nutation matrix in the International Celestial Reference Frame. As a by-product, we determine the mean celestial pole offset at J2000.0 as X0=-(17.12+/-0.01) mas and Y0=-(5.06+/-0.02) mas. Also, we estimate the speed of general precession in longitude at J2000.0 as p=5028.7955"+/-0.0003" per Julian century, the mean obliquity at J2000.0 in the inertial sense as (ɛ0)I=84381.40621"+/-0.00001" and in the rotational sense as (ɛ0)R=84381.40955"+/-0.00001", and the dynamical flattening of Earth as Hd=(3.2737804+/-0.0000003)×10-3. Furthermore, we establish a fast way to compute the precession-nutation matrix and provide a best-fit polynomial of an angle to specify the mean Celestial Ephemeris Origin.

  3. Pulkovo IVS Analysis Center (PUL) 2012 Annual Report

    NASA Technical Reports Server (NTRS)

    Malkin, Zinovy; Sokolova, Julia

    2013-01-01

    This report briefly presents the PUL IVS Analysis Center activities during 2012 and plans for the coming year. The main topics of the investigations of PUL staff in that period were ICRF related studies, computation and analysis of EOP series, celestial pole offset (CPO) modeling, and VLBI2010 related issues.

  4. Empirical Corrections to Nutation Amplitudes and Precession Computed from a Global VLBI Solution

    NASA Astrophysics Data System (ADS)

    Schuh, H.; Ferrandiz, J. M.; Belda-Palazón, S.; Heinkelmann, R.; Karbon, M.; Nilsson, T.

    2017-12-01

    The IAU2000A nutation and IAU2006 precession models were adopted to provide accurate estimations and predictions of the Celestial Intermediate Pole (CIP). However, they are not fully accurate and VLBI (Very Long Baseline Interferometry) observations show that the CIP deviates from the position resulting from the application of the IAU2006/2000A model. Currently, those deviations or offsets of the CIP (Celestial Pole Offsets - CPO), can only be obtained by the VLBI technique. The accuracy of the order of 0.1 milliseconds of arc (mas) allows to compare the observed nutation with theoretical prediction model for a rigid Earth and constrain geophysical parameters describing the Earth's interior. In this study, we empirically evaluate the consistency, systematics and deviations of the IAU 2006/2000A precession-nutation model using several CPO time series derived from the global analysis of VLBI sessions. The final objective is the reassessment of the precession offset and rate, and the amplitudes of the principal terms of nutation, trying to empirically improve the conventional values derived from the precession/nutation theories. The statistical analysis of the residuals after re-fitting the main nutation terms demonstrates that our empirical corrections attain an error reduction by almost 15 micro arc seconds.

  5. Smoothing and Predicting Celestial Pole Offsets using a Kalman Filter and Smoother

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Chin, T. M.; Gross, R. S.; Winska, M.; Winska, J.

    2017-12-01

    Since the early days of interplanetary spaceflight, accounting for changes in the Earth's rotation is recognized to be critical for accurate navigation. In the 1960s, tracking anomalies during the Ranger VII and VIII lunar missions were traced to errors in the Earth orientation parameters. As a result, Earth orientation calibration methods were improved to support the Mariner IV and V planetary missions. Today, accurate Earth orientation parameters are used to track and navigate every interplanetary spaceflight mission. The interplanetary spacecraft tracking and navigation teams at JPL require the UT1 and polar motion parameters, and these Earth orientation parameters are estimated by the use of a Kalman filter to combine past measurements of these parameters and predict their future evolution. A model was then used to provide the nutation/precession components of the Earth's orientation separately. As a result, variations caused by the free core nutation were not taken into account. But for the highest accuracy, these variations must be considered. So JPL recently developed an approach based upon the use of a Kalman filter and smoother to provide smoothed and predicted celestial pole offsets (CPOs) to the interplanetary spacecraft tracking and navigation teams. The approach used at JPL to do this and an evaluation of the accuracy of the predicted CPOs will be given here.

  6. An Improved Empirical Harmonic Model of the Celestial Intermediate Pole Offsets from a Global VLBI Solution

    NASA Astrophysics Data System (ADS)

    Belda, Santiago; Heinkelmann, Robert; Ferrándiz, José M.; Karbon, Maria; Nilsson, Tobias; Schuh, Harald

    2017-10-01

    Very Long Baseline Interferometry (VLBI) is the only space geodetic technique capable of measuring all the Earth orientation parameters (EOP) accurately and simultaneously. Modeling the Earth's rotational motion in space within the stringent consistency goals of the Global Geodetic Observing System (GGOS) makes VLBI observations essential for constraining the rotation theories. However, the inaccuracy of early VLBI data and the outdated products could cause non-compliance with these goals. In this paper, we perform a global VLBI analysis of sessions with different processing settings to determine a new set of empirical corrections to the precession offsets and rates, and to the amplitudes of a wide set of terms included in the IAU 2006/2000A precession-nutation theory. We discuss the results in terms of consistency, systematic errors, and physics of the Earth. We find that the largest improvements w.r.t. the values from IAU 2006/2000A precession-nutation theory are associated with the longest periods (e.g., 18.6-yr nutation). A statistical analysis of the residuals shows that the provided corrections attain an error reduction at the level of 15 μas. Additionally, including a Free Core Nutation (FCN) model into a priori Celestial Pole Offsets (CPOs) provides the lowest Weighted Root Mean Square (WRMS) of residuals. We show that the CPO estimates are quite insensitive to TRF choice, but slightly sensitive to the a priori EOP and the inclusion of different VLBI sessions. Finally, the remaining residuals reveal two apparent retrograde signals with periods of nearly 2069 and 1034 days.

  7. The Evaluation of the Earth's Dynamical Flattening Based on the IAU Precession-nutation and VLBI Observations

    NASA Astrophysics Data System (ADS)

    Capitaine, Nicole; Liu, Jia-Cheng

    2014-12-01

    The dynamical flattening H_{d} is a fundamental Earth's parameter and a crucial scale factor in constructing the precession-nutation models. Its value has generally been derived from astronomical observations of the luni-solar precession in longitude at epoch, or from geophysical determinations of the Earth's moment of inertia. It should be noted that the observed precession rates in longitude and obliquity result from several theoretical contributions, some of them, as well as the nutation amplitudes, being also dependent on H_{d}. This paper discusses the rigorous procedure to be used for deriving H_{d} from the best available astronomical observations. We use the IAU 2006/2000 precession-nutation and VLBI observations of the celestial pole offsets spanning about 32 years in order to calculate the observed position of the CIP (Celestial intermediate pole) in the GCRS (Geocentric celestial reference system). Then, the value of H_{d} is evaluated by a least squares method with a careful consideration of the various theoretical contributions to the precession rates and of the largest terms of nutation. We compare the results with an indirect fit of H_{d} to the estimated corrections to the linear term in precession and the 18.6-yr nutation. We discuss the limit of accuracy, given the characteristics of the available observations and the uncertainties in the models, as well as the parameters on which H_{d} is dependent.

  8. New Precession Formulas

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2003-08-01

    We adapted J.G. Williams' expression of the precession and nutation by the 3-1-3-1 rotation (Williams 1994) to an arbitrary inertial frame of reference. The new expression of the precession matrix is P = R1(-ɛ ) R3(-ψ ) R1(ϕ) R3(γ ) while that of precession-nutation matrix is NP = R1(-ɛ -Δ ɛ ) R3(-ψ -Δ ψ ) R1(ϕ) R3(γ ). Here γ and ϕ are the new planetary precession angles, ψ and ɛ are the new luni-solar precession angles, and Δ ψ and Δ ɛ are the usual nutations. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the latest planetary precession formula determined from DE405 (Harada 2003) and by using a recent theory of the forced nutation of the non-rigid Earth, SF2001 (Shirai and Fukushima 2001), we analysed the celestial pole offsets observed by VLBI for 1979-2000 and compiled by USNO and determined the best-fit polynomials of the new luni-solar precession angles. Then we translated the results into the classic precessional quantities as sin π A sin Π A, sin π A \\cos Π A, π A, Π A, pA, ψ A, ω A, χA, ζ A, zA, and θ A. Also we evaluated the effect of the difference in the ecliptic definition between the inertial and rotational senses. The combination of these formulas and the periodic part of SF2001 serves as a good approximation of the precession-nutation matrix in the ICRF. As a by-product, we determined the mean celestial pole offset at J2000.0 as X0 = -(17.12 +/- 0.01) mas and Y0 = -(5.06 +/- 0.02) mas. Also we estimated the speed of general precession in longitude at J2000.0 as p = (5028.7955 +/- 0.0003)''/Julian century, the mean obliquity at J2000.0 in the rotational sense as ɛ 0 = (84381.40955 +/- 0.00001)'', and the dynamical flattening of the Earth as Hd = (0.0032737804 +/- 0.0000000003). Further, we established a fast way to compute the precession-nutation matrix and provided a best-fit polynomial of s, an angle to specify the mean CEO.

  9. Microarsecond models for the celestial motions of the CIP and CEO

    NASA Astrophysics Data System (ADS)

    Capitaine, N.

    2004-09-01

    The Celestial intermediate pole (CIP) and Celestial ephemeris (orintermediate) origin (CEO/CIO) have been adopted by the IAU (c.f. IAU2000 Resolution B1.8) as the celestial pole and origin, respectively,to be used for realizing the intermediate celestial system between theInternational Terrestrial System (ITRS) and Geocentric CelestialReference System (GCRS). Resolution B1.8 has also recommended that theInternational Earth Rotation and Reference Systems Service (IERS)continue to provide users with data and algorithms for the conventionaltransformation. The IAU 2000 Resolutions have been implemented in theIERS 2003 Conventions including Tables and routines that provide thecelestial motions of the CIP and the CEO with a theoretical accuracy ofone microarcsecond after one century using either the classical or thenew transformation. This paper reports on the method used for achievingthis accuracy in the positions of the CIP and CIO and on the differencebetween this rigorous procedure and the pre-2003 classical one.

  10. New method for determining free core nutation parameters, considering geophysical effects

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Ron, C.

    2017-08-01

    Context. In addition to the torques exerted by the Moon, Sun, and planets, changes of precession-nutation are known to be caused also by geophysical excitations. Recently studies suggest that geomagnetic jerks (GMJ) might be associated with sudden changes of phase and amplitude of free core nutation. We showed that using atmospheric and oceanic excitations with those by GMJ improves substantially the agreement with observed celestial pole offsets. Aims: Traditionally, the period Tf and quality factor Qf of the free core nutation (FCN) are derived from VLBI-based celestial pole offsets (CPO). Either direct analysis of the observed CPO, or indirect method using resonant effects of nutation terms with frequencies close to FCN, are used. The latter method is usually preferred, since it yields more accurate results. Our aim is to combine both approaches to better derive FCN parameters. Methods: We numerically integrated the part of CPO that is due to geophysical excitations for different combinations of Tf, Qf, using Brzeziński's broadband Liouville equations (Brzeziński 1994, Manuscripta geodaetica, 19, 157), and compared the results with the observed values of CPO. The values yielding the best fit were then estimated. The observed CPO, however, must be corrected for the change of nutation that is caused by the Tf, Qf values different from those used to calculate IAU 2000 model of nutation. To this end, we have used the Mathews-Herring-Buffet transfer function and applied it to the five most affected terms of nutation (with periods 365.26, 182.62, 121.75, 27.55 and 13.66 days). Results: The results, based on the CPO data in the interval 1986.0—2016.0 and excitations with three different models, are presented. We demonstrate that better results are obtained if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans. Our preferred values are Tf = 430.28 ± 0.04 mean solar days and Qf = 19 500 ± 200.

  11. Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry

    NASA Astrophysics Data System (ADS)

    Böhm, Johannes; Böhm, Sigrid; Boisits, Janina; Girdiuk, Anastasiia; Gruber, Jakob; Hellerschmied, Andreas; Krásná, Hana; Landskron, Daniel; Madzak, Matthias; Mayer, David; McCallum, Jamie; McCallum, Lucia; Schartner, Matthias; Teke, Kamil

    2018-04-01

    The Vienna VLBI and Satellite Software (VieVS) is state-of-the-art Very Long Baseline Interferometry (VLBI) analysis software for geodesy and astrometry. VieVS has been developed at Technische Universität Wien (TU Wien) since 2008, where it is used for research purposes and for teaching space geodetic techniques. In the past decade, it has been successfully applied on Very Long Baseline Interferometry (VLBI) observations for the determination of celestial and terrestrial reference frames as well as for the estimation of celestial pole offsets, universal Time (UT1-UTC), and polar motion based on least-squares adjustment. Furthermore, VieVS is equipped with tools for scheduling and simulating VLBI observations to extragalactic radio sources as well as to satellites and spacecraft, features which proved to be very useful for a variety of applications. VieVS is now available as version 3.0 and we do provide the software to all interested persons and institutions. A wiki with more information about VieVS is available at http://vievswiki.geo.tuwien.ac.at/.

  12. On the definition and use of the ecliptic in modern astronomy

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Soffel, M.

    2015-08-01

    The ecliptic was a fundamental reference plane for astronomy from antiquity to the realization and use of the FK5 reference system. The situation has changed considerably with the adoption of the International Celestial Reference system (ICRS) by the IAU in 1998 and the IAU resolutions on reference systems that were adopted from 2000 to 2009. First, the ICRS has the property of being independent of epoch, ecliptic or equator. Second, the IAU 2000 resolutions, which specified the systems of space-time coordinates within the framework of General Relativity, for the solar system (the Barycentric Celestial Reference System, BCRS) and the Earth (the Geocentric Celestial Reference System, GCRS), did not refer to any ecliptic and did not provide a definition of a GCRS ecliptic. These resolutions also provided the definition of the pole of the nominal rotation axis (the Celestial intermediate pole, CIP) and of new origins on the equator (the Celestial and Terrestrial intermediate origins, CIO and TIO), which do not require the use of an ecliptic. Moreover, the models and standards adopted by the IAU 2006 and IAU 2009 resolutions are largely referred to the ICRS, BCRS, GCRS as well as to the new pole and origins. Therefore, the ecliptic has lost much of its importance. We review the consequences of these changes and improvements in the definition and use of the ecliptic and we discuss whether the concept of an ecliptic is still needed for some specific use in modern astronomy.

  13. South African Student Constructed Indlebe Radio Telescope

    NASA Astrophysics Data System (ADS)

    McGruder, Charles H.; MacPherson, Stuart; Janse Van Vuuren, Gary Peter

    2017-01-01

    The Indlebe Radio Telescope (IRT) is a small transit telescope with a 5 m diameter parabolic reflector working at 21 cm. It was completely constructed by South African (SA) students from the Durban University of Technology (DUT), where it is located. First light occurred on 28 July 2008, when the galactic center, Sagittarius A, was detected. As a contribution to the International Year of Astronomy in 2009, staff members in the Department of Electronic Engineering at DUT in 2006 decided to have their students create a fully functional radio telescope by 2009. The specific project aims are to provide a visible project that could generate interest in science and technology in high school students and to provide a real world system for research in radio astronomy in general and an optimization of low noise radio frequency receiver systems in particular. These aims must be understood in terms of the SA’s government interests in radio astronomy. SA is a partner in the Square Kilometer Array (SKA) project, has constructed the Karoo Array Telescope (KAT) and MeerKat, which is the largest and most sensitive radio telescope in the southern hemisphere. SA and its partners in Africa are investing in the construction of the African Very Long Baseline Interferometry Network (AVN), an array of radio telescopes throughout Africa as an extension of the existing global Very Long Baseline Interferometry Network (VLBI). These projects will allow SA to make significant contributions to astronomy and enable astronomy to contribute to the scientific education and development goals of the country. The IRT sees on a daily basis the transit of Sag A. The transit time is influenced by precession, nutation, polar motion, aberration, celestial pole offset, proper motion, length of the terrestrial day and variable ionospheric refraction. Of these eight factors six are either predictable or measureable. To date neither celestial pole offset nor variable ionospheric refraction are predicable. Currently, we are comparing the observed transit times of Sag A with the calculable predications in order to obtain information over these two factors, with a view to better understanding them.

  14. Relation between the celestial reference system and the terrestrial reference system of a rigid earth

    NASA Astrophysics Data System (ADS)

    Aoki, Shinko

    The equations of motion for a rigid earth under the influence of the sun and moon are solved analytically up to the second-order perturbation, and the results are used to elucidate the relationship between the celestial and terrestrial reference systems. The derivations are given in detail, and consideration is given to celestial-ephemeris and instantaneous-rotation poles, wobble, the departure point as the origin of the local inertial system, the precession-nutation matrix, and techniques for improving the celestial reference system.

  15. Expected Improvements in VLBI Measurements of the Earth's Orientation

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2003-01-01

    Measurements of the Earth s orientation since the 1970s using space geodetic techniques have provided a continually expanding and improving data set for studies of the Earth s structure and the distribution of mass and angular momentum. The accuracy of current one-day measurements is better than 100 microarcsec for the motion of the pole with respect to the celestial and terrestrial reference frames and better than 3 microsec for the rotation around the pole. VLBI uniquely provides the three Earth orientation parameters (nutation and UTI) that relate the Earth to the extragalactic celestial reference frame. The accuracy and resolution of the VLBI Earth orientation time series can be expected to improve substantially in the near future because of refinements in the realization of the celestial reference frame, improved modeling of the troposphere and non-linear station motions, larger observing networks, optimized scheduling, deployment of disk-based Mark V recorders, full use of Mark IV capabilities, and e-VLBI. More radical future technical developments will be discussed.

  16. Polarization of the zodiacal light - First results from Skylab

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Weinberg, J. L.; Hahn, R. C.

    1976-01-01

    A brief description is given of the Skylab ten color photoelectric photometer and the programs of measurements made during Skylab missions SL-2 and SL-3. Results obtained on the polarized brightness of zodiacal light at five points on the antisolar hemisphere are discussed and compared with other published data for the north celestial pole, south ecliptic pole, at elongation 90 degrees on the ecliptic, and at two places near the north galactic pole.

  17. Present status of astronomical constants

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    Given was the additional information to the previous report on the recent progress in the determinations of astronomical constants (Fukushima 2000). First noted was the revision of LG as 6.969290134×10-10 based on the proposal to shift its status from a primary to a defining constant (Petit 2000). Next focused was the significant update of the correction to the current precession constant, Δp, based on the recent LLR-based determination (Chapront et al. 2000) as -0.3164+/-0.0030"/cy. By combining this and the equal weighted average of VLBI determinations (Mathews et al. 2000; Petrov 2000; Shirai and Fukushima 2000; Vondrak and Ron 2000) as -0.2968+/-0.0043"/cy, we derived the best estimate of precession constant as p = 5028.790+/-0.005"/cy. Also redetermined were some other quantities related to the precession formula; namely the offsets of Celestial Ephemeris Pole of the International Celestial Reference System as &Deltaψ0sinɛ0 = (-17.0+/-0.3) mas and Δɛ0 = (-5.1+/-0.3) mas. As a result, the obliquity of the ecliptic at the epoch J2000.0 was estimated as ɛ0 = 23°26'21."4059+/-0."0003. As a summary, presented was the (revised) IAU 2000 File of Current Best Estimates of astronomical constants, which is to replace the former 1994 version (Standish 1995).

  18. A Conventional Mean Pole

    NASA Astrophysics Data System (ADS)

    Stamatakos, N. G.; McCarthy, D. D.

    2016-12-01

    A CONVENTIONAL MEAN POLE PATH The gradual drift of the pole associated with the rotational axis of the Earth in a terrestrial reference frame is characterized by the motion of a "mean pole." The IERS Conventions (2010) does not provide a formal definition of such a "mean pole." In its glossary it defines the terminology "mean pole" in the celestial frame by using the definition "the position on the celestial sphere towards which the Earth's axis points at a particular epoch, with the oscillations due to precession-nutation removed." The need for a terrestrial mean pole is mentioned in Section 7.1.4 of the IERS Conventions, which outlines the procedure to account for the variation in terrestrial site coordinates caused by the pole tide. It states, that an estimate of the wander of the mean pole to within about 10 milliarc-seconds is needed to ensure that the geopotential field is aligned to the long term mean pole. Historically the angular coordinates of this "mean pole" were calculated by averaging the observed angular coordinates of the rotational pole over six years, the beat period of the annual and approximately 14-month Chandler motions of the rotational pole. The IERS Conventions (2010) realization of the mean pole is composed of a cubic fit of the polar coordinates valid over 1976-2010 and a linear model for extrapolation after 2010.0. Further it notes that in the future, the IERS conventional mean pole will be revised as needed with sufficient advance notice. However, this document leaves open the formal definition of a conventional terrestrial mean pole, the spectral frequency content to be expected in such a definition and a procedure to be used to realize the coordinates of the path for users. Background is provided regarding past realizations of a "mean pole," and the requirements for a realization of a mean pole path are reviewed. Possible definitions and potential mathematical models to provide mean pole coordinates in the future are outlined. In addition, the authors hope that this poster will serve to open a discussion, which will identify geodesy disciplines that require a mean pole and what type of definition would be suitable to their needs.

  19. Galileo Spacecraft Scan Platform Celestial Pointing Cone Control Gain Redesign

    NASA Technical Reports Server (NTRS)

    In, C-H. C.; Hilbert, K. B.

    1994-01-01

    During September and October 1991, pictures of the Gaspra asteroid and neighboring stars were taken by the Galileo Optical Navigation (OPNAV) Team for the purpose of navigation the spacecraft for a successful Gaspra encounter. The star tracks in these pictures showed that the scan platform celestial pointing cone controller performed poorly in compensating for wobble-induced cone offsets.

  20. CPO Prediction: Accuracy Assessment and Impact on UT1 Intensive Results

    NASA Technical Reports Server (NTRS)

    Malkin, Zinovy

    2010-01-01

    The UT1 Intensive results heavily depend on the celestial pole offset (CPO) model used during data processing. Since accurate CPO values are available with a delay of two to four weeks, CPO predictions are necessarily applied to the UT1 Intensive data analysis, and errors in the predictions can influence the operational UT1 accuracy. In this paper we assess the real accuracy of CPO prediction using the actual IERS and PUL predictions made in 2007-2009. Also, results of operational processing were analyzed to investigate the actual impact of EOP prediction errors on the rapid UT1 results. It was found that the impact of CPO prediction errors is at a level of several microseconds, whereas the impact of the inaccuracy in the polar motion prediction may be about one order of magnitude larger for ultra-rapid UT1 results. The situation can be amended if the IERS Rapid solution will be updated more frequently.

  1. The effect of the Earth's oblateness on the Moon's physical libration in latitude

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.

    2013-05-01

    The Moon's physical libration in latitude generated by gravitational forces caused by the Earth's oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth's oblateness: a) has little effect on the instantaneous axis of Moon's rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon's celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse's axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon's poles of rotation move. The dynamical reason for the inclination of the Moon's mean equator with respect to the ecliptic is oblateness of the body of the Moon.

  2. Impacts of GNSS position offsets on global frame stability

    NASA Astrophysics Data System (ADS)

    Griffiths, Jake; Ray, Jim

    2015-04-01

    Positional offsets appear in Global Navigation Satellite System (GNSS) time series for a variety of reasons. Antenna or radome changes are the most common cause for these discontinuities. Many others are from earthquakes, receiver changes, and different anthropogenic modifications at or near the stations. Some jumps appear for unknown or undocumented reasons. Accurate determination of station velocities, and therefore geophysical parameters and terrestrial reference frames, requires that positional offsets be correctly found and compensated. Williams (2003) found that undetected offsets introduce a random walk error component in individual station time series. The topic of detecting positional offsets has received considerable attention in recent years (e.g., Detection of Offsets in GPS Experiment; DOGEx), and most research groups using GNSS have adopted a mix of manual and automated methods for finding them. The removal of a positional offset from a time series is usually handled by estimating the average station position on both sides of the discontinuity. Except for large earthquake events, the velocity is usually assumed constant and continuous across the positional jump. This approach is sufficient in the absence of time-correlated errors. However, GNSS time series contain periodic and power-law (flicker) errors. In this paper, we evaluate the impact to individual station results and the overall stability of the global reference frame from adding increasing numbers of positional discontinuities. We use the International GNSS Service (IGS) weekly SINEX files, and iteratively insert positional offset parameters. Each iteration includes a restacking of the modified SINEX files using the CATREF software from Institut National de l'Information Géographique et Forestière (IGN). Comparisons of successive stacked solutions are used to assess the impacts on the time series of x-pole and y-pole offsets, along with changes in regularized position and secular velocity for stations with more than 2.5 years of data. Our preliminary results indicate that the change in polar motion scatter is logarithmic with increasing numbers of discontinuities. The best-fit natural logarithm to the changes in scatter for x-pole has R2 = 0.58; the fit for the y-pole series has R2 = 0.99. From these empirical functions, we find that polar motion scatter increases from zero when the total rate of discontinuities exceeds 0.2 (x-pole) and 1.3 (y-pole) per station, on average (the IGS has 0.65 per station). Thus, the presence of position offsets in GNSS station time series is likely already a contributor to IGS polar motion inaccuracy and global frame instability. Impacts to station position and velocity estimates depend on noise features found in that station's positional time series. For instance, larger changes in velocity occur for stations with shorter and noisier data spans. This is because an added discontinuity parameter for an individual station time series can induce changes in average position on both sides of the break. We will expand on these results, and consider remaining questions about the role of velocity discontinuities and the effects caused by non-core reference frame stations.

  3. Nonuniformity of the Earth's rotation and the motion of the poles

    NASA Technical Reports Server (NTRS)

    Sidorenkov, N. S.

    1983-01-01

    The study of the nonuniformity of the Earth's rotation and the motion of the poles has great practical and theoretical significance. This study makes it possible to determine the coordinates of celestial and terrestrial objects, and to gain information in many domains of earth science. This paper reviews studies of rotation nonuniformity and polar motion, giving attention to astronomical data; the nature of periodic oscillations of the Earth's rotation; the nature of long-period variations of the Earth's rotation rate; and the use of Earth-rotation data in hydrometeorology.

  4. Gemini Observatory |

    Science.gov Websites

    Now Open Operations View All Observing databases offline May 30 Status of Gemini North eNewscast View Gemini Observatory Strategic Vision PDF Gemini North with open wind vents and observing slit at sunset . Gemini South with star-trails of the South Celestial Pole overhead. Gemini Science Meeting Open For

  5. Semi-analytical integration of the Earth's precession-nutation based on the GCRS coordinates of the CIP unit vector

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Folgueira, M.

    2012-12-01

    In a previous paper (Capitaine et al. 2006), referred here as Paper I, we demonstrated the possibility of integrating the Earth's rotational motion in terms of the coordinates (X, Y ) of the celestial intermediate pole (CIP) unit vector in the Geocentric celestial reference system (GCRS). Here, we report on the approach that has been followed for solving the equations in the case of an axially symmetric rigid Earth and the semi-analytical (X, Y ) solution obtained from the expression of the external torque acting on the Earth derived from the most complete semi-analytical solutions for the Earth, Moon and planets.

  6. Ultraviolet brightness of celestial targets for Apollo 17

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    An evaluation of the ultraviolet flux from the stars expected in the various inertial-hold pointing directions and PTC scans during the Apollo 17 mission is presented. These directions and PTC scan poles for the nominal mission are listed. The methodology used in evaluating the flux, and the individual targets themselves is explained.

  7. Thirty Years After Jack Eddy at the Big Horn Medicine Wheel

    NASA Astrophysics Data System (ADS)

    Merriot, Ivy

    2017-01-01

    In the thirty years since John (Jack) Eddy’s work on the Big Horn Medicine Wheel, attention to the astronomy of medicine wheels went from high to low, with the lowest moment occurring during the ”welcome” talk of the Oxford IX International Archaeoastronomy (ISAAC) conference in Lima, Peru in 2011 when the wall-size projected image of the Big Horn Wheel carried a thick black “X” across its face. The alignments proposed by Eddy in 1974 and by Robinson in the 1980s have been reviewed and analyzed at the Wheel on Medicine Mountain in situ under bitter cold, clear dark nights at 10,000 feet altitude. Research was conducted using naked eye skywatching, transit surveying, and a Meade Cassegraine 8” electronic telescope. Along with this “review” of 20th century research, new research was conducted Wheel causing the second decade of the 21st century to bring new physical evidence and historical information for consideration.New research at the Big Horn Medicine Wheel gives evidence that the Wheel “mirrors” the night and daytime sky by creating a sky “grid” by its design made of basement and surface stones. The Wheel’s stone design mirrors the precession of the equinoxes by showing positions of all major pole stars over the full precessional cycle. Its twenty-eight sections are useful in the same way the twenty-eight sectioned Stations of the Moon star charts were useful in ancient and historical times. This manner of dividing the sky for tracking celestial objects holds celestial markers in constant position over millennia. This occurs because the Wheel’s center represents the Sun’ ecliptic north pole. Star charts that use the ecliptic pole do not need constant mathematical computation to keep up with current declinations and right ascensions. The Wheel’s twenty-eight sectioned sky chart keeps the same Dec and RA for celestial positions for thousands of years and will more quickly alert the observer to changes due to proper motion than will our current Polaris-dependant Dec-RA system in use.

  8. Mariner Mars 1971 project. Volume 2: Preliminary science results

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data from six Mariner Mars experiments are presented. Television reconnaissance of Mars and its satellites yielded information on atmospheric phenomena, surface features of the South Polar region, geology, and satellite astronomy. Other experiments involved infrared spectroscopy and radiometry; ultraviolet spectrometry; S band occultation for observing the atmosphere, ionosphere, and topography of Mars; and the use of celestial mechanics, to determine the gravity field pole direction of the planet.

  9. Rotational-oscillational motions of the nonrigid Earth about the center of mass

    NASA Astrophysics Data System (ADS)

    Bondarenko, V. V.; Perepelkin, V. V.

    2009-10-01

    We use the model of a nearly axisymmetric viscoelastic rigid body to study perturbed rotational-oscillational motions of the Earth's pole. We point out that the Chandler component of oscillations is of celestial-mechanics nature and is caused by the gravitational-tidal actions of the Sun and the Moon. We analyze the pole oscillation excitation mechanism at a frequency close to the Chandler frequency and show that the undamped pole oscillations are caused by the resonance harmonic of the external perturbation at a frequency close to the free nutation frequency. We discuss whether it is possible to solve the problem of constructing a short-term forecast of the pole motion on the basis of a polynomial filter obtained by the least-squares method without taking into account small-scale oscillations caused by wide-band random factors of arbitrary physical nature. In the present paper, we perform numerical simulation of tidal inhomogeneities in the Earth's axial rotation. Attention is mainly paid to the analysis of day length variations on short time intervals with periods less than or equal to one year (interannual oscillations) and to their forecast.

  10. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  11. 32 GHz Celestial Reference Frame Survey for Dec < -45 deg.

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; Phillips, Chris; Stevens, Jamie; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina

    2013-04-01

    (We resubmit this proposal to extend from the previous semester. The 24 hour blocks for ATCA and Mopra were granted in May 2012 but canceled because fringe test before the scheduled experiment failed although fringes were detected between Mopra and Tidbinbilla. As it turned out ATCA had an issue with frequency standard, which has now been resolved.) We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.

  12. Earth Orientation and Its Excitations by Atmosphere, Oceans, and Geomagnetic Jerks

    NASA Astrophysics Data System (ADS)

    Vondrák, J.; Ron, C.

    2015-12-01

    In addition to torques exerted by the Moon, Sun, and planets, changes of the Earth orientation parameters (EOP) are known to be caused also by excitations by the atmosphere and oceans. Recently appeared studies, hinting that geomagnetic jerks (GMJ, rapid changes of geomagnetic field) might be associated with sudden changes of phase and amplitude of EOP (Holme and de Viron 2005, 2013, Gibert and Le Mouël 2008, Malkin 2013). We (Ron et al. 2015) used additional excitations applied at the epochs of GMJ to derive its influence on motion of the spin axis of the Earth in space (precession-nutation). We demonstrated that this effect, if combined with the influence of the atmosphere and oceans, improves substantially the agreement with celestial pole offsets observed by Very Long-Baseline Interferometry. Here we concentrate our efforts to study possible influence of GMJ on temporal changes of all five Earth orientation parameters defining the complete Earth orientation in space. Numerical integration of Brzeziński's broad-band Liouville equations (Brzeziński 1994) with atmospheric and oceanic excitations, combined with expected GMJ effects, is used to derive EOP and compare them with their observed values. We demonstrate that the agreement between all five Earth orientation parameters integrated by this method and those observed by space geodesy is improved substantially if the influence of additional excitations at GMJ epochs is added to excitations by the atmosphere and oceans.

  13. Open-loop frequency acquisition for suppressed-carrier biphase signals using one-pole arm filters

    NASA Technical Reports Server (NTRS)

    Shah, B.; Holmes, J. K.

    1991-01-01

    Open loop frequency acquisition performance is discussed for suppressed carrier binary phase shift keyed signals in terms of the probability of detecting the carrier frequency offset when the arms of the Costas loop detector have one pole filters. The approach, which does not require symbol timing, uses fast Fourier transforms (FFTs) to detect the carrier frequency offset. The detection probability, which depends on both the 3 dB arm filter bandwidth and the received symbol signal to noise ratio, is derived and is shown to be independent of symbol timing. It is shown that the performance of this technique is slightly better that other open loop acquisition techniques which use integrators in the arms and whose detection performance varies with symbol timing.

  14. How well does the Rayleigh model describe the E-vector distribution of skylight in clear and cloudy conditions? A full-sky polarimetric study.

    PubMed

    Suhai, Bence; Horváth, Gábor

    2004-09-01

    We present the first high-resolution maps of Rayleigh behavior in clear and cloudy sky conditions measured by full-sky imaging polarimetry at the wavelengths of 650 nm (red), 550 nm (green), and 450 nm (blue) versus the solar elevation angle thetas. Our maps display those celestial areas at which the deviation deltaalpha = /alphameas - alphaRyleigh/ is below the threshold alphathres = 5 degrees, where alphameas is the angle of polarization of skylight measured by full-sky imaging polarimetry, and alphaRayleigh is the celestial angle of polarization calculated on the basis of the single-scattering Rayleigh model. From these maps we derived the proportion r of the full sky for which the single-scattering Rayleigh model describes well (with an accuracy of deltaalpha = 5 degrees) the E-vector alignment of skylight. Depending on thetas, r is high for clear skies, especially for low solar elevations (40% < r < 70% for thetas < or = 13 degrees). Depending on the cloud cover and the solar illumination, r decreases more or less under cloudy conditions, but sometimes its value remains remarkably high, especially at low solar elevations (rmax = 69% for thetas = 0 degrees). The proportion r of the sky that follows the Rayleigh model is usually higher for shorter wavelengths under clear as well as cloudy sky conditions. This partly explains why the shorter wavelengths are generally preferred by animals navigating by means of the celestial polarization. We found that the celestial E-vector pattern generally follows the Rayleigh pattern well, which is a fundamental hypothesis in the studies of animal orientation and human navigation (e.g., in aircraft flying near the geomagnetic poles and using a polarization sky compass) with the use of the celestial alpha pattern.

  15. Concise CIO based precession-nutation formulations

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Wallace, P. T.

    2008-01-01

    Context: The IAU 2000/2006 precession-nutation models have precision goals measured in microarcseconds. To reach this level of performance has required series containing terms at over 1300 frequencies and involving several thousand amplitude coefficients. There are many astronomical applications for which such precision is not required and the associated heavy computations are wasteful. This justifies developing smaller models that achieve adequate precision with greatly reduced computing costs. Aims: We discuss strategies for developing simplified IAU 2000/2006 precession-nutation procedures that offer a range of compromises between accuracy and computing costs. Methods: The chain of transformations linking celestial and terrestrial coordinates comprises frame bias, precession-nutation, Earth rotation and polar motion. We address the bias and precession-nutation (NPB) portion of the chain, linking the Geocentric Celestial Reference System (GCRS) with the Celestial Intermediate Reference System (CIRS), the latter based on the Celestial Intermediate Pole (CIP) and Celestial Intermediate Origin (CIO). Starting from direct series that deliver the CIP coordinates X,Y and (via the quantity s + XY/2) the CIO locator s, we look at the opportunities for simplification. Results: The biggest reductions come from truncating the series, but some additional gains can be made in the areas of the matrix formulation, the expressions for the nutation arguments and by subsuming long period effects into the bias quantities. Three example models are demonstrated that approximate the IAU 2000/2006 CIP to accuracies of 1 mas, 16 mas and 0.4 arcsec throughout 1995-2050 but with computation costs reduced by 1, 2 and 3 orders of magnitude compared with the full model. Appendices A to G are only available in electronic form at http://www.aanda.org

  16. Nature of the South Pole on Mars Determined by Topographic Forcing of Atmosphere Dynamics

    NASA Technical Reports Server (NTRS)

    Colaprete, A.; Barnes, Jeffrey R.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Kieffer, Hugh H.; Titus, Timothy N.

    2005-01-01

    Introduction: The observed Springtime (Ls approx. 200) surface albedo in the Martian southern polar region is shown in Figure 1. In general, the hemisphere west of Hellas is marked by relatively high values of surface albedo. In contrast, the hemisphere east of Hellas contains extensive regions of very low surface albedo. One of the brightest features within the western hemisphere is the South Pole Residual Cap (SPRC). The dark region, which dominates the eastern hemisphere, is the "Cryptic" region[1]. The nature of the SPRC has been the source of considerable debate since its identification as CO2 ice by the Viking spacecraft. Two fundamental questions still exist regarding the SPRC s formation, location and stability. First, why is the SPRC offset from the geographic pole? There are no local topographic features or surface properties that can account for the offset in the SPRC. Second, does the SPRC represent a large or a small reservoir of CO2? If the former, then it could possibly buffer the surface pressure. If the latter, then the SPRC may not survive every year.

  17. 32 GHz Celestial Reference Frame Survey for Dec < -45 deg.

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shinji; Phillips, Chris; Stevens, Jamie; Jacobs, Christopher; Sotuela, Ioana; Garcia miro, Cristina

    2014-04-01

    (We resubmit this proposal to extend from the previous semester. The 24 hour blocks for ATCA and Mopra were granted in May 2012 but canceled because fringe test before the scheduled experiment failed although fringes were detected between Mopra and Tidbinbilla. During the last scheduled LBA session for this project we discovered ATCA/Mopra had an issue with frequency standard, which has now been resolved.) We propose to conduct a LBA survey of compact radio sources at 32 GHz near the south pole region. This is the first attempt to fill the gap in the existing 32 GHz catalogue establish by NASA Deep Space Network toward completing the full sky celestial reference frame at 32 GHz. The catalogue will be used for future spacecraft navigation by NASA and other space agencies as well as for radio astronomical observations with southern radio telescope arrays such as ATCA and LBA.

  18. Low-frequency polarization measurements of the diffuse radio emission of the galaxy

    NASA Astrophysics Data System (ADS)

    Vinyaikin, E. N.; Paseka, A. M.

    2015-07-01

    Polarization measurements of diffuse Galactic radio emission at 151.5, 198, 217, 237, and 290 MHz have been carried out in the direction of the North Celestial Pole, North Galactic Pole, one region of the North Polar Spur, minimum radio brightness of the Northern sky ( l = 190°, b = 50°), and in the direction l = 147°, b = 9° in the so-called FAN region with enhanced polarization. The results obtained testify to the presence of low spatial frequencies in the angular distribution of the Stokes parameters Q and U of the diffuse Galactic synchrotron emission that are not detectable in interferometric observations. The spectra of the brightness temperature of the polarized component, rotation measures, and intrinsic polarization position angles of the radio emission in the studied regions are presented.

  19. Skylab experiment SO73: Gegenschein/zodiacal light. [electrophotometry of surface brightness and polarization

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.

    1976-01-01

    A 10 color photoelectric polarimeter was used to measure the surface brightness and polarization associated with zodiacal light, background starlight, and spacecraft corona during each of the Skylab missions. Fixed position and sky scanning observations were obtained during Skylab missions SL-2 and SL-3 at 10 wavelenghts between 4000A and 8200A. Initial results from the fixed-position data are presented on the spacecraft corona and on the polarized brightness of the zodiacal light. Included among the fixed position regions that were observed are the north celestial pole, south ecliptic pole, two regions near the north galactic pole, and 90 deg from the sun in the ecliptic. The polarized brightness of the zodiacal light was found to have the color of the sun at each of these positions. Because previous observations found the total brightness to have the color of the sun from the near ultraviolet out to 2.4 micrometers, the degree of polarization of the zodiacal light is independent of wavelength from 4000A to 8200A.

  20. Longitude origins on moving equator II: effects of nutation

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    We obtained an explicit solution of s, the angle specifying the non-rotating orign (NRO) (Guinot 1979), for the pole uniformly rotating on a circle around an arbitrary fixed direction. Thanks to the obtained formula, we derived an approximate expression of its correction, Δs, due to the fast nutational motion of the pole by ignoring the slow precessional motion. By adopting the IAU 1980 nutation series (Seidelmann 1980) and combining the result with the previous solution for the precessional motion of the Earth's pole (Fukushima 2000), we developed a more precise expression of the global motion of the Celestial Ephemeris Origin (CEO). The current speed of global rotation of CEO amounts to -4.149 688 1"/yr where the contribution of the nutation is small as -38.4μas/yr but non-negligible. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north pole. The long periodic motion of CEO is of the amplitude of the obliquity of ecliptic, around 23.5 degree, and of the period of precession, around 25800 yr. While the effect of nutation on the periodic motion of CEO looks like a series of mixed secular terms, which is simply proportional to the nutation in longitude and is of the order of some tens mas/yr.

  1. Elliptical Chandler pole motions of the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Barkin, Yury; Ferrandiz, Jose

    2010-05-01

    In the work the values of the period and eccentricity of Chandler motion of poles of axes of rotation of the Earth and Mars have been determined. The research has been carried out on the basis of developed earlier by authors an intermediate rotary Chandler-Euler motion of the weakly deformable celestial bodies (Barkin, Ferrandiz and Getino, 1996; Barkin, 1998). An influence of a liquid core on Chandler motion of a pole in the given work has not considered. The periods of the specified pole motions make 447.1 d for the Earth and 218.1 d for Mars. In comparison with Euler motions of poles because of elastic properties of planets the Chandler periods are increased accordingly on 142.8 d (about 46.9 %) for the Earth and on 26.2 d (on 13.7 %) for Mars. Values of eccentricities of specified Chandler motions of pole e = √b2 --a2- b (here a both b are smaller and big semi-axes of Chandler ellipse) make 0.09884 for the Earth and 0.3688 for Mars (accordingly, on 21.1 % and 6.2 % more than the appropriate values of eccentricities for models of planets as rigid non-spherical bodies). Axes of an ellipse a also b correspond to the principal equatorial axes of inertia of a planet Ox and Oyfor which the moments of inertia have the smallest valueA and middle value B. The pole of the principal axis of inertia Ox for the Earth is displaced to the west on the angle 14°9285, and the pole of the principal axis of inertia Ox for Mars is displaced to the west on the angle 105°0178 (in the appropriate basic geographical systems of coordinates of the given planets). For ellipticties of Chandler trajectories ɛ = (b- a)-b the values 0.004897 (for the Earth) and 0.07048 (for Mars) have been obtained. The specified values surpass by Euler values of appropriate ellipticties on 46.8 % (in case of the Earth) and on 13.3 % (in the case of Mars). Love number k2describing the elastic properties of planets, were accepted equal 0.30 for the Earth and 0.153 for Mars. Estimations of Chandler periods will well be coordinated to similar estimations of other authors for models of elastic planet in 200-212 d (Konopliv et al., 2006; Zharkov, Gudkova, 2009). The values of eccentricity and ellipticity of Chandler pole motion of the Earth will be coordinated to earlier estimations e=0.096-0.098 and ɛ=0.0046-0.0048 (Barkin, 1998; Barkin, Ferrandiz, 2004), and for Mars have been obtained for the first time. The account of influence of a liquid core on considered parameters of motion of poles of planet with elastic mantle also is discussed in report on the base of author's approach developed in the paper (Ferrandiz, Barkin, 2001). The Barkin's work partially was finacially accepted by Spanish grants, Japanise-Russian grant N-09-02-92113-JF and by RFBR grant N 08-02-00367. References Barkin Yu.V., Ferrandiz J.M., J. Getino (1996) About Applications Angle-Action Variables in Rotation Dynamics of the Deformable Celestial Bodies. (Eds. S. Ferraz-Mello, B. Morrando, J.-E. Arlot) Dynamics, ephemerides and astrometry of the solar system. Proceedings. 172 nd Symposium of the International Astronomical Union, Paris ( France), 3-8 Jul. 1995. 1996, pp. 243-244. Barkin Yu.V. (1998) Unperturbed Chandler's Motion and Perturbation Theory of the Rotational Motion of the Deformable Celestial Bodies. Astronomical and Astrophysical Transactions, v. 17, N3, pp. 431-475. Barkin Yu.V., Ferrandiz J.M. (2004) Some dynamical effects in unperturbed and perturbed Earth rotation caused by elastic properties of the mantle. Journees 2004 'Systems de reference spatio temporals' (20-22 September, 2004, Paris, France). Fundamental Astronomy: New concepts and models for high accuracy observations. Book of abstracts, Observatoire de Paris, pp. 15-16. Ferrandiz, J.M. and Barkin, Yu.V. (2001) Dynamics of the rotational motion of the planet with the elastic mantle, liquid core and with the changeable external shell. Proceedings of International Conference «AstroKazan-2001». Astronomy and geodesy in new millennium (24-29 September 2001), Kazan State University: Publisher «DAS», pp. 123-129. Konopliv A.S., Yoder C.F., Standish E.M., Yuan D.-N. and Sjogren W.L. (2006) A global solution for Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus, V. 182, pp. 23-50. Zarkov V.N., Gudkova T.V. (2009) The period and Q of the Chandler wobble of Mars. Planetary and Space Science (in press).

  2. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, W.

    1985-02-08

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifer circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedstock loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point is offset by a compensating break point or zero.

  3. Evaluation of three elevated mist-net systems for sampling birds

    USGS Publications Warehouse

    Meyers, J.M.; Pardieck, K.L.

    1993-01-01

    Three light-weight, low-canopy mist-net systems were developed and tested in dry tropical scrub, mangrove and forest habitats. One plastic (polyvinyl chloride) and two aluminum pole systems (with and without pulleys) were used to support mist nets to heights of up to 7.3 m. Although the aluminum telescoping-pole system (without pulleys) was expensive initially ( 79-141/unit (US)), its use reduced capture of nontarget species and may have increased capture of target species when compared with ground-level netting. In one year, its use also reduced labor costs by 756, which completely offset the higher cost of the aluminum telescoping-pole system when compared to the plastic-pole system ( 19/unit). Unlike the plastic-pole system, the aluminum telescoping-pole system was adjustable to any height within its range of 1.8 to 7.3 m, was 1.5 m higher, was more efficient to operate in the field, and was easily moved to new locations. For capture of psittacines, the pulleys of the aluminum telescoping-pole system were not necessary, but their use may assist in efficiently retrieving large numbers of birds from the nets. The aluminum telescoping-pole system was efficient in capturing psittacines, columbids, passerines and possibly chiropterans in habitats with canopies lt 10 m or in the forest subcanopy.

  4. On the prediction of the Free Core Nutation

    NASA Astrophysics Data System (ADS)

    Belda Palazón, Santiago; Ferrándiz, José M.; Heinkelmann, Robert; Nilsson, Tobias; Schuh, Harald; Modiri, Sadegh

    2017-04-01

    Consideration of the Free Core Nutation (FCN) model is obliged for improved modelling of the Celestial Pole Offsets (CPO), since it is the major source of inaccuracy or unexplained time variability with respect to the current IAU2000 nutation theory. FCN is excited from various geophysical sources and thus it cannot be known until it is inferred from observations. However, given that the variations of the FCN signal are slow and seldom abrupt, we examine whether the availability of new FCN empirical models (i.e., Malkin 2007; Krásná et al. 2013; Belda et al. 2016) can be exploited to make reasonably accurate predictions of the FCN signal before observing it. In this work we study CPO predictions for the FCN model provided by Belda et al. 2016, in which the amplitude coefficients were estimated by using a sliding window with a width of 400 days and with a minimal displacement between the subsequent fits (one-day step). Our results exhibit two significant features: (1) the prediction of the FCN signal can be done on the basis of its prior amplitudes with a mean error of about 30 microarcseconds per year, with an apparent linear trend; and (2) the Weighted Root Mean Square (wrms) of the differences between the CPO produced by the IERS (International Earth Rotation and Reference Systems Service) and our predicted FCN exhibit an exponential slow-growing pattern, with a wmrs close to 120 microarcseconds along several months. Therefore a substantial improvement with respect to the CPO operational predictions of the IERS Rapid Service/Prediction Centre can be achieved.

  5. Evolution of the Far-Infrared Cloud at Titan's South Pole

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Achterberg, R. K.; Cottini, V.; Anderson, C. M.; Flasar, F. M.; Nixon, C. A.; Bjoraker, G. L.; Kunde, V. G.; Carlson, R. C.; Guandique, E.; hide

    2015-01-01

    A condensate cloud on Titan identified by its 220 cm (sup -1) far-infrared signature continues to undergo seasonal changes at both the north and south poles. In the north the cloud, which extends from 55 North to the pole, has been gradually decreasing in emission intensity since the beginning of the Cassini mission with a half-life of 3.8 years. The cloud in the south did not appear until 2012 but its intensity has increased rapidly, doubling every year. The shape of the cloud at the South Pole is very different from that in the north. Mapping in December 2013 showed that the condensate emission was confined to a ring with a maximum at 80 South. The ring was centered 4 degrees from Titan's pole. The pattern of emission from stratospheric trace gases like nitriles and complex hydrocarbons (mapped in January 2014) was also offset by 4 degrees, but had a central peak at the pole and a secondary maximum in a ring at about 70 South with a minimum at 80 South. The shape of the gas emissions distribution can be explained by abundances that are high at the atmospheric pole and diminish toward the equator, combined with correspondingly increasing temperatures. We discuss possible causes for the condensate ring. The present rapid build up of the condensate cloud at the South Pole is likely to transition to a gradual decline during 2015-16.

  6. The Determination of Earth Orientation by VLBI and GNSS: Principles and Results

    NASA Astrophysics Data System (ADS)

    Capitaine, Nicole

    2017-10-01

    The Earth Orientation Parameters (EOP) connect the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Reference System (GCRS). These parameters, i.e., Universal Time, UT1, and pole coordinates in the ITRS and in the GCRS, describe the irregularities of the Earth's rotation. They are mainly determined by two modern astro-geodetic techniques, VLBI (Very Long Baseline Radio Interferometry) on extragalactic radio sources, which is used to realize and maintain the International Celestial Reference System (ICRS), and Global Navigation Satellite System (GNSS), especially GPS (Global Positioning System), which has an important contribution to the realization of the ITRS. The aim of this presentation is twofold: to present the modern bases for the consider- ation of Earth orientation and to discuss how the principles of VLBI and GPS give access to the measure of different components of the EOP variations, especially UT1. The accuracy that can be achieved is based on the improved concepts, definitions, and models that have been adopted by IAU/IUGG resolutions on reference systems and Earth's rotation, as well as on the refined strategy of the observations.

  7. A Kalman filter approach for the determination of celestial reference frames

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Gross, Richard; Jacobs, Christopher; Chin, Toshio; Karbon, Maria; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2017-04-01

    The coordinate model of radio sources in International Celestial Reference Frames (ICRF), such as the ICRF2, has traditionally been a constant offset. While sufficient for a large part of radio sources considering current accuracy requirements, several sources exhibit significant temporal coordinate variations. In particular, the group of the so-called special handling sources is characterized by large fluctuations in the source positions. For these sources and for several from the "others" category of radio sources, a coordinate model that goes beyond a constant offset would be beneficial. However, due to the sheer amount of radio sources in catalogs like the ICRF2, and even more so with the upcoming ICRF3, it is difficult to find the most appropriate coordinate model for every single radio source. For this reason, we have developed a time series approach to the determination of celestial reference frames (CRF). We feed the radio source coordinates derived from single very long baseline interferometry (VLBI) sessions sequentially into a Kalman filter and smoother, retaining their full covariances. The estimation of the source coordinates is carried out with a temporal resolution identical to the input data, i.e. usually 1-4 days. The coordinates are assumed to behave like random walk processes, an assumption which has already successfully been made for the determination of terrestrial reference frames such as the JTRF2014. To be able to apply the most suitable process noise value for every single radio source, their statistical properties are analyzed by computing their Allan standard deviations (ADEV). Additional to the determination of process noise values, the ADEV allows drawing conclusions whether the variations in certain radio source positions significantly deviate from random walk processes. Our investigations also deal with other means of source characterization, such as the structure index, in order to derive a suitable process noise model. The Kalman filter CRFs resulting from the different approaches are compared among each other, to the original radio source position time series, as well as to a traditional CRF solution, in which the constant source positions are estimated in a global least squares adjustment.

  8. A study on making a Honsang using the star catalogue from 『Seong Gyeong』

    NASA Astrophysics Data System (ADS)

    Ham, Seon Young; Kim, Sang Hyuk; Lee, Yong Sam

    2016-01-01

    The first record of Honsang (Celestial globe) was found in 『Sejong Sillok』 in Korea. Since then, there were records that Honsang was restored during the reign of King Jungjong and King Myungjong, and then restored again in the reign of King Seonjo. The only existing Honsang was made by Yi Hwang (1501-1570) in the 16th century for education of his followers. After then, Hong Dae Yong's (1731-1783) Honsangui, which was made in 18th century, had been passed down only through the literature. The constellations in Honsang and the scale system of each ring changed after 17th century when Western science began to affect Joseon dynasty. Since that time, the constellations, realized on Honsang globe, changed from constellations in the old method to ones in the new method. Furthermore, the scale system of rings on Honsang was changed from 365.25 Do, Jucheondo (Celestial globe circumference), to 360°. In this study, Honsang with constellations in the new method was made using star catalogue from 『Seong Gyeong』 published in 1861, which represented the constellations in the new method of Joseon dynasty. In order to realized the constellations from the star catalogue in 『Seong Gyeong』 on Honsang globe, the plane star chart and circular star chart of the area near the South and North Poles were drawn using spherical trigonometry. Using these star charts, the constellations in whole sky including stars near the South Pole were realized on Honsang globe. Also, equatorial coordinates and ecliptic coordinates were realized on Honsang globe simultaneously, and scales of Honsang's rings were marked as 360°.

  9. Multi-channel temperature measurement amplification system. [solar heating systems

    NASA Technical Reports Server (NTRS)

    Currie, J. R. (Inventor)

    1981-01-01

    A number of differential outputs of thermocouples are sequentially amplified by a common amplifier. The amplified outputs are compared with a reference temperature signal in an offset correction amplifier, and a particularly poled output signal is provided when a differential output is of a discrete level compared with a reference temperature signal.

  10. Analysis, Simulation, and Fabrication of Current Mode Controlled DC-DC Power Converters

    DTIC Science & Technology

    1999-12-01

    susceptibility), vou/ vin . 3 . The output impedance including the load. 22 The crossover frequency, coc, appears in all poles and is defined as: oo... VIN - 3 0 VIN - 3 V Delay to Outputs (TJ=25*C, (Note 2) 200 500 200 500 ns ( Current Limit Adjust Section Current Limit Offset

  11. Expressions for IAU 2000 precession quantities

    NASA Astrophysics Data System (ADS)

    Capitaine, N.; Wallace, P. T.; Chapront, J.

    2003-12-01

    A new precession-nutation model for the Celestial Intermediate Pole (CIP) was adopted by the IAU in 2000 (Resolution B1.6). The model, designated IAU 2000A, includes a nutation series for a non-rigid Earth and corrections for the precession rates in longitude and obliquity. The model also specifies numerical values for the pole offsets at J2000.0 between the mean equatorial frame and the Geocentric Celestial Reference System (GCRS). In this paper, we discuss precession models consistent with IAU 2000A precession-nutation (i.e. MHB 2000, provided by Mathews et al. \\cite{Mathews02}) and we provide a range of expressions that implement them. The final precession model, designated P03, is a possible replacement for the precession component of IAU 2000A, offering improved dynamical consistency and a better basis for future improvement. As a preliminary step, we present our expressions for the currently used precession quantities zetaA, thetaA, zA, in agreement with the MHB corrections to the precession rates, that appear in the IERS Conventions 2000. We then discuss a more sophisticated method for improving the precession model of the equator in order that it be compliant with the IAU 2000A model. In contrast to the first method, which is based on corrections to the t terms of the developments for the precession quantities in longitude and obliquity, this method also uses corrections to their higher degree terms. It is essential that this be used in conjunction with an improved model for the ecliptic precession, which is expected, given the known discrepancies in the IAU 1976 expressions, to contribute in a significant way to these higher degree terms. With this aim in view, we have developed new expressions for the motion of the ecliptic with respect to the fixed ecliptic using the developments from Simon et al. (\\cite{Simon94}) and Williams (\\cite{Williams94}) and with improved constants fitted to the most recent numerical planetary ephemerides. We have then used these new expressions for the ecliptic together with the MHB corrections to precession rates to solve the precession equations for providing new solution for the precession of the equator that is dynamically consistent and compliant with IAU 2000. A number of perturbing effects have first been removed from the MHB estimates in order to get the physical quantities needed in the equations as integration constants. The equations have then been solved in a similar way to Lieske et al. (\\cite{Lieske77}) and Williams (\\cite{Williams94}), based on similar theoretical expressions for the contributions to precession rates, revised by using MHB values. Once improved expressions have been obtained for the precession of the ecliptic and the equator, we discuss the most suitable precession quantities to be considered in order to be based on the minimum number of variables and to be the best adapted to the most recent models and observations. Finally we provide developments for these quantities, denoted the P03 solution, including a revised Sidereal Time expression.

  12. Evolution of the Far-Infrared Cloud at Titan's South Pole

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Achterberg, R. K.; Cottini, V.; Anderson, C. M.; Flasar, F. M.; Nixon, C. A.; Bjoraker, G. L.; Kunde, V. G.; Carlson, R. C.; Guandique, E.; hide

    2015-01-01

    A condensate cloud on Titan identified by its 220 cm-1 far-infrared signature continues to undergo seasonal changes at both the north and south poles. In the north, the cloud, which extends from 55 N to the pole, has been gradually decreasing in emission intensity since the beginning of the Cassini mission with a half-life of 3.8 years. The cloud in the south did not appear until 2012 but its intensity has increased rapidly, doubling every year. The shape of the cloud at the south pole is very different from that in the north. Mapping in 2013 December showed that the condensate emission was confined to a ring with a maximum at 80 S. The ring was centered 4deg from Titan's pole. The pattern of emission from stratospheric trace gases like nitriles and complex hydrocarbons (mapped in 2014 January) was also offset by 4deg, but had a central peak at the pole and a secondary maximum in a ring at about 70 S with a minimum at 80 S. The shape of the gas emission distribution can be explained by abundances that are high at the atmospheric pole and diminish toward the equator, combined with correspondingly increasing temperatures. We discuss possible causes for the condensate ring. The present rapid build up of the condensate cloud at the south pole is likely to transition to a gradual decline from 2015 to 2016. Key words: molecular processes - planets and satellites: atmospheres - planets and satellites: composition - planets and satellites: individual (Titan) - radiation mechanisms: thermal

  13. Significance of the Eccentricity of the Earth's Magnetic Field for the Magnetosphere and Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Koochak, Z.; Fraser-Smith, A. C.

    2016-12-01

    This paper is an extension of an earlier study of the centered and eccentric dipole models of the Earth's magnetic field [Fraser-Smith, 1987]. We have used the 1980-2015 International Geomagnetic Reference Field (IGRF) Gauss coefficients to recalculate the magnetic dipole moments and magnetic pole positions for both the centered and eccentric dipoles for an additional 35 years, thus bringing them up to date. These magnetic field models play an important role in ionosphere modification, since they influence the properties of the ionosphere. However it is not widely known that the nominal origin of the Earth's magnetic field is offset from the center of the Earth by nearly 10% of the Earth's radius, which must similarly lead to an offset of some of the larger-scale modifying effects such as those associated with the magnetosphere. We describe this offset magnetic field here to help identify its effects in ionospheric modification experiments.

  14. Review Of The Working Group On Precession And The Ecliptic

    NASA Astrophysics Data System (ADS)

    Hilton, J. L.

