NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Sams, Clarence F.
2001-01-01
An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing monocytes may represent distinct monocyte subsets with unique functions. CONCLUSIONS: Whole blood culture eliminates the need to purify cell populations prior to culture and may have Significant utility for the routine monitoring of the cytokine balances of the peripheral blood T cell and monocyte populations. In addition, there are distinct advantages to performing whole-blood (WB) activation as compared to PBMC activation. These advantages would include retaining all various cell-cell interactions as well as any soluble factors present in serum that influence cell activation. In this study, alterations in cytokine production are demonstrated between whole blood and PBMC activation. It is likely that whole blood activation more accurately represents the in-vivo immune balance than PBMC activation.
Herter, Sylvia; Morra, Laura; Schlenker, Ramona; Sulcova, Jitka; Fahrni, Linda; Waldhauer, Inja; Lehmann, Steffi; Reisländer, Timo; Agarkova, Irina; Kelm, Jens M; Klein, Christian; Umana, Pablo; Bacac, Marina
2017-01-01
The complexity of the tumor microenvironment is difficult to mimic in vitro, particularly regarding tumor-host interactions. To enable better assessment of cancer immunotherapy agents in vitro, we developed a three-dimensional (3D) heterotypic spheroid model composed of tumor cells, fibroblasts, and immune cells. Drug targeting, efficient stimulation of immune cell infiltration, and specific elimination of tumor or fibroblast spheroid areas were demonstrated following treatment with a novel immunocytokine (interleukin-2 variant; IgG-IL2v) and tumor- or fibroblast-targeted T cell bispecific antibody (TCB). Following treatment with IgG-IL2v, activation of T cells, NK cells, and NKT cells was demonstrated by increased expression of the activation marker CD69 and enhanced cytokine secretion. The combination of TCBs with IgG-IL2v molecules was more effective than monotherapy, as shown by enhanced effects on immune cell infiltration; activation; increased cytokine secretion; and faster, more efficient elimination of targeted cells. This study demonstrates that the 3D heterotypic spheroid model provides a novel and versatile tool for in vitro evaluation of cancer immunotherapy agents and allows for assessment of additional aspects of the activity of cancer immunotherapy agents, including analysis of immune cell infiltration and drug targeting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dannemann, B.R.; Morris, V.A.; Araujo, F.G.
1989-10-15
Because previous work has suggested that NK cells may be important in host resistance against the intracellular parasite Toxoplasma gondii we examined whether human NK cells and lymphokine-activated killer (LAK) cells have activity against trophozoites and cysts of this organism in vitro. A method to radiolabel Toxoplasma trophozoites with 51Cr was developed and direct cytotoxic activity was determined by using modifications of the standard 51Cr release assay. Viability of 51Cr-labeled trophozoites assessed by both methylene blue staining and trypan blue exclusion was greater than 90%. Significantly more 51Cr was released by anti-Toxoplasma antibody and C than by antibody in themore » absence of C. Incubation of trophozoites with freshly isolated human NK cells or NK cells activated with either rIL-2 or rIFN-alpha did not result in significant release of 51Cr (specific lysis was 0 to 2.3%). In contrast, the average specific lysis of radiolabeled trophozoites by LAK cells was significant. In a series of separate experiments, preincubation of radiolabeled trophozoites with heat-inactivated normal or Toxoplasma antibody-positive human serum increased the cytotoxicity of LAK cells from a mean specific lysis of 15% +/- 4.5 to 39% +/- 8.5, respectively, as assessed by 51Cr release. Because previous work has shown that radioisotope release from parasites may be nonspecific, separate experiments were performed to determine the cytotoxicity of LAK cells against antibody-coated trophozoites by using ethidium bromide-acridine orange staining to assess effector cell damage. LAK cells had a mean specific lysis of 51% against antibody-coated trophozoites by ethidium bromide-acridine orange staining. Preincubation with heat-inactivated Toxoplasma-antibody positive human serum did not increase activity of rIL-2-activated NK cells against 51CR-labeled trophozoites.« less
Augmenting Trastuzumab Therapy Against Breast Cancer Through Selective Activation of NK Cells
2013-10-01
selection and assessed for purity (>90% purity as defined by CD3-CD56+ flow cytometry ) and activation (>50% expression of CD137). Breast cancer cell lines...at a ratio of 1:1. After 24 hours, NK cells were isolated by negative selection and assessed for purity (>90% purity as defined by CD3-CD56+ flow ... cytometry ) and activation (>50% expression of CD137). Chromium-labeled breast cancer cell lines including MCF7 (A), BT474M1 (B), HER18 (C), and SKBR3
Chu, Wan-Loy; Lim, Yen-Wei; Radhakrishnan, Ammu Kutty; Lim, Phaik-Eem
2010-09-21
Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals. The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls). Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E. The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring.
Jung, Yoon Suk; Park, Jung Ho; Park, Dong Il; Sohn, Chong Il; Lee, Jae Myun; Kim, Tae Il
2018-06-01
Several studies have reported relationships among physical activity, healthy metabolic status, and increased natural killer (NK) cell activity. However, large-scale data thereon are lacking. Thus, the present study aimed to assess NK cell activity according to physical activity and metabolic status. A cross-sectional study was performed on 12014 asymptomatic examinees. Using a patented stimulatory cytokine, NK cell activity was quantitated by the amount of interferon-γ secreted into the plasma by NK cells. Physical activity levels were assessed using the validated Korean version of the International Physical Activity Questionnaire Short Form. The physically inactive group showed lower NK cell activity than the minimally active group (median, 1461 vs. 1592 pg/mL, p<0.001) and health-enhancing physically active group (median, 1461 vs. 1712 pg/mL, p=0.001). Compared to women with a body mass index (BMI) of 18.5-27.5 kg/m², those with a BMI <18.5 kg/m² had significantly lower NK cell activity (1356 vs. 1024 g/mL, p<0.001), and those with a BMI ≥27.5 kg/m² tended to have lower NK cell activity (1356 vs. 1119 g/mL, p=0.070). Subjects with high hemoglobin A1c levels and low high-density lipoprotein cholesterol levels, as well as men with high blood pressure and women with high triglyceride levels, exhibited lower NK cell activity. Moreover, physical inactivity and metabolic abnormalities were independently associated with low NK cell activity, even after adjusting for confounders. Physical inactivity and metabolic abnormalities are associated with reduced NK cell activity. Immune systems may become altered depending on physical activity and metabolic status. © Copyright: Yonsei University College of Medicine 2018.
Dimri, Goberdhan P.; Campisi, Judith; Peacocke, Monica
1998-01-01
The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo.
Dirmi, Goberdhan P.; Campisi, Judith; Peacocke, Monica
1996-01-01
The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.
NASA Astrophysics Data System (ADS)
Vladimirov, A. P.; Malygin, A. S.; Mikhailova, J. A.; Borodin, E. M.; Bakharev, A. A.; Poryvayeva, A. P.
2014-09-01
Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.
Miura, Takashi; Moriya, Hisao; Iwai, Sosuke
2017-07-03
We used cells of the yeast Saccharomyces cerevisiae expressing green fluorescent protein (GFP) as fluorescently labelled prey to assess the phagocytic activities of the mixotrophic ciliate Paramecium bursaria, which harbours symbiotic Chlorella-like algae. Because of different fluorescence spectra of GFP and algal chlorophyll, ingested GFP-expressing yeast cells can be distinguished from endosymbiotic algal cells and directly counted in individual P. bursaria cells using fluorescence microscopy. By using GFP-expressing yeast cells, we found that P. bursaria altered ingestion activities under different physiological conditions, such as different growth phases or the presence/absence of endosymbionts. Use of GFP-expressing yeast cells allowed us to estimate the digestion rates of live prey of the ciliate. In contrast to the ingestion activities, the digestion rate within food vacuoles was not affected by the presence of endosymbionts, consistent with previous findings that food and perialgal vacuoles are spatially and functionally separated in P. bursaria. Thus, GFP-expressing yeast may provide a valuable tool to assess both ingestion and digestion activities of ciliates that feed on eukaryotic organisms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Dimri, G.P.; Campisi, J.; Peacocke, M.
1998-08-18
The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in vitro cell cultures or in vivo. 1 fig.
Dirmi, G.P.; Campisi, J.; Peacocke, M.
1996-02-13
The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, {beta}-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo. 1 fig.
Sickle Cell Disease Pain: 2. Predicting Health Care Use and Activity Level at 9-Month Follow-Up.
ERIC Educational Resources Information Center
Gil, Karen M.; And Others
1992-01-01
Studied adults with sickle cell disease (SCD) participating in longitudinal study of pain-coping strategies. Eighty-nine subjects completed baseline assessment of pain-coping strategies and structured pain interviews assessing health care use and activity reduction during painful episodes. Baseline Negative Thinking and Passive Adherence were…
NASA Astrophysics Data System (ADS)
Kulkarni, P. V.; Bennett, M.; Constantinescu, A.; Arora, V.; Viguet, M.; Antich, P.; Parkey, R. W.; Mathews, D.; Mason, R. P.; Oz, O. K.
2003-08-01
Lung clearance of 51CR and 125I iododeoxyuridine (IUDR) labeled cancer cells assess NK cell activity. It is desirable to develop noninvasive imaging technique to assess NK activity in mice. We labeled target YAC-1 tumor cells with 125I, 111In, 99mTc, or 67Ga and injected I.V. into three groups of BALB/c mice. Animals were treated with medium (group I), 300mg/kg cyclophosmamide (CY) to kill NK cell (group II), or anti-LY49C/1) (ab')2 mAb to augment NK function (group III). Lungs were removed 15 min or 2 h later for tissue counting. Control and treated mice were imaged every 5 min with a scintillating camera for 1 h after 15 min of infusion of the 111In labeled cells. Lung clearance increased after 15 min (lodging: 60-80%) and (2 h retention: 3-7%). Similar results were obtained with all the isotopes studied. Images distinguished the control and treated mice for lung activity. Cells labeled with 111In, 99mTc or 67Ga are cleared similar to those labeled with 51Cr or 125I. NK cell destruction of tumor cells may be assessed by noninvasive imaging method either by SPECT (99mTc, 111In, 67Ga) or by PET (68Ga).
Rincón-Cortés, Clara Andrea; Reyes-Montaño, Edgar Antonio; Vega-Castro, Nohora Angélica
2017-06-01
Scorpion venom contains peptides with neurotoxic action primarily active on ion channels in the nervous system of insects and mammals. They are also characterized as cytolytic and anticancer, biological characteristics that have not yet been reported for the Tityus macrochirus venom. To assess if the total T. macrochirus venom and the fraction of partially purified peptides decrease the viability of various tumor-derived cell lines. The scorpion venom was collected by electrical stimulation and, subsequently, subjected to chromatography, electrophoresis, and ultrafiltration with Amicon Ultra 0.5® membranes for the partial identification and purification of its peptides. The cytotoxic activity of the venom and the peptides fraction trials on tumor-derived cell lines were carried out by the MTT method. The T. macrochirus scorpion venom has peptides with molecular weights ranging between 3 and 10 kDa. They were partially purified using the ultrafiltration technique, and assessed by the RP-HPLC method. Cytotoxicity trials with the whole T. macrochirus venom showed a higher viability decrease on the PC3 cell line compared to the other cell lines assessed, while the partially purified peptides decreased the HeLa cell line viability. Peptides in the T. macrochirus scorpion venom showed cytotoxic activity on some tumorderived cell lines. We observed some degree of selectivity against other cell lines assessed.
Meng, Huicui; Lee, Yujin; Ba, Zhaoyong; Fleming, Jennifer A.; Furumoto, Emily J.; Roberts, Robert F.; Kris-Etherton, Penny M.; Rogers, Connie J.
2015-01-01
Assessment of immune responses in healthy adults following dietary or lifestyle interventions is challenging due to significant inter-individual variability. Thus, gaining a better understanding of host factors that contribute to the heterogeneity in immunity is necessary. To address this question, healthy adults [n = 36, 18–40 years old, body mass index (BMI) 20–35 kg/m2] were recruited. Dietary intake was obtained via 3-day dietary recall records, physical activity level was evaluated using the International Physical Activity Questionnaire, and peripheral blood mononuclear cells were isolated from peripheral blood. Expression of activation markers on unstimulated immune subsets was assessed by flow cytometry. T-cell proliferation and cytokine secretion was assessed following in vitro stimulation with anti-CD3 or lipopolysaccharide. Furthermore, the incidence and severity of cold or flu symptoms were obtained from self-reported upper respiratory tract infection (URTI) questionnaires. The relationship between activation marker expression on T cells and T-cell effector functions; and in vitro cytokine secretion and URTI was determined by linear or logistic regression. CD69 and CD25 expression on unstimulated T cells was significantly associated with T-cell proliferation and interleukin-2 secretion. Incidence and severity of cold or flu symptoms was significantly associated with in vitro interleukin-6 and interferon-gamma secretion, respectively. Furthermore, host factors (e.g., age, BMI, physical activity, and diet) contributed significantly to the relationship between activation marker expression and T-cell effector function, and cytokine secretion and cold and flu status. In conclusion, these results suggest that lifestyle and dietary factors are important variables that contribute to immune responses and should be included in human clinical trials that assess immune endpoints. PMID:25788896
2010-01-01
Background Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals. Methods The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls). Results Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E. Conclusions The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring. PMID:20858231
Integrin activation by a cold atmospheric plasma jet
NASA Astrophysics Data System (ADS)
Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael
2012-05-01
Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ˜30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly.
Impact of diamond nanoparticles on neural cells.
Vaitkuviene, Aida; Ratautaite, Vilma; Ramanaviciene, Almira; Sanen, Kathleen; Paesen, Rik; Ameloot, Marcel; Petrakova, Vladimira; McDonald, Matthew; Vahidpour, Farnoosh; Kaseta, Vytautas; Ramanauskaite, Giedre; Biziuleviciene, Gene; Nesladek, Milos; Ramanavicius, Arunas
2015-02-01
Diamond nanoparticles (DNPs) are very attractive for biomedical applications, particularly for bioimaging. The aim of this study was to evaluate the impact of DNPs on neural cancer cells and thus to assess the possible application of DNPs for these cells imaging. For this purpose, the neuroblastoma SH-SY5Y cell line was chosen. Cells were cultured in medium with different concentrations (15, 50, 100 and 150 μg/ml) of DNPs. After 48 h of incubation, cell metabolic activity was evaluated by the XTT assay. For assessment of cellular metabolic activity, cells were also cultured on differently terminated nanocrystalline diamond (NCD) coatings in medium with 150 μg/ml of DNPs. Cell adhesion and morphology were evaluated by brightfield microscopy. Diamond nanoparticle internalization was determined by confocal microscopy. The obtained results showed that low concentrations (15, 50 and 100 μg/ml) of nanoparticles did not significantly affect the SH-SY5Y cell metabolic activity. However, a higher concentration (150 μg/ml) of DNPs statistically significantly reduced SH-SY5Y cell metabolic activity. After 48 h incubation with 150 μg/ml DNPs, cell metabolic activity was 23% lower than in medium without DNPs on standard tissue culture polystyrene. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cooley-Andrade, Osvaldo; Cheung, Kelvin; Chew, An-Ning; Connor, David Ewan; Parsi, Kurosh
2016-07-01
To investigate the apoptotic effects of detergent sclerosants sodium tetradecylsulphate (STS) and polidocanol (POL) on endothelial cells at sub-lytic concentrations. Human umbilical vein endothelial cells (HUVECs) were isolated and labelled with antibodies to assess for apoptosis and examined with confocal microscopy and flow cytometry. Isolated HUVECs viability was assessed using propidium iodide staining. Early apoptosis was determined by increased phosphatidylserine exposure by lactadherin binding. Caspase 3, 8, 9 and Bax activation as well as inhibitory assays with Pan Caspase (Z-VAD-FMK) and Bax (BI-6C9) were assessed to identify apoptotic pathways. Porimin activation was used to assess cell membrane permeability. Cell lysis reached almost 100 % with STS at 0.3 % and with POL at 0.6 %. Apoptosis was seen with both STS and POL at concentrations ranging from 0.075 to 0.15 %. PS exposure increased with both STS and POL and exhibited a dose-dependent trend. Active Caspase 3, 8 and 9 but not Bax were increased in HUVECs stimulated with low concentrations of both STS and POL. Inhibitory assays demonstrated Caspase 3, 8, 9 inhibition at low concentrations (0.075 to 0.6 %) with both STS and POL. Both agents increased the activation of porimin at all concentrations. Both sclerosants induced endothelial cell (EC) apoptosis at sub-lytic concentrations through a caspase-dependant pathway. Both agents induced EC oncosis.
Gao, Xia-Qing; Li, Yan-Fang; Jiang, Zhi-Li
2017-01-01
The aim of this study was to explore the effects of β 3 -adrenoceptor (β 3 -AR) activation on HepG2 cells and its influence on cholesterol efflux from macrophage foam cells. HepG2 cells were cultured and treated with the β 3 -AR agonist, BRL37344, and antagonist, SR52390A, and the expression of apolipoprotein (Apo) A-I, ApoA-II, ApoB, and β 3 -AR in the supernatants and cells was determined. The expression of peroxisome proliferator-activated receptor (PPAR) γ and PPARα in the HepG2 cells was also assessed. Next, using the RAW264.7 macrophage foam cell model, we also assessed the influence of the HepG2 cell supernatants on lipid efflux. The cholesterol content of the foam cells was also measured, and the cholesterol efflux from the macrophages was examined by determining 3 H-labeled cholesterol levels. Expression of ATP-binding cassette transporter (ABC) A1 and ABCG1 of the macrophage foam cells was also assessed. β 3 -AR activation increased ApoA-I expression in both the HepG2 cells and the supernatants; PPARγ expression was upregulated, but PPARα expression was not. Treatment with GW9662 abolished the increased expression of ApoA-I induced by the β 3 -AR agonist. The HepG2 cell supernatants decreased the lipid accumulation and increased the cholesterol efflux from the macrophage foam cells. ABCA1 expression, but not ABCG1 expression, increased in the macrophage foam cells treated with BRL37344-treated HepG2 cell supernatants. Activation of β 3 -AR in HepG2 cells upregulates ApoA-I expression, which might further promote cholesterol efflux from macrophage foam cells. PPARγ might be required for the induction of ApoA-I expression.
Wannez, Adeline; Bailly, Nicolas; Alpan, Lutfiye; Gheldof, Damien; Douxfils, Jonathan; Deneys, Véronique; Bihin, Benoît; Chatelain, Bernard; Dogné, Jean-Michel; Chatelain, Christian; Mullier, François
2018-01-01
Background Thrombotic effects are possible complications of red blood cell transfusion. The generation and accumulation of procoagulant red blood cell extracellular vesicles during storage may play an important role in these thrombotic effects. The objective of this study was to assess the value of a simple phospholipid-dependent clot-based assay (STA®-Procoag-PPL) to estimate the procoagulant activity of stored red blood cells and changes in this activity during storage of the blood component. Materials and methods Extracellular vesicles from 12 red blood cell concentrates were isolated at 13 storage time-points and characterised by quantitative and functional methods: the degree of haemolysis (direct spectrophotometry), the quantification and determination of cellular origin (flow cytometry) and the procoagulant activity (thrombin generation and STA®-Procoag-PPL assays) were assessed. Results The mean clotting time of extracellular vesicles isolated from red blood cell concentrates decreased from 117.2±3.6 sec on the day of collection to 33.8±1.3 sec at the end of the storage period. This illustrates the phospholipid-dependent procoagulant activity of these extracellular vesicles, as confirmed by thrombin generation. Results of the peak of thrombin and the STA®-Procoag-PPL were well correlated (partial r=−0.41. p<0.001). In parallel, an exponential increase of the number of red blood cell-derived extracellular vesicles from 1,779/μL to 218,451/μL was observed. Discussion The STA®-Procoag-PPL is a potentially useful technique for assessing the procoagulant activity of a red blood cell concentrate. PMID:28287378
Morotomi, Takahiko; Hirata-Tsuchiya, Shizu; Washio, Ayako; Kitamura, Chiaki
2016-01-01
To assess the effects of different curing stages of 4-META/MMA-TBB resin on osteoblasts and gingival keratinocytes. The MC3T3-E1 murine pre-osteoblastic cell line and GE-1 murine gingival epithelial cell line were cultured with mixtures of Super-Bond C&B at different curing stages, and the cell viability was assessed. The alkaline phosphatase (ALP) activity of the MC3T3-E1 cells was also assessed. The majority of the MC3T3-E1 cells died and showed no ALP activity when cultured with 4-META/MMA-TBB resin during the initial curing phase (1 min of curing). A later curing phase of the 4-META/MMA-TBB resin (7 min of curing) showed cytotoxicity at day 1, but the toxic effect was temporary and the proliferative capacity and ALP activity in the cells were similar to control cells at day 7. Completely cured 4-META/MMA-TBB resin (after 1 or 12 h of curing) did not affect the cell viability or ALP activity of the MC3T3-E1 cells. In contrast, 4-META/MMA-TBB resin showed no effect on the GE-1 cells at any stage of curing. Although 4-META/MMA-TBB resin during the initial curing phase shows toxic effects on MC3T3-E1 cells, that cytotoxicity is minimal at later curing phases. In contrast, neither the uncured nor cured resins affected the GE-1 cells.
Santos, P A S R; Avanço, G B; Nerilo, S B; Marcelino, R I A; Janeiro, V; Valadares, M C; Machinski, Miguel
2016-01-01
The objective of this study was to evaluate the cytotoxic activity of rosemary (REO, Rosmarinus officinalis L.), turmeric (CEO, Curcuma longa L.), and ginger (GEO, Zingiber officinale R.) essential oils in HeLa cells. Cytotoxicity tests were performed in vitro , using tetrazolium (MTT) and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC 50 obtained was 36.6 μ g/mL for CEO and 129.9 μ g/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs), and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81 μ g/mL of CEO and 32.12 μ g/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activity in vitro for CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells.
Santos, P. A. S. R.; Avanço, G. B.; Nerilo, S. B.; Marcelino, R. I. A.; Janeiro, V.; Valadares, M. C.
2016-01-01
The objective of this study was to evaluate the cytotoxic activity of rosemary (REO, Rosmarinus officinalis L.), turmeric (CEO, Curcuma longa L.), and ginger (GEO, Zingiber officinale R.) essential oils in HeLa cells. Cytotoxicity tests were performed in vitro, using tetrazolium (MTT) and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC50 obtained was 36.6 μg/mL for CEO and 129.9 μg/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs), and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81 μg/mL of CEO and 32.12 μg/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activity in vitro for CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells. PMID:28042599
Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity.
Maatouk, Mouna; Elgueder, Dorra; Mustapha, Nadia; Chaaban, Hind; Bzéouich, Imen Mokdad; Loannou, Irina; Kilani, Soumaya; Ghoul, Mohamed; Ghedira, Kamel; Chekir-Ghedira, Leila
2016-11-01
Naringenin is one of the most popular flavonoids derived from citrus. It has been reported to be an effective anti-inflammatory compound. Citrus fruit may be used raw, cooked, stewed, or boiled. The present study was conducted to investigate the effect of thermal processes on naringenin in its immunomodulatory and cellular antioxidant activities. The effects of flavonoids on B and T cell proliferation were assessed on splenocytes stimulated or not with mitogens. However, their effects on cytotoxic T lymphocyte (CTL) and natural killer (NK) activities were assessed in splenocytes co-incubated with target cells. The amount of nitric oxide production and the lysosomal enzyme activity were evaluated in vitro on mouse peritoneal macrophages. Cellular antioxidant activity in splenocytes and macrophages was determined by measuring the fluorescence of the dichlorofluorescin (DCF). Our findings revealed that naringenin induces B cell proliferation and enhances NK activity. The highest concentration of native naringenin exhibits a significant proliferation of T cells, induces CTL activity, and inhibits cellular oxidation in macrophages. Conversely, it was observed that when heat-processed, naringenin improves the cellular antioxidant activity in splenocytes, increases the cytotoxic activity of NK cells, and suppresses the cytotoxicity of T cells. However, heat treatment maintains the anti-inflammatory potency of naringenin.
Simultaneous Fluorescent Gram Staining and Activity Assessment of Activated Sludge Bacteria
Forster, Scott; Snape, Jason R.; Lappin-Scott, Hilary M.; Porter, Jonathan
2002-01-01
Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems. PMID:12324319
Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.
Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan
2002-10-01
Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised <5% of the total bacterial numbers but accounted for 19 and 55% of the highly active organisms within flocs at the two plants. Assessment of Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.
T cell activation is determined by the number of presented antigens.
Deeg, Janosch; Axmann, Markus; Matic, Jovana; Liapis, Anastasia; Depoil, David; Afrose, Jehan; Curado, Silvia; Dustin, Michael L; Spatz, Joachim P
2013-01-01
Antigen recognition is a key event during T cell activation. Here, we introduce nanopatterned antigen arrays that mimic the antigen presenting cell surface during T cell activation. The assessment of activation related events revealed the requirement of a minimal density of 90-140 stimulating major histocompatibility complex class II proteins (pMHC) molecules per μm(2). We demonstrate that these substrates induce T cell responses in a pMHC dose-dependent manner and that the number of presented pMHCs dominates over local pMHC density.
T Cell Activation is Determined by the Number of Presented Antigens
2013-01-01
Antigen recognition is a key event during T cell activation. Here, we introduce nanopatterned antigen arrays that mimic the antigen presenting cell surface during T cell activation. The assessment of activation related events revealed the requirement of a minimal density of 90–140 stimulating major histocompatibility complex class II proteins (pMHC) molecules per μm2. We demonstrate that these substrates induce T cell responses in a pMHC dose-dependent manner and that the number of presented pMHCs dominates over local pMHC density. PMID:24117051
Bexelius, Christin; Sandin, Sven; Trolle Lagerros, Ylva; Litton, Jan-Eric; Löf, Marie
2011-09-25
Physical activity promotes health and longevity. Further elaboration of the role of physical activity for human health in epidemiological studies on large samples requires accurate methods that are easy to use, cheap, and possible to repeat. The use of telecommunication technologies such as cell phones is highly interesting in this respect. In an earlier report, we showed that physical activity level (PAL) assessed using a cell phone procedure agreed well with corresponding estimates obtained using the doubly labeled water method. However, our earlier study indicated high within-subject variation in relation to between-subject variations in PAL using cell phones, but we could not assess if this was a true variation of PAL or an artifact of the cell phone technique. Our objective was to compare within- and between-subject variations in PAL by means of cell phones with corresponding estimates using an accelerometer. In addition, we compared the agreement of daily PAL values obtained using the cell phone questionnaire with corresponding data obtained using an accelerometer. PAL was measured both with the cell phone questionnaire and with a triaxial accelerometer daily during a 2-week study period in 21 healthy Swedish women (20 to 45 years of age and BMI from 17.7 kg/m² to 33.6 kg/m²). The results were evaluated by fitting linear mixed effect models and descriptive statistics and graphs. With the accelerometer, 57% (95% confidence interval [CI] 40%-66%) of the variation was within subjects, while with the cell phone, within-subject variation was 76% (95% CI 59%-83%). The day-to-day variations in PAL observed using the cell phone questions agreed well with the corresponding accelerometer results. Both the cell phone questionnaire and the accelerometer showed high within-subject variations. Furthermore, day-to-day variations in PAL within subjects assessed using the cell phone agreed well with corresponding accelerometer values. Consequently, our cell phone questionnaire is a promising tool for assessing levels of physical activity. The tool may be useful for large-scale prospective studies.
Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya
2013-01-01
Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112
T cell activity in successful treatment of chronic urticaria with omalizumab
2011-01-01
Omalizumab, a humanized monoclonal anti-IgE antibody has the potential to alter allergen processing. Recently, it has been postulated the assessment of PHA-stimulated adenosine triphosphate (ATP) activity as maker of CD4+ T cells activity in peripheral blood cells. We present the case report of a 35-year-old woman with a history of chronic idiopathic urticaria and angioedema of 8 years of development with poor response to treatment. The patient was partially controlled with cyclosporine at doses of 100 mg/12 h. However, she was still developing hives daily. Finally treatment with omalizumab was started at dose of 300 mg every 2 weeks. The patient experienced a decrease in urticarial lesions 2 days after starting therapy. We also evaluated the effects of omalizumab therapy on the activity of peripheral blood CD4+ T cells from the patient, in order to determine the potential modification of anti-IgE therapy on the process of antigen presentation-recognition. Activity of CD4+ cells by ATP release was clearly increased demonstrating an enlarged CD4 activity. Omalizumab may be useful in the treatment of severe chronic urticaria. ATP activity of peripheral blood CD4+ T cells might be a non-subjective method to assess Omalizumab activity. PMID:21791043
Nyland, Jennifer F.; Bai, Jennifer J. K.; Katz, Howard E.; Silbergeld, Ellen K.
2009-01-01
Engineered nanoparticles (NPs) possess a range of biological activity. In vitro methods for assessing toxicity and efficacy would be enhanced by simultaneous quantitative information on the behavior of NPs in culture systems and signals of cell response. We have developed a method for visualizing NPs within cells using standard flow cytometric techniques and uniquely designed spherical siloxane NPs with an embedded (covalently bound) dansylamide dye. This method allowed NP visualization without obscuring detection of relevant biomarkers of cell subtype, activation state, and other events relevant to assessing bioactivity. We determined that NPs penetrated cells and induced a range of biological signals consistent with activation and costimulation. These results indicate that NPs may affect cell function at concentrations below those inducing cytotoxicity or apoptosis and demonstrate a novel method to image both localization of NPs and cell-level effects. PMID:19523425
Qu, Wei; Li, Dichen; Wang, Yufei; Wu, Qining; Hao, Dingjun
2018-06-04
BACKGROUND Radioresistance restricts the application of radiotherapy in human osteosarcoma (OS). This study investigated the molecular mechanism of radioresistance in OS, which may provide clues to finding ideal targets for genetic therapy. MATERIAL AND METHODS The human OS cell line MG63 was employed as parent cells. After repeat low-dose X-ray irradiation of MG63, the radioresistant OS cell line MG63R was produced. Colony formation assay was used to assess the radioresistance. Cell viability was evaluated by CCK-8 assay. Flow cytometry was used to detect cell apoptosis, and wound healing assay was used to evaluate invasive capacity. The nuclear translocation was evaluated by fluorescent immunohistochemistry. Protein expression levels were assessed by Western blotting. Specific siRNA against Shh was used to silence Shh. RESULTS More survival colony formation, elevated cell viability, less cell apoptosis, and increased wound closure were found in MG63R than in MG63 cells exposed to irradiation. The nuclear translocation of Gli, expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9 were increased in MG63R cells compared with MG63 cells. Transfection of Shh-siRNA suppressed expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9, as well as the nuclear translocation of Gli in MG63R cells. The cell viability, survival colony formation, and wound closure were impaired, whereas cell apoptosis was increased, in siRNA-transfected MG63R cells than in control MG63R cells exposed to irradiation. CONCLUSIONS Activation of Shh signaling was involved in radioresistance of OS cells. Blocking this signaling can impair the radioresistance capacity of OS cells.
T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray.
Sarkar, Saheli; Motwani, Vinny; Sabhachandani, Pooja; Cohen, Noa; Konry, Tania
2015-06-01
Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells.
Leptin deficiency in vivo enhances the ability of splenic dendritic cells to activate T cells
Ramirez, Oscar
2014-01-01
Leptin is a pleiotropic adipokine that is critical for regulating food intake and energy expenditure and also participates in functions of the immune system, including those of antigen-presenting cells. Here, we assess the effect of leptin deficiency on the function splenic dendritic cells (sDC). sDC from leptin-deficient mice (Lepob) were evaluated ex vivo for phenotype, ability to respond to inflammatory stimuli, to acquire and process antigens and to activate T cells. The data show that Lepob sDC express activation markers similar to controls and respond similarly to LPS activation or anti-CD40 cross-linking. In addition, antigen acquisition and processing by Lepob sDC was similar to controls. However, Lepob sDC elicited higher production of IFN-γ in mixed lymphocyte reactions and increased production of IL-2 by antigen-specific T-cell hybridoma relative to controls. To assess Lepob sDC activation of T cells in vivo, Lepob and control mice were infected systemically with Mycobacterium avium. Lepob mice were significantly better at neutralizing the infection as measured by splenic bacterial load over time. This was mirrored with an increased percentage of activated T cells in M. avium-infected Lepob mice. Thus, although no changes were detected in sDC phenotype, activation, antigen processing or presentation, these DC surprisingly presented an enhanced ability to activate T cells ex vivo and in vivo. These data demonstrate that leptin can modulate DC function and suggest that leptin may dampen T-cell responsiveness in the physiological setting. PMID:24966213
The role of HSP27 in RACK1-mediated PKC activation in THP-1 cells.
Corsini, Emanuela; Galbiati, Valentina; Papale, Angela; Kummer, Elena; Pinto, Antonella; Guaita, Antonio; Racchi, Marco
2016-08-01
Receptor for Activated C Kinase 1 (RACK1) pseudosubstrate is a commercially available peptide that directly activates protein kinase C-β (PKCβ). We have recently shown that RACK1 pseudosubstrate, alone or in combination with classical immune activators, results in increased cytokine production and CD86 upregulation in primary leukocytes. Furthermore, we demonstrated a role of PKCβ and RACK1 in chemical allergen-induced CD86 expression and IL-8 production in both THP-1 cells and primary human dendritic cells. Aim of this study was to shed light on the mechanisms underlying RACK1 pseudosubstrate-induced immune activation and to compare it to lipopolysaccharide (LPS). The human promyelocytic cell line THP-1 was used throughout the study. RACK1 pseudosubstrate induced rapid (5 min) and dose-related PKCβ activation as assessed by its membrane translocation. Among the proteins phosphorylated, we identified Hsp27. Both RACK1 pseudosubstrate and LPS induce its phosphorylation and release in culture medium. The release of Hsp27 induced by RACK1 pseudosubstrate was also confirmed in peripheral blood mononuclear cells. To evaluate the role of Hsp27 in RACK1 pseudosubstrate or LPS-induced cell activation, we conducted Hsp27 silencing and neutralization experiments. Both strategies confirmed the central role of Hsp27 in RACK1 pseudosubstrate or LPS-induced cell activation, as assessed by IL-8 production and upregulation of CD86.
Yu, Kyung O.; Fisher, Jeff W.; Burton, G. Allen; Tillitt, Donald E.
1997-01-01
A rat hepatoma cell line, H4IIE serves as a bioassay tool to assess the potential toxicity of dioxin-like chemicals, including polychlorinated biphenyls (PCB) in environmental samples. PCB exposure to these cells induces cytochrome (CYP) P4501A1 activity in a dose-dependent fashion, thus allowing assessment of mixtures. The objective of this study was to determine the effect of different carriers, dimethyl sulfoxide (DMSO) and isooctane on the concentrations of PCBs in the H411E cells and induction of CYPIA1 activity as measured by ethoxyresorufm O-deethylase (EROD) activity. H4IIE cells were dosed with three micrograms of UL-14C-PCB77/ plate dissolved in DMSO or isooctane, and were harvested at sequential time periods for 4 days. PCB77 concentration and EROD activity were measured in the cells. EROD activity was greater when using DMSO as compared to isooctane, while there was no difference in the distribution of PCB77-derived radioactivities within the cell culture system based upon the carrier solvent used to deliver PCB77.
The inflammatory microenvironment in colorectal neoplasia.
McLean, Mairi H; Murray, Graeme I; Stewart, Keith N; Norrie, Gillian; Mayer, Claus; Hold, Georgina L; Thomson, John; Fyfe, Nicky; Hope, Mairi; Mowat, N Ashley G; Drew, Janice E; El-Omar, Emad M
2011-01-07
Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified.
Lucchi, Naomi W.; Sarr, Demba; Owino, Simon O.; Mwalimu, Stephen M.; Peterson, David S.; Moore, Julie M.
2011-01-01
Background Placental malaria is associated with local accumulation of parasitized erythrocytes, deposition of the parasite hemoglobin metabolite, hemozoin, and accumulation of mononuclear cells in the intervillous space. Fetal syncytiotrophoblast cells in contact with maternal blood are known to respond immunologically to cytoadherent Plasmodium falciparum-infected erythrocytes, but their responsiveness to hemozoin, a potent pro-inflammatory stimulator of monocytes, macrophages and dendritic cells, is not known. Methods The biochemical and immunological changes induced in primary syncytiotrophoblast by natural hemozoin was assessed. Changes in syncytiotrophoblast mitogen-activated protein kinase activation was assessed by immunoblotting and secreted cytokine and chemokine proteins were assayed by ELISA. Chemotaxis of peripheral blood mononuclear cells was assessed using a two-chamber assay system and flow cytometry was used to assess the activation of primary monocytes by hemozoin-stimulated syncytiotrophoblast conditioned medium. Results Hemozoin stimulation induced ERK1/2 phosphorylation. Treated cells secreted CXCL8, CCL3, CCL4, and tumor necrosis factor and released soluble intercellular adhesion molecule-1. Furthermore, the dependence of the hemozoin responses on ERK1/2 stimulation was confirmed by inhibition of chemokine release in syncytiotrophoblast treated with an ERK pathway inhibitor. Hemozoin-stimulated cells elicited the specific migration of PBMCs, and conditioned medium from the cells induced the upregulation of intercellular adhesion molecule-1 on primary monocytes. Conclusions These findings confirm an immunostimulatory role for hemozoin and expand the cell types known to be responsive to hemozoin to include fetal syncytiotrophoblast. The results provide further evidence that syncytiotrophoblast cells can influence the local maternal immune response to placental malaria. PMID:21632106
Comparison of Liver Cell Models Using the Basel Phenotyping Cocktail.
Berger, Benjamin; Donzelli, Massimiliano; Maseneni, Swarna; Boess, Franziska; Roth, Adrian; Krähenbühl, Stephan; Haschke, Manuel
2016-01-01
Currently used hepatocyte cell systems for in vitro assessment of drug metabolism include hepatoma cell lines and primary human hepatocyte (PHH) cultures. We investigated the suitability of the validated in vivo Basel phenotyping cocktail (caffeine [CYP1A2], efavirenz [CYP2B6], losartan [CYP2C9], omeprazole [CYP2C19], metoprolol [CYP2D6], midazolam [CYP3A4]) in vitro and characterized four hepatocyte cell systems (HepG2 cells, HepaRG cells, and primary cryopreserved human hepatocytes in 2-dimensional [2D] culture or in 3D-spheroid co-culture) regarding basal metabolism and CYP inducibility. Under non-induced conditions, all CYP activities could be determined in 3D-PHH, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 in 2D-PHH and HepaRG, and CYP2C19 and CYP3A4 in HepG2 cells. The highest non-induced CYP activities were observed in 3D-PHH and HepaRG cells. mRNA expression was at least four-fold higher for all CYPs in 3D-PHH compared to the other cell systems. After treatment with 20 μM rifampicin, mRNA increased 3- to 50-fold for all CYPs except CYP1A2 and 2D6 for HepaRG and 3D-PHH, 4-fold (CYP2B6) and 17-fold (CYP3A4) for 2D-PHH and four-fold (CYP3A4) for HepG2. In 3D-PHH at least a two-fold increase in CYP activity was observed for all inducible CYP isoforms while CYP1A2 and CYP2C9 activity did not increase in 2D-PHH and HepaRG. CYP inducibility assessed in vivo using the same phenotyping probes was also best reflected by the 3D-PHH model. Our studies show that 3D-PHH and (with some limitations) HepaRG are suitable cell systems for assessing drug metabolism and CYP induction in vitro . HepG2 cells are less suited to assess CYP induction of the 2C and 3A family. The Basel phenotyping cocktail is suitable for the assessment of CYP activity and induction also in vitro .
Comparison of Liver Cell Models Using the Basel Phenotyping Cocktail
Berger, Benjamin; Donzelli, Massimiliano; Maseneni, Swarna; Boess, Franziska; Roth, Adrian; Krähenbühl, Stephan; Haschke, Manuel
2016-01-01
Currently used hepatocyte cell systems for in vitro assessment of drug metabolism include hepatoma cell lines and primary human hepatocyte (PHH) cultures. We investigated the suitability of the validated in vivo Basel phenotyping cocktail (caffeine [CYP1A2], efavirenz [CYP2B6], losartan [CYP2C9], omeprazole [CYP2C19], metoprolol [CYP2D6], midazolam [CYP3A4]) in vitro and characterized four hepatocyte cell systems (HepG2 cells, HepaRG cells, and primary cryopreserved human hepatocytes in 2-dimensional [2D] culture or in 3D-spheroid co-culture) regarding basal metabolism and CYP inducibility. Under non-induced conditions, all CYP activities could be determined in 3D-PHH, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 in 2D-PHH and HepaRG, and CYP2C19 and CYP3A4 in HepG2 cells. The highest non-induced CYP activities were observed in 3D-PHH and HepaRG cells. mRNA expression was at least four-fold higher for all CYPs in 3D-PHH compared to the other cell systems. After treatment with 20 μM rifampicin, mRNA increased 3- to 50-fold for all CYPs except CYP1A2 and 2D6 for HepaRG and 3D-PHH, 4-fold (CYP2B6) and 17-fold (CYP3A4) for 2D-PHH and four-fold (CYP3A4) for HepG2. In 3D-PHH at least a two-fold increase in CYP activity was observed for all inducible CYP isoforms while CYP1A2 and CYP2C9 activity did not increase in 2D-PHH and HepaRG. CYP inducibility assessed in vivo using the same phenotyping probes was also best reflected by the 3D-PHH model. Our studies show that 3D-PHH and (with some limitations) HepaRG are suitable cell systems for assessing drug metabolism and CYP induction in vitro. HepG2 cells are less suited to assess CYP induction of the 2C and 3A family. The Basel phenotyping cocktail is suitable for the assessment of CYP activity and induction also in vitro. PMID:27917125
NASA Technical Reports Server (NTRS)
Sams, Clarence F.; Crucian, Brian E.
2001-01-01
An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing monocytes may represent functionally different monocyte subsets with distinct functions. Whole blood culture eliminates the need to purify cell populations prior to culture and may have significant utility for the routine monitoring of the cytokine balances of the peripheral blood T cell and monocyte populations. In addition, there are distinct advantages to performing whole-blood (WB) activation as compared to PBMC activation. These advantages would include retaining all various cell-cell interactions as well as any soluble factors present in serum that influence cell activation. It is likely that the altered cytokine production observed following whole blood culture more accurately represents the in-vivo immune balance.
Antioxidant and cytotoxic activities of three species of tropical seaweeds.
Chia, Yin Yin; Kanthimathi, M S; Khoo, Kong Soo; Rajarajeswaran, Jayakumar; Cheng, Hwee Ming; Yap, Wai Sum
2015-09-29
Three species of seaweeds (Padina tetrastromatica, Caulerpa racemosa and Turbinaria ornata) are widely consumed by Asians as nutraceutical food due to their antioxidant properties. Studies have shown that these seaweeds exhibit bioactivities which include antimicrobial, antiviral, anti-hypertensive and anticoagulant activities. However, investigations into the mechanisms of action pertaining to the cytotoxic activity of the seaweeds are limited. The aim of this study was to determine the antioxidant and cytotoxic activities of whole extracts of P. tetrastromatica, C. racemosa and T. ornata, including the cellular events leading to the apoptotic cell death of the extract treated-MCF-7 cells. Bioassay guided fractionation was carried out and the compounds identified. Powdered samples were sequentially extracted for 24 h. Their antioxidant activities were assessed by the DPPH radical, superoxide, nitric oxide and hydroxyl radical scavenging assays. The cytotoxic activity of the extract-treated MCF-7cells was assessed using the MTT assay. The most potent fraction was subjected to bioassay guided fractionation with column chromatography. All the fractions were tested for cytotoxic activity, caspase activity and effect on DNA fragmentation. All three seaweeds showed potent radical scavenging activities in the various assays. The activity of the cellular antioxidant enzymes, superoxide dismutase, catalase and glutathione reductase, in MCF-7 cells, decreased in a time-dependent manner. The partially purified fractions exhibited higher cytotoxic activity, as assessed by the MTT assay, than the whole extracts in the breast adenocarcinoma cell line, MCF-7. LC-MS analysis revealed the presence of bioactive alkaloids such as camptothecin, lycodine and pesudopelletierine. Based on the results obtained, all three seaweeds are rich sources of enzymatic and non-enzymatic antioxidants which could contribute to their reported medicinal benefits.
Brown, Audrey E; Dibnah, Beth; Fisher, Emily; Newton, Julia L; Walker, Mark
2018-06-29
Skeletal muscle fatigue and post-exertional malaise are key symptoms of myalgic encephalomyelitis (ME)/chronic fatigue syndrome (ME/CFS). We have previously shown that AMP-activated protein kinase (AMPK) activation and glucose uptake are impaired in primary human skeletal muscle cell cultures derived from patients with ME/CFS in response to electrical pulse stimulation (EPS), a method which induces contraction of muscle cells in vitro The aim of the present study was to assess if AMPK could be activated pharmacologically in ME/CFS. Primary skeletal muscle cell cultures from patients with ME/CFS and healthy controls were treated with either metformin or compound 991. AMPK activation was assessed by Western blot and glucose uptake measured. Both metformin and 991 treatment significantly increased AMPK activation and glucose uptake in muscle cell cultures from both controls and ME/CFS. Cellular ATP content was unaffected by treatment although ATP content was significantly decreased in ME/CFS compared with controls. Pharmacological activation of AMPK can improve glucose uptake in muscle cell cultures from patients with ME/CFS. This suggests that the failure of EPS to activate AMPK in these muscle cultures is due to a defect proximal to AMPK. Further work is required to delineate the defect and determine whether pharmacological activation of AMPK improves muscle function in patients with ME/CFS. © 2018 The Author(s).
Recino, Asha; Barkan, Kerry; Wong, F Susan; Ladds, Graham; Cooke, Anne; Wallberg, Maja
2017-08-31
Metabolism is of central importance for T cell survival and differentiation. It is well known that T cells cannot function in the absence of glucose, but it is less clear how they respond to excessive levels of glucose. In the present study, we investigated how increasing levels of glucose affect T-cell-mediated immune responses. We examined the effects of increased levels of glucose on CD8 + T-cell behaviour in vitro by assessing activation and cytokine production, as well as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and intracellular signalling. In addition, we assessed in vivo proliferation, cytokine production and cytolytic activity of cells in chemically induced diabetic C57BL/6 mice. Elevated levels of glucose in in vitro cultures had modest effects on proliferation and cytokine production, while in vivo hyperglycaemia had no effect on CD8 + T-cell proliferation, interferon γ (IFNγ) production or cytolytic killing. © 2017 The Author(s).
Fraile, Benito; Alcover, Javier; Royuela, Mar; Rodríguez, David; Chaves, Concepción; Palacios, Ricardo; Piqué, Núria
2017-06-01
To assess the properties of a medical device containing xyloglucan, propolis and hibiscus to create a bioprotective barrier to avoid the contact of uropathogenic Escherichia coli strains on cell walls in models of intestinal (CacoGoblet) and uroepithelial (RWPE-1) cells (derived from normal human prostate epithelium). Two uropathogenic E. coli strains (expressing type 1 fimbriae and P fimbriae) were used to assess, by electronic microscopy and ELISA, the barrier properties of the medical device. The antimicrobial activity was assessed in broth dilution assays. The three components (xyloglucan, propolis and hibiscus) did not alter E. coli cell integrity in intestinal and uroepithelial cell models and were devoid of antibacterial activity. The three components avoided bacterial contact in both cell monolayers. The nonpharmacological barrier properties of xyloglucan, propolis and hibiscus confirm the role of the medical device for the management of urinary tract infections.
Pele, Laetitia; Haas, Carolin T; Hewitt, Rachel; Faria, Nuno; Brown, Andy; Powell, Jonathan
2015-01-01
Aim To determine whether in vitro experimental conditions dictate cellular activation of the inflammasome by apatitic calcium phosphate nanoparticles. Material & methods The responses of blood-derived primary human cells to in situ-formed apatite were investigated under different experimental conditions to assess the effect of aseptic culture, cell rest and duration of particle exposure. Cell death and particle uptake were assessed, while IL-1β and caspase 1 responses, with and without lipopolysaccharide prestimulation, were evaluated as markers of inflammasome activation. Results Under carefully addressed experimental conditions, apatitic nanoparticles did not induce cell death or engage the inflammasome platform, although both could be triggered through artefacts of experimentation. Conclusion In vitro studies often predict that engineered nanoparticles, such as synthetic apatite, are candidates for inflammasome activation and, hence, are toxic. However, the experimental setting must be very carefully considered as it may promote false-positive outcomes. PMID:24991724
Arosarena, Oneida A; Barr, Eric W; Thorpe, Ryan; Yankey, Hilary; Tarr, Joseph T; Safadi, Fayez F
2018-01-01
Nearly 60% of patients with head and neck squamous cell carcinoma (HNSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell migration and invasion, which are in part dependent on extracellular matrix degradation by matrix metalloproteinases. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies, and has been shown to upregulate matrix metalloproteinase (MMP) expression and activity. To determine how OA modulates MMP expression and activity in HNSCC, and to investigate OA effects on cell invasion, we assessed effects of OA treatment on MMP mRNA and protein expression, as well as gelatinase and caseinolytic activity in HNSCC cell lines. We assessed the effects of OA gene silencing on MMP expression, gelatinase and caseinolytic activity, and cell invasion. OA treatment had differential effects on MMP mRNA expression. OA treatment upregulated MMP-10 expression in UMSCC14a (p = 0.0431) and SCC15 (p < 0.0001) cells, but decreased MMP-9 expression in UMSCC14a cells (p = 0.0002). OA gene silencing decreased MMP-10 expression in UMSCC12 cells (p = 0.0001), and MMP-3 (p = 0.0005) and -9 (p = 0.0036) expression in SCC25 cells. In SCC15 and SCC25 cells, OA treatment increased MMP-2 (p = 0.0408) and MMP-9 gelatinase activity (p < 0.0001), respectively. OA depletion decreased MMP-2 (p = 0.0023) and -9 (p < 0.0001) activity in SCC25 cells. OA treatment increased 70 kDa caseinolytic activity in UMSCC12 cells consistent with tissue type plasminogen activator (p = 0.0078). OA depletion decreased invasive capacity of UMSCC12 cells (p < 0.0001). OA's effects on MMP expression in HNSCC are variable, and may promote cancer cell invasion. © 2017 Wiley Periodicals, Inc.
Activation of the NLRP3 inflammasome by proteins that signal for necroptosis.
Kang, Tae-Bong; Yang, Seung-Hoon; Toth, Beata; Kovalenko, Andrew; Wallach, David
2014-01-01
Necroptosis-a form of programmed necrotic cell death-and its resulting release of damage-associated molecular patterns (DAMPs) are believed to participate in the triggering of inflammatory processes. To assess the relative contribution of this cell death mode to inflammation, we need to know what other cellular effects can be exerted by molecules shown to trigger necrotic death, and the extent to which those effects might themselves contribute to inflammation. Here, we describe the technical approaches that have been applied to assess the impact of the main signaling molecules known to mediate activation of necroptosis upon generation of inflammatory cytokines in LPS-treated mouse bone marrow-derived dendritic cells. The findings obtained by this assessment indicated that signaling molecules known to initiate necroptosis can also initiate activation of the NLRP3 inflammasome, thereby inducing inflammation independently of cell death by triggering the generation of proinflammatory cytokines such as IL-1β. © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Lili, E-mail: llxin@suda.edu.cn
The exponential increase in the total number of engineered nanoparticles in consumer products requires novel tools for rapid and cost-effective toxicology screening. In order to assess the oxidative damage induced by nanoparticles, toxicity test systems based on a human HSPA1A promoter-driven luciferase reporter in HepG2, LO2, A549, and HBE cells were established. After treated with heat shock and a group of silver nanoparticles (AgNPs) with different primary particle sizes, the cell viability, oxidative damage, and luciferase activity were determined. The time-dependent Ag{sup +} ions release from AgNPs in cell medium was also evaluated. Our results showed that heat shock producedmore » a strong time-dependent induction of relative luciferase activity in the four luciferase reporter cells. Surprisingly, at 4 h of recovery, the relative luciferase activity was > 98 × the control level in HepG2-luciferase cells. Exposure to different sizes of AgNPs resulted in activation of the HSPA1A promoter in a dose-dependent manner, even at low cytotoxic or non-cytotoxic doses. The smaller (5 nm) AgNPs were more potent in luciferase induction than the larger (50 and 75 nm) AgNPs. These results were generally in accordance with the oxidative damage indicated by malondialdehyde concentration, reactive oxygen species induction and glutathione depletion, and Ag{sup +} ions release in cell medium. Compared with the other three luciferase reporter cells, the luciferase signal in HepG2-luciferase cells is obviously more sensitive and stable. We conclude that the luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the oxidative damage induced by AgNPs. - Highlights: • We established the stable HSPA1A promoter-driven luciferase reporter cells. • Silver nanoparticles induced dose-dependent increases in luciferase activity. • HSPA1A promoter activity is a sensitive and responsive indicator of oxidative stress. • HepG2-luciferase cells can be used to assess the toxicity of silver nanoparticles.« less
Wang, Guangwu; Izadpanah, Nazanin; Kitchen, Christina M.R.
2008-01-01
Abstract Our aim was to elucidate the mechanism by which HIV transmission is increased following obstetrical hemorrhage. We investigated whether fetal allostimulation of maternal cells, which could occur following fetal-to-maternal hemorrhage, increases proliferation, HIV replication, and cellular activation. Peripheral blood mononuclear cells (PBMCs) were collected from HIV-infected mothers and their infants to assess maternal-fetal allostimulation. Responses were compared to allostimulation with unrelated donors. Maternal and fetal cells were cocultured to assess allogeneic stimulation. Cell proliferation was measured by [3H]thymidine incorporation and cell activation was assessed via fluorochrome-labeled antibody staining and flow cytometric analysis. Virus production from HIV-infected maternal cells was quantitated by p24 enzyme-linked immunosorbent assay or by branched chain DNA assay. Allostimulation with fetal cells led to maternal cell proliferation. In women with unsuppressed viral loads, virus release was also enhanced following allostimulation of maternal cells with fetal cells. Fetal cells are capable of allogeneically stimulating maternal cells, with responses comparable to those seen following allostimulation with unrelated donors. Allostimulation of maternal cells by fetal cells results in statistically significant increases in proliferation and enhanced HIV replication, suggesting a possible physiological mechanism for mother-to-child transmission of HIV in women with obstetrical hemorrhage. PMID:19102686
Prasanphanich, Adam F.; White, Douglas E.; Gran, Margaret A.
2016-01-01
The side population (SP) assay, a technique used in cancer and stem cell research, assesses the activity of ABC transporters on Hoechst staining in the presence and absence of transporter inhibition, identifying SP and non-SP cell (NSP) subpopulations by differential staining intensity. The interpretation of the assay is complicated because the transporter-mediated mechanisms fail to account for cell-to-cell variability within a population or adequately control the direct role of transporter activity on staining intensity. We hypothesized that differences in dye kinetics at the single-cell level, such as ABCG2 transporter-mediated efflux and DNA binding, are responsible for the differential cell staining that demarcates SP/NSP identity. We report changes in A549 phenotype during time in culture and with TGFβ treatment that correlate with SP size. Clonal expansion of individually sorted cells re-established both SP and NSPs, indicating that SP membership is dynamic. To assess the validity of a purely kinetics-based interpretation of SP/NSP identity, we developed a computational approach that simulated cell staining within a heterogeneous cell population; this exercise allowed for the direct inference of the role of transporter activity and inhibition on cell staining. Our simulated SP assay yielded appropriate SP responses for kinetic scenarios in which high transporter activity existed in a portion of the cells and little differential staining occurred in the majority of the population. With our approach for single-cell analysis, we observed SP and NSP cells at both ends of a transporter activity continuum, demonstrating that features of transporter activity as well as DNA content are determinants of SP/NSP identity. PMID:27851764
Targeting the RhoA-ROCK Pathway to Reverse T Cell Dysfunction in SLE
Rozo, Cristina; Chinenov, Yurii; Maharaj, Reena Khianey; Gupta, Sanjay; Leuenberger, Laura; Kirou, Kyriakos A.; Bykerk, Vivian P.; Goodman, Susan M.; Salmon, Jane E.; Pernis, Alessandra B.
2018-01-01
Objectives Deregulated production of IL-17 and IL-21 contributes to the pathogenesis of autoimmune disorders like SLE and RA. Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells. Methods ROCK activity in PBMCs from 29 SLE patients, 31 RA patients, and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor), or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity, IL-17, and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology. Results ROCK activity levels were significantly higher in SLE and RA patients than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y276327, KD025, or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors. Conclusions ROCK activity is elevated in PBMCs from SLE and RA patients. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches. PMID:28283529
Cho, Sun-Mi; Lee, Eun-Ok; Kim, Sung-Hoon; Lee, Hyo-Jeong
2014-07-30
The essential oil of Pinus koraiensis (EOPK) is biologically active compound obtained from the leaves of P. koraiensis. The goal of this study was to investigate the anti-cancer mechanism of EOPK in HCT116 colorectal cancer cells. HCT116 cell proliferation was assessed by conducting crystal violet and BrdU assays. To assess the effects of EOPK on cell migration, we performed a wound-healing assay. Further, the contribution of PAK1 to EOPK-induced AKT and extracellular signal-regulated kinase (ERK) suppression was assessed by siRNA-mediated PAK1 knockdown. Changes to the expression and phosphorylation of PAK1 and its effectors were determined by western blotting, and changes to the actin cytoskeleton were determined by performing an immunofluorescence assay. EOPK significantly decreased HCT116 cell proliferation and migration, and induced G1 arrest without affecting normal cells. Additionally, EOPK suppressed the expression of PAK1, and decreased ERK and AKT phosphorylation in HCT116 cells. Finally, EOPK suppressed β-catenin, cyclin D1, and CDK4/6 expression. Our studies indicate that EOPK significantly reduced proliferation and migration of colorectal cancer cells. Furthermore, EOPK suppressed PAK1 expression in a dose-dependent manner, and this suppression of PAK1 led to inhibition of ERK, AKT, and β-catenin activities. Our findings suggest that EOPK exerts its anticancer activity via the inhibition of PAK1 expression, suggesting it may be a potent chemotherapeutic agent for colorectal cancer.
Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages.
Ouedraogo, Richard; Daumas, Aurélie; Ghigo, Eric; Capo, Christian; Mege, Jean-Louis; Textoris, Julien
2012-10-22
Whole-cell MALDI-TOF MS is routinely used to identify bacterial species in clinical samples. This technique has also proven to allow identification of intact mammalian cells, including macrophages. Here, we wondered whether this approach enabled the assessment human macrophages plasticity. The whole-cell MALDI-TOF spectra of macrophages stimulated with IFN-γ and IL-4, two inducers of M1 and M2 macrophage polarisation, consisted of peaks ranging from 2 to 12 kDa. The spectra of unstimulated and stimulated macrophages were clearly different. The fingerprints induced by the M1 agonists, IFN-γ, TNF, LPS and LPS+IFN-γ, and the M2 agonists, IL-4, TGF-β1 and IL-10, were specific and readily identifiable. Thus, whole-cell MALDI-TOF MS was able to characterise M1 and M2 macrophage subtypes. In addition, the fingerprints induced by extracellular (group B Streptococcus, Staphylococcus aureus) or intracellular (BCG, Orientia tsutsugamushi, Coxiella burnetii) bacteria were bacterium-specific. The whole-cell MALDI-TOF MS fingerprints therefore revealed the multifaceted activation of human macrophages. This approach opened a new avenue of studies to assess the immune response in the clinical setting, by monitoring the various activation patterns of immune cells in pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Fuel cells for automotive powertrains-A techno-economic assessment
NASA Astrophysics Data System (ADS)
Mock, Peter; Schmid, Stephan A.
With the objective of identifying the hurdles currently preventing a widespread application of fuel cell technology in passenger cars an assessment of technical and economic parameters is carried out. Patent and publication analysis is used to assess current status of fuel cell technology regarding its position on technology life cycle. S-curve methodology leads to the conclusion that further scientific activity is to be expected but for today's low-temperature PEM fuel cell technology might level by 2015. Technical analysis identifies power density and platinum loading as parameters for which further improvements are necessary in order to satisfy future customer needs. A detailed cost evaluation suggests that in future for high production volumes (approx. 1 million vehicles cumulative) significantly lower costs for fuel cell stacks (12-40 kW -1) and systems (35-83 kW -1) will be viable. Reducing costs to such a level will have to be the main focus for upcoming research activities in order to make fuel cell driven road vehicles a competitive alternative.
Majid, Amin Malik Shah Abdul; Kit-Lam, Chan; Abdullah, Wan Zaidah; Zaki, Abdelhamid; Jamal Din, Shah Kamal Khan; Yusoff, Narazah Mohd
2014-01-01
Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 107 K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management. PMID:24409284
Catherino, William H.; Malik, Minnie; Driggers, Paul; Chappel, Scott; Segars, James; Davis, Joseph
2012-01-01
Context Uterine leiomyomas are highly prevalent and often symptomatic. Current medical therapies are limited. A novel, potent, selective, orally active therapy is needed. Objective and Methods To determine the progesterone receptor (PR) specificity and activation, endometrial response, and impact on proliferation and extracellular matrix (ECM) production of the novel non-steroidal selective progesterone receptor modulators (SPRMs) CP8863 and CP8947 in human immortalized leiomyoma and patient-matched myometrial cells. Receptor binding in vitro was assessed using LNCaP, Ishikawa, T-47D, and HeLa cell extracts for AR, ER-α, PR, and GR, respectively. Progestational activity assessed by alkaline phosphatase assay in T47D cells and ER-α expression in human leiomyoma and myometrial cells. In vivo progestational activity assayed by the McPhail assay. Proliferation and gene expression studies (q RT-PCR and western blot) were performed in immortalized leiomyoma and myometrial cells. Results Both CP8863 and CP8947 is highly selective for PR but not for ER-α, AR, and GR. Both induced alkaline phosphatase comparably to progesterone, while CP8947 induced ER-α in leiomyoma cells but not myometrial cells. CP8947 was progestational in rabbit endometrium. Nanomolar CP8947 treatment inhibited human leiomyoma but not myometrial cell proliferation. The decreased proliferation correlated with increased TRAIL and caspase -7, suggesting induction of apoptosis in leiomyoma cells. ECM components were decreased in leiomyoma cells, including COL1A1 and COL7A1 at nanomolar concentrations. Conclusions CP8947 was a potent novel non-steroidal SPRM that was selective for PR, showed progestational activity in endometrium, inhibited leiomyoma cell proliferation (potentially via induction of apoptosis), and decreased ECM component production, without disrupting myometrial cell proliferation. PMID:20493256
The Inflammatory Microenvironment in Colorectal Neoplasia
McLean, Mairi H.; Murray, Graeme I.; Stewart, Keith N.; Norrie, Gillian; Mayer, Claus; Hold, Georgina L.; Thomson, John; Fyfe, Nicky; Hope, Mairi; Mowat, N. Ashley G.; Drew, Janice E.; El-Omar, Emad M.
2011-01-01
Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified. PMID:21249124
Villanueva-Cabello, Tania M; Mollicone, Rosella; Cruz-Muñoz, Mario E; López-Guerrero, Delia V; Martínez-Duncker, Iván
2015-12-01
CD4+ T helper lymphocytes (Th) orchestrate the immune response after their activation by antigen-presenting cells. Activation of naïve Th cells is reported to generate the reduction in surface epitopes of sialic acid (Sia) in α2,3 and α2,6 linkages. In this work, we report that in spite of this glycophenotype, anti-CD3/anti-CD28-activated purified human naïve Th cells show a significant increase in surface Sia, as assessed by metabolic labeling, compared with resting naïve Th cells, suggesting an increased flux of Sia toward Siaα2,8 glycoconjugates. To understand this increase as a result of ganglioside up-regulation, we observed that very early after activation, human naïve Th cells show an increased expression in surface GD3 and neoexpression of surface GD2 gangliosides, the latter clustering with the T cell receptor (TCR). Also, we report that in contrast to GM2/GD2 synthase null mice, lentiviral vector-mediated silencing of the GM2/GD2 synthase in activated human naïve Th cells reduced efficient TCR clustering and downstream signaling, as assessed by proliferation assays and IL-2 and IL-2R expression, pointing to an important role of this enzyme in activation of human naive Th cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno
2012-06-01
To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.
The biocompatibility of modified experimental Portland cements with potential for use in dentistry.
Camilleri, J
2008-12-01
To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass-ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBluetrade mark dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass-ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely.
CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation.
Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey; Sukumaran, Sujita; Watanabe, Norihiro; Hoyos, Valentina; Lulla, Premal; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F
2018-05-10
The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. Our findings demonstrate the feasibility of targeting breast cancer using transgenic T cells equipped to thrive in the suppressive tumor milieu and highlight the importance of providing transgenic T cells with signals that recapitulate physiologic TCR signaling - [activation (signal 1), co-stimulation (signal 2) and cytokine support (signal 3)] - to promote in vivo persistence and memory formation.
An Improved Flow Cytometry Method For Precise Quantitation Of Natural-Killer Cell Activity
NASA Technical Reports Server (NTRS)
Crucian, Brian; Nehlsen-Cannarella, Sandra; Sams, Clarence
2006-01-01
The ability to assess NK cell cytotoxicity using flow cytometry has been previously described and can serve as a powerful tool to evaluate effector immune function in the clinical setting. Previous methods used membrane permeable dyes to identify target cells. The use of these dyes requires great care to achieve optimal staining and results in a broad spectral emission that can make multicolor cytometry difficult. Previous methods have also used negative staining (the elimination of target cells) to identify effector cells. This makes a precise quantitation of effector NK cells impossible due to the interfering presence of T and B lymphocytes, and the data highly subjective to the variable levels of NK cells normally found in human peripheral blood. In this study an improved version of the standard flow cytometry assay for NK activity is described that has several advantages of previous methods. Fluorescent antibody staining (CD45FITC) is used to positively identify target cells in place of membranepermeable dyes. Fluorescent antibody staining of target cells is less labor intensive and more easily reproducible than membrane dyes. NK cells (true effector lymphocytes) are also positively identified by fluorescent antibody staining (CD56PE) allowing a simultaneous absolute count assessment of both NK cells and target cells. Dead cells are identified by membrane disruption using the DNA intercalating dye PI. Using this method, an exact NK:target ratio may be determined for each assessment, including quantitation of NK target complexes. Backimmunoscatter gating may be used to track live vs. dead Target cells via scatter properties. If desired, NK activity may then be normalized to standardized ratios for clinical comparisons between patients, making the determination of PBMC counts or NK cell percentages prior to testing unnecessary. This method provides an exact cytometric determination of NK activity that highly reproducible and may be suitable for routine use in the clinical setting.
Selva, Kevin J; Kent, Stephen J; Parsons, Matthew S
2017-01-28
Mucosal exposure to HIV-1 infection generally occurs in the presence of semen. Immunomodulation by seminal plasma is well described in the reproductive biology literature. Little is known, however, about the impact of seminal plasma on innate and adaptive anti-HIV-1 cellular immunity. The study investigated the effects of seminal plasma on immune responses considered important for prophylactic HIV-1 vaccine development, namely innate and adaptive cellular immunity mediated by natural killer (NK) cells and T cells, respectively. The ability of seminal plasma to modulate direct, antibody-dependent and cytokine-stimulated NK cell activation was assessed utilizing intracellular cytokine staining. Direct and antibody-dependent cellular cytotoxicity was assessed using lactate dehydrogenase release assays. The effects of seminal plasma on T-cell activation upon stimulation with staphylococcus enterotoxin B or HIV-1 Gag peptides were assessed by intracellular cytokine staining. The impact of seminal plasma on redirected cytolysis mediated by T cells was measured using lactate dehydrogenase release assays. Both direct and antibody-dependent NK cell activation were dramatically impaired by the presence of either HIV-1-uninfected or HIV-1-infected seminal plasma in a dose-dependent manner. Additionally, seminal plasma suppressed both direct and antibody-dependent NK cell-mediated cytolysis, including anti-HIV-1 antibody-dependent cytolysis of gp120-pulsed CEM.NKr-CCR5 cells. Finally, seminal plasma attenuated both HIV-1 Gag-specific and staphylococcus enterotoxin B-induced CTL activation. Semen contains potent immunosuppressors of both NK cell and CD8 T-cell-mediated anti-HIV-1 immune responses. This could impede attempts to provide vaccine-induced immunity to HIV-1.
Iino, Ryota; Matsumoto, Yoshimi; Nishino, Kunihiko; Yamaguchi, Akihito; Noji, Hiroyuki
2013-01-01
Single-cell analysis is a powerful method to assess the heterogeneity among individual cells, enabling the identification of very rare cells with properties that differ from those of the majority. In this Methods Article, we describe the use of a large-scale femtoliter droplet array to enclose, isolate, and analyze individual bacterial cells. As a first example, we describe the single-cell detection of drug-tolerant persisters of Pseudomonas aeruginosa treated with the antibiotic carbenicillin. As a second example, this method was applied to the single-cell evaluation of drug efflux activity, which causes acquired antibiotic resistance of bacteria. The activity of the MexAB-OprM multidrug efflux pump system from Pseudomonas aeruginosa was expressed in Escherichia coli and the effect of an inhibitor D13-9001 were assessed at the single cell level.
Regulation of Motility, Invasion and Metastatic Potential of Squamous Cell Carcinoma by 1,25D3
Ma, Yingyu; Yu, Wei-Dong; Su, Bing; Seshadri, Mukund; Luo, Wei; Trump, Donald L.; Johnson, Candace S.
2012-01-01
BACKGROUND 1,25D3, the active metabolite of vitamin D, has been shown to exhibit broad spectrum anti-tumor activity in xenograft animal models. However, its activity against metastatic disease has not been extensively investigated. METHODS Squamous cell carcinoma (SCC) or 1,25D3-resistant variant SCC-DR cells were treated with 1,25D3. Actin organization was examined by immunofluorescence assay. Cell migration was assessed by “wound” healing and chemotactic migration assay. Cell invasion was assessed by Matrigel-based invasion assay and in situ zymography. MMP-2 and MMP-9 expression and secretion was examined by immunoblot analysis and ELISA, respectively. E-cadherin expression was assessed by flow cytometry, immunoblot analysis and immunohistochemistry. Knockdown of E-cadherin was achieved by siRNA. Experimental metastasis mouse model was done by intravenous injection of tumor cells. Lung tumor development was assessed by magnetic resonance imaging, gross observation and histology. RESULTS SCC cellular morphology and actin organization were altered by 10 nM of 1,25D3. 1,25D3 inhibited SCC cell motility and invasion, which was associated with reduced expression and secretion of MMP-2 and MMP-9. 1,25D3 promoted the expression of E-cadherin. These findings were not observed in SCC-DR cells. Knock down of E-cadherin rescued 1,25D3-inhibited cell migration. Intravenous injection of SCC or SCC-DR cells resulted in the establishment of extensive pulmonary lesions in saline-treated C3H mice. Treatment with 1,25D3 resulted in a marked reduction in the formation of lung tumor colonies in animals injected with SCC but not SCC-DR cells. CONCLUSIONS 1,25D3 suppresses SCC cell motility, invasion and metastasis, partially through the promotion of E-cadherin-mediated cell-cell adhesion. PMID:22833444
NASA Astrophysics Data System (ADS)
Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha
2016-03-01
The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.
Improvement of polyphenol properties upon glucosylation in a UV-induced skin cell ageing model.
Nadim, M; Auriol, D; Lamerant-FayeL, N; Lefèvre, F; Dubanet, L; Redziniak, G; Kieda, C; Grillon, C
2014-12-01
Polyphenols are strong antioxidant molecules allowing prevention of skin photo-ageing damages, but their use is limited due to low solubility and toxicity towards skin cells. We postulated that enzymatic glucosylation could improve their solubility, stability and, consequently, their efficacy. The aim of this work was to study changes induced by addition of a glucose moiety on two polyphenols displaying very different chemical structures [caffeic acid (CA), epigallocatechin-3-gallate (EGCG) and there glucosylated form, Glc-CA and Glc-EGCG] by assessing their cytotoxic properties and their antioxidant and anti-inflammatory activities. Their antioxidant effect was assessed first by the classical DPPH radical-scavenging method. Then, a panel of human skin cells (keratinocytes, melanocytes, fibroblasts and endothelial cells) was used to evaluate their effect on cell toxicity and their antioxidant activities. With this aim, a photo-ageing model based on UV irradiation of skin cells was established. Molecule activity was assessed on reactive oxygen species (ROS) production, on superoxide dismutase (SOD) and catalase activities and, finally, on inflammatory factor production IL-6, IL-8 and IL-1β. In an acellular model, antioxidant activity assessed by DPPH method was strongly reduced for Glc-CA compared to CA, whereas it remained the same for Glc-EGCG compared to EGCG. Glucosylated derivatives did not display more toxic effect on various skin cells. Moreover, toxicity was even strongly reduced for caffeic acid upon glucosylation. The efficacy of glucosyl-compounds against UV-induced ROS production was preserved, both with pre- and post-UV treatments. Particularly, a better antioxidant efficacy was shown by Glc-EGCG, vs. EGCG, on keratinocytes. In addition, an induction of SOD and catalase activity was clearly observed for Glc-CA. Both glucosyl-polyphenols display the same activity as their parent molecule in decreasing inflammatory factor production. Our results demonstrated that enzymatic glucosylation of CA and EGCG led to an improved or preserved antioxidant activity in a cellular model of UV-induced skin ageing, despite the decrease in instantaneous antioxidant properties observed for Glc-CA. Glc-EGCG is specifically more active on keratinocytes, suggesting a specific targeting. Such glucosylated polyphenols displaying improved physicochemical and biological properties should be better candidates than natural ones for use in food additives and cosmetics. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Abd Aziz, Maheran; Stanslas, Johnson; Abdul Kadir, Mihdzar
2013-01-01
The present paper focused on antioxidant and cytotoxicity assessment of crude and total saponin fraction of Chlorophytum borivilianum as an important medicinal plant. In this study, three different antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferrous ion chelating (FIC), and β-carotene bleaching (BCB) activity) of crude extract and total saponin fraction of C. borivilianum tubers were performed. Crude extract was found to possess higher free radical scavenging activity (ascorbic acid equivalents 2578 ± 111 mg AA/100 g) and bleaching activity (IC50 = 0.7 mg mL−1), while total saponin fraction displayed higher ferrous ion chelating (EC50 = 1 mg mL−1). Cytotoxicity evaluation of crude extract and total saponin fraction against MCF-7, PC3, and HCT-116 cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) cell viability assay indicated a higher cytotoxicity activity of the crude extract than the total saponin fraction on all cell lines, being most effective and selective on MCF-7 human breast cancer cell line. PMID:24223502
Purkinje Cell Activity in the Cerebellar Anterior Lobe after Rabbit Eyeblink Conditioning
ERIC Educational Resources Information Center
Green, John T.; Steinmetz, Joseph E.
2005-01-01
The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus.…
Franco, Marco E; Sutherland, Grace E; Lavado, Ramon
2018-04-01
The use of fish cell cultures has proven to be an effective tool in the study of environmental and aquatic toxicology. Valuable information can be obtained from comparisons between cell lines from different species and organs. In the present study, specific chemicals were used and biomarkers (e.g. 7-Ethoxyresorufin-O-deethylase (EROD) activity and reactive oxygen species (ROS)) were measured to assess the metabolic capabilities and cytotoxicity of the fish hepatic cell lines Hepa-E1 and RTH-149, and the fish gill cell lines RTgill-W1 and G1B. These cell lines were exposed to β-naphthoflavone (BNF) and benzo[a]pyrene (BaP), the pharmaceutical tamoxifen (TMX), and the organic peroxide tert-butylhydroperoxide (tBHP). Cytotoxicity in gill cell lines was significantly higher than in hepatic cells, with BNF and TMX being the most toxic compounds. CYP1-like associated activity, measured through EROD activity, was only detected in hepatic cells; Hepa-E1 cells showed the highest activity after exposure to both BNF and BaP. Significantly higher levels of CYP3A-like activity were also observed in Hepa-E1 cells exposed to TMX, while gill cell lines presented the lowest levels. Measurements of ROS and antioxidant enzymes indicated that peroxide levels were higher in gill cell lines in general. However, levels of superoxide were significantly higher in RTH-149 cells, where no distinctive increase of superoxide-related antioxidants was observed. The present study demonstrates the importance of selecting adequate cell lines in measuring specific metabolic parameters and provides strong evidence for the fish hepatocarcinoma Hepa-E1 cells to be an excellent alternative in assessing metabolism of xenobiotics, and in expanding the applicability of fish cell lines for in vitro studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Fino, Kristin K.; Matters, Gail L.; McGovern, Christopher O.; Gilius, Evan L.