    2006-08-01

    The IAU Working Group on Precession and the Ecliptic was charged with providing a precession model that was both dynamically consistent and compatible with the IAU 2000A nutation model, along with an updated definition and model for the ecliptic. The report of the working group has been accepted for publication in Celestial Mechanics (Hilton et al. 2006, in press) and has resulted in a recommendation to be considered at this General Assembly of the IAU. Specifically, the working group recommends: 1. That the terms lunisolar precession and planetary precession be replaced by precession of the equator and precession of the ecliptic, respectively. 2. That, beginning on 1 January 2009, the precession component of the IAU 2000A precession-nutation model be replaced by the P03 precession theory, of Capitaine et al. (2003, A&A, 412, 567-586) for the precession of the equator (Eqs. 37) and the precession of the ecliptic (Eqs. 38); the same paper provides the polynomial developments for the P03 primary angles and a number of derived quantities for use in both the equinox based and Celestial Intermediate Origin based paradigms. 3. That the choice of precession parameters be left to the user. 4. That the ecliptic pole should be explicitly defined by the mean orbital angular momentum vector of the Earth-Moon barycenter in an inertial reference frame, and this definition should be explicitly stated to avoid confusion with other, older definitions. consistent and compatible with the IAU 2000A nutation model, along consistent and compatible with the IAU 2000A nutation model, along with an updated definition and model for the ecliptic. The report of the working group has been accepted for publication in Celestial Mechanics (Hilton et al. 2006, in press) and has resulted in a recommendation to be considered at this General Assembly of the IAU. Specifically, the working group recommends, * that the terms lunisolar precession and planetary precession be replaced by precession of the equator and precession of the ecliptic, respectively, * that, beginning on 1 January 2009, the precession component of the IAU 2000A precession-nutation model be replaced by the P03 precession theory, of Capitaine et al. (2003, A&A, 412, 567-586) for the precession of the equator (Eqs.~37) and the precession of the ecliptic (Eqs.~38); the same paper provides the polynomial developments for the P03 primary angles and a number of derived quantities for use in both the equinox basedand Celestial Intermediate Origin based paradigms, * that the choice of precession parameters be left to the user, and * that the ecliptic pole should be explicitly defined by the mean orbital angular momentum vector of the Earth-Moon barycenter in an inertial reference frame, and this definition should be explicitly stated to avoid confusion with other, older definitions.

  15. Book Review: Precession, Nutation, and Wobble of the Earth

    NASA Astrophysics Data System (ADS)

    Sterken, Christiaan; Dehant, V.; Mathews, P. M.

    2016-10-01

    This great book describes and explains observational and computational aspects of three apparently tiny changes in the Earth's motion and orientation, viz., precession, nutation, and wobble. The three introductory chapters of this book present fundamental definitions, elementary geodetic theory, and celestial/terrestrial reference systems - including transformations between reference frames. The next chapter on observational techniques describes the principle of accurate measurements of the orientation of the Earth's axis, as obtained from measurements of extra-galactic radio sources using Very Long Baseline Interferometry and GPS observations. Chapter 5 handles precession and nutation of the rigid Earth (i.e., a celestial body that cannot, by definition, deform) and the subsequent chapter takes deformation into consideration, viz., the effect of a centrifugal force caused by a constant-rate rotation that causes the Earth's shape and structure to become ellipsoidal. Deformations caused by external solar-system bodies are discussed in terms of deformability parameters. The next three chapters handle additional complex deviations: non-rigid Earth and more general Earth models, anelastic Earth parameters, and the effects of the fluid layers (i.e., ocean and atmosphere) on Earth rotation. Chapter 10 complements Chapter 7 with refinements that take into account diverse small effects such as the effect of a thermal conductive layer at the top of the core, Core Mantle and Inner Boundary coupling effects on nutation, electromagnetic coupling, and so-called topographic coupling. Chapter 11 covers comparison of observation and theory, and tells us that the present-date precision of the nutation theory is at the level of milliarcseconds in the time domain, and of a tenth of a microsecond in the frequency domain (with some exceptions). This chapter is followed by a 25-page chapter of definitions of equator, equinox, celestial intermediate pole and origin, stellar angle, universal time, and more. Chapter 13 treats the planet Mars, as it is also rapidly rotating, has an equatorial bulge and an obliquity that is comparable to that of the Earth. The last chapter is followed by three Appendices, viz., Rotation representation, Clairaut theory and Definitions of equinoxes. Appendix A deals with rotation vector and rotation matrix, specifically applied to small angles, such as in the case of rotation from change of pole position. Appendix B expresses the Earth's gravitational potential, and the first-order hypothesis that the Earth is in hydrostatic equilibrium, and that its uniformly-rotating surface is an equipotential corresponding to the mean sea level. Appendix C presents a set of definitions of equinoxes. This book is extremely well documented with more than 50 pages of references that are very up to date. The illustrations (exclusively line art diagrams) are all of good quality and the data tables are rich and well formatted. The language is clear and direct, but with nearly 1500 mathematical formulae, this reference work primarily appeals to the community of mathematically-schooled researchers, although anyone lecturing or teaching in celestial mechanics will see this jewel as a treasure trove to be visited on.

  16. Monitoring of Earth Rotation by VLBI

    NASA Technical Reports Server (NTRS)

    Ma., Chopo; Macmillan, D. S.

    2000-01-01

    Monitoring Earth rotation with Very Long Baseline Interferometry (VLBI) has unique potential because of direct access to the Celestial Reference System (CRF and Terrestrial Reference System (TRF) and the feasibility of re-analyzing the entire data set. While formal precision of better than 0.045 mas for pole and 0.002 ms for UT 1 has been seen in the best 24-hr data, the accuracy of the Earth Orientation Parameter (EOP) time series as a whole is subject to logistical, operational, analytical and conceptual constraints. The current issues related to the VLBI data set and the CORE program for greater time resolution such as analysis consistency, network jitter and reference frame stability will be discussed.

  17. Solar minimum Lyman alpha sky background observations from Pioneer Venus orbiter ultraviolet spectrometer - Solar wind latitude variation

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.

    1990-01-01

    Measurements of interplanetary H I Lyman alpha over a large portion of the celestial sphere were made at the recent solar minimum by the Pioneer Venus orbiter ultraviolet spectrometer. These measurements were performed during a series of spacecraft maneuvers conducted to observe Halley's comet in early 1986. Analysis of these data using a model of the passage of interstellar wind hydrogen through the solar system shows that the rate of charge exchange with solar wind protons is 30 percent less over the solar poles than in the ecliptic. This result is in agreement with a similar experiment performed with Mariner 10 at the previous solar minimum.

  18. Origin of the Louisville Ridge and its relationship to the Eltanin Fracture Zone System

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Weissel, J. K.; Duncan, R. A.; Larson, R. L.

    1988-04-01

    We have combined shipboard and Seasat altimeter derived data in an intergrated geological and geophysical study of the Louisville Ridge; a 3500-km-long seamount chain extending from the Tonga trench to the Eltanin Fracture Zone. A break in the smooth trend of the ridge at latitude 37.5°S has been recognized in both bathymetric and altimetric data. The 40Ar-39Ar dating of rocks dredged either side of the break suggest that it is analogous to the bend in the Hawaiian-Emperor seamount chain. Although the general trend of the ridge can be fit by small circles about Pacific absolute motion poles determined from other seamount chains, the new bathymetric and age data allow us to refine Pacific absolute motion poles. The continuity in smooth trend of the ridge and the Eltanin Fracture Zone suggests some relationship between them. However, a major offset developed on this transform between 60 and 80 Ma, prior to the oldest dated rocks from the ridge. Although magmatism was more or less continuous on the ridge during 28-60 Ma, it probably occurred on crust with little or no offset. Thus magmatism appears to have been little influenced by the developing fracture zone. By 28 Ma, the distance between the magmatic source and the fracture zone had decreased sufficiently for a portion of the ridge to have been emplaced on crust with an offset. After about 12 Ma, however, volcanic activity on the Louisville Ridge apparently waned, despite a possible influence on the magmatism of the fracture zone.

  19. Relation Between the Celestial Reference System and the Terrestrial Reference System of a Rigid Earth

    NASA Astrophysics Data System (ADS)

    Aoki, Shinko

    1987-03-01

    A relation between the Celestial Reference System (CRS) and the Terrestrial Reference System is established theoretically by solving the equations of motion of a rigid Earth under the influence of the Sun and the Moon up to the second order perturbation. The solutions include not only nutation including Oppolzer terms but also the right ascension of the dynamical departure point (DP), as well as the wobble matrix. We have found that the kinematical definition of the Non-Rotating Origin NRO (for which our term is DP) given by Capitaine, Guinot and Souchay (1987) is not entirely equivalent to that included in the solutions of the equations of motion but shows perturbation, in particular when this is taken on the instantaneous equator. Besides this serious fault, we feel little merit in taking the DP as reference: (1) Unnecessary spurious mixed secular terms appear which come from the geometrical configuration that the DP leaves far and far from the ecliptic. (2) the DP moves secularly as well as oscillating with respect to space; this literally contradicts the term ‘NRO’, or is at least misleading. (3) It does not free us from the precession uncertainty to adopt DP as reference, since we cannot avoid virtual proper motions in terms of the current CRS. (4) No terms ignored hitherto are introduced, even if we take the DP properly chosen, i.e., on the equator of the celestial ephemeris pole. The transformation is only mathematical. There is no sufficient reason to take it instead of the equinox, which is observable in principle, as reference at the cost of the labor of changing all the textbooks, ephemerides, data and computer software now existing.

  20. Simplified filtered Smith predictor for MIMO processes with multiple time delays.

    PubMed

    Santos, Tito L M; Torrico, Bismark C; Normey-Rico, Julio E

    2016-11-01

    This paper proposes a simplified tuning strategy for the multivariable filtered Smith predictor. It is shown that offset-free control can be achieved with step references and disturbances regardless of the poles of the primary controller, i.e., integral action is not explicitly required. This strategy reduces the number of design parameters and simplifies tuning procedure because the implicit integrative poles are not considered for design purposes. The simplified approach can be used to design continuous-time or discrete-time controllers. Three case studies are used to illustrate the advantages of the proposed strategy if compared with the standard approach, which is based on the explicit integrative action. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. AmphiFoxQ2, a novel winged helix/forkhead gene, exclusively marks the anterior end of the amphioxus embryo

    NASA Technical Reports Server (NTRS)

    Yu, Jr-Kai; Holland, Nicholas D.; Holland, Linda Z.

    2003-01-01

    A full-length FoxQ-related gene (AmphiFoxQ2) was isolated from amphioxus. Expression is first detectable in the animal/anterior hemisphere at the mid blastula stage. The midpoint of this expression domain coincides with the anterior pole of the embryo and is offset dorsally by about 20 degrees from the animal pole. During the gastrula stage, expression is limited to the anterior ectoderm. By the early neurula stage, expression remains in the anterior ectoderm and also appears in the adjacent anterior mesendoderm. By the early larval stages, expression is detectable in the anteriormost ectoderm and in the rostral tip of the notochord. AmphiFoxQ2 is never expressed anywhere except at the anterior tip of amphioxus embryos and larvae. This is the first gene known that exclusively marks the anterior pole of chordate embryos. It may, therefore, play an important role in establishing and/or maintaining the anterior/posterior axis.

  2. Gamma-Ray Pulsar Light Curves in Offset Polar Cap Geometry

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; DeCesar, Megan; Miller, M. Coleman

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres, used to model high-energy light curves have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profile. We find that. corn pared to the profile:-; derived from :-;ymmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines. increases significantly relative to the off-peak emission. formed along leading field lines. The enhanced contrast produces greatly improved slot gap model fits to Fermi pulsar light curves like Vela, which show very little off-peak emIssIon.

  3. Interaction Between the Celestial and the Terrestrial Reference Frames

    NASA Technical Reports Server (NTRS)

    Gordon, David; MacMillan, Dan; Bolotin, Sergei; Le Bail, Karine; Gipson, John; Ma, Chopo

    2010-01-01

    Effects of International Celestial Reference Frame (ICRF2) on the Terrestrial Reference Frames (TRF), CRF and EOP's, The ICRF2 became official on Jan. 1, 2010. It includes positions of 3414 compact radio astronomical sources observed with VLBI, a fivefold increase from the first ICRF. Numerous new VLBI models were used and the most unstable sources were treated as arc parameters to avoid distortions of the frame. The ICRF2 has a noise floor of 40 micro-arc-seconds and an axis stability of 10 micro-arc-seconds. It was aligned with the ICRS using 138 stable sources common to ICRF2 and ICRF-Ext2. Maintenance of ICRF2 is to be made using 295 defining sources chosen for their historical positional stability, minimal source structure, and sky distribution. Their stability and their more uniform sky distribution eliminate the two largest weaknesses of ICRF I. The switchover to ICRF2 has some small effects on the TRF, CRF and Earth Orientation Parameters (EOP). A CRF based on ICRF2 shows a relative rotation of 40 micro-arc-seconds, mostly about the Y-axis. Small shifts are also seen in the EOP's, the largest being 11 micro-arc-seconds in X-pole. Some small but insignificant differences are also seen in the TRF. These results will be presented and discussed.

  4. Dramatic orientation shift of white-crowned sparrows displaced across longitudes in the high Arctic.

    PubMed

    Akesson, Susanne; Morin, Jens; Muheim, Rachel; Ottosson, Ulf

    2005-09-06

    Advanced spatial-learning adaptations have been shown for migratory songbirds, but it is not well known how the simple genetic program encoding migratory distance and direction in young birds translates to a navigation mechanism used by adults. A number of convenient cues are available to define latitude on the basis of geomagnetic and celestial information, but very few are useful to defining longitude. To investigate the effects of displacements across longitudes on orientation, we recorded orientation of adult and juvenile migratory white-crowned sparrows, Zonotrichia leucophrys gambelii, after passive longitudinal displacements, by ship, of 266-2862 km across high-arctic North America. After eastward displacement to the magnetic North Pole and then across the 0 degrees declination line, adults and juveniles abruptly shifted their orientation from the migratory direction to a direction that would lead back to the breeding area or to the normal migratory route, suggesting that the birds began compensating for the displacement by using geomagnetic cues alone or together with solar cues. In contrast to predictions by a simple genetic migration program, our experiments suggest that both adults and juveniles possess a navigation system based on a combination of celestial and geomagnetic information, possibly declination, to correct for eastward longitudinal displacements.

  5. An analysis of 5-day midtropospheric flow patterns for the South Pole: 1985-1989

    NASA Astrophysics Data System (ADS)

    Harris, Joyce M.

    1992-09-01

    An analysis of 5-day midtropospheric flow patterns for the South Pole during 1985-1989 is presented. Cluster analysis was used to summarize trajectories by year and by month. The results indicate that flow from the east was most often anticyclonic and light, occurring 8-18% of the time. Westerly flow patterns were the strongest and most frequent (37-51% occurrence). They were consistently cyclonic, usually reflecting storms in the Ross Sea area, the average center of the circumpolar vortex. Strong northerly flow occurred more often in 1987 than in other years. Year-to-year variability was also evident in southwesterly flow, which was enhanced in 1988, and weaker in 1987, compared with other years. The lightest winds over the South Pole occur during January, while the most vigorous long-range transport to South Pole occurs from July through October. Selected isentropic trajectories were examined to determine errors inherent in the isobaric estimates. Isentropic trajectories from the east showed little vertical motion and good agreement with isobaric ones. Over west Antarctica, however, isentropic trajectories consistently showed positive vertical motion. As a result, their isobaric counterparts were too long and overestimated the cyclonic curvature in the flow. Preferred transport from the west with warm-air advection results from the circumpolar vortex being asymmetrical, and the average isotherms, though roughly circular, being offset to the east of the South Pole.

  6. Late 20th Century increase in South Pole snow accumulation

    USGS Publications Warehouse

    Mosley-Thompson, E.; Paskievitch, J.F.; Gow, A.J.; Thompson, L.G.

    1999-01-01

    A compilation of the 37-year history of net accumulation at the South Pole [Mosley-Thompson et al., 1995] suggests an increase in net annual accumulation since 1965. This record is sporadic and its quality is compromised by spatially restricted observations and nonsystematic measurement procedures. Results from a new, spatially extensive network of 236 accumulation poles document that the current 5-year (1992-1997) average annual net accumulation at the South Pole is 84.5??8.9 mm water equivalent (w.e.). This accumulation rate reflects a 30% increase since the 1960s when the best, although not optimal, records indicate that it was 65 mm w.e. Identification of two prominent beta radioactivity horizons (1954/1955 and 1964/1965) in six firn cores confirms an increase in accumulation since 1965. Viewed from a longer perspective of accumulation provided by ice cores and a snow mine study, the net accumulation of the 30-year period, 1965-1994, is the highest 30-year average of this millennium. Limited data suggest this recent accumulation increase extends beyond the South Pole region and may be characteristic of the high East Antarctic Plateau. Enhanced accumulation over the polar ice sheets has been identified as a potential early indicator of warmer sea surface temperatures and may offset a portion of the current rise in global sea level. Copyright 1999 by the American Geophysical Union.

  7. Search for neutralino Dark Matter with the AMANDA neutrino telescope and prospects for IceCube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Alfio

    2009-04-17

    If non-baryonic dark matter exists in the form of neutralinos, a neutrino flux is expected from the decay of neutralino pair annihilation products inside heavy celestial bodies. Data taken with the AMANDA-II neutrino telescope located at the South Pole, have been used in a search for this indirect dark matter signal. Results will be presented from searches for neutralinos accumulated in the Sun, using AMANDA-II data of 2001 and 2003, and in the centre of the Earth, using AMANDA-II data of 2001 to 2003. Future perspectives, achieved by higher statistics data samples acquired during recent years and by the combinedmore » AMANDA-IceCube detector, will also be discussed.« less

  8. Polarimetric Study of Jupiter's Atmosphere

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.; McLean, W.; Wesley, A.; Miles, P.; Masding, P.

    2017-12-01

    Jupiter's atmosphere displays polarization, attributed to changes in the clouds/thermal filed that can be brought about by endogenic dynamical processes such merger of vortices; global, planetary scale upheavals, and external factors such as celestial collisions (such as D/Shoemaker-Levy 9 impact with Jupiter in 1994, etc.). Although the range of phase angles available from Earth for Jupiter is restricted to a narrow range, limb polarization measurements provide constraints on the polarimetric properties. Jupiter is known to exhibit a strong polar limb polarization and a low equatorial limb polarization due to the presence of haze particles and Rayleigh scattering at the poles. In contrast, at the equator, the concentration of particulates in the high atmosphere might change, changing the polarimetric signature and aurorae at both poles. The polarimetric maps, in conjunction with thermal maps and albedo maps, can provide constraints on modeling efforts to understand the nature of the aerosols/hazes in Jovian atmosphere. With Jupiter experiencing morphological changes at many latitudes, we have initiated a polarimetric observing campaign of Jupiter, in conjunction with The PACA Project and preliminary results will be discussed. Some of our observations are acquired by a team of professional/amateur planetary imagers astronomers.

  9. Linear magnetic spring and spring/motor combination

    NASA Technical Reports Server (NTRS)

    Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)

    1991-01-01

    A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.

  10. VizieR Online Data Catalog: Radio sources in the NCP region with the 21CMA (Zheng+, 2016)

    NASA Astrophysics Data System (ADS)

    Zheng, Q.; Wu, X.-P.; Johnston-Hollitt, M.; Gu, J.-H.; Xu, H.

    2017-03-01

    In the current work, we present the point radio sources observed with the 40 pods of the 21 Centimeter Array (21CMA) E-W baselines for an integration of 12hr made on 2013 April 13; centered on the North Celestial Pole (NCP). An extra deep sample with a higher sensitivity from a longer integration time of up to years will be published later. We have detected a total of 624 radio sources over the central field within 3° in a frequency range of 75-175MHz and the outer annulus of 3°-5° in the 75-125MHz bands. By performing a Monte-Carlo simulation, we have estimated a completeness of 50% at S~0.2Jy. (1 data file).

  11. Application of microprocessors in an upper atmosphere instrument package

    NASA Technical Reports Server (NTRS)

    Lim, T. S.; Ehrman, C. H.; Allison, S.

    1981-01-01

    A servo-driven magnetometer table measuring offset from magnetic north has been developed by NASA to calculate payload azimuth required to point at a celestial target. Used as an aid to the study of gamma-ray phenomena, the high-altitude balloon-borne instrument determines a geocentric reference system, and calculates a set of pointing directions with respect to the system. Principal components include the magnetometer, stepping motor, microcomputer, and gray code shaft encoder. The single-chip microcomputer is used to control the orientation of the system, and consists of a central processing unit, program memory, data memory and input/output ports. Principal advantages include a low power requirement, consuming 6 watts, as compared to 30 watts consumed by the previous system.

  12. Piezoelectric and dielectric performance of poled lead zirconate titanate subjected to electric cyclic fatigue

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay; Mottern, Alexander M.

    2012-02-01

    Poled lead zirconate titanate (PZT) material as a single-layer plate was tested using a piezodilatometer under electric cyclic loading in both unipolar and bipolar modes. Its responses were evaluated using unipolar and bipolar measurements on the same setup. The mechanical strain and charge density loops exhibited various variations when the material was cycled for more than 108 cycles. The various quantities including loop amplitude, hysteresis, switchable polarization, and coercive field were characterized accordingly under the corresponding measurement conditions. At the same time, the offset polarization and bias electric field of the material were observed to be changed and the trend was found to be related to the measurement conditions also. Finally, the piezoelectric and dielectric coefficients were analyzed and their implications for the application of interest have been discussed.

  13. Low-degree Structure in Mercury's Planetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.

    2012-01-01

    The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.

  14. Gamma-Ray Pulsar Light Curves in Vacuum and Force-Free Geometry

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; DeCesar, Megan E.; Miller, M. Coleman; Kalapotharakos, Constantinos; Contopoulos, Ioannis

    2011-01-01

    Recent studies have shown that gamma-ray pulsar light curves are very sensitive to the geometry of the pulsar magnetic field. Pulsar magnetic field geometries, such as the retarded vacuum dipole and force-free magnetospheres have distorted polar caps that are offset from the magnetic axis in the direction opposite to rotation. Since this effect is due to the sweepback of field lines near the light cylinder, offset polar caps are a generic property of pulsar magnetospheres and their effects should be included in gamma-ray pulsar light curve modeling. In slot gap models (having two-pole caustic geometry), the offset polar caps cause a strong azimuthal asymmetry of the particle acceleration around the magnetic axis. We have studied the effect of the offset polar caps in both retarded vacuum dipole and force-free geometry on the model high-energy pulse profiles. We find that, compared to the profiles derived from symmetric caps, the flux in the pulse peaks, which are caustics formed along the trailing magnetic field lines, increases significantly relative to the off-peak emission, formed along leading field lines. The enhanced contrast produces improved slot gap model fits to Fermi pulsar light curves like Vela, with vacuum dipole fits being more favorable.

  15. Analysis of data from LEND instrument on LRO: May water deposits be expected on poles of Mercury?

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I.

    2012-04-01

    Lunar Exploration Neutron Detector (LEND) of LRO measured the flux of epithermal neutrons with high spatial resolution ˜10 km for the amplitude of 50 km. The LEND data from the polar caps above 80° latitude were tested for the presence of local spots of epithermal Neutron Suppression Regions (NSRs), which have been identified with wa-ter ice permafrost. The model has been proposed, which explains the origin of water at lunar poles by chemical reactions between hydrogen of solar wind with oxygen of lunar regolith. The so-called solar water could be produced under the sunlit surface, and than migrate either at cold traps in he local vicinity from the irradiated spot of origin, or at cold subsur-face layer just below of the uppermost layer of origin. Similarly to the Moon, there are data of radio sensing of Mercury, which points out that this planet might have the water ice deposits at poles. Therefore, one may suspect that the main physics could also be similar at poles of the Moon and the Mercury: - if the water ice deposits are on the lunar poles, they should be at the Hermean poles as well; - if comets are not the main source for the water at lunar poles, they should not also be the main source for the polar water deposits on the Mercury. However, one should also take into account that the Moon and the Mercury have rather different physics of inter-action between the plasma of solar wind and the surface: - the Mercury have the dipole magnetic field, which is large enough to shield the equatorial belt of the planet from the direct interaction with the plasma of solar wind; - flux of solar wind and solar radiation at the orbit of Mercury are much larger than they are at the Earth orbit; - the average temperature of illuminated spots at Hermean poles is much larger than the temperature of illuminated spots at poles of the Moon. In addition to current neutron data from LRO, the data from MESSENGER should be studied for better under-standing of polar water ice deposits at the Moon and at the Mercury. Additional data will be provided by neutron mapping from the BeppiColombo spacecraft, which will map neutron albedo of bother Hermean poles (the MESSENGER maps only the southern hemisphere). First of all, one have to test that Mercury have extended suppression regions of epithermal neutrons around both poles, as the Moon has. If hydrogen at polar regolith is delivered by the solar wind, the polar suppression of Mercury should be rather different from one of the Moon, because Hermean magnetosphere should chanelize the plasma of solar wind plasma toward the poles. Second, one have to test the presence of local NSEs at the Hermean poles and to compare them with the lunar NSRs. If NSRs at both celestial bodies are associated with deposits of solar water, one could expect to find more water rich permafrost on the Mercury than on the Moon at areas with similarly cold surfaces, because at the same thermal conditions production rate of water molecules from the solar wind should be higher on Mercury than on the Moon.

  16. 1-GHz repetition rate femtosecond OPO with stabilized offset between signal and idler frequency combs.

    PubMed

    Gebs, R; Dekorsy, T; Diddams, S A; Bartels, A

    2008-04-14

    We report an optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN) that is synchronously pumped by a femtosecond Ti:sapphire laser at 1 GHz repetition rate. The signal output has a center wavelength of 1558 nm and its spectral bandwidth amounts to 40 nm. The OPO operates in a regime where the signal- and idler frequency combs exhibit a partial overlap around 1600 nm. In this near-degeneracy region, a beat at the offset between the signal and idler frequency combs is detected. Phase-locking this beat to an external reference stabilizes the spectral envelopes of the signal- and idler output. At the same time, the underlying frequency combs are stabilized relative to each other with an instability of 1.5x10(-17) at 1 s gate time.

  17. Development of the program visualizing the lunar physical libration with Visual Basic

    NASA Astrophysics Data System (ADS)

    Zagidullin, Arthur; Petrova, Natalia

    Study of the Moon, of its spin-orbital characteristics and parameters of the lunar interior is one of the traditional fields of the Kazan astronomical school. However, despite the incredible successes in space investigations of the planets and of the Moon, in last years the interest to celestial mechanics, ephemerides astronomy and astrometry is significantly decreased, especially among the young scientists and students. Therefore, it is encouraging to see the work of the third-year student, which is devoted to the study of the physical libration of the Moon. This report presents the results of the first stage of the above study associated with the study of Cassini's laws in the rotation of the Moon and the visualization of these laws by means the programming language Visual Basic. The Earth moves on the Moon's orbit in selenocentric frame. Dynamic coordinate system is based on the principal axes of inertia of the Moon. The x-axis is directed along the largest principal axis of inertia A, the axis z is a dynamic pole of the Moon associated with the smallest principal axis of inertia C. According to the first Cassini’s law the lunar pole is inclined at a constant angle approximately equal to 1.5 degree. The ascending node of the orbit is coincides with descending node of the lunar equator (the second Cassini’s law) and, as a result, the ecliptic pole lies between the orbit pole and spin pole. Therefore the three vectors directed from the lunar centre of mass to orbit pole, ecliptic pole and spin pole form a single plane. The third Cassini’s law reflects the uniform rotation of the Moon synchronised with orbital motion of the Moon around the Earth (in the selenocentric frame the Earth moves around the Moon). It’s necessary a significant time to calculate the corresponding coordinates of points, which move synchronously on the orbit and on the equator. In any time t the Earth moves with the mean velocity n and forms the angle n*t in the orbit plane. At the same time, according to the third law, the axis x forms the same angle varphi = n*t in equatorial plane. In other words the longest axis of the Moon is always "looking" at the Earth. The latter action, which the developed program executes, is a demonstration of the effects of several, the most powerful, harmonics of the physical libration. Unfortunately, Visual Basic opportunities are severely limited for creating three-dimensional images. Because of this we could not to support real scale in angles and time. This work was supported by RFBR grant No. 13-02-00792.

  18. An X-ray photoelectron spectroscopy study of BF3 adsorption on positively and negatively poled LiNbO3 (0001)

    NASA Astrophysics Data System (ADS)

    Herdiech, M. W.; Mönig, H.; Altman, E. I.

    2014-08-01

    Adsorption of the strong Lewis acid BF3 was investigated to probe the sensitivity of the Lewis basicity of surface oxygens on LiNbO3 (0001) to the ferroelectric polarization direction. Adsorption and desorption were characterized by using X-ray photoelectron spectroscopy (XPS) to monitor the intensity and binding energy of the F 1s core level as a function of BF3 exposure and temperature. The results indicate that both BF3 uptake and desorption are very similar on the positively and negatively poled surfaces. In particular, BF3 only weakly adsorbs with the majority of the adsorbed BF3 desorbing below 200 K. Despite the similarities in the uptake and desorption behavior, the binding energy of the F 1s peak relative to the substrate Nb 3d5/2 peak was sensitive to the polarization direction, with the F 1s peak occurring at a binding energy up to 0.3 eV lower on positively poled than negatively poled LiNbO3 for equivalent BF3 exposures. Rather than reflecting a difference in bonding to the surface, however, this shift could be associated with oppositely oriented dipoles at the positively and negatively poled surfaces creating opposite band offsets between the adsorbate and the substrate. A similar effect was observed with lead zirconate titanate thin films where the Pb 4f XPS peak position changes as a function of temperature as a result of the pyroelectric effect which changes the magnitude of the surface and interface dipoles.

  19. The displacement of the sun from the galactic plane using IRAS and faust source counts

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I determine the displacement of the Sun from the Galactic plane by interpreting IRAS point-source counts at 12 and 25 microns in the Galactic polar caps using the latest version of the SKY model for the point-source sky (Cohen 1994). A value of solar zenith = 15.5 +/- 0.7 pc north of the plane provides the best match to the ensemble of useful IRAS data. Shallow K counts in the north Galactic pole are also best fitted by this offset, while limited FAUST far-ultraviolet counts at 1660 A near the same pole favor a value near 14 pc. Combining the many IRAS determinations with the few FAUST values suggests that a value of solar zenith = 15.0 +/- 0.5 pc (internal error only) would satisfy these high-latitude sets of data in both wavelength regimes, within the context of the SKY model.

  20. Radio sounding of the solar corona during 1995 solar conjunction of the Ulysses spacecraft

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Paetzold, M.; Karl, J.; Edenhofer, P.; Asmar, S. W.

    1995-01-01

    The Ulysses spacecraft will pass through superior solar conjunction on March 5 1995, a few days before its perihelion and passage through the ecliptic plane. Dual-frequency S/X-band ranging and Doppler observations will be conducted in support of the Ulysses Solar Corona Experiment (SCE) during a three-week interval centered on the conjunction. The occultation geometry is unique in the annals of interplanetary exploration. As viewed from Earth, the spacecraft will appear to cut diagonally through the southwest quadrant of the solar corona from the South Pole to the equator. The minimum proximate distance to the Sun of the radio ray path will be 21.6 solar radius. The entire latitude scan from pole to equator occurs for a limited range of solar offset distances (is less than 30 solar radius thus facilitating the separation of latitudinal from radial variations in the coronal density and associated parameters of interest.

  1. Validation of OCO-2 and ACOS-GOSAT using HIPPO and TCCON

    NASA Technical Reports Server (NTRS)

    Kulawik, Susan S.; Wunch, Debra; O'Dell, Christopher; Miller, Charles; Osterman, Greg; Wennberg, Paul; Griffith, David; Sherlock, Vanessa; Deutscher, Nicholas M.; Notholt, Justus; hide

    2017-01-01

    Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2measurements for joint flux inversion and establishing a long-term atmospheric CO2 data record. Wevalidate recent satellite observation of OCO-2 v7 and ACOS-GOSAT v7.3 using similar analysis as previouswork (Kulawik et al. (2016) and Frankenberg et al. (2106)) through comparisons to the HIAPER Pole-to-Pole Observations (HIPPO) and the Total Carbon Column Observing Network (TCCON) to estimate biasesand errors affecting the understanding of carbon cycle science. CarbonTracker RT is also compared tothe validation data, and additionally used to evaluate the mismatch between the HIPPO observationtimeframe and the OCO-2 record, which are offset by 3-7 years. Some key metrics that are validatedinclude the seasonal cycle phase and amplitude, latitudinal gradient by season, regional biases, anderrors with respect to averaging.

  2. PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA: RESULTS FROM THE 2010 OBSERVING SEASON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingzhi; Zhu, Zonghong; Macri, Lucas M.

    We present results from a season of observations with the Chinese Small Telescope ARray, obtained over 183 days of the 2010 Antarctic winter. We carried out high-cadence time-series aperture photometry of 9125 stars with i ∼< 15.3 mag located in a 23 deg{sup 2} region centered on the south celestial pole. We identified 188 variable stars, including 67 new objects relative to our 2008 observations, thanks to broader synoptic coverage, a deeper magnitude limit, and a larger field of view. We used the photometric data set to derive site statistics from Dome A. Based on two years of observations, wemore » find that extinction due to clouds at this site is less than 0.1 and 0.4 mag during 45% and 75% of the dark time, respectively.« less

  3. Astrometric and Geodetic Properties of Earth and the Solar System

    NASA Technical Reports Server (NTRS)

    Yoder, Charles F.

    1995-01-01

    The mass, size and shape of planets and their satellites and are essential information from which one can consider the balance of gravity and tensile strength, chemical makeup and such factors as internal temperature or porosity. Orbits and planetary rotation are also useful clues concerning origin, internal structure and tidal history. The tables compiled here include some of the latest results such as detection of densities of Pluto-Charon from analysis of HST images and the latest results for Venus' shape, gravity field and pole orientation based on Magellan spacecraft data. Data concerning prominent asteroids, comets and Sun are also included. Most of the material here is presented as tables. They are preceded by brief explanations of the relevant geophysical and orbit parameters. More complete explanations can be found in any of several reference texts on geodesy, geophysics and celestial mechanics.

  4. Method for deploying multiple spacecraft

    NASA Technical Reports Server (NTRS)

    Sharer, Peter J. (Inventor)

    2007-01-01

    A method for deploying multiple spacecraft is disclosed. The method can be used in a situation where a first celestial body is being orbited by a second celestial body. The spacecraft are loaded onto a single spaceship that contains the multiple spacecraft and the spacecraft is launched from the second celestial body towards a third celestial body. The spacecraft are separated from each other while in route to the third celestial body. Each of the spacecraft is then subjected to the gravitational field of the third celestial body and each of the spacecraft assumes a different, independent orbit about the first celestial body. In those situations where the spacecraft are launched from Earth, the Sun can act as the first celestial body, the Earth can act as the second celestial body and the Moon can act as the third celestial body.

  5. A Proposed Robotic Astronomy Mission to the Lunar South Polar Regions

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    2003-01-01

    This paper outlines a possible mission to emplace a robotic infrared / submillimeter wave interferometer array near the lunar south pole. This region has now been investigated by the Clementine and Lunar Prospector missions, and by Earth-based radar, and its topography and thermal environment are fairly well-known. The area would be exceptionally suitable for infrared / submillimeter astronomy because of the continually low temperatures, approaching that of liquid nitrogen (77K) in some places. A submillimeter spaceborne interferometer mission, Submillimeter Probe of the Evolution of the Cosmic Structure (SPECS) has been proposed by John Mather and others, covering the 40 - 500 micron region with 3 formation flying telescopes. The present paper proposes a lunar adaptation of the SPECS concept, LSPECS. This adaptation would involve landing 4 telescopes on the area north of Shackleton crater at zero degrees longitude. This is in nearly year round darkness but is continually radar visible from Earth. The landed payload of LSPECS would include a telerobotic rover, 4 three meter submm telescopes, a solar power array to be emplaced on the continually sunlit north rim of Shackleton crater, and an S-band antenna for data relay to Earth. Passive cooling without the use of expendable cryogenics. might be possible, trading long exposure time for instrument temperatures above that of liquid helium. The LSPECS would permit long-term study of an extremely wide range of cosmic and solar system phenomena in the southern celestial hemisphere. For complete sky coverage, a similar installation near the north pole would be required. The LSPECS site would also be suitable other types of observation, such as optical interferometry or centimeter wavelength radio astronomy. The lunar south pole is also of great interest because of its extensive ice deposits, which may represent cometary infall with pre-biotic compounds.

  6. Prehistory of Zodiac Dating: Three Strata of Upper Paleolithic Constellations

    NASA Astrophysics Data System (ADS)

    Gurshtein, Alex A.

    A pattern of archaic proto-constellations is extracted from Aratus' "The Phaenomena" didactic poem list according to a size criterion elaborated earlier, and their symbolism is analyzed. As a result of this approach three celestial symbolical strata are discovered to be probably a reflection of the symbols for the Lower, the Middle and the Upper Worlds; the Under-World creatures have a water character, the Middle World ones are mostly anthropomorphic and flying beings are for the Upper World. The strata excerpted from Aratus' sky seems to be in agreement with the well-known Babylonian division into three god pathways for Ea (Enki), Anu and Enlil. There is a possibility of dating the pattern discovered because of precession's strong influence as far back as 16 thousand years, the result being supported by the comparison of different star group mean sizes. The archaic constellation pattern under consideration is a reasonable background of symbolical meanings for the first Zodiacal generation quartet (7.5 thousand years old) examined by the author previously. The enormous size of the Argo constellation (Ship of Argo and his Argonauts) as well as the large sizes of other southern constellations are explained as due to the existence of an accumulation zone near the South celestial pole. Some extra correlations between the reconstruction proposed and cultural data available are discussed. The paper is the second part of the investigation "On the Origin of the Zodiacal constellations" published in Vistas in Astronomy, vol.36, pp.171-190, 1993.

  7. Identifying the stars on Johann Bayer's Chart of the South Polar Sky

    NASA Astrophysics Data System (ADS)

    Ridpath, I.

    2014-04-01

    The first chart of the stars in the region around the south celestial pole was published in 1603 by Johann Bayer (1572-1625) as part of his monumental star atlas called Uranometria. This south polar chart depicted 12 entirely new constellations that had been created only a few years earlier from stars observed during the first Dutch expedition to the East Indies in 1595-97. Bayer's chart plotted 121 stars in the 12 newly invented constellations. Five more stars formed a southern extension of the existing constellation Eridanus, while another twelve stars were left 'unformed', i.e. unattached to any constellation. Whereas Bayer famously applied Greek or Roman letters to the stars in the 48 Ptolemaic constellations, he left the stars in the newly invented constellations unlabelled. This paper attempts to identify the stars plotted on Bayer's chart. It also discusses the source of Bayer's data and the origin of the 12 new southern constellations.

  8. Celestial mechanics - Methods of the theory of motion of 'artificial' celestial bodies

    NASA Astrophysics Data System (ADS)

    Duboshin, G. N.

    This book is concerned with the translational motion of 'artificial' celestial bodies. The difference between natural celestial bodies, which are ordinarily considered by celestial mechanics, and 'artificial' celestial bodies is discussed, taking into account hypothetical celestial bodies introduced in connection with mathematical developments and problems, invisible celestial bodies whose existence can be assumed on the basis of some plausible hypothesis, and man-made satellites of the earth. The book consists of two parts. The first part presents introductory material, and examines a number of general mathematical questions to provide a basis for the studies conducted in the second part. Subjects considered in the first part are related to basic problems, integration methods, and perturbation theory. In the second part, attention is given to the motion of artificial celestial bodies in the gravitational field of the basic planet, external perturbations regarding the motion of these bodies, the motion of the bodies in the earth-moon system, and periodic solutions.

  9. Jovian Stormy Weather

    NASA Image and Video Library

    2017-02-17

    NASA's Juno spacecraft soared directly over Jupiter's south pole when JunoCam acquired this image on February 2, 2017 at 6:06 a.m. PT (9:06 a.m. ET), from an altitude of about 62,800 miles (101,000 kilometers) above the cloud tops. From this unique vantage point we see the terminator (where day meets night) cutting across the Jovian south polar region's restless, marbled atmosphere with the south pole itself approximately in the center of that border. The terminator is offset a bit because it's summer in Jupiter's southern hemisphere. However, the tilt of Jupiter's spin axis is only 3 degrees, much less than Earth's 23.5-degree tilt. This image was processed by citizen scientist John Landino. This enhanced color version highlights the bright high clouds and numerous meandering oval storms. Away from the polar region, the seeming chaos of Jupiter's polar region gives way to the more familiar color banding that Jupiter is known for. http://photojournal.jpl.nasa.gov/catalog/PIA21382

  10. Polarization of Hazes and Aurorae on Jupiter

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.; McLean, Will; PACA_Jupiter

    2017-10-01

    Our solar system planets show a large variety of atmospheric polarization properties, from the thick, highly polarizing haze on Titan and the poles of Jupiter, Rayleigh scattering by molecules on Uranus and Neptune, to clouds in the equatorial region of Jupiter or on Venus. Changes in the clouds/thermal filed can be brought about by endogenic dynamical processes such merger of vortices; global, planetary scale upheavals, and external factors such as celestial collisions (such as D/Shoemaker-Levy 9 impact with Jupiter in 1994, etc.). Although the range of phase angles available from Earth for outer planets is restricted to a narrow range, limb polarization measurements provide constraints on the polarimetric properties. For example, at the equator, much of the observed reflected radiation is due to the presence of clouds and therefore, low polarization. Polar asymmetry exists between the two poles, while the planetary disk is unpolarized. Jupiter is known to exhibit a strong polar limb polarization and a low equatorial limb polarization due to the presence of haze particles and Rayleigh scattering at the poles. In contrast, at the equator, the concentration of particulates in the high atmosphere might change, changing the polarimetric signature and aurorae at both poles. The polarimetric maps, in conjunction with thermal maps and albedo maps, can provide constraints on modeling efforts to understand the nature of the aerosols/hazes in Jovian atmosphere. With Jupiter experiencing morphological changes at many latitudes, we have initiated a polarimetric observing campaign of Jupiter, in conjunction with The PACA Project. With NASA/Juno mission in a 53-day orbit around Jupiter, and recent outbreaks in the atmosphere, changes in the polarimetric signature will provide insight to the changes occurring in the atmosphere. Some of our observations are acquired by a team of professional/amateur planetary imagers astronomers based in the U.K., Australia and Europe. France. Details/results of these studies will be presented to optimize the observing strategy of planetary atmospheres and their role in the atmospheric retrievals and the next stage of polarimetric exploration of Jupiter.

  11. Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data

    NASA Astrophysics Data System (ADS)

    Chapront, J.; Chapront-Touzé, M.; Francou, G.

    1999-03-01

    An analysis of Lunar Laser Ranging (LLR) observations from January 1972 till March 1998 is performed using the lunar theory ELP 2000-96 and the completed Moons' theory of the lunar libration. The LLR station coordinates, polar motion and Universal Time are provided by the International Earth Rotation Service (IERS). In Solution 1 the precession-nutation transformation is given by recent analytical theories, while in Solution 2 it is derived from the IERS daily corrections. Orbital and free libration parameters of the Moon, and coordinates of the reflectors are obtained in both cases. The position of the inertial mean ecliptic of J2000.0 with respect to the equator of the mean Celestial Ephemeris Pole (CEP) of J2000.0 (in Solution 1) and to the International Celestial Reference System (ICRS), the IERS celestial reference system, (in Solution 2) are fit. The position of the mean CEP equator of J2000.0 and of several dynamical reference planes and origins, with respect to ICRS, are derived from these fits (Fig. 1). The leading results are the following: 0farcs057 60+/- 0farcs000 20 (in the equator) for the separation of the origin of right ascensions in ICRS from the ascending node of the inertial mean ecliptic of J2000.0 on the reference plane of ICRS, -0farcs0460 +/- 0farcs0008 (in the ecliptic) for the separation of the latter point from the inertial dynamical mean equinox of J2000.0, -0farcs015 19+/- 0farcs000 35 (in the equator) for the separation of the inertial dynamical mean equinox of J2000.0 from the J2000.0 right ascension origin derived from IERS polar motion and Universal Time and from precise theories of precession-nutation, and 23degr26 arcmin21 farcs405 22+/- 0farcs000 07 for the inertial obliquity of J2000.0. A correction of -0farcs3437 +/- 0farcs0040 /cy to the IAU 1976 value of the precession constant is also obtained (the errors quoted are formal errors).

  12. The effect of an offset polar cap dipolar magnetic field on the modeling of the Vela pulsar’s γ-ray light curves

    PubMed Central

    Barnard, M.; Venter, C.; Harding, A. K.

    2018-01-01

    We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter ε), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to ε = 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle α=78−1+1° and observer angle ζ=69−1+2°. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of ε are favored for the offset-PC dipole field when assuming constant emissivity, and larger ε values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with α and ζ being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes. PMID:29681648

  13. How do long-offset oceanic transforms adapt to plate motion changes? The example of the Western Pacific-Antarctic plate boundary

    NASA Astrophysics Data System (ADS)

    Lodolo, Emanuele; Coren, Franco; Ben-Avraham, Zvi

    2013-03-01

    Oceanic transform faults respond to changes in the direction of relative plate motion. Studies have shown that short-offset transforms generally adjust with slight bends near the ridge axis, while long-offset ones have a remarkably different behavior. The western Pacific-Antarctic plate boundary highlights these differences. A set of previously unpublished seismic profiles, in combination with magnetic anomaly identifications, shows how across a former, ~1250 km long transform (the Emerald Fracture Zone), plate motion changes have produced a complex geometric readjustment. Three distinct sections are recognized along this plate boundary: an eastern section, characterized by parallel, multiple fault strand lineaments; a central section, shallower than the rest of the ridge system, overprinted by a mantle plume track; and a western section, organized in a cascade of short spreading axes/transform lineaments. This configuration was produced by changes that occurred since 30 Ma in the Australia-Pacific relative plate motion, combined with a gradual clockwise change in Pacific-Antarctic plate motion. These events caused extension along the former Emerald Fracture Zone, originally linking the Pacific-Antarctic spreading ridge system with the Southeast Indian ridge. Then an intra-transform propagating ridge started to develop in response to a ~6 Ma change in the Pacific-Antarctic spreading direction. The close proximity of the Euler poles of rotation amplified the effects of the geometric readjustments that occurred along the transform system. This analysis shows that when a long-offset transform older than 20 Ma is pulled apart by changes in spreading velocity vectors, it responds with the development of multiple discrete, parallel fault strands, whereas in younger lithosphere, locally modified by thermal anisotropies, tensional stresses generate an array of spreading axes offset by closely spaced transforms.

  14. The Effect of an Offset Polar Cap Dipolar Magnetic Field on the Modeling of the Vela Pulsar's Gamma-Ray Light Curves

    NASA Technical Reports Server (NTRS)

    Barnard, M.; Venter, C.; Harding, A. K.

    2016-01-01

    We performed geometric pulsar light curve modeling using static, retarded vacuum, and offset polar cap (PC) dipole B-fields (the latter is characterized by a parameter epsilon), in conjunction with standard two-pole caustic (TPC) and outer gap (OG) emission geometries. The offset-PC dipole B-field mimics deviations from the static dipole (which corresponds to epsilon equals 0). In addition to constant-emissivity geometric models, we also considered a slot gap (SG) E-field associated with the offset-PC dipole B-field and found that its inclusion leads to qualitatively different light curves. Solving the particle transport equation shows that the particle energy only becomes large enough to yield significant curvature radiation at large altitudes above the stellar surface, given this relatively low E-field. Therefore, particles do not always attain the radiation-reaction limit. Our overall optimal light curve fit is for the retarded vacuum dipole field and OG model, at an inclination angle alpha equals 78 plus or minus 1 degree and observer angle zeta equals 69 plus 2 degrees or minus 1 degree. For this B-field, the TPC model is statistically disfavored compared to the OG model. For the static dipole field, neither model is significantly preferred. We found that smaller values of epsilon are favored for the offset-PC dipole field when assuming constant emissivity, and larger epsilon values favored for variable emissivity, but not significantly so. When multiplying the SG E-field by a factor of 100, we found improved light curve fits, with alpha and zeta being closer to best fits from independent studies, as well as curvature radiation reaction at lower altitudes.

  15. Rotation Matrix from the Mean Dynamical Equator and Equinox at J2000.0 to the ICRS

    DTIC Science & Technology

    2004-01-01

    the ICRS is offset from its equinox by ∆o. The angle 0 is the obliquity of the ecliptic on the ICRS, that is the angle between the ICRS equator and... obliquity is caused solely by a change in the position of the pole of the mean ecliptic . Thus, the sole effect of using the rotating definition of the mean...the mean ecliptic as determined by Chapront et al. from LLR observations (23◦26′21.′′41100 ± 0.′′00005). The angle γy is the separation between the

  16. How and Why to Do VLBI on GPS

    NASA Technical Reports Server (NTRS)

    Dickey, J. M.

    2010-01-01

    In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.

  17. Hidden in the Neutrons: Physical Evidence for Lunar True Polar Wander

    NASA Astrophysics Data System (ADS)

    Keane, J. T.; Siegler, M. A.; Miller, R. S.; Laneuville, M.; Paige, D. A.; Matsuyama, I.; Lawrence, D. J.; Crotts, A.; Poston, M.

    2015-12-01

    Airless bodies like the Moon are time capsules of planetary and solar system evolution. Lunar polar ices, in particular, record a history of volatile delivery, orbital dynamics, and solar system chemistry. However, despite two decades of orbital geochemistry measurements, the observed abundances and spatial distribution of lunar polar volatiles (likely water ice, as inferred by epithermal neutron deficits) remain unexplained. The observed deposits do not correlate with measured surface temperatures or thermal models of ice stability and are notably asymmetric about the lunar poles, with the peak abundance offset from the present-day pole by 5°. Here we show, for the first time, that polar volatile deposits at the North and South pole are antipodal, displaced equally from each each pole along opposite longitudes. These off-polar volatiles likely represent fossilized cold-traps, formed when the moon had a different spin pole. Reorientation of the Moon from this paleopole to the present pole (i.e. true polar wander) altered the locations of cold-traps and resulted in the asymmetric, but antipodal, polar hydrogen distribution. Since true polar wander results from changes in the distribution of mass within a planet, the direction and magnitude of this wander can be used to constrain the evolution of the lunar interior. We find a causal link between this paleopole and the unique thermal evolution of the nearside Procellarum KREEP Terrane (PKT). Radiogenic heating within this province not only resulted major mare volcanism, but also altered the Moon's moments of inertia. We use a combination of analytical, and numerical 3-D thermochemical convection models to show that the evolution of the PKT naturally produces the correct direction and magnitude of polar wander (albeit early in lunar history, when the PKT was most active). This work provides a self-consistent explanation for the spatial distribution of lunar polar volatiles and opens a deeper connection to the evolution of the lunar interior. Our hypothesis will be readily testable with forthcoming lunar missions, including high-resolution orbital geochemistry instruments, in-situ and returned sample analysis, and geophysical networks.

  18. Do Maximal Roller Skiing Speed and Double Poling Performance Predict Youth Cross-Country Skiing Performance?

    PubMed Central

    Stöggl, Roland; Müller, Erich; Stöggl, Thomas

    2017-01-01

    The aims of the current study were to analyze whether specific roller skiing tests and cycle length are determinants of youth cross-country (XC) skiing performance, and to evaluate sex specific differences by applying non-invasive diagnostics. Forty-nine young XC skiers (33 boys; 13.8 ± 0.6 yrs and 16 girls; 13.4 ± 0.9 yrs) performed roller skiing tests consisting of both shorter (50 m) and longer durations (575 m). Test results were correlated with on snow XC skiing performance (PXC) based on 3 skating and 3 classical distance competitions (3 to 6 km). The main findings of the current study were: 1) Anthropometrics and maturity status were related to boys’, but not to girls’ PXC; 2) Significant moderate to acceptable correlations between girls’ and boys’ short duration maximal roller skiing speed (double poling, V2 skating, leg skating) and PXC were found; 3) Boys’ PXC was best predicted by double poling test performance on flat and uphill, while girls’ performance was mainly predicted by uphill double poling test performance; 4) When controlling for maturity offset, boys’ PXC was still highly associated with the roller skiing tests. The use of simple non-invasive roller skiing tests for determination of PXC represents practicable support for ski clubs, schools or skiing federations in the guidance and evaluation of young talent. Key points Double poling tests on flat and uphill terrain and short duration maximal speed tests were the highest cross-country skiing predicting factors in girls and boys. Only in the boys there was an effect of maturation on the performance outcomes, pointing out that girls seem to be almost fully matured at the age of 13 in contrast to the boys. Roller skiing tests over short distance (50-m) and longer distance 225 m and 350 m are stable and valid measures and suitable for performance prediction in youth cross-country skiers. PMID:28912656

  19. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  20. Offset-Free Gigahertz Midinfrared Frequency Comb Based on Optical Parametric Amplification in a Periodically Poled Lithium Niobate Waveguide

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Phillips, C. R.; Langrock, C.; Klenner, A.; Johnson, A. R.; Luke, K.; Okawachi, Y.; Lipson, M.; Gaeta, A. L.; Fejer, M. M.; Keller, U.

    2016-11-01

    We report the generation of an optical-frequency comb in the midinfrared region with 1-GHz comb-line spacing and no offset with respect to absolute-zero frequency. This comb is tunable from 2.5 to 4.2 μ m and covers a critical spectral region for important environmental and industrial applications, such as molecular spectroscopy of trace gases. We obtain such a comb using a highly efficient frequency conversion of a near-infrared frequency comb. The latter is based on a compact diode-pumped semiconductor saturable absorber mirror-mode-locked ytterbium-doped calcium-aluminum gadolynate (Yb:CALGO) laser operating at 1 μ m . The frequency-conversion process is based on optical parametric amplification (OPA) in a periodically poled lithium niobate (PPLN) chip containing buried waveguides fabricated by reverse proton exchange. The laser with a repetition rate of 1 GHz is the only active element of the system. It provides the pump pulses for the OPA process as well as seed photons in the range of 1.4 - 1.8 μ m via supercontinuum generation in a silicon-nitride (Si3 N4 ) waveguide. Both the PPLN and Si3 N4 waveguides represent particularly suitable platforms for low-energy nonlinear interactions; they allow for mid-IR comb powers per comb line at the microwatt level and signal amplification levels up to 35 dB, with 2 orders of magnitude less pulse energy than reported in OPA systems using bulk devices. Based on numerical simulations, we explain how high amplification can be achieved at low energy using the interplay between mode confinement and a favorable group-velocity mismatch configuration where the mid-IR pulse moves at the same velocity as the pump.

  1. LSPECS: A Proposed Robotic Astronomy Mission to the Lunar South Polar Regions

    NASA Technical Reports Server (NTRS)

    Lowman, Paul D., Jr.

    2003-01-01

    This paper outlines a possible mission to emplace a robotic infrared/submillimeter wave interferometer array near the lunar south pole. This region has now been investigated by the Clementine and Lunar Prospector missions, and by Earth-based radar, and its topography and thermal environment are fairly well-known. The area would be exceptionally suitable for infrared/submillimeter astronomy because of the continually low temperatures, approaching that of liquid nitrogen (77K) in some places. The presence of ice has been inferred independently from Clementine and Lunar Prospector, providing another incentive for a south polar mission. A submillimeter spaceborne interferometer mission, Submillimeter Probe of the Evolution of the Cosmic Structure (SPECS) has been proposed by John Mather and others, covering the 40 - 500 micron region with 3 formation flying telescopes. The present paper proposes a lunar adaptation of the SPECS concept, LSPECS. This adaptation would involve landing 4 telescopes on the area north of Shackleton crater at zero degrees longitude. This is in nearly year round darkness but is continually radar visible from Earth. The landed payload of LSPECS would include a telerobotic rover, 4 three meter submm telescopes, a solar power array to be emplaced on the continually sunlit north rim of Shackleton crater, and an S-band antenna for data relay to Earth. Operation without the use of expendable cryogenics for cooling might be possible, trading long exposure time for instrument temperatures above that of liquid helium. The LSPECS would permit long-term study of an extremely wide range of cosmic and solar system phenomena in the southern celestial hemisphere. For complete sky coverage, a similar installation near the north pole would be required. The LSPECS site would also be suitable other types of observation, such as optical interferometry or centimeter wavelength radio astronomy. The lunar south pole is also of great interest because of its extensive ice deposits, which may represent cometary infall with pre-biotic compounds.

  2. INFLUENCE OF THE GALACTIC GRAVITATIONAL FIELD ON THE POSITIONAL ACCURACY OF EXTRAGALACTIC SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larchenkova, Tatiana I.; Lutovinov, Alexander A.; Lyskova, Natalya S.

    We investigate the influence of random variations of the Galactic gravitational field on the apparent celestial positions of extragalactic sources. The basic statistical characteristics of a stochastic process (first-order moments, an autocorrelation function and a power spectral density) are used to describe a light ray deflection in a gravitational field of randomly moving point masses as a function of the source coordinates. We map a 2D distribution of the standard deviation of the angular shifts in positions of distant sources (including reference sources of the International Celestial Reference Frame) with respect to their true positions. For different Galactic matter distributionsmore » the standard deviation of the offset angle can reach several tens of μ as (microarcsecond) toward the Galactic center, decreasing down to 4–6 μ as at high galactic latitudes. The conditional standard deviation (“jitter”) of 2.5 μ as is reached within 10 years at high galactic latitudes and within a few months toward the inner part of the Galaxy. The photometric microlensing events are not expected to be disturbed by astrometric random variations anywhere except the inner part of the Galaxy as the Einstein–Chvolson times are typically much shorter than the jittering timescale. While a jitter of a single reference source can be up to dozens of μ as over some reasonable observational time, using a sample of reference sources would reduce the error in relative astrometry. The obtained results can be used for estimating the physical upper limits on the time-dependent accuracy of astrometric measurements.« less

  3. The terrestrial gravitational wave environment from known sources

    NASA Technical Reports Server (NTRS)

    Webbink, Ronald F.

    1993-01-01

    The objective of this project was to produce a gravitational wave spectral line list of all known binary stars producing expected strain amplitudes at Earth in excess of h = 10 (exp -21), or gravitational wave fluxes in excess of F = 10 (exp -12) erg cm(exp -2) s(exp -1). These strain and flux limits lie above the anticipated detection thresholds for space-borne laser interferometers capable of detecting gravitational radiation in the 10 micron Hz to 1 Hz frequency range. The source list was intended to provide frequency (including each harmonic), amplitude and phase (for each polarization and harmonic), and celestial coordinates for each system, lacking only the orientation of the principal polarization axis with respect to the pole of the coordinate system, and the sign of the source phase and frequency (or, equivalently, of the sense of rotation of the strain tensor with time) from providing a complete source description. Such a spectral line list would lay essential groundwork for high-sensitivity, low-frequency searches for gravitational radiation.

  4. PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Lingzhi; Macri, Lucas M.; Krisciunas, Kevin

    Dome A on the Antarctic plateau is likely one of the best observing sites on Earth thanks to the excellent atmospheric conditions present at the site during the long polar winter night. We present high-cadence time-series aperture photometry of 10,000 stars with i < 14.5 mag located in a 23 deg{sup 2} region centered on the south celestial pole. The photometry was obtained with one of the CSTAR telescopes during 128 days of the 2008 Antarctic winter. We used this photometric data set to derive site statistics for Dome A and to search for variable stars. Thanks to the nearlymore » uninterrupted synoptic coverage, we found six times as many variables as previous surveys with similar magnitude limits. We detected 157 variable stars, of which 55% were unclassified, 27% were likely binaries, and 17% were likely pulsating stars. The latter category includes {delta} Scuti, {gamma} Doradus, and RR Lyrae variables. One variable may be a transiting exoplanet.« less

  5. The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    1993-01-01

    The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.

  6. Kilohoku Ho`okele Wa`a : Astronomy of the Hawaiian Navigators

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie; Slater, Timothy F.; Baybayan, Kalepa C.

    2016-01-01

    This poster provides an introduction to the astronomy of the Hawaiian wayfinders, Kilohoku Ho`okele Wa`a. Rooted in a legacy of navigation across the Polynesian triangle, wayfinding astronomy has been part of a suite of skills that allows navigators to deliberately hop between the small islands of the Pacific, for thousands of years. Forty years ago, in one manifestation of the Hawaiian Renaissance, our teachers demonstrated that ancient Hawaiians were capable of traversing the wide Pacific to settle and trade on islands separated by thousands of miles. Today those same mentors train a new generation of navigators, making Hawaiian voyaging a living, evolving, sustainable endeavor. This poster presents two components of astronomical knowledge that all crewmen, but particularly those in training to become navigators, learn early in their training. Na Ohana Hoku, the Hawaiian Star Families constitute the basic units of the Hawaiian sky. In contrast to the Western system of 88 constellations, Na Ohana Hoku divides the sky into four sections that each run from the northern to the southern poles. This configuration reduces cognitive load, allowing the navigator to preserve working memory for other complex tasks. In addition, these configurations of stars support the navigator in finding and generatively using hundreds of individual, and navigationally important pairs of stars. The Hawaiian Star Compass divides the celestial sphere into a directional system that uses 32 rather than 8 cardinal points. Within the tropics, the rising and setting of celestial objects are consistent within the Hawaiian Star Compass, providing for extremely reliable direction finding. Together, Na Ohana Hoku and the Hawaiian Star Compass provide the tropical navigator with astronomical assistance that is not available to, and would have been unknown to Western navigators trained at higher latitudes.