2012-01-01
Gastrin stimulates the growth of pancreatic cancer cells through the activation of the cholecystokinin-B receptor (CCK-BR), which has been found to be overexpressed in pancreatic cancer. In this study, we proposed that the CCK-BR drives growth of pancreatic cancer; hence, interruption of CCK-BR activity could potentially be an ideal target for cancer therapeutics. The effect of CCK-BR downregulation in the human pancreatic adenocarcinoma cells was examined by utilizing specific CCK-BR-targeted RNA interference reagents. The CCK-BR receptor expression was both transiently and stably downregulated by transfection with selective CCK-BR small-interfering RNA or short-hairpin RNA, respectively, and the effects on cell growth and apoptosis were assessed. CCK-BR downregulation resulted in reduced cancer cell proliferation, decreased DNA synthesis, and cell cycle arrest as demonstrated by an inhibition of G1 to S phase progression. Furthermore, CCK-BR downregulation increased caspase-3 activity, TUNEL-positive cells, and decreased X-linked inhibitor of apoptosis protein expression, suggesting apoptotic activity. Pancreatic cancer cell mobility was decreased when the CCK-BR was downregulated, as assessed by a migration assay. These results show the importance of the CCK-BR in regulation of growth and apoptosis in pancreatic cancer. Strategies to decrease the CCK-BR expression and activity may be beneficial for the development of new methods to improve the treatment for patients with pancreatic cancer. PMID:22442157
Kim, Jeong-Mi; Noh, Eun-Mi; Song, Hyun-Kyung; Lee, Minok; Lee, Soo Ho; Park, Sueng Hyuk; Ahn, Chan-Keun; Lee, Guem-San; Byun, Eui-Baek; Jang, Beom-Su; Kwon, Kang-Beom; Lee, Young-Rae
2017-01-01
Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness. PMID:28927117
Kim, Jeong-Mi; Noh, Eun-Mi; Song, Hyun-Kyung; Lee, Minok; Lee, Soo Ho; Park, Sueng Hyuk; Ahn, Chan-Keun; Lee, Guem-San; Byun, Eui-Baek; Jang, Beom-Su; Kwon, Kang-Beom; Lee, Young-Rae
2017-09-01
Cancer cell invasion is crucial for metastasis. A major factor in the capacity of cancer cell invasion is the activation of matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix. Salvia miltiorrhiza has been used as a promotion for blood circulation to remove blood stasis. Numerous previous studies have demonstrated that S. miltiorrhiza extracts (SME) decrease lipid levels and inhibit inflammation. However, the mechanism behind the effect of SME on breast cancer invasion has not been identified. The inhibitory effects of SME on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MMP-9 expression were assessed using western blotting, reverse transcription-quantitative polymerase chain reaction and zymography assays. MMP-9 upstream signal proteins, including mitogen-activated protein kinases and activator protein 1 (AP-1) were also investigated. Cell invasion was assessed using a matrigel invasion assay. The present study demonstrated the inhibitory effects of the SME ethanol solution on MMP-9 expression and cell invasion in TPA-treated MCF-7 breast cancer cells. SME suppressed TPA-induced MMP-9 expression and MCF-7 cell invasion by blocking the transcriptional activation of AP-1. SME may possess therapeutic potential for inhibiting breast cancer cell invasiveness.
Detection of ASC Speck Formation by Flow Cytometry and Chemical Cross-linking.
Hoss, Florian; Rolfes, Verena; Davanso, Mariana R; Braga, Tarcio T; Franklin, Bernardo S
2018-01-01
Assembly of a relatively large protein aggregate or "speck" formed by the adaptor protein ASC is a common downstream step in the activation of most inflammasomes. This unique feature of ASC allows its visualization by several imaging techniques and constitutes a reliable and feasible readout for inflammasome activation in cells and tissues. We have previously described step-by-step protocols to generate immortalized cell lines stably expressing ASC fused to a fluorescent protein for measuring inflammasome activation by confocal microscopy, and immunofluorescence of endogenous ASC in primary cells. Here, we present two more methods to detect ASC speck formation: (1) Assessment of ASC speck formation by flow cytometry; and (2) Chemical cross-linking of ASC followed by immunoblotting. These methods allow for the discrimination of inflammasome-activated versus non-activated cells, the identification of lineage-specific inflammasome activation in complex cell mixtures, and sorting of inflammasome-activated cells for further analysis.
Yoon, Mee Sun; Pham, Chanh Tin; Phan, Minh-Trang Thi; Shin, Dong-Jun; Jang, Youn-Young; Park, Min-Ho; Kim, Sang-Ki; Kim, Seokho; Cho, Duck
2016-12-01
Few studies have examined the migration pattern of natural killer (NK) cells, especially after radiation treatment for cancer. We investigated whether irradiation can modulate the expression of chemokines in cancer cells and the migration of NK cells to irradiated tumor cells. The expression of chemokine receptors (CXCR3, CXCR4 and CXCR6) on interleukin-2 (IL-2)/IL-15-activated NK cells was assessed using flow cytometry. Related chemokine ligands (CXCL11, CXCL12 and CXCL16) in human breast cancer cell lines (MCF7, SKBR3 and MDA-MB231) irradiated at various doses were assessed using reverse transcription-polymerase chain reaction (RT-PCR), fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA). The cell-free culture supernatant was collected 96 h after irradiation of breast cancer cell lines for migration and blocking assays. The activated NK cells expressed CXCR6. Expression of the CXCR6 ligand CXCL16 increased in a time- and dose-dependent manner in all analyzed cancer cell lines. CXCL16 expression was statistically significantly enhanced in all breast cancer cell lines on day 3 after 20 Gy irradiation. Activated NK cells migration correlated with CXCL16 concentration (R 2 = 0.91; P <0.0001). Significantly enhanced migration of NK cells to irradiated cancer cells was observed for a dose of 20 Gy in MCF7 (P = 0.043) and SKBR3 (P = 0.043) cells, but not in MDA-MB231 (P = 0.225) cells. A blocking assay using a CXCR6 antibody showed a significant decrease in the migration of activated NK cells in all cancer cell lines. Our data indicate that irradiation induces CXCL16 chemokine expression in cancer cells and enhances the migration of activated NK cells expressing CXCR6 to irradiated breast cancer cells. These results suggest that radiation would improve the anti-tumor effect of NK cells through enhanced migration of NK cells to tumor site for the treatment of patients with breast cancer. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Relationship between serum response factor and androgen receptor in prostate cancer.
Prencipe, Maria; O'Neill, Amanda; O'Hurley, Gillian; Nguyen, Lan K; Fabre, Aurelie; Bjartell, Anders; Gallagher, William M; Morrissey, Colm; Kay, Elaine W; Watson, R William
2015-11-01
Serum response factor (SRF) is an important transcription factor in castrate-resistant prostate cancer (CRPC). Since CRPC is associated with androgen receptor (AR) hypersensitivity, we investigated the relationship between SRF and AR. Transcriptional activity was assessed by luciferase assay. Cell proliferation was measured by MTT and flow cytometry. Protein expression in patients was assessed by immunohistochemistry. To investigate AR involvement in SRF response to androgen, AR expression was down-regulated using siRNA. This resulted in the abrogation of SRF induction post-DHT. Moreover, DHT stimulation failed to induce SRF transcriptional activity in AR-negative PC346 DCC cells, which was only restored following AR over-expression. Next, SRF expression was down-regulated by siRNA, resulting in AR increased transcriptional activity in castrate-resistant LNCaP Abl cells but not in the parental LNCaP. This negative feedback loop in the resistant cells was confirmed by immunohistochemistry which showed a negative correlation between AR and SRF expression in CRPC bone metastases and a positive correlation in androgen-naïve prostatectomies. Cell proliferation was next assessed following SRF inhibition, demonstrating that SRF inhibition is more effective than AR inhibition in castrate-resistant cells. Our data support SRF as a promising therapeutic target in combination with current treatments. © 2015 Wiley Periodicals, Inc.
GOUTZOURELAS, NIKOLAOS; STAGOS, DIMITRIOS; HOUSMEKERIDOU, ANASTASIA; KARAPOULIOU, CHRISTINA; KERASIOTI, EFTHALIA; ALIGIANNIS, NEKTARIOS; SKALTSOUNIS, ALEXIOS L; SPANDIDOS, DEMETRIOS A; TSATSAKIS, ARISTIDIS M; KOURETAS, DEMETRIOS
2015-01-01
In a previous study, we demonstrated that a grape pomace extract (GPE) exerted antioxidant activity in endothelial (EA.hy926) and muscle (C2C12) cells through an increase in glutathione (GSH) levels. In the present study, in order to elucidate the mechanisms responsible for the antioxidant activity of GPE, its effects on the expression of critical antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD)1, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase (GCS) were assessed in EA.hy926 and C2C12 cells. Moreover, the effects of GPE on CAT, SOD and glutathione S-transferase (GST) enzymatic activity were evaluated. For this purpose, the C2C12 and EA.hy926 cells were treated with GPE at low and non-cytotoxic concentrations (2.5 and 10 µg/ml for the C2C12 cells; 0.068 and 0.250 µg/ml for the EA.hy926 cells) for 3, 6, 12, 18 and 24 h. Following incubation, enzymatic expression and activity were assessed. The results revealed that treatment with GPE significantly increased GCS levels and GST activity in both the C2C12 and EA.hy926 cells. However, GPE significantly decreased CAT levels and activity, but only in the muscle cells, while it had no effect on CAT levels and activity in the endothelial cells. Moreover, treatment with GPE had no effect on HO-1 and SOD expression and activity in both cell lines. Therefore, the present results provide further evidence of the crucial role of GSH systems in the antioxidant effects exerted by GPE. Thus, GPE may prove to be effective for use as a food supplement for the treatment of oxidative stress-induced pathological conditions of the cardiovascular and skeletal muscle systems, particularly those associated with low GSH levels. PMID:26082074
Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE.
Rozo, Cristina; Chinenov, Yurii; Maharaj, Reena Khianey; Gupta, Sanjay; Leuenberger, Laura; Kirou, Kyriakos A; Bykerk, Vivian P; Goodman, Susan M; Salmon, Jane E; Pernis, Alessandra B
2017-04-01
Deregulated production of interleukin (IL)-17 and IL-21 contributes to the pathogenesis of autoimmune disorders such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, and an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells. ROCK activity in peripheral blood mononuclear cells (PBMCs) from 29 patients with SLE, 31 patients with RA and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor) or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity and IL-17 and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology. ROCK activity levels were significantly higher in patients with SLE and RA than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y27632, KD025 or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors. ROCK activity is elevated in PBMCs from patients with SLE and RA. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
The human adrenocortical carcinoma cell line H295R is being used as an in vitro steroidogenesis screening assay to assess the impact of endocrine active chemicals (EACs) capable of altering steroid biosynthesis. To enhance the interpretation and quantitative application of measur...
Bukhari, Maurish; Burm, Hayley; Samways, Damien S K
2016-10-01
Ionic "vital dyes" are commonly used to assess cell viability based on the idea that their permeation is contingent on a loss of membrane integrity. However, the possibility that dye entry is conducted into live cells by endogenous membrane transporters must be recognized and controlled for. Several cation-selective plasma membrane-localized ion channels, including the adenosine 5'-triphosphate (ATP)-gated P2X receptors, have been reported to conduct entry of the DNA-binding fluorescence dye, YO-PRO-1, into live cells. Extracellular ATP often becomes elevated as a result of release from dying cells, and so it is possible that activation of P2X channels on neighboring live cells could lead to exaggerated estimation of cytotoxicity. Here, we screened a number of fluorescent vital dyes for ion channel-mediated uptake in HEK293 cells expressing recombinant P2X2, P2X7, or TRPV1 channels. Our data shows that activation of all three channels caused substantial uptake and nuclear accumulation of YO-PRO-1, 4',6-diamidino-2-phenylindole (DAPI), and Hoechst 33258 into transfected cells and did so well within the time period usually used for incubation of cells with vital dyes. In contrast, channel activation in the presence of propidium iodide and SYTOX Green caused no measurable uptake and accumulation during a 20-min exposure, suggesting that these dyes are not likely to exhibit measurable uptake through these particular ion channels during a conventional cell viability assay. Caution is encouraged when choosing and employing cationic dyes for the purpose of cell viability assessment, particularly when there is a likelihood of cells expressing ion channels permeable to large ions.
Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng
2013-01-01
The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581
Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer; Grøndahl, Carsten; Bertelsen, Mads F; Guise, Sylvain De; Sonne, Christian; Dietz, Rune; Levin, Milton
2018-01-01
Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus maritimus), muskox (Ovibos moschatus) and reindeer (Rangifer tarandus). NK cell-like activity for all three species was most effective against the mouse lymphoma cell line YAC-1, compared to the human leukemia cell line K562; NK cell response displayed the characteristic increase in cytotoxic activity when the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.
Oliveira, Lucas Pires Garcia; Conte, Fernanda Lopes; Cardoso, Eliza de Oliveira; Conti, Bruno José; Santiago, Karina Basso; Golim, Marjorie de Assis; Cruz, Maria Teresa; Sforcin, José Maurício
2016-12-01
Geopropolis (GEO) in combination with doxorubicin (DOX) reduced HEp-2 cells viability compared to GEO and DOX alone. A possible effect of this combination on the innate immunity could take place, and its effects were analysed on THP-1 cell - a human leukaemia monocytic cell line used as a model to study monocyte activity and macrophage activity, assessing cell viability, expression of cell markers and cytokine production. THP-1 cells were incubated with GEO, DOX and their combination. Cell viability was assessed by MTT assay, cell markers expression by flow cytometry and cytokine production by ELISA. GEO + DOX did not affect cell viability. GEO alone or in combination increased TLR-4 and CD80 but not HLA-DR and TLR-2 expression. GEO stimulated TNF-α production while DOX alone or in combination did not affect it. GEO alone or in combination inhibited IL-6 production. GEO exerted a pro-inflammatory profile by increasing TLR-4 and CD80 expression and TNF-α production, favouring the activation of the immune/inflammatory response. GEO + DOX did not affect cell viability and presented an immunomodulatory action. Lower concentrations of DOX combined to GEO could be used in cancer patients, avoiding side effects and benefiting from the biological properties of GEO. © 2016 Royal Pharmaceutical Society.
Jenabian, M-A; Patel, M; Kema, I; Vyboh, K; Kanagaratham, C; Radzioch, D; Thébault, P; Lapointe, R; Gilmore, N; Ancuta, P; Tremblay, C; Routy, J-P
2014-01-01
CD40/CD40-ligand (CD40L) signalling is a key stimulatory pathway which triggers the tryptophan (Trp) catabolizing enzyme IDO in dendritic cells and is immunosuppressive in cancer. We reported IDO-induced Trp catabolism results in a T helper type 17 (Th17)/regulatory T cell (Treg) imbalance, and favours microbial translocation in HIV chronic infection. Here we assessed the link between sCD40L, Tregs and IDO activity in HIV-infected patients with different clinical outcomes. Plasmatic sCD40L and inflammatory cytokines were assessed in anti-retroviral therapy (ART)-naive, ART-successfully treated (ST), elite controllers (EC) and healthy subjects (HS). Plasma levels of Trp and its metabolite Kynurenine (Kyn) were measured by isotope dilution tandem mass spectrometry and sCD14 was assessed by enzyme-linked immunosorbent assay (ELISA). IDO-mRNA expression was quantified by reverse transcription–polymerase chain reaction (RT–PCR). The in-vitro functional assay of sCD40L on Treg induction and T cell activation were assessed on peripheral blood mononuclear cells (PBMCs) from HS. sCD40L levels in ART-naive subjects were significantly higher compared to ST and HS, whereas EC showed only a minor increase. In ART-naive alone, sCD40L was correlated with T cell activation, IDO-mRNA expression and CD4 T cell depletion but not with viral load. sCD40L was correlated positively with IDO enzymatic activity (Kyn/Trp ratio), Treg frequency, plasma sCD14 and inflammatory soluble factors in all HIV-infected patients. In-vitro functional sCD40L stimulation induced Treg expansion and favoured Treg differentiation by reducing central memory and increasing terminal effector Treg proportion. sCD40L also increased T cell activation measured by co-expression of CD38/human leucocyte antigen D-related (HLA-DR). These results indicate that elevated sCD40L induces immunosuppression in HIV infection by mediating IDO-induced Trp catabolism and Treg expansion. PMID:24924152
Jenabian, M-A; Patel, M; Kema, I; Vyboh, K; Kanagaratham, C; Radzioch, D; Thébault, P; Lapointe, R; Gilmore, N; Ancuta, P; Tremblay, C; Routy, J-P
2014-10-01
CD40/CD40-ligand (CD40L) signalling is a key stimulatory pathway which triggers the tryptophan (Trp) catabolizing enzyme IDO in dendritic cells and is immunosuppressive in cancer. We reported IDO-induced Trp catabolism results in a T helper type 17 (Th17)/regulatory T cell (Treg ) imbalance, and favours microbial translocation in HIV chronic infection. Here we assessed the link between sCD40L, Tregs and IDO activity in HIV-infected patients with different clinical outcomes. Plasmatic sCD40L and inflammatory cytokines were assessed in anti-retroviral therapy (ART)-naive, ART-successfully treated (ST), elite controllers (EC) and healthy subjects (HS). Plasma levels of Trp and its metabolite Kynurenine (Kyn) were measured by isotope dilution tandem mass spectrometry and sCD14 was assessed by enzyme-linked immunosorbent assay (ELISA). IDO-mRNA expression was quantified by reverse transcription-polymerase chain reaction (RT-PCR). The in-vitro functional assay of sCD40L on Treg induction and T cell activation were assessed on peripheral blood mononuclear cells (PBMCs) from HS. sCD40L levels in ART-naive subjects were significantly higher compared to ST and HS, whereas EC showed only a minor increase. In ART-naive alone, sCD40L was correlated with T cell activation, IDO-mRNA expression and CD4 T cell depletion but not with viral load. sCD40L was correlated positively with IDO enzymatic activity (Kyn/Trp ratio), Treg frequency, plasma sCD14 and inflammatory soluble factors in all HIV-infected patients. In-vitro functional sCD40L stimulation induced Treg expansion and favoured Treg differentiation by reducing central memory and increasing terminal effector Treg proportion. sCD40L also increased T cell activation measured by co-expression of CD38/human leucocyte antigen D-related (HLA-DR). These results indicate that elevated sCD40L induces immunosuppression in HIV infection by mediating IDO-induced Trp catabolism and Treg expansion. © 2014 British Society for Immunology.
Shibata, Ayano; Tanabe, Eriko; Inoue, Serina; Kitayoshi, Misaho; Okimoto, Souta; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi
2013-04-12
Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1 μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA3 on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA3 may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide. Copyright © 2013 Elsevier Inc. All rights reserved.
Rajan, Bhargavi; Zerrouki, Kamelia; Karnell, Jodi L; Sagar, Divya; Vainshtein, Inna; Farmer, Erika; Rosenthal, Kimberly; Morehouse, Chris; de los Reyes, Melissa; Schifferli, Kevin; Liang, Meina; Sanjuan, Miguel A; Sims, Gary P; Kolbeck, Roland
2018-01-01
Objective We investigated the mechanistic and pharmacological properties of anifrolumab, a fully human, effector-null, anti-type I interferon (IFN) alpha receptor 1 (IFNAR1) monoclonal antibody in development for SLE. Methods IFNAR1 surface expression and internalisation on human monocytes before and after exposure to anifrolumab were assessed using confocal microscopy and flow cytometry. The effects of anifrolumab on type I IFN pathway activation were assessed using signal transducer and activator of transcription 1 (STAT1) phosphorylation, IFN-stimulated response element–luciferase reporter cell assays and type I IFN gene signature induction. The ability of anifrolumab to inhibit plasmacytoid dendritic cell (pDC) function and plasma cell differentiation was assessed by flow cytometry and ELISA. Effector-null properties of anifrolumab were assessed in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays with B cells. Results Anifrolumab reduced cell surface IFNAR1 by eliciting IFNAR1 internalisation. Anifrolumab blocked type I IFN-dependent STAT1 phosphorylation and IFN-dependent signalling induced by recombinant and pDC-derived type I IFNs and serum of patients with SLE. Anifrolumab suppressed type I IFN production by blocking the type I IFN autoamplification loop and inhibited proinflammatory cytokine induction and the upregulation of costimulatory molecules on stimulated pDCs. Blockade of IFNAR1 suppressed plasma cell differentiation in pDC/B cell co-cultures. Anifrolumab did not exhibit CDC or ADCC activity. Conclusions Anifrolumab potently inhibits type I IFN-dependent signalling, including the type I IFN autoamplification loop, and is a promising therapeutic for patients with SLE and other diseases that exhibit chronic dysfunctional type I IFN signalling. PMID:29644082
de Lange, Christo; Coertzen, Dina; Smit, Frans J; Wentzel, Johannes F; Wong, Ho Ning; Birkholtz, Lyn-Marie; Haynes, Richard K; N'Da, David D
2017-12-26
Novel derivatives bearing a ferrocene attached via a piperazine linker to C-10 of the artemisinin nucleus were prepared from dihydroartemisinin and screened against chloroquine (CQ) sensitive NF54 and CQ resistant K1 and W2 strains of Plasmodium falciparum (Pf) parasites. The overall aim is to imprint oxidant (from the artemisinin) and redox (from the ferrocene) activities. In a preliminary assessment, these compounds were shown to possess activities in the low nM range with the most active being compound 6 with IC 50 values of 2.79 nM against Pf K1 and 3.2 nM against Pf W2. Overall the resistance indices indicate that the compounds have a low potential for cross resistance. Cytotoxicities were determined with Hek293 human embryonic kidney cells and activities against proliferating cells were assessed against A375 human malignant melanoma cells. The selectivity indices of the amino-artemisinin ferrocene derivatives indicate there is overall an appreciably higher selectivity towards the malaria parasite than mammalian cells. Copyright © 2017. Published by Elsevier Ltd.
Menichini, G; Alfano, C; Marrelli, M; Toniolo, C; Provenzano, E; Statti, G A; Nicoletti, M; Menichini, F; Conforti, F
2013-04-01
Our interest continues in discovering phytocomplexes from medicinal plants with phototoxic activity against human melanoma cells; thus the aim of the present study was to assess antioxidant, anti-inflammatory and phototoxic activity of Hypericum perforatum L. subsp. perforatum, and relate these properties to the plant's chemical composition. Components of H. perforatum subsp. perforatum were extracted by hydroalcoholic solution and chemical profiles of preparations (HyTE-3) performed by HPTLC. Linoleic acid peroxidation and DPPH tests were used to assess antioxidant activity, while MTT assay allowed evaluation of anti-proliferative activity with respect to A375 human melanoma cells after irradiation with UVA dose, 1.8 J/cm(2) . Inhibition of nitric oxide production of macrophages was also investigated. HyTE-3 indicated better antioxidant activity with β-carotene bleaching test in comparison to DPPH assay (IC50 = 0.89 μg/ml); significant phototoxicity in A375 cells at 78 μg/ml concentration resulted in cell destruction of 50%. HyTE-3 caused significant dose-related inhibition of nitric oxide production in murine monocytic macrophage cell line RAW 264.7 with IC50 value of 342 μg/ml. The H. perforatum subsp. perforatum-derived product was able to suppress proliferation of human malignant melanoma A375 cells; extract together with UVA irradiation enhanced phototoxicity. This biological activity of antioxidant effects was combined with inhibition of nitric oxide production. © 2013 Blackwell Publishing Ltd.
In Vivo Imaging of Branched Chain Amino Acid Metabolism in Prostate Cancer
2013-08-01
model more closely mimicking human metabolism by assessing four prostate cancer cell lines: PC-3, DU-145, LNCaP and LAPC-4. The PC-3 cells had...Although the xenograph BCAT activity was 2.5 fold higher than cells alone (approaching human levels), the tumors grew very poorly (volumes ≤ 0.2 cc...assessment of prostate cancer (see Appendix 1: Revised Statement of Work). Specifically, as part of these cell - culture and xenograph experiments we
Schuetz, Alexandra; Deleage, Claire; Sereti, Irini; Rerknimitr, Rungsun; Phanuphak, Nittaya; Phuang-Ngern, Yuwadee; Estes, Jacob D.; Sandler, Netanya G.; Sukhumvittaya, Suchada; Marovich, Mary; Jongrakthaitae, Surat; Akapirat, Siriwat; Fletscher, James L. K.; Kroon, Eugene; Dewar, Robin; Trichavaroj, Rapee; Chomchey, Nitiya; Douek, Daniel C.; O′Connell, Robert J.; Ngauy, Viseth; Robb, Merlin L.; Phanuphak, Praphan; Michael, Nelson L.; Excler, Jean-Louis; Kim, Jerome H.; de Souza, Mark S.; Ananworanich, Jintanat
2014-01-01
Mucosal Th17 cells play an important role in maintaining gut epithelium integrity and thus prevent microbial translocation. Chronic HIV infection is characterized by mucosal Th17 cell depletion, microbial translocation and subsequent immune-activation, which remain elevated despite antiretroviral therapy (ART) correlating with increased mortality. However, when Th17 depletion occurs following HIV infection is unknown. We analyzed mucosal Th17 cells in 42 acute HIV infection (AHI) subjects (Fiebig (F) stage I-V) with a median duration of infection of 16 days and the short-term impact of early initiation of ART. Th17 cells were defined as IL-17+ CD4+ T cells and their function was assessed by the co-expression of IL-22, IL-2 and IFNγ. While intact during FI/II, depletion of mucosal Th17 cell numbers and function was observed during FIII correlating with local and systemic markers of immune-activation. ART initiated at FI/II prevented loss of Th17 cell numbers and function, while initiation at FIII restored Th17 cell numbers but not their polyfunctionality. Furthermore, early initiation of ART in FI/II fully reversed the initially observed mucosal and systemic immune-activation. In contrast, patients treated later during AHI maintained elevated mucosal and systemic CD8+ T-cell activation post initiation of ART. These data support a loss of Th17 cells at early stages of acute HIV infection, and highlight that studies of ART initiation during early AHI should be further explored to assess the underlying mechanism of mucosal Th17 function preservation. PMID:25503054
Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines
Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro
2013-01-01
Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303
Stache, Christina; Bils, Christiane; Fahlbusch, Rudolf; Flitsch, Jörg; Buchfelder, Michael; Stefanits, Harald; Czech, Thomas; Gaipl, Udo; Frey, Benjamin; Buslei, Rolf; Hölsken, Annett
2016-12-01
OBJECTIVE In this study, the authors investigated the underlying mechanisms responsible for high tumor recurrence rates of adamantinomatous craniopharyngioma (ACP) after radiotherapy and developed new targeted treatment protocols to minimize recurrence. ACPs are characterized by the activation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR), known to mediate radioresistance in various tumor entities. The impact of tyrosine kinase inhibitors (TKIs) gefitinib or CUDC-101 on radiation-induced cell death and associated regulation of survivin gene expression was evaluated. METHODS The hypothesis that activated EGFR promotes radioresistance in ACP was investigated in vitro using human primary cell cultures of ACP (n = 10). The effects of radiation (12 Gy) and combined radiochemotherapy on radiosensitivity were assessed via cell death analysis using flow cytometry. Changes in target gene expression were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Survivin, identified in qRT-PCR to be involved in radioresistance of ACP, was manipulated by small interfering RNA (siRNA), followed by proliferation and vitality assays to further clarify its role in ACP biology. Immunohistochemically, survivin expression was assessed in patient tumors used for primary cell cultures. RESULTS In primary human ACP cultures, activation of EGFR resulted in significantly reduced cell death levels after radiotherapy. Treatment with TKIs alone and in combination with radiotherapy increased cell death response remarkably, assessed by flow cytometry. CUDC-101 was significantly more effective than gefitinib. The authors identified regulation of survivin expression after therapeutic intervention as the underlying molecular mechanism of radioresistance in ACP. EGFR activation promoting ACP cell survival and proliferation in vitro is consistent with enhanced survivin gene expression shown by qRT-PCR. TKI treatment, as well as the combination with radiotherapy, reduced survivin levels in vitro. Accordingly, ACP showed reduced cell viability and proliferation after survivin downregulation by siRNA. CONCLUSIONS These results indicate an impact of EGFR signaling on radioresistance in ACP. Inhibition of EGFR activity by means of TKI treatment acts as a radiosensitizer on ACP tumor cells, leading to increased cell death. Additionally, the results emphasize the antiapoptotic and pro-proliferative role of survivin in ACP biology and its regulation by EGFR signaling. The suppression of survivin by treatment with TKI and combined radiotherapy represents a new promising treatment strategy that will be further assessed in in vivo models of ACP.
Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.
Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa
2018-04-01
Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.
Nembo, Erastus Nembu; Atsamo, Albert Donatien; Nguelefack, Télesphore Benoît; Kamanyi, Albert; Hescheler, Jürgen; Nguemo, Filomain
2015-05-13
Erythrina senegalensis DC (Fabaceae) bark is commonly used in sub-Saharan traditional medicine for the treatment of many diseases including gastrointestinal disorders and cardiovascular diseases. In this study, we investigated the effect of the aqueous extract of the stem bark of Erythrina senegalensis on the contractile properties of mouse ventricular slices and human induced pluripotent stem (hiPS) cell-derived cardiomyocytes. We also investigated the cytotoxic effect of the extract on mouse embryonic stem (ES) cells differentiating into cardiomyocytes (CMs). We used well-established electrophysiological technologies to assess the effect of Erythrina senegalensis aqueous extract (ESAE) on the beating activity of mouse ventricular slices, mouse ES and hiPS cell-derived CMs. To study the cytotoxic effect of our extract, differentiating mouse ES cells were exposed to different concentrations of ESAE. EB morphology was assessed by microscopy at different stages of differentiation whereas cell viability was measured by flow cytometry, fluorometry and immunocytochemistry. The electrical activity of CMs and heart slices were respectively captured by the patch clamp technique and microelectrode array (MEA) method following ESAE acute exposure. Our findings revealed that ESAE exhibits a biphasic chronotropic activity on mouse ventricular slices with an initial low dose (0.001 and 0.01 µg/mL) decrease in beating activity followed by a corresponding significant increase in chronotropic activity at higher doses above 10 µg/mL. The muscarinic receptor blocker, atropine abolished the negative chronotropic activity of ESAE, while propranolol successfully blocked its positive chronotropic activity. ESAE showed a significant dose-dependent positive chronotropic activity on hiPS cell-derived CMs. Also, though not significantly, ESAE decreased cell viability and increased total caspase-3/7 activity of mouse ES cells in a concentration-dependent manner. Erythrina senegalensis aqueous extract exhibits a biphasic chronotropic effect on mouse heart and a positive chronotropic activity on hiPS cell-derived CMs, suggesting a possible mechanism through muscarinic and β-adrenergic receptor pathways. Also, ESAE is not cytotoxic on mouse ES cells at concentrations up to 100 µg/mL. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Shustova, Olga N; Antonova, Olga A; Golubeva, Nina V; Khaspekova, Svetlana G; Yakushkin, Vladimir V; Aksuk, Svetlana A; Alchinova, Irina B; Karganov, Mikhail Y; Mazurov, Alexey V
2017-07-01
: Microparticles released by activated/apoptotic cells exhibit coagulation activity as they express phosphatidylserine and some of them - tissue factor. We compared procoagulant properties of microparticles from monocytes, granulocytes, platelets and endothelial cells and assessed the impact of tissue factor in observed differences. Microparticles were sedimented (20 000g, 30 min) from the supernatants of activated monocytes, monocytic THP-1 cells, granulocytes, platelets and endothelial cells. Coagulation activity of microparticles was examined using plasma recalcification assay. The size of microparticles was evaluated by dynamic light scattering. Tissue factor activity was measured by its ability to activate factor X. All microparticles significantly accelerated plasma coagulation with the shortest lag times for microparticles derived from monocytes, intermediate - for microparticles from THP-1 cells and endothelial cells, and the longest - for microparticles from granulocytes and platelets. Average diameters of microparticles ranged within 400-600 nm. The largest microparticles were produced by endothelial cells and granulocytes, smaller - by monocytes, and the smallest - by THP-1 cells and platelets. The highest tissue factor activity was detected in microparticles from monocytes, lower activity - in microparticles from endothelial cells and THP-1 cells, and no activity - in microparticles from platelets and granulocytes. Anti-tissue factor antibodies extended coagulation lag times for microparticles from monocytes, endothelial cells and THP-1 cells and equalized them with those for microparticles from platelets and granulocytes. Higher coagulation activity of microparticles from monocytes, THP-1 cells and endothelial cells in comparison with microparticles from platelets and granulocytes is determined mainly by the presence of active tissue factor.
Xin, Li-li; Li, Xiao-hai; Deng, Hua-xin; Kuang, Dan; Dai, Xia-yun; Huang, Su-Li; Wang, Feng; He, Mei-an; Currie, R William; Wu, Tang-chun
2012-12-01
Using the stable HSPA1A (HSP70-1) promoter-driven luciferase reporter HepG2 cells (HepG2/HSPA1A cells) to assess the overall toxicity of coke oven emissions. The stable HepG2/HSPA1A cells were treated with different concentrations of coke oven emissions (COEs) collected from the top, side, and bottom of a coke oven battery for 24 h. After the treatments, luciferase activity, cell viability, malondialdehyde (MDA) concentration, Olive tail moment, and micronuclei frequency were determined, respectively. The bottom COEs induced significant increases (P < 0.01) in relative luciferase activity up to 1.4 times the control level at 0.15 µg/L. The low dose of side COEs (0.02 µg/L) led to a significant increase (P < 0.01) in relative luciferase activity that progressively increased to 2.1 times the control level at 65.4 µg/L. The top COEs produced a strong dose-dependent induction of relative luciferase activity up to over 5 times the control level at the highest concentration tested (202 µg/L). In HepG2/HSPA1A cells treated with the bottom COEs, relative luciferase activity was positively correlated with MDA concentration (r = 0.404, P < 0.05). For the three COEs samples, positive correlations were observed between relative luciferase activity and Olive tail moment and micronuclei frequency. The relative luciferase activity in HepG2/HSPA1A cells can sensitively reflect the overall toxicity of COEs. The stable HepG2/HSPA1A cells can be used for rapid screening of the overall toxicity of complex air pollutants in the workplace.
Yamamoto, Atsuki; Itoh, Tomokazu; Nasu, Reishi; Nishida, Ryuichi
2014-01-01
AIM: To investigate the effects of sodium alginate (AL-Na) on indomethacin-induced small intestinal lesions in rats. METHODS: Gastric injury was assessed by measuring ulcerated legions 4 h after indomethacin (25 mg/kg) administration. Small intestinal injury was assessed by measuring ulcerated legions 24 h after indomethacin (10 mg/kg) administration. AL-Na and rebamipide were orally administered. Myeloperoxidase activity in the stomach and intestine were measured. Microvascular permeability, superoxide dismutase content, glutathione peroxidase activity, catalase activity, red blood cell count, white blood cell count, mucin content and enterobacterial count in the small intestine were measured. RESULTS: AL-Na significantly reduced indomethacin-induced ulcer size and myeloperoxidase activity in the stomach and small intestine. AL-Na prevented increases in microvascular permeability, superoxide dismutase content, glutathione peroxidase activity and catalase activity in small intestinal injury induced by indomethacin. AL-Na also prevented decreases in red blood cells and white blood cells in small intestinal injury induced by indomethacin. Moreover, AL-Na suppressed mucin depletion by indomethacin and inhibited infiltration of enterobacteria into the small intestine. CONCLUSION: These results indicate that AL-Na ameliorates non-steroidal anti-inflammatory drug-induced small intestinal enteritis via bacterial translocation. PMID:24627600
Abdel-Latif, Mohamed M; Inoue, Hiroyasu; Reynolds, John V
2016-09-01
Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.
Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra
2016-01-01
Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2. PMID:27413259
Miranda, Dante; Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra; Montoya, Margarita
2016-01-01
Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.
Pistollato, Francesca; Canovas-Jorda, David; Zagoura, Dimitra; Price, Anna
2017-06-09
Human pluripotent stem cells can differentiate into various cell types that can be applied to human-based in vitro toxicity assays. One major advantage is that the reprogramming of somatic cells to produce human induced pluripotent stem cells (hiPSCs) avoids the ethical and legislative issues related to the use of human embryonic stem cells (hESCs). HiPSCs can be expanded and efficiently differentiated into different types of neuronal and glial cells, serving as test systems for toxicity testing and, in particular, for the assessment of different pathways involved in neurotoxicity. This work describes a protocol for the differentiation of hiPSCs into mixed cultures of neuronal and glial cells. The signaling pathways that are regulated and/or activated by neuronal differentiation are defined. This information is critical to the application of the cell model to the new toxicity testing paradigm, in which chemicals are assessed based on their ability to perturb biological pathways. As a proof of concept, rotenone, an inhibitor of mitochondrial respiratory complex I, was used to assess the activation of the Nrf2 signaling pathway, a key regulator of the antioxidant-response-element-(ARE)-driven cellular defense mechanism against oxidative stress.
Comprehensive Astronaut Immune Assessment Following a Short-Duration Space Flight
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Yetman, Deborah; Pierson, Duane; Sams, Clarence
2006-01-01
Immune system dysregulation has been demonstrated to occur during spaceflight and has the potential to cause serious health risks to crewmembers participating in exploration class missions. As a part of an ongoing NASA flight experiment assessing viral immunity (DSO-500), a generalized immune assessment was performed on 3 crewmembers who participated in the recent STS-114 Space Shuttle mission. The following assays were performed: (1) comprehensive immunophenotype analysis; (2) T cell function/intracellular cytokine profiles; (4) secreted Th1/Th2 cytokine profiles via cytometric bead array. Immunophenotype analysis included a leukocyte differential, lymphocyte subsets, T cell subsets, cytotoxic/effector CD8+ T cells, memory/naive T cell subsets and constitutively activated T cells. Study timepoints were L-180, L-65, L-10, R+0, R+3 and R+14. Detailed data are presented in the poster text. As expected from a limited number of human subjects, data tended to vary with respect to most parameters. Specific post-flight alterations were as follows (subject number in parentheses): Granulocytosis (2/3), reduced NK cells (3/3), elevated CD4/CD8 ratio (3/3), general CD8+ phenotype shift to a less differentiated phenotype (3/3), elevated levels of memory CD4+ T cells (3/3), loss of L-selectin on T cell subsets (3/3), increased levels of activated T cells (2/3), reduced IL-2 producing T cell subsets (3/3), levels of IFNg producing T cells were unchanged. CD8+ T cell expression of the CD69 activation markers following whole blood stimulation with SEA+SEB were dramatically reduced postflight (3/3), whereas other T cell function assessments were largely unchanged. Cytometric bead array assessment of secreted T cell cytokines was performed, following whole blood stimulation with either CD3/CD28 antibodies or PMA+ionomycin for 48 hours. Specific cytokines assessed were IFNg, TNFa, IL-2, IL-4, IL-5, IL-10. Following CD3/CD28 stimulation, all three crewmembers had a mission-associated reduction in the levels of secreted IFNg. One crewmember had a post-flight inversion in the IFNg/IL-10 ratio postflight, which trended back to baseline by R+14. Detailed cytokine data are presented in the poster text. This testing regimen was designed to correlate immunophenotype changes (thought to correspond to specific in-vivo immune responses or pathogenesis), against altered leukocyte function and cytokine profiles. In-flight studies are required to determine if post-flight alterations are reflective of the in-flight condition, or are a response to landing and readaptation.
Shivapriya, S.; Ilango, K.; Dubey, G.P.
2015-01-01
Aim and objective Hippophae rhamnoides is an edible, nutrient rich plant found in the northern regions of India. It belongs to the family Elaeagnaceae and is well known for its traditional pharmacological activities. The present study was aimed to investigate the antioxidant and neuroprotective activities of H. rhamnoides. Methodology The hydroalcoholic extract of H. rhamnoides was evaluated for free radical scavenging activity using DPPH, hydroxyl radical scavenging and ferric thiocyanate assays. In vitro neuroprotective activity was assessed on human neuroblastoma cell line-IMR32 against hydrogen peroxide (H2O2) induced cytotoxicity. The neuroprotective effect was determined by measuring the cell viability through tetrazolium dye MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reducing assay and propidium iodide (PI) staining. Also the intracellular reactive oxygen species (ROS) activity was assessed using dichloro-dihydro-fluorescein diacetate (DCFDA) assay by flowcytometer. Results The results of the study demonstrated that H. rhamnoides extract possesses potential free radical scavenging activity. The IC50 value for DPPH and OH radical scavenging assay was 70.92 μg/ml and 0.463 mg/ml, also the extract was also found to have considerable level of lipid peroxidation activity. The neuroprotective effect of H. rhamnoides was confirmed by its cell viability enhancing capacity against hydrogen peroxide induced cell cytotoxicity. The extract acted on IMR32 cells in a dose dependent manner as observed through PI and MTT assays. The percentage intracellular ROS activity was reduced by 60–70% in treated cells compared to H2O2 control. Conclusion Thus the outcome of the study suggests that H. rhamnoides acts as a neuroprotectant against oxidative stress induced neurodegeneration. PMID:26288571
The VP7 Outer Capsid Protein of Rotavirus Induces Polyclonal B-Cell Activation
Blutt, Sarah E.; Crawford, Sue E.; Warfield, Kelly L.; Lewis, Dorothy E.; Estes, Mary K.; Conner, Margaret E.
2004-01-01
The early response to a homologous rotavirus infection in mice includes a T-cell-independent increase in the number of activated B lymphocytes in the Peyer's patches. The mechanism of this activation has not been previously determined. Since rotavirus has a repetitively arranged triple-layered capsid and repetitively arranged antigens can induce activation of B cells, one or more of the capsid proteins could be responsible for the initial activation of B cells during infection. To address this question, we assessed the ability of rotavirus and virus-like particles to induce B-cell activation in vivo and in vitro. Using infectious rotavirus, inactivated rotavirus, noninfectious but replication-competent virus, and virus-like particles, we determined that neither infectivity nor RNA was necessary for B-cell activation but the presence of the rotavirus outer capsid protein, VP7, was sufficient for murine B-cell activation. Preincubation of the virus with neutralizing VP7 antibodies inhibited B-cell activation. Polymyxin B treatment and boiling of the virus preparation were performed, which ruled out possible lipopolysaccharide contamination as the source of activation and confirmed that the structural conformation of VP7 is important for B-cell activation. These findings indicate that the structure and conformation of the outer capsid protein, VP7, initiate intestinal B-cell activation during rotavirus infection. PMID:15194774
Assessment of the environmental aspects of the DOE phosphoric acid fuel cell program
NASA Technical Reports Server (NTRS)
Lundblad, H. L.; Cavagrotti, R. R.
1983-01-01
The likely facets of a nationwide phosphoric acid fuel cell (PAFC) power plant commercial system are described. The beneficial and adverse environmental impacts produced by the system are assessed. Eleven specific system activities are characterized and evaluated. Also included is a review of fuel cell technology and a description of DOE's National Fuel Cell Program. Based on current and reasonably foreseeable PAFC characteristics, no environmental or energy impact factor was identified that would significantly inhibit the commercialization of PAFC power plant technology.
NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells.
Di Ianni, Mauro; Baldoni, Stefano; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; De Falco, Filomena; Albi, Elisa; Varasano, Emanuela; Di Tommaso, Ambra; Giancola, Raffaella; Accorsi, Patrizia; Rotta, Gianluca; Rompietti, Chiara; Silva Barcelos, Estevão Carlos; Campese, Antonio Francesco; Di Bartolomeo, Paolo; Screpanti, Isabella; Rosati, Emanuela; Falzetti, Franca; Sportoletti, Paolo
2018-01-01
To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1- mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.
Idiopathic Mast Cell Activation Syndrome With Associated Salicylate Intolerance.
Rechenauer, Tobias; Raithel, Martin; Götze, Thomas; Siebenlist, Gregor; Rückel, Aline; Baenkler, Hanns-Wolf; Hartmann, Arndt; Haller, Florian; Hoerning, André
2018-01-01
Idiopathic mast cell activation syndrome can be a rare cause for chronic abdominal pain in children. It remains a diagnosis by exclusion that can be particularly challenging due to the vast variety of possible clinical manifestations. We present a 13-year-old boy who suffered from a multitude of unspecific complaints over a long period of time. In this case, an assessment of mast cell-derived metabolites and immunohistochemical analysis of bioptic specimen was worthwhile. After ruling out, primary (oncologic) and secondary causes for mast cell activation, pharmacologic treatment adapted to the patient's salicylate intolerance resulted in a major relief of symptoms.
2013-01-01
Background Today’s cell phones increase opportunities for activities traditionally defined as sedentary behaviors (e.g., surfing the internet, playing video games). People who participate in large amounts of sedentary behaviors, relative to those who do not, tend to be less physically active, less physically fit, and at greater risk for health problems. However, cell phone use does not have to be a sedentary behavior as these devices are portable. It can occur while standing or during mild-to-moderate intensity physical activity. Thus, the relationship between cell phone use, physical and sedentary activity, and physical fitness is unclear. The purpose of this study was to investigate these relationships among a sample of healthy college students. Methods Participants were first interviewed about their physical activity behavior and cell phone use. Then body composition was assessed and the validated self-efficacy survey for exercise behaviors completed. This was followed by a progressive exercise test on a treadmill to exhaustion. Peak oxygen consumption (VO2 peak) during exercise was used to measure cardiorespiratory fitness. Hierarchical regression was used to assess the relationship between cell phone use and cardiorespiratory fitness after controlling for sex, self-efficacy, and percent body fat. Interview data was transcribed, coded, and Chi-square analysis was used to compare the responses of low and high frequency cell phone users. Results Cell phone use was significantly (p = 0.047) and negatively (β = −0.25) related to cardio respiratory fitness independent of sex, self-efficacy, and percent fat which were also significant predictors (p < 0.05). Interview data offered several possible explanations for this relationship. First, high frequency users were more likely than low frequency users to report forgoing opportunities for physical activity in order to use their cell phones for sedentary behaviors. Second, low frequency users were more likely to report being connected to active peer groups through their cell phones and to cite this as a motivation for physical activity. Third, high levels of cell phone use indicated a broader pattern of sedentary behaviors apart from cell phone use, such as watching television. Conclusion Cell phone use, like traditional sedentary behaviors, may disrupt physical activity and reduce cardiorespiratory fitness. PMID:23800133
Lepp, Andrew; Barkley, Jacob E; Sanders, Gabriel J; Rebold, Michael; Gates, Peter
2013-06-21
Today's cell phones increase opportunities for activities traditionally defined as sedentary behaviors (e.g., surfing the internet, playing video games). People who participate in large amounts of sedentary behaviors, relative to those who do not, tend to be less physically active, less physically fit, and at greater risk for health problems. However, cell phone use does not have to be a sedentary behavior as these devices are portable. It can occur while standing or during mild-to-moderate intensity physical activity. Thus, the relationship between cell phone use, physical and sedentary activity, and physical fitness is unclear. The purpose of this study was to investigate these relationships among a sample of healthy college students. Participants were first interviewed about their physical activity behavior and cell phone use. Then body composition was assessed and the validated self-efficacy survey for exercise behaviors completed. This was followed by a progressive exercise test on a treadmill to exhaustion. Peak oxygen consumption (VO2 peak) during exercise was used to measure cardiorespiratory fitness. Hierarchical regression was used to assess the relationship between cell phone use and cardiorespiratory fitness after controlling for sex, self-efficacy, and percent body fat. Interview data was transcribed, coded, and Chi-square analysis was used to compare the responses of low and high frequency cell phone users. Cell phone use was significantly (p = 0.047) and negatively (β = -0.25) related to cardio respiratory fitness independent of sex, self-efficacy, and percent fat which were also significant predictors (p < 0.05). Interview data offered several possible explanations for this relationship. First, high frequency users were more likely than low frequency users to report forgoing opportunities for physical activity in order to use their cell phones for sedentary behaviors. Second, low frequency users were more likely to report being connected to active peer groups through their cell phones and to cite this as a motivation for physical activity. Third, high levels of cell phone use indicated a broader pattern of sedentary behaviors apart from cell phone use, such as watching television. Cell phone use, like traditional sedentary behaviors, may disrupt physical activity and reduce cardiorespiratory fitness.
Chiba, Asako; Tamura, Naoto; Yoshikiyo, Kazunori; Murayama, Goh; Kitagaichi, Mie; Yamaji, Ken; Takasaki, Yoshinari; Miyake, Sachiko
2017-03-14
Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes constituting a large proportion of peripheral blood T cells expressing αβ T-cell receptor in humans. In this study, we aimed to investigate their involvement in systemic lupus erythematosus (SLE). Peripheral blood MAIT cells from patients with SLE were assessed for their frequency, activation markers, and cell death by flow cytometry. The correlation between plasma cytokine levels and CD69 expression on MAIT cells was analyzed. The major histocompatibility complex class I-related protein MR1-restricted antigen-presenting capacity of antigen-presenting cells was investigated. Cytokine-mediated activation of MAIT cells in the absence of exogenous antigens was also examined. The frequency of MAIT cells was markedly reduced in SLE. The reduced number of MAIT cells was not attributable to the downregulation of surface markers, but it was partially due to the enhanced cell death of MAIT cells, possibly by activation-induced cell death. The CD69 expression levels on MAIT cells in SLE correlated with disease activity. Moreover, monocytes from patients with SLE exhibited increased ability to induce MAIT cell activation. The plasma concentration of interleukin (IL)-6, IL-18, and interferon (IFN)-α positively correlated with the expression levels of CD69 on MAIT cells in SLE. MAIT cells were activated by cytokines, including IFN-α, IL-15, and IL-12 plus IL-18, in the absence of exogenous antigens. These results suggest that MAIT cells reflect the pathological condition of SLE and that their activated status correlates with presence of disease.
Antimicrobial and biological activity of leachate from light curable pulp capping materials.
Arias-Moliz, Maria Teresa; Farrugia, Cher; Lung, Christie Y K; Wismayer, Pierre Schembri; Camilleri, Josette
2017-09-01
Characterization of a number of pulp capping materials and assessment of the leachate for elemental composition, antimicrobial activity and cell proliferation and expression. Three experimental light curable pulp-capping materials, Theracal and Biodentine were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The elemental composition of the leachate formed after 24h was assessed by inductively coupled plasma (ICP). The antimicrobial activity of the leachate was determined by the minimum inhibitory concentration (MIC) against multispecies suspensions of Streptococcus mutans ATCC 25175, Streptococcus gordonii ATCC 33478 and Streptococcus sobrinus ATCC 33399. Cell proliferation and cell metabolic function over the material leachate was assessed by an indirect contact test using 3-(4,5 dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydration behavior of the test materials varied with Biodentine being the most reactive and releasing the highest amount of calcium ions in solution. All materials tested except the unfilled resin exhibited depletion of phosphate ions from the solution indicating interaction of the materials with the media. Regardless the different material characteristics, there was a similar antimicrobial activity and cellular activity. All the materials exhibited no antimicrobial activity and were initially cytotoxic with cell metabolic function improving after 3days. The development of light curable tricalcium silicate-based pulp capping materials is important to improve the bonding to the final resin restoration. Testing of both antimicrobial activity and biological behavior is critical for material development. The experimental light curable materials exhibited promising biological properties but require further development to enhance the antimicrobial characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ludwig, Anastasia; Rivera, Claudio; Uvarov, Pavel
2017-01-31
Cation-chloride cotransporters (CCCs) are indispensable for maintaining chloride homeostasis in multiple cell types, but K-Cl cotransporter KCC2 is the only CCC member with an exclusively neuronal expression in mammals. KCC2 is critical for rendering fast hyperpolarizing responses of ionotropic γ-aminobutyric acid and glycine receptors in adult neurons, for neuronal migration in the developing central nervous system, and for the formation and maintenance of small dendritic protrusions-dendritic spines. Deficit in KCC2 expression and/or activity is associated with epilepsy and neuropathic pain, and effective strategies are required to search for novel drugs augmenting KCC2 function. We revised current methods to develop a noninvasive optical approach for assessing KCC2 transport activity using a previously characterized genetically encoded chloride sensor. Our protocol directly assesses dynamics of KCC2-mediated chloride efflux and allows measuring genuine KCC2 activity with good spatial and temporal resolution. As a proof of concept, we used this approach to compare transport activities of the two known KCC2 splice isoforms, KCC2a and KCC2b, in mouse neuronal Neuro-2a cells. Our noninvasive optical protocol proved to be efficient for assessment of furosemide-sensitive chloride fluxes. Transport activities of the N-terminal splice isoforms KCC2a and KCC2b obtained by the novel approach matched to those reported previously using standard methods for measuring chloride fluxes.
Pace, E; Di Vincenzo, S; Ferraro, M; Bruno, A; Dino, P; Bonsignore, M R; Battaglia, S; Saibene, F; Lanata, L; Gjomarkaj, M
2016-08-01
Cigarette smoke may accelerate cellular senescence by increasing oxidative stress. Altered proliferation and altered expression of anti-aging factors, including SIRT1 and FoxO3, characterise cellular senescence. The effects of carbocysteine on the SIRT1/FoxO3 axis and on downstream molecular mechanisms in human bronchial epithelial cells exposed to cigarette smoke are largely unknown. Aim of this study was to explore whether carbocysteine modulated SIRT1/FoxO3 axis, and downstream molecular mechanisms associated to cellular senescence, in a bronchial epithelial cell line (16-HBE) exposed to cigarette smoke. 16HBE cells were stimulated with/without cigarette smoke extracts (CSE) and carbocysteine. Flow cytometry and clonogenic assay were used to assess cell proliferation; western blot analysis was used for assessing nuclear expression of SIRT1 and FoxO3. The nuclear co-localization of SIRT1 and FoxO3 was assessed by fluorescence microscopy. Beta galactosidase (a senescence marker) and SIRT1 activity were assessed by specific staining and colorimetric assays, respectively. ChiP Assay and flow cytometry were used for assessing survivin gene regulation and protein expression, respectively. CSE decreased cell proliferation, the nuclear expression of SIRT1 and FoxO3 and increased beta galactosidase staining. CSE, reduced SIRT1 activity and FoxO3 localization on survivin promoter thus increasing survivin expression. In CSE stimulated bronchial epithelial cells carbocysteine reverted these phenomena by increasing cell proliferation, and SIRT1 and FoxO3 nuclear expression, and by reducing beta galactosidase staining and survivin expression. The study shows for the first time that carbocysteine may revert some senescence processes induced by oxidative stress due to cigarette smoke exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G
2006-05-01
We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (<40%) expressed it on the cell surface. In this latter subset of cells, most (>75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.
Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells
Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.
2011-01-01
Purpose. Staurosporine (SS) causes retinal ganglion cell (RGC) death in vivo, but the underlying mechanisms have been unclear. Since previous studies on RGC-5 cells indicated that SS induces cell death by elevating proteases, this study was undertaken to investigate whether SS induces RGC loss by elevating proteases in the retina, and curcumin prevents SS-mediated death of RGCs. Methods. Transformed mouse retinal ganglion-like cells (RGC-5) were treated with 2.0 μM SS and various doses of curcumin. Two optimal doses of SS (12.5 and 100 nM) and curcumin (2.5 and 10 μM) were injected into the vitreous of C57BL/6 mice. Matrix metalloproteinase (MMP)-9, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) activities were assessed by zymography assays. Viability of RGC-5 cells was assessed by MTT assays. RGC and amacrine cell loss in vivo was assessed by immunostaining with Brn3a and ChAT antibodies, respectively. Frozen retinal cross sections were immunostained for nuclear factor-κB (NF-κB). Results. Staurosporine induced uPA and tPA levels in RGC-5 cells, and MMP-9, uPA, and tPA levels in the retinas and promoted the death of RGC-5 cells in vitro and RGCs and amacrine cells in vivo. In contrast, curcumin attenuated RGC and amacrine cell loss, despite elevated levels of proteases. An NF-κB inhibitory peptide reversed curcumin-mediated protective effect on RGC-5 cells, but did not inhibit protease levels. Curcumin did not inhibit protease levels in vivo, but attenuated RGC and amacrine cell loss by restoring NF-κB expression. Conclusions. The results show that curcumin attenuates RGC and amacrine cell death despite elevated levels of proteases and raises the possibility that it may be used as a plausible adjuvant therapeutic agent to prevent the loss of these cells in retinal degenerative conditions. PMID:21498608
Xin, Lili; Wang, Jianshu; Wu, Yanhu; Guo, Sifan
2015-02-01
In order to assess the potential carcinogenic and genotoxic responses induced by environmental pollutants, genotoxicity test systems based on a GADD45α promoter-driven luciferase reporter in human A549 and HepG2 cells were established. Four different types of environmental toxicants including DNA alkylating agents, precarcinogenic agents, DNA cross-linking agents and non-carcinogenic agents, and three environmental samples collected from a coke oven plant were used to evaluate the test systems. After treated with the tested agents and environmental samples for 12 h, the cell viabilities and luciferase activities of the luciferase reporter cells were determined, respectively. Methyl methanesulfonate, benzo[a]pyrene, formaldehyde and the extractable organic matter (EOM) from coke oven emissions in ambient air generally produced significant induction of relative luciferase activity in a similar dose-dependent manner in A549- and HepG2-luciferase cells. No significant increases in relative luciferase activity were observed in pyrene-treated A549- or HepG2-luciferase cells. Significant increase in relative luciferase activity was already evident after 2.5 µM benzo[a]pyrene, 5 µM formaldehyde, 0.006 µg/L bottom-EOM, 0.10 µg/L side-EOM or 0.06 µg/L top-EOM, where no cytotoxic damage was observed. Compared with the A549-luciferase cells, the tested pollutants produced higher induction of relative luciferase activity in HepG2-luciferase cells. Therefore, the new genotoxicity test systems can detect different types of genotoxic agents and low concentrations of environmental samples. The luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the genotoxic damage of environmental pollutants and their complex mixtures.
Juglans mandshurica Maxim extracts exhibit antitumor activity on HeLa cells in vitro.
Xin, Nian; Hasan, Murtaza; Li, Wei; Li, Yan
2014-04-01
The present study examined the potential application of Juglans mandshurica Maxim extracts (HT) for cancer therapy by assessing their anti‑proliferative activity, reduction of telomerase activity, induction of apoptosis and cell cycle arrest in S phase in HeLa cells. From the perspective of using HT as a herbal medicine, photomicroscopy and florescent microscopy techniques were utilized to characterize the effect of the extracts on telomerase activity and cell morphology. Flow cytometry was employed to study apoptosis and cell cycle of HeLa cells, and DNA laddering was performed. The results showed that HT inhibited cell proliferation and telomerase activity, induced apoptosis and caused S phase arrest of HeLa cells in vitro. HT inhibited HeLa cell proliferation significantly, and the highest inhibition rate was 83.7%. A trap‑silver staining assay showed that HT was capable of markedly decreasing telomerase activity of HeLa cells and this inhibition was enhanced in a time‑ and dose‑dependent manner. Results of a Hoechst 33258 staining assay showed that HeLa cells treated by HT induced cell death. Through DNA agarose gel electrophoresis, DNA ladders of HeLa cells treated with HT were observed, indicating apoptosis. In conclusion, the present study demonstrated that HT exhibited anti‑tumor effects comprising the inhibition of growth and telomerase activity as well as apoptosis and cell cycle arrest in HeLa cells.
Spectral perspective on the electromagnetic activity of cells.
Kučera, Ondrej; Červinková, Kateřina; Nerudová, Michaela; Cifra, Michal
2015-01-01
In this mini-review, we summarize the current hypotheses, theories and experimental evidence concerning the electromagnetic activity of living cells. We systematically classify the bio-electromagnetic phenomena in terms of frequency and we assess their general acceptance in scientific community. We show that the electromagnetic activity of cells is well established in the low frequency range below 1 kHz and on optical wavelengths, while there is only limited evidence for bio-electromagnetic processes in radio- frequency and millimeter-wave ranges. This lack of generally accepted theory or trustful experimental results is the cause for controversy which accompanies this topic. We conclude our review with the discussion of the relevance of the electromagnetic activity of cells to human medicine.
Functional requirements of cellular differentiation: lessons from Bacillus subtilis.
Narula, Jatin; Fujita, Masaya; Igoshin, Oleg A
2016-12-01
Successful execution of differentiation programs requires cells to assess multitudes of internal and external cues and respond with appropriate gene expression programs. Here, we review how Bacillus subtilis sporulation network deals with these tasks focusing on the lessons generalizable to other systems. With feedforward loops controlling both production and activation of downstream transcriptional regulators, cells achieve ultrasensitive threshold-like responses. The arrangement of sporulation network genes on the chromosome and transcriptional feedback loops allow coordination of sporulation decision with DNA-replication. Furthermore, to assess the starvation conditions without sensing specific metabolites, cells respond to changes in their growth rates with increased activity of sporulation master regulator. These design features of the sporulation network enable cells to robustly decide between vegetative growth and sporulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rhyu, Kee Hyung; Cho, Chang Hoon; Yoon, Kyung Sik; Chun, Young Soo
2016-12-01
To evaluate cellular activity in milled versus unmilled surface of the femoral head in 21 patients who underwent robot-assisted total hip arthroplasty(THA). The femoral head of 21 consecutive patients who underwent robot-assisted THA for osteonecrosis was used. 10 cc of trabecular bone from the entire milled surface was obtained using a curette. The same amount of trabecular bone was obtained at least 1 cm away from the milled surface and served as a matched control. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface were assessed. Cell morphology of the milled or unmilled surface was comparable; cells were smaller in the milled surface. Cell viability was a mean of 40% higher in the milled surface (107.4% vs. 67.2%, p<0.001); cell viability at 5 time points was comparable in each group. Osteocalcin activity of cells was slightly higher in the milled surface (1.43 vs. 1.24 ng/ml, p=0.69). Alkaline phosphatase activity of cells was slightly higher in the unmilled surface (150 105 vs. 141 789 U/L, p=0.078). The milled and unmilled surfaces of the femoral head were comparable in terms of cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity.
Two distinct mTORC2-dependent pathways converge on Rac1 to drive breast cancer metastasis.
Morrison Joly, Meghan; Williams, Michelle M; Hicks, Donna J; Jones, Bayley; Sanchez, Violeta; Young, Christian D; Sarbassov, Dos D; Muller, William J; Brantley-Sieders, Dana; Cook, Rebecca S
2017-06-30
The importance of the mTOR complex 2 (mTORC2) signaling complex in tumor progression is becoming increasingly recognized. HER2-amplified breast cancers use Rictor/mTORC2 signaling to drive tumor formation, tumor cell survival and resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy. Cell motility, a key step in the metastatic process, can be activated by mTORC2 in luminal and triple negative breast cancer cell lines, but its role in promoting metastases from HER2-amplified breast cancers is not yet clear. Because Rictor is an obligate cofactor of mTORC2, we genetically engineered Rictor ablation or overexpression in mouse and human HER2-amplified breast cancer models for modulation of mTORC2 activity. Signaling through mTORC2-dependent pathways was also manipulated using pharmacological inhibitors of mTOR, Akt, and Rac. Signaling was assessed by western analysis and biochemical pull-down assays specific for Rac-GTP and for active Rac guanine nucleotide exchange factors (GEFs). Metastases were assessed from spontaneous tumors and from intravenously delivered tumor cells. Motility and invasion of cells was assessed using Matrigel-coated transwell assays. We found that Rictor ablation potently impaired, while Rictor overexpression increased, metastasis in spontaneous and intravenously seeded models of HER2-overexpressing breast cancers. Additionally, migration and invasion of HER2-amplified human breast cancer cells was diminished in the absence of Rictor, or upon pharmacological mTOR kinase inhibition. Active Rac1 was required for Rictor-dependent invasion and motility, which rescued invasion/motility in Rictor depleted cells. Rictor/mTORC2-dependent dampening of the endogenous Rac1 inhibitor RhoGDI2, a factor that correlated directly with increased overall survival in HER2-amplified breast cancer patients, promoted Rac1 activity and tumor cell invasion/migration. The mTORC2 substrate Akt did not affect RhoGDI2 dampening, but partially increased Rac1 activity through the Rac-GEF Tiam1, thus partially rescuing cell invasion/motility. The mTORC2 effector protein kinase C (PKC)α did rescue Rictor-mediated RhoGDI2 downregulation, partially rescuing Rac-guanosine triphosphate (GTP) and migration/motility. These findings suggest that mTORC2 uses two coordinated pathways to activate cell invasion/motility, both of which converge on Rac1. Akt signaling activates Rac1 through the Rac-GEF Tiam1, while PKC signaling dampens expression of the endogenous Rac1 inhibitor, RhoGDI2.
Portable Immune-Assessment System
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.
1995-01-01
Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.
Sensitivity of osteosarcoma cells to HDAC inhibitor AR-42 mediated apoptosis.
Murahari, Sridhar; Jalkanen, Aimee L; Kulp, Samuel K; Chen, Ching-Shih; Modiano, Jaime F; London, Cheryl A; Kisseberth, William C
2017-01-21
Osteosarcoma (OS) is the most common primary bone tumor in both humans and dogs and is the second leading cause of cancer related deaths in children and young adults. Limb sparing surgery along with chemotherapy has been the mainstay of treatment for OS. Many patients are not cured with current therapies, presenting a real need for developing new treatments. Histone deacetylase (HDAC) inhibitors are a promising new class of anticancer agents. In this study, we investigated the activity of the novel HDAC inhibitor AR-42 in a panel of human and canine OS cell lines. The effect of AR-42 and suberoylanilide hydroxamic acid (SAHA) alone or in combination with doxorubicin on OS cell viability was assessed. Induction of histone acetylation after HDAC inhibitor treatment was confirmed by Western blotting. Drug-induced apoptosis was analyzed by FACS. Apoptosis was assessed further by measuring caspase 3/7 enzymatic activity, nucleosome fragmentation, and caspase cleavage. Effects on Akt signaling were demonstrated by assessing phosphorylation of Akt and downstream signaling molecules. AR-42 was a potent inhibitor of cell viability and induced a greater apoptotic response compared to SAHA when used at the same concentrations. Normal osteoblasts were much less sensitive. The combination of AR-42 with doxorubicin resulted in a potent inhibition of cell viability and apparent synergistic effect. Furthermore, we showed that AR-42 and SAHA induced cell death via the activation of the intrinsic mitochondrial pathway through activation of caspase 3/7. This potent apoptotic activity was associated with the greater ability of AR-42 to downregulate survival signaling through Akt. These results confirm that AR-42 is a potent inhibitor of HDAC activity and demonstrates its ability to significantly inhibit cell survival through its pleiotropic effects in both canine and human OS cells and suggests that spontaneous OS in pet dogs may be a useful large animal model for preclinical evaluation of HDAC inhibitors. HDAC inhibition in combination with standard doxorubicin treatment offers promising potential for chemotherapeutic intervention in both canine and human OS.
BACKGROUND: An in vitro steroidogenesis assay using the human adrenocortical carcinoma cells H295R is being evaluated as a possible toxicity screening approach to detect and assess the impact of endocrine active chemicals (EAC) capable of altering steroid biosynthesis. Interpreta...
Differential Effect of Zoledronic Acid on Human Vascular Smooth Muscle Cells
Albadawi, Hassan; Haurani, Mounir J.; Oklu, Rahmi; Trubiano, Jordan P.; Laub, Peter J.; Yoo, Hyung-Jin; Watkins, Michael T.
2012-01-01
Introduction The activation of human vascular smooth muscle cell proliferation, adhesion and migration is essential for intimal hyperplasia formation. These experiments were designed to test whether Zoledronic Acid (ZA) would modulate indices of human smooth muscle cell activation, exert differential effects on proliferating vs. quiescent cells and determine whether these effects were dependent on GTPase binding proteins prenylation. ZA was chosen for testing in these experiments because it is clinically used in humans with cancer, and has been shown to modulate rat smooth muscle cell proliferation and migration. Methods Human aortic smooth muscle cells (HASMC) were cultured under either proliferating or growth arrest (quiescent) conditions in the presence or absence of ZA for 48 hours, whereupon the effect of ZA on HASMC proliferation, cellular viability, metabolic activity and membrane integrity were compared. In addition, the effect of ZA on adhesion and migration were assessed in proliferating cells. The effect of increased concentration of ZA on the mevalonate pathway and genomic/cellular stress related poly ADP Ribose polymerase (PARP) enzyme activity were assessed using the relative prenylation of Rap-1A/B protein and the formation of poly ADP- ribosylated proteins (PAR) respectively. Results There was a dose dependent inhibition of cellular proliferation, adhesion and migration following ZA treatment. ZA treatment decreased indices of cellular viability and significantly increased membrane injury in proliferating vs. quiescent cells. This was correlated with the appearance of unprenylated Rap-1A protein and dose dependent down regulation of PARP activity. Conclusions These data suggest that ZA is effective in inhibiting HASMC proliferation, adhesion and migration which coincide with the appearance of unprenylated RAP-1A/B protein, thereby suggesting that the mevalonate pathway may play a role in the inhibition of HASMC activation. PMID:23164362
Xu, Ning; An, Jun
2017-01-01
Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation. PMID:29250144
Xu, Ning; An, Jun
2017-12-01
Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation.
Constitutive properties of adult mammalian cardiac muscle cells
NASA Technical Reports Server (NTRS)
Zile, M. R.; Richardson, K.; Cowles, M. K.; Buckley, J. M.; Koide, M.; Cowles, B. A.; Gharpuray, V.; Cooper, G. 4th
1998-01-01
BACKGROUND: The purpose of this study was to determine whether changes in the constitutive properties of the cardiac muscle cell play a causative role in the development of diastolic dysfunction. METHODS AND RESULTS: Cardiocytes from normal and pressure-hypertrophied cats were embedded in an agarose gel, placed on a stretching device, and subjected to a change in stress (sigma), and resultant changes in cell strain (epsilon) were measured. These measurements were used to examine the passive elastic spring, viscous damping, and myofilament activation. The passive elastic spring was assessed in protocol A by increasing the sigma on the agarose gel at a constant rate to define the cardiocyte sigma-versus-epsilon relationship. Viscous damping was assessed in protocol B from the loop area between the cardiocyte sigma-versus-epsilon relationship during an increase and then a decrease in sigma. In both protocols, myofilament activation was minimized by a reduction in [Ca2+]i. Myofilament activation effects were assessed in protocol C by defining cardiocyte sigma versus epsilon during an increase in sigma with physiological [Ca2+]i. In protocol A, the cardiocyte sigma-versus-epsilon relationship was similar in normal and hypertrophied cells. In protocol B, the loop area was greater in hypertrophied than normal cardiocytes. In protocol C, the sigma-versus-epsilon relation in hypertrophied cardiocytes was shifted to the left compared with normal cells. CONCLUSIONS: Changes in viscous damping and myofilament activation in combination may cause pressure-hypertrophied cardiocytes to resist changes in shape during diastole and contribute to diastolic dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brost, E; Brooks, J; Piepenburg, J
Purpose: Patients with BCR-ABL (Ph +ve) acute lymphoblastic leukemia are at very high risk of relapse and mortality. In line with the NIH mission to understand the physical and biological processes, we seek to report mechano-biological method to assessment and distinguish treated/untreated leukemia cells. Methods: BCR-ABL leukemia cell populations and silica microspheres were trapped in a 100x magnification optical trapping system (λ=660 nm, 70 mW). Light refracted through the trapped sample was collected in the back focal plane by a quadrant detector to measure the positions of individual cells. The sample was driven at a known frequency and amplitude withmore » a flexure translation stage, and the target’s response was recorded. The measured response was calibrated using the known driving parameters, and information about cell movements due to mechano-biological effects was extracted. Two leukemia cell populations were tested: a control group and a group treated with 2 Gy. Results: The mechano-biological movements of 10 microspheres, control cells, and treated cells were tracked over a ∼30 minute window at 1 minute intervals. The microsphere population did not see significant change in mechano-biological movements over the testing interval and remained constant. The control cell population saw a two-fold rise in activity that peaked around 1200 seconds, then dropped off sharply. The treated cell population saw a two-fold rise in activity that peaked at 400 seconds, and dropped off slowly. Conclusion: The investigated technique allows for direct measurement the movements of a trapped object due to mechano-biological effects such as thermal and extracellular motion. When testing microspheres, the mechano-biological activity remained constant over time due to the lack of biological factors. In both the control and treated cell populations, the mechano-biological activity was increased, possibly due to mitochondrial activation. This extra activity decreased over time, possibly due to cellular damage from trapping radiation.« less
Sundberg-Kövamees, Marianne; Grunewald, Johan; Wahlström, Jan
2016-11-01
Streptococcus pneumonia is a major cause of morbidity and mortality in children and adults worldwide. Lack of fully effective pneumococcal vaccines is a problem. Streptococcus pneumoniae exposes on its surface C-polysaccharide (cell wall polysaccharide, CWPS) and serospecific capsular polysaccharides, used in pneumococcal vaccines. We investigated the effect of CWPS and individual capsular polysaccharides, with regard to activation of subsets of immune cells of healthy controls. Three different capsular polysaccharides, CWPS and LPS were used for in vitro stimulation of whole blood. Cell activation (CD69 expression) was assessed in CD4+ and CD4- T cells, NK-like T cells, NK cells and monocytes by flow cytometry. Cytokine levels in supernatants were quantified by Cytometric Bead Array (CBA). CWPS and the capsules activated immune cell subsets, but to different degrees. NK cells and NK-like T cells showed the strongest activation, followed by monocytes. Among the three capsules, capsule type 23 induced the strongest activation and cytokine release, followed by type 9 and type 3. This study increases the understanding of how the human immune system reacts to pneumococcal vaccine components. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Wong, Kaitlyn E; Mora, Maria C; Sultana, Nazneen; Moriarty, Kevin P; Arenas, Richard B; Yadava, Nagendra; Schneider, Sallie S; Tirabassi, Michael V
2018-06-01
Outcomes of children with high grade neuroblastoma remain poor despite multi-agent chemotherapy regimens. Rhodiola crenulata extracts display anti-neoplastic properties against several cancers including breast cancer, melanoma, and glioblastoma. In this study, we evaluated the anti-neoplastic potential of Rhodiola crenulata extracts on human neuroblastoma cells. Through this work, cell viability and proliferation were evaluated following treatments with ethanol (vehicle control) or Rhodiola crenulata extract in neuroblastoma, NB-1691 or SK-N-AS cells, in vitro. HIF-1 transcriptional activity was evaluated using a dual luciferase assay. Quantitative real-time polymerase chain reaction was utilized to assess the expression of HIF-1 targets. Selected metabolic intermediates were evaluated for their ability to rescue cells from Rhodiola crenulata extract-induced death. Lactate dehydrogenase, pyruvate kinase, and pyruvate dehydrogenase activities and NAD + /NADH levels were assayed in vehicle and Rhodiola crenulata extract-treated cells. The effects of Rhodiola crenulata extracts on metabolism were assessed by respirometry and metabolic phenotyping/fingerprinting. Our results revealed striking cytotoxic effects upon Rhodiola crenulata extract treatment, especially prominent in NB-1691 cells. As a greater response was observed in NB-1691 cells therefore it was used for remaining experiments. Upon Rhodiola crenulata extract treatment, HIF-1 transcriptional activity was increased. This increase in activity correlated with changes in HIF-1 targets involved in cellular metabolism. Serendipitously, we observed that addition of pyruvate protected against the cytotoxic effects of Rhodiola crenulata extracts. Therefore, we focused on the metabolic effects of Rhodiola crenulata extracts on NB-1691 cells. We observed that while the activities of pyruvate kinase and pyruvate dehydrogenase activities were increased, the activity of lactate dehydrogenase activity was decreased upon Rhodiola crenulata extract treatment. We also noted a decline in the total NAD pool following Rhodiola crenulata extract treatment. This correlated with decreased cellular respiration and suppressed utilization of carbon substrates. Through this work, we observed significant cytotoxic effects of Rhodiola crenulata extract treatment upon treatment on NB-1691 cells, a human neuroblastoma cell line with MYCN amplification. Our studies suggest that these cytotoxic effects could be secondary to metabolic effect induced by treatment with Rhodiola crenulata extract.