  7. Kilohoku Ho`okele Wa`a : Astronomy of the Modern Hawaiian Wayfinders

    NASA Astrophysics Data System (ADS)

    Ha`o, Celeste; Dye, Ahia G.; Slater, Stephanie J.; Slater, Timothy F.; Baybayan, Kalepa

    2015-08-01

    This paper provides an introduction to Kilohoku Ho`okele Wa`a, the astronomy of the Hawaiian wayfinders. Rooted in a legacy of navigation across the Polynesian triangle, wayfinding astronomy has been part of a suite of skills that allows navigators to deliberately hop between the small islands of the Pacific, for thousands of years. Forty years ago, in one manifestation of the Hawaiian Renaissance, our teachers demonstrated that ancient Hawaiians were capable of traversing the wide Pacific to settle and trade on islands separated by thousands of miles. Today those same mentors train a new generation of navigators, making Hawaiian voyaging a living, evolving, sustainable endeavor. This paper presents two components of astronomical knowledge that all crewmen, but particularly those in training to become navigators, learn early in their training. Na Ohana Hoku, the Hawaiian Star Families constitute the basic units of the Hawaiian sky. In contrast to the Western system of 88 constellations, Na Ohana Hoku divides the sky into four sections that each run from the northern to the southern poles. This configuration reduces cognitive load, allowing the navigator to preserve working memory for other complex tasks. In addition, these configurations of stars support the navigator in finding and generatively using hundreds of individual, and navigationally important pairs of stars. The Hawaiian Star Compass divides the celestial sphere into a directional system that uses 32 rather than 8 cardinal points. Within the tropics, the rising and setting of celestial objects are consistent within the Hawaiian Star Compass, providing for extremely reliable direction finding. Together, Na Ohana Hoku and the Hawaiian Star Compass provide the tropical navigator with astronomical assistance that is not available to, and would have been unknown to Western navigators trained at higher latitudes.

  8. A Study on an Analysis and Design of the Internal Structure of Heumgyeonggak-nu

    NASA Astrophysics Data System (ADS)

    Kim, Sang Hyuk; Yun, Yong-Hyun; Ham, Seon Young; Mihn, Byeong-Hee; Ki, Ho-Chul; Yoon, Myung-Kyoon

    2017-06-01

    In this study, the internal structure of a Heumgyeonggak-nu (欽敬閣漏) was designed, and the power transmission mechanism was analyzed. Heumgyeonggak-nu is an automated water clock from the Joseon Dynasty that was installed within Heumgyeonggak (欽敬閣), and it was manufactured in the 20th year of the reign of King Sejong (1438). As descriptions of Heumgyeonggak-nu in ancient literature have mostly focused on its external shape, the study of its internal mechanism has been difficult. A detailed analysis of the literature record on Heumgyeonggak-nu (e.g., The Annals of the Joseon Dynasty) indicates that Heumgyeonggaknu had a three-stage water clock, included a waterfall or tilting vessel (欹器) using the overflowed water, and displayed the time using a ball. In this study, the Cheonhyeong apparatus, water wheel, scoop, and various mechanism wheels were designed so that 16 fixed-type scoops could operate at a constant speed for the water wheel with a diameter of 100 cm. As the scoop can contain 1.25 l of water and the water wheel rotates 61 times a day, a total of 1,220 l of water is required. Also, the power gear wheel was designed as a 366-tooth gear, which supported the operation of the time signal gear wheel. To implement the movement of stars on the celestial sphere, the rotation ratio of the celestial gear wheel to the diurnal motion gear ring was set to 366:365. In addition, to operate the sun movement apparatus on the ecliptic, a gear device was installed on the South Pole axis. It is expected that the results of this study can be used for the manufacture and restoration of the operation model of Heumgyeonggak-nu.

  9. Protection of celestial environments and the law of outer space

    NASA Astrophysics Data System (ADS)

    Tennen, Leslie; Race, Margaret

    The law of outer space expressly addresses the matter of preservation and protection of natural celestial environments from harmful contamination and disruption by mankind in the explo-ration and use of outer space, including the moon and other celestial bodies. The Outer Space Treaty, however, does not prohibit all human impact to an extraterrestrial environment, but rather permits a wide range of activities that could have significant environmental ramifications. This legal regime may be in conflict with the interests of preserving celestial environments for scientific research, especially when considered in relation to activities conducted for commercial purposes. Nevertheless, the Moon Agreement provides a mechanism by which special protective measures can be implemented to protect particular areas of the moon and other celestial bodies for scientific investigation. This paper examines the current status of the law of outer space vis-a-vis the protection and preservation of natural celestial environments. Particular emphasis is placed on the policies on which the legal obligations are based, together with consideration of the non-appropriation principle, and the commercial use of lunar and other celestial resources and areas. In addition, the concepts of international scientific preserves, special regions, keep out zones, and planetary parks are compared and evaluated as potential means to limit the disturbance to celestial environments caused by the activities of mankind.

  10. Satellite Ephemeris Correction via Remote Site Observation for Star Tracker Navigation Performance Improvement

    DTIC Science & Technology

    2016-03-01

    squared RMS root mean squared GCRF Geocentric Celestial Reference Frame xi List of Figures Figure Page 1 Geometry of single observation...RA and DEC in the celestial sphere. The Geocentric Celestial Reference Frame (GCRF) is the standard geocentric frame that measures the RA east in the...Figure 2. Right ascension (α) and declination (δ) in the celestial sphere[6] 7 made between geocentric and topocentric angles. Geocentric is referred to

  11. Geoengineering as a design problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong

    2016-01-01

    Understanding the climate impacts of solar geoengineering is essential for evaluating its benefits and risks. Most previous simulations have prescribed a particular strategy and evaluated its modeled effects. Here we turn this approach around by first choosing example climate objectives and then designing a strategy to meet those objectives in climate models. There are four essential criteria for designing a strategy: (i) an explicit specification of the objectives, (ii) defining what climate forcing agents to modify so the objectives are met, (iii) a method for managing uncertainties, and (iv) independent verification of the strategy in an evaluation model. We demonstrate this design perspective throughmore » two multi-objective examples. First, changes in Arctic temperature and the position of tropical precipitation due to CO 2 increases are offset by adjusting high-latitude insolation in each hemisphere independently. Second, three different latitude-dependent patterns of insolation are modified to offset CO 2-induced changes in global mean temperature, interhemispheric temperature asymmetry, and the Equator-to-pole temperature gradient. In both examples, the "design" and "evaluation" models are state-of-the-art fully coupled atmosphere–ocean general circulation models.« less

  12. Subsurface failure in spherical bodies. A formation scenario for linear troughs on Vesta’s surface

    DOE PAGES

    Stickle, Angela M.; Schultz, P. H.; Crawford, D. A.

    2014-10-13

    Many asteroids in the Solar System exhibit unusual, linear features on their surface. The Dawn mission recently observed two sets of linear features on the surface of the asteroid 4 Vesta. Geologic observations indicate that these features are related to the two large impact basins at the south pole of Vesta, though no specific mechanism of origin has been determined. Furthermore, the orientation of the features is offset from the center of the basins. Experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target. We demonstrate that a set ofmore » shear planes develops in the subsurface of the body opposite to the point of first contact. Moreover, these subsurface failure zones then propagate to the surface under combined tensile-shear stress fields after the impact to create sets of approximately linear faults on the surface. Comparison between the orientation of damage structures in the laboratory and failure regions within Vesta can be used to constrain impact parameters (e.g., the approximate impact point and likely impact trajectory).« less

  13. A Snapshot-Based Mechanism for Celestial Orientation.

    PubMed

    El Jundi, Basil; Foster, James J; Khaldy, Lana; Byrne, Marcus J; Dacke, Marie; Baird, Emily

    2016-06-06

    In order to protect their food from competitors, ball-rolling dung beetles detach a piece of dung from a pile, shape it into a ball, and roll it away along a straight path [1]. They appear to rely exclusively on celestial compass cues to maintain their bearing [2-8], but the mechanism that enables them to use these cues for orientation remains unknown. Here, we describe the orientation strategy that allows dung beetles to use celestial cues in a dynamic fashion. We tested the underlying orientation mechanism by presenting beetles with a combination of simulated celestial cues (sun, polarized light, and spectral cues). We show that these animals do not rely on an innate prediction of the natural geographical relationship between celestial cues, as other navigating insects seem to [9, 10]. Instead, they appear to form an internal representation of the prevailing celestial scene, a "celestial snapshot," even if that scene represents a physical impossibility for the real sky. We also find that the beetles are able to maintain their bearing with respect to the presented cues only if the cues are visible when the snapshot is taken. This happens during the "dance," a behavior in which the beetle climbs on top of its ball and rotates about its vertical axis [11]. This strategy for reading celestial signals is a simple but efficient mechanism for straight-line orientation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Saturnian north polar region: a triangle inside the hexagon?

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    The famous and "mysterious" stable hexagon structure around the North Pole of Saturn was earlier interpreted as projections of faces of a structural tetrahedron [1]. This "hidden" simplest Plato's polyhedron is a result of an interference of four fundamental (wave 1) warping waves having in any rotating celestial body four directions: orthogonal and diagonal. Origin of the warping waves in any celestial body is due to their movements in elliptical keplerian orbits with periodically changing accelerations. The structural tetrahedron is an intrinsic geometric feature marking the celestial bodies ubiquitous tectonic dichotomy as in a tetrahedron always there is an opposition of a face (expansion) and a vertex (contraction). In the saturnian case the tetrahedron shows a face at the north and a vertex at the south. Morphologically this is manifested by the hexagon and opposing it in the south a vertex. Blue and pink hues of the northern and southern hemispheres also underline the tectonic dichotomy. These geometric expressions are enforced by a subtle dark equilateral triangle appearing in the image PIA11682 also around the north pole and inside the hexagon (the triangle side is about 15000 km long). One angle of the triangle is clearly visible, another one just shows itself and the third one is barely distinguished. The sides of the triangle are not strait lines but slightly broken amidst lines what makes the triangle appear a bit hexagonal (spherical) and the angle is a bit bigger than 60 degrees of a classical equilateral triangle (~70 degrees). The central part of the triangle is not imaged (a black hole in the PIA11682). This image also confirms that the wide northern polar region is also densely "peppered" with bright cloudy more or less isometric spots on average 400 to 800 km across as in other latitudinal belts of Saturn [2, 3, 4]. Earlier they were observed in IR wavelengths, now they show themselves in visible wavelengths. Their origin and size were interpreted as interference wave features of modulated atmospheric inertia-gravity waves [2, 3]. It seems, as it was mentioned before, that the "leopard' spots in the north are slightly larger than those in the south [3, 4]. This observation confirms the north-south dichotomy of Saturn with expanding northern hemisphere. Finally, very distinctive wave features of this giant gas planet (often geometrically regular) are probably due to its comparatively high eccentricity exciting important warping waves in its body. References: [1] Kochemasov G.G. (2007a) Dichotomous Saturn in infrared images: huge northern hexagon against smaller southern hurricane // ERSC Abctracts, Vol. 2, EPSC2007-A-00015, 2007. [2] Kochemasov G.G. (2007b) Calculating size of the Saturn's "leopard skin" spots // Lunar and Planetary Science Conference XXXVIII, Abstract #1040, CD-ROM. [3] Kochemasov G.G (2007c) Saturn's infrared spots at the southern and northern polar regions and calculation of their sizes by a wave modulation procedure // ERSC Abstracts, Vol. 2, EPSC2007-A-00017, 2007. [4] Kochemasov G.G. (2008) Systematic not random "peppering" saturnian surface by the IR round clouds: wave features with predictable size // European Geosciences Union General Assembly, 2008, Vienna, Austria, 13-18 April 2008, Abstracts, EGU2008-A-01274, CD-ROM.

  15. Frontiers in Relativistic Celestial Mechanics, Vol. 2, Applications and Experiments

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei

    2014-08-01

    Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Müller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review

  16. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  17. Possible systematics in the VLBI catalogs as seen from Gaia

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.

    2018-01-01

    Aims: In order to investigate the systematic errors in the very long baseline interferometry (VLBI) positions of extragalactic sources (quasars) and the global differences between Gaia and VLBI catalogs, we use the first data release of Gaia (Gaia DR1) quasar positions as the reference and study the positional offsets of the second realization of the International Celestial Reference Frame (ICRF2) and the Goddard VLBI solution 2016a (gsf2016a) catalogs. Methods: We select a sample of 1032 common sources among three catalogs and adopt two methods to represent the systematics: considering the differential orientation (offset) and declination bias; analyzing with the vector spherical harmonics (VSH) functions. Results: Between two VLBI catalogs and Gaia DR1, we find that: i) the estimated orientation is consistent with the alignment accuracy of Gaia DR1 to ICRF, of 0.1 mas, but the southern and northern hemispheres show opposite orientations; ii) the declination bias in the southern hemisphere between Gaia DR1 and ICRF2 is estimated to be +152 μas, much larger than that between Gaia DR1 and gsf2016a which is +34 μas. Between two VLBI catalogs, we find that: i) the rotation component shows that ICRF2 and gsf2016a are generally consistent within 30 μas; ii) the glide component and quadrupole component report two declination-dependent offsets: dipolar deformation of +50 μas along the Z-axis, and quadrupolar deformation of -50 μas that would induce a pattern of sin2δ. Conclusions: The significant declination bias between Gaia DR1 and ICRF2 catalogs reported in previous studies is possibly attributed to the systematic errors of ICRF2 in the southern hemisphere. The global differences between ICRF2 and gsf2016a catalogs imply that possible, mainly declination-dependent systematics exit in the VLBI positions and need further investigations in the future Gaia data release and the next generation of ICRF.

  18. Combining sky and earth: desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues.

    PubMed

    Legge, Eric L G; Wystrach, Antoine; Spetch, Marcia L; Cheng, Ken

    2014-12-01

    Insects typically use celestial sources of directional information for path integration, and terrestrial panoramic information for view-based navigation. Here we set celestial and terrestrial sources of directional information in conflict for homing desert ants (Melophorus bagoti). In the first experiment, ants learned to navigate out of a round experimental arena with a distinctive artificial panorama. On crucial tests, we rotated the arena to create a conflict between the artificial panorama and celestial information. In a second experiment, ants at a feeder in their natural visually-cluttered habitat were displaced prior to their homing journey so that the dictates of path integration (feeder to nest direction) based on a celestial compass conflicted with the dictates of view-based navigation (release point to nest direction) based on the natural terrestrial panorama. In both experiments, ants generally headed in a direction intermediate to the dictates of celestial and terrestrial information. In the second experiment, the ants put more weight on the terrestrial cues when they provided better directional information. We conclude that desert ants weight and integrate the dictates of celestial and terrestrial information in determining their initial heading, even when the two directional cues are highly discrepant. © 2014. Published by The Company of Biologists Ltd.

  19. Thermal optimization of second harmonic generation at high pump powers.

    PubMed

    Sahm, Alexander; Uebernickel, Mirko; Paschke, Katrin; Erbert, Götz; Tränkle, Günther

    2011-11-07

    We measure the temperature distribution of a 3 cm long periodically poled LiNbO₃ crystal in a single-pass second harmonic generation (SHG) setup at 488 nm. By means of three resistance heaters and directly mounted Pt100 sensors the crystal is subdivided in three sections. 9.4 W infrared pump light and 1.3 W of SHG light cause a de-homogenized temperature distribution of 0.2 K between the middle and back section. A sectional offset heating is used to homogenize the temperature in those two sections and thus increasing the conversion efficiency. A 15% higher SHG output power matching the prediction of our theoretical model is achieved.

  20. UTC(SU) and EOP(SU) - the only legal reference frames of Russian Federation

    NASA Astrophysics Data System (ADS)

    Koshelyaevsky, Nikolay B.; Blinov, Igor Yu; Pasynok, Sergey L.

    2015-08-01

    There are two legal time reference frames in Russian Federation. UTC(SU) deals with atomic time and play a role of reference for legal timing through the whole country. The other one, EOP(SU), deals with Earth's orientation parameters and provides the official EOP data for scientific, technical and metrological applications in Russia.The atomic time is based on two essential hardware components: primary Cs fountain standards and ensemble of continuously operating H-masers as a time unit/time scale keeper. Basing on H-maser intercomparison system data, regular H-maser frequency calibration against Cs standards and time algorithm autonomous TA(SU) time scale is maintained by the Main Metrological Center. Since 2013 time unit in TA(SU) is the second (SU) reproduced independently by VNIIFTRI Cs primary standards in accordance to it’s definition in the SI. UTC(SU) is relied on TA(SU) and steering to UTC basing on TWSTFT/GNSS time link data. As a result TA(SU) stability level relative to TT considerably exceeds 1×10-15 for sample time one month and more, RMS[UTC-UTC(SU)] ≤ 3 ns for the period of 2013-2015. UTC(SU) is broadcasted by different national means such as specialized radio and TV stations, NTP servers and GLONASS. Signals of Russian radio stations contains DUT1 and dUT1 values at 0.1s and 0.02s resolution respectively.The definitive EOP(SU) are calculated by the Main Metrological Center basing on composition of the eight independent individual EOP data streams delivered by four Russian analysis centers: VNIIFTRI, Institute of Applied Astronomy, Information-Analytical Center of Russian Space Agency and Analysis Center of Russian Space Agency. The accuracy of ultra-rapid EOP values for 2014 is estimated ≤ 0.0006" for polar motion, ≤ 70 microseconds for UT1-UTC and ≤ 0.0003" for celestial pole offsets respectively.The other VNIIFTRI EOP activities can be grouped in three basic directions:- arrangement and carrying out GNSS and SLR observations at five institutes- processing GNSS, SLR and VLBI observation data for EOP evaluation- combination of GLONASS satellites orbit/clocks.The paper will deliver more detailed and particular information on Russian legal reference frames.

  1. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    NASA Astrophysics Data System (ADS)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  2. Celestial bodies macroscopic movement is due to the radiation

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-03-01

    The star is radiate, also as the planet. In fact, all the real objects are radiate, but the strength of the radiation is different. Radiation will reduce the quality of the object, but time is not long enough to reduce the mass of the subject, so it is difficult for us to observe. Due to the large object lifecycle, to study the changing rule of the object, we must consider the radiation on the quality of the celestial bodies, and the outer space radiate particles' motion, also consider objects interact with objects of radiation. The reason Celestial bodies moves is that the radiation of those Celestial bodies Interact with each other, Celestial bodies macroscopic movement is due to the radiation. The earth's rotation and revolution is a measure of the survive ability. Author: hanyongquan TEL: 15611860790

  3. Modelling of celestial backgrounds

    NASA Astrophysics Data System (ADS)

    Hickman, Duncan L.; Smith, Moira I.; Lim, Jae-Wan; Jeon, Yun-Ho

    2018-05-01

    For applications where a sensor's image includes the celestial background, stars and Solar System Bodies compromise the ability of the sensor system to correctly classify a target. Such false targets are particularly significant for the detection of weak target signatures which only have a small relative angular motion. The detection of celestial features is well established in the visible spectral band. However, given the increasing sensitivity and low noise afforded by emergent infrared focal plane array technology together with larger and more efficient optics, the signatures of celestial features can also impact performance at infrared wavelengths. A methodology has been developed which allows the rapid generation of celestial signatures in any required spectral band using star data from star catalogues and other open-source information. Within this paper, the radiometric calculations are presented to determine the irradiance values of stars and planets in any spectral band.

  4. Neural coding underlying the cue preference for celestial orientation

    PubMed Central

    el Jundi, Basil; Warrant, Eric J.; Byrne, Marcus J.; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie

    2015-01-01

    Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity. PMID:26305929

  5. Neural coding underlying the cue preference for celestial orientation.

    PubMed

    el Jundi, Basil; Warrant, Eric J; Byrne, Marcus J; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie

    2015-09-08

    Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.

  6. Upper atmosphere differences between northern and southern high latitudes: The role of magnetic field asymmetry

    NASA Astrophysics Data System (ADS)

    Förster, Matthias; Cnossen, Ingrid

    2013-09-01

    The nondipolar portions of the Earth's main magnetic field constitute substantial differences between the two hemispheres. Beside the magnetic flux densities and patterns being different in the Northern Hemisphere (NH) and Southern Hemisphere (SH), also the offset between the invariant magnetic and the geographic poles is larger in the SH than in the NH. We investigated the effects of this magnetic field asymmetry on the high-latitude thermosphere and ionosphere using global numerical simulations and compared our results with recent observations. While the effects on the high-latitude plasma convection are small, the consequences for the neutral wind circulation are substantial. The cross-polar neutral wind and ion drift velocities are generally larger in the NH than the SH, and the hemispheric difference shows a semidiurnal variation. The neutral wind vorticity is likewise larger in the NH than in the SH, with the difference probably becoming larger for higher solar activity. In contrast, the spatial variance of the neutral wind is considerably larger in the SH polar region, with the hemispheric difference showing a strong semidiurnal variation. Its phase is similar to the phase of the semidiurnal variation of the hemispheric magnitude differences. Hemispheric differences in ion drift and neutral wind magnitude are most likely caused partly by the larger magnetic flux densities in the near-polar regions of the SH and partly by the larger offset between the invariant and geographic pole in the SH, while differences in spatial variance are probably just caused by the latter. We conclude that the asymmetry of the magnetic field, both in strength and in orientation, establishes substantial hemispheric differences in the neutral wind and plasma drift in the high-latitude upper atmosphere, which can help to explain observed hemispheric differences found with the Cluster/Electron Drift Instrument (EDI) and the Challenging Minisatellite Payload (CHAMP).

  7. PLANETARY TRANSIT CANDIDATES IN THE CSTAR FIELD: ANALYSIS OF THE 2008 DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Songhu; Zhang, Hui; Zhou, Ji-Lin

    2014-04-01

    The Chinese Small Telescope ARray (CSTAR) is a group of four identical, fully automated, static 14.5 cm telescopes. CSTAR is located at Dome A, Antarctica and covers 20 deg{sup 2} of sky around the South Celestial Pole. The installation is designed to provide high-cadence photometry for the purpose of monitoring the quality of the astronomical observing conditions at Dome A and detecting transiting exoplanets. CSTAR has been operational since 2008, and has taken a rich and high-precision photometric data set of 10,690 stars. In the first observing season, we obtained 291,911 qualified science frames with 20 s integrations in themore » i band. Photometric precision reaches ∼4 mmag at 20 s cadence at i = 7.5 and is ∼20 mmag at i = 12. Using robust detection methods, 10 promising exoplanet candidates were found. Four of these were found to be giants using spectroscopic follow-up. All of these transit candidates are presented here along with the discussion of their detailed properties as well as the follow-up observations.« less

  8. Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR

    NASA Astrophysics Data System (ADS)

    Patil, A. H.; Yatawatta, S.; Koopmans, L. V. E.; de Bruyn, A. G.; Brentjens, M. A.; Zaroubi, S.; Asad, K. M. B.; Hatef, M.; Jelić, V.; Mevius, M.; Offringa, A. R.; Pandey, V. N.; Vedantham, H.; Abdalla, F. B.; Brouw, W. N.; Chapman, E.; Ciardi, B.; Gehlot, B. K.; Ghosh, A.; Harker, G.; Iliev, I. T.; Kakiichi, K.; Majumdar, S.; Mellema, G.; Silva, M. B.; Schaye, J.; Vrbanec, D.; Wijnholds, S. J.

    2017-03-01

    We present the first limits on the Epoch of Reionization 21 cm H I power spectra, in the redshift range z = 7.9-10.6, using the Low-Frequency Array (LOFAR) High-Band Antenna (HBA). In total, 13.0 hr of data were used from observations centered on the North Celestial Pole. After subtraction of the sky model and the noise bias, we detect a non-zero {{{Δ }}}{{I}}2={(56+/- 13{mK})}2 (1-σ) excess variance and a best 2-σ upper limit of {{{Δ }}}212< {(79.6{mK})}2 at k = 0.053 h cMpc-1 in the range z = 9.6-10.6. The excess variance decreases when optimizing the smoothness of the direction- and frequency-dependent gain calibration, and with increasing the completeness of the sky model. It is likely caused by (I) residual side-lobe noise on calibration baselines, (II) leverage due to nonlinear effects, (III) noise and ionosphere-induced gain errors, or a combination thereof. Further analyses of the excess variance will be discussed in forthcoming publications.

  9. Planetary Transit Candidates in the CSTAR Field: Analysis of the 2008 Data

    NASA Astrophysics Data System (ADS)

    Wang, Songhu; Zhang, Hui; Zhou, Ji-Lin; Zhou, Xu; Yang, Ming; Wang, Lifan; Bayliss, D.; Zhou, G.; Ashley, M. C. B.; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Huigen; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Meng, Zeyang; Storey, J. W. V.; Wittenmyer, R. A.; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yang, Jiayi; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu

    2014-04-01

    The Chinese Small Telescope ARray (CSTAR) is a group of four identical, fully automated, static 14.5 cm telescopes. CSTAR is located at Dome A, Antarctica and covers 20 deg2 of sky around the South Celestial Pole. The installation is designed to provide high-cadence photometry for the purpose of monitoring the quality of the astronomical observing conditions at Dome A and detecting transiting exoplanets. CSTAR has been operational since 2008, and has taken a rich and high-precision photometric data set of 10,690 stars. In the first observing season, we obtained 291,911 qualified science frames with 20 s integrations in the i band. Photometric precision reaches ~4 mmag at 20 s cadence at i = 7.5 and is ~20 mmag at i = 12. Using robust detection methods, 10 promising exoplanet candidates were found. Four of these were found to be giants using spectroscopic follow-up. All of these transit candidates are presented here along with the discussion of their detailed properties as well as the follow-up observations.

  10. Spatial water maze learning using celestial cues by the meadow vole, Microtus pennsylvanicus.

    PubMed

    Kavaliers, M; Galea, L A

    1994-03-31

    The Morris water maze is widely used to evaluate to evaluate the spatial learning ability of rodents under laboratory settings. The present study demonstrates that reproductive male meadow voles, Microtus pennsylvanicus, are able to acquire and retain a spatial water maze task using celestial cues. Voles were able to acquire a modified outdoor Morris water maze task over 4 trials per day, whereby they had to learn and remember the location of a submerged hidden platform, using the position of the sun and associated celestial cues. Their proficiency on this task was related to the availability of the celestial cues, with voles displaying significantly poorer spatial navigation on overcast than clear days and when the testing time (and position of the sun and associated celestial cues) was shifted from morning to afternoon. These findings with meadow voles support the ecological relevance of the water maze task.

  11. Design of all-weather celestial navigation system

    NASA Astrophysics Data System (ADS)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  12. Effectiveness of cable barriers, guardrails, and concrete barrier walls in reducing the risk of injury.

    PubMed

    Zou, Yaotian; Tarko, Andrew P; Chen, Erdong; Romero, Mario A

    2014-11-01

    Roadway departure crashes tend to be severe, especially when the roadside exposes the occupants of errant vehicles to excessive injury hazards. As a cost-effective method when the clear zone width is insufficient, road barriers are often installed to prevent errant vehicles from colliding with dangerous obstacles or traversing steep slopes. This paper focuses on the safety performance of road barriers in Indiana in reducing the risk of injury. The objective of the study presented here is to compare the risk of injury among different hazardous events faced by an occupant in a single-vehicle crash. The studied hazardous events include rolling over, striking three types of barriers (guardrails, concrete barrier walls, and cable barriers) with different barrier offsets to the edge of the travelled way, and striking various roadside objects. A total of 2124 single-vehicle crashes (3257 occupants) that occurred between 2008 and 2012 on 517 pair-matched homogeneous barrier and non-barrier segments were analyzed. A binary logistic regression model with mixed effects was estimated for vehicle occupants. The segment pairing process and the use of random effects were able to handle the commonality within the same segment pair as well as the heterogeneity across segment pairs. The modeling results revealed that hitting a barrier is associated with lower risk of injury than a high-hazard event (hitting a pole, rollover, etc.). The odds of injury are reduced by 39% for median concrete barrier walls offset 15-18ft from the travelled way, reduced by 65% for a guardrail face offset 5-55ft, reduced by 85% for near-side median cable barriers (offset between 10ft and 29ft), and reduced by 78% with far-side median cable barriers (offset at least 30ft). Comparing different types of barriers is useful where some types of barriers can be used alternatively. This study found that the odds of injury are 43% lower when striking a guardrail instead of a median concrete barrier offset 15-18ft and 65% lower when striking a median concrete barrier offset 7-14ft. The odds of injury when striking a near-side median cable barrier is 57% lower than the odds for a guardrail face. This reduction for a far side median cable barrier is 37%. Thus, a guardrail should be preferred over a concrete wall and a cable barrier should be preferred over a guardrail where the road and traffic conditions allow. In the light of the results, installing median cable barriers on both sides of the median to reduce their lateral offset is beneficial for safety. The study also found that the unexplained heterogeneity across vehicles is much larger than it was across matched segment pairs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Position determination systems. [using orbital antenna scan of celestial bodies

    NASA Technical Reports Server (NTRS)

    Shores, P. W. (Inventor)

    1976-01-01

    A system for an orbital antenna, operated at a synchronous altitude, to scan an area of a celestial body is disclosed. The antenna means comprises modules which are operated by a steering signal in a repetitive function for providing a scanning beam over the area. The scanning covers the entire area in a pattern and the azimuth of the scanning beam is transmitted to a control station on the celestial body simultaneous with signals from an activated ground beacon on the celestial body. The azimuth of the control station relative to the antenna is known and the location of the ground beacon is readily determined from the azimuth determinations.

  14. Principles of Celestial Navigation: An Online Resource for Introducing Practical Astronomy to the Public

    NASA Astrophysics Data System (ADS)

    Urban, Sean E.

    2015-08-01

    Astronomy is often called a "gateway" science because it inspires appreciation and awe among children and non-scientists. Applied astronomy, with practical, real-world applications, can entice even the most utilitarian people to take notice and learn about the subject. Traditional celestial navigation is an astronomy topic that captures the attention of the public. The U.S. Naval Observatory has led the development of a publicly available online celestial navigation educational module titled, "Principles of Celestial Navigation". It can be used world-wide to introduce people to astronomy. This poster describes some of the aspects of this teaching module.

  15. Celestial Object Imaging Model and Parameter Optimization for an Optical Navigation Sensor Based on the Well Capacity Adjusting Scheme.

    PubMed

    Wang, Hao; Jiang, Jie; Zhang, Guangjun

    2017-04-21

    The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters.

  16. Celestial Object Imaging Model and Parameter Optimization for an Optical Navigation Sensor Based on the Well Capacity Adjusting Scheme

    PubMed Central

    Wang, Hao; Jiang, Jie; Zhang, Guangjun

    2017-01-01

    The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters. PMID:28430132

  17. The Celestial Basis of Civilization

    NASA Astrophysics Data System (ADS)

    Masse, W. B.

    Scholars have long puzzled over the reasons for the ubiquity of celestial images in the residue of the world's earliest civilizations: in art, myth, religious cosmology, iconography, cosmogony, eschatological beliefs, and as portents for the conduct of royal and chiefly power. The general consensus is that these images represented a need by early societies to use the fixed celestial heavens in order to regulate ritual and agricultural cycles, and to satisfy a psychological need by people to relate themselves to their surrounding Universe. Such explanations are facile and miss an important aspect of the celestial heavens. The fixed celestial heavens served as the back-drop for a large number of often spectacular temporary naked-eye visible celestial events which animated the night and sometimes the daytime sky, and which created an 'otherworld' for virtually all cultural groups. In this paper I present a model derived from the detailed analysis of Hawaiian oral traditions and culture history in relation to historic astronomical records of temporary celestial events, and then apply this model to cultural traditions from Mesoamerica and other geographic regions in order to demonstrate that novae, supernovae, variable stars, comets, great meteor showers, aurorae, solar and lunar eclipses, and impacting Solar System debris, together played a critical role in the artistic, intellectual, and political development of early civilizations. These data not only provide important insights into the development of civilization, but also provide important details and longitudinal records of astronomical events and phenomena which are otherwise not readily available for scientific scrutiny.

  18. Frequency stabilization of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitachi, K., E-mail: hitachi.kenichi@lab.ntt.co.jp; Ishizawa, A.; Mashiko, H.

    2015-06-08

    We report the stabilization of the carrier-envelope offset (CEO) frequency of an Er-doped fiber laser with a collinear 2f-to-3f self-referencing interferometer. The interferometer is implemented by a dual-pitch periodically poled lithium niobate ridge waveguide with two different quasi-phase matching pitch sizes. We obtain a 52-dB signal-to-noise ratio in the 100-kHz resolution bandwidth of a heterodyne beat signal, which is sufficient for frequency stabilization. We also demonstrate that the collinear geometry is robust against environmental perturbation by comparing in-loop and out-of-loop Allan deviations when the in-loop CEO frequency is stabilized with a phase-locked loop circuit.

  19. Spectroscopy of Dwarf Stars Around the North Celestial Pole

    NASA Astrophysics Data System (ADS)

    Mikolaitis, Šarūnas; Tautvaišienė, Gražina; Drazdauskas, Arnas; Minkevičiūtė, Renata; Klebonas, Lukas; Bagdonas, Vilius; Pakšienė, Erika; Janulis, Rimvydas

    2018-07-01

    New space missions (e.g., NASA-TESS and ESA-PLATO) will perform an in-depth analysis of bright stars in large fields of the celestial sphere searching for extraterrestrial planets and investigating their host-stars. Asteroseismic observations will search for exoplanet-hosting stars with solar-like oscillations. In order to achieve all the goals, a full characterization of the stellar objects is important. However, accurate atmospheric parameters are available for less than 30% of bright dwarf stars of the solar neighborhood. In this study we observed high-resolution (R = 60,000) spectra for all bright (V < 8 mag) and cooler than F5 spectral class dwarf stars in the northern-most field of the celestial sphere with radius of 20° from the α(2000) = 161.°03 and δ(2000) = 86.°60 that is a center of one of the preliminary ESO-PLATO fields. Spectroscopic atmospheric parameters were determined for 140 slowly rotating stars, for 73% of them for the first time. The majority (83%) of the investigated stars are in the TESS object lists and all of them are in the preliminary PLATO field. Our results have no systematic differences when compared with other recent studies. We have 119 stars in common with the Geneva–Copenhagen Survey, where stellar parameters were determined photometrically, and find a 14 ± 125 K difference in effective temperatures, 0.01 ± 0.16 in log g, and ‑0.02 ± 0.09 dex in metallicities. Comparing our results for 39 stars with previous high-resolution spectral determinations, we find only a 7 ± 73 K difference in effective temperatures, 0.02 ± 0.09 in log g, and ‑0.02 ± 0.09 dex in metallicities. We also determined basic kinematic and orbital parameters for this sample of stars. From the kinematical point of view, almost all our stars belong to the thin disk substructure of the Milky Way. The derived galactocentric metallicity gradient is ‑0.066 ± 0.024 dex kpc‑1 (2.5σ significance) and the vertical metallicity gradient is ‑0.102 ± 0.099 dex kpc‑1 (1σ significance) that comply with the latest inside-out thin disk formation models, including those with stellar migration taken into account. Based on observations collected with the 1.65 m telescope and VUES spectrograph at the Molėtai Astronomical Observatory of Institute of Theoretical Physics and Astronomy, Vilnius University, for the SPFOT survey.

  20. Simultaneous calibrations of Voyager celestial and inertial attitude control systems in flight

    NASA Technical Reports Server (NTRS)

    Jahanshahi, M. H.

    1982-01-01

    A mathematical description of the data reduction technique used to simultaneously calibrate the Voyager celestial and inertial attitude control subsystems is given. It is shown that knowledge of the spacecraft limit cycle motion, as measured by the celestial and the inertial sensors, is adequate to result in the estimates of a selected number of errors which adversely affect the spacecraft attitude knowledge.

  1. "Bridging the Gap" through Australian Cultural Astronomy

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2011-01-01

    For more than 50,000 years, Indigenous Australians have incorporated celestial events into their oral traditions and used the motions of celestial bodies for navigation, time-keeping, food economics, and social structure. In this paper, we explore the ways in which Aboriginal people made careful observations of the sky, measurements of celestial bodies, and incorporated astronomical events into complex oral traditions by searching for written records of time-keeping using celestial bodies, the use of rising and setting stars as indicators of special events, recorded observations of variable stars, the solar cycle, and lunar phases (including ocean tides and eclipses) in oral tradition, as well as astronomical measurements of the equinox, solstice, and cardinal points.

  2. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-04

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  3. Consistent realization of Celestial and Terrestrial Reference Frames

    NASA Astrophysics Data System (ADS)

    Kwak, Younghee; Bloßfeld, Mathis; Schmid, Ralf; Angermann, Detlef; Gerstl, Michael; Seitz, Manuela

    2018-03-01

    The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005-2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of Δ UT1 results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μas. Moreover, the CRF is influenced by up to 50 μas if the station coordinates and EOP are dominated by the satellite techniques.

  4. The Fulldome Curriculum for the Spitz SciDome Digital Planetarium: A New Age for Planetarium Education

    NASA Astrophysics Data System (ADS)

    Bradstreet, David H.; Huggins, S. L.

    2010-01-01

    Astronomy education received a huge boost from the Space Program in the 1960's and early 1970's as evidenced by a large increase in school planetariums built nationwide at that time. But with the waning of manned explorations so also went the push for astronomy in the schools, and many school planetariums are underutilized or not used at all. This poster will discuss and illustrate some of the new Fulldome Curriculum that has been developed specifically for the Spitz SciDome digital planetarium powered by Starry Night. It is now possible to teach astronomical concepts in new and exciting ways and present topics that were extremely difficult to convey to lay audiences in the past. One of the strongest advantages of the SciDome is that, since it uses Starry Night as its astronomical engine, students can create their own astronomical configurations in the computer lab or at home using the PC or Mac version and then simply load them onto the SciDome planetarium system and display them for the class on the dome. Additionally, the instructor can create artificial bodies to pose "What if” scenarios, for example, "What would the Moon look like if it didn't rotate synchronously?", or "What would the analemma look like if the Earth's orbit were circular and not an ellipse?" Topics covered in the series include The Moon, Seasons, Coordinate Systems, Roemer's Method of Measuring the Speed of Light, Analemmas in the Solar System, Precession, Mimas and the Cassini Division, Halley's Comet in 1910, Dog Days, Galactic Distributions of Celestial Bodies, Retrograde Paths of Mars, Mercury's Orbit and the Length of the Mercurian Day, Altitude of the North Celestial Pole, Why Polaris Appears Mostly Stationary, Circumpolar Contellations, Planet Definition, Scale of the Solar System, Stonehenge, The Changing Aspect of Saturn's Appearance and Scorpio's Claws.

  5. Magnetic information affects the stellar orientation of young bird migrants

    NASA Astrophysics Data System (ADS)

    Weindler, Peter; Wiltschko, Roswitha; Wiltschko, Wolfgang

    1996-09-01

    WHEN young birds leave on their first migration, they are guided by innate information about their direction of migration. It is generally assumed that this direction is represented twice, namely with respect to celestial rotation and with respect to the Earth's magnetic field1,2. The interactions between the two cue systems have been analysed by exposing hand-raised young birds during the premigratory period to cue-conflict situations, in which celestial rotation and the magnetic field provided different information. Celestial rotation altered the course with respect to the magnetic field3-7, whereas conflicting magnetic information did not seem to affect the course with respect to the stars8,9. Celestial information thus seemed to dominate over magnetic information. Here we report that the interaction between the two cue systems is far more complex than this. Celestial rotation alone seems to provide only a tendency to move away from its centre (towards geographical south), which is then modified by information from the magnetic field to establish the distinctive, population-specific migratory direction.

  6. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2015-08-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.

  7. Generation of dynamo waves by spatially separated sources in the Earth and other celestial bodies

    NASA Astrophysics Data System (ADS)

    Popova, E.

    2017-12-01

    The amplitude and the spatial configuration of the planetary and stellar magnetic field can changing over the years. Celestial bodies can have cyclic, chaotic or unchanging in time magnetic activity which is connected with a dynamo mechanism. This mechanism is based on the consideration of the joint influence of the alpha-effect and differential rotation. Dynamo sources can be located at different depths (active layers) of the celestial body and can have different intensities. Application of this concept allows us to get different forms of solutions and some of which can include wave propagating inside the celestial body. We analytically showed that in the case of spatially separated sources of magnetic field each source generates a wave whose frequency depends on the physical parameters of its source. We estimated parameters of sources required for the generation nondecaying waves. We discus structure of such sources and matter motion (including meridional circulation) in the liquid outer core of the Earth and active layers of other celestial bodies.

  8. A new high-resolution kinematic model for the southern North Atlantic region: the Iberian plate kinematics since the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Chiara; Vergés, Jaume; Schettino, Antonio; Fernández, Manel; Turco, Eugenio; Torné, Montserrat; Casciello, Emilio

    2017-04-01

    We present the first high-resolution kinematic model for the southern North Atlantic since the late Cretaceous, in order to constrain the Iberian kinematics during the last 83 Myr. Assessing the detailed movements of the Iberian plate is crucial to constrain the kinematics of the Western Mediterranean region and to better understand the Pyrenees and Betic - Rif orogenic systems evolution. The new plate motions model for the Iberia - North America plate pair is accompanied by a high-resolution isochron map for the southern North Atlantic region, resulting from a re-examination of 400 ship tracks and 3 aeromagnetic tracks in the NGDC data base for the area between the Azores triple junction and 46° N. We derive a well-constrained kinematic solution for the relative motion between an independent Iberia and North America from seafloor spreading data despite the short length of the magnetic lineations and the scarcity of large-offset transform faults and fracture zones. Accurate finite reconstruction poles for the Iberia - North America conjugate plate pair between the Late Cretaceous (Chron 34, 83.5 Ma) and the present day (Chron 2A, 2.58 Ma) are calculated on the basis of a set of 100 magnetic profiles through an iterative method. Euler poles and associated angles of rotation are computed as follow. An initial rotation pole is calculated using only magnetic anomaly crossings. The initial large uncertainty associated with the first determination is reduced by generating a set of synthetic fracture zones associated with the initial pole and using points sampled along these structures in conjunction with magnetic anomaly crossings to calculate a new Euler pole and associated confidence ellipse. This procedure is repeated n times, generating a sequence of improving approximate solutions and stopped when the solution become stable excluding solutions that were inconsistent with geological constraints. We used these results to build a comprehensive kinematic model for the North America - Iberia - Europe - Africa - Morocco plate system. A set of plate reconstructions illustrates the Iberian plate kinematics and show plate boundaries and velocity fields since the Late Cretaceous attempting to reconcile the geology of Pyrenees and Betic - Rif chain and the kinematic of the southern North Atlantic Ocean. This research is supported by project ALPIMED (PIE-CSIC-201530E082)

  9. Establishing a celestial VLBI reference frame. 1: Searching for VLBI sources

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Morabito, D. D.; Williams, J. G.; Slade, M. A.; Harris, A. W.; Finley, S. G.; Skjerve, L. J.; Tanida, L.; Spitzmesser, D. J.; Johnson, B.

    1978-01-01

    The Deep Space Network is currently engaged in establishing a new high-accuracy VLBI celestial reference frame. The present status of the task of finding suitable celestial radio sources for constructing this reference frame is discussed. To date, 564 VLBI sources were detected, with 166 of these lying within 10 deg of the ecliptic plane. The variation of the sky distribution of these sources with source strength is examined.

  10. A Native Intelligence Metric for Artificial Systems

    DTIC Science & Technology

    2002-08-01

    an example to help clarify the GCEA. Say we are S and we stumble upon Stonehenge . We don’t wonder whether humans carried the stones (some...stones S encounters that may be exhibiting alignment with celestial bodies at certain seasonal times. S determines that the designer of Stonehenge had...matching of the stones with particular celestial events. The various celestial events and our prehistoric Stonehenge designer’s awareness of these events

  11. Astrometry for Astrophysics

    NASA Astrophysics Data System (ADS)

    van Altena, William F.

    Part I. Astrometry in the Twenty-First Century: 1. Opportunities and challenges for astrometry in the twenty-first century M. Perryman; 2. Astrometric satellites L. Lindegren; 3. Ground-based opportunities for astrometry N. Zacharias; Part II. Relativistic Foundations of Astrometry and Celestial Mechanics: 4. Vectors in astrometry, an introduction L. Lindegren; 5. Relativistic principles of astrometry and celestial mechanics S. Klioner; 6. Celestial mechanics of the N-body problem S. Klioner; 7. Celestial coordinate systems and positions N. Capitaine and M. Stavinschi; 8. Fundamental algorithms for celestial coordinates and positions P. Wallace; Part III. Observing through the Atmosphere: 9. The Earth's atmosphere: refraction, turbulence, delays and limitations to astrometic precision W. van Altena and E. Fomalont; 10. Astrometry with ground-based diffraction-limited imaging A. Ghez; 11. Optical interferometry A. Glindermann; 12. Radio interferometry E. Fomalont; Part VI. From Detected Photons to the Celestial Sphere: 13. Geometrical optics and astrometry D. Schroeder; 14. CCD imaging detectors S. Howell; 15. Using CCDs in the time-delayed integration mode D. Rabinowitz; 16. Statistical astronomy A. Brown; 17. Analyzing poorly-sampled images: HST imaging astrometry J. Anderson; 18. Image deconvolution J. Nuñez; 19. From measures to celestial coordinates Z. H. Tang and W. van Altena; 20. Astrometric catalogs: concepts, history and necessity C. López; 21. Trigonometric parallaxes F. Benedict and B. McArthur; Part V. Applications of Astrometry to Topics in Astrophysics: 22. Galactic structure astrometry R. Méndez; 23. Binary and multiple stars E. Horch; 24. Binaries: HST, Hipparcos and Gaia D. Pourbaix; 25. Star clusters I. Platais; 26. Solar System astrometry F. Mignard; 27. Extrasolar planets A. Sozzetti; 28. Astrometric measurement and cosmology R. Easther; Appendices; Index.

  12. Astrometry for Astrophysics

    NASA Astrophysics Data System (ADS)

    van Altena, William F.

    2012-11-01

    Part I. Astrometry in the Twenty-First Century: 1. Opportunities and challenges for astrometry in the twenty-first century M. Perryman; 2. Astrometric satellites L. Lindegren; 3. Ground-based opportunities for astrometry N. Zacharias; Part II. Relativistic Foundations of Astrometry and Celestial Mechanics: 4. Vectors in astrometry, an introduction L. Lindegren; 5. Relativistic principles of astrometry and celestial mechanics S. Klioner; 6. Celestial mechanics of the N-body problem S. Klioner; 7. Celestial coordinate systems and positions N. Capitaine and M. Stavinschi; 8. Fundamental algorithms for celestial coordinates and positions P. Wallace; Part III. Observing through the Atmosphere: 9. The Earth's atmosphere: refraction, turbulence, delays and limitations to astrometic precision W. van Altena and E. Fomalont; 10. Astrometry with ground-based diffraction-limited imaging A. Ghez; 11. Optical interferometry A. Glindermann; 12. Radio interferometry E. Fomalont; Part VI. From Detected Photons to the Celestial Sphere: 13. Geometrical optics and astrometry D. Schroeder; 14. CCD imaging detectors S. Howell; 15. Using CCDs in the time-delayed integration mode D. Rabinowitz; 16. StaStatistical astronomy A. Brown; 17. Analyzing poorly-sampled images: HST imaging astrometry J. Anderson; 18. Image deconvolution J. Nuñez; 19. From measures to celestial coordinates Z. H. Tang and W. van Altena; 20. Astrometric catalogs: concepts , history and necessity C. Löpez; 21. Trigonometric parallaxes F. Benedict and B. McArthur; Part V. Applications of Astrometry to Topics in Astrophysics: 22. Galactic structure astrometry R. Méndez; 23. Binary and multiple stars E. Horch; 24. Binaries: HST, Hipparcos and Gaia D. Pourbaix; 25. Star clusters I. Platais; 26. Solar System astrometry F. Mignard; 27. Extrasolar planets A. Sozzetti; 28. Astrometric measurement and cosmology R. Easther; Appendices; Index.

  13. 14 CFR 63.55 - Experience requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...

  14. 14 CFR 63.55 - Experience requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...

  15. 14 CFR 63.55 - Experience requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...

  16. 14 CFR 63.55 - Experience requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...

  17. 14 CFR 63.55 - Experience requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... satisfactory flight navigation including celestial and radio navigation and dead reckoning. A pilot who has... exclusively for practicing long-range navigation methods, with emphasis on celestial navigation and dead...

  18. Solar oscillation time delay measurement assisted celestial navigation method

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Gui, Mingzhen; Zhang, Jie; Fang, Jiancheng; Liu, Gang

    2017-05-01

    Solar oscillation, which causes the sunlight intensity and spectrum frequency change, has been studied in great detail, both observationally and theoretically. In this paper, owing to the existence of solar oscillation, the time delay between the sunlight coming from the Sun directly and the sunlight reflected by the other celestial body such as the satellite of planet or asteroid can be obtained with two optical power meters. Because the solar oscillation time delay is determined by the relative positions of the spacecraft, reflective celestial body and the Sun, it can be adopted as the navigation measurement to estimate the spacecraft's position. The navigation accuracy of single solar oscillation time delay navigation system depends on the time delay measurement accuracy, and is influenced by the distance between spacecraft and reflective celestial body. In this paper, we combine it with the star angle measurement and propose a solar oscillation time delay measurement assisted celestial navigation method for deep space exploration. Since the measurement model of time delay is an implicit function, the Implicit Unscented Kalman Filter (IUKF) is applied. Simulations demonstrate the effectiveness and superiority of this method.

  19. The significance of the Sun, Moon and celestial bodies to societies in the Carpathian basin during the Bronze Age

    NASA Astrophysics Data System (ADS)

    Pásztor, Emília

    2011-06-01

    Celestial events often exerted a great or even decisive influence on the life of ancient communities. They may provide some of the foundations on which an understanding of the deeper meaning of mythologies, religious systems and even folk tales can be based. These influences are reflected and may be detected in the archaeological material as well. There is good evidence that celestial (especially solar and perhaps lunar) phenomena played a particularly important rôle in the worldview of prehistoric Europe. To reveal the social and ideational significance of concepts relating to the celestial bodies in the prehistory of the Carpathian Basin, complex investigations on orientations of houses and graves, prestige archaeological finds and iconography have been accomplished. The results indicate ideological and/or social changes, which developed into a likely organized ideological system in large part of Central Europe including the Carpathian Basin by the Late Bronze Age. It might also be the first period in prehistory when people became really interested in celestial phenomena.

  20. Vector navigation in desert ants, Cataglyphis fortis: celestial compass cues are essential for the proper use of distance information.

    PubMed

    Sommer, Stefan; Wehner, Rüdiger

    2005-10-01

    Foraging desert ants navigate primarily by path integration. They continually update homing direction and distance by employing a celestial compass and an odometer. Here we address the question of whether information about travel distance is correctly used in the absence of directional information. By using linear channels that were partly covered to exclude celestial compass cues, we were able to test the distance component of the path-integration process while suppressing the directional information. Our results suggest that the path integrator cannot process the distance information accumulated by the odometer while ants are deprived of celestial compass information. Hence, during path integration directional cues are a prerequisite for the proper use of travel-distance information by ants.

  1. Terrestrial passage theory of the moon illusion.

    PubMed

    Reed, C F

    1984-12-01

    Theories of the celestial, or moon, illusion have neglected geometric characteristics of movement along and above the surface of the earth. The illusion occurs because the characteristics of terrestrial passage are attributed to celestial passage. In terrestrial passage, the visual angle subtended by an object changes discriminably as an essentially invariant function of elevation above the horizon. In celestial passage, by contrast, change in visual angle is indiscriminable at all elevations. If a terrestrial object gains altitude, its angular subtense fails to follow the expansion projected for an orbital course: Angular diminution or constancy is equivalent to distancing. On the basis of terrestrial projections, a similar failure of celestial objects in successive elevations is also equivalent to distancing. The illusion occurs because of retinal image constancy, not--as traditionally stated--despite it.

  2. Thermospheric Response to Solar Wind Electric Field Fluctuations

    NASA Astrophysics Data System (ADS)

    Perlongo, N. J.; Ridley, A. J.

    2013-12-01

    The electron density of the thermosphere is of paramount importance for radio communications and drag on low altitude satellites, particularly during geomagnetic storms. Transient enhancements of ion velocities and subsequent density and temperature increases frequently occur as a result of storm-driven solar wind electric field fluctuations. Since the Earth's dipole magnetic field is tilted and offset from the center of the planet, significant asymmetries arise that alter the thermospheric response to energy input based upon the time of day of the disturbance. This study utilizes the Global Ionosphere-Thermosphere Model (GITM) to investigate this phenomenon by enhancing the convective electric field for one hour of the day in 22 different simulations. An additional baseline run was conducted with no IMF perturbation. Furthermore, four configurations of Earth's magnetic field were considered, Internal Geomagnetic Reference Field (IGRF), a perfect dipole, a dipole tilted by 10 degrees, and a tilted and offset dipole. These runs were conducted at equinox when the amount of sunlight falling on the different hemispheres is the same. Two additional runs were conducted at the solstices for comparison. It was found that the most geo-effective times are when the poles are pointed towards the sun. The electron density, neutral density and temperature as well as the winds are explored.

  3. A two-level approach to VLBI terrestrial and celestial reference frames using both least-squares adjustment and Kalman filter algorithms

    NASA Astrophysics Data System (ADS)

    Soja, B.; Krasna, H.; Boehm, J.; Gross, R. S.; Abbondanza, C.; Chin, T. M.; Heflin, M. B.; Parker, J. W.; Wu, X.

    2017-12-01

    The most recent realizations of the ITRS include several innovations, two of which are especially relevant to this study. On the one hand, the IERS ITRS combination center at DGFI-TUM introduced a two-level approach with DTRF2014, consisting of a classical deterministic frame based on normal equations and an optional coordinate time series of non-tidal displacements calculated from geophysical loading models. On the other hand, the JTRF2014 by the combination center at JPL is a time series representation of the ITRF determined by Kalman filtering. Both the JTRF2014 and the second level of the DTRF2014 are thus able to take into account short-term variations in the station coordinates. In this study, based on VLBI data, we combine these two approaches, applying them to the determination of both terrestrial and celestial reference frames. Our product has two levels like DTRF2014, with the second level being a Kalman filter solution like JTRF2014. First, we compute a classical TRF and CRF in a global least-squares adjustment by stacking normal equations from 5446 VLBI sessions between 1979 and 2016 using the Vienna VLBI and Satellite Software VieVS (solution level 1). Next, we obtain coordinate residuals from the global adjustment by applying the level-1 TRF and CRF in the single-session analysis and estimating coordinate offsets. These residuals are fed into a Kalman filter and smoother, taking into account the stochastic properties of the individual stations and radio sources. The resulting coordinate time series (solution level 2) serve as an additional layer representing irregular variations not considered in the first level of our approach. Both levels of our solution are implemented in VieVS in order to test their individual and combined performance regarding the repeatabilities of estimated baseline lengths, EOP, and radio source coordinates.

  4. Osculating Keplerian Elements for Highly Non-Keplerian Orbits

    DTIC Science & Technology

    2017-03-27

    1.52133 2 McInnes, C. R., “The Existence and Stability of Families of Displacement Two-Body Orbits”, Celestial Mechanics and Dynamical Astronomy , Vol...j.actaastro.2011.08.012 5 Xu, M. and Xu, S., “Nonlinear dynamical analysis for displaced orbits above a planet”, Celestial Mechanics and Dynamical Astronomy ...Celestial Mechanics and Dynamical Astronomy , Vol. 110, No. 3, 2011, pp. 199-215. doi: 10.1007/s10569-011-9351-5 7 Macdonald, M., McKay, R. J., Vasile, M

  5. The Celestial Vault: The Magic of Astrology

    NASA Astrophysics Data System (ADS)

    McGaha, J.

    2004-11-01

    Astrology is a "Geocentric System" that supports the "Astrological Principle". This principle, that human beings and their actions are influenced by the positions of celestial objects, is not objectively supported. The "planetary gods" found in the heavens provided order to help explain the chaotic events in life on earth. Is this why many people think their horoscopes are correct, with the "stars" taking credit? Do "celestial movements" foretell the future? What is the evidence for Astrology? The historical, psychological and physical foundations of astrology will be discussed.

  6. The Hands of the Pleiades: The Celestial Clock in the Classical Arabic Poetry of Dhū al-Rumma

    NASA Astrophysics Data System (ADS)

    Adams, W. B.

    2011-06-01

    In the desert poetry of Dhū al-Rumma (d. 117 AH/735 CE), astronomical phenomena sometimes function as familiar celestial timepieces that indicate the poetic timeframe literally and accurately. The literary, lexical, floral and astronomical analyses of a selection from this poetry illustrate the role of the Pleiades star cluster as a celestial clock and illuminate the utility of naked-eye astronomy in interpreting Arabic poetry of the early Islamic period.

  7. Students' development of astronomy concepts across time

    NASA Astrophysics Data System (ADS)

    Plummer, Julia Diane

    2006-02-01

    The National Science Education Standards (NRC, 1996) recommend that students understand the apparent patterns of motion of the sun, moon and stars visible by the end of early elementary school. However, little information exists on students' knowledge of apparent celestial motion or instruction in this area. The goals of this dissertation were to describe children's knowledge of apparent celestial motion across elementary and middle school, explore early elementary students' ability to learn these topics through planetarium instruction, and begin the development of a learning progression for these concepts, First, third, and eighth grade students (N=60) were interviewed using a planetarium-like setting that allowed the students to demonstrate their ideas both verbally and with their own motions on an artificial sky. Analysis of these interviews suggests that students are not making the types of observations of the sky necessary to learn apparent celestial motion and any instruction they may have received has not helped them reach an accurate understanding of most topics. Most students at each grade level could not accurately describe the patterns of motion. Though the older students were more accurate in most of their descriptions than the younger students, in several areas the eighth grade students showed no improvement over the third grade students. The use of kinesthetic learning techniques in a planetarium program was also explored as a method to improve understanding of celestial motion. Pre- and post-interviews were conducted with participants from seven classes of first and second grade students (N=63). Students showed significant improvement in all areas of apparent celestial motion covered by the planetarium program and surpassed the middle school students' understanding of these concepts in most areas. This suggests that students in early elementary school are capable of learning the accurate description of apparent celestial motion. The results demonstrate the value of both kinesthetic learning techniques and the rich visual environment of the planetarium for improved understanding of celestial motion. Based on the results of these studies, I developed a learning progression describing how children may progress through successively more complex ways of understanding apparent celestial motion across elementary grades.

  8. VizieR Online Data Catalog: Candidate strong lens systems from DES obs. (Diehl+, 2017)

    NASA Astrophysics Data System (ADS)

    Diehl, H. T.; Buckley-Geer, E. J.; Lindgren, K. A.; Nord, B.; Gaitsch, H.; Gaitsch, S.; Lin, H.; Allam, S.; Collett, T. E.; Furlanetto, C.; Gill, M. S. S.; More, A.; Nightingale, J.; Odden, C.; Pellico, A.; Tucker, D. L.; da Costa, L. N.; Neto, A. F.; Kuropatkin, N.; Soares-Santos, M.; Welch, B.; Zhang, Y.; Frieman, J. A.; Abdalla, F. B.; Annis, J.; Benoit-Levy, A.; Bertin, E.; Brooks, D.; Burke, D. L.; Rosell, A. C.; Kind, M. C.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; Desai, S.; Dietrich, J. P.; Drlica-Wagner, A.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Garcia-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Nugent, P.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; DES Collaboration

    2017-10-01

    The Dark Energy Survey (DES) is in the midst of imaging 5000°2 of the southern galactic cap using the Dark Energy Camera (DECam), which is operated on the 4m Victor M. Blanco Telescope at Cerro Tololo Interamerican Observatory (CTIO) near La Serena, Chile. Science verification (SV) spanned 79 nights or half-nights from 2012 November 1, to 2013 February 22. The main SV wide-field (WF) survey areas amounted to ~250°2 at non-uniform depth and data quality. The first full observing season, Year 1 (Y1), spanned 119 nights or half-nights from 2013 August 31 to 2014 February 9. The Y1 wide-field (WF) survey observations were concentrated in two areas: one of about 150°2 near the celestial equator that included a part of SDSS Stripe 82 (Annis+ 2014ApJ...794..120A), and a much larger region of roughly 1800°2 from -60° to -40° decl. that overlapped the area mapped in microwaves by the South Pole Telescope (SPT). Generally, we observed those fields four times in each of the five filters: the g, r, i, z, and Y-bands. (2 data files).

  9. Difference Image Analysis of Defocused Observations With CSTAR

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Macri, Lucas M.; Wang, Lifan; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Lawrence, Jon S.; Qiang, Liu; Luong-Van, Daniel; Pennypacker, Carl R.; Yang, Huigen; Yuan, Xiangyan; York, Donald G.; Zhou, Xu; Zhu, Zhenxi

    2015-02-01

    The Chinese Small Telescope ARray carried out high-cadence time-series observations of 27 square degrees centered on the South Celestial Pole during the Antarctic winter seasons of 2008-2010. Aperture photometry of the 2008 and 2010 i-band images resulted in the discovery of over 200 variable stars. Yearly servicing left the array defocused for the 2009 winter season, during which the system also suffered from intermittent frosting and power failures. Despite these technical issues, nearly 800,000 useful images were obtained using g, r, and clear filters. We developed a combination of difference imaging and aperture photometry to compensate for the highly crowded, blended, and defocused frames. We present details of this approach, which may be useful for the analysis of time-series data from other small-aperture telescopes regardless of their image quality. Using this approach, we were able to recover 68 previously known variables and detected variability in 37 additional objects. We also have determined the observing statistics for Dome A during the 2009 winter season; we find the extinction due to clouds to be less than 0.1 and 0.4 mag for 40% and 63% of the dark time, respectively.