NASA Astrophysics Data System (ADS)
Lee, Young Ju; Ahn, Hyung Joon; Lee, Gi-Ja; Jung, Gyeong Bok; Lee, Gihyun; Kim, Dohyun; Shin, Jae-Ho; Jin, Kyung-Hyun; Park, Hun-Kuk
2015-07-01
The study was to investigate the changes in biochemical properties of activated mature CD8+ T cells related to apoptosis at a molecular level. We confirmed the activation and apoptosis of CD8+ T cells by fluorescence-activated cell sorting and atomic force microscopy and then performed Raman spectral measurements on activated mature CD8+ T cells and cellular deoxyribose nucleic acid (DNA). In the activated mature CD8+ T cells, there were increases in protein spectra at 1002 and 1234 cm-1. In particular, to assess the apoptosis-related DNA spectral signatures, we investigated the spectra of the cellular DNA isolated from resting and activated mature CD8+ T cells. Raman spectra at 765 to 786 cm-1 and 1053 to 1087 cm-1 were decreased in activated mature DNA. In addition, we analyzed Raman spectrum using the multivariate statistical method including principal component analysis. Raman spectra of activated mature DNA are especially well-discriminated from those of resting DNA. Our findings regarding the biochemical and structural changes associated with apoptosis in activated mature T cells and cellular DNA according to Raman spectroscopy provide important insights into allospecific immune responses generated after organ transplantation, and may be useful for therapeutic manipulation of the immune response.
Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.
Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam
2015-05-01
Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.
Synaptic integration in dendrites: exceptional need for speed
Golding, Nace L; Oertel, Donata
2012-01-01
Some neurons in the mammalian auditory system are able to detect and report the coincident firing of inputs with remarkable temporal precision. A strong, low-voltage-activated potassium conductance (gKL) at the cell body and dendrites gives these neurons sensitivity to the rate of depolarization by EPSPs, allowing neurons to assess the coincidence of the rising slopes of unitary EPSPs. Two groups of neurons in the brain stem, octopus cells in the posteroventral cochlear nucleus and principal cells of the medial superior olive (MSO), extract acoustic information by assessing coincident firing of their inputs over a submillisecond timescale and convey that information at rates of up to 1000 spikes s−1. Octopus cells detect the coincident activation of groups of auditory nerve fibres by broadband transient sounds, compensating for the travelling wave delay by dendritic filtering, while MSO neurons detect coincident activation of similarly tuned neurons from each of the two ears through separate dendritic tufts. Each makes use of filtering that is introduced by the spatial distribution of inputs on dendrites. PMID:22930273
Assessment and comparison of in vitro immunoregulatory activity of three astaxanthin stereoisomers
NASA Astrophysics Data System (ADS)
Sun, Weihong; Xing, Lihong; Lin, Hong; Leng, Kailiang; Zhai, Yuxiu; Liu, Xiaofang
2016-04-01
In recent years, the immune-modulatory role of all- trans astaxanthin from different pigment sources has been studied. It was reported that all- trans astaxanthin might exist as three stereoisomers, and the composition of all- trans stereoisomers in natural materials differs from that of synthetic products. However, the different biological effects of various all- trans stereoisomers still remain unclear. In the present study, we evaluated the bioactivity of three astaxanthin stereoisomers, ( 3S, 3'S)- trans-, ( 3R,3'R)- trans-and meso-trans-astaxanthin, in regulating cell-mediated immune response using mice lymphocytes and peritoneal exudates cells (PECs) systems. After the treatment with three astaxanthin stereoisomers (20 μmol L-1), the lymphocyte proliferation capacity, neutral red phagocytosis of PECs and natural killer (NK) cell cytotoxic activity were comparatively assessed. The results showed that all three astaxanthin stereoisomers significantly promoted lymphocyte proliferation, phagocytic capacity of PECs, and cytotoxic activity of NK cells. Moreover, the ( 3S,3'S)-trans-astaxanthin exhibited a much higher response than others.
Jensen, Leonardo; Neri, Elida; Bassaneze, Vinicius; De Almeida Oliveira, Nathalia C; Dariolli, Rafael; Turaça, Lauro T; Levy, Débora; Veronez, Douglas; Ferraz, Mariana S A; Alencar, Adriano M; Bydlowski, Sérgio P; Cestari, Idágene A; Krieger, José Eduardo
2018-07-01
Neonatal cardiomyocytes are instrumental for disease modeling, but the effects of different cell extraction methods on basic cell biological processes remain poorly understood. We assessed the influence of two popular methods to extract rat neonatal cardiomyocytes, Pre-plating (PP), and Percoll (PC) on cell structure, metabolism, and function. Cardiomyocytes obtained from PP showed higher gene expression for troponins, titin, and potassium and sodium channels compared to PC. Also, PP cells displayed higher levels of troponin I protein. Cells obtained from PC displayed higher lactate dehydrogenase activity and lactate production than PP cells, indicating higher anaerobic metabolism after 8 days of culture. In contrast, reactive oxygen species levels were higher in PP cells as indicated by ethidium and hydroxyethidium production. Consistent with these data, protein nitration was higher in PP cells, as well as nitrite accumulation in cell medium. Moreover, PP cells showed higher global intracellular calcium under basal and 1 mM isoprenaline conditions. In a calcium-transient assessment under electrical stimulation (0.5 Hz), PP cells displayed higher calcium amplitude than cardiomyocytes obtained from PC and using a traction force microscope technique we observed that PP cardiomyocytes showed the highest relaxation. Collectively, we demonstrated that extraction methods influence parameters related to cell structure, metabolism, and function. Overall, PP derived cells are more active and mature than PC cells, displaying higher contractile function and generating more reactive oxygen species. On the other hand, PC derived cells display higher anaerobic metabolism, despite comparable high yields from both protocols. © 2017 Wiley Periodicals, Inc.
Caino, M Cecilia; Oliva, Jose L; Jiang, Hao; Penning, Trevor M; Kazanietz, Marcelo G
2007-03-01
Polycyclic aromatic hydrocarbons (PAHs) are potent carcinogens that require metabolic activation inside cells. The proximate carcinogens PAH-diols can be converted to o-quinones by aldo-keto reductases (AKRs) or to diol-epoxides by cytochrome P450 (P450) enzymes. We assessed the effect of benzo[a]pyrene-7,8-dihydrodiol (BPD) on proliferation in p53-null bronchoalveolar carcinoma H358 cells. BPD treatment led to a significant inhibition of proliferation and arrest in G2/M in H358 cells. The relative contribution of the AKR and P450 pathways to cell cycle arrest was assessed. Overexpression of AKR1A1 did not affect cell proliferation or cell cycle progression, and benzo[a]pyrene-7,8-dione did not cause any noticeable effect on cell growth, suggesting that AKR1A1 metabolic products were not involved in the antiproliferative effect of BPD. On the other hand, blockade of P450 induction or inhibition of P450 activity greatly impaired the effect of BPD. Moreover, P450 induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin significantly enhanced the antiproliferative effect of BPD. Mechanistic studies revealed that BPD caused a DNA damage response, Chk1 activation, and accumulation of phospho-Cdc2 (Tyr15) in H358 cells, effects that were impaired by an ataxia-telangectasia mutated (ATM)/ATM-related (ATR) inhibitor. Similar results were observed in human bronchoepithelial BEAS-2B cells, arguing for analogous mechanisms in tumorigenic and immortalized nontumorigenic cells lacking functional p53. Our data suggest that a p53-independent pathway operates in lung epithelial cells in response to BPD that involves P450 induction and subsequent activation of the ATR/ATM/Chk1 damage check-point pathway and cell cycle arrest in G2/M.
Rafiee, Parvaneh; Stein, Daniel J; Nelson, Victoria M; Otterson, Mary F; Shaker, Reza; Binion, David G
2010-02-01
The glutamic acid derivative thalidomide is a transcriptional inhibitor of TNF-alpha but is also known to affect human blood vessels, which may underlie its teratogenicity. Thalidomide has been used in the treatment of refractory Crohn's disease (CD), but the therapeutic mechanism is not defined. We examined the effect of thalidomide on primary cultures of human intestinal microvascular endothelial cells (HIMEC), the relevant endothelial cell population in inflammatory bowel disease (IBD), to determine its effect on endothelial activation, leukocyte interaction, and VEGF-induced angiogenesis. HIMEC cultures were pretreated with thalidomide before activation with either TNF-alpha/LPS or VEGF. A low-shear-stress flow adhesion assay with either U-937 or whole blood was used to assess HIMEC activation following TNF-alpha/LPS, and a Wright's stain identified adherent leukocytes. Expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1) was assessed using radioimmunoassay. Effects of thalidomide on NF-kappaB activation, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) expression in TNF-alpha/LPS-activated HIMEC were determined by RT-PCR and Western blotting. Thalidomide blocked adhesion of both U-937 and whole blood leukocytes by 50% in HIMEC, inhibiting binding of all classes of leukocytes. Thalidomide also blocked NF-kappaB and cell adhesion molecule expression in HIMEC. In marked contrast, thalidomide did not affect either iNOS or COX-2 expression, two key molecules that play a role in the downregulation of HIMEC activation. VEGF-induced HIMEC transmigration, growth, proliferation, tube formation, and Akt phosphorylation were significantly inhibited by thalidomide. In summary, thalidomide exerted a potent effect on HIMEC growth and activation, suggesting that it may also function via an endothelial mechanism in the treatment of CD.
Stein, Daniel J.; Nelson, Victoria M.; Otterson, Mary F.; Shaker, Reza; Binion, David G.
2010-01-01
The glutamic acid derivative thalidomide is a transcriptional inhibitor of TNF-α but is also known to affect human blood vessels, which may underlie its teratogenicity. Thalidomide has been used in the treatment of refractory Crohn's disease (CD), but the therapeutic mechanism is not defined. We examined the effect of thalidomide on primary cultures of human intestinal microvascular endothelial cells (HIMEC), the relevant endothelial cell population in inflammatory bowel disease (IBD), to determine its effect on endothelial activation, leukocyte interaction, and VEGF-induced angiogenesis. HIMEC cultures were pretreated with thalidomide before activation with either TNF-α/LPS or VEGF. A low-shear-stress flow adhesion assay with either U-937 or whole blood was used to assess HIMEC activation following TNF-α/LPS, and a Wright's stain identified adherent leukocytes. Expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1) was assessed using radioimmunoassay. Effects of thalidomide on NF-κB activation, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) expression in TNF-α/LPS-activated HIMEC were determined by RT-PCR and Western blotting. Thalidomide blocked adhesion of both U-937 and whole blood leukocytes by 50% in HIMEC, inhibiting binding of all classes of leukocytes. Thalidomide also blocked NF-κB and cell adhesion molecule expression in HIMEC. In marked contrast, thalidomide did not affect either iNOS or COX-2 expression, two key molecules that play a role in the downregulation of HIMEC activation. VEGF-induced HIMEC transmigration, growth, proliferation, tube formation, and Akt phosphorylation were significantly inhibited by thalidomide. In summary, thalidomide exerted a potent effect on HIMEC growth and activation, suggesting that it may also function via an endothelial mechanism in the treatment of CD. PMID:19926820
Castañeda, Alejandro R; Pinkerton, Kent E; Bein, Keith J; Magaña-Méndez, Alfonso; Yang, Houa T; Ashwood, Paul; Vogel, Christoph F A
2018-08-01
The objective of this study was to explore the role of the aryl hydrocarbon receptor (AhR) in ambient particulate matter (PM)-mediated activation of dendritic cells (DCs) and Th17-immune responses in vitro. To assess the potential role of the AhR in PM-mediated activation of DCs, co-stimulation, and cytokine expression, bone marrow (BM)-derived macrophages and DCs from C57BL/6 wildtype or AhR knockout (AhR -/- ) mice were treated with PM. Th17 differentiation was assessed via co-cultures of wildtype or AhR -/- BMDCs with autologous naive T cells. PM 2.5 significantly induced AhR DNA binding activity to dioxin responsive elements (DRE) and expression of the AhR repressor (AhRR), cytochrome P450 (CYP) 1A1, and CYP1B1, indicating activation of the AhR. In activated (OVA sensitized) BMDCs, PM 2.5 induced interleukin (IL)-1β, CD80, CD86, and MHC class II, suggesting enhanced DC activation, co-stimulation, and antigen presentation; responses that were abolished in AhR deficient DCs. DC-T cell co-cultures treated with PM and lipopolysaccharide (LPS) led to elevated IL-17A and IL-22 expression at the mRNA level, which is mediated by the AhR. PM-treated DCs were essential in endowing T cells with a Th17-phenotype, which was associated with enhanced expression of MHC class II and cyclooxygenase (COX)-2. In conclusion, PM enhances DC activation that primes naive T cell differentiation towards a Th17-like phenotype in an AhR-dependent manner. Copyright © 2018 Elsevier B.V. All rights reserved.
Yamagishi, Anna; Tanabe, Koji; Yokokawa, Masatoshi; Morimoto, Yuji; Kinoshita, Manabu; Suzuki, Hiroaki
2017-09-08
A microfluidic device coupled with a microfabricated Clark-type oxygen electrode was used to measure the bactericidal activity of neutrophil-like cells differentiated from HL-60 cells. The neutrophil-like cells and Escherichia coli (E. coli) cells were cultured in the same medium, which was introduced into the flow channel of the device. Changes in the respiratory activity of E. coli were measured as changes in the consumption of dissolved oxygen. As the activity of the neutrophil-like cells increased, the rate of elimination of E. coli increased. The accompanying decrease in the number of E. coli reduced the consumption of dissolved oxygen. The changes were actually observed as changes in generated current. A distinct difference in changes in dissolved oxygen concentrations was observed between E. coli cells co-incubated with IFN-γ-activated or non-activated neutrophil-like cells. The required sample volume was less than 10 μL, and results could be obtained within 1-2 h. The device may be useful for the assessment of psychological stresses that affect the activity of neutrophils. Copyright © 2017 Elsevier B.V. All rights reserved.
Feng, Xuebing; Wang, Dandan; Chen, Jingjing; Lu, Lin; Hua, Bingzhu; Li, Xia; Tsao, Betty P; Sun, Lingyun
2012-01-01
To observe the proportion of peripheral T follicular helper (Tfh) cells in patients with systemic lupus erythematosus (SLE) and to assess the role of steroids on Tfh cells from SLE patients. Peripheral blood mononuclear cells (PBMCs) from 42 SLE patients and 22 matched healthy subjects were collected to assess proportions of circulating CXCR5(+)PD1(+)/CD4(+) T cells (Tfh), CD4(+)CCR6(+) T cells (Th17-like) and CD19(+)CD138(+) plasma cells by flow cytometry. 8 of the patients had their blood redrawn within one week after receiving methylprednisolone pulse treatment. Disease activity was evaluated by SLE disease activity index. To test the effect of IL-21 and corticosteroids on Tfh cells in vitro, PBMCs harvested from another 15 SLE patients were cultured with medium, IL-21, or IL-21+ dexamethasone for 24 hours and 72 hours. PBMCs from an independent 23 SLE patients were cultured with different concentrations of dexamethasone for 24 hours. Compared to normal controls, percentages of circulating Tfh cells, but not Th17 cells, were elevated in SLE patients and correlated with disease activity. Proportions of Tfh cells in SLE patients were positively correlated with those of plasma cells and serum levels of antinuclear antibodies. After methylprednisolone pulse treatment, both percentages and absolute numbers of circulating Tfh cells were significantly decreased. In vitro cultures showed an increase of Tfh cell proportion after IL-21 stimulation that was totally abolished by the addition of dexamethasone. Both 0.5 and 1 µM dexamethasone decreased Tfh cells dose dependently (overall p = 0.013). We demonstrated that elevated circulating Tfh cell proportions in SLE patients correlated with their disease activities, and circulating levels of plasma cells and ANA. Corticosteroids treatment down-regulated aberrant circulating Tfh cell proportions both in vivo and in vitro, making Tfh cells a new treatment target for SLE patients.
Osthole induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells.
Chao, Xu; Zhou, Xiaojun; Zheng, Gang; Dong, Changhu; Zhang, Wei; Song, Xiaomei; Jin, Tianbo
2014-05-01
Osthole [7-methoxy-8-(3-methyl-2-butenyl) coumarin] isolated from the fruit of Cnidium monnieri (L.) Cuss, one of the commonly used Chinese medicines listed in the Shennong's Classic of Materia Medica in the Han Dynasty, had remarkable antiproliferative activity against human hepatocellular carcinoma HepG2 cells in culture. This study evaluated the effects of osthole on cell growth, nuclear morphology, cell cycle distribution, and expression of apoptosis-related proteins in HepG2 cells. Cytotoxic activity of osthole was determined by the MTT assay at various concentrations ranging from 0.004 to 1.0 µmol/ml in HepG2 cells. Cell morphology was assessed by Hoechst staining and fluorescence microscopy. Apoptosis and cell-cycle distribution was determined by annexin V staining and flow cytometry. Apoptotic protein levels were assessed by Western blot. Osthole exhibited significant inhibition of the survival of HepG2 cells and the half inhibitory concentration (IC₅₀) values were 0.186, 0.158 and 0.123 µmol/ml at 24, 48 and 72 h, respectively. Cells treated with osthole at concentrations of 0, 0.004, 0.02, 0.1 and 0.5 μmol/ml showed a statistically significant increase in the G2/M fraction accompanied by a decrease in the G0/G1 fraction. The increase of apoptosis induced by osthole was correlated with down-regulation expression of anti-apoptotic Bcl-2 protein and up-regulation expression of pro-apoptotic Bax and p53 proteins. Osthole had significant growth inhibitory activity and the pro-apoptotic effect of osthole is mediated through the activation of caspases and mitochondria in HepG2 cells. Results suggest that osthole has promising therapeutic potential against hepatocellular carcinoma.
Ueno, Koji; Hirata, Hiroshi; Majid, Shahana; Tabatabai, Z Laura; Hinoda, Yuji; Dahiya, Rajvir
2011-11-15
The Wnt/β-catenin signaling pathway is inactivated by Wnt antagonists in most cancers and IGFBP-4 is an antagonist of the Wnt/ β-catenin signaling pathway. However, the function of IGFBP-4 is not currently understood in renal cell carcinoma (RCC). We initially found that the expression of IGFBP-4 was significantly lower in primary RCC and higher in metastatic RCC compared to normal human kidney tissues. To assess the function of IGFBP4, we established IGFBP4 transfectants (primary renal cancer cell line) and performed functional analyses including Tcf reporter assays, cell viability, invasive capability, mortality, and in vivo tumor growth. Interestingly IGFBP-4 transfectants promoted cell growth (in vitro and in vivo), invasion, and motility in primary renal cancer. Tcf transcriptional activity was significantly increased in IGFBP-4 transfectants compared to mock cells and β-catenin expression was increased. Also the β-catenin downstream effector, MT1-MMP showed increased expression in IGFBP4 transfectants. Additionally IGFBP4 induced the expression of M-CAM, a marker of tumor progression. In order to assess the role of IGFBP4 in metastatic renal cancer, IGFBP-4 mRNA in a metastatic renal cancer cell lines (ACHN) was knocked-down using a siRNA technique. The cell growth and motility was decreased in si-IGFBP4 transfected ACHN cells compared to cells transfected with control siRNA. Tcf activity in ACHN cells was also decreased with si-IGFBP-4 transfection. This is a first report documenting that IGFBP-4 expression in RCC activates cell growth, metastasis, Wnt/beta-catenin signaling and may be involved in RCC metastasis. Copyright © 2011 UICC.
Zhang, Hengwei; Sun, Wen; Li, Xing; Wang, Mengmeng; Boyce, Brendan F; Hilton, Matthew J; Xing, Lianping
2016-01-01
Notch signaling plays a critical role in maintaining bone homeostasis partially by controlling the formation of osteoblasts from mesenchymal stem cells (MSCs). We reported that TNF activates Notch signaling in MSCs which inhibits osteoblast differentiation in TNF transgenic (TNF-Tg) mice, a mouse model of chronic inflammatory arthritis. In the current study, we used Hes1-GFP and Hes1-GFP/TNF-Tg mice to study the distribution and dynamic change of Notch active cells in normal and inflammatory bone loss and mechanisms mediating their enhanced proliferation. We found that Hes1-GFP+ cells are composed of cells expressing mesenchymal, hematopoietic and endothelial surface markers. CD45−/Hes1-GFP+ cells express high levels of mesenchymal markers and form CFU-F and CFU-ALP colonies. Expansion of CFU-F colonies is associated with a rapid increase in Hes1-GFP+ cell numbers and their GFP intensity. The GFP signal is lost when a CFU-F colony differentiates into an ALP+ osteoblast colony. TNF increases the numbers of CD45−/Hes1-GFP+ cells, which are stained negatively for osteoblast marker osteocalcin and localized adjacent to endosteal and trabecular bone surfaces. CD45−/Hes1-GFP+ cells in Hes1-GFP/TNF-Tg mice have increased BrdU incorporation and PDGFRβ levels. TNF increases the number of proliferating Hes1-GFP+ cells, which is prevented by a specific PDGFRβ inhibitor. Notch inhibition blocks TNF-mediated PDGFRβ expression and cell proliferation. Thus, TNF-induced MSC proliferation is mediated by PDGFRβ signal, which works at downstream of Notch. Hes1-GFP mice can be used to assess the activation status of Notch in bone cells. PMID:27269414
Zhang, Hengwei; Sun, Wen; Li, Xing; Wang, Mengmeng; Boyce, Brendan F; Hilton, Matthew J; Xing, Lianping
2016-09-01
Notch signaling plays a critical role in maintaining bone homeostasis partially by controlling the formation of osteoblasts from mesenchymal stem cells (MSCs). We reported that TNF activates Notch signaling in MSCs which inhibits osteoblast differentiation in TNF transgenic (TNF-Tg) mice, a mouse model of chronic inflammatory arthritis. In the current study, we used Hes1-GFP and Hes1-GFP/TNF-Tg mice to study the distribution and dynamic change of Notch active cells in normal and inflammatory bone loss and mechanisms mediating their enhanced proliferation. We found that Hes1-GFP+ cells are composed of cells expressing mesenchymal, hematopoietic and endothelial surface markers. CD45-/Hes1-GFP+ cells express high levels of mesenchymal markers and form CFU-F and CFU-ALP colonies. Expansion of CFU-F colonies is associated with a rapid increase in Hes1-GFP+ cell numbers and their GFP intensity. The GFP signal is lost when a CFU-F colony differentiates into an ALP+ osteoblast colony. TNF increases the numbers of CD45-/Hes1-GFP+ cells, which are stained negatively for osteoblast marker osteocalcin and localized adjacent to endosteal and trabecular bone surfaces. CD45-/Hes1-GFP+ cells in Hes1-GFP/TNF-Tg mice have increased BrdU incorporation and PDGFRβ levels. TNF increases the number of proliferating Hes1-GFP+ cells, which is prevented by a specific PDGFRβ inhibitor. Notch inhibition blocks TNF-mediated PDGFRβ expression and cell proliferation. Thus, TNF-induced MSC proliferation is mediated by PDGFRβ signal, which works at downstream of Notch. Hes1-GFP mice can be used to assess the activation status of Notch in bone cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Negrão, Maria R; Keating, Elisa; Faria, Ana; Azevedo, Isabel; Martins, Maria J
2006-07-12
Alkaline phosphatase (ALP) is an ecto-enzyme widely distributed across species. It modulates a series of transmembranar transport systems, has an important role in bone mineralization, and can also be involved in vascular calcification. Polyphenol-rich diets seem to have protective effects on human health, namely, in the prevention of cardiovascular diseases. We aimed to investigate the effects of polyphenols and polyphenol-rich beverages upon membranar alkaline phosphatase (ecto-ALP) activity in intact human vascular smooth muscle cells (AALTR). The ecto-ALP activity was determined at pH 7.8, with p-nitrophenyl phosphate as the substrate, by absorbance spectrophotometry at 410 nm. Cell viability was assessed by the lactate dehydrogenase (LDH) method, and the polyphenol content of beverages was assessed using the Folin-Ciocalteu reagent. All polyphenols tested inhibited ecto-ALP activity, in a concentration-dependent way. Teas, wines, and beers also inhibited ecto-ALP activity, largely according to their polyphenol content. All tested compounds and beverages improved or did not change AALTR cell viability. Stout beer was an exception to the described behavior. Although more studies must be done, the inhibition of AALTR ecto-ALP activity by polyphenolic compounds and polyphenol-containing beverages may contribute to their cardiovascular protective effects.
Assessment of human pregnane X receptor involvement in pesticide-mediated activation of CYP3A4 gene.
Matsubara, Tsutomu; Noracharttiyapot, Wachiraporn; Toriyabe, Takayoshi; Yoshinari, Kouichi; Nagata, Kiyoshi; Yamazoe, Yasushi
2007-05-01
Assessment of foreign chemical inducibility on CYP3A4 is necessary to optimize drug therapies. The properties of chemicals such as pesticides, however, are not well investigated. In the present study, properties of various pesticides on human CYP3A4 induction have been tested using HepG2-derived cells stably expressing the CYP3A4 promoter/enhancer (3-1-10 cells) and the human pregnane X receptor (hPXR)-small interfering RNA (siRNA) system. Among the examined pesticides, 13 pesticides were observed to activate the CYP3A4 gene. Surprisingly, pyributicarb was found to increase the CYP3A4 reporter activity at 0.1 to 1 microM more strongly than typical CYP3A4 inducer rifampicin. Expression of hPXR-siRNA clearly diminished the pyributicarb-stimulated CYP3A4 reporter activity in 3-1-10 cells and decreased the endogenous CYP3A4 mRNA levels in HepG2 cells. Pyributicarb caused enhancement of CYP3A4-derived reporter activity in mouse livers introduced with hPXR by adenovirus. These results indicate pyributicarb as a potent activator of CYP3A4 gene, suggesting the existence of pesticides leading to CYP3A4 induction in our environment.
Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C
2010-09-01
To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P < 0.05). Among patients with DE, TGF-beta bioactivity was highest in those with Sjögren syndrome. Approximately, 79.1% of TGF-beta in DE tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable tool for assessing TGF-beta activity in human tears. Tear TGF-beta bioactivity increases in DE, particularly in Sjögren syndrome, where elevated levels of TGF-beta1 transcripts in the conjunctival epithelium have been previously detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Ayano; Tanabe, Eriko; Inoue, Serina
2013-04-12
Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1more » μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.« less
Glial activation in the collagenase model of nociception associated with osteoarthritis.
Adães, Sara; Almeida, Lígia; Potes, Catarina S; Ferreira, Ana Rita; Castro-Lopes, José M; Ferreira-Gomes, Joana; Neto, Fani L
2017-01-01
Background Experimental osteoarthritis entails neuropathic-like changes in dorsal root ganglia (DRG) neurons. Since glial activation has emerged as a key player in nociception, being reported in numerous models of neuropathic pain, we aimed at evaluating if glial cell activation may also occur in the DRG and spinal cord of rats with osteoarthritis induced by intra-articular injection of collagenase. Methods Osteoarthritis was induced by two injections, separated by three days, of 500 U of type II collagenase into the knee joint of rats. Movement-induced nociception was evaluated by the Knee-Bend and CatWalk tests during the following six weeks. Glial fibrillary acidic protein (GFAP) expression in satellite glial cells of the DRG was assessed by immunofluorescence and Western Blot analysis; the pattern of GFAP and activating transcription factor-3 (ATF-3) expression was also compared through double immunofluorescence analysis. GFAP expression in astrocytes and IBA-1 expression in microglia of the L3-L5 spinal cord segments was assessed by immunohistochemistry and Western Blot analysis. The effect of the intrathecal administration of fluorocitrate, an inhibitor of glial activation, on movement-induced nociception was evaluated six weeks after the first collagenase injection. Results GFAP expression in satellite glial cells of collagenase-injected animals was significantly increased six weeks after osteoarthritis induction. Double immunofluorescence showed GFAP upregulation in satellite glial cells surrounding ATF-3-positive neurons. In the spinal cord of collagenase-injected animals, an ipsilateral upregulation of GFAP and IBA-1 was also observed. The inhibition of glial activation with fluorocitrate decreased movement- and loading-induced nociception. Conclusion Collagenase-induced knee osteoarthritis leads to the development of nociception associated with movement of the affected joint and to the activation of glial cells in both the DRG and the spinal cord. Inhibition of glial cell activation by fluorocitrate decreases these osteoarthritis-associated nociceptive behaviours. These results suggest that glial cell activation may play a role in the development of chronic pain in this experimental model of osteoarthritis.
Seow, Syntyche Ling Sing; Hong, Sok Lai; Lee, Guan Serm; Malek, Sri Nurestri Abd; Sabaratnam, Vikineswary
2017-06-24
Ginger is a popular spice and food preservative. The rhizomes of the common ginger have been used as traditional medicine to treat various ailments. 6-Shogaol, a pungent compound isolated from the rhizomes of jahe gajah (Zingiber officinale var officinale) has shown numerous pharmacological activities, including neuroprotective and anti-neuroinflammatory activities. The aim of this study was to investigate the potential of 6-shogaol to mimic the neuritogenic activity of nerve growth factor (NGF) in rat pheochromocytoma (PC-12) cells. The cytotoxic effect of 6-shogaol was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The neuritogenic activity was assessed by neurite outgrowth stimulation assay while the concentration of extracellular NGF in cell culture supernatant was assessed by enzyme-linked immunosorbent assay (ELISA). Involvement of cellular signaling pathways, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase1/2 (MEK/ERK1/2) and phosphoinositide-3-kinase/protein kinase B (PI3K/AKT) in 6-shogaol-stimulated neuritogenesis were examined by using specific pharmacological inhibitors. 6-Shogaol (500 ng/ml) induced neuritogenesis that was comparable to NGF (50 ng/ml) and was not cytotoxic towards PC-12 cells. 6-Shogaol induced low level of NGF biosynthesis in PC-12 cells, showing that 6-shogaol stimulated neuritogenesis possibly by inducing NGF biosynthesis, and also acting as a substitute for NGF (NGF mimic) in PC-12 cells. The inhibitors of Trk receptor (K252a), MEK/ERK1/2 (U0126 and PD98059) and PI3K/AKT (LY294002) attenuated the neuritogenic activity of both NGF and 6-shogaol, respectively. The present findings demonstrated that 6-shogaol induced neuritogenic activity in PC-12 cells via the activation MEK/ERK1/2 and PI3K/AKT signaling pathways. This study suggests that 6-shogaol could act as an NGF mimic, which may be beneficial for preventive and therapeutic uses in neurodegenerative diseases.
Hirane, Miku; Araki, Mutsumi; Dong, Yan; Honoki, Kanya; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi
2013-11-08
Reactive oxygen species (ROS) are known to mediate a variety of biological responses, including cell motility. Recently, we indicated that lysophosphatidic acid (LPA) receptor-3 (LPA3) increased cell motile activity stimulated by hydrogen peroxide. In the present study, we assessed the role of LPA1 in the cell motile activity mediated by ROS in mouse fibroblast 3T3 cells. 3T3 cells were treated with hydrogen peroxide and 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) at concentrations of 0.1 and 1 μM for 48 h. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3 cells treated with hydrogen peroxide and DMNQ were significantly higher than those of untreated cells. 3T3 cells treated with hydrogen peroxide and DMNQ showed elevated expression levels of the Lpar3 gene, but not the Lpar1 and Lpar2 genes. To investigate the effects of LPA1 on the cell motile activity induced by hydrogen peroxide and DMNQ, Lpar1-overexpressing (3T3-a1) cells were generated from 3T3 cells and treated with hydrogen peroxide and DMNQ. The cell motile activities stimulated by hydrogen peroxide and DMNQ were markedly suppressed in 3T3-a1 cells. These results suggest that LPA signaling via LPA1 inhibits the cell motile activities stimulated by hydrogen peroxide and DMNQ in 3T3 cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Saghir, Sultan A M; Sadikun, Amirin; Al-Suede, Fouad S R; Majid, Amin M S A; Murugaiyah, Vikneswaran
Star fruit (Averrhoa carambola) is a well-known plant in Malaysia which bears a great significance in traditional medicine. This study aimed to evaluate the antihyperlipidemic effect, antioxidant potential and cytotoxicity of aqueous and methanolic extracts of ripe and unripe fruits, leaves and stem of A. carambola. Antihyperlipidemic activity was assessed in poloxamer-407 (P-407) induced acute hyperlipidemic rat's model. The antioxidant activity was assessed in vitro using 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging, 1-diphenyl-2-dipicrylhydrazyl radical scavenging (DPPH) and ferric reducing antioxidant power (FRAP) assays. In addition, cytotoxicity of A. carambola extracts was assessed using MTS assay on four leukemic cell lines (human colon cancer, human promyeloid leukemia, erythroid leukemia, acute myeloid leukemia) and one normal cell (human umbilical vein endothelial cells). Methanolic extract of leaves had the most potent antihyperlipidemic activity in P-407 model, whereby it significantly reduced serum levels of total cholesterol (P<0.01), triglycerides (P<0.01), low-density lipoprotein (P<0.05), verylow- density lipoprotein (P<0.01) and atherogenic index (P<0.01). On the other hand, methanolic extracts of A. carambola stem and leaves showed the strongest antioxidant activity. Total phenolic and flavonoid contents of the extracts exhibited significant correlations with antioxidant but not with antihyperlipidemic activities. All plant parts showed no cytotoxic effect on the selected cancer or normal cell lines. Antihyperlipidemic activity of different parts of A. carambola is greatly affected by extraction solvents used. Methanolic extract of A. carambola leaves exhibited higher antihyperlipidemic and antioxidant potentials compared to other parts of the plant.
Moon, Chang Hoon; Lee, Seung Ju; Lee, Ho Yong; Lee, Jong Cheol; Cha, Heejeong; Cho, Wha Ja; Park, Jeong Woo; Park, Hyun Jin; Seo, Jin; Lee, Young Han; Song, Ho-Taek; Min, Young Joo
2013-01-01
KML001 is sodium metaarsenite, and has shown cytotoxic activity in human tumor cell lines. The anti-cancer mechanism of KML001 involves cancer cell destruction due to DNA damage at the telomeres of cancer cell chromosomes. In this study, we assessed the vascular disrupting properties of KML001 and investigated whether KML001 as VDA is able to increase anti-tumor activity in irinotecan combined treatment. We used a murine model of the CT26 colon carcinoma cell line. CT26 isograft mice treated intraperitoneally with 10 mg/kg KML001 displayed extensive central necrosis of tumor by 24 h. The vascular disrupting effects of KML001 were assessed by dynamic contrast enhanced magnetic resonance imaging. Gadopentetic acid-diethylene triaminepentaacetic acid contrast enhancement was markedly decreased in KML001-treated mice one day after treatment, whereas persistently high signal enhancement was observed in mice injected with saline. Rate constant K(ep) value representing capillary permeability was significantly decreased (p<0.05) in mice treated with KML001. Cytoskeletal changes of human umbilical vein endothelial cells (HUVECs) treated with 10 uM KML001 were assessed by immune blotting and confocal imaging. KML001 degraded tubulin protein in HUVECs, which may be related to vascular disrupting properties of KML001. Finally, in the mouse CT26 isograft model, KML001 combined with irinotecan significantly delayed tumor growth as compared to control and irinotecan alone. These results suggest that KML001 is a novel vascular disrupting agent, which exhibits significant vascular shut-down activity and enhances anti-tumor activity in combination with chemotherapy. These data further suggest an avenue for effective combination therapy in treating solid tumors.
Moon, Chang Hoon; Lee, Seung Ju; Lee, Ho Yong; Lee, Jong Cheol; Cha, HeeJeong; Cho, Wha Ja; Park, Jeong Woo; Park, Hyun Jin; Seo, Jin; Lee, Young Han; Song, Ho-Taek; Min, Young Joo
2013-01-01
KML001 is sodium metaarsenite, and has shown cytotoxic activity in human tumor cell lines. The anti-cancer mechanism of KML001 involves cancer cell destruction due to DNA damage at the telomeres of cancer cell chromosomes. In this study, we assessed the vascular disrupting properties of KML001 and investigated whether KML001 as VDA is able to increase anti-tumor activity in irinotecan combined treatment. We used a murine model of the CT26 colon carcinoma cell line. CT26 isograft mice treated intraperitoneally with 10 mg/kg KML001 displayed extensive central necrosis of tumor by 24 h. The vascular disrupting effects of KML001 were assessed by dynamic contrast enhanced magnetic resonance imaging. Gadopentetic acid-diethylene triaminepentaacetic acid contrast enhancement was markedly decreased in KML001-treated mice one day after treatment, whereas persistently high signal enhancement was observed in mice injected with saline. Rate constant Kep value representing capillary permeability was significantly decreased (p<0.05) in mice treated with KML001. Cytoskeletal changes of human umbilical vein endothelial cells (HUVECs) treated with 10 uM KML001 were assessed by immune blotting and confocal imaging. KML001 degraded tubulin protein in HUVECs, which may be related to vascular disrupting properties of KML001. Finally, in the mouse CT26 isograft model, KML001 combined with irinotecan significantly delayed tumor growth as compared to control and irinotecan alone. These results suggest that KML001 is a novel vascular disrupting agent, which exhibits significant vascular shut-down activity and enhances anti-tumor activity in combination with chemotherapy. These data further suggest an avenue for effective combination therapy in treating solid tumors. PMID:23326531
Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia
2012-01-01
The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation. Copyright © 2010 Wiley Periodicals, Inc.
Anfinsen, Kristin P; Berghoff, Nora; Priestnall, Simon L; Suchodolski, Jan S; Steiner, Jörg M; Allenspach, Karin
2014-12-21
This study sought to correlate faecal and urinary N-methylhistamine (NMH) concentrations with resting versus degranulated duodenal mast cell numbers in dogs with chronic enteropathies (CE), and investigate correlations between intestinal mast cell activation and clinical severity of disease as assessed by canine chronic enteropathy clinical activity index (CCECAI), and between urinary and faecal NMH concentrations, mast cell numbers, and histopathological scores. Twenty-eight dogs with CE were included. Duodenal biopsies were stained with haematoxylin and eosin (H&E), toluidine blue, and by immunohistochemical labelling for tryptase. Duodenal biopsies were assigned a histopathological severity score, and duodenal mast cell numbers were counted in five high-power fields after metachromatic and immunohistochemical staining. Faecal and urinary NMH concentrations were measured by gas chromatography-mass spectrometry. There was no correlation between the CCECAI and faecal or urinary NMH concentrations, mast cell numbers, or histopathological score - or between faecal or urinary NMH concentration and mast cell numbers. Post hoc analysis revealed a statistically significant difference in toluidine blue positive mast cells between two treatment groups (exclusion diet with/without metronidazole versus immunosuppression (IS)), with higher numbers among dogs not requiring IS. Faecal and urinary NMH concentrations and duodenal mast cell numbers were not useful indicators of severity of disease as assessed by the CCECAI or histological evaluation. The number of duodenal mast cells was higher in dogs that did not need IS, i.e. in dogs responding to an exclusion diet (with/without metronidazole), than in dogs requiring IS. Further studies comparing the role of mast cells in dogs with different forms of CE are needed.
Xin, Lili; Wang, Jianshu; Zhang, Leshuai W; Che, Bizhong; Dong, Guangzhu; Fan, Guoqiang; Cheng, Kaiming
2016-08-01
The exponential increase in the total number of engineered nanoparticles in consumer products requires novel tools for rapid and cost-effective toxicology screening. In order to assess the oxidative damage induced by nanoparticles, toxicity test systems based on a human HSPA1A promoter-driven luciferase reporter in HepG2, LO2, A549, and HBE cells were established. After treated with heat shock and a group of silver nanoparticles (AgNPs) with different primary particle sizes, the cell viability, oxidative damage, and luciferase activity were determined. The time-dependent Ag(+) ions release from AgNPs in cell medium was also evaluated. Our results showed that heat shock produced a strong time-dependent induction of relative luciferase activity in the four luciferase reporter cells. Surprisingly, at 4h of recovery, the relative luciferase activity was >98× the control level in HepG2-luciferase cells. Exposure to different sizes of AgNPs resulted in activation of the HSPA1A promoter in a dose-dependent manner, even at low cytotoxic or non-cytotoxic doses. The smaller (5nm) AgNPs were more potent in luciferase induction than the larger (50 and 75nm) AgNPs. These results were generally in accordance with the oxidative damage indicated by malondialdehyde concentration, reactive oxygen species induction and glutathione depletion, and Ag(+) ions release in cell medium. Compared with the other three luciferase reporter cells, the luciferase signal in HepG2-luciferase cells is obviously more sensitive and stable. We conclude that the luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the oxidative damage induced by AgNPs. Copyright © 2016 Elsevier Inc. All rights reserved.
Fujita, Minoru; Mehra, Ruhina; Lee, Seung Eun; Roh, Danny S.; Long, Cassandra; Funderburgh, James L.; Ayares, David L.; Cooper, David K. C.; Hara, Hidetaka
2013-01-01
Purpose The possibility of providing cultured corneal endothelial cells (CECs) for clinical transplantation has gained much attention. However, the worldwide need for human (h) donor corneas far exceeds supply. The pig (p) might provide an alternative source. The aim of this study was to compare the proliferative capacity of CECs from wild-type (WT) pigs, genetically-engineered (GE) pigs, and humans. Methods The following CECs were cultured – hCECs from donors (i) ≤36 years (young), (ii) ≥49 years (old), and WT pCECs from (iii) neonatal (<5 days), (iv) young (<2 months), and (v) old (>20 months) pigs, and CECs from young (vi) GE pigs (GTKO/CD46 and GTKO/CD46/CD55). Proliferative capacity of CECs was assessed by direct cell counting over 15 days of culture and by BrdU assay. Cell viability during culture was assessed by annexin V staining. The MTT assay assessed cell metabolic activity. Results There was significantly lower proliferative capacity of old CECs than of young CECs (p<0.01) in both pigs and humans. There was no significant difference in proliferative capacity/metabolic activity between young pCECs and young hCECs. However, there was a significantly higher percentage of cell death in hCECs compared to pCECs during culture (p<0.01). Young GE pCECs showed similar proliferative capacity/cell viability/metabolic activity to young WT pCECs. Conclusions Because of the greater availability of young pigs and the excellent proliferative capacity of cultured GE pCECs, GE pigs could provide a source of CECs for clinical transplantation. PMID:23258190
Apoptosis induction and anti-cancer activity of LeciPlex formulations.
Dhawan, Vivek V; Joshi, Ganesh V; Jain, Ankitkumar S; Nikam, Yuvraj P; Gude, Rajiv P; Mulherkar, Rita; Nagarsenker, Mangal S
2014-10-01
Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.
Kozaki, Ikko; Shimizu, Kazunori; Honda, Hiroyuki
2017-08-01
Intracellular functional peptides that play a significant role inside cells have been receiving a lot of attention as regulators of cellular activity. Previously, we proposed a novel screening system for intracellular functional peptides; it combined a photo-cleavable peptide array system with cell-penetrating peptides (CPPs). Various peptides can be delivered into cells and intracellular functions of the peptides can be assayed by means of our system. The aim of the present study was to demonstrate that the proposed screening system can be used for assessing the intracellular activity of peptides. The cell death-inducing peptide (LNLISKLF) identified in a mitochondria-targeting domain (MTD) of the Noxa protein served as an original peptide sequence for screening of peptides with higher activity via modification of the peptide sequence. We obtained 4 peptides with higher activity, in which we substituted serine (S) at the fifth position with phenylalanine (F), valine (V), tryptophan (W), or tyrosine (Y). During analysis of the mechanism of action, the modified peptides induced an increase in intracellular calcium concentration, which was caused by the treatment with the original peptide. Higher capacity for cell death induction by the modified peptides may be caused by increased hydrophobicity or an increased number of aromatic residues. Thus, the present work suggests that the intracellular activity of peptides can be assessed using the proposed screening system. It could be used for identifying intracellular functional peptides with higher activity through comprehensive screening. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Motor activity as an unbiased variable to assess anaphylaxis in allergic rats
Abril-Gil, Mar; Garcia-Just, Alba; Cambras, Trinitat; Pérez-Cano, Francisco J; Castellote, Cristina; Franch, Àngels
2015-01-01
The release of mediators by mast cells triggers allergic symptoms involving various physiological systems and, in the most severe cases, the development of anaphylactic shock compromising mainly the nervous and cardiovascular systems. We aimed to establish variables to objectively study the anaphylactic response (AR) after an oral challenge in an allergy model. Brown Norway rats were immunized by intraperitoneal injection of ovalbumin with alum and toxin from Bordetella pertussis. Specific immunoglobulin (Ig) E antibodies were developed in immunized animals. Forty days after immunization, the rats were orally challenged with the allergen, and motor activity, body temperature and serum mast cell protease concentration were determined. The anaphylaxis induced a reduction in body temperature and a decrease in the number of animal movements, which was inversely correlated with serum mast cell protease release. In summary, motor activity is a reliable tool for assessing AR and also an unbiased method for screening new anti-allergic drugs. PMID:25716015
Bankier, Claire; Cheong, Yuen; Mahalingam, Suntharavathanan; Edirisinghe, Mohan; Ren, Guogang; Cloutman-Green, Elaine; Ciric, Lena
2018-01-01
Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.
Téllez-Bañuelos, Martha Cecilia; Ortiz-Lazareno, Pablo Cesar; Jave-Suárez, Luis Felipe; Siordia-Sánchez, Victor Hugo; Bravo-Cuellar, Alejandro; Santerre, Anne; Zaitseva, Galina P
2014-05-01
The effect of the organochlorinated insecticide endosulfan, on the cytotoxic activity of Nile tilapia nonspecific cytotoxic cells (NCC) was assessed. Juvenile Nile tilapia were exposed to endosulfan (7 ppb) for 96 h and splenic NCC were isolated. Flow cytometric phenotyping of NCC was based on the detection of the NCC specific membrane signaling protein NCCRP-1 by using the monoclonal antibody Mab 5C6; granzyme expression was evaluated by quantitative RT-PCR. The cytotoxic activity of sorted NCC on HL-60 tumoral cells was assessed using propidium iodide (PI) staining of DNA in HL-60 nuclei, indicating dead cells. Nile tilapia splenic NCC had the ability to kill HL-60 tumoral cells, however, the exposure to endosulfan significantly reduced, by a 65%, their cytotoxic activity when using the effector:target ratio of 40:1. Additionally, the exposure to endosulfan tended to increase the expression of NCCRP-1, which is involved in NCC antigen recognition and signaling. Moreover, it decreased the expression of the granzyme gene in exposed group as compared with non-exposed group; however significant differences between groups were not detected. In summary, the acute exposure of Nile tilapia to sublethal concentration of endosulfan induces alteration in function of NCC: significant decrease of cytotoxic activity and a tendency to lower granzyme expression, severe enough to compromise the immunity of this species. Copyright © 2014 Elsevier Ltd. All rights reserved.
NMDA Receptor Activity in Circulating Red Blood Cells: Methods of Detection.
Makhro, Asya; Kaestner, Lars; Bogdanova, Anna
2017-01-01
Abundance and activity of N-methyl-D-aspartate (NMDA) in circulating red blood cells contributes to the maintenance of intracellular Ca 2+ in these cells and, by doing that, controls red cell volume, membrane stability, and O 2 carrying capacity. Detection of the NMDA receptor activity in red blood cells is challenging as the number of its copies is low and shows substantial cell-to-cell heterogeneity. Receptor abundance is reliably assessed using the radiolabeled antagonist ([ 3 H]MK-801) binding technique. Uptake of Ca 2+ following the NMDA receptor activation is detected in cells loaded with Ca 2+ -sensitive fluorescent dye Fluo-4 AM. Both microfluorescence live-cell imaging and flow cytometry may be used for fluorescence intensity detection. Automated patch clamp is currently used for recording of electric currents triggered by the stimulation of the NMDA receptor. These currents are mediated by the Ca 2+ -sensitive K + (Gardos) channels that open upon Ca 2+ uptake via the active NMDA receptor. Furthermore, K + flux through the Gardos channels induced by the NMDA receptor stimulation in red blood cells may be detected using unidirectional K + ( 86 Rb + ) influx.
Ben Salem, Intidhar; Boussabbeh, Manel; Kantaoui, Hiba; Bacha, Hassen; Abid-Essefi, Salwa
2016-08-01
The protective effects of Crocin (CRO), a carotenoid with wide spectrum of pharmacological effects, against the cytotoxicity and the apoptosis produced by exposure to Dichlorvos (DDVP) in HCT116 cells were investigated in this work. The cytotoxicity was monitored by cell viability, ROS generation, antioxidant enzymes activities, malondialdehyde (MDA) production and DNA fragmentation. The apoptosis was assessed through the measurement of the mitochondrial transmembrane potential (ΔΨm) and caspases activation. The results indicated that pretreatment of HCT116 cells with CRO, 2h prior to DDVP exposure, significantly increased the survival of cells, inhibited the ROS generation, modulated the activities of catalase (CAT) and superoxide dismutase (SOD) and reduced the MDA level. The reduction in mitochondrial membrane potential, DNA fragmentation and caspases activation were also inhibited by CRO. These findings suggest that CRO can protect HCT116 cells from DDVP-induced oxidative stress and apoptosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Assessment of cell death mechanisms triggered by 177Lu-anti-CD20 in lymphoma cells.
Azorín-Vega, E; Rojas-Calderón, E; Martínez-Ventura, B; Ramos-Bernal, J; Serrano-Espinoza, L; Jiménez-Mancilla, N; Ordaz-Rosado, D; Ferro-Flores, G
2018-08-01
The aim of this research was to evaluate the cell cycle redistribution and activation of early and late apoptotic pathways in lymphoma cells after treatment with 177 Lu-anti-CD20. Experimental and computer models were used to calculate the radiation absorbed dose to cancer cell nuclei. The computer model (Monte Carlo, PENELOPE) consisted of twenty spheres representing cells with an inner sphere (cell nucleus) embedded in culture media. Radiation emissions of the radiopharmaceutical located in cell membranes and in culture media were considered for nuclei dose calculations. Flow cytometric analyses demonstrated that doses as low as 4.8Gy are enough to induce cell cycle arrest and activate late apoptotic pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pivotal role of glutathione depletion in plasma-induced endothelial oxidative stress during sepsis.
Huet, Olivier; Cherreau, Christaine; Nicco, Carole; Dupic, Laurent; Conti, Marc; Borderie, Didier; Pene, Frédéric; Vicaut, Eric; Benhamou, Dan; Mira, Jean-Paul; Duranteau, Jacques; Batteux, Frédéric
2008-08-01
Plasma from septic shock patients can induce production of reactive oxygen species (ROS) by human umbilical vein endothelial cells (HUVEC) in vitro. How endothelial cells defend themselves against ROS under increased oxidative stress has not yet been examined. This study investigates the antioxidant defenses of HUVEC exposed to plasma obtained from either septic shock patients or healthy volunteers. Prospective, observational study. Medical intensive care unit in a university hospital. Twenty-five patients with septic shock and 10 healthy volunteers. Blood samples were collected within the first 24 hrs of septic shock. In vitro HUVEC production of ROS was studied by spectrofluorimetry using 2',7'-dichlorodihydrofluorescein diacetate fluorescent dye. Reactive nitrogen species were also assessed. Intracellular reduced glutathione (GSH) levels were measured using monochlorobimane fluorescent dye. Activity of catalase and superoxide dismutase in HUVEC were also measured. Cell death was assessed using YOPRO fluorescent dye and the MTT assay. On admission, the septic shock population's mean age was 55 yrs old, the mean Sequential Organ Failure Assessment score was 12, mean simplified acute physiology score was 50, and intensive care unit mortality rate was 45%. Evaluation of HUVEC antioxidant defenses showed a significantly decreased GSH level, increased catalase activity, and unchanged superoxide dismutase activity. ROS levels and cell death were significantly reduced when cells were pretreated with N-acetylcysteine or GSH, but no changes in reactive nitrogen species were observed. This study demonstrates that plasma-induced ROS production by HUVEC is associated with an intracellular decrease in reduced GSH. Both ROS levels and cell death decreased when N-acetylcysteine or GSH were added before exposing the cells to plasma. These data suggest a pivotal role of alterations in GSH in damage caused by sepsis-generated ROS in endothelial cell.
Śladowska, Katarzyna; Opydo-Chanek, Małgorzata; Król, Teodora; Trybus, Wojciech; Trybus, Ewa; Kopacz-Bednarska, Anna; Handzlik, Jadwiga; Kieć-Kononowicz, Katarzyna; Mazur, Lidia
2017-11-01
To search for new antileukemic agents, the chemical structure of phenytoin was modified. A possible cytotoxic activity of three bromoalkyl phenytoin analogs, methyl 2-(1-(3-bromopropyl)-2,4-dioxo-5,5-diphenylimidazolidin-3-yl) propanoate (PH2), 1-(3-bromopropyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (PH3) and 1-(4-bromobutyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione (PH4) on regulated cell death, the cell cycle and cell ultrastructure was assessed. The experiments were performed in vitro on HL-60 and U937 cells, using flow cytometry and electron microscopy methods. Application of PH2, PH3, and PH4 resulted in cell surface exposure of phosphatidylserine and plasma membrane impairment, caspase-8, -9, and -3/7 activation, dissipation of mitochondrial membrane potential, DNA breakage, cell-cycle disturbance and cell ultrastructural changes. In general, PH3 appeared to be the most active against the leukemia cells, and all bromoalkyl hydantoins, PH2-PH4, were more active in HL-60 cells than in U937 cells. The antileukemic activity of the bromoalkyl phenytoin analogs depended on the combination of N-hydantoin substituents and the human cell line used. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
FTY720 inhibits mesothelioma growth in vitro and in a syngeneic mouse model.
Szymiczek, Agata; Pastorino, Sandra; Larson, David; Tanji, Mika; Pellegrini, Laura; Xue, Jiaming; Li, Shuangjing; Giorgi, Carlotta; Pinton, Paolo; Takinishi, Yasutaka; Pass, Harvey I; Furuya, Hideki; Gaudino, Giovanni; Napolitano, Andrea; Carbone, Michele; Yang, Haining
2017-03-15
Malignant mesothelioma (MM) is a very aggressive type of cancer, with a dismal prognosis and inherent resistance to chemotherapeutics. Development and evaluation of new therapeutic approaches is highly needed. Immunosuppressant FTY720, approved for multiple sclerosis treatment, has recently raised attention for its anti-tumor activity in a variety of cancers. However, its therapeutic potential in MM has not been evaluated yet. Cell viability and anchorage-independent growth were evaluated in a panel of MM cell lines and human mesothelial cells (HM) upon FTY720 treatment to assess in vitro anti-tumor efficacy. The mechanism of action of FTY720 in MM was assessed by measuring the activity of phosphatase protein 2A (PP2A)-a major target of FTY720. The binding of the endogenous inhibitor SET to PP2A in presence of FTY720 was evaluated by immunoblotting and immunoprecipitation. Signaling and activation of programmed cell death were evaluated by immunoblotting and flow cytometry. A syngeneic mouse model was used to evaluate anti-tumor efficacy and toxicity profile of FTY720 in vivo. We show that FTY720 significantly suppressed MM cell viability and anchorage-independent growth without affecting normal HM cells. FTY720 inhibited the phosphatase activity of PP2A by displacement of SET protein, which appeared overexpressed in MM, as compared to HM cells. FTY720 promoted AKT dephosphorylation and Bcl-2 degradation, leading to induction of programmed cell death, as demonstrated by caspase-3 and PARP activation, as well as by cytochrome c and AIF intracellular translocation. Moreover, FTY720 administration in vivo effectively reduced tumor burden in mice without apparent toxicity. Our preclinical data indicate that FTY720 is a potentially promising therapeutic agent for MM treatment.
Sedky, Nada K; El Gammal, Zaynab H; Wahba, Amir E; Mosad, Eman; Waly, Zahraa Y; El-Fallal, Amira Ali; Arafa, Reem K; El-Badri, Nagwa
2018-05-01
Despite advances in therapy of breast and ovarian cancers, they still remain among the most imperative causes of cancer death in women. The first can be considered one of the most widespread diseases among females, while the latter is more lethal and needs prompt treatment. Thus, the research field can still benefit from discovery of new compounds that can be of potential use in management of these grave illnesses. We hereby aimed to assess the antitumor activity of the phytosterol α-spinasterol isolated from Ganoderma resinaceum mushroom on human breast cancer cell lines (MCF-7, MDA-MB-231), as well as, on human ovarian cancer cell line (SKOV-3). The anti-tumor activity of α-spinasterol, isolated from the mycelial extract of the Egyptian G. resinaceum, on human breast and ovarian cancer cell lines was evaluated by MTT cell viability assay and AnnexinV/propidium iodide apoptosis assay. The molecular mechanism underlying this effect was assessed by the relative expression of the following markers; tumor suppressor (p53, BRCA1, BRCA2), apoptotic marker (Bax) and cell cycle progression markers (cyclin dependent kinases cdk4/6) using real-time PCR. Cell cycle analysis was performed for the three investigated cancer cell lines to explore the effect on cell cycle progression. Our findings showed that α-spinasterol exhibited a higher antitumor activity on MCF-7 cells relative to SKOV-3 cells, while its lowest antitumor activity was against MDA-MB-231 cells. A significant increase in the expression of p53 and Bax was observed in cells treated with α-spinasterol, while cdk4/6 were significantly down-regulated upon exposure to α-spinasterol. Cell cycle analysis of α-spinasterol treated cells showed a G 0 -G 1 arrest. In conclusion, α-spinasterol isolated from G. resinaceum mushroom exerts a potent inhibitory activity on breast and ovarian cancer cell lines in a time- and dose-dependent manner. This can be reasonified in lights of the compound's ability to increase p53 and Bax expressions, and to lower the expression of cdk4/6. © 2017 Wiley Periodicals, Inc.
Yadav, Mukesh Kumar; Choi, June; Song, Jae-Jun
2014-03-01
Gentamicin (GM) is a commonly used aminoglycoside antibiotic that generates free oxygen radicals within the inner ear, which can cause vestibulo-cochlear toxicity and permanent damage to the sensory hair cells and neurons. Piper longum L. (PL) is a well-known spice and traditional medicine in Asia and Pacific islands, which has been reported to exhibit a wide spectrum of activity, including antioxidant activity. In this study, we evaluated the effect of hexane:ethanol (2:8) PL extract (subfraction of PL [SPL] extract) on GM-induced hair cell loss in basal, middle and apical regions in a neonatal cochlea cultures. The protective effects of SPL extract were measured by phalloidin staining of cultures from postnatal day 2-3 mice with GM-induced hair cell loss. The anti-apoptosis activity of SPL extract was measured using double labeling by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and myosin-7a staining. The radical-scavenging activity of SPL extract was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. SPL extract at a concentration of 1 µg/mL significantly inhibited GM-induced hair cell loss at basal and middle region of cochlea, while 5 µg/mL was effective against apical region hair cell loss. The protective effect of SPL extract was concentration dependent and hair cells retained their stereocilia in explants treated with SPL extract prior to treatment with 0.3 mM GM. SPL extract decreased GM-induced apoptosis of hair cells as assessed by TUNEL staining. The outer hair and inner hair counts were not decreased in SPL extract treated groups in compare to GM treated explants. Additionally, SPL extract showed concentration dependent radical scavenging activity in a DPPH assay. An anti-apoptosis effect and potent radical scavenger activity of SPL extract protects from GM-induced hair cell loss at basal, middle and apical regions in neonatal cochlea cultures.
A Lipopeptide Facilitate Induction of Mycobacterium leprae Killing in Host Cells
Maeda, Yumi; Tamura, Toshiki; Fukutomi, Yasuo; Mukai, Tetsu; Kai, Masanori; Makino, Masahiko
2011-01-01
Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells. PMID:22132248
Tsurutani, Junji; Castillo, S Sianna; Brognard, John; Granville, Courtney A; Zhang, Chunyu; Gills, Joell J; Sayyah, Jacqueline; Dennis, Phillip A
2005-07-01
Retrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnoses have lower response rates and shorter median survival compared with patients who stop smoking. To provide insight into the biologic basis for these clinical observations, we tested whether two tobacco components, nicotine or the tobacco-specific carcinogen, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), could activate the Akt pathway and increase lung cancer cell proliferation and survival. Nicotine or NNK, rapidly and potently, activated Akt in non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) cells. Nicotinic activation of Akt increased phosphorylation of multiple downstream substrates of Akt in a time-dependent manner, including GSK-3, FKHR, tuberin, mTOR and S6K1. Since nicotine or NNK bind to cell surface nicotinic acetylcholine receptors (nAchR), we used RT-PCR to assess expression of nine alpha and three beta nAchR subunits in five NSCLC cell lines and two types of primary lung epithelial cells. NSCLC cells express multiple nAchR subunits in a cell line-specific manner. Agonists of alpha3/alpha4 or alpha7 subunits activated Akt in a time-dependent manner, suggesting that tobacco components utilize these subunits to activate Akt. Cellular outcomes after nicotine or NNK administration were also assessed. Nicotine or NNK increased proliferation of NSCLC cells in an Akt-dependent manner that was closely linked with changes in cyclin D1 expression. Despite similar induction of proliferation, only nicotine decreased apoptosis caused by serum deprivation and/or chemotherapy. Protection conferred by nicotine was NFkappaB-dependent. Collectively, these results identify tobacco component-induced, Akt-dependent proliferation and NFkappaB-dependent survival as cellular processes that could underlie the detrimental effects of smoking in cancer patients.
Sawada, Ikuko; Hashimoto, Kae; Sawada, Kenjiro; Kinose, Yasuto; Nakamura, Koji; Toda, Aska; Nakatsuka, Erika; Yoshimura, Akihiko; Mabuchi, Seiji; Fujikawa, Tomoyuki; Itai, Akiko; Kimura, Tadashi
2016-05-01
Aberrant activation of nuclear factor-kappa β (NF-κB) signaling has been correlated with poor outcome among patients with ovarian cancer. Although the therapeutic potential of NF-κB pathway disruption in cancers has been extensively studied, most classical NF-κB inhibitors are poorly selective, exhibit off-target effects, and have failed to be applied in clinical use. IMD-0560, N-[2,5-bis (trifluoromethyl) phenyl]-5-bromo-2-hydroxybenzamide, is a novel low-molecular-weight compound that selectively inhibits the IκB kinase complex and works as an inhibitor of NF-κB signaling. The aim of this study was to assess the therapeutic potential of IMD-0560 against ovarian cancer in vitro and in vivo. NF-κB activity (phosphorylation) was determined in 9 ovarian cancer cell lines and the inhibitory effect of IMD-0560 on NF-κB activation was analyzed by Western blotting. Cell viability, cell cycle, vascular endothelial growth factor (VEGF) expression, and angiogenesis were assessed in vitro to evaluate the effect of IMD-0560 on ovarian cancer cells. In vivo efficacy of IMD-0560 was also investigated using an ovarian cancer xenograft mouse model. The NF-κB signaling pathway was constitutively activated in 8 of 9 ovarian cancer cell lines. IMD-0560 inhibited NF-κB activation and suppressed ovarian cancer cell proliferation by inducing G1 phase arrest. IMD-0560 decreased VEGF secretion from cancer cells and inhibited the tube formation of human umbilical vein endothelial cells. IMD-0560 significantly inhibited peritoneal metastasis and prolonged the survival in an ovarian cancer xenograft mice model. Immunohistochemical staining of excised tumors revealed that IMD-0560 suppressed VEGF expression, tumor angiogenesis, and cancer cell proliferation. IMD-0560 showed promising therapeutic efficacy against ovarian cancer xenograft mice by inducing cell cycle arrest and suppressing VEGF production from cancer cells. IMD-0560 may be a potential future option in regimens for the treatment of ovarian cancer.
[Enhanced ε-poly-L-lysine production by improving cellular activity during fermentation].
Liu, Shengrong; Wu, Qingping; Zhang, Jumei; Yang, Xiaojuan; Cai, Shuzhen
2015-06-04
To assess the effect of cellular activity on ε-poly-1-lysine (ε-PL) biosynthesis and thereby to rationally improve the production, we studied the cellular activity, ε-PL formation and other parameters cross flask fermentation by Streptomyces ahygroscopicus. Laser scanning confocal microscopy and a colorimetric method were used to determine cellular activity using BacLight Live/Dead and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) as viable stains. To enhance the activity of the cells in the ε-PL production period, yeast extract was added. During ε-PL submerged fermentation in flasks, most cells were active in the growth period (0 - 16 h); cells had metabolic activity in the growth and earlier ε-PL production periods between 0 and 30 h fermentation. Almost no activity was detected after 48 h fermentation when no ε-PL was produced. The improved fermentation achieved 2. 24 g/L ε-PL from 1.04 g/L. Biosynthesis of ε-PL can be boosted by up-regulating cell activity in its production phase.
Pane, Jessica A.; Webster, Nicole L.; Coulson, Barbara S.
2014-01-01
It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon contributes to the lymphocyte activation observed following RRV infection of NOD mice, and may play a role in diabetes acceleration by rotavirus. PMID:24676425
Seoane, Marta; Esperanza, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles
2017-03-01
Large quantities of personal care products (PCPs) are used daily and many of their chemical ingredients are subsequently released into marine environments. Cultures of the marine microalga Tetraselmis suecica were exposed for 24 h to three emerging compounds included in the main classes of PCPs: the UV filter benzophenone-3 (BP-3), the disinfectant triclosan (TCS) and the fragrance tonalide (AHTN). Concentrations tested, expressed as cellular quota (pg cell -1 ), ranged from 5 to 40 for BP-3, from 2 to 16 for TCS and from 1.2 to 2.4 for AHTN. A small cytometric panel was carried out to evaluate key cytotoxicity biomarkers including inherent cell properties, growth and metabolic activity and cytoplasmic membrane properties. BP-3 caused a significant increase in growth rate, metabolic activity and chlorophyll a fluorescence from 10 pg cell -1 . However, growth and esterase activity decreased in cells exposed to all TCS and AHTN concentrations, except the lowest ones. Also these two compounds provoked a significant swelling of cells, more pronounced in the case of TCS-exposed cells. Although all treated cells remained viable, changes in membrane potential were observed. BP-3 and AHTN caused a significant depolarization of cells from 10 to 1.6 pg cell -1 , respectively; however all TCS concentrations assayed caused a noticeable hyperpolarization of cells. Metabolic activity and cytoplasmic membrane potential were the most sensitive parameters. It can be concluded that the toxicological model used and the toxicological parameters evaluated are suitable to assess the toxicity of these emerging contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Chengwen; Lou, Yanyan; Lizée, Gregory; Qin, Hong; Liu, Shujuan; Rabinovich, Brian; Kim, Grace J; Wang, Yi-Hong; Ye, Yang; Sikora, Andrew G; Overwijk, Willem W; Liu, Yong-Jun; Wang, Gang; Hwu, Patrick
2008-03-01
A prerequisite for strong adaptive antiviral immunity is the robust initial activation of the innate immune system, which is frequently mediated by TLR-activated plasmacytoid DCs (pDCs). Natural antitumor immunity is often comparatively weak, potentially due to the lack of TLR-mediated activation signals within the tumor microenvironment. To assess whether pDCs are capable of directly facilitating effective antitumor immune responses, mice bearing established subcutaneous B16 melanoma tumors were administered TLR9-activated pDCs directly into the tumor. We found that TLR9-activated pDCs induced robust, spontaneous CTL cross-priming against multiple B16 tumor antigens, leading to the regression of both treated tumors and untreated tumors at distant contralateral sites. This T cell cross-priming was mediated by conventional DCs (cDCs) and was completely dependent upon the early recruitment and activation of NK cells at the tumor site. NK cell recruitment was mediated by CCR5 via chemokines secreted by pDCs, and optimal IFN-gamma production by NK cells was mediated by OX40L expressed by pDCs. Our data thus demonstrated that activated pDCs are capable of initiating effective and systemic antitumor immunity through the orchestration of an immune cascade involving the sequential activation of NK cells, cDCs, and CD8(+) T cells.
To assess the potential risks of human exposure to endocrine active compounds (EACs), the mechanisms of toxicity must first be identified and characterized. Currently, there are no robust in vitro models for identifying the mechanisms of toxicity in germ cells resulting from EAC ...
Telomerase Activity in Human Ovarian Carcinoma
NASA Astrophysics Data System (ADS)
Counter, Christopher M.; Hirte, Hal W.; Bacchetti, Silvia; Harley, Calvin B.
1994-04-01
Telomeres fulfill the dual function of protecting eukaryotic chromosomes from illegitimate recombination and degradation and may aid in chromosome attachment to the nuclear membrane. We have previously shown that telomerase, the enzyme which synthesizes telomeric DNA, is not detected in normal somatic cells and that telomeres shorten with replicative age. In cells immortalized in vitro, activation of telomerase apparently stabilizes telomere length, preventing a critical destabilization of chromosomes, and cell proliferation continues even when telomeres are short. In vivo, telomeres of most tumors are shorter than telomeres of control tissues, suggesting an analogous role for the enzyme. To assess the relevance of telomerase and telomere stability in the development and progression of tumors, we have measured enzyme activity and telomere length in metastatic cells of epithelial ovarian carcinoma. We report that extremely short telomeres are maintained in these cells and that tumor cells, but not isogenic nonmalignant cells, express telomerase. Our findings suggest that progression of malignancy is ultimately dependent upon activation of telomerase and that telomerase inhibitors may be effective antitumor drugs.
Myo-inositol reduces β-catenin activation in colitis
Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A
2017-01-01
AIM To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-cateninS552 as a biomarker of recurrent dysplasia. METHODS We examined the effects of dietary myo-inositol treatment on inflammation, pβ-cateninS552 and pAkt levels by histology and western blot in IL-10-/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-cateninS552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. RESULTS In mice, pβ-cateninS552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-cateninS552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. CONCLUSION Enumerating crypts with increased numbers of pβ-cateninS552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials. PMID:28811707
Myo-inositol reduces β-catenin activation in colitis.
Bradford, Emily M; Thompson, Corey A; Goretsky, Tatiana; Yang, Guang-Yu; Rodriguez, Luz M; Li, Linheng; Barrett, Terrence A
2017-07-28
To assess dietary myo-inositol in reducing stem cell activation in colitis, and validate pβ-catenin S552 as a biomarker of recurrent dysplasia. We examined the effects of dietary myo-inositol treatment on inflammation, pβ-catenin S552 and pAkt levels by histology and western blot in IL-10 -/- and dextran sodium sulfate-treated colitic mice. Additionally, we assessed nuclear pβ-catenin S552 in patients treated with myo-inositol in a clinical trial, and in patients with and without a history of colitis-induced dysplasia. In mice, pβ-catenin S552 staining faithfully reported the effects of myo-inositol in reducing inflammation and intestinal stem cell activation. In a pilot clinical trial of myo-inositol administration in patients with a history of low grade dysplasia (LGD), two patients had reduced numbers of intestinal stem cell activation compared to the placebo control patient. In humans, pβ-catenin S552 staining discriminated ulcerative colitis patients with a history of LGD from those with benign disease. Enumerating crypts with increased numbers of pβ-catenin S552 - positive cells can be utilized as a biomarker in colitis-associated cancer chemoprevention trials.
CRYAB modulates the activation of CD4+ T cells from relapsing-remitting multiple sclerosis patients.
Quach, Que Lan; Metz, Luanne M; Thomas, Jenna C; Rothbard, Jonathan B; Steinman, Lawrence; Ousman, Shalina S
2013-12-01
Suppression of activation of pathogenic CD4(+) T cells is a potential therapeutic intervention in multiple sclerosis (MS). We previously showed that a small heat shock protein, CRYAB, reduced T cell proliferation, pro-inflammatory cytokine production and clinical signs of experimental allergic encephalomyelitis, a model of MS. We assessed whether the ability of CRYAB to reduce the activation of T cells translated to the human disease. CD4(+) T cells from healthy controls and volunteers with MS were activated in vitro in the presence or absence of a CRYAB peptide (residues 73-92). Parameters of activation (proliferation rate, cytokine secretion) and tolerance (anergy, activation-induced cell death, microRNAs) were evaluated. The secretion of pro-inflammatory cytokines by CD4(+) T cells was decreased in the presence of CRYAB in a subset of relapsing-remitting multiple sclerosis (RRMS) participants with mild disease severity while no changes were observed in healthy controls. Further, there was a correlation for higher levels of miR181a microRNA, a marker upregulated in tolerant CD8(+) T cells, in CD4(+) T cells of MS patients that displayed suppressed cytokine production (responders). CRYAB may be capable of suppressing the activation of CD4(+) T cells from a subset of RRMS patients who appear to have less disability but similar age and disease duration.
Bucki, Robert; Niemirowicz, Katarzyna; Wnorowska, Urszula; Byfield, Fitzroy J; Piktel, Ewelina; Wątek, Marzena; Janmey, Paul A; Savage, Paul B
2015-10-01
Ceragenins constitute a novel family of cationic antibiotics characterized by a broad spectrum of antimicrobial activities, which have mostly been assessed in vitro. Using a polarized human lung epithelial cell culture system, we evaluated the antibacterial activities of the ceragenin CSA-13 against two strains of Pseudomonas aeruginosa (PAO1 and Xen5). Additionally, the biodistribution and bactericidal activity of a CSA-13-IRDye 800CW derivate were assessed using an animal model of peritoneal infection after PAO1 challenge. In cell culture, CSA-13 bactericidal activities against PAO1 and Xen5 were higher than the activities of the human cathelicidin peptide LL-37. Increased CSA-13 activity was observed in polarized human lung epithelial cell cultures subjected to butyric acid treatment, which is known to increase endogenous LL-37 production. Eight hours after intravenous or intraperitoneal injection, the greatest CSA-13-IRDye 800CW accumulation was observed in mouse liver and kidneys. CSA-13-IRDye 800CW administration resulted in decreased bacterial outgrowth from abdominal fluid collected from animals subjected to intraperitoneal PAO1 infection. These observations indicate that CSA-13 may synergistically interact with antibacterial factors that are naturally present at mucosal surfaces and it maintains its antibacterial activity in the infected abdominal cavity. Cationic lipids such as CSA-13 represent excellent candidates for the development of new antibacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Somasekharan, Syam Prakash; El-Naggar, Amal; Sorensen, Poul H.
2016-01-01
Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted. PMID:27656243
Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT
Jubair, Shaiban; Li, Jianping; Dehlin, Heather M.; Manteufel, Edward J.; Goldspink, Paul H.; Levick, Scott P.
2015-01-01
Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. PMID:26071541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Yan; Hirane, Miku; Araki, Mutsumi
2014-04-04
Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cellmore » migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.« less
Trumpaitė-Vanagienė, Rita; Čebatariūnienė, Alina; Tunaitis, Virginijus; Pūrienė, Alina; Pivoriūnas, Augustas
2018-02-01
To compare cytotoxicity of extracts derived from commonly used luting cements: Hoffmann's Zinc Phosphate (ZPC), GC Fuji Plus Resin Modified Glass Ionomer (RMGIC) and 3M ESPE RelyX Unicem Resin Cement (RC) on primary human gingival fibroblasts (HGFs). HGFs were exposed to different concentrations of the ZPC, RMGIC and RC extracts. The cytotoxicity was assessed with the PrestoBlue Cell Viability Reagent and viable cells were counted by a haemocytometer using the trypan blue exclusion test. In order to determine the primary mechanism of the cell death induced by extracts from different luting cements, the real-time monitoring of caspase-3/-7 activity and membrane integrity of cells was employed. The extracts from the RMGIC and ZPC decreased the metabolic activity and numbers of viable cells. Unexpectedly, the extracts from the RC evoked only small effects on the metabolic activity of HGFs with a decreasing number of viable cells in a dose-and time-dependent manner. The live cell imaging revealed that the apoptosis was the primary mechanism of a cell death induced by the extracts derived from the RMGIC, whereas the extracts from the RC and ZPC induced a cell death through a necrotic and caspase-independent pathway. The apoptosis was the primary mechanism of the cell death induced by the extracts derived from the RMGIC, whereas the extracts from the RC and ZPC induced a cell death via a necrotic pathway. We suggest that metabolic assays commonly used to assess the cytotoxicity of luting cements should be validated by alternative methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessment of Inhibition of Ebola Virus Progeny Production by Antiviral Compounds.
Falzarano, Darryl
2017-01-01
Assessment of small molecule compounds against filoviruses, such as Ebola virus, has identified numerous compounds that appear to have antiviral activity and should presumably be further investigated in animal efficacy trials. However, despite the many compounds that are purported to have good antiviral activity in in vitro studies, there are few instances where any efficacy has been reported in nonhuman primate models. Many of the high-throughput screening assays use reporter systems that only recapitulate a portion of the virus life cycle, while other assays only assess antiviral activity at relatively early time points. Moreover, many assays do not assess virus progeny production. A more in-depth evaluation of small numbers of test compounds is useful to economize resources and to generate higher quality antiviral hits. Assessing virus progeny production as late as 5 days post-infection allows for the elimination of compounds that have initial antiviral effects that are not sustained or where the virus rapidly develops resistance. While this eliminates many potential lead compounds that may be worthy of further structure-activity relationship (SAR) development, it also quickly excludes compounds that in their current form are unlikely to be effective in animal models. In addition, the inclusion of multiple assays that assess both cell viability and cell cytotoxicity, via different mechanisms, provides a more thorough assessment to exclude compounds that are not direct-acting antivirals.