  10. Gaia DR1 documentation Chapter 6: Variability

    NASA Astrophysics Data System (ADS)

    Eyer, L.; Rimoldini, L.; Guy, L.; Holl, B.; Clementini, G.; Cuypers, J.; Mowlavi, N.; Lecoeur-Taïbi, I.; De Ridder, J.; Charnas, J.; Nienartowicz, K.

    2017-12-01

    This chapter describes the photometric variability processing of the Gaia DR1 data. Coordination Unit 7 is responsible for the variability analysis of over a billion celestial sources. In particular the definition, design, development, validation and provision of a software package for the data processing of photometrically variable objects. Data Processing Centre Geneva (DPCG) responsibilities cover all issues related to the computational part of the CU7 analysis. These span: hardware provisioning, including selection, deployment and optimisation of suitable hardware, choosing and developing software architecture, defining data and scientific workflows as well as operational activities such as configuration management, data import, time series reconstruction, storage and processing handling, visualisation and data export. CU7/DPCG is also responsible for interaction with other DPCs and CUs, software and programming training for the CU7 members, scientific software quality control and management of software and data lifecycle. Details about the specific data treatment steps of the Gaia DR1 data products are found in Eyer et al. (2017) and are not repeated here. The variability content of the Gaia DR1 focusses on a subsample of Cepheids and RR Lyrae stars around the South ecliptic pole, showcasing the performance of the Gaia photometry with respect to variable objects.

  11. Petrologic Characteristics of the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Wang, Xianmin; Pedrycz, Witold

    2015-11-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  12. Petrologic Characteristics of the Lunar Surface

    PubMed Central

    Wang, Xianmin; Pedrycz, Witold

    2015-01-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface. PMID:26611148

  13. Petrologic Characteristics of the Lunar Surface.

    PubMed

    Wang, Xianmin; Pedrycz, Witold

    2015-11-27

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  14. Differences of the Plasma Drift and Upper Thermospheric Wind Behaviour in the Northern and Southern Polar Regions due to the Geomagnetic Field Asymmetry

    NASA Astrophysics Data System (ADS)

    Foerster, M.; Cnossen, I.; Haaland, S.

    2013-12-01

    The non-dipolar portions of Earth's main magnetic field constitute substantial differences between the geomagnetic field configurations of both hemispheres. They cause in particular different magnetic field flux densities in the opposite polar regions and different offsets of the invariant poles with respect to the rotation axis of the Earth. The offset is presently considerable larger (factor ~2) in the Southern Hemisphere compared to the Northern, which has substantial implications for the coupled magnetosphere-ionosphere-thermosphere system under the influence of external drivers. Recent observations have shown that the ionospheric/thermospheric response to solar wind and IMF dependent processes in the magnetosphere can be very dissimilar in the Northern and Southern Hemisphere. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns obtained from almost a decade of measurements starting in 2001 of the electron drift instrument (EDI) on board the Cluster satellites and an accelerometer on board the CHAMP spacecraft, respectively. Using the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model, on the other hand, we simulated a 20-day spring equinox interval of low solar activity with both symmetric dipole and realistic (IGRF) geomagnetic field configurations to prove the importance of the hemispheric differences for the plasma and neutral wind dynamics. The survey of both the numerical simulation and the statistical observation results show some prominent asymmetries between the two hemispheres, which are likely due to the different geographic-geomagnetic offset, or even due to different patterns of geomagnetic flux densities. Plasma drift differences can partly be attributed to differing ionospheric conductivities. The forthcoming Swarm satellite mission will provide valuable observations for further detailed analyses of the North-South asymmetries of plasma convection and neutral wind dynamics.

  15. 132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, BUDOCKS, OCTOBER 14, 1943. QP ACC 9689. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  16. Celestial Seasonings: Astronomy and Rock Art in the American Southwest

    NASA Astrophysics Data System (ADS)

    Krupp, E. C.

    1994-12-01

    Astronomical interpretations of prehistoric rock art have played a significant part in the development of modern archaeoastronomy since 1975, when interest was renewed in the possibility that the Crab supernova explosion of 1054 A.D. was represented in rock art of the American Southwest. (This hypothesis was actually first formulated in 1955.) In the last two decades, a variety of astronomical functions for rock art have been proposed and investigated. These include representation of specific historical celestial events, symbolic representation of elements of celestial myths, star maps, markers for astronomical observing stations markers for celestially tempered shrines, images intended to invoke and exploit cosmo-magical power, seasonally significant light-and-shadow displays. Examples of astronomical connotations in prehistoric rock art from the Southwest and California illustrate the necessity of understanding the culture in any attempt to understand its astronomy.

  17. Segmentation and disruption of the East Pacific Rise in the mouth of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Lonsdale, Peter

    1995-08-01

    Analysis of new multibeam bathymetry and all available magnetic data shows that the 340 km-long crest of the East Pacific Rise between Rivera and Tamayo transforms contains segments of both the Pacific-Rivera and the Pacific-North America plate boundaries. Another Pacific-North America spreading segment (“Alarcon Rise”) extends 60 km further north to the Mexican continental margin. The Pacific-North America-Rivera triple junction is now of the RRR type, located on the risecrest 60 km south of Tamayo transform. Slow North America-Rivera rifting has ruptured the young lithosphere accreted to the east flank of the rise, and extends across the adjacent turbidite plain to the vicinity of the North America-Rivera Euler pole, which is located on the plate boundary. The present absolute motion of the Rivera microplate is an anticlockwise spin at 4° m.y.-1 around a pole located near its southeast corner; its motion has recently changed as the driving forces applied to its margins have changed, especially with the evolution of the southern margin from a broad shear zone between Rivera and Mathematician microplates to a long Pacific-Rivera transform. Pleistocene rotations in spreading direction, by as much as 15° on the Pacific-Rivera boundary, have segmented the East Pacific Rise into a staircase of en echelon spreading axes, which overlap at lengthening and migrating nontransform offsets. The spreading segments vary greatly in risecrest geomorphology, including the full range of structural types found on other rises with intermediate spreading rates: axial rift valleys, split shield volcanoes, and axial ridges. Most offsets between the segments have migrated southward, but within the past 1 m.y. the largest of them (with 14 27 km of lateral displacement) have shown “dueling” behavior, with short-lived reversals in migration direction. Migration involves propagation of a spreading axis into abyssal hill terrain, which is deformed and uplifted while it occupies the broad shear zones between overlapping spreading axes. Tectonic rotation of the deformed crust occurs by bookshelf faulting, which generates teleseismically recorded strike-slip earthquakes. When reversals of migration direction occur, plateaus of rotated crust are shed onto the rise flanks.

  18. OPTICAL SPECTRA OF CANDIDATE SOUTHERN HEMISPHERE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) RADIO SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Jauncey, D. L.; Johnston, H. M.

    2011-11-15

    We present the results of spectroscopic observations of the optical counterparts of 47 southern radio sources from the candidate International Celestial Reference Catalogue as part of a very long baseline interferometry (VLBI) program to strengthen the celestial reference frame, especially in the south. We made the observations with the 3.58 m European Southern Observatory New Technology Telescope. We obtained redshifts for 30 quasars and one radio galaxy, with a further seven objects being probable BL Lac objects with featureless spectra. Of the remainder, four were clear misidentifications with Galactic stars and five had low signal-to-noise spectra and could not bemore » classified. These results, in combination with new VLBI data of the radio sources with redshifts more than 2, add significantly to the existing data needed to refine the distribution of source proper motions over the celestial sphere.« less

  19. A consistent time frame for Chaucer's Canterbury Pilgrimage

    NASA Astrophysics Data System (ADS)

    Kummerer, K. R.

    2001-08-01

    A consistent time frame for the pilgrimage that Geoffrey Chaucer describes in The Canterbury Tales can be established if the seven celestial assertions related to the journey mentioned in the text can be reconciled with each other and the date of April 18 that is also mentioned. Past attempts to establish such a consistency for all seven celestial assertions have not been successful. The analysis herein, however, indicates that in The Canterbury Tales Chaucer accurately describes the celestial conditions he observed in the April sky above the London(Canterbury region of England in the latter half of the fourteenth century. All seven celestial assertions are in agreement with each other and consistent with the April 18 date. The actual words of Chaucer indicate that the Canterbury journey began during the 'seson' he defines in the General Prologue and ends under the light of the full Moon on the night of April 18, 1391.

  20. Dynamical configurations of celestial systems comprised of multiple irregular bodies

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Zhang, Yun; Baoyin, Hexi; Li, Junfeng

    2016-09-01

    This manuscript considers the main features of the nonlinear dynamics of multiple irregular celestial body systems. The gravitational potential, static electric potential, and magnetic potential are considered. Based on the three established potentials, we show that three conservative values exist for this system, including a Jacobi integral. The equilibrium conditions for the system are derived and their stability analyzed. The equilibrium conditions of a celestial system comprised of n irregular bodies are reduced to 12n - 9 equations. The dynamical results are applied to simulate the motion of multiple-asteroid systems. The simulation is useful for the study of the stability of multiple irregular celestial body systems and for the design of spacecraft orbits to triple-asteroid systems discovered in the solar system. The dynamical configurations of the five triple-asteroid systems 45 Eugenia, 87 Sylvia, 93 Minerva, 216 Kleopatra, and 136617 1994CC, and the six-body system 134340 Pluto are calculated and analyzed.

  1. The Future of Past Skies: Historical Celestial Cartography at the Adler Planetarium

    NASA Astrophysics Data System (ADS)

    Raposo, Pedro M. P.

    2018-01-01

    The Adler Planetarium is home to a world-class collection of scientific instruments, rare books and works on paper. Since 2014, Adler staff has been digitizing a wide selection of items relating to celestial cartography, including: more than 236 rare books and atlases; 97 works on paper; globes and other artifacts, amounting to 58 objects; and approximately 3,750 Carte du Ciel prints. This work has been carried out under the auspices of the Celestial Cartography Digitization Project (CCDP), which is sponsored by the National Endowment for the Humanities. This poster presentation will include: 1) an update on the project; 2) a description of related resources and tools available to the research community; 3) examples of how the Adler Planetarium is integrating the history of celestial cartography with its public programs; 4) an overview of a prospective citizen science project involving the identification of constellations in historical atlases and charts.

  2. Celestial dynamics and astrometry in expanding universe

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei

    2012-08-01

    Post - Newtonian theory of motion of celestial bodies and propagation of light was instrumental in conducting the critical experimental tests of general relativity and in building the astronomical ephemerides of celestial bodies in the solar system with an unparalleled precision. The cornerstone of the theory is the postulate that the solar system is gravitationally isolated from the rest of the universe and the background spacetime is asymptotically flat. The present talk abolishes this postulate and lays down the principles of celestial dynamics of particles and light moving in gravitational field of a localized astronomical system embedded to the expanding universe. We formulate the precise mathematical concept of the Newtonian limit of Einstein ’s field equations in the conformally - flat spacetime and analyse the geodesic equations of motion o f particles and light in this limit. We demonstrate that the equations of motion of particles and light can be reduced to their Newtonian counterparts by doing conformal transformations of time and space coordinates. However, the Newtonian equations for particles and light differ by terms of the first order in the Hubble constant. This leads to the important conclusion that the equations of motion used currently by Space Navigation Centres and Astronomical Observatories for calculating orbits of celestial bodies, are incomplete and missing some terms of cosmological origin. We explicitly identify the missing terms and demonstrate that they bring about a noticeable discrepancy between the observed and calculated astronomical ephemerides. We argue that a number of observed celestial anomalies in the solar system can be explained as caused by the Hubble expansion of the universe.

  3. Contemplation and Calculation: The Universe Discovered.

    ERIC Educational Resources Information Center

    Solovyov, Yury

    1992-01-01

    Discusses how early notions about celestial mechanics were restructured, one by one, involving the following concepts: the celestial sphere and its rotation; the spherical earth; planetary motion; and models for the solar system initiated by Eudoxus, Hipparchus, Ptolemy, and Copernicus. (JJK)

  4. Celestial Navigation

    ERIC Educational Resources Information Center

    Rosenkrantz, Kurt

    2005-01-01

    In the unit described in this article, students discover the main principles of navigation, build tools to observe celestial bodies, and apply their new skills to finding their position on Earth. Along the way students see how science, mathematics, technology, and history are intertwined.

  5. A re-examination of paleomagnetic results from NA Jurassic sedimentary rocks: Additional evidence for proposed Jurassic MUTO?

    NASA Astrophysics Data System (ADS)

    Housen, B. A.

    2015-12-01

    Kent and Irving, 2010; and Kent et al, 2015 propose a monster shift in the position of Jurassic (160 to 145 Ma) paleopoles for North America- defined by results from igneous rocks. This monster shift is likely an unrecognized true polar wander occurrence. Although subject to inclination error, results from sedimentary rocks from North America, if corrected for these effects, can be used to supplement the available data for this time period. Steiner (2003) reported results from 48 stratigraphic horizons sampled from the Callovian Summerville Fm, from NE New Mexico. A recalculated mean of these results yields a mean direction of D = 332, I = 39, n=48, k = 15, α95 = 5.4°. These data were analyzed for possible inclination error-although the dataset is small, the E-I results yielded a corrected I = 53. This yields a corrected paleopole for NA at ~165 Ma located at 67° N and 168° E.Paleomagnetic results from the Black Hills- Kilanowski (2002) for the Callovian Hulett Mbr of the Sundance Fm, and Gregiore (2001) the Oxfordian-Tithonian Morrison Fm (Gregiore, 2001) have previously been interpreted to represent Eocene-aged remagnetizations- due to the nearly exact coincidence between the in-situ pole positions of these Jurassic units with the Eocene pole for NA. Both of the tilt-corrected results for these units have high latitude poles (Sundance Fm: 79° N, 146° E; Morrison Fm: 89° N, 165° E). An E-I analysis of these data will be presented- using a provisional inclination error of 10°, corrected paleopoles are: (Sundance Fm: 76° N, 220° E; Morrison Fm: 77° N, 266° E). The Black Hills 165 Ma (Sundance Fm) and 145 Ma (Morrison Fm) poles, provisionally corrected for 10° inclination error- occur fairly close to the NA APWP proposed by Kent et al, 2015- using an updated set of results from kimberlites- the agreement between the Sundance Fm and the Triple-B (158 Ma) pole would be nearly exact with a slightly lesser inclination error. The Summerville Fm- which is thought to be ~ coeval with the Sundance Fm- is significantly offset from this newer NA path, but a larger inclination error for this unit would produce a better agreement. Thus, pending more precise estimates of inclination error from these units, middle-late Jurassic sedimentary rocks from NA do support the existence of a MUTO (Monster Unknown True polar wander Occurrence) during Jurassic time.

  6. The Diffuse Radiation Field at High Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Akshaya, M. S.; Murthy, Jayant; Ravichandran, S.; Henry, R. C.; Overduin, James

    2018-05-01

    We have used GALEX observations of the north and south Galactic poles to study the diffuse ultraviolet background at locations where the Galactic light is expected to be at a minimum. We find offsets of 230–290 photon units in the far-UV (1531 Å) and 480–580 photon units in the near-UV (2361 Å). Of this, approximately 120 photon units can be ascribed to dust-scattered light and another 110 photon units (190 in the near-UV) to extragalactic radiation. The remaining radiation is, as yet, unidentified and amounts to 120–180 photon units in the far-UV and 300–400 photon units in the near-UV. We find that molecular hydrogen fluorescence contributes to the far-UV when the 100 μm surface brightness is greater than 1.08 MJy sr‑1.

  7. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    NASA Astrophysics Data System (ADS)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  8. On the Origin of Rotation of a Celestial Body

    NASA Astrophysics Data System (ADS)

    Vujičić, V. A.

    1988-03-01

    The differential equations of the self-rotation of a celestial body have been evaluated. From an integral of these equations a formula for angular velocity of the celestial body was obtained. This formula after being applied to the rotation of the Sun and of the Earth gives, respectively, the following angular velocity ranges: 0.588×10-6<ω<18, 187×10-6 and 0.7533×10-5<ω<12,4266×10-5. These are up to three times narrower than those previously obtained by Savić and Kašanin [1].

  9. Re-calibration of the magnetic compass in hand-raised European robins (Erithacus rubecula)

    PubMed Central

    Alert, Bianca; Michalik, Andreas; Thiele, Nadine; Bottesch, Michael; Mouritsen, Henrik

    2015-01-01

    Migratory birds can use a variety of environmental cues for orientation. A primary calibration between the celestial and magnetic compasses seems to be fundamental prior to a bird’s first autumn migration. Releasing hand-raised or rescued young birds back into the wild might therefore be a problem because they might not have established a functional orientation system during their first calendar year. Here, we test whether hand-raised European robins that did not develop any functional compass before or during their first autumn migration could relearn to orient if they were exposed to natural celestial cues during the subsequent winter and spring. When tested in the geomagnetic field without access to celestial cues, these birds could orient in their species-specific spring migratory direction. In contrast, control birds that were deprived of any natural celestial cues throughout remained unable to orient. Our experiments suggest that European robins are still capable of establishing a functional orientation system after their first autumn. Although the external reference remains speculative, most likely, natural celestial cues enabled our birds to calibrate their magnetic compass. Our data suggest that avian compass systems are more flexible than previously believed and have implications for the release of hand-reared migratory birds. PMID:26388258

  10. The astronomy of Andean myth: The history of a cosmology

    NASA Astrophysics Data System (ADS)

    Sullivan, William F.

    It is shown that Andean myth, on one level, represents a technical language recording astronomical observations of precession and, at the same time, an historical record of simultaneous social and celestial transformations. Topographic and architectural terms of Andean myth are interpreted as a metaphor for the organization of and locations on the celestial sphere. Via ethoastronomical date, mythical animals are identified as stars and placed on the celestial sphere according to their topographical location. Tested in the planetarium, these arrays generate cluster of dates - 200 B.C. and 650 A.D. Analysis of the names of Wiraqocha and Manco Capac indicates they represent Saturn and Jupiter and that their mythical meeting represents their conjunction in 650 A.D. The astronomy of Andean myth is then used as an historical tool to examine how the Andean priest-astronomers recorded the simultaneous creation of the avllu and of this distinctive astronomical system about 200 B.C. The idea that the agricultural avllu, with its double descent system stressing the importance of paternity, represents a transformation of society from an earlier matrilineal/horticultural era is examined in light of the sexual imagery employed in myth. Wiraqocha's androgyny and the division of the celestial sphere into male (ecliptic) and female (celestial equator = earth) are interpreted as cosmological validations of the new social structure.

  11. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  12. Celestial mechanics with geometric algebra

    NASA Technical Reports Server (NTRS)

    Hestenes, D.

    1983-01-01

    Geometric algebra is introduced as a general tool for Celestial Mechanics. A general method for handling finite rotations and rotational kinematics is presented. The constants of Kepler motion are derived and manipulated in a new way. A new spinor formulation of perturbation theory is developed.

  13. Place in History and Astrophysics as the Pole Star and the Nearest Cepheid

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.

    2012-05-01

    Over ten centuries ago years, precession moved the Earth's North Celestial Pole (NCP) near the direction of alpha Ursae Minoris - now known as Polaris. Since that time Polaris has served as an important navigation star. By 2100 (at closest approach) Polaris moves within 0.5 deg of the NCP. Because of its brightness ( 2nd mag) and fixed place in the sky, Polaris is frequently referenced in literature, folklore, and pop culture. For example, in the Arctic, Polaris is known to the Inuit (among other names) as Nuuttuittuq ("never moves"), while the Yup'ik Eskimo refer to Polaris as Agyarrlak ("major star"). But Polaris, as the nearest Classical Cepheid (and also member of a multiple star system) is astrophysically important and interesting in its own right. Primarily this is because Polaris' physical properties can be precisely determined. Its distance provides a luminosity, pulsation mode and calibration for the Leavitt Law (Period-Luminosity relation). But, Polaris has been found to be full of surprises and puzzles. Over the last century Polaris has been undergoing rapid, large changes in its pulsation period (increasing at over 4 sec/yr.) as well as in its light and radial velocity variations. Noteworthy, during the early-1990s, Polaris nearly stopped pulsating and thus almost ceased being a Cepheid! Surprisingly Polaris (and other Cepheids) recently have been discovered to have significant mass-loss, and to display X-ray and FUV-line emission variations in phase with their pulsations. In this introductory talk Polaris' place in history and in the field of astronomy will be briefly discussed along with the important role it plays in the broader understanding of Cepheid structure and evolution. This research is, in part, supported by NASA Grants HST-GO11726.01 and NNX08AX37G, which we gratefully acknowledge.

  14. Constraining foreground spectrum with the projection-induced polarization for the cosmological global 21-cm experiments

    NASA Astrophysics Data System (ADS)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Professor O.

    2018-01-01

    Detecting the cosmological global (sky-averaged) 21-cm spectrum as a function of observed frequency will provide a powerful tool to study the thermal history of intergalactic medium (IGM) in the high-redshift Universe (~ 400 million years after the Big Bang). The biggest challenge in conventional ground-based total-power global 21-cm experiments is the removal of the Galactic and extragalactic synchrotron foreground (~ 1e4-1e5 K) to uncover the weak cosmological signal (~ 10-100 mK). The foreground is further corrupted by the frequency-dependent instrumental systematics. We have developed a new polarimetry-based observational approach that aims to measure the foreground emission by modulating it as a function of time through its circumpolar motion. Due to geometry, the projection of the anisotropic foreground sources onto the dual-polarized antenna induces a net foreground polarization, which is distinct from the much weaker intrinsic polarization of synchrotron sources. Instead of pointing the radio antenna at the zenith as in the conventional experiments, we point the antenna at the North Celestial Pole (NCP) and measure the projection-induced polarization modulated by the foreground's circumpolar diurnal periodicity. This temporal signature allows us to separate the dynamic foreground spectrum from the static cosmological background. In this presentation, we describe the design, construction, and initial results from the "Cosmic Twilight Polarimeter'' (CTP) as a proof-of-concept implementation of this technique. The instrument consists of a dual-polarized broadband antenna (60-120 MHz) with a two-stage thermally stabilized front-end electronics, tilted toward the NCP. The instrument is currently being evaluated at a site near Charlottesville, VA. Ultimately, the instrument will be relocated to an RFI-quiet site closer to the Geographic North Pole (GNP) to mitigate sky obstruction due to the horizon at a lower latitude.

  15. The effect of magnetic topography on high-latitude radio emission at Neptune

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; Warwick, James W.; Romig, J. H.

    1992-01-01

    Occultation by a local elevation on the surface of constant magnetic field is proposed as a new interpretation for the unusual properties of Neptune high-latitude emission. Abrupt changes in intensity and polarization of this broadband smooth radio emission were observed as the Voyager 2 spacecraft passed near the north magnetic pole before closest approach. The observed sequence of cutoffs with polarization reversal would not occur during descent of the spacecraft through regular surfaces of increasing magnetic field. The sequence can be understood in terms of constant-frequency (constant-field) surfaces that are not only offset from the planet center but are locally highly distorted by an elevation that occults the outgoing extraordinary-mode beam. The required occulter is similar to the field enhancement observed directly by the magnetometer team when Voyager reached lower altitude farther to the west. Evidence is presented that the sources of the high-altitude emission are located near the longitude of the minimum-B anomaly associated with the dipole offset and that the local elevation of constant-B surfaces extends eastward from the longitude where it is directly measured by the magnetometer to the longitude where occultation of the remote radio source is observed. Together, the radio and magnetometer experiments indicate that the constant-frequency surfaces are distorted by an elevation that extends 0.3 rad in the longitudinal direction.

  16. Paleomagnetism of Cretaceous limestones from western Tarim basin suggests negligible latitudinal offset yet significant clockwise rotation

    NASA Astrophysics Data System (ADS)

    Tan, X.; Gilder, S.; Chen, Y.; Cogné, J. P.; Courtillot, V. E.; Cai, J.

    2017-12-01

    Large northward translation of central Asian crustal blocks has been reported from paleomagnetism of Cretaceous and Tertiary terrestrial sediments. This motion was initially taken as evidence of deformation occurred in the Asian interior as a result of indentation of the Indian Plate. However, because the amount of motion is far greater than geological observations, accuracy of the paleomagnetic record has become a controversial issue. To solve the problem, it has been shown that the latitudinal offset can be entirely attributed to inclination shallowing during deposition and compaction processes (Tan et al., 2003; Tauxe and Kent, 2004). On the other hand, coeval volcanic rocks from central Asia did record steeper paleomagnetic inclinations than terrestrial rocks (Gilder et al., 2003). To extend the effort of solving the controversy, we report paleomagnetic results of Cretaceous limestones from western Tarim basin. Our results show that the majority of our collections have been overprinted. Fortunately, a special type of limestones preserved stable characteristic remanence. Fold tests suggest a primary origin of the magnetization. Comparison of the paleomagnetic direction with the coeval expected direction from reference poles indicates a negligible amount of northward movement consistent with previous result of inclination correction based on magnetic fabrics, and a pattern of clockwise rotation symmetric with the style observed in the western flank of the Pamir ranges. Rock magnetic data will also be presented to support the accurate paleomagnetic record.

  17. Origin of Magnetic Lineations on Mars

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.

    2002-01-01

    The magnetic lineations discovered by MGS (Mars Global Surveyor) have been considered to be evidence of early plate tectonics on Mars. However, the lineations approximately follow lines of latitude, i.e., small circles. This presents significant geometrical problems for plate-like spreading, particularly at high latitudes. However, the sublatitudinal orientation of the lineations is consistent with meridianal extension and perhaps limited crustal spreading due to a stress event centered near the geographic pole. We hypothesize that this event was the early formation of the crustal dichotomy through mantle-convective processes. This could have taken the form of a southern megaplume that formed the thick highlands crust or as subduction or downwelling in the north. Both would result in tensional stresses in the south that would form extensional fractures perpendicular to the CM-CF (center-of-mass/center-of-gravity) offset. The observed magnitude and distribution of magnetization indicates that crustal intrusion associated with this major mantle-convective event resulted in approximately 1000 km of extension in the Southern highlands. Subsequent spin-axis reorientation due to loss of crust in the north or gain of crust in the south brought the CM-CF offset into its present N-S alignment. A portion of the ancient valley networks observed in the southern highlands are spatially associated with crustal magnetism and are quantitatively shown to be consistent with hydrothermal discharge over crustal intrusions.

  18. Anisotropy in the all-sky distribution of galaxy morphological types

    NASA Astrophysics Data System (ADS)

    Javanmardi, Behnam; Kroupa, Pavel

    2017-01-01

    We present the first study of the isotropy of the all-sky distribution of morphological types of galaxies in the Local Universe out to around 200 Mpc using more than 60 000 galaxies from the HyperLeda database. We use a hemispherical comparison method where the sky is divided into two opposite hemispheres and the abundance distribution of the morphological types, T, are compared using the Kolmogorov-Smirnov (KS) test. By pointing the axis of symmetry of the hemisphere pairs to different directions in the sky, the KS statistic as a function of sky coordinates is obtained. For three samples of galaxies within around 100, 150, and 200 Mpc, we find a significant hemispherical asymmetry with a vanishingly small chance of occurring in an isotropic distribution. Astonishingly, regardless of this extreme significance, the observed hemispherical asymmetry for the three distance ranges is aligned with the celestial equator at the 97.1-99.8% confidence level and with the ecliptic at 94.6-97.6%, estimated using a Monte Carlo analysis. Shifting T values randomly within their uncertainties has a negligible effect on this result. When a magnitude limit of B ≤ 15 mag is applied to these samples, the galaxies within 100 Mpc show no significant anisotropy after randomization of T. However, the direction of the asymmetry in the samples within 150 and 200 Mpc and the same magnitude limit is found to be within an angular separation of 32 degrees from (l,b) = (123.7,24.6) with a 97.2% and 99.9% confidence level, respectively. This direction is only 2.6 degrees away from the celestial north pole. Unless the Local Universe has a significant anisotropic distribution of galaxy morphologies aligned with the orientation or the orbit of the Earth (which would be a challenge for the Cosmological Principle), our results show that there seems to be a systematic bias in the classification of galaxy morphological types between the data from the northern and the southern equatorial sky. Further studies are absolutely needed to find the exact source of this anisotropy.

  19. It All Depends on Your Attitude.

    ERIC Educational Resources Information Center

    Kastner, Bernice

    1992-01-01

    Presents six learning exercises that introduce students to the mathematics used to control and track spacecraft attitude. Describes the geocentric system used for Earthbound location and navigation, the celestial sphere, the spacecraft-based celestial system, time-dependent angles, observer-fixed coordinate axes, and spacecraft rotational axes.…

  20. Students' Development of Astronomy Concepts across Time

    NASA Astrophysics Data System (ADS)

    Plummer, Julia

    Students in Grades 1, 3, and 8 (N = 60) were interviewed while using a planetarium-like setting that allowed the students to demonstrate their ideas about apparent celestial motion both verbally and with their own motions. Though the older students were generally more accurate in many conceptual areas compared with the younger students, in several areas, the eighth-grade students showed no improvement over the third-grade students. The use of kinesthetic learning techniques in a planetarium program was also explored as a method to improve understanding of celestial motion. Pre- and postinterviews were conducted with participants from seven classes of first- and second-grade students (N = 63). Students showed significant improvement in all areas of apparent celestial motion covered by the planetarium program and surpassed the middle school students' understanding of these concepts in most areas. Based on the results of these studies, a learning progression was developed describing how children may progress through successively more complex ways of understanding apparent celestial motion across elementary grades.

  1. The astronomical data base and retrieval system at NASA

    NASA Technical Reports Server (NTRS)

    Mead, J. M.; Nagy, T. A.; Hill, R. S.; Warren, W. H., Jr.

    1982-01-01

    More than 250 machine-readable catalogs of stars and extended celestial objects are now available at the NASA/Goddard Space Flight Center (GSFC) as the result of over a decade of catalog acquisition, verification and documentation. Retrieval programs are described which permit the user to obtain from a remote terminal bibliographical listings for stars; to find all celestial objects from a given list that are within a defined angular separation from each object in another list; to plot celestial objects on overlays for sky survey plate areas; and to search selected catalogs for objects by criteria of position, identification number, magnitude or spectral type.

  2. Background Oriented Schlieren Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Haering, Edward, A., Jr. (Inventor); Hill, Michael A (Inventor)

    2017-01-01

    The present invention is a system and method of visualizing fluid flow around an object, such as an aircraft or wind turbine, by aligning the object between an imaging system and a celestial object having a speckled background, taking images, and comparing those images to obtain fluid flow visualization.

  3. Opportunities of Teaching Archaeoastronomy in Thailand

    ERIC Educational Resources Information Center

    Anantasook, Sakanan; Yuenyong, Chokchai; Coll, Richard K.

    2015-01-01

    Ancient cultures around the world systematically observed the sky and noticed the motions of celestial objects including the stars, Moon, Sun, and planets. Many structural symbolic patterns were built to perceive, visualize and understand the celestial phenomena. They have used this knowledge, archaeoastronomy, to survive, and as bases for…

  4. Perceptual Strategies of Pigeons to Detect a Rotational Centre—A Hint for Star Compass Learning?

    PubMed Central

    Helduser, Sascha; Mouritsen, Henrik; Güntürkün, Onur

    2015-01-01

    Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy. PMID:25807499

  5. Inquiry and Astronomy: Preservice Teachers' Investigations of Celestial Motion

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Zahm, Valerie M.; Rice, Rebecca

    2010-01-01

    This study investigated the impact of an open inquiry experience on elementary science methods students' understanding of celestial motion as well as the methods developed by students to answer their own research questions. Pre/post interviews and assessments were used to measure change in participants' understanding (N = 18). A qualitative…

  6. Laplacean Ideology for Preliminary Orbit Determination and Moving Celestial Body Identification in Virtual Epoch

    NASA Astrophysics Data System (ADS)

    Bykov, O. P.

    Any CCD frames with stars or galaxies or clusters and other images must be studied for a searching of moving celestial objects, namely asteroids, comets, artificial Earth satellites inside them. At Pulkovo Astronomical Observatory, new methods and software were elaborated to solve this problem.

  7. The Mathematics of Go to Telescopes

    ERIC Educational Resources Information Center

    Teets, Donald

    2007-01-01

    This article presents the mathematics involved in finding and tracking celestial objects with an electronically controlled telescope. The essential idea in solving this problem is to choose several different coordinate systems that simplify the various motions of the earth and other celestial objects. These coordinate systems are then related by…

  8. Solar system lithograph set for earth and space science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A color lithographs of many of the celestial bodies within our solar system are contained in this educational set of materials. Printed on the back of each lithograph is information regarding the particular celestial body. A sheet with information listing NASA resources and electronic resources for education is included.

  9. Family of the Sun-and-Stars Time-Determining Instruments (Ilseong-jeongsi-ui) Invented During the Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sam; Kim, Sang Hyuk; Mihn, Byeong-Hee

    2016-09-01

    We analyze the design and specifications of the Sun-and-Stars Time-Determining group of instruments (Ilseong-jeongsi-ui, 日星定時儀) made during the Joseon dynasty. According to the records of the Sejong Sillok (Veritable Records of King Sejong), Sun-and-Stars Time-Determining Instruments measure the solar time of day and the sidereal time of night through three rings and an alidade. One such instrument, the Simplified Time-Determining Instrument (So-jeongsi-ui, 小定時儀), is made without the essential component for alignment with the celestial north pole. Among this group of instruments, only two bronze Hundred-Interval-Ring Sundials (Baekgak-hwan-Ilgu, 百刻環日晷) currently exist. A comparison of the functions of these two relics with two Time-Determining Instruments suggests that the Hundred-Interval-Ring Sundial is a Simplified Sundial (So-ilyeong, 小日影), as recorded in the Sejong Sillok and the Seongjong Sillok (Veritable Records of King Seongjong). Furthermore, the Simplified Sundial is a model derived from the Simplified Time-Determining Instrument. During the King Sejong reign, the Sun-and-Stars Time-Determining Instruments were used in military camps of the kingdom’s frontiers, in royal ancestral rituals, and in royal astronomical observatories.

  10. Hemispheric asymmetries in high-latitude ionospheric convection and upper atmosphere neutral wind circulation

    NASA Astrophysics Data System (ADS)

    Foerster, M.; Cnossen, I.; Haaland, S.

    2015-12-01

    Recent observations have shown that the ionospheric/thermospheric response to solar wind and IMF dependent processes in the magnetosphere can be very dissimilar in the Northern and Southern polar regions. We present statistical studies of both the high-latitude ionospheric convection and the upper thermospheric circulation patterns obtained over almost a full solar cycle during the first decade of this century by measurements of the electron drift instrument (EDI) on board the Cluster satellites and by the accelerometer on board the CHAMP spacecraft, respectively. The asymmetries are attributed to the non-dipolar portions of the Earth's magnetic field that constitute hemispheric differences in magnetic flux densities, different offsets of the invariant geomagnetic poles, and generally in different field configurations of both hemispheres. Seasonal and solar cycle effects of the asymmetries are considered and first trials to explain the effects by numerical modeling are presented.

  11. Tectonics of the Nazca-Antarctic plate boundary

    NASA Technical Reports Server (NTRS)

    Anderson-Fontana, Sandra; Larson, Roger L.; Engeln, Joseph F.; Lundgren, Paul; Stein, Seth

    1987-01-01

    A new bathymetric chart of part of the Chile transform system is constructed, based mainly on an R/V Endeavor survey from 100 deg W to its intersection with the East Ridge of the Juan Fernandez microplate. A generally continuous lineated trend can be followed through the entire region, with the transform valley being relatively narrow and well-defined from 109 deg W to approximately 104 deg 30 min W. The fracture zone then widens to the east, with at least two probable en echelon offsets to the south at 104 deg and 102 deg W. Six new strike-slip mechanisms along the Chile Transform and one normal fault mechanism near the northern end of the Chile Rise, inverted together with other plate-motion data from the eastern portion of the boundary, produce a new best-fit Euler pole for the Nazca-Antarctic plate pair, providing tighter constraints on the relative plate motions.

  12. Did a Comet Deliver the Chelyabinsk Meteorite?

    NASA Astrophysics Data System (ADS)

    Gladysheva, O. G.

    2017-09-01

    An explosion of a celestial body occurred on the fifteenth of February, 2013, near Chelyabinsk (Russia). The explosive energy was determined as 500 kt of TNT, on the basis of which the mass of the bolide was estimated at 107 kg, and its diameter at 19 m [1]. Fragments of the meteorite, such as LL5/S4-WO type ordinary chondrite [2] with a total mass only of 2•103 kg, fell to the earth's surface [3]. Here, we will demonstrate that the deficit of the celestial body's mass can be explained by the arrival of the Chelyabinsk chondrite on Earth by a significantly more massive but fragile ice-bearing celestial body.

  13. UBVRI PHOTOMETRIC STANDARD STARS AROUND THE CELESTIAL EQUATOR: UPDATES AND ADDITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landolt, Arlo U.

    2009-05-15

    New broadband UBVRI photoelectric observations on the Johnson-Kron-Cousins photometric system have been made of 202 stars around the sky, and centered at the celestial equator. These stars constitute both an update of and additions to a previously published list of equatorial photometric standard stars. The list is capable of providing, for both celestial hemispheres, an internally consistent homogeneous broadband standard photometric system around the sky. When these new measurements are included with those previously published by Landolt (1992), the entire list of standard stars in this paper encompasses the magnitude range 8.90 < V < 16.30, and the color indexmore » range -0.35 < (B - V) < +2.30.« less

  14. AstroNavigation: Freely-available Online Instruction for Performing a Sight Reduction

    NASA Astrophysics Data System (ADS)

    Gessner Stewart, Susan; Grundstrom, Erika; Caudel, Dave

    2015-08-01

    A reliable method of obtaining your geographic location from observations of celestial bodies is globally available. This online learning module, developed through a collaboration between Vanderbilt University and the U.S. Naval Observatory, serves to address the need for freely-available comprehensive instruction in celestial navigation online. Specifically targeted are the steps of preforming a sight reduction to obtain a terrestrial position using this technique. Difficult concepts such as plotting on a navigational chart and the complexities of using navigation publications are facilitated through this online content delivery, rooted in effective course design principles. There is good potential in using celestial navigation as a tool for stimulating interest in astronomy given its resourcefulness and accessibility.

  15. Determination of meteor flux distribution over the celestial sphere

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.

    1992-01-01

    A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.

  16. A Study of Planetarium Effectiveness on Student Achievement, Perceptions and Retention.

    ERIC Educational Resources Information Center

    Ridky, Robert William

    Reported is a study to determine the effect of planetarium instruction in terms of immediate attainment, attitude, and retention in the teaching of selected celestial motion and non-celestial motion concepts, when contrasted to or combined with the inquiry activities utilized by the nationally developed science curricula. Observations were made on…

  17. The consistency of the current conventional celestial and terrestrial reference frames and the conventional EOP series

    NASA Astrophysics Data System (ADS)

    Heinkelmann, R.; Belda-Palazon, S.; Ferrándiz, J.; Schuh, H.

    2015-08-01

    For applications in Earth sciences, navigation, and astronomy the celestial (ICRF) and terrestrial (ITRF) reference frames as well as the orientation among them, the Earth orientation parameters (EOP), have to be consistent at the level of 1 mm and 0.1 mm/yr (GGOS recommendations). We assess the effect of unmodelled geophysical signals in the regularized coordinates and the sensitivity with respect to different a priori EOP and celestial reference frames. The EOP are determined using the same VLBI data but with station coordinates fixed on different TRFs. The conclusion is that within the time span of data incorporated into ITRF2008 (Altamimi, et al., 2011) the ITRF2008 and the IERS 08 C04 are consistent. This consistency involves that non-linear station motion such as unmodelled geophysical signals partly affect the IERS 08 C04 EOP. There are small but not negligible inconsistencies between the conventional celestial reference frame, ICRF2 (Fey, et al., 2009), the ITRF2008 and the conventional EOP that are quantified by comparing VTRF2008 (Böckmann, et al., 2010) and ITRF2008.

  18. The High-latitude Electric Potential Disparity and Hemispheric Differences in the Upper Thermospheric Neutral Wind Circulation

    NASA Astrophysics Data System (ADS)

    Foerster, M.; Haaland, S.; Cnossen, I.

    2014-12-01

    We present statistical studies of both the high-latitude ionospheric potential pattern deduced from long-term observations of the Cluster Electron Drift Instrument (EDI) and upper thermospheric neutral wind circulation patterns in the Northern (NH) and Southern Hemisphere (SH) obtained from accelerometers on board of low-Earth orbiting satellites like CHAMP during about the same time interval. The cross-polar cap potential difference during southward IMF conditions appears to be on average slightly (~7%) larger in the SH compared with the NH, while the neutral wind magnitude and vorticity amplitude are mostly larger in the NH than in the SH, especially during high solar activity conditions. We attribute such behaviour to peculiarities of the hemispheres due to the non-dipolar portions of Earth's main magnetic field that constitute substantial differences between the geomagnetic field configurations of both hemispheres. They cause in particular different magnetic field flux densities in the opposite polar regions and different offsets of the invariant poles with respect to the rotation axis of the Earth. The pole is presently displaced almost twice the distance in the SH compared to the NH, which has substantial implications for the coupled magnetosphere-ionosphere-thermosphere system under the influence of external drivers. To analyse this behaviour, we have run several numerical simulations using the first-principle Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model under various seasonal conditions. The survey of both the numerical simulation results and the observations confirm prominent asymmetries between the two hemispheres for these parameters.

  19. Neglected X-ray discovered polars. I. Giant flares in V358 Aquarii

    NASA Astrophysics Data System (ADS)

    Beuermann, K.; Burwitz, V.; Reinsch, K.; Schwope, A.; Thomas, H.-C.

    2017-07-01

    We report photometric and spectroscopic observations of the polar V358 Aqr (=RX J2316-0527) collected over 25 yr. It was discovered as a bright very soft X-ray source in the ROSAT All Sky Survey, but had lapsed into a low state when reobserved in 1993. We have obtained an optical photometric ephemeris, which is free of cycle count errors and allows to correctly phase events around the orbit even for observations that lie decades apart. V358 Aqr possesses an accreting pole in the upper hemisphere of the white dwarf that is visible over the entire orbital period of 209.45 min. The magnetic field strength derived from cyclotron line emission is 31.8 MG. The orbital motion of the cyclotron lines yields an inclination of 60° and an offset of the magnetic pole from the rotational axis of about 10°. The secondary star is of spectral type dM4.0 ± 0.5 and the distance is 540 ± 100 pc. V358 Aqr is peculiar in showing giant optical outbursts that bear all of the characteristics of stellar flares. With two flares observed in 72 h on source, the flare frequency may be high. The total energy radiated in the flare of 28 November 2010 exceeded 1036 erg. While the flares clearly occur on the secondary star, it seems that they may or may not be connected with coronal mass ejection and subsequent accretion onto the white dwarf.

  20. The depth of the honeybee's backup sun-compass systems.

    PubMed

    Dovey, Katelyn M; Kemfort, Jordan R; Towne, William F

    2013-06-01

    Honeybees have at least three compass mechanisms: a magnetic compass; a celestial or sun compass, based on the daily rotation of the sun and sun-linked skylight patterns; and a backup celestial compass based on a memory of the sun's movements over time in relation to the landscape. The interactions of these compass systems have yet to be fully elucidated, but the celestial compass is primary in most contexts, the magnetic compass is a backup in certain contexts, and the bees' memory of the sun's course in relation to the landscape is a backup system for cloudy days. Here we ask whether bees have any further compass systems, for example a memory of the sun's movements over time in relation to the magnetic field. To test this, we challenged bees to locate the sun when their known celestial compass systems were unavailable, that is, under overcast skies in unfamiliar landscapes. We measured the bees' knowledge of the sun's location by observing their waggle dances, by which foragers indicate the directions toward food sources in relation to the sun's compass bearing. We found that bees have no celestial compass systems beyond those already known: under overcast skies in unfamiliar landscapes, bees attempt to use their landscape-based backup system to locate the sun, matching the landscapes or skylines at the test sites with those at their natal sites as best they can, even if the matches are poor and yield weak or inconsistent orientation.

  1. Dynamics of Natural and Artificial Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Pretka-Ziomek, Halina; Wnuk, Edwin; Seidelmann, P. Kenneth; Richardson, David.

    2002-01-01

    This volume contains papers presented at the US/European Celestial Mechanics Workshop organized by the Astronomical Observatory of Adam Mickiewicz University in Poznan, Poland and held in Poznan, from 3 to 7 July 2000. The purpose of the workshop was to identify future research in celestial mechanics and astrometry and encourage collaboration among scientists from eastern and western countries. Also an emphasis was placed on attracting young members of the fields from around the world and encouraging them to undertake new research efforts needed for advancements in those fields. There was a full program of invited and contributed presentations on selected subjects and each day ended with a discussion period on a general subject in celestial mechanics. The discussion topics and the leaders were: Resonances and Chaos -- A. Morbidelli; Artificial Satellite Orbits -- K.T. Alfriend; Near Earth Objects -- K. Muinonen; Small Solar System Bodies -- I. Williams; and Summary -- P.K. Seidelmann. The goal of the discussions was to identify what we did not know and how we might further our knowledge. It was felt, in addition, that Poznan, Poland, with a core of scientists covering a range of ages, would provide an example of how a research and educational group could be developed elsewhere. Also, Poznan is a central location convenient to eastern and western countries. Thus, the gathering of people and the papers presented are to be the bases for building the future of astrometry and celestial mechanics. Link: http://www.wkap.nl/prod/b/1-4020-0115-0

  2. Surface Rupture Characteristics and Rupture Mechanics of the Yushu Earthquake (Ms7.1), 14/04/2010

    NASA Astrophysics Data System (ADS)

    Pan, J.; Li, H.; Xu, Z.; Li, N.; Wu, F.; Guo, R.; Zhang, W.

    2010-12-01

    On April 14th 2010, a disastrous earthquake (Ms 7.1) struck Yushu County, Qinghai Province, China, killing thousands of people. This earthquake occurred as a result of sinistral strike-slip faulting on the western segment of the Xianshuihe Fault zone in eastern Tibetan Plateau. Our group conducted scientific investigation in the field on co-seismic surface rupture and active tectonics in the epicenter area immediately after the earthquake. Here, we introduce our preliminary results on the surface ruptures and rupture mechanics of the Yushu Earthquake. The surface rupture zone of Yushu earthquake, which is about 49 km-long, consists of 3 discontinuous left stepping rupture segments, which are 19 km, 22 km, and about 8 km, respectively, from west to east. Each segment consists of a series of right stepping en-echelon branch ruptures. The branch ruptures consist of interphase push-up and tension fissures or simply en-echelon tension fissures. The co-seismic displacements had been surveyed with a total station in detail on landmarks such as rivers, gullies, roads, farmlands, wire poles, and fences. The maximum offset measured is 2.3m, located near the Guoyangyansongduo Village. There are 3 offset peaks along the rupture zone corresponding to the 3 segments of the surface rupture zone. The maximum offsets in the west, central, and east segment rupture zones are 1.4m, 2.3m, and 1.6m respectively. The surface rupture zone of Yushu earthquake strikes in a 310°NW direction. The fault plane dips to the northeast and the dip angle is about 81°. The rupture zone is developed in transtension setting. Tension normal fault developed during the sinistral strike-slip process of the fault. The valley west of Yushu City and the Longbao Lake are both pull-apart basins formed during the transtension activity of the fault.

  3. Constraints on the richness-mass relation and the optical-SZE positional offset distribution for SZE-selected clusters

    DOE PAGES

    Saro, A.

    2015-10-12

    In this study, we cross-match galaxy cluster candidates selected via their Sunyaev–Zel'dovich effect (SZE) signatures in 129.1 deg 2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function 500> ∝ B λlnM 500 + C λlnE(z) and use SPT-SZ cluster masses andmore » RM richnesses λ to constrain the parameters. We find B λ = 1.14 +0.21 –0.18 and C λ = 0.73 +0.77 –0.75. The associated scatter in mass at fixed richness is σ lnM|λ = 0.18 +0.08 –0.05 at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ϵ [4, 4.5].« less

  4. Reconstructing Plate Motions on Europa with GPlates

    NASA Astrophysics Data System (ADS)

    Cutler, B. B.; Collins, G. C.; Prockter, L. M.; Patterson, G.; Kattenhorn, S. A.; Rhoden, A.; Cooper, C. M.

    2015-12-01

    Observations of past plate tectonic - like motions in Europa's icy lithosphere have been reported in previous studies. Quantifying the nature, age, and amount of plate motion is important for geophysical models of Europa's ice shell and for astrobiology, since subsumed pates could drive the flow of nutrients into the subsurface ocean. We have used GPlates software (Williams et al., GSA Today 2012) and a mosaic of regional-resolution Galileo SSI data from orbits E11, E15, E17, and E19 to make interactive reconstructions of both the Northern Falga region (60N, 220W) and the Castalia Macula region (0N, 225W). The advantage of this method is that plate motions are calculated on a sphere, while still maintaining the original Galileo image pieces in their proper geographic locations. Previous work on the Castalia Macula region (Patterson et al. J.Struct.Geol. 2006) and the adjacent Phaidra Linea region (Patterson and Ernst, LPSC 2011) found offsets along spreading boundaries, and then calculated the best fit finite rotations to close those offsets. Though this method is mathematically rigorous and gives a statistical goodness of fit, it is not easy to test multiple hypotheses for candidate piercing points or divisions of candidate plate boundaries. Through the interactive environment, we found that we could better account for observed offsets in this region by breaking it into 32 different plates. Patterson and Ernst broke the Phaidra region into 6 plates which exhibited nonrigid behavior, where our study breaks it into 16 rigid plates. The Northern Falga Regio area is interesting due to the potential for large amounts of subsumption of Europa's icy crust in this location. The previous reconstruction (Kattenhorn and Prockter, Nat.Geosci. 2014) was based on planar geometry, and we have replicated these results using a spherically-based reconstruction. We will present the plate maps and reconstructions for both of these regions, along with the best fit rotation poles.

  5. Titan's Atmospheric Dynamics and Meteorology

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.

    2008-01-01

    Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the Huygens measurements. At low latitudes the zonal winds near the surface appear not to be westward as on Earth, but eastward. Because the net zonal-mean time-averaged torq exerted by the surface on the atmosphere should vanish, this implies westward flow o part of the surface; the question is where. The latitude contrast in tropospheric temperatures, deduced from radio occultations at low, mid, and high latitudes, is small approx.5 K at the tropopause and approx.3 K at the surface.

  6. Mariner 9 celestial mechanics experiment - A status report.

    NASA Technical Reports Server (NTRS)

    Lorell, J.; Shapiro, I. I.

    1973-01-01

    There are two basic efforts in the Mariner 9 celestial mechanics experiment: the determination of the gravity field of Mars and the performance of a very precise test of the theory of general relativity. In addition, there are a number of astrodynamic constants that are being determined. All the analyses are based on the Mariner 9 radio tracking data.

  7. Relationships between log N-log S and celestial distribution of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Yamagami, T.

    1985-01-01

    The apparent conflict between log N-log S curve and isotropic celestial distribution of the gamma ray bursts is discussed. A possible selection effect due to the time profile of each burst is examined. It is shown that the contradiction is due to this selection effect of the gamma ray bursts.

  8. Celestial Navigation for High School Students.

    ERIC Educational Resources Information Center

    Bell, Carroll Wilson

    Reported is a study of a syllabus designed to teach students how to determine a position by celestial means. The syllabus was intended to augment existing curricula and be a topic for special interest groups and not designed as a semester-long course in itself. Each of the 14 lessons included was preceded by specific objectives written in…

  9. Determination of the observation conditions of celestial bodies with the aid of the DISPO system

    NASA Technical Reports Server (NTRS)

    Kazakov, R. K.; Krivov, A. V.

    1984-01-01

    The interactive system for determining the observation conditions of celestial bodies is described. A system of programs was created containing a part of the DISPO Display Interative System of Orbit Planning. The system was used for calculating the observatiion characteristics of Halley's comet during its approach to Earth in 1985-86.

  10. Preventing Commercial Colonialism and Retaining Sovereignty Over National Policy and Military Strategy in Space

    DTIC Science & Technology

    2018-04-09

    29 National Interests in Space – Commercial or State-Driven Celestial Expansion? ....... 31 Celestial Market Opportunities – When Will Commercial...Space Markets Open? ...... 38 Implications of Commercial Space Operations ............................................................ 45 Chapter 5...Successful development of competitiveness involves seeking to dominate or control an existing or emergent market . The development of market domination into

  11. Sensory bases of navigation.

    PubMed

    Gould, J L

    1998-10-08

    Navigating animals need to know both the bearing of their goal (the 'map' step), and how to determine that direction (the 'compass' step). Compasses are typically arranged in hierarchies, with magnetic backup as a last resort when celestial information is unavailable. Magnetic information is often essential to calibrating celestial cues, though, and repeated recalibration between celestial and magnetic compasses is important in many species. Most magnetic compasses are based on magnetite crystals, but others make use of induction or paramagnetic interactions between short-wavelength light and visual pigments. Though odors may be used in some cases, most if not all long-range maps probably depend on magnetite. Magnetitebased map senses are used to measure only latitude in some species, but provide the distance and direction of the goal in others.

  12. Nonlinear dynamic characteristics of dielectric elastomer membranes

    NASA Astrophysics Data System (ADS)

    Fox, Jason W.; Goulbourne, Nakhiah C.

    2008-03-01

    The dynamic response of dielectric elastomer membranes subject to time-varying voltage inputs for various initial inflation states is investigated. These results provide new insight into the differences observed between quasi-static and dynamic actuation and presents a new challenge to modeling efforts. Dielectric elastomer membranes are a potentially enabling technology for soft robotics and biomedical devices such as implants and surgical tools. In this work, two key system parameters are varied: the chamber volume and the voltage signal offset. The chamber volume experiments reveal that increasing the size of the chamber onto which the membrane is clamped will increase the deformations as well as cause the membrane's resonance peaks to shift and change in number. For prestretched dielectric elastomer membranes at the smallest chamber volume, the maximum actuation displacement is 81 microns; while at the largest chamber volume, the maximum actuation displacement is 1431 microns. This corresponds to a 1767% increase in maximum pole displacement. In addition, actuating the membrane at the resonance frequencies provides hundreds of percent increase in strain compared to the quasi-static strain. Adding a voltage offset to the time-varying input signal causes the membrane to oscillate at two distinct frequencies rather than one and also presents a unique opportunity to increase the output displacement without electrically overloading the membrane. Experiments to capture the entire motion of the membrane reveal that classical membrane mode shapes are electrically generated although all points of the membrane do not pass through equilibrium at the same moments in time.

  13. Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti.

    PubMed

    Schwarz, Sebastian; Albert, Laurence; Wystrach, Antoine; Cheng, Ken

    2011-03-15

    Many animal species, including some social hymenoptera, use the visual system for navigation. Although the insect compound eyes have been well studied, less is known about the second visual system in some insects, the ocelli. Here we demonstrate navigational functions of the ocelli in the visually guided Australian desert ant Melophorus bagoti. These ants are known to rely on both visual landmark learning and path integration. We conducted experiments to reveal the role of ocelli in the perception and use of celestial compass information and landmark guidance. Ants with directional information from their path integration system were tested with covered compound eyes and open ocelli on an unfamiliar test field where only celestial compass cues were available for homing. These full-vector ants, using only their ocelli for visual information, oriented significantly towards the fictive nest on the test field, indicating the use of celestial compass information that is presumably based on polarised skylight, the sun's position or the colour gradient of the sky. Ants without any directional information from their path-integration system (zero-vector) were tested, also with covered compound eyes and open ocelli, on a familiar training field where they have to use the surrounding panorama to home. These ants failed to orient significantly in the homeward direction. Together, our results demonstrated that M. bagoti could perceive and process celestial compass information for directional orientation with their ocelli. In contrast, the ocelli do not seem to contribute to terrestrial landmark-based navigation in M. bagoti.

  14. Same concept…Different terms

    NASA Astrophysics Data System (ADS)

    Heafner, Joe

    2018-03-01

    Most introductory physics courses begin with the concept of an object (usually a particle) having a precise position or location in space (I will not address spacetime here) relative to something else, the origin of a three-dimensional coordinate system perhaps. My experience has been that physics students are inherently at home with this concept. In astronomy, we often begin by thinking about the sky. For the purposes of this article, I will simply define it as that which we see when we look away from Earth's surface. It appears almost as a two-dimensional plane, perhaps even a curved surface. When we look at something in the sky, we really have no sense of distance. Indeed, when astronomers need the "position" of a star or planet in the sky, the quantity is two dimensional. Because the sky appears to wrap around Earth, celestial positions can be given entirely by angular quantities. Astronomers use right ascension and declination, respectively, as analogs of terrestrial longitude and latitude. Right ascension is the angular distance eastward around the celestial equator (the projection of Earth's equator onto the celestial sphere) from the vernal equinox (where the celestial equator and the ecliptic intersect such that the Sun is moving from the Southern Hemisphere to the Northern Hemisphere) to the object and declination is the object's angular distance north or south of the celestial equator. So to an astronomer, for the purposes of aiming a telescope, position refers to a two-dimensional quantity because in the sky there is no direct sense of depth or distance.

  15. Celestial Treasury

    NASA Astrophysics Data System (ADS)

    Lachièze-Rey, Marc; Luminet, Jean-Pierre

    2001-07-01

    Throughout history, the mysterious dark skies have inspired our imaginations in countless ways, influencing our endeavors in science and philosophy, religion, literature, and art. Filled with 380 full-color illustrations, Celestial Treasury shows the influence of astronomical theories and the richness of illustrations in Western civilization through the ages. The authors explore the evolution of our understanding of astronomy and weave together ancient and modern theories in a fascinating narrative. They incorporate a wealth of detail from Greek verse, medieval manuscripts and Victorian poetry with contemporary spacecraft photographs and computer-generated star charts. Celestial Treasury is more than a beautiful book: it answers a variety of questions that have intrigued scientists and laymen for centuries. -- How did philosophers and scientists try to explain the order that governs celestial motion? -- How did geometers and artists measure and map the skies? -- How many different answers have been proposed for the most fundamental of all questions: When and how did Earth come about? -- Who inhabits the heavens--gods, angels or extraterrestrials? No other book recounts humankind's fascination with the heavens as compellingly as Celestial Treasury. Marc Lachièze-Rey is a director of research at the Centre National pour la Récherche Scientifique and astrophysicist at the Centre d'Etudes de Saclay. He is the author of The Cosmic Background Radiation (Cambridge, 1999), and and The Quest for Unity, (Oxford, 1999 ), as well as many books in French. Jean-Pierre Luminet is a research director of the Centre National pour la Rechérche Scientifique, based at the Paris-Meudon observatory. He is the author of Black Holes, (Cambridge 1992), as well as science documentaries for television.

  16. OPTICAL SPECTRA OF CANDIDATE INTERNATIONAL CELESTIAL REFERENCE FRAME (ICRF) FLAT-SPECTRUM RADIO SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Johnston, Helen M.

    2013-07-01

    Continuing our program of spectroscopic observations of International Celestial Reference Frame (ICRF) sources, we present redshifts for 120 quasars and radio galaxies. Data were obtained with five telescopes: the 3.58 m European Southern Observatory New Technology Telescope, the two 8.2 m Gemini telescopes, the 2.5 m Nordic Optical Telescope (NOT), and the 6.0 m Big Azimuthal Telescope of the Special Astrophysical Observatory in Russia. The targets were selected from the International VLBI Service for Geodesy and Astrometry candidate International Celestial Reference Catalog which forms part of an observational very long baseline interferometry (VLBI) program to strengthen the celestial reference frame.more » We obtained spectra of the potential optical counterparts of more than 150 compact flat-spectrum radio sources, and measured redshifts of 120 emission-line objects, together with 19 BL Lac objects. These identifications add significantly to the precise radio-optical frame tie to be undertaken by Gaia, due to be launched in 2013, and to the existing data available for analyzing source proper motions over the celestial sphere. We show that the distribution of redshifts for ICRF sources is consistent with the much larger sample drawn from Faint Images of the Radio Sky at Twenty cm (FIRST) and Sloan Digital Sky Survey, implying that the ultra-compact VLBI sources are not distinguished from the overall radio-loud quasar population. In addition, we obtained NOT spectra for five radio sources from the FIRST and NRAO VLA Sky Survey catalogs, selected on the basis of their red colors, which yielded three quasars with z > 4.« less

  17. Dark Energy Survey finds more celestial neighbors | News

    Science.gov Websites

    Energy Survey finds more celestial neighbors August 17, 2015 icon icon icon New dwarf galaxy candidates could mean our sky is more crowded than we thought The Dark Energy Survey has now mapped one-eighth of Survey Collaboration The Dark Energy Survey has now mapped one-eighth of the full sky (red shaded region

  18. Children Learning to Explain Daily Celestial Motion: Understanding Astronomy across Moving Frames of Reference

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Wasko, Kyle D.; Slagle, Cynthia

    2011-01-01

    This study investigated elementary students' explanations for the daily patterns of apparent motion of the Sun, Moon, and stars. Third-grade students were chosen for this study because this age level is at the lower end of when many US standards documents suggest students should learn to use the Earth's rotation to explain daily celestial motion.…

  19. The dynamical behaviour of our planetary system. Proceedings. 4th Alexander von Humboldt Colloquium on Celestial Mechanics, Ramsau (Austria), 17 - 23 Mar 1996.