Leite, Yulla Klinger de Carvalho; de Carvalho, Camila Ernanda Sousa; Feitosa, Matheus Levi Tajra; Alves, Michel Muálem de Moraes; Carvalho, Fernando Aécio de Amorim; Neto, Bartolomeu Cruz Viana; Miglino, Maria Angélica
2018-01-01
Background Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. Methods Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. Results The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs’ bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. Conclusion The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering. PMID:29736332
Liver X receptor activation inhibits PC-3 prostate cancer cells via the beta-catenin pathway.
Youlin, Kuang; Li, Zhang; Weiyang, He; Jian, Kang; Siming, Liang; Xin, Gou
2017-03-01
Liver X receptors (LXRs) are nuclear receptors family of ligand-dependent transcription factors that play a crucial role in regulating cholesterol metabolism and inflammation. Recent studies show that LXR agonists exhibit anti-cancer activities in a variety of cancer cell lines including prostate. To further identify the potential mechanisms of LXRα activation on prostate cancer, we investigated the effect of LXR agonist T0901317 on PC3 prostate cancer cell and in which activity of beta-catenin pathway involved. Prostate cancer PC3 cells were transfected with LXR-a siRNA and treated with LXR activator T0901317. qRT-PCR and western blot were used to detect the LXR-a expression. beta-catenin, cyclin D1 and c-MYC were analyzed by western blot. Cell apoptosis was examined by flow cytometry and Cell proliferation was assessed by Cell Counting Kit-8 assay. Cell migration was detected by Transwell chambers. Data showed that T0901317 significantly inhibited PC3 cell proliferation as well as invasion and increased apoptosis in vitro. Furthermore, we found that LXRα activation induced the reduction of beta-catenin expression in PC3 cells, and this inhibitory effect could be totally abolished when cells were treated with LXRα. Meanwhile, the expression of beta-catenin target gene cyclin D1 and c-MYC were also decreased. This study provided additional evidence that LXR activation inhibited PC-3 prostate cancer cells via suppressing beta-catenin pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.
Agabeĭli, R A; Kasimova, T E; Alekperov, U K
2004-01-01
Antimutagene activity and high efficiency of antimutagene action of plant extracts from horseradish roots (Armoracia rusticana), fig brunches (Ficus carica) and mays seedlings (Zea mays) and their ability to decrease the frequency of spontaneous and induced by gamma-rays chromosome aberrations in meristematic cells of Vicia faba and marrow cells of mice have been shown. Comparative assessment of genoprotective properties of peroxidase and the studied extracts has revealed higher efficiency of antimutagene action of peroxidase.
p53 is a key regulator for osthole-triggered cancer pathogenesis.
Huang, Ssu-Ming; Tsai, Cheng-Fang; Chen, Dar-Ren; Wang, Min-Ying; Yeh, Wei-Lan
2014-01-01
Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development.
Antiapoptotic activity of argon and xenon
Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido
2013-01-01
Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115
Assessment of the Relative Toxicity of N,N-Dipropylcyclohexanecarboxamide, AI3-36326.
1983-04-01
cells with or without an in vitro metabolic activation system. The in vitro metabolic activation system was composed of rat liver enzymes and an energy...producing system. The enzymes were contained in a preparation of liver microsomes (S9 fraction)JI fron rats treated with an alkylating agent, Aroclor...to induce enzymes capable of transforming chemicals to more active forms. Cells were examined 10 to 12 hours following treatment when entering mitosis
Cytotoxic activity of natural killer cells in vitro under microgravity
NASA Astrophysics Data System (ADS)
Grigorieva, O. V.; Buravkova, L. B.; Rykova, M. P.
2005-08-01
Changes in the immune response during space flight are close relation to functions of NK lymphocytes and their ability to interact with target cells. The aim of this research was to study NK cells cytotoxic activity and their ability to produce cytokines under microgravity in vitro. The modification of the method to study NK cells cytotoxic activity with the use of human peripheral blood mononuclear cells and myeloblasts K-562 (as target cells) proved highly effective (Buravkova et al., 2004). The flight experiment "Cell-to-cell interaction" with the use of the special device "Fibroblast-1" was carried out by Russian cosmonauts within the first two days after the docking when a new crew was taking over on International Space Station (ISS 8 - 10). The data collected on board ISS revealed that NK lymphocytes cytotoxic activity in vitro can increase under microgravity. The ground-based simulation experiments showed that long-term changes in gravity vector direction clinorotation resulted in a smaller increase of NK cells cytotoxic activity than it did in microgravity. As lymphocytes produce cytokines while interacting with target cells, the levels of TNF-α, IL-1α, IL- 2, IL-6 in cell-conditioned medium were assessed. The data showed that microgravity has varied effects on cytokines production level.
Inayat-Hussain, S H; Annuar, B O; Din, L B; Ali, A M; Ross, D
2003-08-01
Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.
Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha
2015-12-01
Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.
Enhanced growth medium and method for culturing human mammary epithelial cells
Stampfer, Martha R.; Smith, Helene S.; Hackett, Adeline J.
1983-01-01
Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.
Wink, Steven; Hiemstra, Steven W; Huppelschoten, Suzanne; Klip, Janna E; van de Water, Bob
2018-05-01
Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and characterized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding and prediction of drug-induced liver liabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, Kyle C.; Mito, Jeffrey K.; Javid, Melodi P.
2013-05-01
Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activatedmore » fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.« less
Mast cell activation test in the diagnosis of allergic disease and anaphylaxis.
Bahri, Rajia; Custovic, Adnan; Korosec, Peter; Tsoumani, Marina; Barron, Martin; Wu, Jiakai; Sayers, Rebekah; Weimann, Alf; Ruiz-Garcia, Monica; Patel, Nandinee; Robb, Abigail; Shamji, Mohamed H; Fontanella, Sara; Silar, Mira; Mills, E N Clare; Simpson, Angela; Turner, Paul J; Bulfone-Paus, Silvia
2018-03-05
Food allergy is an increasing public health issue and the most common cause of life-threatening anaphylactic reactions. Conventional allergy tests assess for the presence of allergen-specific IgE, significantly overestimating the rate of true clinical allergy and resulting in overdiagnosis and adverse effect on health-related quality of life. To undertake initial validation and assessment of a novel diagnostic tool, we used the mast cell activation test (MAT). Primary human blood-derived mast cells (MCs) were generated from peripheral blood precursors, sensitized with patients' sera, and then incubated with allergen. MC degranulation was assessed by means of flow cytometry and mediator release. We compared the diagnostic performance of MATs with that of existing diagnostic tools to assess in a cohort of peanut-sensitized subjects undergoing double-blind, placebo-controlled challenge. Human blood-derived MCs sensitized with sera from patients with peanut, grass pollen, and Hymenoptera (wasp venom) allergy demonstrated allergen-specific and dose-dependent degranulation, as determined based on both expression of surface activation markers (CD63 and CD107a) and functional assays (prostaglandin D 2 and β-hexosaminidase release). In this cohort of peanut-sensitized subjects, the MAT was found to have superior discrimination performance compared with other testing modalities, including component-resolved diagnostics and basophil activation tests. Using functional principle component analysis, we identified 5 clusters or patterns of reactivity in the resulting dose-response curves, which at preliminary analysis corresponded to the reaction phenotypes seen at challenge. The MAT is a robust tool that can confer superior diagnostic performance compared with existing allergy diagnostics and might be useful to explore differences in effector cell function between basophils and MCs during allergic reactions. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
McGinley, Emma Louise; Coleman, David C; Moran, Gary P; Fleming, Garry J P
2011-07-01
To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers. Discs of d.Sign®10 were cast, alumina particle air abraded and half were polished before surface roughness was determined by profilometry. Biocompatibility was assessed by placing the discs directly or indirectly (with immersion solutions) into contact with TR146 monolayers. Metal ion release was determined by ICP-MS. Cell viability was assessed by trypan blue dye exclusion, metabolic activity by XTT and cellular toxicity by LDH. Inflammatory cytokine analysis was performed using sandwich ELISAs. The mean polished Ra value was significantly reduced (P<0.001) compared with the alumina particle air abraded discs but metal ion release was significantly increased for the polished discs. Significant reductions in cell density of polished compared with alumina particle air abraded discs was observed following direct or indirect exposure. A significant reduction in metabolic activity, increase in cellular toxicity and an increase in the presence of inflammatory cytokine markers was highlighted for the polished relative to the alumina particle air abraded discs at 24h. Finishing condition of the Ni-Cr dental alloy investigated has important clinical implications. The approach of employing cell density and morphology, metabolic activity, cellular toxicity levels and inflammatory marker responses to TR146 epithelial cells combined with ICP-MS afforded the authors an increased insight into the complex processes dental alloys undergo in the oral environment. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.
Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii
2017-10-17
Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.
Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells
Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii
2017-01-01
Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones—HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells. PMID:29156827
PIK3CA dependence and sensitivity to therapeutic targeting in urothelial carcinoma.
Ross, R L; McPherson, H R; Kettlewell, L; Shnyder, S D; Hurst, C D; Alder, O; Knowles, M A
2016-07-28
Many urothelial carcinomas (UC) contain activating PIK3CA mutations. In telomerase-immortalized normal urothelial cells (TERT-NHUC), ectopic expression of mutant PIK3CA induces PI3K pathway activation, cell proliferation and cell migration. However, it is not clear whether advanced UC tumors are PIK3CA-dependent and whether PI3K pathway inhibition is a good therapeutic option in such cases. We used retrovirus-mediated delivery of shRNA to knock down mutant PIK3CA in UC cell lines and assessed effects on pathway activation, cell proliferation, migration and tumorigenicity. The effect of the class I PI3K inhibitor GDC-0941 was assessed in a panel of UC cell lines with a range of known molecular alterations in the PI3K pathway. Specific knockdown of PIK3CA inhibited proliferation, migration, anchorage-independent growth and in vivo tumor growth of cells with PIK3CA mutations. Sensitivity to GDC-0941 was dependent on hotspot PIK3CA mutation status. Cells with rare PIK3CA mutations and co-occurring TSC1 or PTEN mutations were less sensitive. Furthermore, downstream PI3K pathway alterations in TSC1 or PTEN or co-occurring AKT1 and RAS gene mutations were associated with GDC-0941 resistance. Mutant PIK3CA is a potent oncogenic driver in many UC cell lines and may represent a valuable therapeutic target in advanced bladder cancer.
Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya
2017-01-01
Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. PMID:27821713
Halimi, Shahnaz; Mirsalehian, Akbar
2016-02-01
The probiotic potential of Lactobacillus species isolated from infant feces was investigated. For this study, the antibiotic susceptibility, tolerance in gut-related conditions, antimicrobial activity, and ability to adhere to a human colorectal adenocarcinoma cell line (Caco-2 cells) of four common Lactobacillus species (Lactobacillus paracasei [n = 15], Lactobacillus rhamnosus [n = 45], Lactobacillus gasseri [n = 20] and Lactobacillus fermentum [n = 18]) were assessed. Most isolates that which were sensitive to imipenem, ampicillin, gentamycin, erythromycin and tetracycline were selected for other tests. L. gasseri isolates had the greatest sensitivity to gastric and intestinal fluids (<10% viability). L. fermentum (FH5, FH13 and FH18) had the highest adhesion to Caco-2 cells. The lowest antibacterial activity against pathogenic bacteria was shown by L. gasseri strains in spot tests. Furthermore, non-adjusted cell-free culture supernatants with low pH had greater antimicrobial activity, which was related to organic acid. The results showed that some isolates of L. rhamnosus and L. fermentum are suitable for use as a probiotic. © 2015 The Societies and John Wiley & Sons Australia, Ltd.
[Detection of viable metabolically active yeast cells using a colorimetric assay].
Růzicka, F; Holá, V
2008-02-01
The increasing concern of yeasts able to form biofilm brings about the need for susceptibility testing of both planktonic and biofilm cells. Detection of viability or metabolic activity of yeast cells after exposure to antimicrobials plays a key role in the assessment of susceptibility testing results. Colorimetric assays based on the color change of the medium in the presence of metabolically active cells proved suitable for this purpose. In this study, the usability of a colorimetric assay with the resazurin redox indicator for monitoring the effect of yeast inoculum density on the reduction rate was tested. As correlation between the color change rate and inoculum density was observed, approximate quantification of viable cells was possible. The assay would be of relevance to antifungal susceptibility testing in both planktonic and biofilm yeasts.
2014-01-01
Background Type 2 diabetes (T2D) is associated with reduction and dysfunction of circulating pro-angiogenic cells (PACs). DPP-4 inhibitors, a class of oral agents for T2D, might possess pleiotropic vasculoprotective activities. Herein, we tested whether DPP-4 inhibition with Saxagliptin affects the function of circulating PACs from T2D and healthy subjects. Methods PACs were isolated from T2D (n = 20) and healthy (n = 20) subjects. Gene expression, clonogenesis, proliferation, adhesion, migration and tubulisation were assessed in vitro by incubating PACs with or without Saxagliptin and SDF-1α. Stimulation of angiogenesis by circulating cells from T2D patients treated with Saxagliptin or other non-incretinergic drugs was assessed in vivo using animal models. Results Soluble DPP-4 activity was predominant over cellular activity and was successfully inhibited by Saxagliptin. At baseline, T2D compared to healthy PACs contained less acLDL+Lectin+ cells, and showed altered expression of genes related to adhesion and cell cycle regulation. This was reflected by impaired adhesion and clonogenesis/proliferative response of T2D PACs. Saxagliptin + SDF-1α improved adhesion and tube sustaining capacity of PACs from T2D patients. CD14+ PACs were more responsive to Saxagliptin than CD14- PACs. While Saxagliptin modestly reduced angiogenesis by mature endothelial cells, circulating PACs-progeny cells from T2D patients on Saxagliptin treatment displayed higher growth factor-inducible in vivo angiogenetic activity, compared to cells from T2D patients on non-incretinergic regimen. Conclusions Saxagliptin reverses PACs dysfunction associated with T2D in vitro and improves inducible angiogenesis by circulating cells in vivo. These data add knowledge to the potential pleiotropic cardiovascular effects of DPP-4 inhibition. PMID:24886621
Poncina, Nicol; Albiero, Mattia; Menegazzo, Lisa; Cappellari, Roberta; Avogaro, Angelo; Fadini, Gian Paolo
2014-05-14
Type 2 diabetes (T2D) is associated with reduction and dysfunction of circulating pro-angiogenic cells (PACs). DPP-4 inhibitors, a class of oral agents for T2D, might possess pleiotropic vasculoprotective activities. Herein, we tested whether DPP-4 inhibition with Saxagliptin affects the function of circulating PACs from T2D and healthy subjects. PACs were isolated from T2D (n = 20) and healthy (n = 20) subjects. Gene expression, clonogenesis, proliferation, adhesion, migration and tubulisation were assessed in vitro by incubating PACs with or without Saxagliptin and SDF-1α. Stimulation of angiogenesis by circulating cells from T2D patients treated with Saxagliptin or other non-incretinergic drugs was assessed in vivo using animal models. Soluble DPP-4 activity was predominant over cellular activity and was successfully inhibited by Saxagliptin. At baseline, T2D compared to healthy PACs contained less acLDL(+)Lectin(+) cells, and showed altered expression of genes related to adhesion and cell cycle regulation. This was reflected by impaired adhesion and clonogenesis/proliferative response of T2D PACs. Saxagliptin + SDF-1α improved adhesion and tube sustaining capacity of PACs from T2D patients. CD14+ PACs were more responsive to Saxagliptin than CD14- PACs. While Saxagliptin modestly reduced angiogenesis by mature endothelial cells, circulating PACs-progeny cells from T2D patients on Saxagliptin treatment displayed higher growth factor-inducible in vivo angiogenetic activity, compared to cells from T2D patients on non-incretinergic regimen. Saxagliptin reverses PACs dysfunction associated with T2D in vitro and improves inducible angiogenesis by circulating cells in vivo. These data add knowledge to the potential pleiotropic cardiovascular effects of DPP-4 inhibition.
Xing, Lujuan; Ge, Qingfeng; Jiang, Donglei; Gao, Xiaoge; Liu, Rui; Cao, Songmin; Zhuang, Xinbo; Zhou, Guanghong; Zhang, Wangang
2018-05-15
A cell-based electrochemical biosensor was developed to determine the antioxidant activity of Asp-Leu-Glu-Glu (DLEE) isolated from dry-cured Chinese Xuanwei ham. A platinized gold electrode (Pt NPs/GE) covered with silver nanowires (Ag NWs) was fabricated to detect H 2 O 2 using redox signaling via cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Under optimal condition, the detection limit of the modified electrode was 0.12μM with a linear relationship from 0.2 to 2μM, which showed relatively outstanding catalytic effects towards the reduction of H 2 O 2 . Furthermore, the generation of reactive oxygen species (ROS) in the cell can be used to indirectly assess changes in intercellular oxidative stress by detecting variations in electrochemical signals. A 3D cell culture of alginate/graphene oxide (NaAlg/GO) was used to encapsulate and immobilize Caco-2 cells. Based on ROS generation and electrochemical results, we found that DLEE could effectively reduce oxidative stress level in Caco-2 cells under external stimulation. DLEE showed high antioxidant activity with a relative antioxidant capacity (RAC) rate of 88.17% at 1.5mg/mL. Finally, an efficient electrochemical biosensor was established using the active 3D Caco-2 cell platform. This system is sensitive and simple to operate with the property to evaluate the antioxidant activity of peptides by the detection of H 2 O 2 in cell membrane. In summary, this work describes a new method for assessing antioxidant capacity of peptide DLEE using cell-based electrochemical signaling with a rapid screening pattern. Copyright © 2018 Elsevier B.V. All rights reserved.
Rosenbaek, Lena L; Rizzo, Federica; MacAulay, Nanna; Staub, Olivier; Fenton, Robert A
2017-08-01
The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na + ) and, indirectly, serum potassium (K + ) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 ( 22 Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22 Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K + , the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22 Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion. Copyright © 2017 the American Physiological Society.
Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon
2012-02-01
Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lecomte, Sylvain; Lelong, Marie; Bourgine, Gaëlle
Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as amore » model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases. - Highlights: • SERM activity of dietary compounds on proliferation and differentiation is studied. • All the dietary compounds tested transactivate estrogen receptors. • Apigenin and resveratrol could be good candidates for future therapeutics. • Daidzein and zearalenone are to be avoided to maintain human health.« less
Acuña, Ulyana Muñoz; Mo, Shunyan; Zi, Jiachen; Orjala, Jimmy; DE Blanco, Esperanza J Carcache
2018-06-01
Prostate cancer presents the highest incidence rates among all cancers in men. Hapalindole H (Hap H), isolated from Fischerella muscicola (UTEX strain number LB1829) as part of our natural product anticancer drug discovery program, was found to be significantly active against prostate cancer cells. In this study, Hap H was tested for nuclear factor-kappa B (NF-ĸB) inhibition and selective cytotoxic activity against different cancer cell lines. The apoptotic effect was assessed on PC-3 prostate cancer cells by fluorescence-activated cell sorting analysis. The underlying mechanism that induced apoptosis was studied and the effect of Hap H on mitochondria was evaluated and characterized using western blot and flow cytometric analysis. Hap H was identified as a potent NF-ĸB inhibitor (0.76 μM) with selective cytotoxicity against the PC-3 prostate cancer cell line (0.02 μM). The apoptotic effect was studied on PC-3 cells. The results showed that treatment of PC-3 cells with Hap H reduced the formation of NAD(P)H, suggesting that the function of the outer mitochondrial membrane was negatively affected. Thus, the mitochondrial transmembrane potential was assessed in Hap H treated cells. The results showed that the outer mitochondrial membrane was disrupted as an increased amount of JC-1 monomers were detected in treated cells (78.3%) when compared to untreated cells (10.1%), also suggesting that a large number of treated cells went into an apoptotic state. Hap H was found to have potent NF-ĸB p65-inhibitory activity and induced apoptosis through the intrinsic mitochondrial pathway in hormone-independent PC-3 prostate cancer cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Reneau, Jason; Reyland, Mary E.; Popp, R. Lisa
2011-01-01
Many intracellular proteins and signaling cascades contribute to the ethanol sensitivity of native N-methyl-d-aspartate receptors (NMDARs). One putative protein is the serine / threonine kinase, Protein kinase C (PKC). The purpose of this study was to assess if PKC modulates the ethanol sensitivity of native NMDARs expressed in primary cultured cerebellar granule cells (CGCs). With the whole-cell patch-clamp technique, we assessed if ethanol inhibition of NMDA-induced currents (INMDA) (100 μM NMDA plus 10 μM glycine) were altered in CGCs in which the novel and classical PKC isoforms were activated by phorbol-12-myristate-13-acetate (PMA). Percent inhibition by 10, 50 or 100 mM ethanol of NMDA-induced steady-state (ISS) or peak current amplitudes (IPk) of NMDARs expressed in CGCs in which PKC was activated by a 12.5 min, 100 nM PMA exposure at 37° C did not differ from currents obtained from receptors contained in control cells. However, PMA-mediated augmentation of IPk in the absence of ethanol was abolished after brief applications of 10 or 1 mM ethanol co-applied with agonists, and this suppression of enhanced receptor function was observed for up to eight minutes post-ethanol exposure. Because we had previously shown that PMA-mediated augmentation of INMDA of NMDARs expressed in these cells is by activation of PKCα, we assessed the effect of ethanol (1, 10, 50 and 100 mM) on PKCα activity. Ethanol decreased PKCα activity by 18% for 1 mM ethanol and activity decreased with increasing ethanol concentrations with a 50% inhibition observed with 100 mM ethanol. The data suggest that ethanol disruption of PMA-mediated augmentation of INMDA may be due to a decrease in PKCα activity by ethanol. However, given the incomplete blockade of PKCα activity and the low concentration of ethanol at which this phenomenon is observed, other ethanol-sensitive signaling cascades must also be involved. PMID:21624785
Yadav, Shyamlal Singh; Galib; Prajapati, P K; Ashok, B K; Ravishankar, B
2011-10-01
The immunomodulatory activity of Shirishavaleha prepared from two different parts of Shirisha (Albizia lebbeck Benth), i.e., Twak (Bark) and Sara (Heartwood) as main ingredients was evaluated for humoral antibody formation and cell-mediated immunity in established experimental models. The study used Wistar rats of either sex weighing 200 ± 40 g, while the test drug was administered orally at a dose of 1.8 g/kg. Hemagglutination titer and body weight were recorded to assess effects on humoral immunity; immunological paw edema was assessed for cell-mediated immunity. Shirishavaleha prepared from heartwood shows significant enhancement in antibody formation, attenuation of body weight changes, and suppression of immunological paw edema, while Shirishavaleha prepared from bark shows weak immunomodulatory activity. The study therefore concludes that Shirishavaleha prepared from heartwood has significant immunomodulatory activity.
Yadav, Shyamlal Singh; Galib; Prajapati, P. K.; Ashok, B. K.; Ravishankar, B.
2011-01-01
The immunomodulatory activity of Shirishavaleha prepared from two different parts of Shirisha (Albizia lebbeck Benth), i.e., Twak (Bark) and Sara (Heartwood) as main ingredients was evaluated for humoral antibody formation and cell-mediated immunity in established experimental models. The study used Wistar rats of either sex weighing 200 ± 40 g, while the test drug was administered orally at a dose of 1.8 g/kg. Hemagglutination titer and body weight were recorded to assess effects on humoral immunity; immunological paw edema was assessed for cell-mediated immunity. Shirishavaleha prepared from heartwood shows significant enhancement in antibody formation, attenuation of body weight changes, and suppression of immunological paw edema, while Shirishavaleha prepared from bark shows weak immunomodulatory activity. The study therefore concludes that Shirishavaleha prepared from heartwood has significant immunomodulatory activity. PMID:22253509
Narendrula, Rashmi; Mispel-Beyer, Kyle; Guo, Baoqing; Parissenti, Amadeo M; Pritzker, Laura B; Pritzker, Ken; Masilamani, Twinkle; Wang, Xiaohui; Lannér, Carita
2016-02-24
Cellular stressors and apoptosis-inducing agents have been shown to induce ribosomal RNA (rRNA) degradation in eukaryotic cells. Recently, RNA degradation in vivo was observed in patients with locally advanced breast cancer, where mid-treatment tumor RNA degradation was associated with complete tumor destruction and enhanced patient survival. However, it is not clear how widespread chemotherapy induced "RNA disruption" is, the extent to which it is associated with drug response or what the underlying mechanisms are. Ovarian (A2780, CaOV3) and breast (MDA-MB-231, MCF-7, BT474, SKBR3) cancer cell lines were treated with several cytotoxic chemotherapy drugs and total RNA was isolated. RNA was also prepared from docetaxel resistant A2780DXL and carboplatin resistant A2780CBN cells following drug exposure. Disruption of RNA was analyzed by capillary electrophoresis. Northern blotting was performed using probes complementary to the 28S and 18S rRNA to determine the origins of degradation bands. Apoptosis activation was assessed by flow cytometric monitoring of annexin-V and propidium iodide (PI) binding to cells and by measuring caspase-3 activation. The link between apoptosis and RNA degradation (disruption) was investigated using a caspase-3 inhibitor. All chemotherapy drugs tested were capable of inducing similar RNA disruption patterns. Docetaxel treatment of the resistant A2780DXL cells and carboplatin treatment of the A2780CBN cells did not result in RNA disruption. Northern blotting indicated that two RNA disruption bands were derived from the 3'-end of the 28S rRNA. Annexin-V and PI staining of docetaxel treated cells, along with assessment of caspase-3 activation, showed concurrent initiation of apoptosis and RNA disruption, while inhibition of caspase-3 activity significantly reduced RNA disruption. Supporting the in vivo evidence, our results demonstrate that RNA disruption is induced by multiple chemotherapy agents in cell lines from different tissues and is associated with drug response. Although present, the link between apoptosis and RNA disruption is not completely understood. Evaluation of RNA disruption is thus proposed as a novel and effective biomarker to assess response to chemotherapy drugs in vitro and in vivo.
Nootropic agents stimulate neurogenesis. Brain Cells, Inc.: WO2007104035.
Taupin, Philippe
2009-05-01
The application is in the field of adult neurogenesis, neural stem cells and cellular therapy. It aims to characterize the activity of nootropic agents on adult neurogenesis in vitro. Nootropic agents are substances improving cognitive and mental abilities. AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) and nootropic agents were assessed for the potential to differentiate human neural progenitor and stem cells into neuronal cells in vitro. They were also tested for their behavioural activity on the novel object recognition task. AMPA, piracetam, FK-960 and SGS-111 induce and stimulate neuronal differentiation of human-derived neural progenitor and stem cells. SGS-111 increases the number of visits to the novel object. The neurogenic activity of piracetam and SGS-111 is mediated through AMPA receptor. The neurogenic activity of SGS-111 may contribute and play a role in its nootropic activity. These results suggest that nootropic agents may elicit some of their effects through their neurogenic activity. The application claims the use of nootropic agents for their neurogenic activity and for the treatment of neurological diseases, disorders and injuries, by stimulating or increasing the generation of neuronal cells in the adult brain.
Pro-Apoptotic Activity of New Honokiol/Triphenylmethane Analogues in B-Cell Lymphoid Malignancies.
Mędra, Aleksandra; Witkowska, Magdalena; Majchrzak, Agata; Cebula-Obrzut, Barbara; Bonner, Michael Y; Robak, Tadeusz; Arbiser, Jack L; Smolewski, Piotr
2016-07-30
Honokiol and triphenylmethanes are small molecules with anti-tumor properties. Recently, we synthesized new honokiol analogues (HAs) that possess common features of both groups. We assessed the anti-tumor effectiveness of HAs in B-cell leukemia/lymphoma cells, namely in chronic lymphocytic leukemia (CLL) cells ex vivo and in pre-B-cell acute lymphoblastic leukemia (Nalm-6), Burkitt lymphoma (BL; Raji), diffuse large B-cell lymphoma (DLBCL; Toledo) and multiple myeloma (MM; RPMI 8226) cell lines. Four of these compounds appeared to be significantly active against the majority of cells examined, with no significant impact on healthy lymphocytes. These active HAs induced caspase-dependent apoptosis, causing significant deregulation of several apoptosis-regulating proteins. Overall, these compounds downregulated Bcl-2 and XIAP and upregulated Bax, Bak and survivin proteins. In conclusion, some of the HAs are potent tumor-selective inducers of apoptosis in ex vivo CLL and in BL, DLBCL and MM cells in vitro. Further preclinical studies of these agents are recommended.
Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila
2009-09-01
The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.
Hatanaka, Hiroshige; Ishizawa, Hitomi; Nakamura, Yurie; Tadokoro, Hiroko; Tanaka, Sachiko; Onda, Kenji; Sugiyama, Kentaro; Hirano, Toshihiko
2014-03-18
The effects of vitamin K (VK) derivatives VK3 and VK5 on human immune cells have not been extensively investigated. We examined the effects of VK3 and VK5 on proliferation, apoptosis, cytokine production, and CD4+CD25+Foxp3+ regulatory T (Treg) cell-frequency in human peripheral blood mononuclear cells (PBMCs) activated by T cell mitogen in vitro. Anti-proliferative effects of VK3 and VK5 on T-cell mitogen activated PBMCs were assessed by WST assay procedures. Apoptotic cells were determined as Annexin V positive/propidium iodide (PI) negative cells. Cytokine concentrations in the supernatant of the culture medium were measured with bead-array procedures followed by analysis with flow cytometry. The CD4+CD25+Foxp3+Treg cells in mitogen-activated PBMCs were stained with fluorescence-labeled specific antibodies followed by flow cytometry. VK3 and VK5 suppressed the mitogen-activated proliferation of PBMCs significantly at 10-100μM (p<0.05). The data also suggest that VK3 and VK5 promote apoptosis in the mitogen-activated T cells. VK3 and VK5 significantly inhibited the production of tumor necrosis factor (TNF) α, interleukin (IL)-4, -6, and -10 from the activated PBMCs at 10-100μM (p<0.05). In contrast, VK3 and VK5 significantly increased Treg cell-frequency in the activated PBMCs at concentrations more than 10μM (p<0.001). Our data suggest that VK3 and VK5 attenuate T cell mediated immunity by inhibiting the proliferative response and inducing apoptosis in activated T cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Chattopadhyay, N; Singh, D P; Heese, O; Godbole, M M; Sinohara, T; Black, P M; Brown, E M
2000-07-01
We report the isolation by RT-PCR of partial cDNAs encoding the human peroxisome proliferator-activated receptor (PPAR) isoforms PPARbeta and -gamma in human primary astrocytes (HPA) as well as in the human malignant astrocytoma cell line T98G. In contrast, we failed to detect PPARalpha mRNA in either of these two cell types. Because PPARbeta is ubiquitously expressed but has, as yet, no known function, we pursued our functional studies of these cells with regard to PPARgamma. To that end, we showed that PPARgamma protein is abundantly expressed in both cell types, having a molecular weight of approximately 50 kDa. Immunocytochemistry revealed a predominantly nuclear localization of this receptor. Moreover, incubation of the two cell types with 1-12 mcM 15-deoxy PGJ(2) or 1-12 mcM ciglitazone, both of which are agonists of PPARgamma, induced loss of cellular viability as assessed by the MTT assay after a 4 hr incubation. Reduced cellular viability as a consequence of exposure to PGJ(2) or ciglitazone resulted from induction of apoptosis, as assessed by DNA fragmentation and Hoechst staining, and involves activation of the CPP32 (caspase-3) protease. These data show that modulation of the process of apoptosis is one function of PPARgamma in cells derived from the human astrocytic lineage. Copyright 2000 Wiley-Liss, Inc.
Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta
2014-02-01
Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong
2017-03-22
This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.
Hou, D X; Fukuda, M; Fujii, M; Fuke, Y
2000-12-20
Wasabi is a very popular pungent spice in Japan. This study examined the ability of 6-(methylsufinyl)hexyl isothiocyanate (6-MITC), an active principle of wasabi, to induce the cellular expression of nicotinamide adenine dinucleotide phosphate: quinone oxidoreductase (QR) in Hepa 1c1c7 cells. The cells were treated with various concentrations of 6-MITC, and were then assessed for cell growth, QR activity and QR mRNA expression. The induction of QR activity and QR mRNA expression was time- and dose-responsive over a narrow range of 0.1-5 microM, with declining induction at higher concentrations due to cell toxicity. Furthermore, transfection studies demonstrated that the induction of transcription of the QR gene by 6-MITC involved an antioxidant/electrophile-responsive element (ARE/EpRE) activation. Our results suggest a novel mechanism by which dietary wasabi 6-MITC may be implicated in cancer chemoprevention.
Anand, J; Rai, N
2017-03-01
The present investigation aims at evaluating synergistic herbal based composition of purified catechins with fluconazole, amphotericin B and copper sulphate against Candida albicans (MTCC 3017) and Candida glabrata (MTCC 3019). The catechins were isolated from green tea leaves of Assam, Himachal Pradesh and Uttarakhand regions of India. The synergistic activity of combinations against Candida species was assessed following microdilution checkerboard technique and time kill assay. The inhibitory action of most significant combination on treated Candida cells was assessed by scanning electron microscopy. Cytotoxicity of synergistic compositions was further analyzed by performing MTT assay on Vero cell lines. Purified catechins of Assam and Himachal Pradesh green tea showed synergistic activity with fluconazole and amphotericin B against Candida species. Time kill assay depicted synergistic activity at minimum inhibitory concentration and twice of minimum inhibitory concentration of purified catechins and antimycotics. Further, Copper sulphate increased anticandidal efficacy of synergistic combinations by 0.4% to 6.63%. SEM analysis revealed morphological distortions of treated Candida cells. Cytotoxicity analysis of synergistic composition depicted high percentage viability (≥91.4% to≥100%) of Vero cell line, which suggests non-cytotoxic activity of proposed composition on healthy cells. It can be inferred that present evaluated synergistic composition can confer promising anticandidal efficacy and requires further investigation of safety and translational guidelines for effective and safer green tea based potent therapeutic drug. Copyright © 2016. Published by Elsevier Masson SAS.
The role of the iron catalyst in the toxicity of multi-walled carbon nanotubes (MWCNTs).
Visalli, Giuseppa; Facciolà, Alessio; Iannazzo, Daniela; Piperno, Anna; Pistone, Alessandro; Di Pietro, Angela
2017-09-01
This study aimed to investigate the role of iron, used as a catalyst, in the biological response to pristine and functionalized multi-walled carbon nanotubes (p/fMWCNTs) with an iron content of 2.5-2.8%. Preliminarily, we assessed the pro-oxidant activity of MWCNTs-associated iron by an abiotic test. To evaluate iron bioavailability, we measured intracellular redox-active iron in A549 cells exposed to both MWCNT suspensions and to the cell medium preconditioned by MWCNTs, in order to assess the iron dissolution rate under physiological conditions. Moreover, in exposed cells, we detected ROS levels, 8-oxo-dG and mitochondrial function. The results clearly highlighted that MWCNTs- associated iron was not redox-active and that iron leakage did not occur under physiological conditions, including the oxidative burst of specialized cells. Despite this, in MWCNTs exposed cells, higher level of intracellular redox-active iron was measured in comparison to control and a significant time-dependent ROS increase was observed (P<0.01). Higher levels of 8-oxo-dG, a marker of oxidative DNA damage, and decreased mitochondrial function, confirmed the oxidative stress induced by MWCNTs. Based on the results we believe that oxidative damage could be attributable to the release of endogenous redox-active iron. This was due to the damage of acidic vacuolar compartment caused by endocytosis-mediated MWCNT internalization. Copyright © 2017 Elsevier GmbH. All rights reserved.
Cocco, Regina E.; Ucker, David S.
2001-01-01
The distinction between physiological (apoptotic) and pathological (necrotic) cell deaths reflects mechanistic differences in cellular disintegration and is of functional significance with respect to the outcomes that are triggered by the cell corpses. Mechanistically, apoptotic cells die via an active and ordered pathway; necrotic deaths, conversely, are chaotic and passive. Macrophages and other phagocytic cells recognize and engulf these dead cells. This clearance is believed to reveal an innate immunity, associated with inflammation in cases of pathological but not physiological cell deaths. Using objective and quantitative measures to assess these processes, we find that macrophages bind and engulf native apoptotic and necrotic cells to similar extents and with similar kinetics. However, recognition of these two classes of dying cells occurs via distinct and noncompeting mechanisms. Phosphatidylserine, which is externalized on both apoptotic and necrotic cells, is not a specific ligand for the recognition of either one. The distinct modes of recognition for these different corpses are linked to opposing responses from engulfing macrophages. Necrotic cells, when recognized, enhance proinflammatory responses of activated macrophages, although they are not sufficient to trigger macrophage activation. In marked contrast, apoptotic cells profoundly inhibit phlogistic macrophage responses; this represents a cell-associated, dominant-acting anti-inflammatory signaling activity acquired posttranslationally during the process of physiological cell death. PMID:11294896
Purification and stability characterization of a cell regulatory sialoglycopeptide inhibitor
NASA Technical Reports Server (NTRS)
Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)
1995-01-01
Previous attempts to physically separate the cell cycle inhibitory and protease activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed.
Murine aggregation chimeras and wholemount imaging in airway stem cell biology.
Rosewell, Ian R; Giangreco, Adam
2012-01-01
Local tissue stem cells are known to exist in mammalian lungs but their role in epithelial maintenance remains unclear. We therefore developed murine aggregation chimera and wholemount imaging techniques to assess the contribution of these cells to lung homeostasis and repair. In this chapter we provide further details regarding the generation of murine aggregation chimera mice and their subsequent use in wholemount lung imaging. We also describe methods related to the interpretation of this data that allows for quantitative assessment of airway stem cell activation versus quiescence. Using these techniques, it is possible to compare the growth and differentiation capacity of various lung epithelial cells in normal, repairing, and diseased states.