    NASA Astrophysics Data System (ADS)

    Dvorak, R.; Henrard, J.

    1996-03-01

    The following topics were dealt with: celestial mechanics, dynamical astronomy, planetary systems, resonance scattering, Hamiltonian mechanics non-integrability, irregular periodic orbits, escape, dynamical system mapping, fast Fourier method, precession-nutation, Nekhoroshev theorem, asteroid dynamics, the Trojan problem, planet-crossing orbits, Kirkwood gaps, future research, human comprehension limitations.

  20. 241. BUILDINGS 455, 456, 509, 510 AND 457 (CELESTIAL NAVIGATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    241. BUILDINGS 455, 456, 509, 510 AND 457 (CELESTIAL NAVIGATION COMPLEX), 1942-43. BUREAU OF YARDS AND DOCKS STANDARD PLANS. VIEW NORTH ACROSS WASP ST. SHOWING THE 4 TRAINING SILOS FROM LEFT TO RIGHT: BUILDINGS 455, 456, 509, AND 510; AND, BESIDE THEM, BUILDING 457. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  1. Celestial mechanics during the last two decades

    NASA Technical Reports Server (NTRS)

    Szebehely, V.

    1978-01-01

    The unprecedented progress in celestial mechanics (orbital mechanics, astrodynamics, space dynamics) is reviewed from 1957 to date. The engineering, astronomical and mathematical aspects are synthesized. The measuring and computational techniques developed parallel with the theoretical advances are outlined. Major unsolved problem areas are listed with proposed approaches for their solutions. Extrapolations and predictions of the progress for the future conclude the paper.

  2. Johannes Kepler and the Supernova of 1604

    NASA Astrophysics Data System (ADS)

    Boner, P. J.

    2006-08-01

    The brilliant luminary that first appeared in October 1604 was considered by many contemporaries to be a new star of unrivalled magnitude. Shining forth near the historic conjunction of Mars, Jupiter and Saturn, the new star held important implications for several areas of interest, notably astrology, astronomy, chronology and theology. Addressing all of these areas in his comprehensive book, De stella nova (1606), Johannes Kepler (1571-1630) studied the new star extensively under the aegis of Holy Roman Emperor Rudolf II (1552-1612) in Prague. The focus of the following presentation is Kepler's theory of the new star's origins in the celestial ether. Describing the heavens poetically as a fertile expanse of "liquid fields", Kepler suggested that the new star sprung from the celestial ether much like the numerous living beings in the sublunary realm which were spontaneously generated from the Earth. As evidence for his claim, Kepler pointed to the conspicuous mathematical patterns similarly observed in earthly and celestial entities. Kepler's efficient cause for this explanation, known as the animate faculty, accounted for both the generation and form of new phenomena in the celestial and terrestrial realms. The new star of 1604 proved to be no exception.

  3. A celestial assisted INS initialization method for lunar explorers.

    PubMed

    Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng

    2011-01-01

    The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors' biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface.

  4. A Celestial Assisted INS Initialization Method for Lunar Explorers

    PubMed Central

    Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng

    2011-01-01

    The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors’ biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface. PMID:22163998

  5. The role of the sun in the celestial compass of dung beetles

    PubMed Central

    Dacke, M.; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day. PMID:24395963

  6. The role of the sun in the celestial compass of dung beetles.

    PubMed

    Dacke, M; el Jundi, Basil; Smolka, Jochen; Byrne, Marcus; Baird, Emily

    2014-01-01

    Recent research has focused on the different types of compass cues available to ball-rolling beetles for orientation, but little is known about the relative precision of each of these cues and how they interact. In this study, we find that the absolute orientation error of the celestial compass of the day-active dung beetle Scarabaeus lamarcki doubles from 16° at solar elevations below 60° to an error of 29° at solar elevations above 75°. As ball-rolling dung beetles rely solely on celestial compass cues for their orientation, these insects experience a large decrease in orientation precision towards the middle of the day. We also find that in the compass system of dung beetles, the solar cues and the skylight cues are used together and share the control of orientation behaviour. Finally, we demonstrate that the relative influence of the azimuthal position of the sun for straight-line orientation decreases as the sun draws closer to the horizon. In conclusion, ball-rolling dung beetles possess a dynamic celestial compass system in which the orientation precision and the relative influence of the solar compass cues change over the course of the day.

  7. Mariner Mars 1971 attitude control subsystem

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1974-01-01

    The Mariner Mars 1971 attitude control subsystem (ACS) is discussed. It is comprised of a sun sensor set, a Canopus tracker, an inertial reference unit, two cold gas reaction control assemblies, two rocket engine gimbal actuators, and an attitude control electronics unit. The subsystem has the following eight operating modes: (1) launch, (2) sun acquisition, (3) roll search, (4) celestial cruise, (5) all-axes inertial, (6) roll inertial, (7) commanded turn, and (8) thrust vector control. In the celestial cruise mode, the position control is held to plus or minus 0.25 deg. Commanded turn rates are plus or minus 0.18 deg/s. The attitude control logic in conjunction with command inputs from other spacecraft subsystems establishes the ACS operating mode. The logic utilizes Sun and Canopus acquisition signals generated within the ACS to perform automatic mode switching so that dependence of ground control is minimized when operating in the sun acquisition, roll search, and celestial cruise modes. The total ACS weight is 65.7 lb, and includes 5.4 lb of nitrogen gas. Total power requirements vary from 9 W for the celestial cruise mode to 54 W for the commanded turn mode.

  8. Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference?

    PubMed

    Akesson, Susanne; Wehner, Rüdiger

    2002-07-01

    Central-place foraging insects such as desert ants of the genus Cataglyphis use both path integration and landmarks to navigate during foraging excursions. The use of landmark information and a celestial system of reference for nest location was investigated by training desert ants returning from an artificial feeder to find the nest at one of four alternative positions located asymmetrically inside a four-cylinder landmark array. The cylindrical landmarks were all of the same size and arranged in a square, with the nest located in the southeast corner. When released from the compass direction experienced during training (southeast), the ants searched most intensely at the fictive nest position. When instead released from any of the three alternative directions of approach (southwest, northwest or northeast), the same individuals instead searched at two of the four alternative positions by initiating their search at the position closest to the direction of approach when entering the landmark square and then returning to the position at which snapshot, current landmark image and celestial reference information were in register. The results show that, in the ants' visual snapshot memory, a memorized landmark scene can temporarily be decoupled from a memorized celestial system of reference.

  9. [The celestial phenomena in A. Dürer's engraving Melancholia I].

    PubMed

    Weitzel, Hans

    2009-01-01

    The celestial body of Dürer's engraving Melencolia I is connected with his painting of a meteor, the Raveningham-painting; it is shown that the origin of this painting owns to the impact of the meteor of Ensisheim in 1492. Until now the celestial body, the balance, and the magic square are nearly consistently interpreted as the planet Saturn, the zodiac sign Libra, and the planet Jupiter, and the melancholy woman is subject to these heavenly bodies. Consequently, neoplatonic astrology has been the main focus of the engraving; including the rainbow, the engraving has also been interpreted biblically. The present paper, however, places emphasis on problems of the geometry as the reason of melancholy. Any astronomical meaning of the configuration of the numbers of the magic square is discarded.

  10. Heavenly Networks. Celestial Maps and Globes in Circulation between Artisans, Mathematicians, and Noblemen in Renaissance Europe.

    PubMed

    Gessner, Samuel

    2015-01-01

    The aim of this paper is to examine the iconography on a set of star charts by Albrecht Dürer (1515), and celestial globes by Caspar Vopel (1536) and Christoph Schissler (1575). The iconography on these instruments is conditioned by strong traditions which include not only the imagery on globes and planispheres (star charts), but also ancient literature about the constellations. Where this iconography departs from those traditions, the change had to do with humanism in the sixteenth century. This "humanistic" dimension is interwoven with other concerns that involve both "social" and "technical" motivations. The interplay of these three dimensions illustrates how the iconography on celestial charts and globes expresses some features of the shared knowledge and shared culture between artisans, mathematicians, and nobles in Renaissance Europe.

  11. Calibration of magnetic and celestial compass cues in migratory birds--a review of cue-conflict experiments.

    PubMed

    Muheim, Rachel; Moore, Frank R; Phillips, John B

    2006-01-01

    Migratory birds use multiple sources of compass information for orientation, including the geomagnetic field, the sun, skylight polarization patterns and star patterns. In this paper we review the results of cue-conflict experiments designed to determine the relative importance of the different compass mechanisms, and how directional information from these compass mechanisms is integrated. We focus on cue-conflict experiments in which the magnetic field was shifted in alignment relative to natural celestial cues. Consistent with the conclusions of earlier authors, our analyses suggest that during the premigratory season, celestial information is given the greatest salience and used to recalibrate the magnetic compass by both juvenile and adult birds. Sunset polarized light patterns from the region of the sky near the horizon appear to provide the calibration reference for the magnetic compass. In contrast, during migration, a majority of experiments suggest that birds rely on the magnetic field as the primary source of compass information and use it to calibrate celestial compass cues, i.e. the relative saliency of magnetic and celestial cues is reversed. An alternative possibility, however, is suggested by several experiments in which birds exposed to a cue conflict during migration appear to have recalibrated the magnetic compass, i.e. their response is similar to that of birds exposed to cue conflicts during the premigratory season. The general pattern to emerge from these analyses is that birds exposed to the cue conflict with a view of the entire sunset sky tended to recalibrate the magnetic compass, regardless of whether the cue conflict occurred during the premigratory or migratory period. In contrast, birds exposed to the cue conflict in orientation funnels and registration cages that restricted their view of the region of sky near the horizon (as was generally the case in experiments carried out during the migratory season) did not recalibrate the magnetic compass but, instead, used the magnetic compass to calibrate the other celestial compass systems. If access to critical celestial cues, rather than the timing of exposure to the cue conflict (i.e. premigratory vs migratory), determines whether recalibration of the magnetic compass occurs, this suggests that under natural conditions there may be a single calibration reference for all of the compass systems of migratory birds that is derived from sunset (and possibly also sunrise) polarized light cues from the region of sky near the horizon. In cue-conflict experiments carried out during the migratory season, there was also an interesting asymmetry in the birds' response to magnetic fields shifted clockwise and counterclockwise relative to celestial cues. We discuss two possible explanations for these differences: (1) lateral asymmetry in the role of the right and left eye in mediating light-dependent magnetic compass orientation and (2) interference from the spectral and intensity distribution of skylight at sunset with the response of the light-dependent magnetic compass.

  12. Force interaction and 3D pole movement in double poling.

    PubMed

    Stöggl, T; Holmberg, H-C

    2011-12-01

    The aim of this study was to analyze double poling using combined kinetic and 3D kinematic analysis at high skiing speeds as regards pole force components, pole angles and pole behavior during the poling and swing phase. The hypothesis was that a horizontal pole force is more predictive for maximal skiing speed (V(max)) than the resultant pole force. Sixteen elite skiers performed a double-poling V(max) test while treadmill roller skiing. Pole forces and 3D kinematics of pole movement at a speed of 30 km/h were analyzed and related to V(max). The duration of the "preparation phase" showed the strongest relationship with V(max) (r=0.87, P<0.001). Faster skiers generated longer cycle lengths with longer swing and poling times, had less inclined pole angles at pole plant and a later peak pole force. Horizontal pole forces were not more highly related to V(max) compared with the resultant pole force. Impact force was not related to V(max). At high skiing speeds, skiers should aim to combine high pole forces with appropriate timing of pole forces and appropriate pole and body positions during the swing and poling phase. The emphasis in training should be on the development of specific strength capacities for pole force production and the utilization of these capacities in double-poling training sessions. © 2011 John Wiley & Sons A/S.

  13. Building a Learning Progression for Celestial Motion: An Exploration of Students' Reasoning about the Seasons

    ERIC Educational Resources Information Center

    Plummer, Julia D.; Maynard, L.

    2014-01-01

    We present the development of a construct map addressing the reason for the seasons, as a subset of a larger learning progression on celestial motion. Five classes of 8th grade students (N?=?38) participated in a 10-day curriculum on the seasons. We revised a hypothetical seasons construct map using a Rasch model analysis of students'…

  14. High-Resolution Structural Monitoring of Ionospheric Absorption Events

    DTIC Science & Technology

    2013-07-01

    ionospheric plasma conductivity 5 . This results in enhanced absorption of the cosmic high frequency (HF; typically 10 – 60 MHz) radio background ...7 riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of...riometry. Incorporation of an outrigger site, to enable treatment of the unknown structure of the celestial background and the effects of confusion

  15. The General History of Astronomy

    NASA Astrophysics Data System (ADS)

    Taton, René; Wilson, Curtis; Hoskin, editor Michael, , General

    2009-09-01

    Part V. Early Phases in the Reception of Newton's Theory: 14. The vortex theory in competition with Newtonian celestial dynamics Eric J. Aiton; 15. The shape of the Earth Seymour L. Chapin; 16. Clairaut and the motion of the lunar apse: The inverse-square law undergoes a test Craig B. Waff; 17. The precession of the equinoxes from Newton to d'Alembert and Euler Curtis Wilson; 18. The solar tables of Lacaille and the lunar tables of Mayer Eric G. Forbes and Curtis Wilson; 19. Predicting the mid-eighteenth-century return of Halley's Comet Craig B. Waff; Part VI. Celestial Mechanics During the Eighteenth Century: 20. The problem of perturbation analytically treated: Euler, Clairaut, d'Alembert Curtis Wilson; 21. The work of Lagrange in celestial mechanics Curtis Wilson; 22. Laplace Bruno Morando; Part VII. Observational Astronomy and the Application of Theory in the Late Eighteenth and Early Nineteenth Century: 23. Measuring solar parallax: The Venus transits of 1761 and 1769 and their nineteenth-century sequels Albert Van Helden; 24. The discovery of Uranus, the Titius-Bode and the asteroids Michael Hoskin; 25. Eighteenth-and nineteenth century developments in the theory and practice of orbit determination Brian G. Marsden; 26. The introduction of statistical reasoning into astronomy: from Newton to Poincaré Oscar Sheynin; 27. Astronomy and the theory of errors: from the method of averages to the method of least squares F. Schmeidler; Part VIII. The Development of Theory During the Nineteenth Century: 28. The golden age of celestial mechanics Bruno Morando; Part IX. The Application of Celestial Mechanics to the Solar System to the End of the Nineteenth Century: 29. Three centuries of lunar and planetary ephemerides and tables Bruno Morando; 30. Satellite ephemerides to 1900 Yoshihide Kozai; Illustrations; Combined index for Parts 2A and 2B.

  16. Low loss pole configuration for multi-pole homopolar magnetic bearings

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)

    2001-01-01

    A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.

  17. Collective Cell Migration in Embryogenesis Follows the Laws of Wetting.

    PubMed

    Wallmeyer, Bernhard; Trinschek, Sarah; Yigit, Sargon; Thiele, Uwe; Betz, Timo

    2018-01-09

    Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Celestial polarization patterns during twilight.

    PubMed

    Cronin, Thomas W; Warrant, Eric J; Greiner, Birgit

    2006-08-01

    Scattering of sunlight produces patterns of partially linearly polarized light in the sky throughout the day, and similar patterns appear at night when the Moon is bright. We studied celestial polarization patterns during the period of twilight, when the Sun is below the horizon, determining the degree and orientation of the polarized-light field and its changes before sunrise and after sunset. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden Sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. In the tropics, this pattern appears approximately 1 h before local sunrise or disappears approximately 1 h after local sunset (within 10 min. after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period.

  19. The Importance of Primary Martian Surface and Airfall Dust Sample Return for Toxicological Hazard Evaluations for Human Exploration

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; McCubbin, F. M.

    2018-01-01

    Manned missions to the Moon highlight a major hazard for future human exploration of the Moon and beyond: surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust 'storm' generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness" . It was further reported that the allergic response to the dust worsened with each exposure. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment.

  20. JPL VLBI Analysis Center IVS Annual Report for 2004

    NASA Technical Reports Server (NTRS)

    Jacobs, Chris

    2005-01-01

    This report describes the activities of the JPL VLBI analysis center for the year 2004. We continue to be celestial reference frame, terrestrial reference frame, earth orientation, and spacecraft navigation work using the VLBI technique. There are several areas of our work that are undergoing active development. In 2004 we demonstrated 1 mm level troposphere calibration on an intercontinental baseline. We detected our first X/Ka (8.4/32 GHz) VLBI fringes. We began to deploy Mark 5 recorders and to interface the Mark 5 units to our software correlator. We also have actively participated in the international VLBI community through our involvement in six papers at the February IVS meeting and by collaborating on a number of projects such as densifying the S/X celestial frame creating celestial frames at K (24 GHz) and Q-bands ($# GHz)>

  1. On the role of differenced phase-delays in high-precision wide-field multi-source astrometry

    NASA Astrophysics Data System (ADS)

    Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.

    2007-07-01

    Phase-delay is, by far, the most precise observable used in interferometry. In typical very-long-baseline-interferometry (VLBI) observations, the uncertainties of the phase-delays can be about 100 times smaller than those of the group delays. However, the phase-delays have an important handicap: they are ambiguous, since they are computed from the relative phases of the signals of the different antennas, and an indeterminate number of complete 2¶- cycles can be added to those phases leaving them unchanged. There are different approaches to solve the ambiguity problem of the phase delays (Shapiro et al., 1979; Beasley & Conway, 1995), but none of them has been ever used in observations involving more than 2.3 sources. In this contribution, we will report for the first-time wide-field multi-source astrometric analysis that has been performed on a complete set of radio sources using the phase-delay observable. The target of our analysis is the S5 polar cap sample, consisting on 13 bright ICRF sources near the North Celestial Pole. We have developed new algorithms and updated existing software to correct, in an automatic way, the ambiguities of the phase-delay and, therefore, perform a phasedelay astrometric analysis of all the sources in the sample. We will also discuss on the impact of the use of phase-delays in the astrometric precision.

  2. A Bayesian analysis of redshifted 21-cm H I signal and foregrounds: simulations for LOFAR

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhik; Koopmans, Léon V. E.; Chapman, E.; Jelić, V.

    2015-09-01

    Observations of the epoch of reionization (EoR) using the 21-cm hyperfine emission of neutral hydrogen (H I) promise to open an entirely new window on the formation of the first stars, galaxies and accreting black holes. In order to characterize the weak 21-cm signal, we need to develop imaging techniques that can reconstruct the extended emission very precisely. Here, we present an inversion technique for LOw Frequency ARray (LOFAR) baselines at the North Celestial Pole (NCP), based on a Bayesian formalism with optimal spatial regularization, which is used to reconstruct the diffuse foreground map directly from the simulated visibility data. We notice that the spatial regularization de-noises the images to a large extent, allowing one to recover the 21-cm power spectrum over a considerable k⊥-k∥ space in the range 0.03 Mpc-1 < k⊥ < 0.19 Mpc-1 and 0.14 Mpc-1 < k∥ < 0.35 Mpc-1 without subtracting the noise power spectrum. We find that, in combination with using generalized morphological component analysis (GMCA), a non-parametric foreground removal technique, we can mostly recover the spherical average power spectrum within 2σ statistical fluctuations for an input Gaussian random root-mean-square noise level of 60 mK in the maps after 600 h of integration over a 10-MHz bandwidth.

  3. 67P/Churyumov-Gerasimenko: Activity between March and June 2014 as observed from Rosetta/OSIRIS

    NASA Astrophysics Data System (ADS)

    Tubiana, C.; Snodgrass, C.; Bertini, I.; Mottola, S.; Vincent, J.-B.; Lara, L.; Fornasier, S.; Knollenberg, J.; Thomas, N.; Fulle, M.; Agarwal, J.; Bodewits, D.; Ferri, F.; Güttler, C.; Gutierrez, P. J.; La Forgia, F.; Lowry, S.; Magrin, S.; Oklay, N.; Pajola, M.; Rodrigo, R.; Sierks, H.; A'Hearn, M. F.; Angrilli, F.; Barbieri, C.; Barucci, M. A.; Bertaux, J.-L.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; De Cecco, M.; Debei, S.; Groussin, O.; Hviid, S. F.; Ip, W.; Jorda, L.; Keller, H. U.; Koschny, D.; Kramm, R.; Kührt, E.; Küppers, M.; Lazzarin, M.; Lamy, P. L.; Lopez Moreno, J. J.; Marzari, F.; Michalik, H.; Naletto, G.; Rickman, H.; Sabau, L.; Wenzel, K.-P.

    2015-01-01

    Aims: 67P/Churyumov-Gerasimenko is the target comet of the ESA's Rosetta mission. After commissioning at the end of March 2014, the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) onboard Rosetta, started imaging the comet and its dust environment to investigate how they change and evolve while approaching the Sun. Methods: We focused our work on Narrow Angle Camera (NAC) orange images and Wide Angle Camera (WAC) red and visible-610 images acquired between 2014 March 23 and June 24 when the nucleus of 67P was unresolved and moving from approximately 4.3 AU to 3.8 AU inbound. During this period the 67P - Rosetta distance decreased from 5 million to 120 thousand km. Results: Through aperture photometry, we investigated how the comet brightness varies with heliocentric distance. 67P was likely already weakly active at the end of March 2014, with excess flux above that expected for the nucleus. The comet's brightness was mostly constant during the three months of approach observations, apart from one outburst that occurred around April 30 and a second increase in flux after June 20. Coma was resolved in the profiles from mid-April. Analysis of the coma morphology suggests that most of the activity comes from a source towards the celestial north pole of the comet, but the outburst that occurred on April 30 released material in a different direction.

  4. Tree-level gluon amplitudes on the celestial sphere

    NASA Astrophysics Data System (ADS)

    Schreiber, Anders Ø.; Volovich, Anastasia; Zlotnikov, Michael

    2018-06-01

    Pasterski, Shao and Strominger have recently proposed that massless scattering amplitudes can be mapped to correlators on the celestial sphere at infinity via a Mellin transform. We apply this prescription to arbitrary n-point tree-level gluon amplitudes. The Mellin transforms of MHV amplitudes are given by generalized hypergeometric functions on the Grassmannian Gr (4 , n), while generic non-MHV amplitudes are given by more complicated Gelfand A-hypergeometric functions.

  5. Measuring Angular Rate of Celestial Objects Using the Space Surveillance Telescope

    DTIC Science & Technology

    2015-03-01

    is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-019 MEASURING ANGULAR RATE OF CELESTIAL OBJECTS USING THE SPACE ...Hypothesis Test MHTOR Multi-Hypothesis Test with Outlier Removal NEAs Near Earth Asteroids NASA National Aeronautics and Space Administration OTF...capabilities to warfighters, protecting them from collision with space debris, meteors and microsatellites has become a top priority [19]. In general, EO

  6. Astronomy, Divination, and Politics in the Neo-Assyrian Empire

    NASA Astrophysics Data System (ADS)

    Verderame, Lorenzo

    Celestial divination had an important role in the complex political and military machine of the Neo-Assyrian empire. Thousand of cuneiform documents dealing with celestial divination have come to light from the excavated archives of this period, as the Assurbanipal's library. Among them letters and reports enlight the relation of the king with his experts (ummânu), who performed divination and apotropaic rituals for his protection.

  7. The Moon Illusion

    NASA Astrophysics Data System (ADS)

    Rees, W. G.

    1986-06-01

    The Moon illusion, or celestial illusion, is the illusion that the Moon near the horizon is larger than the Moon near the zenith, usually by a factor of about 2 in the diameter. The illusion has been known for over 2,000 years, and many explanations have been advanced for it. Four modern theories are discussed in this paper, and new data are presented which tend to confirm the common 'flattened celestial vault' hypothesis.

  8. Obliquity of the Ecliptic

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The angle between the planes of the ecliptic and the equator. On the celestial sphere, the angle at which the ecliptic intersects the celestial equator. The current (year 2000) value of the obliquity of ecliptic, which is denoted by the symbol ɛ, is 23° 26' 21''. Its value varies by ±9'' over a period of 18.6 years as a consequence of a phenomenon called nutation. Over a much longer period (abou...

  9. Correlation analysis of 1 to 30 MeV celestial gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, J.L.

    1984-01-01

    This paper outlines the development of a method of producing celestial sky maps from the data generated by the University of California, Riverside's double Compton scatter gamma ray telescope. The method makes use of a correlation between the telescope's data and theoretical calculated response functions. The results of applying this technique to northern hemisphere data obtained from a 1978 balloon flight from Palestine, Texas are included.

  10. Titan's Spin State from Cassini SAR Data: Evidence for an Internal Ocean

    NASA Astrophysics Data System (ADS)

    Stiles, B. W.; Lorenz, R. D.; Kirk, R. L.; Hensley, S.; Lee, E. M.; Allison, M. D.; Perci Del Marmo, P.; Lunine, J. I.; Ostro, S. J.; Gim, Y.; Hamilton, G. A.; Johnson, W. T.; West, R. D.

    2007-12-01

    Nineteen areas on Titan's surface have been imaged with Cassini SAR on two separate flybys with intervals from 2 months to 2 years. We have used the apparent misregistration of features between separate flybys (which is 10-30 km) to construct a refined model of Titan's spin state, estimating six parameters: pole right ascension and declination, spin rate, and these quantities' first time derivatives. Because we have only observed Titan for 2-3 years, our dataset is unlikely to be sensitive to higher order derivatives. We have studied the uncertainty and degree of correlation of the model parameters, and have also searched the parameter space to eliminate the possibility of more than one solution. Our model spin state differs significantly from both the zero-inclination synchronous model and from any other plausible Cassini state. The previously estimated pole location and spin rate used by the IAU and the Cassini mission definitely cannot account for the observed misregistration. Because our imaging resolution is between 300 m and 1 km, we are very sensitive to the pole location and spin rate. Our estimated corrections to the pole and spin rate exceed their corresponding standard errors by factors of 40 and 4, respectively. We examined 150 different features in 19 different twice-observed regions. Applying our pole correction reduces the feature misregistration from tens of km to 3-4 km. Applying the spin rate and derivative corrections further reduces the misregistration to 1-2 km. We propose that our result reflects coupling between atmospheric angular momentum changes and an internal water ocean, for two reasons. First, astrodynamical theory predicts that if Titan is in a dynamically relaxed Cassini state there is a relationship between the moment of inertia factor C/MR2 and the obliquity of a few tenths of a degree. Our results (from two independent analyses of the overlaps) show an appreciable deviation from the expected range of states: either Titan suffered a recent dynamical excitation, or the theory does not hold because the surface is decoupled from the deep interior. We cannot identify an evident source of a recent excitation, so we favor the latter. Second, much as the Earth's length-of-day changes by ~1 ms over a year, seasonal changes in Titan's atmospheric angular momentum (Tokano and Neubauer, 2005) will manifest themselves in a change in surface rotation rate. The change in rate is ~10x higher, amounting to some hundreds of seconds, when the surface is decoupled from the interior by a water-ammonia ocean. Our preliminary rotation solutions indicate a present- day spin rate offset of several tenths of a degree per year that may be accelerating. The spin rate and its rate of change suggest that significant atmospheric changes are occurring and that Titan has an internal ocean. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  11. A theoretical study of the global F region for June solstice, solar maximum, and low magnetic activity

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.

    1985-01-01

    A time-dependent, three-dimensional, multi-ion model of the ionospheric F region at 120-800 km altitude is presented. Account is taken of field-aligned diffusion, cross-field electrodynamic drifts in equatorial and high latitude regions, interhemispheric flow, thermospheric winds, polar wind escape, energy-dependent chemical reactions and neutral composition changes. Attention is also given to the effects of ion production by solar EUV radiation and auroral precipitation, thermal conduction, diffusion-thermal heat flow, local heating and cooling processes, offsets between the geomagnetic and geographic poles, and bending of field lines near the magnetic equator. The model incorporates all phenomena described by previous models and can be applied to tracing magnetic storm and substorm disturbances from high to low latitudes on a global scale. Sample results are provided for ionospheric features during a June solstice, the solar maximum and in a period of low geomagnetic activity. The model will eventually be used to study coupled ionosphere-thermosphere activity.

  12. Noise-induced polarization switching in complex networks

    NASA Astrophysics Data System (ADS)

    Haerter, Jan O.; Díaz-Guilera, Albert; Serrano, M. Ángeles

    2017-04-01

    The combination of bistability and noise is ubiquitous in complex systems, from biology to social interactions, and has important implications for their functioning and resilience. Here we use a simple three-state dynamical process, in which nodes go from one pole to another through an intermediate state, to show that noise can induce polarization switching in bistable systems if dynamical correlations are significant. In large, fully connected networks, where dynamical correlations can be neglected, increasing noise yields a collapse of bistability to an unpolarized configuration where the three possible states of the nodes are equally likely. In contrast, increased noise induces abrupt and irreversible polarization switching in sparsely connected networks. In multiplexes, where each layer can have a different polarization tendency, one layer is dominant and progressively imposes its polarization state on the other, offsetting or promoting the ability of noise to switch its polarization. Overall, we show that the interplay of noise and dynamical correlations can yield discontinuous transitions between extremes, which cannot be explained by a simple mean-field description.

  13. PopZ identifies the new pole, and PodJ identifies the old pole during polar growth in Agrobacterium tumefaciens

    PubMed Central

    Grangeon, Romain; Zupan, John R.; Anderson-Furgeson, James; Zambryski, Patricia C.

    2015-01-01

    Agrobacterium tumefaciens elongates by addition of peptidoglycan (PG) only at the pole created by cell division, the growth pole, whereas the opposite pole, the old pole, is inactive for PG synthesis. How Agrobacterium assigns and maintains pole asymmetry is not understood. Here, we investigated whether polar growth is correlated with novel pole-specific localization of proteins implicated in a variety of growth and cell division pathways. The cell cycle of A. tumefaciens was monitored by time-lapse and superresolution microscopy to image the localization of A. tumefaciens homologs of proteins involved in cell division, PG synthesis and pole identity. FtsZ and FtsA accumulate at the growth pole during elongation, and improved imaging reveals FtsZ disappears from the growth pole and accumulates at the midcell before FtsA. The L,D-transpeptidase Atu0845 was detected mainly at the growth pole. A. tumefaciens specific pole-organizing protein (Pop) PopZAt and polar organelle development (Pod) protein PodJAt exhibited dynamic yet distinct behavior. PopZAt was found exclusively at the growing pole and quickly switches to the new growth poles of both siblings immediately after septation. PodJAt is initially at the old pole but then also accumulates at the growth pole as the cell cycle progresses suggesting that PodJAt may mediate the transition of the growth pole to an old pole. Thus, PopZAt is a marker for growth pole identity, whereas PodJAt identifies the old pole. PMID:26324921

  14. Astypalaea Linea: A Large-Scale Strike-Slip Fault on Europa

    NASA Astrophysics Data System (ADS)

    Tufts, B. Randall; Greenberg, Richard; Hoppa, Gregory; Geissler, Paul

    1999-09-01

    Astypalaea Linea is an 810-km strike-slip fault, located near the south pole of Europa. In length, it rivals the San Andreas Fault in California, and it is the largest strike-slip fault yet known on Europa. The fault was discovered using Voyager 2 images, based upon the presence of familiar strike-slip features including linearity, pull-aparts, and possible braids, and upon the offset of multiple piercing points. Fault displacement is 42 km, right-lateral, in the southern and central parts and probably throughout. Pull-aparts present along the fault trace probably are gaps in the lithosphere bounded by vertical cracks, and which opened due to fault motion and filled with material from below. Crosscutting relationships suggest the fault to be of intermediate relative age. The fault may have initiated as a crack due to tension from combined diurnal tides and nonsynchronous rotation, according to the tectonic model of R. Greenberg et al. (1998a, Icarus135, 64-78). Under the influence of varying diurnal tides, strike-slip offset may have occurred through a process called “walking,” which depends upon an inelastic lithospheric response to displacement. Alternatively, fault displacement may have been driven by currents in the theorized Europan ocean, which may have created simple shear structures such as braids. The discovery of Astypalaea Linea extends the geographical range of lateral motion on Europa. Such motion requires the presence of a decoupling zone of ductile ice or liquid water, a sufficiently rigid lithosphere, and a mechanism to consume surface area.

  15. Killer rocks and the celestial police - The search for near-earth asteroids

    NASA Technical Reports Server (NTRS)

    Yeomans, Donald K.

    1991-01-01

    The discovery of asteroids near the earth as the result of search programs is detailed with attention given to methods for locating, tracking, and identifying asteroids. The concept of 'prediscovery' is discussed in which new asteroids are tracked backward in time through previous celestial observational data. The need for more comprehensive programs is identified in order to locate objects that present a clear danger of colliding with the earth.

  16. General-relativistic celestial mechanics. 4: Theory of satellite motion

    NASA Astrophysics Data System (ADS)

    Damour, T.; Soffel, M.; Xu, C.

    1993-09-01

    The basic equations needed for developing a complete relativistic theory of artificial Earth satellites are explicitly written down. These equations are given both in a local, geocentric frame and in the global, barycentric one. They are derived within our recently introduced general-relativistic celestial mechanics framework. Our approach is more satisfactory than previous ones, especially with regard to its consistency, completeness, and flexibility. In particular, the problem of representing the relativistic gravitational effects associated with the quadrupole and higher multipole moments of the moving Earth, which caused difficulties in several other approaches, is easily dealth with in our approach, thanks to the use of previously developed tools: definition of relativistic multipole moments and transformation theory between reference frames. With this last paper in a series, we hope to indicate the way of using our formalism in specific problems in applied celestial mechanics and astrometry.

  17. Polynomial equations for science orbits around Europa

    NASA Astrophysics Data System (ADS)

    Cinelli, Marco; Circi, Christian; Ortore, Emiliano

    2015-07-01

    In this paper, the design of science orbits for the observation of a celestial body has been carried out using polynomial equations. The effects related to the main zonal harmonics of the celestial body and the perturbation deriving from the presence of a third celestial body have been taken into account. The third body describes a circular and equatorial orbit with respect to the primary body and, for its disturbing potential, an expansion in Legendre polynomials up to the second order has been considered. These polynomial equations allow the determination of science orbits around Jupiter's satellite Europa, where the third body gravitational attraction represents one of the main forces influencing the motion of an orbiting probe. Thus, the retrieved relationships have been applied to this moon and periodic sun-synchronous and multi-sun-synchronous orbits have been determined. Finally, numerical simulations have been carried out to validate the analytical results.

  18. Almanac services for celestial navigation

    NASA Astrophysics Data System (ADS)

    Nelmes, S.; Whittaker, J.

    2015-08-01

    Celestial navigation remains a vitally important back up to Global Navigation Satellite Systems (GNSS) and relies on the use of almanac services. HM Nautical Almanac Office (HMNAO) provides a number of these services. The printed book, The Nautical Almanac, produced yearly and now available as an electronic publication, is continuously being improved, making use of the latest ideas and ephemerides to provide the user with their required data. HMNAO also produces NavPac, a software package that assists the user in calculating their position as well as providing additional navigational and astronomical tools. A new version of NavPac will be released in 2015 that will improve the user experience. The development of applications for mobile devices is also being considered. HMNAO continues to combine the latest improvements and theories of astrometry with the creation of books and software that best meet the needs of celestial navigation users.

  19. Infrared radiation scene generation of stars and planets in celestial background

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Hong, Yaohui; Xu, Xiaojian

    2014-10-01

    An infrared (IR) radiation generation model of stars and planets in celestial background is proposed in this paper. Cohen's spectral template1 is modified for high spectral resolution and accuracy. Based on the improved spectral template for stars and the blackbody assumption for planets, an IR radiation model is developed which is able to generate the celestial IR background for stars and planets appearing in sensor's field of view (FOV) for specified observing date and time, location, viewpoint and spectral band over 1.2μm ~ 35μm. In the current model, the initial locations of stars are calculated based on midcourse space experiment (MSX) IR astronomical catalogue (MSX-IRAC) 2 , while the initial locations of planets are calculated using secular variations of the planetary orbits (VSOP) theory. Simulation results show that the new IR radiation model has higher resolution and accuracy than common model.

  20. Archaic artifacts resembling celestial spheres

    NASA Astrophysics Data System (ADS)

    Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.

    We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.

  1. Atmospheric Science using CRISM EPF Sequences

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clancy, R. T.; Arvidson, R.; Smith, M. D.; Murchie, S. L.; McGuire, P. C.

    2006-12-01

    Near the end of September 2006, the MRO/CRISM (Compact Reconnaissance Imaging Spectrometer for Mars; Murchie et al., 2006, JGR, in press.) will acquire its first observations of Mars. MRO's Primary Science Phase beginning in early November. One of CRISM's investigations is characterization of seasonal variations in dust and ice aerosols and trace gases using a systematic, global grid of hyperspectral measurements of emission phase functions (EPFs) acquired repetitively throughout the Martian year. EPFs will also be obtained as part of each of approximately 5000 "targeted" observations of surface geologic features. EPF measurements allow accurate determination of column abundances of water vapor, CO, dust and ice aerosols, and their seasonal variations (e.g., Clancy et al., 2003, 108(E9), 5098). EPFs are measured using eleven superimposed images within which the slit field-of-view is swept across a target point on the Martian surface. When EPFs are taken as part of a global grid, 10x spatial pixel binning will be used in all of the images, providing data at 150-200 m/pixel. In the targeted observations, the central image will be obtained at either full resolution or with 2x binning (15-38 m/pixel). In all cases, hyperspectral data (545 wavelengths) will be taken during each of the 11 superimposed scans. There are two types of global EPF grids, one with better temporal sampling and one with better spatial sampling of the atmosphere. The "atmospheric monitoring campaign" consists one Martian day of pole-to-pole EPF's every ~9°\\ of solar longitude (Ls). There is sufficient time for 8 EPFs in an orbit, one approximately every 22°\\ of latitude. Alternate orbits (projected onto the planet) are offset in latitude by about 11°\\ north or south to increase latitudinal resolution. Longitude spacing between the orbits is about 27°. The "seasonal change campaign" occurs approximately every ~36°\\ of Ls. A grid similar to that executed during the atmospheric monitoring campaign is taken on 3 non-contiguous days over about 2 weeks, to provide a higher spatial density grid (longitude spacing about 10°) to monitor seasonal changes in surface material spectral properties, especially absorption and desorption of H2O. Every 3 orbits projected on the planet, the EPFs are offset by 0°, +8°, and -8°\\ north or south to increase latitudinal resolution. Our presentation will discuss several aspects of the atmospheric analyses (optical depths, radiative properties, radiative transfer methodology) to be performed using the early-mission EPFs, with the primary focus being those EPFs planned for the end of September.

  2. Method and apparatus for assembling a permanent magnet pole assembly

    DOEpatents

    Carl, Jr., Ralph James; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Dawson, Richard Nils [Voorheesville, NY; Qu, Ronghai [Clifton Park, NY; Avanesov, Mikhail Avramovich [Moscow, RU

    2009-08-11

    A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.

  3. Early Dynamics of the Moon's Core

    NASA Astrophysics Data System (ADS)

    Cuk, Matija; Hamilton, Douglas; Stewart, Sarah T.

    2018-04-01

    The Moon has a small molten iron core (Williams et al. 2006). Remanent magnetization in lunar rocks likely derives from a past lunar dynamo (Wieczorek 2018 and references therein), which may have been powered by differential precession between the mantle and the core. The rotations of the lunar mantle and core were largely decoupled for much of lunar history, with a large mutual offset during the Cassini State Transition (Meyer and Wisdom, 2011). It is likely that the past work underestimated lunar obliquities, and therefore core offsets, during early lunar history (Cuk et al. 2016). Here we investigate the dynamics of the lunar core and mantle using a Lie-Poisson numerical integrator (Touma and Wisdom 2001) which includes interactions between triaxial core and mantle, as well as all gravitational and tidal effects included in the model of Cuk et al. (2016). Since we assume a rigid triaxial mantle, this model is applicable to the Moon only once it has acquired its current shape, which probably happened before the Moon reached 25 Earth radii. While some details of the core dynamics depend on our assumptions about the shape of the lunar core-mantle boundary, we can report some robust preliminary findings. The presence of the core does not change significantly the evolutionary scenario of Cuk et al. (2016). The core and mantle are indeed decoupled, with the core having a much smaller obliquity to the ecliptic than the mantle for almost all of the lunar history. The core was largely in an equivalent of Cassini State 2, with the vernal equinoxes (wrt the ecliptic) of the core and the mantle being anti-aligned. The core-mantle spin axis offset has been very large during the Moon's first billion years (this is true both in canonical and high-inclination tidal evolution), causing the lunar core to be sub-synchronous. If the ancient lunar magnetic dipole was rotating around the core axis that was inclined to the Moon's spin axis, then the magnetic poles would move across the lunar surface as the mantle rotates independently. This relative motion would dilute the average dipole field over much of the lunar surface, and would would restrict meaningful average fields to low lunar latitudes.

  4. Nonlinear Uncertainty Propagation of Satellite State Error for Tracking and Conjunction Risk Assessment

    DTIC Science & Technology

    2017-12-18

    Determination on Orbital Element Representations,” Celestial Mechanics and Dynamical Astronomy , Vol. 118, pp.165-195, 2014. [8] R. Weisman, M. Jah...Nonlinear Filtering,” Celestial Mechanics and Dynamical Astronomy , Vol. 118, pp.129-164, 2014. [10] R. Weisman, M. Majji, K. Alfriend, “Analytic...Conference on Mathematics and Astronomy : A Joint Long Journey, American Institute of Physics, 10.1063/1.3506064, Madrid, Spain, 2009. [33] X.L. Xu, Y.Q

  5. Surface Photometry of Celestial Sources from a Space Vehicle: Introduction and Observational Procedures*

    PubMed Central

    Roach, Franklin E.; Carroll, Benjamin; Aller, Lawrence H.; Smith, Leroi

    1972-01-01

    Diffuse celestial sources of relatively low surface brightness such as the Milky Way, zodiacal light, and gegenschein (or contre lumière) can be studied most reliably from above the earth's atmosphere with equipment flown in artificial satellites. We review the techniques used and some of the difficulties encountered in day-time observations from satellites by the use of a special photometer and polarimeter flown in the orbiting skylab observatory, OSO-6. PMID:16591970

  6. Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - Implications for Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; McCubbin, F. M.; Vander Kaaden, K. E.; Kaur, J.; Smirnov, A.; Galdanes, K.; Schoonen, M. A. A.; Chen, L. C.; Tsirka, S. E.; Gordon, T.

    2018-01-01

    New initiatives to send humans to Mars within the next few decades are illustrative of the resurgence of interest in space travel. However, as with all exploration, there are risks. The Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts.

  7. Polarization transition between sunlit and moonlit skies with possible implications for animal orientation and Viking navigation: anomalous celestial twilight polarization at partial moon.

    PubMed

    Barta, András; Farkas, Alexandra; Száz, Dénes; Egri, Ádám; Barta, Pál; Kovács, József; Csák, Balázs; Jankovics, István; Szabó, Gyula; Horváth, Gábor

    2014-08-10

    Using full-sky imaging polarimetry, we measured the celestial distribution of polarization during sunset and sunrise at partial (78% and 72%) and full (100%) moon in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We investigated the temporal change of the patterns of degree p and angle α of linear polarization of sunlit and moonlit skies at dusk and dawn. We describe here the position change of the neutral points of sky polarization, and present video clips about the celestial polarization transition at moonlit twilight. We found that at partial moon and at a medium latitude (47° 15.481' N) during this transition there is a relatively short (10-20 min) period when (i) the maximum of p of skylight decreases, and (ii) from the celestial α pattern neither the solar-antisolar nor the lunar-antilunar meridian can be unambiguously determined. These meridians can serve as reference directions of animal orientation and Viking navigation based on sky polarization. The possible influence of these atmospheric optical phenomena during the polarization transition between sunlit and moonlit skies on the orientation of polarization-sensitive crepuscular/nocturnal animals and the hypothesized navigation of sunstone-aided Viking seafarers is discussed.

  8. THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES OF SUNYAEV-ZEL'DOVICH EFFECT CLUSTERS ON THE CELESTIAL EQUATOR {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menanteau, Felipe; Hughes, John P.; Sifon, Cristobal

    2013-03-01

    We present the optical and X-ray properties of 68 galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect at 148 GHz by the Atacama Cosmology Telescope (ACT). Our sample, from an area of 504 deg{sup 2} centered on the celestial equator, is divided into two regions. The main region uses 270 deg{sup 2} of the ACT survey that overlaps with the co-added ugriz imaging from the Sloan Digital Sky Survey (SDSS) over Stripe 82 plus additional near-infrared pointed observations with the Apache Point Observatory 3.5 m telescope. We confirm a total of 49 clusters to z Almost-Equal-To 1.3, of which 22more » (all at z > 0.55) are new discoveries. For the second region, the regular-depth SDSS imaging allows us to confirm 19 more clusters up to z Almost-Equal-To 0.7, of which 10 systems are new. We present the optical richness, photometric redshifts, and separation between the SZ position and the brightest cluster galaxy (BCG). We find no significant offset between the cluster SZ centroid and BCG location and a weak correlation between optical richness and SZ-derived mass. We also present X-ray fluxes and luminosities from the ROSAT All Sky Survey which confirm that this is a massive sample. One of the newly discovered clusters, ACT-CL J0044.4+0113 at z = 1.1 (photometric), has an integrated XMM-Newton X-ray temperature of kT{sub X} = 7.9 {+-} 1.0 keV and combined mass of M {sub 200a} = 8.2{sup +3.3} {sub -2.5} Multiplication-Sign 10{sup 14} h {sup -1} {sub 70} M {sub Sun }, placing it among the most massive and X-ray-hot clusters known at redshifts beyond z = 1. We also highlight the optically rich cluster ACT-CL J2327.4-0204 (RCS2 2327) at z = 0.705 (spectroscopic) as the most significant detection of the whole equatorial sample with a Chandra-derived mass of M {sub 200a} = 1.9{sup +0.6} {sub -0.4} Multiplication-Sign 10{sup 15} h {sup -1} {sub 70} M {sub Sun }, placing it in the ranks of the most massive known clusters like El Gordo and the Bullet Cluster.« less

  9. Risk of Adverse Health and Performance Effects of Celestial Dust Exposure

    NASA Technical Reports Server (NTRS)

    Scully, Robert R.; Meyers, Valerie E.

    2015-01-01

    Crew members can be directly exposed to celestial dust in several ways. After crew members perform extravehicular activities (EVAs), they may introduce into the habitat dust that will have collected on spacesuits and boots. Cleaning of the suits between EVAs and changing of the Environmental Control Life Support System filters are other operations that could result in direct exposure to celestial dusts. In addition, if the spacesuits used in exploration missions abrade the skin, as current EVA suits have, then contact with these wounds would provide a source of exposure. Further, if celestial dusts gain access to a suit's interior, as was the case during the Apollo missions, the dust could serve as an additional source of abrasions or enhance suit-induced injuries. When a crew leaves the surface of a celestial body and returns to microgravity, the dust that is introduced into the return vehicle will "float," thus increasing the opportunity for ocular and respiratory injury. Because the features of the respirable fraction of lunar dusts indicate they could be toxic to humans, NASA conducted several studies utilizing lunar dust simulants and authentic lunar dust to determine the unique properties of lunar dust that affect physiology, assess the dermal and ocular irritancy of the dust, and establish a permissible exposure limit for episodic exposure to airborne lunar dust during missions that would involve no more than 6 months stay on the lunar surface. Studies, with authentic lunar soils from both highland (Apollo 16) and mare (Apollo17) regions demonstrated that the lunar soil is highly abrasive to a high fidelity model of human skin. Studies of lunar dust returned during the Apollo 14 mission from an area of the moon in which the soils were comprised of mineral constituents from both major geological regions (highlands and mares regions) demonstrated only minimal ocular irritancy, and pulmonary toxicity that was less than the highly toxic terrestrial crystalline silica (Permissible Exposure Limit [PEL] 0.05 mg/m3) but more toxic than the nuisance dust titanium dioxide (TiO2 [PEL 5.0 mg/m3]). A PEL for episodic exposure to airborne lunar dust during a six-month stay on the lunar surface was established, in consultation with an independent, extramural panel of expert pulmonary toxicologists, at 0.3 mg/m3. The PEL provided for lunar dust is limited to the conditions and exposure specified therefore additional research remains to be accomplished with lunar dust to further address the issues of activation, address other areas of more unique lunar geology (Glotch et al., 2010; Greenhagen et al., 2010), examine potential toxicological effects of inhaled or ingested dust upon other organ systems, such cardiovascular, nervous systems, and examine effects of acute exposure to massive doses of dust such as may occur during off-nominal situations. Work to support the establishment of PELs for Martian dust and dusts of asteroids remains to be accomplished. The literature that describes health effects of exposure to toxic terrestrial dusts provides substantial basis for concern that prolonged exposure to respirable celestial dust could be detrimental to human health. Celestial bodies where a substantial portion of the dust is in the respirable range or where the dusts have large reactive surface areas or contain transition metals or volatile organics, represent greater risks of adverse effects from exposure to the dust. It is possible that in addition to adverse effects to the respiratory system, inhalation and ingestion of celestial dusts could pose risks to other systems

  10. Review on the Celestial Sphere Positioning of FITS Format Image Based on WCS and Research on General Visualization

    NASA Astrophysics Data System (ADS)

    Song, W. M.; Fan, D. W.; Su, L. Y.; Cui, C. Z.

    2017-11-01

    Calculating the coordinate parameters recorded in the form of key/value pairs in FITS (Flexible Image Transport System) header is the key to determine FITS images' position in the celestial system. As a result, it has great significance in researching the general process of calculating the coordinate parameters. By combining CCD related parameters of astronomical telescope (such as field, focal length, and celestial coordinates in optical axis, etc.), astronomical images recognition algorithm, and WCS (World Coordinate System) theory, the parameters can be calculated effectively. CCD parameters determine the scope of star catalogue, so that they can be used to build a reference star catalogue by the corresponding celestial region of astronomical images; Star pattern recognition completes the matching between the astronomical image and reference star catalogue, and obtains a table with a certain number of stars between CCD plane coordinates and their celestial coordinates for comparison; According to different projection of the sphere to the plane, WCS can build different transfer functions between these two coordinates, and the astronomical position of image pixels can be determined by the table's data we have worked before. FITS images are used to carry out scientific data transmission and analyze as a kind of mainstream data format, but only to be viewed, edited, and analyzed in the professional astronomy software. It decides the limitation of popular science education in astronomy. The realization of a general image visualization method is significant. FITS is converted to PNG or JPEG images firstly. The coordinate parameters in the FITS header are converted to metadata in the form of AVM (Astronomy Visualization Metadata), and then the metadata is added to the PNG or JPEG header. This method can meet amateur astronomers' general needs of viewing and analyzing astronomical images in the non-astronomical software platform. The overall design flow is realized through the java program and tested by SExtractor, WorldWide Telescope, picture viewer, and other software.

  11. Celestial ephemerides in an expanding universe

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei M.

    2012-09-01

    The post-Newtonian theory of motion of celestial bodies and propagation of light was instrumental in conducting the critical experimental tests of general relativity and in building the astronomical ephemerides of celestial bodies in the Solar System with unparalleled precision. The cornerstone of the theory is the postulate that the Solar System is gravitationally isolated from the rest of the Universe and the background spacetime is asymptotically flat. The present article extends this theoretical concept and formulates the principles of celestial dynamics of particles and light moving in the gravitational field of a localized astronomical system embedded to the expanding Friedmann-Lemaître-Robertson-Walker universe. We formulate the precise mathematical concept of the Newtonian limit of Einstein’s field equations in the conformally flat Friedmann-Lemaître-Robertson-Walker spacetime and analyze the geodesic motion of massive particles and light in this limit. We prove that by doing conformal spacetime transformations, one can reduce the equations of motion of particles and light to the classical form of the Newtonian theory. However, the time arguments in the equations of motion of particles and light differ from each other in terms being proportional to the Hubble constant H. This leads to the important conclusion that the equations of light propagation used currently by space navigation centers for fitting range and Doppler-tracking observations of celestial bodies are missing some terms of the cosmological origin that are proportional to the Hubble constant H. We also analyze the effect of the cosmological expansion on motion of electrons in atoms. We prove that the Hubble expansion does not affect the atomic frequencies and hence does not affect the atomic time scale used in the creation of astronomical ephemerides. We derive the cosmological correction to the light travel time equation and argue that its measurement opens an exciting opportunity to determine the local value of the Hubble constant H in the Solar System independently of cosmological observations.

  12. VizieR Online Data Catalog: IRAS Point Source Identifications (MacConnell, 1993; rev. 2009)

    NASA Astrophysics Data System (ADS)

    MacConnell, D. J.

    2010-08-01

    Most of the sources are south of the celestial equator and have been classified in increasing galactic longitude over the period Sept. 1985 to May 1992. They have been classified on Kodak I-N objective-prism plates taken primarily with the Curtis Schmidt telescope at Cerro Tololo, but some northern plates taken with the Burrell Schmidt at Kitt Peak were also used for classification. The spectra cover the range 680-880nm at a dispersion of 340nm/mm at the A-band, and the plate scale is 96.6"/mm. They are ideal for classifying M stars of type M3 and cooler (increasing strength of TiO and VO bands) and carbon stars (CN bands), but stars warmer than M2 and most S stars cannot be classified or identified as such. The M stars M3 and cooler can be separated into about five groups. The limiting mag of the deepest plates is I about 13.5. The IRAS PS were identified on transparent overlays made to the plate scale for each plate center, and the association of a spectrum with a given PS is usually unambiguous. In cases of doubt or offset, a comment is made. Note that there are some cases where the PSC gives an incorrect association on the basis of position, and the correct association is with a faint, uncatalogued M star. (3 data files).

  13. Celestial Software Scratches More Than the Surface

    NASA Technical Reports Server (NTRS)

    2005-01-01

    While NASA is preparing to send humans back to the Moon by 2020 and then eventually to Mars, the average person can explore the landscapes of these celestial bodies much sooner, without the risk and training, and without even leaving the comfort of home. Geological data and imagery collected from NASA missions are enabling anybody with computer access to virtually follow the footsteps of Apollo astronauts who walked on the Moon or trace the tracks of the exploration rovers currently on Mars.

  14. Use of Reference Frames for Interplanetary Navigation at JPL

    NASA Technical Reports Server (NTRS)

    Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue

    2010-01-01

    Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.

  15. Proceedings of the Symposium on Military Space Communications and Operations Held at USAF Academy, Colorado on 2-4 August 1983

    DTIC Science & Technology

    1983-08-04

    IS CURRERTLY OFF; TRANSMITSTHE COM TO TURHE AN N; WAITS FO Procedures are valuable because they provide hCGMDTOTR PROPTION AN POCSSI OELAS...legal and Other Celestial Bodies ,!/ was a regime which has been created by brilliant accomplishment of the world international treaties. These legal...difficulty posed by some controversial provisions in the Agreement Governing the Activities of States on the Moon and Other Celestial Bodies and the

  16. Towards understanding the variability in biospheric CO2 fluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Deutscher, Nicholas M.; Palm, Mathias; Warneke, Thorsten; Notholt, Justus; Baker, Ian; Berry, Joe; Suntharalingam, Parvadha; Jones, Nicholas; Mahieu, Emmanuel; Lejeune, Bernard; Hannigan, James; Conway, Stephanie; Mendonca, Joseph; Strong, Kimberly; Campbell, J. Elliott; Wolf, Adam; Kremser, Stefanie

    2016-02-01

    Understanding carbon dioxide (CO2) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both CO2 and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and CO2 performed at five selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and CO2 using a chemical transport model (GEOS-Chem). The coupled biospheric fluxes of OCS and CO2 from the simple biosphere model (SiB) are used in the study. The CO2 simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world.

  17. Strategy for Improved Representation of Magnetospheric Electric Potential Structure on a Polar-Capped Ionosphere

    NASA Astrophysics Data System (ADS)

    Schulz, M.

    2016-12-01

    In some simple models of magnetospheric electrodynamics [e.g., Volland, Ann. Géophys., 31, 159-173, 1975], the normal component of the convection electric field is discontinuous across the boundary between closed and open magnetic field lines, and this discontinuity facilitates the formation of auroral arcs there. The requisite discontinuity in E is achieved by making the scalar potential proportional to a positive power (typically 1 or 2) of L on closed field lines and to a negative power (typically -1/2) of L on open (i.e., polar-cap) field lines. This suggests that it may be advantageous to construct more realistic (and thus more complicated) empirical magnetospheric and ionospheric electric-field models from superpositions of mutually orthogonal (or not) vector basis functions having this same analytical property (i.e., discontinuity at L = L*, the boundary surface between closed and open magnetic field lines). The present work offers a few examples of such constructions. A major challenge in this project has been to devise a coordinate system that simplifies the required analytical expansions of electric scalar potentials and accommodates the anti-sunward offset of each polar-cap boundary's centroid with respect to the corresponding magnetic pole. For circular northern and southern polar caps containing equal amounts of magnetic flux, one can imagine a geometrical construction of nested circular (but non-concentric) contours of constant quasi-latitude whose centers converge toward the magnetic poles as the contours themselves approach the magnetic equator. For more general polar-cap shapes and (in any case) to assure mutual orthogonality of respective coordinate surfaces on a spherical ionosphere, a formulation based on harmonic coordinates (expanded from eigen-solutions of the two-dimensional Laplace equation) may be preferable.

  18. The IVS data input to ITRF2014

    NASA Astrophysics Data System (ADS)

    Nothnagel, Axel; Alef, Walter; Amagai, Jun; Andersen, Per Helge; Andreeva, Tatiana; Artz, Thomas; Bachmann, Sabine; Barache, Christophe; Baudry, Alain; Bauernfeind, Erhard; Baver, Karen; Beaudoin, Christopher; Behrend, Dirk; Bellanger, Antoine; Berdnikov, Anton; Bergman, Per; Bernhart, Simone; Bertarini, Alessandra; Bianco, Giuseppe; Bielmaier, Ewald; Boboltz, David; Böhm, Johannes; Böhm, Sigrid; Boer, Armin; Bolotin, Sergei; Bougeard, Mireille; Bourda, Geraldine; Buttaccio, Salvo; Cannizzaro, Letizia; Cappallo, Roger; Carlson, Brent; Carter, Merri Sue; Charlot, Patrick; Chen, Chenyu; Chen, Maozheng; Cho, Jungho; Clark, Thomas; Collioud, Arnaud; Colomer, Francisco; Colucci, Giuseppe; Combrinck, Ludwig; Conway, John; Corey, Brian; Curtis, Ronald; Dassing, Reiner; Davis, Maria; de-Vicente, Pablo; De Witt, Aletha; Diakov, Alexey; Dickey, John; Diegel, Irv; Doi, Koichiro; Drewes, Hermann; Dube, Maurice; Elgered, Gunnar; Engelhardt, Gerald; Evangelista, Mark; Fan, Qingyuan; Fedotov, Leonid; Fey, Alan; Figueroa, Ricardo; Fukuzaki, Yoshihiro; Gambis, Daniel; Garcia-Espada, Susana; Gaume, Ralph; Gaylard, Michael; Geiger, Nicole; Gipson, John; Gomez, Frank; Gomez-Gonzalez, Jesus; Gordon, David; Govind, Ramesh; Gubanov, Vadim; Gulyaev, Sergei; Haas, Ruediger; Hall, David; Halsig, Sebastian; Hammargren, Roger; Hase, Hayo; Heinkelmann, Robert; Helldner, Leif; Herrera, Cristian; Himwich, Ed; Hobiger, Thomas; Holst, Christoph; Hong, Xiaoyu; Honma, Mareki; Huang, Xinyong; Hugentobler, Urs; Ichikawa, Ryuichi; Iddink, Andreas; Ihde, Johannes; Ilijin, Gennadiy; Ipatov, Alexander; Ipatova, Irina; Ishihara, Misao; Ivanov, D. V.; Jacobs, Chris; Jike, Takaaki; Johansson, Karl-Ake; Johnson, Heidi; Johnston, Kenneth; Ju, Hyunhee; Karasawa, Masao; Kaufmann, Pierre; Kawabata, Ryoji; Kawaguchi, Noriyuki; Kawai, Eiji; Kaydanovsky, Michael; Kharinov, Mikhail; Kobayashi, Hideyuki; Kokado, Kensuke; Kondo, Tetsuro; Korkin, Edward; Koyama, Yasuhiro; Krasna, Hana; Kronschnabl, Gerhard; Kurdubov, Sergey; Kurihara, Shinobu; Kuroda, Jiro; Kwak, Younghee; La Porta, Laura; Labelle, Ruth; Lamb, Doug; Lambert, Sébastien; Langkaas, Line; Lanotte, Roberto; Lavrov, Alexey; Le Bail, Karine; Leek, Judith; Li, Bing; Li, Huihua; Li, Jinling; Liang, Shiguang; Lindqvist, Michael; Liu, Xiang; Loesler, Michael; Long, Jim; Lonsdale, Colin; Lovell, Jim; Lowe, Stephen; Lucena, Antonio; Luzum, Brian; Ma, Chopo; Ma, Jun; Maccaferri, Giuseppe; Machida, Morito; MacMillan, Dan; Madzak, Matthias; Malkin, Zinovy; Manabe, Seiji; Mantovani, Franco; Mardyshkin, Vyacheslav; Marshalov, Dmitry; Mathiassen, Geir; Matsuzaka, Shigeru; McCarthy, Dennis; Melnikov, Alexey; Michailov, Andrey; Miller, Natalia; Mitchell, Donald; Mora-Diaz, Julian Andres; Mueskens, Arno; Mukai, Yasuko; Nanni, Mauro; Natusch, Tim; Negusini, Monia; Neidhardt, Alexander; Nickola, Marisa; Nicolson, George; Niell, Arthur; Nikitin, Pavel; Nilsson, Tobias; Ning, Tong; Nishikawa, Takashi; Noll, Carey; Nozawa, Kentarou; Ogaja, Clement; Oh, Hongjong; Olofsson, Hans; Opseth, Per Erik; Orfei, Sandro; Pacione, Rosa; Pazamickas, Katherine; Petrachenko, William; Pettersson, Lars; Pino, Pedro; Plank, Lucia; Ploetz, Christian; Poirier, Michael; Poutanen, Markku; Qian, Zhihan; Quick, Jonathan; Rahimov, Ismail; Redmond, Jay; Reid, Brett; Reynolds, John; Richter, Bernd; Rioja, Maria; Romero-Wolf, Andres; Ruszczyk, Chester; Salnikov, Alexander; Sarti, Pierguido; Schatz, Raimund; Scherneck, Hans-Georg; Schiavone, Francesco; Schreiber, Ulrich; Schuh, Harald; Schwarz, Walter; Sciarretta, Cecilia; Searle, Anthony; Sekido, Mamoru; Seitz, Manuela; Shao, Minghui; Shibuya, Kazuo; Shu, Fengchun; Sieber, Moritz; Skjaeveland, Asmund; Skurikhina, Elena; Smolentsev, Sergey; Smythe, Dan; Sousa, Don; Sovers, Ojars; Stanford, Laura; Stanghellini, Carlo; Steppe, Alan; Strand, Rich; Sun, Jing; Surkis, Igor; Takashima, Kazuhiro; Takefuji, Kazuhiro; Takiguchi, Hiroshi; Tamura, Yoshiaki; Tanabe, Tadashi; Tanir, Emine; Tao, An; Tateyama, Claudio; Teke, Kamil; Thomas, Cynthia; Thorandt, Volkmar; Thornton, Bruce; Tierno Ros, Claudia; Titov, Oleg; Titus, Mike; Tomasi, Paolo; Tornatore, Vincenza; Trigilio, Corrado; Trofimov, Dmitriy; Tsutsumi, Masanori; Tuccari, Gino; Tzioumis, Tasso; Ujihara, Hideki; Ullrich, Dieter; Uunila, Minttu; Venturi, Tiziana; Vespe, Francesco; Vityazev, Veniamin; Volvach, Alexandr; Vytnov, Alexander; Wang, Guangli; Wang, Jinqing; Wang, Lingling; Wang, Na; Wang, Shiqiang; Wei, Wenren; Weston, Stuart; Whitney, Alan; Wojdziak, Reiner; Yatskiv, Yaroslav; Yang, Wenjun; Ye, Shuhua; Yi, Sangoh; Yusup, Aili; Zapata, Octavio; Zeitlhoefler, Reinhard; Zhang, Hua; Zhang, Ming; Zhang, Xiuzhong; Zhao, Rongbing; Zheng, Weimin; Zhou, Ruixian; Zubko, Nataliya

    2015-01-01

    Very Long Baseline Interferometry (VLBI) is a primary space-geodetic technique for determining precise coordinates on the Earth, for monitoring the variable Earth rotation and orientation with highest precision, and for deriving many other parameters of the Earth system. The International VLBI Service for Geodesy and Astrometry (IVS, http://ivscc.gsfc.nasa.gov/) is a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU). The datasets published here are the results of individual Very Long Baseline Interferometry (VLBI) sessions in the form of normal equations in SINEX 2.0 format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html, the SINEX 2.0 description is attached as pdf) provided by IVS as the input for the next release of the International Terrestrial Reference System (ITRF): ITRF2014. This is a new version of the ITRF2008 release (Bockmann et al., 2009). For each session/ file, the normal equation systems contain elements for the coordinate components of all stations having participated in the respective session as well as for the Earth orientation parameters (x-pole, y-pole, UT1 and its time derivatives plus offset to the IAU2006 precession-nutation components dX, dY (https://www.iau.org/static/resolutions/IAU2006_Resol1.pdf). The terrestrial part is free of datum. The data sets are the result of a weighted combination of the input of several IVS Analysis Centers. The IVS contribution for ITRF2014 is described in Bachmann et al (2015), Schuh and Behrend (2012) provide a general overview on the VLBI method, details on the internal data handling can be found at Behrend (2013).

  19. Water in the trail of the Chelyabinsk bolide

    NASA Astrophysics Data System (ADS)

    Gladysheva, O. G.

    2017-09-01

    At 03:20 UTC on February 15, 2013 a very bright bolide entered Earth's atmosphere. Fragments of the meteorite fell to the earth's surface. Examination of these fragments revealed that several of them were located directly on the surface of the celestial body [1], while the majority lay at a depth of less than 2.5 m from the surface [2, 3]. The stone meteorite's durability, >15 MPa, corresponded to <1% of the initial mass, while the rest of the object possessed a low durability of 1 MPa [4]. Moreover, Fe3+ hydroxyls were discovered in meteorite samples, the formation of which required water [5]. The glow at the head of the bolide trail, lasting 8 seconds after the flight of the object, and the development of the cloud trail indicate that the celestial body carried water. The Chinese weather satellite Feng-Yun 2D discovered ice debris (water) in the bolide trail [6]. Here, we will demonstrate that the Chelyabinsk chondrite was delivered to the Earth by an ice-bearing celestial body.

  20. Optimization design about gimbal structure of high-precision autonomous celestial navigation tracking mirror system

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng

    2016-01-01

    High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.

  1. Synergies in Astrometry: Predicting Navigational Error of Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Gessner Stewart, Susan

    2015-08-01

    Celestial navigation can employ a number of bright stars which are in binary systems. Often these are unresolved, appearing as a single, center-of-light object. A number of these systems are, however, in wide systems which could introduce a margin of error in the navigation solution if not handled properly. To illustrate the importance of good orbital solutions for binary systems - as well as good astrometry in general - the relationship between the center-of-light versus individual catalog position of celestial bodies and the error in terrestrial position derived via celestial navigation is demonstrated. From the list of navigational binary stars, fourteen such binary systems with at least 3.0 arcseconds apparent separation are explored. Maximum navigational error is estimated under the assumption that the bright star in the pair is observed at maximum separation, but the center-of-light is employed in the navigational solution. The relationships between navigational error and separation, orbital periods, and observers' latitude are discussed.

  2. Planetary cores, their energy flux relationship, and its implications

    NASA Astrophysics Data System (ADS)

    Johnson, Fred M.

    2018-02-01

    Integrated surface heat flux data from each planet in our solar system plus over 50 stars, including our Sun, was plotted against each object's known mass to generate a continuous exponential curve at an R-squared value of 0.99. The unexpected yet undeniable implication of this study is that all planets and celestial objects have a similar mode of energy production. It is widely accepted that proton-proton reactions require hydrogen gas at temperatures of about 15 million degrees, neither of which can plausibly exist inside a terrestrial planet. Hence, this paper proposes a nuclear fission mechanism for all luminous celestial objects, and uses this mechanism to further suggest a developmental narrative for all celestial bodies, including our Sun. This narrative was deduced from an exponential curve drawn adjacent to the first and passing through the Earth's solid core (as a known prototype). This trend line was used to predict the core masses for each planet as a function of its luminosity.

  3. Orbiter escape pole

    NASA Technical Reports Server (NTRS)

    Goodrich, Winston D. (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Becker, Bruce H. (Inventor); Kahn, Jon B. (Inventor); Grimaldi, Margaret E. (Inventor); McManamen, John P. (Inventor); Castro, Edgar O. (Inventor)

    1989-01-01

    A Shuttle type of aircraft (10) with an escape hatch (12) has an arcuately shaped pole housing (16) attachable to an interior wall and ceiling with its open end adjacent to the escape hatch. The pole housing 16 contains a telescopically arranged and arcuately shaped primary pole member (22) and extension pole member (23) which are guided by roller assemblies (30,35). The extension pole member (23) is slidable and extendable relative to the primary pole member (22). For actuation, a spring actuated system includes a spring (52) in the pole housing. A locking member (90) engages both pole members (22,23) through notch portions (85,86) in the pole members. The locking member selectively releases the extension pole member (23) and the primary pole member (22). An internal one-way clutch or anti-return mechanism prevents retraction of the extension pole member from an extended position. Shock absorbers (54)(150,152) are for absoring the energy of the springs. A manual backup deployment system is provided which includes a canted ring (104) biased by a spring member (108). A lever member (100) with a slot and pin connection (102) permits the mechanical manipulation of the canted ring to move the primary pole member. The ring (104) also prevents retraction of the main pole. The crew escape mechanism includes a magazine (60) and a number of lanyards (62), each lanyard being mounted by a roller loop (68) over the primary pole member (22). The strap on the roller loop has stitching for controlled release, a protection sheath (74) to prevent tangling and a hook member (69) for attachment to a crew harness.

  4. Two odometers in honeybees?

    PubMed

    Dacke, M; Srinivasan, M V

    2008-10-01

    Although several studies have examined how honeybees gauge and report the distance and direction of a food source to their nestmates, relatively little is known about how this information is combined to obtain a representation of the position of the food source. In this study we manipulate the amount of celestial compass information available to the bee during flight, and analyse the encoding of spatial information in the waggle dance as well as in the navigation of the foraging bee. We find that the waggle dance encodes information about the total distance flown to the food source, even when celestial compass cues are available only for a part of the journey. This stands in contrast to how a bee gauges distance flown when it navigates back to a food source that it already knows. When bees were trained to find a feeder placed at a fixed distance in a tunnel in which celestial cues were partially occluded and then tested in a tunnel that was fully open to the sky, they searched for the feeder at a distance that corresponds closely to the distance that was flown under the open sky during the training. Thus, when navigating back to a food source, information about distance travelled is disregarded when there is no concurrent input from the celestial compass. We suggest that bees may possess two different odometers - a 'community' odometer that is used to provide information to nestmates via the dance, and a 'personal' odometer that is used by an experienced individual to return to a previously visited source.

  5. 47 CFR 1.1404 - Complaint.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... default rate of return; (xi) The average amount of usable space per pole for those poles used for pole... unusable space per pole for those poles used for pole attachments (a 24 foot presumption may be used in...) The number of ducts in the conduit subject to the complaint; (vi) The number of inner-ducts in the...

  6. 47 CFR 1.1404 - Complaint.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... default rate of return; (xi) The average amount of usable space per pole for those poles used for pole... unusable space per pole for those poles used for pole attachments (a 24 foot presumption may be used in...) The number of ducts in the conduit subject to the complaint; (vi) The number of inner-ducts in the...

  7. 47 CFR 1.1404 - Complaint.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... default rate of return; (xi) The average amount of usable space per pole for those poles used for pole... unusable space per pole for those poles used for pole attachments (a 24 foot presumption may be used in...) The number of ducts in the conduit subject to the complaint; (vi) The number of inner-ducts in the...

  8. Ulysses(*) reaches the South Pole of the Sun

    NASA Astrophysics Data System (ADS)

    1994-08-01

    One of the many investigations being carried out is a search for the Sun's south magnetic pole. As in the case of the Earth, the magnetic pole is offset from the rotation axis, and at some time in September it should sweep directly into line with Ulysses. Just as the polar regions of the Earth were the last to be explored, so it is with the Sun. For more than thirty years spacecraft have investigated the stream of electric particles know as the solar wind. Ulysses, developed by ESA, built by European Industry and flown in collaboration with NASA, is the first to fly through the solar wind coming from the poles. As Ulysses reaches its highest solar latitude of 80.2 degrees on 13 September, European and American researchers will gather at the ESA/ESTEC, the European Space Research and Technology Centre in Noordwijk, the Netherlands, for a scientific workshop at which they will assess the results from the nine experiments carried by the spacecraft. For the week of the workshop, the ESA/ESTEC conference centre will be transformed into a busy scientific laboratory. The large meeting rooms will be divided into 24 working areas, where the Ulysses experiment teams will take up temporary residence. Bringing a variety of computing equipment with them, the scientists will be able to retrieve the latest data from the spacecraft and perform detailed analyses. The emphasis will be on informality, with exchange of scientific ideas - and data - the key ingredient, leading ultimately to a better understanding of the fascinating information being gathered by Ulysses on its unique exploratory journey. Presentations to the media at ESA/ESTEC will start at 10h00 on 16 September. Media representatives wishing to attend are kindly requested to fill out the attached form and return it - preferably by fax (+33.1.42.73.76.90) - to : ESA Public Relations Division, 8/10, rue Mario Nikis - 75015-PARIS. Note to Television Editors : A video index, containing extensive background material on the Ulysses voyage (including specially created 3-D animation), is available on Betacam SP together with a VHS time-coded copy and printed information. This package is available on request. On Thursday 15 and Friday 16 September video news releases explaining this memorable event will be distributed by Reuters London via satellite to all European broadcasters. (*) Ulysses is a joint ESA/NASA mission. ESA developed the probe and is contributing an estimated ECU 170 million up to 1995 to its in-flight operation. European research laboratories provided half of the scientific instruments. NASA provided the other half of the experiments flown, a radio-isotopic power generator and the launch; it is also maintaining day-to-day communications with the probe via its dedicated antennas.

  9. Eclipsing Binaries From the CSTAR Project at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Zhang, Hui; Wang, Songhu; Zhou, Ji-Lin; Zhou, Xu; Wang, Lingzhi; Wang, Lifan; Wittenmyer, R. A.; Liu, Hui-Gen; Meng, Zeyang; Ashley, M. C. B.; Storey, J. W. V.; Bayliss, D.; Tinney, Chris; Wang, Ying; Wu, Donghong; Liang, Ensi; Yu, Zhouyi; Fan, Zhou; Feng, Long-Long; Gong, Xuefei; Lawrence, J. S.; Liu, Qiang; Luong-Van, D. M.; Ma, Jun; Wu, Zhenyu; Yan, Jun; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhang, Tianmeng; Zhu, Zhenxi; Zou, Hu

    2015-04-01

    The Chinese Small Telescope ARray (CSTAR) has observed an area around the Celestial South Pole at Dome A since 2008. About 20,000 light curves in the i band were obtained during the observation season lasting from 2008 March to July. The photometric precision achieves about 4 mmag at i = 7.5 and 20 mmag at i = 12 within a 30 s exposure time. These light curves are analyzed using Lomb-Scargle, Phase Dispersion Minimization, and Box Least Squares methods to search for periodic signals. False positives may appear as a variable signature caused by contaminating stars and the observation mode of CSTAR. Therefore, the period and position of each variable candidate are checked to eliminate false positives. Eclipsing binaries are removed by visual inspection, frequency spectrum analysis, and a locally linear embedding technique. We identify 53 eclipsing binaries in the field of view of CSTAR, containing 24 detached binaries, 8 semi-detached binaries, 18 contact binaries, and 3 ellipsoidal variables. To derive the parameters of these binaries, we use the Eclipsing Binaries via Artificial Intelligence method. The primary and secondary eclipse timing variations (ETVs) for semi-detached and contact systems are analyzed. Correlated primary and secondary ETVs confirmed by false alarm tests may indicate an unseen perturbing companion. Through ETV analysis, we identify two triple systems (CSTAR J084612.64-883342.9 and CSTAR J220502.55-895206.7). The orbital parameters of the third body in CSTAR J220502.55-895206.7 are derived using a simple dynamical model.

  10. A Portable Ground-Based Atmospheric Monitoring System (PGAMS) for the Calibration and Validation of Atmospheric Correction Algorithms Applied to Aircraft and Satellite Images

    NASA Technical Reports Server (NTRS)

    Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements

  11. Influence of thermal deformation in cavity mirrors on beam propagation characteristics of high-power slab lasers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui

    2018-01-01

    Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.

  12. Taper of wood poles

    Treesearch

    Billy Bohannan; Hermann Habermann; Joan E. Lengel

    1974-01-01

    Round wood pole use has changed without accompanying advancement in engineering design data. Previous pole design was based on the assumption that maximum stress occurred at the groundline but, with the larger poles that are now being used, maximum stress may occur along the pole length. For accurate engineering analysis the shape or taper of a pole must be known. Both...

  13. Magnet pole tips

    DOEpatents

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  14. Magnet pole tips

    DOEpatents

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  15. Self Assembly and Pyroelectric Poling for Organics

    DTIC Science & Technology

    2015-07-06

    ozone or nitrogen oxides) and energetic species from corona discharge . These problems can strongly inhibit the efficient poling and large-scale...poling techniques. Although contact and corona poling protocols are quite well established for decades, there do exist some challenging problems. In...contact poling, severe charge injection from metal electrodes often results in large current that causes dielectric breakdown of films. Corona poling

  16. Polymerase ε (POLE) ultra-mutation in uterine tumors correlates with T lymphocyte infiltration and increased resistance to platinum-based chemotherapy in vitro

    PubMed Central

    Bellone, Stefania; Eliana, Bignotti; Lonardi, Silvia; Ferrari, Francesca; Centritto, Floriana; Masserdotti, Alice; Pettinella, Francesca; Black, Jonathan; Menderes, Gulden; Altwerger, Gary; Hui, Pei; Lopez, Salvatore; de Haydu, Christopher; Bonazzoli, Elena; Predolini, Federica; Zammataro, Luca; Cocco, Emiliano; Ferrari, Federico; Ravaggi, Antonella; Romani, Chiara; Facchettie, Fabio; Sartori, Enrico; Odicino, Franco E.; Silasi, Dan-Arin; Litkouhi, Babak; Ratner, Elena; Azodi, Masoud; Schwartz, Peter E.; Santin, Alessandro D.

    2016-01-01

    Objective Up to 12 % of all endometrial-carcinomas (EC) harbor DNA-polymerase-ε-(POLE) mutations. It is currently unknown whether the favorable prognosis of POLE-mutated EC is derived from their low metastatic capability, extraordinary number of somatic mutations thus imparting immunogenicity, or a high sensitivity to chemotherapy. Methods Polymerase-chain-reaction-amplification and Sanger-sequencing were used to test for POLE exonuclease-domain-mutations (exons 9–14) 131 EC. Infiltration of CD4+ and CD8+ T-lymphocytes (TIL) and PD-1-expression in POLE-mutated vs POLE wild-type EC was studied by immunohistochemistry (IHC) and the correlations between survival and molecular features were investigated. Finally, primary POLE-mutated and POLE-wild-type EC cell lines were established and compared in-vitro for their sensitivity to chemotherapy. Results Eleven POLE-mutated EC (8.5%) were identified. POLE-mutated tumors were associated with improved progression-free-survival (P<0.05) and displayed increased numbers of CD4+ (44.5 vs 21.8; P = .001) and CD8+ (32.8 vs 13.5; P < .001) TILs when compared to wild-type POLE EC. PD-1 receptor was overexpressed in TILs from POLE-mutated vs wild-type-tumors (81% vs 28%; P < .001). Primary POLE tumor cell lines were significantly more resistant to platinum-chemotherapy in-vitro when compared to POLE-wild-type tumors (P < 0.004). Conclusions POLE ultra-mutated EC are heavily infiltrated with CD4+/CD8+ TIL, overexpress PD-1 immune-check-point (i.e., features consistent with chronic antigen-exposure), and have a better prognosis when compared to other molecular subtypes of EC patients. POLE-mutated tumor-cell lines are resistant to platinum-chemotherapy in-vitro suggesting that the better prognosis of POLE-patients is not secondary to a higher sensitivity to chemotherapy but likely linked to enhanced immunogenicity. PMID:27894751

  17. On the asteroid hazard

    NASA Astrophysics Data System (ADS)

    Eneev, T. M.; Akhmetshin, R. Z.; Efimov, G. B.

    2012-04-01

    The concept of "space patrol" is considered, aimed at discovering and cataloging the majority of celestial bodies that constitute a menace for the Earth [1, 2]. The scheme of "optical barrier" formed by telescopes of the space patrol is analyzed, requirements to the observation system are formulated, and some schemes of sighting the optical barrier region are suggested (for reliable detection of the celestial bodies approaching the Earth and for determination of their orbits). A comparison is made of capabilities of electro-jet engines and traditional chemical engines for arrangement of patrol spacecraft constellation in the Earth's orbit.

  18. On a celestial occurrence recorded in the hagiography of St. Vladimir

    NASA Astrophysics Data System (ADS)

    Banjević, Boris

    2002-04-01

    There were recorded a number of celestial occurrences in Serbian early history. Amongst them are a few appearances of comets. One except from Bible bearing on life of king David, relating to a phenomenon that might be interpreted as a comet, is in some way similar to the quotation from the hagiography of St. Vladimir. There is possibility that Halley's comet was observed at some time. This affects the chronology of the reign of St. Vladimir by about 11 years. This author thinks that it was in the summer 989 AD.

  19. Comparison of Measured Galactic Background Radiation at L-Band with Model

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, William J.; Skou, Niels; Sobjaerg, Sten

    2004-01-01

    Radiation from the celestial sky in the spectral window at 1.413 GHz is strong and an accurate accounting of this background radiation is needed for calibration and retrieval algorithms. Modern radio astronomy measurements in this window have been converted into a brightness temperature map of the celestial sky at L-band suitable for such applications. This paper presents a comparison of the background predicted by this map with the measurements of several modern L-band remote sensing radiometer Keywords-Galactic background, microwave radiometry; remote sensing;

  20. The Southern Hemisphere VLBI experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, R.A.; Meier, D.L.; Louie, A.P.

    1989-07-01

    Six radio telescopes were operated as the first Southern Hemisphere VLBI array in April and May 1982. Observations were made at 2.3 and 8.4 GHz. This array provided VLBI modeling and hybrid imaging of celestial radio sources in the Southern Hemisphere, high-accuracy VLBI geodesy between Southern Hemisphere sites, and subarcsecond radio astrometry of celestial sources south of declination -45 deg. The goals and implementation of the array are discussed, the methods of modeling and hybrid image production are explained, and the VLBI structure of the sources that were observed is summarized. 36 refs.

  1. General Methodology for Designing Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Condon, Gerald; Ocampo, Cesar; Mathur, Ravishankar; Morcos, Fady; Senent, Juan; Williams, Jacob; Davis, Elizabeth C.

    2012-01-01

    A methodology for designing spacecraft trajectories in any gravitational environment within the solar system has been developed. The methodology facilitates modeling and optimization for problems ranging from that of a single spacecraft orbiting a single celestial body to that of a mission involving multiple spacecraft and multiple propulsion systems operating in gravitational fields of multiple celestial bodies. The methodology consolidates almost all spacecraft trajectory design and optimization problems into a single conceptual framework requiring solution of either a system of nonlinear equations or a parameter-optimization problem with equality and/or inequality constraints.

  2. Celestial Mechanics: from the bases of the past to the challenges of the future

    NASA Astrophysics Data System (ADS)

    de Melo, C. F.; Prado, A. F. B. A.; Macau, E. E. N.; Winter, O. C.; Gomes, V. M.

    2015-10-01

    This special issue of Journal of Physics: Conference Series brings a set of 31 papers presented in the Brazilian Colloquium on Orbital Dynamics (CBDO), held on December 1 - 5, 2014, in the city of Águas de Lindoia, Brazil. CBDO is a traditional and important scientific meeting in the areas of Theoretical and Applied Celestial Mechanics. The meeting takes place every two years, when researchers from South America and also guests from other continents present their works and discuss the paths trodden by the space sciences.

  3. Some inner satellites of giant planets are still outgassing: Triton, Enceladus, Io

    NASA Astrophysics Data System (ADS)

    Kochemasov, Gennady G.

    2010-05-01

    Process of atmospheric formation in the Solar system continues. There are three celestial bodies (except Earth) still emitting considerable amounts of volatiles though these bodies' masses do not allow keeping appreciable amounts of emitted volatiles in their vicinity and creating real atmospheres. It was earlier shown that the wave oscillations in form of stationary waves more or less rapidly changing their phases (plus to minus and inversely) sweep out volatiles from planetary depths [1]. These stationary waves, proportional in their amplitudes to the radii of tectonic granules (Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2) and inversely proportional to orbital frequencies, form the planetary surface relief range of which increases with the solar distance [2]. In the opposite direction increases the sweeping out force of these waves and, consequently, atmospheric masses increase [3]. In the satellite systems of the outer giant planets this regularity is preserved in that the inner satellites (even small as Enceladus) surprisingly continue to push out volatiles. To do so, really very thorough washing out of entire body should be executed by very fine oscillations. Very fast orbits (Triton - 5.9 days; Enceladus - 1.37 d.; Io - 1.769 d.) secure this. Titan with rather fast orbit (16 d.) has enough mass and gravity to create and keep an atmosphere. Triton has a tenuous nitrogen atmosphere with small amounts of methane. A part of its crust (the southern "continental" segment) is dotted with geysers believed to erupt nitrogen with some admixture of dust entrained from beneath the surface. The geyser plumes are up to 8 km high. There are many streaks of dark material laid down by the geyser activity. Enceladus spews out icy material from the south pole region called "Tiger stripes". Some of the tiny ice particles go into Saturn orbit, forming the doughnut-shaped E ring ("detached Enceladus' atmosphere"). Io has at the moment more than 150 active volcanoes making plumes of sulfur and sulfur dioxide hundreds of kilometers high. It is admitted that Io's orbital eccentricity is a main reason for volcanism creating its patchy atmosphere and plasma tore ("detached atmosphere"). It is interesting that the latest MESSENGER data show that spacious volcanic effusions cover Mercury and one region appears to have experienced a high level of volcanic activity. Chains of small deep pits occur in the region along with the larger 30 km across crater. The innermost planet Mercury is deeply degassed and almost dry. Areal volcanic effusions, clear traces of contraction (escarps or lobate ledges), numerous chains of deep pits (craters) controlled by lineaments or weakness zones witness this. Not able to keep an atmosphere in the close vicinity to mighty Sun, Mercury still has traces of Na, K, Ca, Mg, and noble gases in its exosphere (but it seems that sputtering from the surface is a main reason for their appearance). References: [1] Kochemasov G.G. (2006) Venus, Earth, Mars, Titan: intensity of wiping out volatiles from celestial bodies and building atmospheres //36th COSPAR Scientific Assembly, Beijing, China, 16-23 July 2006, Abstr. COSPAR2006-A-00789, CD-ROM; [2] Kochemasov G.G. (2009) A regular row of planetary relief ranges connected with tectonic granulations of celestial bodies // New Concepts in Global Tectonics Newsletter, # 51, 58-61. [3] Kochemasov, G.G. (2006). Outgassing of planets in relation to their orbital frequencies // EUROPLANET-2006 Sci. Conference, Sept.22-26, 2006, Berlin, EPSC Abstracts, Vol. 1, EPSC2006-A-00043, CD-ROM.

  4. Decay resistance of out-of-service utility poles as related to the distribution of residual creosote content

    Treesearch

    Han Roliadi; Chung Y. Hse; Elvin T. Choong; Todd F. Shupe

    2000-01-01

    Decay resistance of out-of-service poles was investigated to evaluate their effectiveness against biodegradation for possible recycling of these poles for composite products. Decay resistance was related to creosote content and creosote distribution in poles with service durations of 5 and 25 years and also freshly treated poles. Weathering of the poles had caused...

  5. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis.

  6. Pole pulling apparatus and method

    DOEpatents

    McIntire, Gary L.

    1989-01-01

    An apparatus for removal of embedded utility-type poles which removes the poles quickly and efficiently from their embedded position without damage to the pole or surrounding structures. The apparatus includes at least 2 piston/cylinder members equally spaced about the pole, and a head member affixed to the top of each piston. Elongation of the piston induces rotation of the head into the pole to increase the gripping action and reduce slippage. Repeated actuation and retraction of the piston and head member will "jack" the pole from its embedded position.

  7. Use of geometric properties of landmark arrays for reorientation relative to remote cities and local objects.

    PubMed

    Mou, Weimin; Nankoo, Jean-François; Zhou, Ruojing; Spetch, Marcia L

    2014-03-01

    Five experiments investigated how human adults use landmark arrays in the immediate environment to reorient relative to the local environment and relative to remote cities. Participants learned targets' directions with the presence of a proximal 4 poles forming a rectangular shape and an array of more distal poles forming a rectangular shape. Then participants were disoriented and pointed to targets with the presence of the proximal poles or the distal poles. Participants' orientation was estimated by the mean of their pointing error across targets. The targets could be 7 objects in the immediate local environment in which the poles were located or 7 cities around Edmonton (Alberta, Canada) where the experiments occurred. The directions of the 7 cities could be learned from reading a map first and then from pointing to the cities when the poles were presented. The directions of the 7 cities could also be learned from viewing labels of cities moving back and forth in the specific direction in the immediate local environment in which the poles were located. The shape of the array of the distal poles varied in salience by changing the number of poles on each edge of the rectangle (2 vs. 34). The results showed that participants regained their orientation relative to local objects using the distal poles with 2 poles on each edge; participants could not reorient relative to cities using the distal pole array with 2 poles on each edge but could reorient relative to cities using the distal pole array with 34 poles on each edge. These results indicate that use of cues in reorientation depends not only on the cue salience but also on which environment people need to reorient to.

  8. Two-dimensional model of the interaction of a plane acoustic wave with nozzle edge and wing trailing edge.

    PubMed

    Faranosov, Georgy A; Bychkov, Oleg P

    2017-01-01

    The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.

  9. Investigating Mars South Residual CO2 Cap with a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Dequaire, J.; Hollingsworth, J. L.; Haberle, R. M.

    2016-01-01

    The CO2 cycle is one of the three controlling climate cycles on Mars. One aspect of the CO2 cycle that is not yet fully understood is the existence of a residual CO2 ice cap that is offset from the south pole. Previous investigations suggest that the atmosphere may control the placement of the south residual cap (e.g., Colaprete et al., 2005). These investigations show that topographically forced stationary eddies in the south during southern hemisphere winter produce colder atmospheric temperatures and increased CO2 snowfall over the hemisphere where the residual cap resides. Since precipitated CO2 ice produces higher surface albedos than directly deposited CO2 ice, it is plausible that CO2 snowfall resulting from the zonally asymmetric atmospheric circulation produces surface ice albedos high enough to maintain a residual cap only in one hemisphere. The goal of the current work is to further evaluate Colaprete et al.'s hypothesis by investigating model-predicted seasonally varying snowfall patterns in the southern polar region and the atmospheric circulation components that control them.

  10. Permanent magnet machine and method with reluctance poles and non-identical PM poles for high density operation

    DOEpatents

    Hsu, John S.

    2010-05-18

    A method and apparatus in which a stator (11) and a rotor (12) define a primary air gap (20) for receiving AC flux and at least one source (23, 40), and preferably two sources (23, 24, 40) of DC excitation are positioned for inducing DC flux at opposite ends of the rotor (12). Portions of PM material (17, 17a) are provided as boundaries separating PM rotor pole portions from each other and from reluctance poles. The PM poles (18) and the reluctance poles (19) can be formed with poles of one polarity having enlarged flux paths in relation to flux paths for pole portions of an opposite polarity, the enlarged flux paths communicating with a core of the rotor (12) so as to increase reluctance torque produced by the electric machine. Reluctance torque is increased by providing asymmetrical pole faces. The DC excitation can also use asymmetric poles and asymmetric excitation sources. Several embodiments are disclosed with additional variations.

  11. Physical properties of lunar craters

    NASA Astrophysics Data System (ADS)

    Joshi, Maitri P.; Bhatt, Kushal P.; Jain, Rajmal

    2017-02-01

    The surface of the Moon is highly cratered due to impacts of meteorites, asteroids, comets and other celestial objects. The origin, size, structure, age and composition vary among craters. We study a total of 339 craters observed by the Lunar Reconnaissance Orbiter Camera (LROC). Out of these 339 craters, 214 craters are known (named craters included in the IAU Gazetteer of Planetary Nomenclature) and 125 craters are unknown (craters that are not named and objects that are absent in the IAU Gazetteer). We employ images taken by LROC at the North and South Poles and near side of the Moon. We report for the first time the study of unknown craters, while we also review the study of known craters conducted earlier by previous researchers. Our study is focused on measurements of diameter, depth, latitude and longitude of each crater for both known and unknown craters. The diameter measurements are based on considering the Moon to be a spherical body. The LROC website also provides a plot which enables us to measure the depth and diameter. We found that out of 214 known craters, 161 craters follow a linear relationship between depth (d) and diameter (D), but 53 craters do not follow this linear relationship. We study physical dimensions of these 53 craters and found that either the depth does not change significantly with diameter or the depths are extremely high relative to diameter (conical). Similarly, out of 125 unknown craters, 78 craters follow the linear relationship between depth (d) and diameter (D) but 47 craters do not follow the linear relationship. We propose that the craters following the scaling law of depth and diameter, also popularly known as the linear relationship between d and D, are formed by the impact of meteorites having heavy metals with larger dimension, while those with larger diameter but less depth are formed by meteorites/celestial objects having low density material but larger diameter. The craters with very high depth and with very small diameter are perhaps formed by the impact of meteorites that have very high density but small diameter with a conical shape. Based on analysis of the data selected for the current investigation, we further found that out of 339 craters, 100 (29.5%) craters exist near the equator, 131 (38.6%) are in the northern hemisphere and 108 (31.80%) are in the southern hemisphere. This suggests the Moon is heavily cratered at higher latitudes and near the equatorial zone.

  12. Reconsidering the advantages of the three-dimensional representation of the interferometric transform for imaging with non-coplanar baselines and wide fields of view

    NASA Astrophysics Data System (ADS)

    Smith, D. M. P.; Young, A.; Davidson, D. B.

    2017-07-01

    Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.

  13. Dynamics of a vertical flight in the stationary gravitational field of a celestial body: Post-newtonian corrections and gravitational redshift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imshennik, V. S., E-mail: imshennik@itep.r

    2010-04-15

    The standard problem of a radial motion of test particles in the stationary gravitational field of a spherically symmetric celestial body is solved and is used to determine the time features of this motion. The problem is solved for the equations of motion of general relativity (GR), and the time features are obtained in the post-Newtonian approximation, with linear GR corrections proportional to r{sub g}/r and {beta}{sup 2} (in the solution being considered, they are of the same order of smallness) being taken rigorously into account. Total times obtained by integrating the time differentials along the trajectories of motion aremore » considered as the time features in question. It is shown that, for any parameters of the motion, the proper time (which corresponds to watches comoving with a test particle) exceeds the time of watches at rest (watches at the surface of the celestial body being considered). The mass and the radius of the celestial body, as well as the initial velocity of the test particle, serve as arbitrary parameters of the motion. The time difference indicated above implies a leading role of the gravitational redshift, which decreases somewhat because of the opposite effect of the Doppler shift. The results are estimated quantitatively for the important (from the experimental point of view) case of vertical flights of rockets starting from the Earth's surface. In this case, the GR corrections, albeit being extremely small (a few microseconds for several hours of the flight), aremeasurable with atomic (quantum) watches.« less

  14. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, H.S.

    1984-09-25

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.

  15. Detection and Classification of Pole-Like Objects from Mobile Mapping Data

    NASA Astrophysics Data System (ADS)

    Fukano, K.; Masuda, H.

    2015-08-01

    Laser scanners on a vehicle-based mobile mapping system can capture 3D point-clouds of roads and roadside objects. Since roadside objects have to be maintained periodically, their 3D models are useful for planning maintenance tasks. In our previous work, we proposed a method for detecting cylindrical poles and planar plates in a point-cloud. However, it is often required to further classify pole-like objects into utility poles, streetlights, traffic signals and signs, which are managed by different organizations. In addition, our previous method may fail to extract low pole-like objects, which are often observed in urban residential areas. In this paper, we propose new methods for extracting and classifying pole-like objects. In our method, we robustly extract a wide variety of poles by converting point-clouds into wireframe models and calculating cross-sections between wireframe models and horizontal cutting planes. For classifying pole-like objects, we subdivide a pole-like object into five subsets by extracting poles and planes, and calculate feature values of each subset. Then we apply a supervised machine learning method using feature variables of subsets. In our experiments, our method could achieve excellent results for detection and classification of pole-like objects.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, R.W.; Bodig, J.; Phillips, G.E.

    This report describes the development of a nondestructive evaluation (NDE) methodology for assessing the bending strength of new wood utility poles. Fundamental concepts of stress wave propagation are presented. The development of a longitudinal stress wave methodology for predicting pole strength and the results of destructive tests on full-size poles are described. Mathematical correlations between stress wave parameters, geometric characteristics, and individual pole bending strengths form the basis of strength prediction models for western redcedar, Douglas-fir and southern pine poles. Models were developed for NDE in the whitewood stage and after preservative treatment of poles. For each species the twomore » most commonly used preservative types were evaluated. Excellent correlations were obtained for western redcedar and Douglas-fir poles, but high moisture content in the southern pine poles resulted in lower prediction accuracies for this species. Verification of the developed mathematical models demonstrates that improvement in classifying poles into the ANSI 05.1 tip-load capacities is technically feasible. The development and field trial of the prototype equipment for strength grading of new poles is also described. Research results can be used to benefit utilities by enabling the supply of strength graded poles with a higher accuracy than previously possible.« less

  17. Formation of a Bright Polar Hood over the Summer North Pole of Saturn in 2016

    NASA Astrophysics Data System (ADS)

    Sayanagi, Kunio M.; Blalock, John J.; Ingersoll, Andrew P.; Dyudina, Ulyana A.; Ewald, Shawn P.

    2016-10-01

    We report that a bright polar hood has formed over the north pole of Saturn, seen first in images captured by the Cassini ISS camera in 2016. When the north pole was observed during the previous period of Cassini spacecraft's high-inclination orbits in 2012-2013, the concentration of light-scattering aerosols within 2-degree latitude of the north pole appeared to be less than that of the surrounding region, and appeared as a dark hole in all ISS filters, in particular in the shorter wavelength filters BL1 (460 nm), and VIO (420 nm). The north pole's appearance in 2012 was in contrast to that of the south pole in 2007, when the south pole had a bright polar hood in those short wavelengths; the south pole appeared dark in all other ISS filters in 2007. The difference between the south pole in 2007 and the north pole in 2012 was interpreted to be seasonal; in 2007, Saturn was approaching the equinox of 2009 and the south pole had been continuously illuminated since the previous equinox in 1995. In 2012, the north pole had been illuminated for only ~3 years after the long winter polar night. The bright hood over the summer south pole in 2007 was hypothesized to consist of aerosols produced by ultraviolet photodissociation of hydrocarbon molecules. Fletcher et al (2015) predicted that a similar bright hood should form over the north pole as Saturn approaches the 2017 solstice. In 2016, the Cassini spacecraft raised its orbital inclination again in preparation for its Grande Finale phase of the mission, from where it has a good view of the north pole. New images captured in 2016 show that the north pole has developed a bright polar hood. We present new images of the north polar region captured in 2016 that show the north pole, and other seasonally evolving high-latitude features including the northern hexagon. Our research has been supported by the Cassini Project, NASA grants OPR NNX11AM45G, CDAPS NNX15AD33G PATM NNX14AK07G, and NSF grant AAG 1212216.

  18. A Long Journey of Mathematics and Astronomy in Romania

    NASA Astrophysics Data System (ADS)

    Stavinschi, Magda

    2010-10-01

    Bucharest Astronomical Observatory celebrated recently its centenary. Its founders were all mathematicians or, better said, astronomers specialized in celestial mechanics. Their first doctoral theses were defended at Sorbonne, in the second half of the 19th century, under the guidance of the greatest specialists of the time. After they returned home, they continued what they had begun in Paris, namely celestial mechanics. The instruments they ordered and the first programmes of astronomical observations had an increasingly closer relation to mathematics, as they referred to astrometry and especially to stellar catalogues. Naturally, there were also astrophysical concerns, timid ones in the beginning, and then ever larger, especially beginning with the International Geophysical Year. The evolution of world astronomy, as well as that of Romania, seems to be following but one direction: astrophysics. The truth is that astrometry and celestial mechanics continue to lie at the basis of all astrophysical researches, actually in an entirely new and modern form. The astrometry schools recently organized, the new astrometry textbooks, as well as the IAU working groups dedicated to modern astrometry prove that the long journey of mathematics and astronomy is not over yet.

  19. Numerical analysis of seismic events distributions on the planetary scale and celestial bodies astrometrical parameters

    NASA Astrophysics Data System (ADS)

    Bulatova, Dr.

    2012-04-01

    Modern research in the domains of Earth sciences is developing from the descriptions of each individual natural phenomena to the systematic complex research in interdisciplinary areas. For studies of its kind in the form numerical analysis of three-dimensional (3D) systems, the author proposes space-time Technology (STT), based on a Ptolemaic geocentric system, consist of two modules, each with its own coordinate system: (1) - 3D model of a Earth, the coordinates of which provides databases of the Earth's events (here seismic), and (2) - a compact model of the relative motion of celestial bodies in space - time on Earth known as the "Method of a moving source" (MDS), which was developed in MDS (Bulatova, 1998-2000) for the 3D space. Module (2) was developed as a continuation of the geocentric Ptolemaic system of the world, built on the astronomical parameters heavenly bodies. Based on the aggregation data of Space and Earth Sciences, systematization, and cooperative analysis, this is an attempt to establish a cause-effect relationship between the position of celestial bodies (Moon, Sun) and Earth's seismic events.

  20. Anomalous celestial polarization caused by forest fire smoke: why do some insects become visually disoriented under smoky skies?

    NASA Astrophysics Data System (ADS)

    Hegedüs, Ramón; Åkesson, Susanne; Horváth, Gábor

    2007-05-01

    The effects of forest fire smoke on sky polarization and animal orientation are practically unknown. Using full-sky imaging polarimetry, we therefore measured the celestial polarization pattern under a smoky sky in Fairbanks, Alaska, during the forest fire season in August 2005. It is quantitatively documented here that the celestial polarization, a sky attribute that is necessary for orientation of many polarization-sensitive animal species, above Fairbanks on 17 August 2005 was in several aspects anomalous due to the forest fire smoke: (i) The pattern of the degree of linear polarization p of the reddish smoky sky differed considerably from that of the corresponding clear blue sky. (ii) Due to the smoke, p of skylight was drastically reduced (pmax≤14%, paverage≤8%). (iii) Depending on wavelength and time, the Arago, Babinet, and Brewster neutral points of sky polarization had anomalous positions. We suggest that the disorientation of certain insects observed by Canadian researchers under smoky skies during the forest fire season in August 2003 in British Columbia was the consequence of the anomalous sky polarization caused by the forest fire smoke.

  1. Shock wave lithotripsy outcomes for lower pole and non-lower pole stones from a university teaching hospital: Parallel group comparison during the same time period

    PubMed Central

    Geraghty, Robert; Burr, Jacob; Simmonds, Nick; Somani, Bhaskar K.

    2015-01-01

    Introduction: Shock wave lithotripsy (SWL) is a treatment option for all locations of renal and ureteric stones. We compared the results of SWL for lower pole renal stones with all other non-lower pole renal and ureteric stones during the same time period. Material and Methods: All SWL procedures were carried out as day case procedures by a mobile lithotripter from January 2012 to August 2013. The follow-up imaging was a combination of KUB X-ray or USS. Following SWL treatment, the stone free rate (SFR) was defined as ≤3 mm fragments. Results: A total of 148 patients with a mean age of 62 years underwent 201 procedures. Of the 201 procedures, 93 (46%) were for lower pole stones. The non-lower pole stones included upper pole (n = 36), mid pole (n = 40), renal pelvis (n = 10), PUJ (n = 8), mid ureter (n = 3), upper ureter (n = 5) and a combination of upper, middle and/or lower pole (n = 6). The mean stone size for lower pole stones (7.4 mm; range: 4-16 mm) was slightly smaller than non-lower pole stones (8 mm; range: 4-17 mm). The stone fragmentation was successful in 124 (62%) of patients. However, the SFR was statistically significantly better (P = 0.023) for non-lower pole stones 43 (40%) compared to lower pole stones 23 (25%). There were 9 (4%) minor complications and this was not significantly different in the two groups. Conclusions: Although SWL achieves a moderately high stone fragmentation rate with a low complication rate, the SFR is variable depending on the location of stone and the definition of SFR, with lower pole stones fairing significantly worse than stones in all other locations. PMID:25657543

  2. Shock wave lithotripsy outcomes for lower pole and non-lower pole stones from a university teaching hospital: Parallel group comparison during the same time period.

    PubMed

    Geraghty, Robert; Burr, Jacob; Simmonds, Nick; Somani, Bhaskar K

    2015-01-01

    Shock wave lithotripsy (SWL) is a treatment option for all locations of renal and ureteric stones. We compared the results of SWL for lower pole renal stones with all other non-lower pole renal and ureteric stones during the same time period. All SWL procedures were carried out as day case procedures by a mobile lithotripter from January 2012 to August 2013. The follow-up imaging was a combination of KUB X-ray or USS. Following SWL treatment, the stone free rate (SFR) was defined as ≤3 mm fragments. A total of 148 patients with a mean age of 62 years underwent 201 procedures. Of the 201 procedures, 93 (46%) were for lower pole stones. The non-lower pole stones included upper pole (n = 36), mid pole (n = 40), renal pelvis (n = 10), PUJ (n = 8), mid ureter (n = 3), upper ureter (n = 5) and a combination of upper, middle and/or lower pole (n = 6). The mean stone size for lower pole stones (7.4 mm; range: 4-16 mm) was slightly smaller than non-lower pole stones (8 mm; range: 4-17 mm). The stone fragmentation was successful in 124 (62%) of patients. However, the SFR was statistically significantly better (P = 0.023) for non-lower pole stones 43 (40%) compared to lower pole stones 23 (25%). There were 9 (4%) minor complications and this was not significantly different in the two groups. Although SWL achieves a moderately high stone fragmentation rate with a low complication rate, the SFR is variable depending on the location of stone and the definition of SFR, with lower pole stones fairing significantly worse than stones in all other locations.

  3. The potential of wood-based composite poles

    Treesearch

    Todd F. Shupe; Cheng Piao; Chung Y. Hse

    2009-01-01

    Wood-based composite utility poles are receiving increasing attention in the North American pole market. This interest is being driven by many increasing factors such as increasing: (1) disposal costs of solid wood poles, (2) liability and environmental concerns with traditional means of disposal of solid wood poles, (3) cost and concerns of long-term...

  4. Low-pass filtering of noisy Schlumberger sounding curves. Part I: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, D.

    1986-02-01

    A contribution is given to the solution of the problem of filtering noise-degraded Schlumberger sounding curves. It is shown that the transformation to the pole-pole system is actually a smoothing operation that filters high-frequency noise. In the case of residual noise contamination in the transformed pole-pole curve, it is demonstrated that a subsequent application of a conventional rectangular low-pass filter, with cut-off frequency not less than the right-hand frequency limit of the main message pass-band, may satisfactorily solve the problem by leaving a pole-pole curve available for interpretation. An attempt is also made to understand the essential peculiarities of themore » pole-pole system as far as penetration depth, resolving power and selectivity power are concerned.« less

  5. Control of speed during the double poling technique performed by elite cross-country skiers.

    PubMed

    Lindinger, Stefan Josef; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer

    2009-01-01

    Double poling (DP) as a main technique in cross-country skiing has developed substantially over the last 15 yr. The purpose of the present study was to analyze the question, "How do modern elite skiers control DP speed?" Twelve male elite cross-country skiers roller skied using DP at 9, 15, 21, and 27 km.h(-1) and maximum velocity (V(max)). Cycle characteristics, pole and plantar forces, and elbow, hip, and knee joint angles were analyzed. Both poling frequency and cycle length increased up to 27 km.h (-1)(P < 0.05), with a further increase in poling frequency at V(max) (P < 0.05). Peak pole force, rate of force development, and rearfoot plantar force increased with submaximal velocities (V(sm)), whereas poling time and time-to-peak pole force gradually shortened (P < 0.05). Changes in elbow joint kinematics during the poling phase were characterized by a decreased angle minimum and an increased flexion and extension ranges of motion as well as angular velocities across V(sm) (P < 0.05), with no further changes at V(max). Hip and knee joint kinematics adapted across V(sm) by 1) decreasing angles at pole plant and angle minima during the poling phase, 2) increasing the ranges of motion and angular velocities during the flexion phases occurring around pole plant, and 3) increasing extension ranges of motion and angular velocities during the recovery phase (all P values <0.05), with no further changes at V(max). Elite skiers control DP speed by increasing both poling frequency and cycle length; the latter is achieved by increased pole force despite reduced poling time. Adaptation to higher speeds was assisted by an increased range of motion, smaller angle minima, and higher angular velocities in the elbow, the hip, and the knee joints.

  6. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  7. Guide star targeting success for the HEAO-B observatory

    NASA Technical Reports Server (NTRS)

    Farrenkopf, R. L.; Hoffman, D. P.

    1977-01-01

    The statistics associated with the successful selection and acquisition of guide stars as attitude benchmarks for use in reorientation maneuvers of the HEAO-B observatory are considered as a function of the maneuver angle, initial attitude uncertainties, and the pertinent celestial region. Success likelihoods in excess of 0.99 are predicted assuming anticipated gyro and star tracker error sources. The maneuver technique and guide star selection constraints are described in detail. The results presented are specialized numerically to the HEAO-B observatory. However, the analytical techniques developed are considered applicable to broader classes of spacecraft requiring celestial targeting.

  8. Evaluation of optical data for Mars approach navigation.

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1972-01-01

    Investigation of several optical data types which can be obtained from science and engineering instruments normally aboard interplanetary spacecraft. TV cameras are assumed to view planets or satellites and stars for celestial references. Also, spacecraft attitude sensors are assumed to yield celestial references. The investigation of approach phases of typical Mars missions showed that the navigation accuracy was greatly enhanced with the addition of optical data to radio data. Viewing stars and the planet Mars was found most advantageous ten days before Mars encounter, and viewing Deimos or Phobos and stars was most advantageous within ten days of encounter.

  9. The bee's map of the e-vector pattern in the sky.

    PubMed

    Rossel, S; Wehner, R

    1982-07-01

    It has long been known that bees can use the pattern of polarized light in the sky as a compass cue even if they can see only a small part of the whole pattern. How they solve this problem has remained enigmatic. Here we show that the bees rely on a generalized celestial map that is used invariably throughout the day. We reconstruct this map by analyzing the navigation errors made by bees to which single e-vectors are displayed. In addition, we demonstrate how the bee's celestial map can be derived from the e-vector patterns in the sky.

  10. Gaia, Helios, Selene and Ouranos: the three principal celestial bodies and the sky in the ancient Greek cosmogony

    NASA Astrophysics Data System (ADS)

    Theodossiou, Efstratios; Manimanis, Vassilios N.; Dimitrijević, Milan S.; Mantarakis, Petros

    In this article we consider the role of the three principal celestial bodies, the Earth (Gaia), the Sun (Helios) and the Moon (Selene), as well as the Sky (Ouranos) in the ancient Greek cosmogony. This is done by the analysis of antique Greek texts like Orphic Hymns and the literary remains of the writers and philosophers like Aeschylus, (Pseudo) Apollodorus, Apollonius Rhodius, Aristotle, Euripides, Hesiod, Homer, Hyginus, Nonnus, Pausanias, Pindar and Sophocles, as well as by the analysis of texts of Roman writers like Cicero, Ovid and Pliny.

  11. The HEAO-A Scanning Modulation Collimator instrument

    NASA Technical Reports Server (NTRS)

    Roy, A.; Ballas, J.; Jagoda, N.; Mckinnon, P.; Ramsey, A.; Wester, E.

    1977-01-01

    The Scanning Modulation Collimator X-ray instrument for the HEAO-A satellite was designed to measure celestial radiation in the range between 1 and 15 KeV and to resolve, and correlate, the position of X-ray sources with visible light sources on the celestial sphere to within 5 arc seconds. The positional accuracy is made possible by mechanical collimation of the X-ray sources viewed by the instrument. High sensitivity is provided from two systems each containing four gas filled proportional counters followed by preamplification, signal summing, pulse height analysis, pulse shape discrimination, X-ray event accumulators and telemetry processing electronics.

  12. Flow Visualization of Aircraft in Flight by Means of Background Oriented Schlieren Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Hill, Michael A.; Haering, Edward A., Jr.

    2017-01-01

    The Background Oriented Schlieren using Celestial Objects series of flights was undertaken in the spring of 2016 at National Aeronautics and Space Administration Armstrong Flight Research Center to further develop and improve a flow visualization technique which can be performed from the ground upon flying aircraft. Improved hardware and imaging techniques from previous schlieren tests were investigated. A United States Air Force T-38C and NASA B200 King Air aircraft were imaged eclipsing the sun at ranges varying from 2 to 6 nautical miles, at subsonic and supersonic speeds.

  13. Synthetic guide star generation

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  14. The IAA Cosmic Study 'Protecting the Environment of Celestial Bodies'

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Hofmann, Mahulena; Williamson, Mark

    The study group tasked with producing this International Academy of Astronautics (IAA) `Cosmic Study' on Protecting the Environment of Celestial Bodies was formed under the aus-pices of IAA Commission V (Space Policy, Law Economy). The members of the international, multidisciplinary team assembled to undertake the Study accept, as a premise, the Planetary Protection Policy guidelines developed by COSPAR, which differentiate the degree of protec-tion according to the type of space activity and the celestial body under investigation (such that fly-by missions have less stringent requirements than lander missions, while Mars is `better protected' than the Moon). However, this Study goes deliberately beyond the interpretation of `Planetary Protection' as a set of methods for protecting the planets from biological con-tamination and extends consideration to the geophysical, industrial and cultural realms. The Study concludes that, from the perspective of current and future activities in outer space, present measures aimed at protecting the space environment are insufficient. Deficiencies in-clude a lack of suitable in-situ methods of chemical and biological detection and the absence of a systematic record of radioactive contaminants. Other issues identified by the Study include an insufficient legal framework, a shortage of effective economic tools and a lack of political will to address these concerns. It is expected that new detection methods under development, and the resultant increase in microbiological knowledge of the planetary surfaces, will lead to changes in the COSPAR planetary protection guidelines and bioburden limits. It is important, however, that any new approaches should not hamper future exploration and exploitation of celestial bodies more than absolutely necessary. The Study addresses the need to find a balance between protection and freedom of action. From a legal perspective, the Study concludes that a general consensus on protection of the environment of the Moon and other celestial bodies should be sought among spacefaring states, while the question of new laws and regulations should be deliberated in the UN and scientific organisations. In doing so, it is recommended that experience in formulating the Antarctic Treaty System and other terrestrial environmen-tal accords should be taken into account. In general terms, it is expected that the majority of space activities would remain untouched by any future policies and regulations, to ensure that space exploration and exploitation remains open to future generations. But this philosophy brings with it a responsibility to protect the freedoms of those future generations from the ill-conceived practices of the present. As a result, activities that threaten the environments of celestial bodies, and our cultural heritage, should be identified, mitigated and discouraged (either by policy or by law).

  15. Effect of materials and manufacturing on the bending stiffness of vaulting poles

    NASA Astrophysics Data System (ADS)

    Davis, C. L.; Kukureka, S. N.

    2012-09-01

    The increase in the world record height achieved in pole vaulting can be related to the improved ability of the athletes, in terms of their fitness and technique, and to the change in materials used to construct the pole. For example in 1960 there was a change in vaulting pole construction from bamboo to glass fibre reinforced polymer (GFRP) composites. The lighter GFRP pole enabled the athletes to have a faster run-up, resulting in a greater take-off speed, giving them more kinetic energy to convert into potential energy and hence height. GFRP poles also have a much higher failure stress than bamboo, so the poles were engineered to bend under the load of the athlete, thereby storing elastic strain energy that can be released as the pole straightens, resulting in greater energy efficiency. The bending also allowed athletes to change their vaulting technique from a style that involved the body remaining almost upright during the vault to one where the athlete goes over the bar with their feet upwards. Modern vaulting poles can be made from GFRP and/or carbon fibre reinforced polymer (CFRP) composites. The addition of carbon fibres maintains the mechanical properties of the pole, but allows a reduction in the weight. The number and arrangement of the fibres determines the mechanical properties, in particular the bending stiffness. Vaulting poles are also designed for an individual athlete to take into account each athlete’s ability and physical characteristics. The poles are rated by ‘weight’ to allow athletes to select an appropriate pole for their ability. This paper will review the development of vaulting poles and the requirements to maximize performance. The properties (bending stiffness and pre-bend) and microstructure (fibre volume fraction and lay-up) of typical vaulting poles will be discussed. Originally published as Davis C L and Kukureka S N (2004) Effect of materials and manufacturing on the bending stiffness of vaulting poles The Engineering of Sport 5 ed M Hubbard, R D Mehta and J M Pallis (Sheffield: ISEA). Republished here with permission from ISEA.

  16. Sectional Pole for Measuring Tree Heights

    Treesearch

    R. H. Brendemuehl; James B. Baker

    1965-01-01

    A sectional aluminum pole designed by the Silviculture Laboratory at Marianna, Florida, has proved useful for measuring tree heights. It is more convenient than a sectional bamboo pole 1 or a telescoping fiberglass pole. A tree 5 to 30 feet in height can be measured to the nearest tenth of a foot in 30 seconds. The pole is constructed of low-cost, readily available...

  17. 77 FR 67270 - Revising the Exemption for Digger Derricks in the Cranes and Derricks in Construction Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... also involved placing a pole in the hole and attaching transformers and other items to the pole... industries, including placing utility poles in the ground and attaching transformers and other equipment to...- mount transformers on the ground as part of the same power system as the poles. While the pole work is...

  18. Mechanical properties of small-scale wood laminated composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; Chung Y. Hse

    2004-01-01

    Power companies in the United States consume millions of solid wood poles every year. These poles are from high-valued trees that are becoming more expensive and less available. wood laminated composite poles (LCP) are a novel alternative to solid wood poles. LCP consists of trapezoid wood strips that are bonded by a synthetic resin. The wood strips can be made from...

  19. Shadow poles in coupled-channel problems calculated with the Berggren basis

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Kruppa, A. T.; Vertse, T.

    2018-02-01

    Background: In coupled-channels models the poles of the scattering S matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect too. Purpose: The purpose of this paper is to show that in coupled-channels problems all poles of the S matrix can be located by an expansion in terms of a properly constructed complex-energy basis. Method: The Berggren basis is used for expanding the coupled-channels solutions. Results: The locations of the poles of the S matrix for the Cox potential, constructed for coupled-channels problems, were numerically calculated and compared with the exact ones. In a nuclear physics application the Jπ=3 /2+ resonant poles of 5He were calculated in a phenomenological two-channel model. The properties of both the normal and shadow resonances agree with previous findings. Conclusions: We have shown that, with an appropriately chosen Berggren basis, all poles of the S matrix including the shadow poles can be determined. We have found that the shadow pole of 5He migrates between Riemann sheets if the coupling strength is varied.

  20. Biomechanical characteristics and speed adaptation during kick double poling on roller skis in elite cross-country skiers.

    PubMed

    Göpfert, Caroline; Holmberg, Hans-Christer; Stöggl, Thomas; Müller, Erich; Lindinger, Stefan Josef

    2013-06-01

    Recent developments in cross-country ski racing should promote the use of kick double poling. This technique, however, has not been the focus in athletes' training and has barely been investigated. The aims of the present study were to develop a function-based phase definition and to analyse speed adaptation mechanisms for kick double poling in elite cross-country skiers. Joint kinematics and pole/plantar forces were recorded in 10 athletes while performing kick double poling at three submaximal roller skiing speeds. A speed increase was associated with increases in cycle length and rate, while absolute poling and leg push-off durations shortened. Despite maintained impulses of force, the peak and average pole/leg forces increased. During double poling and leg push-off, ranges of motion of elbow flexion and extension increased (p < 0.05) and were maintained for hip/knee flexion and extension. Cycle length increase was correlated to increases in average poling force (r = 0.71) and arm swing time (r = 0.88; both p < 0.05). The main speed adaptation was achieved by changes in double poling technique; however, leg push-off showed high variability among elite skiers, thus illustrating important aspects for technique training.

  1. Endometrial Carcinomas with POLE Exonuclease Domain Mutations Have a Favorable Prognosis.

    PubMed

    McConechy, Melissa K; Talhouk, Aline; Leung, Samuel; Chiu, Derek; Yang, Winnie; Senz, Janine; Reha-Krantz, Linda J; Lee, Cheng-Han; Huntsman, David G; Gilks, C Blake; McAlpine, Jessica N

    2016-06-15

    The aim of this study was to confirm the prognostic significance of POLE exonuclease domain mutations (EDM) in endometrial carcinoma patients. In addition, the effect of treatment on POLE-mutated tumors was assessed. A retrospective patient cohort of 496 endometrial carcinoma patients was identified for targeted sequencing of the POLE exonuclease domain, yielding 406 evaluable tumors. Univariable and multivariable analyses were performed to determine the effect of POLE mutation status on progression-free survival (PFS), disease-specific survival (DSS), and overall survival (OS). Combining results from eight studies in a meta-analysis, we computed pooled HR for PFS, DSS, and OS. POLE EDMs were identified in 39 of 406 (9.6%) endometrial carcinomas. Women with POLE-mutated endometrial carcinomas were younger, with stage I (92%) tumors, grade 3 (62%), endometrioid histology (82%), and frequent (49%) lymphovascular invasion. In univariable analysis, POLE-mutated endometrial carcinomas had significantly improved outcomes compared with patients with no EDMs for PFS, DSS, and OS. In multivariable analysis, POLE EDMs were only significantly associated with improved PFS. The effect of adjuvant treatment on POLE-mutated cases could not be determined conclusively; however, both treated and untreated patients with POLE EDMs had good outcomes. Meta-analysis revealed an association between POLE EDMs and improved PFS and DSS with pooled HRs 0.34 [95% confidence interval (CI), 0.15-0.73] and 0.35 (95% CI, 0.13-0.92), respectively. POLE EDMs are prognostic markers associated with excellent outcomes for endometrial carcinoma patients. Further investigation is needed to conclusively determine if treatment is necessary for this group of women. Clin Cancer Res; 22(12); 2865-73. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Blinded histopathological characterisation of POLE exonuclease domain-mutant endometrial cancers: sheep in wolf's clothing.

    PubMed

    Van Gool, Inge C; Ubachs, Jef E H; Stelloo, Ellen; de Kroon, Cor D; Goeman, Jelle J; Smit, Vincent T H B M; Creutzberg, Carien L; Bosse, Tjalling

    2018-01-01

    POLE exonuclease domain mutations identify a subset of endometrial cancer (EC) patients with an excellent prognosis. The use of this biomarker has been suggested to refine adjuvant treatment decisions, but the necessary sequencing is not widely performed and is relatively expensive. Therefore, we aimed to identify histopathological and immunohistochemical characteristics to aid in the detection of POLE-mutant ECs. Fifty-one POLE-mutant endometrioid, 67 POLE-wild-type endometrioid and 15 POLE-wild-type serous ECs were included (total N = 133). An expert gynaecopathologist, blinded to molecular features, evaluated each case (two or more slides) for 16 morphological characteristics. Immunohistochemistry was performed for p53, p16, MLH1, MSH2, MSH6, and PMS2. POLE-mutant ECs were characterised by a prominent immune infiltrate: 80% showed peritumoral lymphocytes and 59% showed tumour-infiltrating lymphocytes, as compared with 43% and 28% of POLE-wild-type endometrioid ECs, and 27% and 13% of their serous counterparts (P < 0.01, all comparisons). Of POLE-mutant ECs, 33% contained tumour giant cells; this proportion was significantly higher than that in POLE-wild-type endometrioid ECs (10%; P = 0.003), but not significantly different from that in serous ECs (53%). Serous-like features were as often (focally) present in POLE-mutant as in POLE-wild-type endometrioid ECs (6-24%, depending on the feature). The majority of POLE-mutant ECs showed wild-type p53 (86%), negative/focal p16 (82%) and normal mismatch repair protein expression (90%). A simple combination of morphological and immunohistochemical characteristics (tumour type, grade, peritumoral lymphocytes, MLH1, and p53 expression) can assist in prescreening for POLE exonuclease domain mutations in EC, increasing the probability of a mutation being detected from 7% to 33%. This facilitates the use of this important prognostic biomarker in routine pathology. © 2017 John Wiley & Sons Ltd.

  3. South Pole

    NASA Image and Video Library

    2012-11-02

    As spring progresses at the south pole, the surface reacts to the change of season. This image from NASA 2001 Mars Odyssey spacecraft shows a region of the south pole that is monitored throughout spring, summer, and fall at the south pole.

  4. Large optical second-order nonlinearity of poled WO3-TeO2 glass.

    PubMed

    Tanaka, K; Narazaki, A; Hirao, K

    2000-02-15

    Second-harmonic generation, one of the second-order nonlinear optical properties of thermally and electrically poled WO>(3)-TeO>(2) glasses, has been examined. We poled glass samples with two thicknesses (0.60 and 0.86 mm) at various temperatures to explore the effects of external electric field strength and poling temperature on second-order nonlinearity. The dependence of second-harmonic intensity on the poling temperature is maximum at a specific poling temperature. A second-order nonlinear susceptibility of 2.1 pm/V was attained for the 0.60-mm-thick glass poled at 250 degrees C. This value is fairly large compared with those for poled silica and tellurite glasses reported thus far. We speculate that the large third-order nonlinear susceptibility of WO>(3)- TeO>(2) glasses gives rise to the large second-order nonlinearity by means of a X((2)) = 3X((3)) E(dc) process.

  5. 78 FR 32110 - Cranes and Derricks in Construction: Revising the Exemption for Digger Derricks

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... poles in the ground and attaching transformers and other equipment to the poles (see 29 CFR 1400(c)(4... attaching transformers and other items to the pole (see 75 FR 47906, 47924-47926, and 48136 (Aug. 9, 2010... transformers on the ground as part of the same power system as the poles. While the pole work is exempt under...

  6. Polε Instability Drives Replication Stress, Abnormal Development, and Tumorigenesis.

    PubMed

    Bellelli, Roberto; Borel, Valerie; Logan, Clare; Svendsen, Jennifer; Cox, Danielle E; Nye, Emma; Metcalfe, Kay; O'Connell, Susan M; Stamp, Gordon; Flynn, Helen R; Snijders, Ambrosius P; Lassailly, François; Jackson, Andrew; Boulton, Simon J

    2018-05-17

    DNA polymerase ε (POLE) is a four-subunit complex and the major leading strand polymerase in eukaryotes. Budding yeast orthologs of POLE3 and POLE4 promote Polε processivity in vitro but are dispensable for viability in vivo. Here, we report that POLE4 deficiency in mice destabilizes the entire Polε complex, leading to embryonic lethality in inbred strains and extensive developmental abnormalities, leukopenia, and tumor predisposition in outbred strains. Comparable phenotypes of growth retardation and immunodeficiency are also observed in human patients harboring destabilizing mutations in POLE1. In both Pole4 -/- mouse and POLE1 mutant human cells, Polε hypomorphy is associated with replication stress and p53 activation, which we attribute to inefficient replication origin firing. Strikingly, removing p53 is sufficient to rescue embryonic lethality and all developmental abnormalities in Pole4 null mice. However, Pole4 -/- p53 +/- mice exhibit accelerated tumorigenesis, revealing an important role for controlled CMG and origin activation in normal development and tumor prevention. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Anisotropic distribution of orbit poles of binary asteroids

    NASA Astrophysics Data System (ADS)

    Pravec, P.; Scheirich, P.; Vokrouhlický, D.; Harris, A. W.; Kusnirak, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Galád, A.; Világi, J.; Gajdos, S.; Kornos, L.; Oey, J.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Durkee, R.; Pollock, J.; Reichart, D.; Ivarsen, K.; Haislip, J.; Lacluyze, A.; Krugly, Y. N.; Gaftonyuk, N.; Dyvig, R.; Reddy, V.; Stephens, R. D.; Chiorny, V.; Vaduvescu, O.; Longa, P.; Tudorica, A.; Warner, B. D.; Masi, G.; Brinsfield, J.; Gonçalves, R.; Brown, P.; Krzeminski, Z.; Gerashchenko, O.; Marchis, F.

    2011-10-01

    Our photometric observations of 18 mainbelt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that the data strongly suggest that poles of mutual orbits between components of binary asteroids are not distributed randomly: The null hypothesis of the isotropic distribution of orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to formation of small binary systems by rotational fission of critically spinning parent bodies with poles near the YORP asymptotic states with obliquities near 0 and 180°. An alternative process of elimination of binaries with poles closer to the ecliptic by the Kozai dynamics of gravitational perturbations from the sun does not explain the observed orbit pole concentration as in the close asteroid binary systems the J2 perturbation due to the primary dominates the solar-tide effect.

  8. Policy Development for Biodiversity Offsets: A Review of Offset Frameworks

    NASA Astrophysics Data System (ADS)

    McKenney, Bruce A.; Kiesecker, Joseph M.

    2010-01-01

    Biodiversity offsets seek to compensate for residual environmental impacts of planned developments after appropriate steps have been taken to avoid, minimize or restore impacts on site. Offsets are emerging as an increasingly employed mechanism for achieving net environmental benefits, with offset policies being advanced in a wide range of countries (i.e., United States, Australia, Brazil, Colombia, and South Africa). To support policy development for biodiversity offsets, we review a set of major offset policy frameworks—US wetlands mitigation, US conservation banking, EU Natura 2000, Australian offset policies in New South Wales, Victoria, and Western Australia, and Brazilian industrial and forest offsets. We compare how the frameworks define offset policy goals, approach the mitigation process, and address six key issues for implementing offsets: (1) equivalence of project impacts with offset gains; (2) location of the offset relative to the impact site; (3) “additionality” (a new contribution to conservation) and acceptable types of offsets; (4) timing of project impacts versus offset benefits; (5) offset duration and compliance; and (6) “currency” and mitigation replacement ratios. We find substantial policy commonalities that may serve as a sound basis for future development of biodiversity offsets policy. We also identify issues requiring further policy guidance, including how best to: (1) ensure conformance with the mitigation hierarchy; (2) identify the most environmentally preferable offsets within a landscape context; and (3) determine appropriate mitigation replacement ratios.

  9. Policy development for biodiversity offsets: a review of offset frameworks.

    PubMed

    McKenney, Bruce A; Kiesecker, Joseph M

    2010-01-01

    Biodiversity offsets seek to compensate for residual environmental impacts of planned developments after appropriate steps have been taken to avoid, minimize or restore impacts on site. Offsets are emerging as an increasingly employed mechanism for achieving net environmental benefits, with offset policies being advanced in a wide range of countries (i.e., United States, Australia, Brazil, Colombia, and South Africa). To support policy development for biodiversity offsets, we review a set of major offset policy frameworks-US wetlands mitigation, US conservation banking, EU Natura 2000, Australian offset policies in New South Wales, Victoria, and Western Australia, and Brazilian industrial and forest offsets. We compare how the frameworks define offset policy goals, approach the mitigation process, and address six key issues for implementing offsets: (1) equivalence of project impacts with offset gains; (2) location of the offset relative to the impact site; (3) "additionality" (a new contribution to conservation) and acceptable types of offsets; (4) timing of project impacts versus offset benefits; (5) offset duration and compliance; and (6) "currency" and mitigation replacement ratios. We find substantial policy commonalities that may serve as a sound basis for future development of biodiversity offsets policy. We also identify issues requiring further policy guidance, including how best to: (1) ensure conformance with the mitigation hierarchy; (2) identify the most environmentally preferable offsets within a landscape context; and (3) determine appropriate mitigation replacement ratios.

  10. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division

    PubMed Central

    Anderson-Furgeson, James C.; Zupan, John R.; Grangeon, Romain

    2016-01-01

    ABSTRACT Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. IMPORTANCE How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs in several alphaproteobacteria, including Agrobacterium tumefaciens. Essential components for unipolar growth are largely uncharacterized, and the mechanism constraining growth to one pole of a wild-type cell is unknown. Here, we report that the deletion of a polar development gene, podJAt, results in cells exhibiting ectopic polar growth, including multiple growth poles and aberrant localization of cell division and polar growth-associated proteins. These data suggest that PodJAt is a critical factor in normal polar growth and impacts cell division in A. tumefaciens. PMID:27137498

  11. Differential comparator cirucit

    DOEpatents

    Hickling, Ronald M.

    1996-01-01

    A differential comparator circuit for an Analog-to-Digital Converter (ADC) or other application includes a plurality of differential comparators and a plurality of offset voltage generators. Each comparator includes first and second differentially connected transistor pairs having equal and opposite voltage offsets. First and second offset control transistors are connected in series with the transistor pairs respectively. The offset voltage generators generate offset voltages corresponding to reference voltages which are compared with a differential input voltage by the comparators. Each offset voltage is applied to the offset control transistors of at least one comparator to set the overall voltage offset of the comparator to a value corresponding to the respective reference voltage. The number of offset voltage generators required in an ADC application can be reduced by a factor of approximately two by applying the offset voltage from each offset voltage generator to two comparators with opposite logical sense such that positive and negative offset voltages are produced by each offset voltage generator.

  12. Estimation of the Latitude, the Gnomon`s Length and Position About Sinbeop-Jipyeong-Ilgu in the Late of Joseon Dynasty

    NASA Astrophysics Data System (ADS)

    Mihn, Byeong-Hee; Lee, Yong Sam; Kim, Sang Hyuk; Choi, Won-Ho; Ham, Seon Young

    2017-06-01

    In this study, the characteristics of a horizontal sundial from the Joseon Dynasty were investigated. Korea’s Treasure No. 840 (T840) is a Western-style horizontal sundial where hour-lines and solar-term-lines are engraved. The inscription of this sundial indicates that the latitude (altitude of the north celestial pole) is 37° 39´, but the gnomon is lost. In the present study, the latitude of the sundial and the length of the gnomon were estimated based only on the hour-lines and solar-termlines of the horizontal sundial. When statistically calculated from the convergent point obtained by extending the hourlines, the latitude of this sundial was 37° 15´ ± 26´, which showed a 24´ difference from the record of the inscription. When it was also assumed that a convergent point is changeable, the estimation of the sundial’s latitude was found to be sensitive to the variation of this point. This study found that T840 used a vertical gnomon, that is, perpendicular to the horizontal plane, rather than an inclined triangular gnomon, and a horn-shaped mark like a vertical gnomon is cut on its surface. The length of the gnomon engraved on the artifact was 43.1 mm, and in the present study was statistically calculated as 43.7 ± 0.7 mm. In addition, the position of the gnomon according to the original inscription and our calculation showed an error of 0.3 mm.

  13. Using the P03 Precession Model

    NASA Astrophysics Data System (ADS)

    Wallace, P. T.; Capitaine, N.

    2006-08-01

    The precession model adopted by the IAU in 2000 comprised the existing Lieske et al. (1977) model plus rate corrections of about 300 mas/cy in longitude and 25 mas/cy in obliquity. Though accurate with respect to existing VLBI observations, the IAU 2000 model is not consistent with dynamical theory, and consequently the IAU Working Group on precession and the ecliptic has recommended (Hilton et al. 2006) that it be replaced by the "P03" model of Capitaine et al. (2003). P03 provides improved models for both the equator and the ecliptic, and also includes parameterized provision for future adjustment to match new determinations of properties of the non-rigid Earth such as the precession rates and J2 rate. Practical use of the new model involves choices of algorithm and computational procedure, and a number of ways have been studied (Capitaine & Wallace 2006) of generating the directions of the celestial intermediate pole and origin (CIP, CIO), from which the usual rotation matrices can be obtained. From a wide range of possible procedures we have selected two that target different classes of application, typified by the SOFA software and the IERS Conventions respectively. These procedures achieve a high standard of consistency, both internal and mutual, as well as being efficient and versatile. One is based on the Fukushima-Williams precession-nutation angles, the other on series for the CIP coordinates. Both use the CIO locator s, and both deliver the full range of products, supporting classical equinox/GST methods in addition to the CIO/ERA "new paradigm".

  14. A Polarimetric Approach for Constraining the Dynamic Foreground Spectrum for Cosmological Global 21 cm Measurements

    NASA Astrophysics Data System (ADS)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Jack O.

    2017-02-01

    The cosmological global (sky-averaged) 21 cm signal is a powerful tool to probe the evolution of the intergalactic medium in high-redshift universe (z≤slant 6). One of the biggest observational challenges is to remove the foreground spectrum which is at least four orders of magnitude brighter than the cosmological 21 cm emission. Conventional global 21 cm experiments rely on the spectral smoothness of the foreground synchrotron emission to separate it from the unique 21 cm spectral structures in a single total-power spectrum. However, frequency-dependent instrumental and observational effects are known to corrupt such smoothness and complicate the foreground subtraction. We introduce a polarimetric approach to measure the projection-induced polarization of the anisotropic foreground onto a stationary dual-polarized antenna. Due to Earth rotation, when pointing the antenna at a celestial pole, the revolving foreground will modulate this polarization with a unique frequency-dependent sinusoidal signature as a function of time. In our simulations, by harmonic decomposing this dynamic polarization, our technique produces two separate spectra in parallel from the same observation: (I) a total sky power consisting both the foreground and the 21 cm background and (II) a model-independent measurement of the foreground spectrum at a harmonic consistent to twice the sky rotation rate. In the absence of any instrumental effects, by scaling and subtracting the latter from the former, we recover the injected global 21 cm model within the assumed uncertainty. We further discuss several limiting factors and potential remedies for future implementation.

  15. Stress Models of the Annual Hydrospheric, Atmospheric, Thermal, and Tidal Loading Cycles on California Faults: Perturbation of Background Stress and Changes in Seismicity

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher W.; Fu, Yuning; Bürgmann, Roland

    2017-12-01

    Stresses in the lithosphere arise from multiple natural loading sources that include both surface and body forces. The largest surface loads include near-surface water storage, snow and ice, atmosphere pressure, ocean loading, and temperature changes. The solid Earth also deforms from celestial body interactions and variations in Earth's rotation. We model the seasonal stress changes in California from 2006 through 2014 for seven different loading sources with annual periods to produce an aggregate stressing history for faults in the study area. Our modeling shows that the annual water loading, atmosphere, temperature, and Earth pole tides are the largest loading sources and should each be evaluated to fully describe seasonal stress changes. In California we find that the hydrological loads are the largest source of seasonal stresses. We explore the seasonal stresses with respect to the background principal stress orientation constrained with regional focal mechanisms and analyze the modulation of seismicity. Our results do not suggest a resolvable seasonal variation for the ambient stress orientation in the shallow crust. When projecting the seasonal stresses into the background stress orientation we find that the timing of microseismicity modestly increases from an 8 kPa seasonal mean-normal-stress perturbation. The results suggest that faults in California are optimally oriented with the background stress field and respond to subsurface pressure changes, possibly due to processes we have not considered in this study. At any time a population of faults are near failure as evident from earthquakes triggered by these slight seasonal stress perturbations.

  16. A LINE POLE 20, STUBBED HISTORIC POLE WITH ORIGINAL GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A LINE POLE 20, STUBBED HISTORIC POLE WITH ORIGINAL GLASS PIN-TYPE INSULATORS AND INTACT COMMUNICATION LINE CROSS ARM. VIEW TO WEST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT

  17. Strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  18. A strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  19. Design and evaluation of large scale pultruded fiberglass tubular structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Toole, B.J.

    1994-12-31

    Large solid wood structures have been used in structural applications such as utility poles and marine pilings for a long time. A pultruded fiberglass reinforced polymer composite utility pole has been designed by the Composite Power Corporation of Las Vegas, Nevada which meets or exceeds the wood pole strength standards. This type of pole has many advantages over traditional wood, metal or concrete poles including: lighter weight, easier to climb and service, better dielectric and fire resistance properties, and it is more environmentally sound than treated wood poles. Utility crossarms, other attachments, and climbing devices are secured to grooves whichmore » run the entire length of the pole so there is no need to drill holes or wear spiked boots which would compromise the strength of the pole. Bending and torsion experiments have been conducted to determine if the present design meets the strength requirements of a forty foot Class one wood pole. Initial results of the composite pole tests showed a 17 percent advantage in bending strength, a 449 percent advantage in strength due to a vertical load applied to a crossarm, and a 43 percent advantage in twisting strength. Plans for further material characterization experiments and detailed stress and failure analysis are discussed.« less

  20. Adapting Growth Pole Theory to Community College Development.

    ERIC Educational Resources Information Center

    Brumbach, Mary A.

    2002-01-01

    Explains growth pole theory, which is the theory that growth manifests itself at poles of growth, rather than everywhere at once. Applies this theory to community college development, and offers advice for implementing growth poles by taking an entrepreneurial approach to education. (NB)

  1. Microscopy and microRaman study of periodically poled domains in deeply thinned lithium niobate wafers

    NASA Astrophysics Data System (ADS)

    Bullen, P. S.; Huang, H.-C.; Yang, H.; Dadap, J. I.; Kymissis, I.; Osgood, R. M.

    2016-07-01

    The domain structure of poled deeply thinned lithium niobate is investigated as a function of sample thickness. Free-standing samples of thickness from 25 to 500 μm are prepared by a multiple-cycle polish and annealing procedure and then periodically poled. Using these samples and employing micro-Raman scattering and scanning electron, atomic force, and optical microscopy together, the domain broadening and poling voltage are found to vary in a regular and significant manner. The poled domains show a reduction in width spreading of 38% as the sample thickness is reduced from 500 to 25 μm. Micro-Raman probe measurements verify the quality and the uniformity of the poled domains and provide insight into their thickness-dependent poling contrast.

  2. Modeling of Optical Waveguide Poling and Thermally Stimulated Discharge (TSD) Charge and Current Densities for Guest/Host Electro Optic Polymers

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Ashley, Paul R.; Abushagur, Mustafa

    2004-01-01

    A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.

  3. Spectroscopy - so what?

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2010-07-01

    The development of astronomical spectroscopy allowed amazing achievements in investigating the composition and motion of celestial bodies. But even beyond specific measurements and results, the fruitfulness and practice of spectroscopy had important ramifications on a more abstract level. This paper will discuss ways in which spectroscopy inspired or boosted new theories of the atom, life, and the Universe; redrew the boundaries among scientific disciplines; demonstrated the unity of terrestrial and celestial physical laws; changed what counted as scientific knowledge; and even revealed divine mysteries. Scientists and science writers from the first half-century of astronomical spectroscopy will be discussed, including James Clerk Maxwell, William Crookes, John Tyndall, Agnes Clerke, William Huggins and Norman Lockyer.

  4. Spectroscopy - so what?

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2010-01-01

    The development of astronomical spectroscopy allowed amazing achievements in investigating the composition and motion of celestial bodies. But even beyond specific measurements and results, the fruitfulness and practice of spectroscopy had important ramifications on a more abstract level. This paper will discuss ways in which spectroscopy inspired or boosted new theories of the atom, life, and the universe; redrew the boundaries among scientific disciplines; demonstrated the unity of terrestrial and celestial physical laws; changed what counted as scientific knowledge; and even revealed divine mysteries. Scientists and science writers from the first half-century of astronomical spectroscopy will be discussed, including James Clerk Maxwell, William Thomson (Lord Kelvin), John Tyndall, Agnes Clerke, William Huggins, and Norman Lockyer.

  5. Difference method to search for the anisotropy of primary cosmic radiation

    NASA Astrophysics Data System (ADS)

    Pavlyuchenko, V. P.; Martirosov, R. M.; Nikolskaya, N. M.; Erlykin, A. D.

    2018-01-01

    The original difference method used in the search for an anisotropy of primary cosmic radiation at the knee region of its energy spectrum is considered. Its methodical features and properties are analyzed. It is shown that this method, in which properties of particle fluxes (rather than an intensity) are investigated, is stable against random experimental errors and allows one to separate anomalies connected with the laboratory coordinate system from anomalies in the celestial coordinate system. The method uses the multiple scattering of charged particles in the magnetic fields of the Galaxy to study the whole celestial sphere, including the regions outside the line of sight of the installation.

  6. Refraction effects of atmosphere on geodetic measurements to celestial bodies

    NASA Technical Reports Server (NTRS)

    Joshi, C. S.

    1973-01-01

    The problem is considered of obtaining accurate values of refraction corrections for geodetic measurements of celestial bodies. The basic principles of optics governing the phenomenon of refraction are defined, and differential equations are derived for the refraction corrections. The corrections fall into two main categories: (1) refraction effects due to change in the direction of propagation, and (2) refraction effects mainly due to change in the velocity of propagation. The various assumptions made by earlier investigators are reviewed along with the basic principles of improved models designed by investigators of the twentieth century. The accuracy problem for various quantities is discussed, and the conclusions and recommendations are summarized.

  7. Motion of the Jovian commensurability resonances and the character of the celestial mechanics in the asteroid zone - Implication for kinematics and structure

    NASA Technical Reports Server (NTRS)

    Torbett, M.; Smoluchowski, R.

    1982-01-01

    The motion of the Jovian commensurability resonances during the early evolution of the solar system induced by the dissipation of the accretion disk results in fundamental differences in the celestial mechanics of objects over which a resonance passes from that observed for a stationary resonance. Objects experiencing resonance passage acquire irreversible increases of average eccentricity to large values accounting for the present-day random velocities of the asteroids. Semi-major axes are similarly irreversibly decreased by amounts capable of clearing the Kirkwood gaps. The gap widths are in agreement with observation.

  8. Deep data fusion method for missile-borne inertial/celestial system

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Chen, Xiaofei; Lu, Jiazhen; Zhang, Hao

    2018-05-01

    Strap-down inertial-celestial integrated navigation system has the advantages of autonomy and high precision and is very useful for ballistic missiles. The star sensor installation error and inertial measurement error have a great influence for the system performance. Based on deep data fusion, this paper establishes measurement equations including star sensor installation error and proposes the deep fusion filter method. Simulations including misalignment error, star sensor installation error, IMU error are analyzed. Simulation results indicate that the deep fusion method can estimate the star sensor installation error and IMU error. Meanwhile, the method can restrain the misalignment errors caused by instrument errors.

  9. Method and System for Gamma-Ray Localization Induced Spacecraft Navigation Using Celestial Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hisamoto, Chuck (Inventor); Arzoumanian, Zaven (Inventor); Sheikh, Suneel I. (Inventor)

    2015-01-01

    A method and system for spacecraft navigation using distant celestial gamma-ray bursts which offer detectable, bright, high-energy events that provide well-defined characteristics conducive to accurate time-alignment among spatially separated spacecraft. Utilizing assemblages of photons from distant gamma-ray bursts, relative range between two spacecraft can be accurately computed along the direction to each burst's source based upon the difference in arrival time of the burst emission at each spacecraft's location. Correlation methods used to time-align the high-energy burst profiles are provided. The spacecraft navigation may be carried out autonomously or in a central control mode of operation.

  10. The Celestial Bodies in Traditional Armenian Nuptial Songs of Praise

    NASA Astrophysics Data System (ADS)

    Tigranyan, Marianna

    2016-12-01

    The universe and its structure have occupied people's minds since the beginning of time. The myths and legends of the ancient cultures are replete with tales about the myriad celestial bodies, planets and stars. Back then, the Ancient Sumerians were phenomenally successful in astronomy; their extensive knowledge is effectively used by astronomers today. The deities were featured as heavenly bodies and were eulogized and revered by the peoples of the Ancient World. At Armenian wedding ceremonies, the groom - traditionally the Crown wearer - was often likened to the Sun, and the bride to the Moon, or sometimes Venus. The newly-married couple was glorified by delightful songs of praise.

  11. Advanced X-ray Astrophysics Facility (AXAF) science instruments

    NASA Technical Reports Server (NTRS)

    Winkler, Carl E.; Dailey, Carroll C.; Cumings, Nesbitt P.

    1991-01-01

    The overall AXAF program is summarized, with particular emphasis given to its science instruments. The science objectives established for AXAF are to determine the nature of celestial objects, from normal stars to quasars, to elucidate the nature of the physical processes which take place in and between astronomical objects, and to shed light on the history and evolution of the universe. Attention is given to the AXAF CCD imaging spectrometer, which is to provide spectrally and temporally resolved imaging, or, in conjunction with transmission grating, high-resolution dispersed spectral images of celestial sources. A high-resolution camera, an X-ray spectrometer, and the Bragg Crystal Spectrometer are also discussed.

  12. How Galileo and Kepler Countered Aristotle's Cosmological Errors

    NASA Astrophysics Data System (ADS)

    Gingerich, O.

    2009-08-01

    Aristotle made two major common sense assumptions that ultimately had to be refuted to open the way to modern science. One was the dichotomy between celestial and terrestrial. The other was the separation of astronomy from physics. Galileo, particularly with his examination of the moon in the Sidereus nuncius, was a pioneer in destroying the first assumption, while Kepler, whose Astronomia nova was subtitled ``based on causes, or celestial physics,'' broke the stranglehold of the second. The importance of these fundamental contributions toward establishing the nature of modern science, which paved the way for Isaac Newton, is often overshadowed by their more specific contributions in optics or mechanics.

  13. Design, fabrication and performance of two grazing incidence telescopes for celestial extreme ultraviolet astronomy

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Cash, W.; Malina, R. F.; Bowyer, S.

    1977-01-01

    The design and performance of grazing incidence telescopes for celestial extreme ultraviolet (EUV) astronomy are described. The telescopes basically consist of a star tracker, collimator, grazing incidence mirror, vacuum box lid, vacuum housing, filters, a ranicon detector, an electronics box, and an aspect camera. For the survey mirror a Wolter-Schwarzschild type II configuration was selected. Diamond-turning was used for mirror fabrication, a technique which machines surfaces to the order of 10 microns over the required dimensions. The design of the EUV spectrometer is discussed with particular reference to the optics for a primarily spectroscopic application and the fabrication of the f/10 optics.

  14. An analytical model for the celestial distribution of polarized light, accounting for polarization singularities, wavelength and atmospheric turbidity

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Gao, Jun; Fan, Zhiguo; Roberts, Nicholas W.

    2016-06-01

    We present a computationally inexpensive analytical model for simulating celestial polarization patterns in variable conditions. We combine both the singularity theory of Berry et al (2004 New J. Phys. 6 162) and the intensity model of Perez et al (1993 Sol. Energy 50 235-245) such that our single model describes three key sets of data: (1) the overhead distribution of the degree of polarization as well as the existence of neutral points in the sky; (2) the change in sky polarization as a function of the turbidity of the atmosphere; and (3) sky polarization patterns as a function of wavelength, calculated in this work from the ultra-violet to the near infra-red. To verify the performance of our model we generate accurate reference data using a numerical radiative transfer model and statistical comparisons between these two methods demonstrate no significant difference in almost all situations. The development of our analytical model provides a novel method for efficiently calculating the overhead skylight polarization pattern. This provides a new tool of particular relevance for our understanding of animals that use the celestial polarization pattern as a source of visual information.

  15. Exogeoconservation: Protecting geological heritage on celestial bodies

    NASA Astrophysics Data System (ADS)

    Matthews, Jack J.; McMahon, Sean

    2018-08-01

    Geoconservation is an increasingly widely adopted theoretical, practical and administrative approach to the protection of geological and geomorphological features of special scientific, functional, historic, cultural, aesthetic, or ecological value. Protected sites on Earth include natural rocky outcrops, shorelines, river banks, and landscapes, as well as human-made structures such as road cuts and quarries exposing geological phenomena. However, geoconservation has rarely been discussed in the context of other rocky and icy planets, rings, moons, dwarf planets, asteroids, or comets, which present extraordinarily diverse, beautiful, and culturally, historically and scientifically important geological phenomena. Here we propose to adapt geoconservation strategies for protecting the geological heritage of these celestial bodies, and introduce the term 'exogeoconservation' and other associated terms for this purpose. We argue that exogeoconservation is acutely necessary for the scientific exploration and responsible stewardship of celestial bodies, and suggest how this might be achieved and managed by means of international protocols. We stress that such protocols must be sensitive to the needs of scientific, industrial, and other human activities, and not unduly prohibitive. However, with space exploration and exploitation likely to accelerate in coming decades, it is increasingly important that an internationally agreed, holistic framework be developed for the protection of our common 'exogeoheritage'.

  16. Harbour seals (Phoca vitulina) can steer by the stars.

    PubMed

    Mauck, Björn; Gläser, Nele; Schlosser, Wolfhard; Dehnhardt, Guido

    2008-10-01

    Offshore orientation in marine mammals is still a mystery. For visual orientation during night-time foraging and travelling in the open seas, seals cannot rely on distant terrestrial landmarks, and thus might use celestial cues as repeatedly shown for nocturnally migrating birds. Although seals detect enough stars to probably allow for astronavigation, it was unclear whether they can orient by the night sky. The widely accepted cognitive mechanism for bird night-time orientation by celestial cues is a time-independent star compass with learned geometrical star configurations used to pinpoint north as the rotational centre of the starry sky while there is no conclusive evidence for a time-compensated star compass or true star navigation. Here, we present results for two harbour seals orienting in a custom made swimming planetarium. Both seals learned to highly accurately identify a lodestar out of a pseudo-randomly oriented, realistic projection of the northern hemisphere night sky. Providing the first evidence for star orientation capability in a marine mammal, our seals' outstanding directional precision would allow them to steer by following lodestars of learned star courses, a celestial orientation mechanism that has been known to be used by Polynesian navigators but has not been considered for animals yet.

  17. Dung beetles use the Milky Way for orientation.

    PubMed

    Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J

    2013-02-18

    When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The Need for Medical Geology in Space Exploration: Implications for the Journey to Mars and Beyond

    NASA Technical Reports Server (NTRS)

    Harrington, A. D.; Zeigler, R. A.; McCubbin, F. M.

    2018-01-01

    The previous manned missions to the Moon represent milestones in human ingenuity, perseverance, and intellectual curiosity. They also highlight a major hazard for future human exploration of the Moon and beyond: surface dust. Not only did the dust cause mechanical and structural integrity issues with the suits, the dust "storm" generated upon reentrance into the crew cabin caused "lunar hay fever" and "almost blindness". It was further reported that the allergic response to the dust worsened with each exposure. The lower gravity environment exacerbated the exposure, requiring the astronauts to wear their helmet within the module in order to avoid breathing the irritating particles. Due to the prevalence of these high exposures, the Human Research Roadmap developed by NASA identifies the Risk of Adverse Health and Performance Effects of Celestial Dust Exposure as an area of concern. Extended human exploration will further increase the probability of inadvertent and repeated exposures to celestial dusts. Going forward, hazard assessments of celestial dusts will be determined through sample return efforts prior to astronaut deployment. However, even then the returned samples could also put the Curators, technicians, and scientists at risk during processing and examination.

  19. Space Geodesy, VLBI, and the Fourth Pillar of Geodesy - Spacetime Curvature

    NASA Astrophysics Data System (ADS)

    Combrinck, Ludwig

    2014-12-01

    Typically geodesy is described as having ``three pillars'': the variations in Earth's shape, gravity field, and rotation. These pillars form the conceptual and observational basis for the celestial and terrestrial reference frames required for Earth and space observations. However, it is no longer adequate to base the conceptual and observational basis on only three pillars. Spacetime curvature as described by the General Theory of Relativity (GTR) is an integral component of all space geodesy techniques and influences all measurements, techniques, and data reduction. Spacetime curvature is therefore the fourth pillar. It is the measurement of the shape of spacetime and its variations. Due to accuracies of Very Long Baseline Interferometry (VLBI) and optical celestial reference frame measurements reaching the tens of micro-arcsecond level in the near future, it is essential to recognize the impact of spacetime seeing on the accuracy objectives of the Global Geodetic Observing System. Spacetime seeing (resulting from spacetime curvature) is analogous to astronomical seeing (resulting from atmospheric conditions), as all of spacetime is affected by microlensing/weak lensing to some extent as a result of mass (normal baryonic and darkmatter) distribution, placing a limit on the realization of the celestial reference frame.

  20. Motions of Celestial Bodies; Computer simulations

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene

    2014-10-01

    This book is written for a wide range of graduate and undergraduate students studying various courses in physics and astronomy. It is accompanied by the award winning educational software package 'Planets and Satellites' developed by the author. This text, together with the interactive software, is intended to help students learn and understand the fundamental concepts and the laws of physics as they apply to the fascinating world of the motions of natural and artificial celestial bodies. The primary aim of the book is the understanding of the foundations of classical and modern physics, while their application to celestial mechanics is used to illustrate these concepts. The simulation programs create vivid and lasting impressions of the investigated phenomena, and provide students and their instructors with a powerful tool which enables them to explore basic concepts that are difficult to study and teach in an abstract conventional manner. Students can work with the text and software at a pace they can enjoy, varying parameters of the simulated systems. Each section of the textbook is supplied with questions, exercises, and problems. Using some of the suggested simulation programs, students have an opportunity to perform interesting mini-research projects in physics and astronomy.

  1. Development of design specifications, details and design criteria for traffic light poles

    DOT National Transportation Integrated Search

    2006-09-01

    Current rules and fabrication methods employed in the design of traffic light poles do not adequately address fatigue and fracture issues associated with the connection of mast arms to the vertical poles and the connection of the poles to the foundat...

  2. View of worlds tallest totem pole, 136.5 feet tall. First ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of worlds tallest totem pole, 136.5 feet tall. First potlatch pole since 1904. Dedicated to all things and all peoples of southeast Alaska, 1971. Oct potlatch, looking northwest - Kake Salmon Cannery, Totem Pole, Kake, Wrangell-Petersburg Census Area, AK

  3. In Situ Poling and Imidization of Amorphous Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Ounaies, Zoubeida; Wise, Kristopher E.; Harrison, Joycelyn S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    An amorphous piezoelectric polyimide containing polar functional groups has been developed using a combination of experimental and molecular modeling for potential use in high temperature applications. This amorphous polyimide, (Beta-CN)APB/ODPA, has exhibited good thermal stability and piezoelectric response at temperatures up to 150C. Density functional calculations predicted that a partially cured amic acid (open imide ring) possesses a dipole moment four times larger than the fully imidized closed ring. In situ poling and imidization of the partially cured (Beta-CN)APB/ODPA, was studied in an attempt to maximize the degree of dipolar orientation and the resultant piezoelectric response. A positive corona poling was used to minimize localized arcing during poling and to allow use of higher poling fields without dielectric breakdown. The dielectric relaxation strength, remanent polarization, and piezoelectric response were evaluated as a function of the poling profile. The partially cured, corona poled polymers exhibited higher dielectric relaxation strength (delta varepsilon), remanent polarization (Pr) and piezoelectric strain coefficient (d33) than the fully cured, conventionally poled ones.

  4. Development of Mini-pole Superconducting Undulator

    NASA Astrophysics Data System (ADS)

    Jan, J. C.; Hwang, C. S.; Lin, P. H.; Chang, C. H.; Lin, F. Y.

    2007-01-01

    A mini-pole superconducting undulator with a 15mm period length (SU15) was developed at the National Synchrotron Radiation Research Center (NSRRC). The coil was wound by a superconducting (SC) NbTi wire with small dimensions and low Cu/SC ratio. The design field strength of SU15 with 158turns/pole was 1.4T at 215A, and the magnet gap was 5.6 mm. Extra trim coils and poles are mounted on the main iron pole. The trim coils directly compensate for the strength error of the peak field. The prototype racetrack iron pole was fabricated via electric discharge machining to produce a complete set of 40-poles. The coil was impregnated by epoxy and wrapped in Kapton to maintain insulation between coil and iron pole. A substitution beam duct was built and assembled with the magnet array and tested in the test Dewar. The conceptual design of bath liquid helium (LHe) cryostat has to tolerate more image current and radiation heating on the beam duct.

  5. Six pole/eight pole single-phase motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included.

  6. Current superimposition variable flux reluctance motor with 8 salient poles

    NASA Astrophysics Data System (ADS)

    Takahara, Kazuaki; Hirata, Katsuhiro; Niguchi, Noboru; Kohara, Akira

    2017-12-01

    We propose a current superimposition variable flux reluctance motor for a traction motor of electric vehicles and hybrid electric vehicles, which consists of 10 salient poles in the rotor and 12 slots in the stator. However, iron losses of this motor in high rotation speed ranges is large because the number of salient poles is large. In this paper, we propose a current superimposition variable flux reluctance motor that consists of 8 salient poles and 12 slots. The characteristics of the 10-pole-12-slot and 8-pole-12-slot current superimposition variable flux reluctance motors are compared using finite element analysis under vector control.

  7. Six pole/eight pole single-phase motor

    DOEpatents

    Kirschbaum, H.S.

    1984-07-31

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included. 10 figs.

  8. Vibration Monitoring of Power Distribution Poles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark Scott; Gail Heath; John Svoboda

    2006-04-01

    Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterizationmore » of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.« less

  9. Converting point-wise nuclear cross sections to pole representation using regularized vector fitting

    NASA Astrophysics Data System (ADS)

    Peng, Xingjie; Ducru, Pablo; Liu, Shichang; Forget, Benoit; Liang, Jingang; Smith, Kord

    2018-03-01

    Direct Doppler broadening of nuclear cross sections in Monte Carlo codes has been widely sought for coupled reactor simulations. One recent approach proposed analytical broadening using a pole representation of the commonly used resonance models and the introduction of a local windowing scheme to improve performance (Hwang, 1987; Forget et al., 2014; Josey et al., 2015, 2016). This pole representation has been achieved in the past by converting resonance parameters in the evaluation nuclear data library into poles and residues. However, cross sections of some isotopes are only provided as point-wise data in ENDF/B-VII.1 library. To convert these isotopes to pole representation, a recent approach has been proposed using the relaxed vector fitting (RVF) algorithm (Gustavsen and Semlyen, 1999; Gustavsen, 2006; Liu et al., 2018). This approach however needs to specify ahead of time the number of poles. This article addresses this issue by adding a poles and residues filtering step to the RVF procedure. This regularized VF (ReV-Fit) algorithm is shown to efficiently converge the poles close to the physical ones, eliminating most of the superfluous poles, and thus enabling the conversion of point-wise nuclear cross sections.

  10. Pole lengths influence O2-cost during double poling in highly trained cross-country skiers.

    PubMed

    Carlsen, Camilla Høivik; Rud, Bjarne; Myklebust, Håvard; Losnegard, Thomas

    2018-02-01

    In elite cross-country skiing, double poling is used in different terrain. This study compared O 2 -cost and kinematics during double poling with four different pole lengths [self-selected (SS), SS - 5 cm, SS + 5 cm, SS + 10 cm] at Low versus Moderate incline. Thirteen highly trained male cross-country skiers (mean ± SD 23 ± 3 years; 182 ± 4 cm; 77 ± 6 kg) completed eight submaximal trials with roller skis on a treadmill at two conditions: "Low incline" (1.7°; 4.5 m s -1 ) and "Moderate incline" (4.5°; 2.5 m s -1 ) with each of the four pole lengths. O 2 -cost and 3D body kinematics were assessed in each trial. In Low incline, SS + 10 cm induced a lower O 2 -cost than all the other pole lengths [P < 0.05; effect size (ES) 0.5-0.8], whereas no differences were found between the remaining pole lengths (P > 0.05; ES 0.2-0.4). In Moderate incline, significant differences between all pole lengths were found for O 2 -cost, with SS - 5 cm > SS > SS + 5 cm > SS + 10 cm (P < 0.05; ES 0.6-1.8). The relative differences in O 2 -cost between SS and the other pole lengths were greater in Moderate incline than Low incline (SS - 5 cm; 1.5%, ES 0.8, SS + 5 cm; 1.3%, ES 1.0, and SS + 10 cm; 1.9%, ES 1.0, all P < 0.05). No difference was found in cycle, poling or reposition times between pole lengths. However, at both conditions a smaller total vertical displacement of center of mass was observed with SS + 10 cm compared to the other pole lengths. Increasing pole length from SS - 5 cm to SS + 10 cm during double poling induced lower O 2 -cost and this advantage was greater in Moderate compared to Low incline.

  11. Process support compressor motor electromagnetic design summary

    NASA Astrophysics Data System (ADS)

    Bailey, J. M.

    1987-03-01

    A 30-hp, 15,000-rpm, permanent magnet motor has been designed and is now being built. The direct drive motor has 72 slots and eight poles. Using A. O. Smith Magnetic, a flux plot was obtained and the flux density throughout one pole pitch has been determined. The poles are connected in a four-pole series, parallel WYE. Each pole requires 30 A for a total per phase current of 60 A. The torque capability is 2638 oz-in.

  12. Microtubule Flux and Sliding in Mitotic Spindles of Drosophila EmbryosV⃞

    PubMed Central

    Brust-Mascher, Ingrid; Scholey, Jonathan M.

    2002-01-01

    We proposed that spindle morphogenesis in Drosophila embryos involves progression through four transient isometric structures in which a constant spacing of the spindle poles is maintained by a balance of forces generated by multiple microtubule (MT) motors and that tipping this balance drives pole-pole separation. Here we used fluorescent speckle microscopy to evaluate the influence of MT dynamics on the isometric state that persists through metaphase and anaphase A and on pole-pole separation in anaphase B. During metaphase and anaphase A, fluorescent punctae on kinetochore and interpolar MTs flux toward the poles at 0.03 μm/s, too slow to drive chromatid-to-pole motion at 0.11 μm/s, and during anaphase B, fluorescent punctae on interpolar MTs move away from the spindle equator at the same rate as the poles, consistent with MT-MT sliding. Loss of Ncd, a candidate flux motor or brake, did not affect flux in the metaphase/anaphase A isometric state or MT sliding in anaphase B but decreased the duration of the isometric state. Our results suggest that, throughout this isometric state, an outward force exerted on the spindle poles by MT sliding motors is balanced by flux, and that suppression of flux could tip the balance of forces at the onset of anaphase B, allowing MT sliding and polymerization to push the poles apart. PMID:12429839

  13. 30 CFR 56.12048 - Communication conductors on power poles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Communication conductors on power poles. 56... Electricity § 56.12048 Communication conductors on power poles. Telegraph, telephone, or signal wires shall not be installed on the same crossarm with power conductors. When carried on poles supporting...

  14. 30 CFR 56.12048 - Communication conductors on power poles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Communication conductors on power poles. 56... Electricity § 56.12048 Communication conductors on power poles. Telegraph, telephone, or signal wires shall not be installed on the same crossarm with power conductors. When carried on poles supporting...

  15. Economics of Red Pine Management for Utility Pole Timber

    Treesearch

    Gerald H. Grossman; Karen Potter-Witter

    1991-01-01

    Including utility poles in red pine management regimes leads to distinctly different management recommendations. Where utility pole markets exist, managing for poles will maximize net returns. To do so, plantations should be maintained above 110 ft2/ac, higher than usually recommended. In Michigan's northern lower peninsula, approximately...

  16. Southern Ocean Response to NADW Changes

    NASA Technical Reports Server (NTRS)

    Rind, David; Schmidt, G.; Russell, G.; deMenocal, P.; Hansen, James E. (Technical Monitor)

    2000-01-01

    The possibility of North Atlantic Deep Water (NADW) changes in both past and future climates has raised the issue of how the Southern Ocean would respond. Recent experiments with the GISS coupled atmosphere-ocean model have shown that a "bipolar see-saw" between NADW production and Antarctic Bottom Water (AABW) production in the Weddell Sea can occur in conjunction with freshening of the North Atlantic. However, this effect operates not through a slow ocean response but via a rapid atmospheric mechanism. As NADW reduces, colder temperatures in the North Atlantic, and Northern Hemisphere in general, are associated with higher surface pressure (increased atmospheric mass). Reduced mass in the Southern Hemisphere occurs in response, with lower pressure over the South Pole (an EOF #1 effect, the "high phase" of the Antarctic Oscillation).The lower pressure is associated with stronger west winds that generate an intensified Antarctic Circumpolar Current (ACC), which leads to longitudinal heat divergence in the South Atlantic (and heat convergence in the Southern Indian Ocean). Colder temperatures in the Weddell Sea region lead to sea ice growth, increased salinity and surface water density, and greater Weddell Sea Bottom Water production. Increased poleward transport of heat occurs in the South Atlantic in conjunction with increased bottom water production, but its convergence at high latitudes is not sufficient to offset the longitudinal heat divergence due to the intensified ACC. The colder temperatures at high latitudes in the South Atlantic increase the latitudinal temperature gradient, baroclinic instability, eddy energy and eddy poleward transport of momentum, helping to maintain the lower pressure over the pole in an interactive manner. The heat flux convergence in the Indian Ocean provides a warming tendency in that region, and overall global production of AABW remains unchanged. These results have implications for the interpretation of the ice core records of the last deglaciation, but may also be relevant for changes during the Holocene and perhaps even in response to increased CO2 forcing,

  17. Fiber grating system used to measure strain in a 22-ft composite utility pole

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Corona, Kelli; Slattery, Kerry T.; Dorr, Donald J.

    1996-05-01

    Composite utility poles have significant advantages with respect to wooden utility poles that include superior strength and uniformity, light weight for ease of deployment, the ability to be recycled reducing hazardous waste associated with chemically treated wooden poles, and compatibility with embedded fiber optic sensors allowing structural loads to be monitored. This paper reports tests conducted of fiber optic grating sensors in combination with an overcoupled coupler demodulation system to support structural testing of a 22 foot composite pole.

  18. Tension and compression measurements in composite utility poles using fiber optic grating sensors

    NASA Astrophysics Data System (ADS)

    Udd, Eric; Corona-Bittick, Kelli; Slattery, Kerry T.; Dorr, Donald J.

    1995-04-01

    Composite utility poles have the potential to overcome many of the limitations of wooden poles that are currently widely used. Significant advantages include superior strength and uniformity, light weight for ease of deployment, the ability to be recycled reducing hazardous waste associated with chemically treated wooden poles, and compatibility with embedded fiber optic sensors allowing structural loads to be monitored. This paper describes the usage of fiber optic grating sensors to support structural testing of a 22 foot composite pole.

  19. Offsets and conservation of the species of the EU habitats and birds directives.

    PubMed

    Regnery, Baptiste; Couvet, Denis; Kerbiriou, Christian

    2013-12-01

    Biodiversity offsets are intended to achieve no net loss of biodiversity due to economic and human development. A variety of biodiversity components are addressed by offset policies. It is required that loss of protected species due to development be offset under the EU Habitats and Birds Directives in Europe. We call this type of offset a species-equality offset because the offset pertains to the same species affected by the development project. Whether species equality can be achieved by offset design is unknown. We addressed this gap by reviewing derogation files (i.e., specific files that describe mitigation measures to ensure no net loss under the EU Habitats and Birds Directives) from 85 development projects in France (2009-2010). We collected information on type of effect (reversible vs. irreversible) and characteristics of affected and offset sites (i.e., types of species, total area). We analyzed how the type of effect and the affected-site characteristics influenced the occurrence of offset measures. The proportion of species targeted by offset measures (i.e., offset species) increased with the irreversibility of the effect of development and the conservation status of the species affected by development (i.e., affected species). Not all effects on endangered species (International Union for Conservation of Nature Red List) were offset; on average, 82% of affected species would be offset. Twenty-six percent of species of least concern were offset species. Thirty-five percent of development projects considered all affected species in their offset measures. Species richness was much lower in offset sites than in developed sites even after offset proposals. For developed areas where species richness was relatively high before development, species richness at offset sites was 5-10 times lower. The species-equality principle appears to have been applied only partially in offset policies, as in the EU directives. We suggest the application of this principle through offsets is highly important for the long-term conservation of biodiversity in Europe. Compensaciones y Conservación de las Especies de las Directivas de Hábitats y Aves de la UE. © 2013 Society for Conservation Biology.

  20. Permanent-magnet multipole with adjustable strength

    DOEpatents

    Halbach, K.

    1982-09-20

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  1. Permanent magnet multipole with adjustable strength

    DOEpatents

    Halbach, Klaus

    1985-01-01

    Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

  2. A vision fusion treatment system based on ATtiny26L

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqing; Zhang, Chunxi; Wang, Jiqiang

    2006-11-01

    Vision fusion treatment is an important and effective project to strabismus children. The vision fusion treatment system based on the principle for eyeballs to follow the moving visual survey pole is put forward first. In this system the original position of visual survey pole is about 35 centimeters far from patient's face before its moving to the middle position between the two eyeballs. The eyeballs of patient will follow the movement of the visual survey pole. When they can't follow, one or two eyeballs will turn to other position other than the visual survey pole. This displacement is recorded every time. A popular single chip microcomputer ATtiny26L is used in this system, which has a PWM output signal to control visual survey pole to move with continuously variable speed. The movement of visual survey pole accords to the modulating law of eyeballs to follow visual survey pole.

  3. Pole-Like Street Furniture Decompostion in Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Li, F.; Oude Elberink, S.; Vosselman, G.

    2016-06-01

    Automatic semantic interpretation of street furniture has become a popular topic in recent years. Current studies detect street furniture as connected components of points above the street level. Street furniture classification based on properties of such components suffers from large intra class variability of shapes and cannot deal with mixed classes like traffic signs attached to light poles. In this paper, we focus on the decomposition of point clouds of pole-like street furniture. A novel street furniture decomposition method is proposed, which consists of three steps: (i) acquirement of prior-knowledge, (ii) pole extraction, (iii) components separation. For the pole extraction, a novel global pole extraction approach is proposed to handle 3 different cases of street furniture. In the evaluation of results, which involves the decomposition of 27 different instances of street furniture, we demonstrate that our method decomposes mixed classes street furniture into poles and different components with respect to different functionalities.

  4. Pole of rotating analysis of present-day Juan de Fuca plate motion

    NASA Technical Reports Server (NTRS)

    Nishimura, C.; Wilson, D. S.; Hey, R. N.

    1984-01-01

    Convergence rates between the Juan de Fuca and North American plates are calculated by means of their relative, present-day pole of rotation. A method of calculating the propagation of errors in addition to the instantaneous poles of rotation is also formulated and applied to determine the Euler pole for Pacific-Juan de Fuca. This pole is vectorially added to previously published poles for North America-Pacific and 'hot spot'-Pacific to obtain North America-Juan de Fuca and 'hot spot'-Juan de Fuca, respectively. The errors associated with these resultant poles are determined by propagating the errors of the two summed angular velocity vectors. Under the assumption that hot spots are fixed with respect to a mantle reference frame, the average absolute velocity of the Juan de Puca plate is computed at approximately 15 mm/yr, thereby making it the slowest-moving of the oceanic plates.

  5. Micropole undulator

    DOEpatents

    Tatchyn, Roman O.; Csonka, Paul L.; Cremer, Jay T.

    1990-12-11

    Micropole undulators for use in the generation of x-rays from moving charged particles are disclosed. Two rows of spaced apart poles are arranged so that each pole produces a magnetic field aligned with all other similar fields. The poles are the ends of "C"-shaped magnets. In each row, adjacent poles are separated by spacers made of a superconducting material.

  6. Theoretical modeling and experimental analyses of laminated wood composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; Vijaya Gopu; Chung Y. Hse

    2005-01-01

    Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin. The thick-walled hollow poles had adequate strength and stiffness properties and were a promising substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufacture and future installation and maintenance of this novel...

  7. Evidence for Phyllosilicates near the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Jensen, E.; Domingue, Deborah; McFadden, L.; Coombs, Cassandraa; Mendell, Wendell

    1998-01-01

    While theoretically water ice could be stable in permanently shadowed areas near the lunar poles, there is conflicting observational evidence for the existence of water ice at either pole. Clementine's bistatic radar resumed a weak signal commensurate with water ice in the South Pole Aitken Basin; however, groundbased radar searches have not detected such a signal at either pole. Lunar Prospector measured large amounts of H (attributed to water) at both poles; however, Galileo near-infrared spectral measurements of the north polar region did not detect the prominent 3.0 micron absorption feature due to interlayer and adsorbed water in phyllosilicates. Evidence for the existence of water at the lunar poles is still ambiguous and controversial. We present evidence, based on the analysis of Galileo SSI images, for the presence of phyllosilicates near the lunar south pole. Using the color image sequence (560 nm, 670 nm, 756 nm, and 889 nm) of Lunmap 14 taken during the Galileo Earth-Moon pass I, we have identified areas that show evidence for a 0.7 microns absorption feature present in Fe-bearing phyllosilicates.

  8. Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators

    NASA Technical Reports Server (NTRS)

    Watson, Michael Dale

    2004-01-01

    Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.

  9. Experimental Study on Short Circuit Phenomena in Air Switch of Distribution Line due to Sparkover between Different Poles on Which One Surge Arrester of the Three Ones is Omitted

    NASA Astrophysics Data System (ADS)

    Sato, Tomoyuki; Uemura, Satoshi; Asakawa, Akira; Yokoyama, Shigeru; Honda, Hideki; Horikoshi, Kazuhiro

    In this study, we experimentally examined the possibility of the internal short circuit of an air switch due to the sparkover between different poles under the condition that no surge arrester exists in neighboring poles and one of three surge arresters is omitted at the pole with an air switch. Experiments at Shiobara Testing Yard and Akagi Testing Center of CRIEPI clarified the following. Fault current may flow via the grounding point of a pole with an air switch and that of the next pole on a different phase from grounded phase of the pole with an air switch. If the low-voltage wire, overhead ground wire or communication wire forms a short circuit between them, ultimately the air switch may burn out. Moreover Fault current continues even if the length of the short-circuit between different poles is increased. Although the increase of the short-circuit length results in the increase of wire impedance, the amount of increase is still small compared with source impedance.

  10. Macro Fiber Piezocomposite Actuator Poling Study

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J.; Bryant, Robert G.; Manos, Dennis

    2002-01-01

    The performance and advantages of Piezocomposite Actuators are to provide a low cost, in-situ actuator/sensor that is flexible, low profile and high strain per volt performance in the same plane of poled voltage. This paper extends reported data for the performance of these Macrofiber Composite (MFC) Actuators to include 4 progressively narrower Intedigitized electrode configurations with several line widths and spacing ratios. Data is reported for max free strain, average strain per applied volt, poling (alignment of the electric dipoles of the PZT ceramic) voltage vs. strain and capacitance, time to poling voltage 95% saturation. The output strain per volt progressively increases as electrode spacing decreases, with saturation occurring at lower poling voltages. The narrowest spacing ratio becomes prone to voltage breakdown or short circuits limiting the spacing width with current fabrication methods. The capacitance generally increases with increasing poling voltage level but has high sensitivity to factors such as temperature, moisture and time from poling which limit its usefulness as a simple indicator. The total time of applied poling voltage to saturate or fully line up the dipoles in the piezoceramic was generally on the order of 5-20 seconds. Less sensitivity to poling due to the applied rate of voltage increase over a 25 to 500 volt/second rate range was observed.

  11. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems

    PubMed Central

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-01-01

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258

  12. Tentative Identification of Interstellar Dust in the Magnetic Wall of the Heliosphere

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.

    2006-06-01

    Data showing that light from nearby stars, <40 pc, is weakly polarized are consistent with the capture and alignment of dust grains in the magnetic wall of the heliosphere. These data, from Tinbergen (1982) and Piirola (1977), were acquired during the solar minimum of the mid-1970's when the magnetic wall was expected to form at negative ecliptic latitudes because the solar magnetic polarity was north-pole-positive. The polarization is seen primarily at negative ecliptic latitudes, consistent with the expected magnetic wall position. The interstellar magnetic field direction at the Sun is derived from these data. The small dust grains most likely to cause the polarization are also the grains excluded from the heliosphere by small gyroradii, <100 AU. The direction of maximum polarization is offset by ˜ 20 --40 deg. from the inflow direction of the large grains that are gravitationally focused in the heliosphere tail. Interstellar dust grains in and near the heliosphere form a potential contaminant of the cosmic microwave background signal, which should then be identifiable because the spatial behavior of these grains depends on the phase of the 22 year solar magnetic activity cycle. The author would like to thank NASA for supporting her research.

  13. Probing Titan's Complex Atmospheric Chemistry Using the Atacama Large Millimeter/Submillimeter Array

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin A.; Nixon, Conor; Charnley, Steven B.; Teanby, Nick; Irwin, Pat; Serigano, Joseph; Palmer, Maureen; Kisiel, Zbigniew

    2015-01-01

    Titan is Saturn's largest moon, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Atmospheric photochemistry results in the production of a wide range of complex organic molecules, including hydrocarbons, nitriles, aromatics and other species of possible pre-biotic relevance. Titan's carbon-rich atmosphere may be analogous to that of primitive terrestrial planets throughout the universe, yet its origin, evolution and complete chemical inventory are not well understood. Here we present spatially-resolved maps of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH in Titan's atmosphere, observed using the Atacama Large Millimeter/submillimeter Array (ALMA) in 2012-2013. These data show previously-undetected spatial structures for the observed species and provide the first spectroscopic detection of C2H5CN on Titan. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with photochemical production and transport in the upper atmosphere followed by subsidence over the poles. The HNC emission peaks are offset from the polar axis, indicating that Titan's mesosphere may be more longitudinally variable than previously thought.

  14. Medial prefrontal aberrations in major depressive disorder revealed by cytoarchitectonically informed voxel-based morphometry

    PubMed Central

    Bludau, Sebastian; Bzdok, Danilo; Gruber, Oliver; Kohn, Nils; Riedl, Valentin; Sorg, Christian; Palomero-Gallagher, Nicola; Müller, Veronika I.; Hoffstaedter, Felix; Amunts, Katrin; Eickhoff, Simon B.

    2017-01-01

    Objective The heterogeneous human frontal pole has been identified as a node in the dysfunctional network of major depressive disorder. The contribution of the medial (socio-affective) versus lateral (cognitive) frontal pole to major depression pathogenesis is currently unclear. The present study performs morphometric comparison of the microstructurally informed subdivisions of human frontal pole between depressed patients and controls using both uni- and multivariate statistics. Methods Multi-site voxel- and region-based morphometric MRI analysis of 73 depressed patients and 73 matched controls without psychiatric history. Frontal pole volume was first compared between depressed patients and controls by subdivision-wise classical morphometric analysis. In a second approach, frontal pole volume was compared by subdivision-naive multivariate searchlight analysis based on support vector machines. Results Subdivision-wise morphometric analysis found a significantly smaller medial frontal pole in depressed patients with a negative correlation of disease severity and duration. Histologically uninformed multivariate voxel-wise statistics provided converging evidence for structural aberrations specific to the microstructurally defined medial area of the frontal pole in depressed patients. Conclusions Across disparate methods, we demonstrated subregion specificity in the left medial frontal pole volume in depressed patients. Indeed, the frontal pole was shown to structurally and functionally connect to other key regions in major depression pathology like the anterior cingulate cortex and the amygdala via the uncinate fasciculus. Present and previous findings consolidate the left medial portion of the frontal pole as particularly altered in major depression. PMID:26621569

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B.B.; Ripp, J.; Sims, R.C.

    The Electric Power Research Institute (EPRI) is studying the environmental impact of preservatives associated with in-service utility poles. As part of this endeavor, two EPRI contractors, META Environmental, Inc. (META) and Atlantic Environmental Services, Inc. (Atlantic), have collected soil samples from around wood utility poles nationwide, for various chemical and physical analyses. This report covers the results for 107 pole sites in the US. These pole sites included a range of preservative types, soil types, wood types, pole sizes, and in-service ages. The poles in this study were preserved with one of two types of preservative: pentachlorophenol (PCP) or creosote.more » Approximately 40 to 50 soil samples were collected from each wood pole site in this study. The soil samples collected from the pole sites were analyzed for chlorinated phenols and total petroleum hydrocarbons (TPH) if the pole was preserved with PCP, or for polycyclic aromatic hydrocarbons (PAHs) if the pole was preserved with creosote. The soil samples were also analyzed for physical/chemical parameters, such as pH, total organic carbon (TOC), and cationic exchange capacity (CEC). Additional samples were used in studies to determine biological degradation rates, and soil-water distribution and retardation coefficients of PCP in site soils. Methods of analysis followed standard EPA and ASTM methods, with some modifications in the chemical analyses to enable the efficient processing of many samples with sufficiently low detection limits for this study. All chemical, physical, and site-specific data were stored in a relational computer database.« less

  16. PoleStriding exercise and vitamin E for management of peripheral vascular disease.

    PubMed

    Collins, Eileen G; Edwin Langbein, W; Orebaugh, Cynthia; Bammert, Christine; Hanson, Karla; Reda, Domenic; Edwards, Lonnie C; Littooy, Fred N

    2003-03-01

    The purpose of this investigation was to evaluate the efficacy of PoleStriding exercise (a form of walking that uses muscles of the upper and lower body in a continuous movement similar to cross-country skiing) and vitamin E (alpha-tocopherol) to improve walking ability and perceived quality of life (QOL) of patients with claudication pain secondary to peripheral arterial disease (PAD). Fifty-two subjects were randomized into four groups: PoleStriding with vitamin E (N = 13), PoleStriding with placebo (N= 14), vitamin E without exercise (N= 13), and placebo without exercise (N = 12). The dose of vitamin E was 400 IU daily. Only the PoleStriding with vitamin E and PoleStriding with placebo groups received PoleStriding instruction and training. Assignment to vitamin E or placebo was double blind. Subjects trained three times weekly for 30-45 min (rest time excluded). Individuals in vitamin E and placebo groups came to the laboratory biweekly for ankle blood-pressure measurements. Results of this randomized clinical trial provide strong evidence that PoleStriding significantly (P< 0.001) improved exercise tolerance on the constant work-rate and incremental treadmill tests. Ratings of perceived claudication pain were significantly less after the PoleStriding training program (P= 0.02). In contrast, vitamin E did not have a statistically significant effect on the subjects' ratings of perceived leg pain (P= 0.35) or treadmill walking duration ( P= 0.36). Perceived distance and walking speed (Walking Impairment Questionnaire) and perceived physical function (Rand Short Form-36) improved in the PoleStriding trained group only (P< 0.001, 0.022 and 0.003, respectively). PoleStriding effectively improved the exercise tolerance and perceived QOL of patients with PAD. Little additional benefit to exercise capacity was realized from vitamin E supplementation.

  17. Helicopter-based live-line work. Volume 1, Helicopter platform work between phases: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gela, G.

    1993-06-01

    This report presents experimental data on tests of a configuration consisting of a helicopter between two energized phases (for AC and switching surge) or poles (for DC). The configuration is that related to live-line work from a hovering helicopter. The McDonnell Douglas 500 Series helicopter was used for the tests. All tests were performed with phase-to-phase, or pole-to-pole energization. For AC tests, proper relationship between the phase-to-ground voltages and the phase-to-phase voltage was maintained by energizing the experimental setup from a balanced 3-{phi} AC source. For DC tests, one pole was energized with positive DC voltage to ground, while themore » other pole was energized with negative DC voltage to ground. For switching surge tests, a surge of positive polarity and a specific peak voltage magnitude was applied to one phase while a surge of negative polarity and the same peak voltage Magnitude was simultaneously applied to the other phase, resulting in {alpha} = 0.5 ({alpha} is the ratio between negative and total surge). In the research program, four conditions were investigated, namely helicopter operating versus not operating, and helicopter bonded to one phase or pole versus not bonded. Results from this research show effects of the rotating main rotor blade of the helicopter, effect of the position of the electrically floating helicopter in the phase-to-phase or pole-to-pole gap, effects of the mannequin, importance of the polarity of the DC poles and switching surges, and effects of inclement weather such as rain. The overall conclusion of this research is that the phase-to-phase or pole-to-pole spacings that cause sparkover with the helicopter between phases (poles) were always significantly smaller than the typical spacings on actual existing overhead transmission lines of the corresponding voltage rating.« less

  18. [Should morphology of the upper pole in renal duplication with preserved function and associated ureterocele be taken into account during treatment planning?].

    PubMed

    Materny, Jacek; Chojnacka, Hanna; Urasińska, Elzbieta; Gawrych, Elzbieta

    2011-01-01

    The aim of this study was to assess structural changes of the upper pole in renal duplication with coexisting ureterocele with regard to primary and/or secondary lesions. These changes might be of importance in treatment planning. The material of this study consisted of clinical documentation and results of histopathology of 23 upper poles removed due to renal duplication with coexisting ureterocele. The qualification criterion was preserved function of the upper pole seen with 99mTc-DTPA (99mTechnetium diethylenetriaminepentaacetic acid)/99mTc-DMSA (99mTechnetium dimercaptosuccinic acid). Resection of the upper pole was indicated in patients with recurrent urinary tract infections and/or persistent vesicoureteral reflux to the lower pole following endoscopic surgery of the ureterocele and/or low function of the upper pole. Morphological lesions were classified as primary (dysplasia) or secondary lesions. The patients were operated at the Department of Pediatric and Oncologic Surgery, PMU, in 1990-2008. The study group consisted of 17 girls and 6 boys aged from 4 months to 9 years (mean 40 months). Recurrent urinary tract infections noted in 16 (70%) children were the most frequent indication for surgery. The preoperative mean function of the renal poles assessed with DTPA/DMSA represented 6% of the differential renal function. Dysplasia was identified in eight resected renal poles (34%) with coexisting secondary lesions in three of them. Secondary lesions only were seen in 15 poles (66%). There was no correlation between age and incidence of dysplasia during follow-up (Pearson's correlation coefficient r = 0.031). Secondary lesions are a quite frequent finding in resected upper poles. As 66% of the renal poles studied with histopathology revealed secondary lesions only, we believe that renal sparing treatment is justified in cases of urinary duplication with coexisting ureterocele.

  19. Acute effects of walking with Nordic poles in persons with mild to moderate low-back pain.

    PubMed

    Revord, Landon P; Lomond, Karen V; Loubert, Peter V; Hammer, Roger L

    2016-01-01

    Regular walking with or without Nordic poles is effective over time at reducing discomfort in individuals with chronic low back pain (LBP). Nordic pole use increases balance and stability, distributes weight through the arms and torso, and decreases loading of the spine and lower limbs. The purpose of this study was to determine if Nordic poles would reduce perceived acute discomfort while self-paced walking in individuals with LBP. We also examined whether walking with or without poles increased heart rate (HR) and ratings of perceived exertion (RPE) or speed of movement. Subjects included 20 adults (12 males, 8 females; mean age of 45.1±16.3) who were experiencing LBP of at least six months' duration (Oswestry Disability Index (ODI): mean 17 ± 8%, range 6-36% indicating minimal to moderate disability) with no current active flare-up. Participants walked a predetermined dirt-path course (805 m or 0.5 mi) with and without poles in randomized order. Data were analyzed using a 2 X 2 repeated measures ANOVA (Condition X Time), where Condition was poles vs no poles and Time was pre- and post-walk. HR and RPE increased significantly from walking the course, whereas pain did not change. There were also no differences between walking with or without poles for pain (ODI Sec #1: 0.2 points, p=0.324), HR (4 bpm, p=0.522) and RPE (0 points, p=0.759). The mean course time (sec) was slower with poles: 617±87 vs 566±65 (p<0.001). Unexpectedly, there was a noticeable drop in pain following the warm up which was done using poles (0.9 points, p<0.001). Nordic pole use is well tolerated in those with current back pain and can be encouraged, however it cannot be recommended as a superior method of addressing acute symptoms when walking.

  20. Frequent POLE1 p.S297F mutation in Chinese patients with ovarian endometrioid carcinoma.

    PubMed

    Zou, Yang; Liu, Fa-Ying; Liu, Huai; Wang, Feng; Li, Wei; Huang, Mei-Zhen; Huang, Yan; Yuan, Xiao-Qun; Xu, Xiao-Yun; Huang, Ou-Ping; He, Ming

    2014-03-01

    The catalytic subunit of DNA polymerase epsilon (POLE1) functions primarily in nuclear DNA replication and repair. Recently, POLE1 mutations were detected frequently in colorectal and endometrial carcinomas while with lower frequency in several other types of cancer, and the p.P286R and p.V411L mutations were the potential mutation hotspots in human cancers. Nevertheless, the mutation frequency of POLE1 in ovarian cancer still remains largely unknown. Here, we screened a total of 251 Chinese samples with distinct subtypes of ovarian carcinoma for the presence of POLE1 hotspot mutations by direct sequencing. A heterozygous somatic POLE1 mutation, p.S297F (c.890C>T), but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was identified in 3 out of 37 (8.1%) patients with ovarian endometrioid carcinoma; this mutation was evolutionarily highly conserved from Homo sapiens to Schizosaccharomyces. Of note, the POLE1 mutation coexisted with mutation in the ovarian cancer-associated PPP2R1A (protein phosphatase 2, regulatory subunit A, α) gene in a 46-year-old patient, who was also diagnosed with ectopic endometriosis in the benign ovary. In addition, a 45-year-old POLE1-mutated ovarian endometrioid carcinoma patient was also diagnosed with uterine leiomyoma while the remaining 52-year-old POLE1-mutated patient showed no additional distinctive clinical manifestation. In contrast to high frequency of POLE1 mutations in ovarian endometrioid carcinoma, no POLE1 mutations were identified in patients with other subtypes of ovarian carcinoma. Our results showed for the first time that the POLE1 p.S297F mutation, but not p.P286R and p.V411L hotspot mutations observed in other cancer types, was frequent in Chinese ovarian endometrioid carcinoma, but absent in other subtypes of ovarian carcinoma. These results implicated that POLE1 p.S297F mutation might be actively involved in the pathogenesis of ovarian endometrioid carcinoma, but might not be actively involved in other subtypes of ovarian carcinoma. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III.

    NASA Astrophysics Data System (ADS)

    Titov, O.; Pursimo, T.; Johnston, Helen M.; Stanford, Laura M.; Hunstead, Richard W.; Jauncey, David L.; Zenere, Katrina A.

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ˜160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  2. Skylore of the Indigenous Peoples of Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Frank, Roslyn M.

    This chapter examines the skylore of the indigenous peoples of northern Eurasia, paying particular attention to the commonalities found among them as well as the differences. Special attention is placed on the motif of the Cosmic Hunt and its diverse manifestations across the study area as well as on the oral nature of the celestial beliefs of these groups. The stars of a variety of "Western" constellation figures are implicated in the narratives and in some cases are clearly utilized in social practice for celestial navigation. The role played by the underlying hunter-gatherer mode of subsistence in shaping their cultural conceptualizations, their skyscapes, and the overarching cosmology of these peoples is also addressed.

  3. Compact optics for high resolution spectroscopy of celestial x-ray sources

    NASA Astrophysics Data System (ADS)

    Cash, W.; Lillie, C.; McEntaffer, R.; Zhang, W.

    2011-05-01

    The astronomy community has never flown a celestial source spectrograph that can resolve natural line widths in absorption the way the ultraviolet community since OAO-3 Copernicus in 1972. Yet there is important science to be mined there, and right now there are now missions on track to pursue it. We present a modified off-plane grating spectrograph design that will support high resolution (λ/δλ ~ 4000) in the soft x-ray band with a high packing density that will enable a modest cost space mission. We discuss the design for the WHIMEx mission which was proposed as an Explorer earlier this year with the goal of detecting high temperature oxygen in the Intergalactic Medium.

  4. Archaeoastronomy and Calendar Cities

    NASA Astrophysics Data System (ADS)

    Campion, Nicholas

    2016-02-01

    The use of astronomy for collective purposes, both religious and political, is apparent in the earliest astronomical records, from the evidence for Palaeolithic lunar calendars to megalithic monuments and Mesopotamian celestial-omen reports. This paper will consider the application of the heavens to the organisation of the ‘Cosmic State’, the human polity modelled on the assumption of a close relationship between society on the one hand and planetary and stellar patterns on the other. I will also examine the foundation of Baghdad within the tradition of celestial town planning and argue that the city may be seen as a ‘talisman’, designed to connect heaven to Earth and ensure peace, stability and political success by harmonising time and space.

  5. The Cosmology Gallery: Unity through diversity in a vast and awe-inspiring universe.

    NASA Astrophysics Data System (ADS)

    Goldsmith, John

    2011-06-01

    Scientists, artists, religious and cultural leaders have come together to create the Cosmology Gallery at the Gravity Discovery Centre (GDC) located 70 km north of Perth, Western Australia. The Cosmology Gallery exhibitions include the multicultural cosmology artworks, Celestial Visions astronomical photography exhibition and the Timeline of the Universe. The multicultural cosmology artworks are new artworks inspired by Australian Indigenous, Christian, Buddhist, Islamic, Hindu, scientific and technological perspectives of the universe. The Celestial Visions exhibition features astronomical events above famous landmarks, including Stonehenge and the Pyramids. The AUD 400,000+ project was funded by Lotterywest, Western Australia and the Cosmology Gallery was officially opened in July 2008 by the Premier of Western Australia.

  6. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, O.; Stanford, Laura M.; Pursimo, T.

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radiomore » sources.« less

  7. Determination of celestial bodies orbits and probabilities of their collisions with the Earth

    NASA Astrophysics Data System (ADS)

    Medvedev, Yuri; Vavilov, Dmitrii

    In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.

  8. A Mechanical Principle for Acquisition of useful Power on a Celestial Body Through Utilisation of its Planetary Precession

    NASA Astrophysics Data System (ADS)

    Vulkov, K.

    In consequence of the phenomenon of planetary precession there emerges a possibility for acquisition of power through utilisation of the rotary motions in the universe. The idea is to acquire useful power on the working shaft of a properly designed machine installed on a celestial body (planet), at the expense of the motional energy of the latter. Strange as it may appear, this is possible if only the regulation of the machine be brought in line with the parameters of the precession. The principle of action of such a planetary engine, including an energy balance, is put forward in the present paper.

  9. Micropole undulator

    DOEpatents

    Tatchyn, R.O.; Csonka, P.L.; Cremer, J.T.

    1990-12-11

    Micropole undulators for use in the generation of x-rays from moving charged particles are disclosed. Two rows of spaced apart poles are arranged so that each pole produces a magnetic field aligned with all other similar fields. The poles are the ends of C''-shaped magnets. In each row, adjacent poles are separated by spacers made of a superconducting material. 11 figs.

  10. 49 CFR 234.243 - Wire on pole line and aerial cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Wire on pole line and aerial cable. 234.243... Maintenance, Inspection, and Testing Maintenance Standards § 234.243 Wire on pole line and aerial cable. Wire... bracket supported by a pole or other support. Wire shall not interfere with, or be interfered with by...

  11. 49 CFR 234.243 - Wire on pole line and aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wire on pole line and aerial cable. 234.243... Maintenance, Inspection, and Testing Maintenance Standards § 234.243 Wire on pole line and aerial cable. Wire... bracket supported by a pole or other support. Wire shall not interfere with, or be interfered with by...

  12. Electron holography study of magnetization behavior in the writer pole of a perpendicular magnetic recording head by a 1 MV transmission electron microscope.

    PubMed

    Hirata, Kei; Ishida, Yoichi; Akashi, Tetsuya; Shindo, Daisuke; Tonomura, Akira

    2012-01-01

    The magnetic domain structure of the writer poles of perpendicular magnetic recording heads was studied using electron holography. Although the domain structure of a 100-nm-thick writer pole could be observed with a 300 kV transmission electron microscope, that of the 250-nm-thick writer pole could not be analyzed due to the limited transmission capability of the instrument. On the other hand, the detailed domain structure of the 250-nm-thick writer pole was successfully analyzed by a 1 MV electron microscope using its high transmission capability. The thickness and material dependency of the domain structure of a writer pole were discussed.

  13. Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty.

    PubMed

    Lecerf, G; Fessy, M H; Philippot, R; Massin, P; Giraud, F; Flecher, X; Girard, J; Mertl, P; Marchetti, E; Stindel, E

    2009-05-01

    BACKGROUND OBJECTIVE: Femoral offset is supposed to influence the results of hip replacement but little is known about the accurate method of measure and the true effect of offset modifications. This article is a collection of independent anatomic, radiological and clinical works, which purpose is to assess knowledge of the implications of femoral offset for preoperative templating and total hip arthroplasty. There is a strong correlation between femoral offset, abductors lever arm and hip abductor strength. Hip lateralization is independent of the femoral endomedullary characteristics. The abductors lever arm is highly correlated to the gluteus medius activation angle. There were correlations between femoral offset and endomedullary shape. The hip center was high and medial for stovepipe metaphysis while it was lower and lateralized for champagne - flute upper femur. A study was performed to compare the femoral offset measured by X-ray and CT-scan in 50 patients, demonstrated that plain radiography underestimates offset measurement. The 2D templating cannot appreciate the rotation of the lower limb. Taking into account the horizontal plane is essential to obtain proper 3D planning of the femoral offset. A randomized study was designed to compare femoral offset measurements after hip resurfacing and total hip arthroplasty. This study underlined hip resurfacing reduced the femoral offset, while hip replacement increased offset. However, the reduction of femoral offset after hip resurfacing does not affect the function. A pilot study was designed to assess the results of 120 hip arthroplasties with a modular femoral neck. This study showed that the use of a modular collar ensures an easier restoration of the femoral offset. A cohort of high offset stems (Lubinus 117 degrees) was retrospectively assessed. The survival rate was slightly lower that the standard design reported in the Swedish register. Finally, the measurement of offset and leg length was assessed with the help of computer assistance. The software changed the initial schedule (obtained by templating) in 29%. Therefore, femoral offset restoration is essential to improve function and longevity of hip arthroplasty. CT-scan is more accurate than plain radiography to assess femoral offset. Hip resurfacing decreases offset without effect on function. Modular neck and computer assistance may improve intraoperative calculation and reproduction of femoral offset. Increasing offset with a standard cemented design may decrease long-term fixation. Level IV: Retrospective or historical series.

  14. Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ Survey

    DOE PAGES

    Saro, A.; Bocquet, S.; Mohr, J.; ...

    2017-03-15

    We study the Sunyaev-Zel'dovich effect (SZE) signature in South Pole Telescope (SPT) data for an ensemble of 719 optically identified galaxy clusters selected from 124.6 degmore » $^2$ of the Dark Energy Survey (DES) science verification data, detecting a stacked SZE signal down to richness $$\\lambda\\sim20$$. The SZE signature is measured using matched-filtered maps of the 2500 deg$^2$ SPT-SZ survey at the positions of the DES clusters, and the degeneracy between SZE observable and matched-filter size is broken by adopting as priors SZE and optical mass-observable relations that are either calibrated using SPT selected clusters or through the Arnaud et al. (2010, A10) X-ray analysis. We measure the SPT signal to noise $$\\zeta$$-$$\\lambda$$, relation and two integrated Compton-$y$ $$Y_\\textrm{500}$$-$$\\lambda$$ relations for the DES-selected clusters and compare these to model expectations accounting for the SZE-optical center offset distribution. For clusters with $$\\lambda > 80$$, the two SPT calibrated scaling relations are consistent with the measurements, while for the A10-calibrated relation the measured SZE signal is smaller by a factor of $$0.61 \\pm 0.12$$ compared to the prediction. For clusters at $$20 < \\lambda < 80$$, the measured SZE signal is smaller by a factor of $$\\sim$$0.20-0.80 (between 2.3 and 10~$$\\sigma$$ significance) compared to the prediction, with the SPT calibrated scaling relations and larger $$\\lambda$$ clusters showing generally better agreement. We quantify the required corrections to achieve consistency, showing that there is a richness dependent bias that can be explained by some combination of contamination of the observables and biases in the estimated masses. We discuss possible physical effects, as contamination from line-of-sight projections or from point sources, larger offsets in the SZE-optical centering or larger scatter in the $$\\lambda$$-mass relation at lower richnesses.« less

  15. Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saro, A.; Bocquet, S.; Mohr, J.

    We study the Sunyaev-Zel'dovich effect (SZE) signature in South Pole Telescope (SPT) data for an ensemble of 719 optically identified galaxy clusters selected from 124.6 degmore » $^2$ of the Dark Energy Survey (DES) science verification data, detecting a stacked SZE signal down to richness $$\\lambda\\sim20$$. The SZE signature is measured using matched-filtered maps of the 2500 deg$^2$ SPT-SZ survey at the positions of the DES clusters, and the degeneracy between SZE observable and matched-filter size is broken by adopting as priors SZE and optical mass-observable relations that are either calibrated using SPT selected clusters or through the Arnaud et al. (2010, A10) X-ray analysis. We measure the SPT signal to noise $$\\zeta$$-$$\\lambda$$, relation and two integrated Compton-$y$ $$Y_\\textrm{500}$$-$$\\lambda$$ relations for the DES-selected clusters and compare these to model expectations accounting for the SZE-optical center offset distribution. For clusters with $$\\lambda > 80$$, the two SPT calibrated scaling relations are consistent with the measurements, while for the A10-calibrated relation the measured SZE signal is smaller by a factor of $$0.61 \\pm 0.12$$ compared to the prediction. For clusters at $$20 < \\lambda < 80$$, the measured SZE signal is smaller by a factor of $$\\sim$$0.20-0.80 (between 2.3 and 10~$$\\sigma$$ significance) compared to the prediction, with the SPT calibrated scaling relations and larger $$\\lambda$$ clusters showing generally better agreement. We quantify the required corrections to achieve consistency, showing that there is a richness dependent bias that can be explained by some combination of contamination of the observables and biases in the estimated masses. We discuss possible physical effects, as contamination from line-of-sight projections or from point sources, larger offsets in the SZE-optical centering or larger scatter in the $$\\lambda$$-mass relation at lower richnesses.« less

  16. Robot-assisted laparoscopic pyeloureterostomy in infants with duplex systems and upper pole hydronephrosis: Variations in double-J ureteral stenting techniques.

    PubMed

    Baek, Minki; Au, Jason; Huang, Gene O; Koh, Chester J

    2017-04-01

    We describe our experience with robot-assisted laparoscopic (RAL) pyeloureterostomy in infants with duplex systems and upper pole hydronephrosis with an emphasis on the various double J (DJ) ureteral stent placement techniques. We used our RAL pyeloureterostomy technique in two female infants with duplex systems and upper pole hydronephrosis. For case 1, we introduced the DJ stent and placed it in the recipient lower pole ureter during the robotic operation in an antegrade fashion. For case 2, we inserted the DJ stent during retrograde pyelography prior to the robotic procedure in a retrograde fashion, and the proximal portion of the stent was placed across the anastomosis into the upper pole renal pelvis. Postoperatively, each of the patients were discharged on postoperative day 1 without complications. The postoperative renal ultrasound at 3 months demonstrated marked improvement of the right upper pole hydronephrosis in both patients. RAL pyeloureterostomy represents a minimally invasive option for upper tract reconstruction of duplex systems with upper pole hydronephrosis in infants. The DJ stent can be placed at the beginning or during the procedure. The stent can be placed in the lower pole ureter or across the anastomosis into the upper pole renal pelvis. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  17. Control of subterranean termites (Isoptera: Rhinotermitidae) infesting power poles.

    PubMed

    Horwood, Martin A; Westlake, Terry; Kathuria, Amrit

    2010-12-01

    A trial was conducted to determine the efficacy of termiticidal dusts (arsenic trioxide, triflumuron, and Metarhizium anisopliae), a timber fumigant (dazomet) and liquid termiticides (bifenthrin, chlorfenapyr, chlorpyrifos, fipronil, and imidacloprid) for controlling subterranean termites (Isoptera: Rhinotermitidae) infesting in-service power poles in New South Wales, Australia. Dusts were applied to parts of the pole where termites were present. Fumigant was inserted into holes drilled into the base of the pole. Liquid termiticides were mixed with soil around the base of the pole and injected into internal voids if present. Poles were inspected for up to 5 yr, and the time taken for reinfestation to occur was recorded. Before the start of the trial, the major Australian pole owners were surveyed to obtain an estimate of the annual national cost of termite infestation to the power supply industry. The annual costs of termite treatment and replacing damaged poles were estimated at AU$2 million and AU$13 million, respectively. Infestation rates were lower for all treatments compared with controls within the first 12 mo of the study. Dazomet, arsenic trioxide, fipronil, and chlorpyrifos were the most efficacious treatments. Efficacy was positively related to the amount of termiticide applied and negatively related to the infestation severity but was unaffected by geographical location. Survival curves were calculated of the time elapsed before the recurrence of termite infestations (survival absence of reinfestation). Survival was highest for poles treated with liquid termiticides.

  18. Orientations of the Villas at Tylissos on Crete and their Relationships to the Minoan Calendar

    NASA Astrophysics Data System (ADS)

    Henriksson, Göran; Blomberg, Mary

    2015-05-01

    The two Late Minoan I villas at Tylissos and an unknown earlier building at the site show similar relationships to the celestial bodies that we have encountered at all of the Minoan buildings that we have studied. They had orientations to celestial events relevant to the calendar, such as sunrise or sunset at the equinoxes and the solstices, and the heliacal risings and settings of bright stars. We also re-encountered the phenomenon that different places marked the beginning of one or more solar months, which suggests that certain months had special relevance for specific places, as if to honor a god or goddess or some other special event for that particular place. In addition, the orientations of the two Late Minoan I villas at Tylissos share the same complexity that we have met at two other sites, where diagonal lines were used to create shadows when marking the parts of the calendar that were specific for Tylissos. It now seems clear that an element of Minoan cosmology insisted on a close connection between their places on earth and the celestial sphere. It was the custom for the Mycenaeans and the Greeks, who later inhabited the island, to honor their deities in special months, and we may find the roots of this custom among the Minoans.

  19. Time-Dependent Selection of an Optimal Set of Sources to Define a Stable Celestial Reference Frame

    NASA Technical Reports Server (NTRS)

    Le Bail, Karine; Gordon, David

    2010-01-01

    Temporal statistical position stability is required for VLBI sources to define a stable Celestial Reference Frame (CRF) and has been studied in many recent papers. This study analyzes the sources from the latest realization of the International Celestial Reference Frame (ICRF2) with the Allan variance, in addition to taking into account the apparent linear motions of the sources. Focusing on the 295 defining sources shows how they are a good compromise of different criteria, such as statistical stability and sky distribution, as well as having a sufficient number of sources, despite the fact that the most stable sources of the entire ICRF2 are mostly in the Northern Hemisphere. Nevertheless, the selection of a stable set is not unique: studying different solutions (GSF005a and AUG24 from GSFC and OPA from the Paris Observatory) over different time periods (1989.5 to 2009.5 and 1999.5 to 2009.5) leads to selections that can differ in up to 20% of the sources. Observing, recording, and network improvement are some of the causes, showing better stability for the CRF over the last decade than the last twenty years. But this may also be explained by the assumption of stationarity that is not necessarily right for some sources.

  20. On the foundations of general relativistic celestial mechanics

    NASA Astrophysics Data System (ADS)

    Battista, Emmanuele; Esposito, Giampiero; Dell'Agnello, Simone

    2017-09-01

    Towards the end of nineteenth century, Celestial Mechanics provided the most powerful tools to test Newtonian gravity in the solar system and also led to the discovery of chaos in modern science. Nowadays, in light of general relativity, Celestial Mechanics leads to a new perspective on the motion of satellites and planets. The reader is here introduced to the modern formulation of the problem of motion, following what the leaders in the field have been teaching since the nineties, in particular, the use of a global chart for the overall dynamics of N bodies and N local charts describing the internal dynamics of each body. The next logical step studies in detail how to split the N-body problem into two sub-problems concerning the internal and external dynamics, how to achieve the effacement properties that would allow a decoupling of the two sub-problems, how to define external-potential-effacing coordinates and how to generalize the Newtonian multipole and tidal moments. The review paper ends with an assessment of the nonlocal equations of motion obtained within such a framework, a description of the modifications induced by general relativity on the theoretical analysis of the Newtonian three-body problem, and a mention of the potentialities of the analysis of solar-system metric data carried out with the Planetary Ephemeris Program.

  1. Anania Shirakatsi's Cosmographical and Natural Philosophical Views

    NASA Astrophysics Data System (ADS)

    Danielyan, Eduard

    2014-10-01

    The observation of the heaven and celestial bodies has taken place since ancient times in the Armenian Highland. The notions of the sphericity of the Earth and celestial bodies, and other theses (about elements, comparative sizes of celestial bodies, antipodes, earthquakes, criticism of astrology, etc.) were reflected and elaborated in "Cosmography" of Anania Shirakatsi (VII century AD), as well as "Ashkharhatsoyts" ("Geography") of Movses Khorenatsi (V century AD) and his continuer Anania Shirakatsi. The road of observation and study of the Milky Way - the fundamental kernel of the development of astronomy - has led the human mind to galaxies, the cognition of the infinite capabilities of the development of matter, that is to say, from the studies of the elements constituting the Earth and other spherical bodies in the Universe (studied by Aristotle) to the Heliocentric system by Copernicus (1473-1543), from the cosmogonic ideas of Democritus (460-370 BC) about the multitude of worlds and the character of the Milky Way and their reflection in natural philosophic views of Anania Shirakatsi to the discovery of non-stationary objects and processes in the Universe owing to the activity of the nuclei of galaxies, according to the cosmogonic conception of academician Victor Ambartsumyan. Anania Shirakatsi's scientific heritage greatly contributed to the development of Armenian and world natural scientific thought.

  2. How dim is dim? Precision of the celestial compass in moonlight and sunlight

    PubMed Central

    Dacke, M.; Byrne, M. J.; Baird, E.; Scholtz, C. H.; Warrant, E. J.

    2011-01-01

    Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dim—and the polarization pattern too weak—to provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision. PMID:21282173

  3. Polarized light use in the nocturnal bull ant, Myrmecia midas.

    PubMed

    Freas, Cody A; Narendra, Ajay; Lemesle, Corentin; Cheng, Ken

    2017-08-01

    Solitary foraging ants have a navigational toolkit, which includes the use of both terrestrial and celestial visual cues, allowing individuals to successfully pilot between food sources and their nest. One such celestial cue is the polarization pattern in the overhead sky. Here, we explore the use of polarized light during outbound and inbound journeys and with different home vectors in the nocturnal bull ant, Myrmecia midas . We tested foragers on both portions of the foraging trip by rotating the overhead polarization pattern by ±45°. Both outbound and inbound foragers responded to the polarized light change, but the extent to which they responded to the rotation varied. Outbound ants, both close to and further from the nest, compensated for the change in the overhead e-vector by about half of the manipulation, suggesting that outbound ants choose a compromise heading between the celestial and terrestrial compass cues. However, ants returning home compensated for the change in the e-vector by about half of the manipulation when the remaining home vector was short (1-2 m) and by more than half of the manipulation when the remaining vector was long (more than 4 m). We report these findings and discuss why weighting on polarization cues change in different contexts.

  4. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  5. Method based on artificial excitation of characteristic radiation by an electron beam for remote X-ray spectral elemental analysis of surface rocks on atmosphereless celestial bodies

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. K.

    2016-11-01

    This article, like our previous one [1], is devoted to advanced space technology concepts. It evaluates the potential for developing active systems to conduct a remote elemental analysis of surface rocks on an atmosphereless celestial body. The analysis is based on the spectrometry of characteristic X-rays (CXR) artificially excited in the surface soil layer. It has been proposed to use an electron beam injected from aboard a spacecraft orbiting the celestial body (or moving in a flyby trajectory) to excite the CXR elements contained in surface rocks. The focus is on specifying technical requirements to the parameters of payloads for a global mapping of the composition of lunar rocks from aboard of a low-orbiting lunar satellite. This article uses the results obtained in [2], our first study that shows the potential to develop an active system for a remote elemental analysis of lunar surface rocks using the above method. Although there has been interest in our research on the part of leading national academic institutions and space technology developers in the Soviet Union, the studies were discontinued because of the termination of the Soviet lunar program and the completion of the American Apollo program.

  6. Polarized light use in the nocturnal bull ant, Myrmecia midas

    PubMed Central

    Lemesle, Corentin; Cheng, Ken

    2017-01-01

    Solitary foraging ants have a navigational toolkit, which includes the use of both terrestrial and celestial visual cues, allowing individuals to successfully pilot between food sources and their nest. One such celestial cue is the polarization pattern in the overhead sky. Here, we explore the use of polarized light during outbound and inbound journeys and with different home vectors in the nocturnal bull ant, Myrmecia midas. We tested foragers on both portions of the foraging trip by rotating the overhead polarization pattern by ±45°. Both outbound and inbound foragers responded to the polarized light change, but the extent to which they responded to the rotation varied. Outbound ants, both close to and further from the nest, compensated for the change in the overhead e-vector by about half of the manipulation, suggesting that outbound ants choose a compromise heading between the celestial and terrestrial compass cues. However, ants returning home compensated for the change in the e-vector by about half of the manipulation when the remaining home vector was short (1−2 m) and by more than half of the manipulation when the remaining vector was long (more than 4 m). We report these findings and discuss why weighting on polarization cues change in different contexts. PMID:28879002

  7. Mechanical properties of small-scale laminated wood composite poles: effects of taper and webs

    Treesearch

    Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse

    2006-01-01

    Laminated hollow wood composite poles represent an efficient utilization of the timber resource and a promising alternative for solid poles that are commonly used in the power transmission and telecommunication lines. The objective of this study was to improve the performance of composite poles by introducing the bio-mimicry concept into the design of hollow wood...

  8. 49 CFR 236.71 - Signal wires on pole line and aerial cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Signal wires on pole line and aerial cable. 236.71... Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on... pole or other support. Signal wire shall not interfere with, or be interfered by, other wires on the...

  9. 49 CFR 236.71 - Signal wires on pole line and aerial cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal wires on pole line and aerial cable. 236.71... Instructions: All Systems Wires and Cables § 236.71 Signal wires on pole line and aerial cable. Signal wire on... pole or other support. Signal wire shall not interfere with, or be interfered by, other wires on the...

  10. A 100J-level nanosecond pulsed DPSSL for pumping high-efficiency, high-repetition rate PW-class lasers

    NASA Astrophysics Data System (ADS)

    De Vido, M.; Ertel, K.; Mason, P. D.; Banerjee, S.; Phillips, P. J.; Smith, J. M.; Butcher, T. J.; Chekhlov, O.; Divoky, M.; Pilar, J.; Hooker, C.; Shaikh, W.; Lucianetti, A.; Hernandez-Gomez, C.; Mocek, T.; Edwards, C.; Collier, J. L.

    2017-02-01

    In this paper, we review the development, at the STFC's Central Laser Facility (CLF), of high energy, high repetition rate diode-pumped solid-state laser (DPSSL) systems based on cryogenically-cooled multi-slab ceramic Yb:YAG. Up to date, two systems have been completed, namely the DiPOLE prototype and the DiPOLE100 system. The DiPOLE prototype has demonstrated amplification of nanosecond pulses in excess of 10 J at 10 Hz repetition rate with an opticalto- optical efficiency of 22%. The larger scale DiPOLE100 system, designed to deliver 100J temporally-shaped nanosecond pulses at 10 Hz repetition rate, has been developed at the CLF for the HiLASE project in the Czech Republic. Recent experiments conducted on the DiPOLE100 system demonstrated the energy scalability of the DiPOLE concept to the 100 J pulse energy level. Furthermore, second harmonic generation experiments carried out on the DiPOLE prototype confirmed the suitability of DiPOLE-based systems for pumping high repetition rate PW-class laser systems based on Ti:sapphire or optical parametric chirped pulse amplification (OPCPA) technology.

  11. Self-Poling of BiFeO3 Thick Films.

    PubMed

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-03

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

  12. LOCAL INTERSTELLAR MAGNETIC FIELD DETERMINED FROM THE INTERSTELLAR BOUNDARY EXPLORER RIBBON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirnstein, E. J.; Livadiotis, G.; McComas, D. J.

    2016-02-10

    The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquelymore » coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (∼1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ∼8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample.« less

  13. Local interstellar magnetic field determined from the interstellar boundary explorer ribbon

    DOE PAGES

    Zirnstein, E. J.; Heerikhuisen, J.; Funsten, H. O.; ...

    2016-02-08

    The solar wind emanating from the Sun interacts with the local interstellar medium (LISM), forming the heliosphere. Hydrogen energetic neutral atoms (ENAs) produced by the solar-interstellar interaction carry important information about plasma properties from the boundaries of the heliosphere, and are currently being measured by NASA's Interstellar Boundary Explorer (IBEX). IBEX observations show the existence of a “ribbon” of intense ENA emission projecting a circle on the celestial sphere that is centered near the local interstellar magnetic field (ISMF) vector. Here we show that the source of the IBEX ribbon as a function of ENA energy outside the heliosphere, uniquelymore » coupled to the draping of the ISMF around the heliopause, can be used to precisely determine the magnitude (2.93 ± 0.08 μG) and direction (227.°28 ± 0.°69, 34.°62 ± 0.°45 in ecliptic longitude and latitude) of the pristine ISMF far (~1000 AU) from the Sun. We find that the ISMF vector is offset from the ribbon center by ~8.°3 toward the direction of motion of the heliosphere through the LISM, and their vectors form a plane that is consistent with the direction of deflected interstellar neutral hydrogen, thought to be controlled by the ISMF. Lastly, our results yield draped ISMF properties close to that observed by Voyager 1, the only spacecraft to directly measure the ISMF close to the heliosphere, and give predictions of the pristine ISMF that Voyager 1 has yet to sample.« less

  14. Study of the influence of the parameters of an experiment on the simulation of pole figures of polycrystalline materials using electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonova, A. O., E-mail: aoantonova@mail.ru; Savyolova, T. I.

    2016-05-15

    A two-dimensional mathematical model of a polycrystalline sample and an experiment on electron backscattering diffraction (EBSD) is considered. The measurement parameters are taken to be the scanning step and threshold grain-boundary angle. Discrete pole figures for materials with hexagonal symmetry have been calculated based on the results of the model experiment. Discrete and smoothed (by the kernel method) pole figures of the model sample and the samples in the model experiment are compared using homogeneity criterion χ{sup 2}, an estimate of the pole figure maximum and its coordinate, a deviation of the pole figures of the model in the experimentmore » from the sample in the space of L{sub 1} measurable functions, and the RP-criterion for estimating the pole figure errors. Is is shown that the problem of calculating pole figures is ill-posed and their determination with respect to measurement parameters is not reliable.« less

  15. Molecular profiling and sequential somatic mutation shift in hypermutator tumours harbouring POLE mutations.

    PubMed

    Hatakeyama, Keiichi; Ohshima, Keiichi; Nagashima, Takeshi; Ohnami, Shumpei; Ohnami, Sumiko; Serizawa, Masakuni; Shimoda, Yuji; Maruyama, Koji; Akiyama, Yasuto; Urakami, Kenichi; Kusuhara, Masatoshi; Mochizuki, Tohru; Yamaguchi, Ken

    2018-06-07

    Defective DNA polymerase ε (POLE) proofreading leads to extensive somatic mutations that exhibit biased mutational properties; however, the characteristics of POLE-mutated tumours remain unclear. In the present study, we describe a molecular profile using whole exome sequencing based on the transition of somatic mutations in 10 POLE-mutated solid tumours that were obtained from 2,042 Japanese patients. The bias of accumulated variations in these mutants was quantified to follow a pattern of somatic mutations, thereby classifying the sequential mutation shift into three periods. During the period prior to occurrence of the aberrant POLE, bare accumulation of mutations in cancer-related genes was observed, whereas PTEN was highly mutated in conjunction with or subsequent to the event, suggesting that POLE and PTEN mutations were responsible for the development of POLE-mutated tumours. Furthermore, homologous recombination was restored following the occurrence of PTEN mutations. Our strategy for estimation of the footprint of somatic mutations may provide new insight towards the understanding of mutation-driven tumourigenesis.

  16. Pole-Like Road Furniture Detection in Sparse and Unevenly Distributed Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Li, F.; Lehtomäki, M.; Oude Elberink, S.; Vosselman, G.; Puttonen, E.; Kukko, A.; Hyyppä, J.

    2018-05-01

    Pole-like road furniture detection received much attention due to its traffic functionality in recent years. In this paper, we develop a framework to detect pole-like road furniture from sparse mobile laser scanning data. The framework is carried out in four steps. The unorganised point cloud is first partitioned. Then above ground points are clustered and roughly classified after removing ground points. A slicing check in combination with cylinder masking is proposed to extract pole-like road furniture candidates. Pole-like road furniture are obtained after occlusion analysis in the last stage. The average completeness and correctness of pole-like road furniture in sparse and unevenly distributed mobile laser scanning data was above 0.83. It is comparable to the state of art in the field of pole-like road furniture detection in mobile laser scanning data of good quality and is potentially of practical use in the processing of point clouds collected by autonomous driving platforms.

  17. Theoretical analysis of optical poling and frequency doubling effect based on classical model

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo

    2018-03-01

    Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.

  18. Magnetic field adjustment structure and method for a tapered wiggler

    DOEpatents

    Halbach, Klaus

    1988-03-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  19. Magnetic field adjustment structure and method for a tapered wiggler

    DOEpatents

    Halbach, Klaus

    1988-01-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  20. Induction heating coupler and annealer

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor); Johnston, David F. (Inventor); Swaim, Robert J. (Inventor); Dinkins, James R. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having- two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardly beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to a magnetic flux passing between the two ends of the pole piece.

  1. Induction heating coupler

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Copeland, Carl E. (Inventor); Swaim, Robert J. (Inventor); Coultrip, Robert H. (Inventor); Johnston, David F. (Inventor); Phillips, W. Morris (Inventor); Johnson, Samuel D. (Inventor); Dinkins, James R. (Inventor); Buckley, John D. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardely beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to magnetic flux passing between the two ends of the pole piece.

  2. The Role of Celestial Compass Information in Cataglyphis Ants during Learning Walks and for Neuroplasticity in the Central Complex and Mushroom Bodies

    PubMed Central

    Grob, Robin; Fleischmann, Pauline N.; Grübel, Kornelia; Wehner, Rüdiger; Rössler, Wolfgang

    2017-01-01

    Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance—presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system. PMID:29184487

  3. The Role of Celestial Compass Information in Cataglyphis Ants during Learning Walks and for Neuroplasticity in the Central Complex and Mushroom Bodies.

    PubMed

    Grob, Robin; Fleischmann, Pauline N; Grübel, Kornelia; Wehner, Rüdiger; Rössler, Wolfgang

    2017-01-01

    Central place foragers are faced with the challenge to learn the position of their nest entrance in its surroundings, in order to find their way back home every time they go out to search for food. To acquire navigational information at the beginning of their foraging career, Cataglyphis noda performs learning walks during the transition from interior worker to forager. These small loops around the nest entrance are repeatedly interrupted by strikingly accurate back turns during which the ants stop and precisely gaze back to the nest entrance-presumably to learn the landmark panorama of the nest surroundings. However, as at this point the complete navigational toolkit is not yet available, the ants are in need of a reference system for the compass component of the path integrator to align their nest entrance-directed gazes. In order to find this directional reference system, we systematically manipulated the skylight information received by ants during learning walks in their natural habitat, as it has been previously suggested that the celestial compass, as part of the path integrator, might provide such a reference system. High-speed video analyses of distinct learning walk elements revealed that even exclusion from the skylight polarization pattern, UV-light spectrum and the position of the sun did not alter the accuracy of the look back to the nest behavior. We therefore conclude that C. noda uses a different reference system to initially align their gaze directions. However, a comparison of neuroanatomical changes in the central complex and the mushroom bodies before and after learning walks revealed that exposure to UV light together with a naturally changing polarization pattern was essential to induce neuroplasticity in these high-order sensory integration centers of the ant brain. This suggests a crucial role of celestial information, in particular a changing polarization pattern, in initially calibrating the celestial compass system.

  4. How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation.

    PubMed

    Pomozi, I; Horváth, G; Wehner, R

    2001-09-01

    One of the biologically most important parameters of the cloudy sky is the proportion P of the celestial polarization pattern available for use in animal navigation. We evaluated this parameter by measuring the polarization patterns of clear and cloudy skies using 180 degrees (full-sky) imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) ranges of the spectrum under clear and partly cloudy conditions. The resulting data were compared with the corresponding celestial polarization patterns calculated using the single-scattering Rayleigh model. We show convincingly that the pattern of the angle of polarization (e-vectors) in a clear sky continues underneath clouds if regions of the clouds and parts of the airspace between the clouds and the earth surface (being shady at the position of the observer) are directly lit by the sun. The scattering and polarization of direct sunlight on the cloud particles and in the air columns underneath the clouds result in the same e-vector pattern as that present in clear sky. This phenomenon can be exploited for animal navigation if the degree of polarization is higher than the perceptual threshold of the visual system, because the angle rather than the degree of polarization is the most important optical cue used in the polarization compass. Hence, the clouds reduce the extent of sky polarization pattern that is useful for animal orientation much less than has hitherto been assumed. We further demonstrate quantitatively that the shorter the wavelength, the greater the proportion of celestial polarization that can be used by animals under cloudy-sky conditions. As has already been suggested by others, this phenomenon may solve the ultraviolet paradox of polarization vision in insects such as hymenopterans and dipterans. The present study extends previous findings by using the technique of 180 degrees imaging polarimetry to measure and analyse celestial polarization patterns.

  5. Effect of PF impregnation and surface densification on the mechanical properties of small-scale wood laminated poles

    Treesearch

    Huaqiang Yu; Chung Y. Hse; Zehui Jiang

    2009-01-01

    The wood poles in the United States are from high-valued trees that are becoming more expensive and less available. Wood laminated composite poles (LCP) are a kind of alternative to solid poles. Considerable interest has developed in last century in the resin impregnation and wood surface densification to improve its physical and mechanical properties. In this...

  6. A Double-Pole High Voltage High Current Switch

    DTIC Science & Technology

    2005-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited A DOUBLE- POLE HIGH...December 2005 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: A Double- Pole High Voltage High Current Switch 6. AUTHOR(S...to divert heavy charged particles, e.g. Cu+. 15. NUMBER OF PAGES 68 14. SUBJECT TERMS Double- Pole , Pulse Forming Inductive Network, PFIN

  7. Effect of Materials and Manufacturing on the Bending Stiffness of Vaulting Poles

    ERIC Educational Resources Information Center

    Davis, C. L.; Kukureka, S. N.

    2012-01-01

    The increase in the world record height achieved in pole vaulting can be related to the improved ability of the athletes, in terms of their fitness and technique, and to the change in materials used to construct the pole. For example in 1960 there was a change in vaulting pole construction from bamboo to glass fibre reinforced polymer (GFRP)…

  8. Finite element modeling of small-scale tapered wood-laminated composite poles with biomimicry features

    Treesearch

    Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse

    2008-01-01

    Tapered composite poles with biomimicry features as in bamboo are a new generation of wood laminated composite poles that may some day be considered as an alternative to solid wood poles that are widely used in the transmission and telecommunication fields. Five finite element models were developed with ANSYS to predict and assess the performance of five types of...

  9. Prognostic Significance of POLE Proofreading Mutations in Endometrial Cancer

    PubMed Central

    Church, David N.; Stelloo, Ellen; Nout, Remi A.; Valtcheva, Nadejda; Depreeuw, Jeroen; ter Haar, Natalja; Noske, Aurelia; Amant, Frederic; Wild, Peter J.; Lambrechts, Diether; Jürgenliemk-Schulz, Ina M.; Jobsen, Jan J.; Smit, Vincent T. H. B. M.; Creutzberg, Carien L.; Bosse, Tjalling

    2015-01-01

    Background: Current risk stratification in endometrial cancer (EC) results in frequent over- and underuse of adjuvant therapy, and may be improved by novel biomarkers. We examined whether POLE proofreading mutations, recently reported in about 7% of ECs, predict prognosis. Methods: We performed targeted POLE sequencing in ECs from the PORTEC-1 and -2 trials (n = 788), and analyzed clinical outcome according to POLE status. We combined these results with those from three additional series (n = 628) by meta-analysis to generate multivariable-adjusted, pooled hazard ratios (HRs) for recurrence-free survival (RFS) and cancer-specific survival (CSS) of POLE-mutant ECs. All statistical tests were two-sided. Results: POLE mutations were detected in 48 of 788 (6.1%) ECs from PORTEC-1 and-2 and were associated with high tumor grade (P < .001). Women with POLE-mutant ECs had fewer recurrences (6.2% vs 14.1%) and EC deaths (2.3% vs 9.7%), though, in the total PORTEC cohort, differences in RFS and CSS were not statistically significant (multivariable-adjusted HR = 0.43, 95% CI = 0.13 to 1.37, P = .15; HR = 0.19, 95% CI = 0.03 to 1.44, P = .11 respectively). However, of 109 grade 3 tumors, 0 of 15 POLE-mutant ECs recurred, compared with 29 of 94 (30.9%) POLE wild-type cancers; reflected in statistically significantly greater RFS (multivariable-adjusted HR = 0.11, 95% CI = 0.001 to 0.84, P = .03). In the additional series, there were no EC-related events in any of 33 POLE-mutant ECs, resulting in a multivariable-adjusted, pooled HR of 0.33 for RFS (95% CI = 0.12 to 0.91, P = .03) and 0.26 for CSS (95% CI = 0.06 to 1.08, P = .06). Conclusion: POLE proofreading mutations predict favorable EC prognosis, independently of other clinicopathological variables, with the greatest effect seen in high-grade tumors. This novel biomarker may help to reduce overtreatment in EC. PMID:25505230

  10. Influence of kinematic parameters on pole vault results in top juniors.

    PubMed

    Gudelj, Ines; Zagorac, Nebojsa; Babić, Vesna

    2013-05-01

    The aim of this research was to analyse the kinematic parameters and to ascertain the influence of those parameters on the pole vault result. The entity sample of the research consisted of successful vaults of 30 athletes, whose attempts were recorded at the European Junior Athletics Championships. The examinees performed the vaults as part of the qualification competition for the finale and the finale of the competition itself The examinees were 17-19 years old, and the range of their top results was from 4.90 to 5.30 m. The results of the regression analysis showed a significant influence of the predictor variables on the effective pole vault height. The centre of body mass height was mostly influenced by the following variables: TS - takeoff velocity, LSS - last step velocity, PSS - penultimate step velocity, TAPR - trunk angle at the moment of the pole release. The following variables had lesser, but still a significant influence: CBMDM - centre of body mass distance at the pole release moment, and MCMVV - time of pole straightening. Generally, the information gained by this research indicates the significant influence of the kinematic parameters on the pole vault result. Therefore, the conclusion is that the result efficacy in the pole vault is primarily determined by the variables defined by the motor capabilities, but also by the indicators determining the vault activity realization technique. The variables that define the body position during the pole release (trunk angle and centre of mass distance) have heomost significant influence on the vault performance technique, while the motor capabilities influence the last two run up steps velocity, take off speed and the time of pole straightening.

  11. Offsetting the impacts of mining to achieve no net loss of native vegetation.

    PubMed

    Sonter, L J; Barrett, D J; Soares-Filho, B S

    2014-08-01

    Offsets are a novel conservation tool, yet using them to achieve no net loss of biodiversity is challenging. This is especially true when using conservation offsets (i.e., protected areas) because achieving no net loss requires avoiding equivalent loss. Our objective was to determine if offsetting the impacts of mining achieves no net loss of native vegetation in Brazil's largest iron mining region. We used a land-use change model to simulate deforestation by mining to 2020; developed a model to allocate conservation offsets to the landscape under 3 scenarios (baseline, no new offsets; current practice, like-for-like [by vegetation type] conservation offsetting near the impact site; and threat scenario, like-for-like conservation offsetting of highly threatened vegetation); and simulated nonmining deforestation to 2020 for each scenario to quantify avoided deforestation achieved with offsets. Mines cleared 3570 ha of native vegetation by 2020. Under a 1:4 offset ratio, mining companies would be required to conserve >14,200 ha of native vegetation, doubling the current extent of protected areas in the region. Allocating offsets under current practice avoided deforestation equivalent to 3% of that caused by mining, whereas allocating under the threat scenario avoided 9%. Current practice failed to achieve no net loss because offsets did not conserve threatened vegetation. Explicit allocation of offsets to threatened vegetation also failed because the most threatened vegetation was widely dispersed across the landscape, making conservation logistically difficult. To achieve no net loss with conservation offsets requires information on regional deforestation trajectories and the distribution of threatened vegetation. However, in some regions achieving no net loss through conservation may be impossible. In these cases, other offsetting activities, such as revegetation, will be required. © 2014 Society for Conservation Biology.

  12. Diagnostics of Wooden Poles Situated in the Open - Air Museum Using Sonic Tomography

    NASA Astrophysics Data System (ADS)

    Makýš, Oto; Krušinský, Peter; Korenková, Renáta; Šrobárová, Dominika

    2018-06-01

    The paper deals with the lifetime of wooden poles, situated in the archaeological open-air museum Liptovská Mara - Havránok, which were erected outdoors about 12 years ago. It is aimed at diagnosing their condition using sonic tomography. The poles differ from each other in the location, anchorage, and positioning in terms of the terrain slope. Investigation was focused on the free-standing poles (quasi sacrifice poles) and the poles that are part of the fortification (gates and walls). Measurements were carried out using the device Fakopp ArborSonic 3D Sonic Tomograph that has 18 sensors. It measures the sonic response (sound velocity) in a tree stem. Sound wave velocity within sound wood depends on its species, moisture content, and the direction of measurement. Measurements brought remarkable results.

  13. Pole orientation of 16 Psyche by two independent methods

    NASA Technical Reports Server (NTRS)

    Tedesco, E. F.; Taylor, R. C.

    1985-01-01

    Nineteen new lightcurves of 16 Psyche are presented along with a pole orientation derived using two independent methods, namely, photometric astrometry and magnitude-amplitude-shape-aspect. The pole orientations found using these two methods agree to within 4 deg. The results from applying photometric astrometry were prograde rotation, a sidereal period of 0.1748143 days + or - 0.0000003 days, and a pole at longitude 223 deg and latitude +37 deg, with an uncertainty of 10 deg, and, from applying magnitude-amplitude-shape-aspect a pole at 220 + or - 1 deg, +40 + or - 4 deg, and a modeled triaxial ellipsoid shape (a greater than b greater than c) and a/b = 1.33 + or - 0.07. The discrepancy between the high-pole latitude found here and the low latitudes reported by Lupishko et al. (1982) and Zhou and Yang (1982) is discussed.

  14. Designated fiber stress for wood poles

    Treesearch

    Ronald W. Wolfe; Robert O. Kluge

    2005-01-01

    Wood poles have been used to support utility distribution lines for well over 100 years. Over that time, specifications for a “wood utility pole” have evolved from the closest available tree stem more than 15 ft in length to straight, durable timbers of lengths ranging up 125 ft and base diameters of as much as 27 in. The continued success of wood poles in this...

  15. Ocean floor mounting of wave energy converters

    DOEpatents

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  16. Standard, Random, and Optimum Array conversions from Two-Pole resistance data

    DOE PAGES

    Rucker, D. F.; Glaser, Danney R.

    2014-09-01

    We present an array evaluation of standard and nonstandard arrays over a hydrogeological target. We develop the arrays by linearly combining data from the pole-pole (or 2-pole) array. The first test shows that reconstructed resistances for the standard Schlumberger and dipoledipole arrays are equivalent or superior to the measured arrays in terms of noise, especially at large geometric factors. The inverse models for the standard arrays also confirm what others have presented in terms of target resolvability, namely the dipole-dipole array has the highest resolution. In the second test, we reconstruct random electrode combinations from the 2-pole data segregated intomore » inner, outer, and overlapping dipoles. The resistance data and inverse models from these randomized arrays show those with inner dipoles to be superior in terms of noise and resolution and that overlapping dipoles can cause model instability and low resolution. Finally, we use the 2-pole data to create an optimized array that maximizes the model resolution matrix for a given electrode geometry. The optimized array produces the highest resolution and target detail. Thus, the tests demonstrate that high quality data and high model resolution can be achieved by acquiring field data from the pole-pole array.« less

  17. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  18. Interior micro-CT with an offset detector

    PubMed Central

    Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge; Cao, Guohua

    2014-01-01

    Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three extended reconstruction methods by suppressing artifacts and maintaining pixel values. PMID:24877826

  19. Measurement of the cosmic microwave background using BEAST for the determination of cosmological parameters

    NASA Astrophysics Data System (ADS)

    Childers, Jeffery Dale

    The Background Emission Anisotropy Scanning Telescope (BEAST) is a millimeter wavelength experiment designed to generate maps of fluctuations in the cosmic microwave background (CMB). The telescope is composed of an off-axis Gregorian optical system with a 2.2 meter primary that focuses the collected microwave radiation onto an array of cryogenically cooled high electron mobility transistor (HEMT) receivers. This array is composed of six corrugated scalar feed horns in the Q band (38 to 45 GHz) and two more in the Ka band (26 to 36 GHz) with one of the six Q-band horns connected to an ortho-mode transducer for extraction of both polarizations incident on the single feed. The system has a minimum beam size of 20' with an average sensitivity of 900 m K [Special characters omitted.] per receiver. A map of the CMB centered on the north celestial pole has been generated from the BEAST telescope in a 9 ° wide annulus at declination 37° with a typical pixel error of 57 ± 5 m K when smoothed to 30' resolution. Cosmological parameter estimation of the power spectrum resulting from the map provides a measure of O k == 1- O total = -0.0= 74 ± .070, which is consistent with a flat universe. This paper describes the design and performance of the BEAST instrument and provides the details of subsystems developed and used toward the goal of generating a map of CMB fluctuations on 20' scales with sensitivity in l space between l ~100 and l ~500. A summary of the map and results generated by an observing campaign at the University of California White Mountain Research Station are also included.

  20. Polarization leakage in epoch of reionization windows - III. Wide-field effects of narrow-field arrays

    NASA Astrophysics Data System (ADS)

    Asad, K. M. B.; Koopmans, L. V. E.; Jelić, V.; de Bruyn, A. G.; Pandey, V. N.; Gehlot, B. K.

    2018-05-01

    Leakage of polarized Galactic diffuse emission into total intensity can potentially mimic the 21-cm signal coming from the epoch of reionization (EoR), as both of them might have fluctuating spectral structure. Although we are sensitive to the EoR signal only in small fields of view, chromatic side-lobes from further away can contaminate the inner region. Here, we explore the effects of leakage into the `EoR window' of the cylindrically averaged power spectra (PS) within wide fields of view using both observation and simulation of the 3C196 and North Celestial Pole (NCP) fields, two observing fields of the LOFAR-EoR project. We present the polarization PS of two one-night observations of the two fields and find that the NCP field has higher fluctuations along frequency, and consequently exhibits more power at high-k∥ that could potentially leak to Stokes I. Subsequently, we simulate LOFAR observations of Galactic diffuse polarized emission based on a model to assess what fraction of polarized power leaks into Stokes I because of the primary beam. We find that the rms fractional leakage over the instrumental k-space is 0.35 {per cent} in the 3C196 field and 0.27 {per cent} in the NCP field, and it does not change significantly within the diameters of 15°, 9°, and 4°. Based on the observed PS and simulated fractional leakage, we show that a similar level of leakage into Stokes I is expected in the 3C196 and NCP fields, and the leakage can be considered to be a bias in the PS.

Top