Assessment of rechargeable batteries for high power applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delnick, Frank M.; Ripple, Robert Eugene; Butler, Paul Charles
2004-05-01
This paper describes an assessment of a variety of battery technologies for high pulse power applications. Sandia National Laboratories (SNL) is performing the assessment activities in collaboration with NSWC-Dahlgren. After an initial study of specifications and manufacturers' data, the assessment team identified the following electrochemistries as promising for detailed evaluation: lead-acid (Pb-acid), nickel/metal hydride (Ni/MH), nickel/cadmium (Ni/Cd), and a recently released high power lithium-ion (Li-ion) technology. In the first three technology cases, test cells were obtained from at least two and in some instances several companies that specialize in the respective electrochemistry. In the case of the Li-ion technology, cellsmore » from a single company and are being tested. All cells were characterized in Sandia's battery test labs. After several characterization tests, the Pb-acid technology was identified as a backup technology for the demanding power levels of these tests. The other technologies showed varying degrees of promise. Following additional cell testing, the assessment team determined that the Ni/MH technology was suitable for scale-up and acquired 50-V Ni/MH modules from two suppliers for testing. Additional tests are underway to better characterize the Ni/Cd and the Li-ion technologies as well. This paper will present the testing methodology and results from these assessment activities.« less
Pharmacology and toxicology of the novel investigational agent Cantrixil (TRX-E-002-1).
Saif, Muhammad Wasif; Heaton, Andrew; Lilischkis, Kimberley; Garner, James; Brown, David M
2017-02-01
Recurrent, chemo-resistant ovarian cancer is thought to be due to a subgroup of slow-growing, drug-resistant cancer cells with stem-like properties and a high capacity for tumour repair. Cantrixil targets this sub-population of cells and is being developed as an intraperitoneal therapy to be used as first-line therapy in combination with carboplatin for epithelial ovarian cancer. The studies presented here justify further development. A GLP dog CV study using a 4 × 4 Latin Square Crossover study was conducted using telemetric ECG recordings from dogs post IP administration to assess for cardiac abnormalities. Mutagenic potential was assessed using the bacterial reverse mutation assay. Clastogenicity was assessed by determining micronuclei formation in the bone marrow of SPF Arc(S) Swiss mice dosed at clinical concentrations. TRX-E-002-1 toxicology was evaluated in GLP-compliant MTD and 28-day repeat-dose studies in rats and dogs. In vitro TRX-E-002-1 has potent cytotoxic activity against human cancer cells including CD44+/MyD88+ ovarian cancer stem cells. TRX-E-002-1 increased phosphorylated c-Jun levels in these cancer cells resulting in caspase-mediated apoptosis. In vivo, Cantrixil was active in a model of disseminated ovarian cancer as a monotherapy and in combination with Cisplatin. Cantrixil was active as maintenance therapy in a model of drug-resistant, recurrent ovarian cancer and in an orthotopic model of pancreatic cancer. In animals, this clinical formulation and route of administration of Cantrixil demonstrated acceptable activity, safety pharmacology, genotoxicity and toxicology profile and constituted a successful Investigational New Drug application to the US Food and Drug Administration.
A new model of the distal convoluted tubule
Ko, Benjamin; Mistry, Abinash C.; Hanson, Lauren; Mallick, Rickta; Cooke, Leslie L.; Hack, Bradley K.; Cunningham, Patrick
2012-01-01
The Na+-Cl− cotransporter (NCC) in the distal convoluted tubule (DCT) of the kidney is a key determinant of Na+ balance. Disturbances in NCC function are characterized by disordered volume and blood pressure regulation. However, many details concerning the mechanisms of NCC regulation remain controversial or undefined. This is partially due to the lack of a mammalian cell model of the DCT that is amenable to functional assessment of NCC activity. Previously reported investigations of NCC regulation in mammalian cells have either not attempted measurements of NCC function or have required perturbation of the critical without a lysine kinase (WNK)/STE20/SPS-1-related proline/alanine-rich kinase regulatory pathway before functional assessment. Here, we present a new mammalian model of the DCT, the mouse DCT15 (mDCT15) cell line. These cells display native NCC function as measured by thiazide-sensitive, Cl−-dependent 22Na+ uptake and allow for the separate assessment of NCC surface expression and activity. Knockdown by short interfering RNA confirmed that this function was dependent on NCC protein. Similar to the mammalian DCT, these cells express many of the known regulators of NCC and display significant baseline activity and dimerization of NCC. As described in previous models, NCC activity is inhibited by appropriate concentrations of thiazides, and phorbol esters strongly suppress function. Importantly, they display release of WNK4 inhibition of NCC by small hairpin RNA knockdown. We feel that this new model represents a critical tool for the study of NCC physiology. The work that can be accomplished in such a system represents a significant step forward toward unraveling the complex regulation of NCC. PMID:22718890
CVID-associated TACI mutations affect autoreactive B cell selection and activation
Romberg, Neil; Chamberlain, Nicolas; Saadoun, David; Gentile, Maurizio; Kinnunen, Tuure; Ng, Yen Shing; Virdee, Manmeet; Menard, Laurence; Cantaert, Tineke; Morbach, Henner; Rachid, Rima; Martinez-Pomar, Natalia; Matamoros, Nuria; Geha, Raif; Grimbacher, Bodo; Cerutti, Andrea; Cunningham-Rundles, Charlotte; Meffre, Eric
2013-01-01
Common variable immune deficiency (CVID) is an assorted group of primary diseases that clinically manifest with antibody deficiency, infection susceptibility, and autoimmunity. Heterozygous mutations in the gene encoding the tumor necrosis factor receptor superfamily member TACI are associated with CVID and autoimmune manifestations, whereas two mutated alleles prevent autoimmunity. To assess how the number of TACI mutations affects B cell activation and tolerance checkpoints, we analyzed healthy individuals and CVID patients carrying one or two TACI mutations. We found that TACI interacts with the cleaved, mature forms of TLR7 and TLR9 and plays an important role during B cell activation and the central removal of autoreactive B cells in healthy donors and CVID patients. However, only subjects with a single TACI mutation displayed a breached immune tolerance and secreted antinuclear antibodies (ANAs). These antibodies were associated with the presence of circulating B cell lymphoma 6–expressing T follicular helper (Tfh) cells, likely stimulating autoreactive B cells. Thus, TACI mutations may favor CVID by altering B cell activation with coincident impairment of central B cell tolerance, whereas residual B cell responsiveness in patients with one, but not two, TACI mutations enables autoimmune complications. PMID:24051380
Halicka, H Dorota; Garcia, Jorge; Li, Jiangwei; Zhao, Hong; Darzynkiewicz, Zbigniew
2017-02-01
Utilizing a variety of flow cytometric methods evidence was obtained indicating that a combination of the glucose analog 2-deoxy-D-glucose (2-dG) and the plant alkaloid berberine (BRB) produces synergistic effect in the induction of apoptosis in human lymphoblastoid TK6 cells. The synergistic effect is seen at concentrations of the drugs at which each of them alone shows no cytotoxicity at all. The data suggest that the combination of these drugs, which are known in terms of their overall toxicity, side effects and pharmacokinetics may be considered for further studies as chemopreventive and cancer treatment modalities. Of interest are results indicating that rapamycin, which similarly to BRB, suppresses mTOR signaling, when combined with 2-dG shows no synergistic properties. Metformin, on other hand, requires much higher concentration to show the synergy with 2-dG. Also of interest are the findings pertaining to the methodology of the present study. Specifically, dynamic assessment of cellular viability was performed by using the DRAQ7 cell exclusion fluorochrome present in cultures from 0 to 72 h. Concurrent measurement of lysosomal proton pump using acridine orange as the probe shows activation of lysosomes in the cells treated with 2-dG or BRB alone as well as with the drugs combined. Apoptosis was assessed by measuring DNA fragmentation, cell cycle, activation of caspase-3 and tissue transglutaminase (Tgase). A novel cytometric method was developed based on analysis of lysosomal (acidic vesicles) proton pump in live cells followed by cell lysis with detergent and fluorochrome labeling of proteins and DNA to analyze Tgase activation concurrently with cell cycle, in same population of cells. The data show that the cell subpopulation undergoing apoptosis has increased side (right-angle) light scatter likely due to the presence of the crosslinked (solid state) proteins, the consequence Tgase activation.
Monitoring dynamic interactions of tumor cells with tissue and immune cells in a lab-on-a-chip.
Charwat, Verena; Rothbauer, Mario; Tedde, Sandro F; Hayden, Oliver; Bosch, Jacobus J; Muellner, Paul; Hainberger, Rainer; Ertl, Peter
2013-12-03
A complementary cell analysis method has been developed to assess the dynamic interactions of tumor cells with resident tissue and immune cells using optical light scattering and impedance sensing to shed light on tumor cell behavior. The combination of electroanalytical and optical biosensing technologies integrated in a lab-on-a-chip allows for continuous, label-free, and noninvasive probing of dynamic cell-to-cell interactions between adherent and nonadherent cocultures, thus providing real-time insights into tumor cell responses under physiologically relevant conditions. While the study of adherent cocultures is important for the understanding and suppression of metastatic invasion, the analysis of tumor cell interactions with nonadherent immune cells plays a vital role in cancer immunotherapy research. For the first time, the direct cell-to-cell interactions of tumor cells with bead-activated primary T cells were continuously assessed using an effector cell to target a cell ratio of 10:1.
López-Karpovitch, Xavier; Graue, Gerardo; Crespo-Solís, Erick; Piedras, Josefa
2008-07-01
High P-glycoprotein-mediated multidrug resistance-1 (P-gp/MDR1) activity in lymphocytes from idiopathic thrombocytopenic purpura (ITP) patients may affect disease outcome. ITP treatment includes glucocorticoids that are substrates of P-gp; hence, P-gp functional activity and antigenic expression were assessed by flow cytometry in T and natural killer (NK) cells from ITP patients before and after prednisone therapy. Herein, patients' T and NK cells did not show increased MDR1 functional activity, whereas P-gp antigenic expression was significantly enhanced in both therapy-free and prednisone-treated patients. Prednisone treatment did not significantly modify the function and expression of MDR1 in T and NK cells of ITP patients.
2011-01-01
Background Transferrin receptor (TfR) is a cell membrane-associated glycoprotein involved in the cellular uptake of iron and the regulation of cell growth. Recent studies have shown the elevated expression levels of TfR on cancer cells compared with normal cells. The elevated expression levels of this receptor in malignancies, which is the accessible extracellular protein, can be a fascinating target for the treatment of cancer. We have recently designed novel type of immunotoxin, termed "hybrid peptide", which is chemically synthesized and is composed of target-binding peptide and lytic peptide containing cationic-rich amino acids components that disintegrates the cell membrane for the cancer cell killing. The lytic peptide is newly designed to induce rapid killing of cancer cells due to conformational change. In this study, we designed TfR binding peptide connected with this novel lytic peptide and assessed the cytotoxic activity in vitro and in vivo. Methods In vitro: We assessed the cytotoxicity of TfR-lytic hybrid peptide for 12 cancer and 2 normal cell lines. The specificity for TfR is demonstrated by competitive assay using TfR antibody and siRNA. In addition, we performed analysis of confocal fluorescence microscopy and apoptosis assay by Annexin-V binding, caspase activity, and JC-1 staining to assess the change in mitochondria membrane potential. In vivo: TfR-lytic was administered intravenously in an athymic mice model with MDA-MB-231 cells. After three weeks tumor sections were histologically analyzed. Results The TfR-lytic hybrid peptide showed cytotoxic activity in 12 cancer cell lines, with IC50 values as low as 4.0-9.3 μM. Normal cells were less sensitive to this molecule, with IC50 values > 50 μM. Competition assay using TfR antibody and knockdown of this receptor by siRNA confirmed the specificity of the TfR-lytic hybrid peptide. In addition, it was revealed that this molecule can disintegrate the cell membrane of T47D cancer cells just in 10 min, to effectively kill these cells and induce approximately 80% apoptotic cell death but not in normal cells. The intravenous administration of TfR-lytic peptide in the athymic mice model significantly inhibited tumor progression. Conclusions TfR-lytic peptide might provide a potent and selective anticancer therapy for patients. PMID:21849092
Touil, Hanane; Kobert, Antonia; Lebeurrier, Nathalie; Rieger, Aja; Saikali, Philippe; Lambert, Caroline; Fawaz, Lama; Moore, Craig S; Prat, Alexandre; Gommerman, Jennifer; Antel, Jack P; Itoyama, Yasuto; Nakashima, Ichiro; Bar-Or, Amit
2018-04-19
The success of clinical trials of selective B cell depletion in patients with relapsing multiple sclerosis (MS) indicates B cells are important contributors to peripheral immune responses involved in the development of new relapses. Such B cell contribution to peripheral inflammation likely involves antibody-independent mechanisms. Of growing interest is the potential that B cells, within the MS central nervous system (CNS), may also contribute to the propagation of CNS-compartmentalized inflammation in progressive (non-relapsing) disease. B cells are known to persist in the inflamed MS CNS and are more recently described as concentrated in meningeal immune-cell aggregates, adjacent to the subpial cortical injury which has been associated with progressive disease. How B cells are fostered within the MS CNS and how they may contribute locally to the propagation of CNS-compartmentalized inflammation remain to be elucidated. We considered whether activated human astrocytes might contribute to B cell survival and function through soluble factors. B cells from healthy controls (HC) and untreated MS patients were exposed to primary human astrocytes that were either maintained under basal culture conditions (non-activated) or pre-activated with standard inflammatory signals. B cell exposure to astrocytes included direct co-culture, co-culture in transwells, or exposure to astrocyte-conditioned medium. Following the different exposures, B cell survival and expression of T cell co-stimulatory molecules were assessed by flow cytometry, as was the ability of differentially exposed B cells to induce activation of allogeneic T cells. Secreted factors from both non-activated and activated human astrocytes robustly supported human B cell survival. Soluble products of pre-activated astrocytes also induced B cell upregulation of antigen-presenting cell machinery, and these B cells, in turn, were more efficient activators of T cells. Astrocyte-soluble factors could support survival and activation of B cell subsets implicated in MS, including memory B cells from patients with both relapsing and progressive forms of disease. Our findings point to a potential mechanism whereby activated astrocytes in the inflamed MS CNS not only promote a B cell fostering environment, but also actively support the ability of B cells to contribute to the propagation of CNS-compartmentalized inflammation, now thought to play key roles in progressive disease.
Schmidt, Susanne V; Seibert, Stefanie; Walch-Rückheim, Barbara; Vicinus, Benjamin; Kamionka, Eva-Maria; Pahne-Zeppenfeld, Jennifer; Solomayer, Erich-Franz; Kim, Yoo-Jin; Bohle, Rainer M; Smola, Sigrun
2015-04-20
Previous studies have shown that cervical cancer cells only release low levels of pro-inflammatory cytokines owing to infection with human papillomaviruses. This results in low immunogenicity of the cancer cells. The viral dsRNA analog PolyIC has been suggested as a promising adjuvant for cervical cancer immunotherapy. However, little is known about the molecular requirements resulting in successful immune activation. Here, we demonstrate that stimulation of cervical cancer cells with PolyIC induced necroptotic cell death, which was strictly dependent on the expression of the receptor-interacting protein kinase RIPK3. Necroptotic cancer cells released interleukin-1α (IL-1α), which was required for powerful activation of dendritic cells (DC) to produce IL-12, a cytokine critical for anti-tumor responses. Again both, IL-1α release and DC activation, were strictly dependent on RIPK3 expression in the tumor cells. Of note, our in situ analyses revealed heterogeneous RIPK3 expression patterns in cervical squamous cell carcinomas and adenocarcinomas. In summary, our study identified a novel RIPK3-dependent mechanism that explains how PolyIC-treatment of cervical cancer cells leads to potent DC activation. Our findings suggest that the RIPK3 expression status in cervical cancer cells might critically influence the outcome of PolyIC-based immunotherapeutic approaches and should therefore be assessed prior to immunotherapy.
Cheng, Chia-Pi; Sheu, Ming-Jen; Sytwu, Huey-Kang; Chang, Deh-Ming
2013-04-01
Decoy receptor 3 (DCR3) has been known to modulate immune functions of monocyte or macrophage. In the present study, we investigated the mechanism and the effect of DCR3 on RANK ligand (RANKL)-induced osteoclastogenesis. We treated cells with DCR3 in RANKL-induced osteoclastogenesis to monitor osteoclast formation by tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast activity was assessed by pit formation assay. The mechanism of inhibition was studied by biochemical analysis such as RT-PCR and immunoblotting. In addition, cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis and apoptosis signalling were evaluated by immunoblotting and using flow cytometry. DCR3 inhibited RANKL-induced TRAP(+) multinucleated cells and inhibited RANKL-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) nuclear translocation in RAW264.7 cells. Also, DCR3 significantly inhibited the bone-resorbing activity of mature osteoclasts. Moreover, DCR3 enhanced RANKL-induced cell apoptosis and enhanced RANKL-induced Fas ligand expression. The mechanisms were mediated via the intrinsic cytochrome c and activated caspase 9 apoptosis pathway. We postulated that the inhibitory activity of DCR3 on osteoclastogenesis occurs via down-regulation of RANKL-induced NFATc1 expression and induction of cell apoptosis. Our results postulated DCR3 as a possible new remedy against inflammatory bone destruction.
Bitton, Gabriel; Koopman, Ben
1982-01-01
A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge. Images PMID:16345999
Temperature and UV light affect the activity of marine cell-free enzymes
NASA Astrophysics Data System (ADS)
Thomson, Blair; Hepburn, Christopher David; Lamare, Miles; Baltar, Federico
2017-09-01
Microbial extracellular enzymatic activity (EEA) is the rate-limiting step in the degradation of organic matter in the oceans. These extracellular enzymes exist in two forms: cell-bound, which are attached to the microbial cell wall, and cell-free, which are completely free of the cell. Contrary to previous understanding, cell-free extracellular enzymes make up a substantial proportion of the total marine EEA. Little is known about these abundant cell-free enzymes, including what factors control their activity once they are away from their sites (cells). Experiments were run to assess how cell-free enzymes (excluding microbes) respond to ultraviolet radiation (UVR) and temperature manipulations, previously suggested as potential control factors for these enzymes. The experiments were done with New Zealand coastal waters and the enzymes studied were alkaline phosphatase (APase), β-glucosidase, (BGase), and leucine aminopeptidase (LAPase). Environmentally relevant UVR (i.e. in situ UVR levels measured at our site) reduced cell-free enzyme activities by up to 87 % when compared to controls, likely a consequence of photodegradation. This effect of UVR on cell-free enzymes differed depending on the UVR fraction. Ambient levels of UV radiation were shown to reduce the activity of cell-free enzymes for the first time. Elevated temperatures (15 °C) increased the activity of cell-free enzymes by up to 53 % when compared to controls (10 °C), likely by enhancing the catalytic activity of the enzymes. Our results suggest the importance of both UVR and temperature as control mechanisms for cell-free enzymes. Given the projected warming ocean environment and the variable UVR light regime, it is possible that there could be major changes in the cell-free EEA and in the enzymes contribution to organic matter remineralization in the future.
A role for RNA post-transcriptional regulation in satellite cell activation
2012-01-01
Background Satellite cells are resident skeletal muscle stem cells responsible for muscle maintenance and repair. In resting muscle, satellite cells are maintained in a quiescent state. Satellite cell activation induces the myogenic commitment factor, MyoD, and cell cycle entry to facilitate transition to a population of proliferating myoblasts that eventually exit the cycle and regenerate muscle tissue. The molecular mechanism involved in the transition of a quiescent satellite cell to a transit-amplifying myoblast is poorly understood. Methods Satellite cells isolated by FACS from uninjured skeletal muscle and 12 h post-muscle injury from wild type and Syndecan-4 null mice were probed using Affymetrix 430v2 gene chips and analyzed by Spotfiretm and Ingenuity Pathway analysis to identify gene expression changes and networks associated with satellite cell activation, respectively. Additional analyses of target genes identify miRNAs exhibiting dynamic changes in expression during satellite cell activation. The function of the miRNAs was assessed using miRIDIAN hairpin inhibitors. Results An unbiased gene expression screen identified over 4,000 genes differentially expressed in satellite cells in vivo within 12 h following muscle damage and more than 50% of these decrease dramatically. RNA binding proteins and genes involved in post-transcriptional regulation were significantly over-represented whereas splicing factors were preferentially downregulated and mRNA stability genes preferentially upregulated. Furthermore, six computationally identified miRNAs demonstrated novel expression through muscle regeneration and in satellite cells. Three of the six miRNAs were found to regulate satellite cell fate. Conclusions The quiescent satellite cell is actively maintained in a state poised to activate in response to external signals. Satellite cell activation appears to be regulated by post-transcriptional gene regulation. PMID:23046558
Ohga, Shouichi; Nomura, Akihiko; Takada, Hidetoshi; Tanaka, Tamami; Furuno, Kenji; Takahata, Yasushi; Kinukawa, Naoko; Fukushima, Noriyasu; Imai, Shosuke; Hara, Toshiro
2004-11-01
Chronic active Epstein-Barr virus (EBV) infection is a chronic mononucleosis syndrome associated with clonal proliferation of EBV-carrying T-/natural killer (NK)-cells. High levels of circulating EBV and activated T-cells are sustained during the prolonged disease course, whereas it is not clear how ectopic EBV infection in T-/NK-cells has been established and maintained. To assess the biological role of activated T-cells in chronic active EBV infection (CAEBV), EBV DNA and cellular gene expressions in peripheral T-cells were quantified in CAEBV and infectious mononucleosis (IM) patients. In CAEBV, HLA-DR(+) T-cells had higher viral load and larger amounts of IFN gamma, IL-10, transforming growth factor-beta (TGF beta), and cytotoxic T lymphocyte antigen-4 (CTLA4) mRNA than HLA-DR(-)T-cells. HLA-DR(+) T cells of IM patients transcribed more IFN gamma and IL-10 than their HLA-DR(-)T cells. Expression levels of IFN gamma and forkhead box p3 (Foxp3) in CAEBV HLA-DR(+) T-cells were higher than in IM HLA-DR(+) T-cells. The effective variables to discriminate the positivity of HLA-DR were IL-10, IFN gamma, CTLA4, TGF beta, and IL-2 in the order of statistical weight. EBV load in CAEBV T-cells correlated with the expression levels of only IL-10 and TGF beta. These results suggest that CAEBV T-cells are activated to transcribe IFN gamma, IL-10, and TGF beta excessively, and the latter two genes are expressed preferentially in the EBV-infected subsets. The dominant expression of regulatory cytokines in T-cells may imply a viral evasion mechanism in the disease.
2012-01-01
Background The c-Met receptor tyrosine kinase is aberrantly activated in many solid tumors. In a prior study we showed that prostate cancer PC-3 cells exhibit constitutively activated c-Met without exogenous hepatocyte growth factor (HGF); however whether this characteristic is due to an endogenous HGF/c-Met autocrine loop remains controversial. In the current study we examined the response of PC-3 cells to an anti-HGF neutralizing antibody or a small molecule Met kinase inhibitor (BMS-777607). Methods Cell scattering was tested by monitoring cell morphology after HGF stimulation. Cell migration was examined by both “wound-healing” and transwell assasy and invasion was detected by Matrigel-coated transwell assay. Proliferation, survival and anoikis were determined by MTT, colony formation and trypan blue exclusion assay, respectively. Gene and protein expression were assessed by real-time PCR and Western blot, respectively. Results Although HGF mRNA could be detected in PC-3 cells, the molecular weight of secreted “HGF” protein was inconsistent with the functional recombinant HGF. Furthermore, conditioned medium from PC-3 cell cultures was ineffective at triggering either motogenic behavior or c-Met signaling in DU145, another prostate cancer cell line expressing c-Met but lacking basal c-Met activation. PC-3 cells also were not responsive to the anti-HGF neutralizing antibody in experiments assessing proliferation, migration, or c-Met signaling. BMS-777607 treatment with micromolar doses nonetheless led to significant inhibition of multiple PC-3 cell functions including proliferation, clonogenicity, migration and invasion. At the molecular level, BMS-777607 suppressed autophosphorylated c-Met and downstream c-Src and Akt pathways. Conclusions These results suggest that the constitutive c-Met activation in PC-3 is independent of autocrine stimulation. Because PC-3 cells were responsive to BMS-777607 but not the anti-HGF antibody, the findings also indicate that under circumstances where c-Met is constitutively hyperactive in the absence of functional HGF, targeting the c-Met receptor remains a viable therapeutic option to impede cancer progression. PMID:22639908
Cuda, Carla M; Misharin, Alexander V; Khare, Sonal; Saber, Rana; Tsai, FuNien; Archer, Amy M; Homan, Philip J; Haines, G Kenneth; Hutcheson, Jack; Dorfleutner, Andrea; Budinger, G R Scott; Stehlik, Christian; Perlman, Harris
2015-10-16
Although caspase-8 is a well-established initiator of apoptosis and suppressor of necroptosis, recent evidence suggests that this enzyme maintains functions beyond its role in cell death. As cells of the innate immune system, and in particular macrophages, are now at the forefront of autoimmune disease pathogenesis, we examined the potential involvement of caspase-8 within this population. Cre (LysM) Casp8 (fl/fl) mice were bred via a cross between Casp8 (fl/fl) mice and Cre (LysM) mice, and RIPK3 (-/-) Cre (LysM) Casp8 (fl/fl) mice were generated to assess the contribution of receptor-interacting serine-threonine kinase (RIPK)3. Immunohistochemical and immunofluorescence analyses were used to examine renal damage. Flow cytometric analysis was employed to characterize splenocyte distribution and activation. Cre (LysM) Casp8 (fl/fl) mice were treated with either Toll-like receptor (TLR) agonists or oral antibiotics to assess their response to TLR activation or TLR agonist removal. Luminex-based assays and enzyme-linked immunosorbent assays were used to measure cytokine/chemokine and immunoglobulin levels in serum and cytokine levels in cell culture studies. In vitro cell culture was used to assess macrophage response to cell death stimuli, TLR activation, and M1/M2 polarization. Data were compared using the Mann-Whitney U test. Loss of caspase-8 expression in macrophages promotes onset of a mild systemic inflammatory disease, which is preventable by the deletion of RIPK3. In vitro cell culture studies reveal that caspase-8-deficient macrophages are prone to a caspase-independent death in response to death receptor ligation; yet, caspase-8-deficient macrophages are not predisposed to unchecked survival, as analysis of mixed bone marrow chimeric mice demonstrates that caspase-8 deficiency does not confer preferential expansion of myeloid populations. Loss of caspase-8 in macrophages dictates the response to TLR activation, as injection of TLR ligands upregulates expression of costimulatory CD86 on the Ly6C(high)CD11b(+)F4/80(+) splenic cells, and oral antibiotic treatment to remove microbiota prevents splenomegaly and lymphadenopathy in Cre (LysM) Casp8 (fl/fl) mice. Further, caspase-8-deficient macrophages are hyperresponsive to TLR activation and exhibit aberrant M1 macrophage polarization due to RIPK activity. These data demonstrate that caspase-8 functions uniquely in macrophages by controlling the response to TLR activation and macrophage polarization in an RIPK-dependent manner.
Braga, Julia Mourão; Oliveira, Ricardo Reis; de Castro Martins, Renata; Vieira, Leda Quercia; Sobrinho, Antonio Paulino Ribeiro
2015-10-01
To assess the influence of co-culture with mineral trioxide aggregate (MTA) and MTA Fillapex (FLPX) on the viability, adherence, and phagocytosis activity of peritoneal macrophages from two mouse strains. Cellular viability, adherence, and phagocytosis of Saccharomyces boulardii were assayed in the presence of capillaries containing MTA and MTA Fillapex. The data were analyzed using parametric (Student's t) and non-parametric (Mann-Whitney) tests. FLPX was severely cytotoxic and decreased cell viability, adherence, and phagocytic activity of both macrophage subtypes. Cells that were treated with MTA Fillapex remained viable (>80%) for only 4 h after stimulation. Macrophages from C57BL/6 mice presented higher adherence and higher phagocytic activity compared with macrophages from BALB/c mice. Comparison of MTA and FLPX effects upon macrophages indicates that FLPX may impair macrophage activity and viability, while MTA seems to increase phagocytic activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Fidanzi-Dugas, Chloë; Liagre, Bertrand; Chemin, Guillaume; Perraud, Aurélie; Carrion, Claire; Couquet, Claude-Yves; Granet, Robert; Sol, Vincent; Léger, David Yannick
2017-07-01
Photodynamic therapy, using porphyrins as photosensitizers (PS), has been approved in treatment of several solid tumors. However, commonly used PS induce death but also resistance pathways in cancer cells and an alteration of surrounding normal tissues. Because polyamines (PA) are actively accumulated in cancer cells by the Polyamine Transport System (PTS), they may enable PS to specifically target cancer cells. Here, we investigated whether new protoporphyrin IX-polyamine derivatives were effective PS against prostate cancer and whether PA increased PDT specificity after 630nm irradiation. CHO and CHO-MG cells (differing in their PTS activity) were used to assess efficacy of polyamine vectorization. MTT assays were performed on human prostate non-malignant (RWPE-1) and malignant (PC-3, DU 145 and LNCaP) cell lines to test PS phototoxicity. ROS generation, DNA fragmentation and cell signalling were assessed by ELISA/EIA, western-blots and gel shift assays. Finally, PS effects were studied on tumor growth in nude mice. Our PS were more effective on cancer cells compared to non-malignant cells and more effective than PpIX alone. PpIX-PA generated ROS production involved in induction of apoptotic intrinsic pathways. Different pathways involved in apoptosis resistance were studied: PS inhibited Bcl-2, Akt, and NF-κB but activated p38/COX-2/PGE 2 pathways which were not implicated in apoptosis resistance in our model. In vivo experiments showed PpIX-PA efficacy was greater than results obtained with PpIX. All together, our results showed that PpIX-PA exerted its maximum effects without activating resistance pathways and appears to be a good candidate for prostate cancer PDT treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro
2013-01-01
Background Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds. Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. Methods Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. Results All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. Conclusion Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer. PMID:23870175
Substance P induces cardioprotection in ischemia-reperfusion via activation of AKT.
Jubair, Shaiban; Li, Jianping; Dehlin, Heather M; Manteufel, Edward J; Goldspink, Paul H; Levick, Scott P; Janicki, Joseph S
2015-08-15
Accumulating evidence indicates that substance P is cardioprotective following ischemia-reperfusion primarily due to its potent coronary vasodilator actions. However, an anti-apoptotic effect of substance P has been observed in tenocytes following ischemia, which involved activation of the AKT pathway. This suggests the possibility that substance P also provides cardioprotection via direct actions to activate AKT in myocardial cells. The purpose of this study was to test the hypothesis that substance P attenuates ischemia-related cell death via direct effects on myocardial cells by activating cell survival pathways. Seven-week-old male Sprague-Dawley rats, anesthetized with intraperitoneal pentobarbital sodium (100 mg/kg), were used. The ability of substance P to prevent cellular damage was assessed following ischemia-reperfusion in an isolated heart preparation and in short-term hypoxia without reperfusion using a left ventricular tissue slice culture preparation. In addition, the NK-1 receptor and AKT involvement was assessed using the NK-1 receptor antagonist L732138 and the AKT inhibitor LY294002. The results indicate that substance P reduced the ischemia-related release of lactate dehydrogenase in both preparations and the degree of apoptosis and necrosis in the hypoxic left ventricular slices, indicating its ability to attenuate cell damage; and induced AKT phosphorylation, with both the AKT inhibitor and NK-1 receptor antagonist preventing the increased phosphorylation of AKT and the ability of substance P to attenuate hypoxic cellular damage. It is concluded that substance P reduces ischemia/hypoxia-induced myocardial cell death by acting directly on cardiac cells to initiate cell survival pathways via the NK-1 receptor and AKT. Copyright © 2015 the American Physiological Society.
Reddy, P Hemachandra; Manczak, Maria; Yin, XiangLing
2017-01-01
The purpose our study was to determine the protective effects of mitochondria division inhibitor 1 (Mdivi1) in Alzheimer's disease (AD). Mdivi1 is hypothesized to reduce excessive fragmentation of mitochondria and mitochondrial dysfunction in AD neurons. Very little is known about whether Mdivi1 can confer protective effects in AD. In the present study, we sought to determine the protective effects of Mdivi1 against amyloid-β (Aβ)- and mitochondrial fission protein, dynamin-related protein 1 (Drp1)-induced excessive fragmentation of mitochondria in AD progression. We also studied preventive (Mdivi1+Aβ42) and intervention (Aβ42+Mdivi1) effects against Aβ42 in N2a cells. Using real-time RT-PCR and immunoblotting analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis, and synaptic genes. We also assessed mitochondrial function by measuring H2O2, lipid peroxidation, cytochrome oxidase activity, and mitochondrial ATP. MTT assays were used to assess the cell viability. Aβ42 was found to impair mitochondrial dynamics, lower mitochondrial biogenesis, lower synaptic activity, and lower mitochondrial function. On the contrary, Mdivi1 enhanced mitochondrial fusion activity, lowered fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in Mdivi1-treated cells. Interestingly, Mdivi1 pre- and post-treated cells treated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability, mitochondrial dynamics, mitochondrial biogenesis, and synaptic activity. The protective effects of Mdivi1 were stronger in N2a+Aβ42 pre-treated with Mdivi1, than in N2a+Aβ42 cells than Mdivi1 post-treated cells, indicating that Mdivi1 works better in prevention than treatment in AD like neurons.
Hofmann, Claudia; Dunger, Nadja; Doser, Kristina; Lippert, Elisabeth; Siller, Sebastian; Edinger, Matthias; Falk, Werner; Obermeier, Florian
2014-01-01
Cytosine-guanosine dinucleotide (CpG) motifs are immunostimulatory components of bacterial DNA and activators of innate immunity through Toll-like receptor 9 (TLR9). Administration of CpG oligodeoxynucleotides before the onset of experimental colitis prevents intestinal inflammation by enforcement of regulatory mechanisms. It was investigated whether physiologic CpG/TLR9 interactions are critical for the homeostasis of the intestinal immune system. Mesenteric lymph node cell and lamina propria mononuclear cell (LPMC) populations from BALB/c wild-type (wt) or TLR9 mice were assessed by flow cytometry and proteome profiling. Cytokine secretion was determined and nuclear extracts were analyzed for nuclear factor kappa B (NF-κB) and cAMP response-element binding protein activity. To assess the colitogenic potential of intestinal T cells, CD4-enriched cells from LPMC of wt or TLR9 donor mice were injected intraperitoneally in recipient CB-17 SCID mice. TLR9 deficiency was accompanied by slight changes in cellular composition and phosphorylation of signaling proteins of mesenteric lymph node cell and LPMC. LPMC from TLR9 mice displayed an increased proinflammatory phenotype compared with wt LPMC. NF-κB activity in cells from TLR9 mice was enhanced, whereas cAMP response-element binding activity was reduced compared with wt. Transfer of lamina propria CD4-enriched T cells from TLR9 mice induced severe colitis, whereas wt lamina propria CD4-enriched T cells displayed an attenuated phenotype. Lack of physiologic CpG/TLR9 interaction impairs the function of the intestinal immune system indicated by enhanced proinflammatory properties. Thus, physiologic CpG/TLR interaction is essential for homeostasis of the intestinal immune system as it is required for the induction of counterregulating anti-inflammatory mechanisms.
Metabolic regulation of magnolol on the nuclear receptor, liver X receptor.
Xie, N A; Hu, Chunyang; Guo, Anran; Liang, Hao; DU, Pengcheng; Yin, Guotian
2015-05-01
The aim of the present study was to investigate whether magnolol, the essential component of the traditional Chinese medicine, Magnolia officinalis , can pass through liver X receptor α (LXRα), to subsequently play an important role in the lipid metabolic balance. Using a HepG2 human hepatoma cell line, mammalian cellular one-hybridization and mammalian cell transcriptional activation experiments were performed to detect the combination degree of magnolol at different concentrations with LXRα, and assess the transcriptional activity. In addition, using a THP-1 human monocytic cell line, quantitative polymerase chain reaction was performed to assess the effect on the expression levels of downstream genes. Magnolol was shown to dose-dependently combine with LXRα, and subsequently regulate the transcriptional activity of LXRα. In addition, magnolol was found to adjust the expression of associated LXRα downstream genes in the macrophages. In conclusion, magnolol was demonstrated to affect LXRα, which may outline a new molecular mechanism through which magnolol exerts a lipid-lowering function.
Opioid agonists binding and responses in SH-SY5Y cells
NASA Technical Reports Server (NTRS)
Costa, E. M.; Hoffmann, B. B.; Loew, G. H.
1992-01-01
SH-SY5Y (human neuroblastoma) cultured cells, known to have mu-opioid receptors, have been used to assess and compare the ability of eight representative mu-selective compounds from diverse opioid families to recognize and activate these receptors. A wide range of receptor affinities spanning a factor of 10,000 was found between the highest affinity fentanyl analogs (Ki = 0.1nM) and the lowest affinity analog, meperidine (Ki = 1 microM). A similar range was found for inhibition of PGE1-stimulated cAMP accumulation with a rank order of activities that closely paralleled binding affinities. Maximum inhibition of cAMP accumulation by each compound was about 80%. Maximum stimulation of GTPase activity (approximately 50%) was also similar for all compounds except the lowest affinity meperidine. Both effects were naloxone reversible. These results provide further evidence that mu-receptors are coupled to inhibition of adenylate cyclase and that the SH-SY5Y cell line is a good system for assessment of mu-agonists functional responses.
Motor activity as an unbiased variable to assess anaphylaxis in allergic rats.
Abril-Gil, Mar; Garcia-Just, Alba; Cambras, Trinitat; Pérez-Cano, Francisco J; Castellote, Cristina; Franch, Àngels; Castell, Margarida
2015-10-01
The release of mediators by mast cells triggers allergic symptoms involving various physiological systems and, in the most severe cases, the development of anaphylactic shock compromising mainly the nervous and cardiovascular systems. We aimed to establish variables to objectively study the anaphylactic response (AR) after an oral challenge in an allergy model. Brown Norway rats were immunized by intraperitoneal injection of ovalbumin with alum and toxin from Bordetella pertussis. Specific immunoglobulin (Ig) E antibodies were developed in immunized animals. Forty days after immunization, the rats were orally challenged with the allergen, and motor activity, body temperature and serum mast cell protease concentration were determined. The anaphylaxis induced a reduction in body temperature and a decrease in the number of animal movements, which was inversely correlated with serum mast cell protease release. In summary, motor activity is a reliable tool for assessing AR and also an unbiased method for screening new anti-allergic drugs. © 2015 by the Society for Experimental Biology and Medicine.
Safety and activity of PD-1 blockade-activated DC-CIK cells in patients with advanced solid tumors.
Chen, Chang-Long; Pan, Qiu-Zhong; Weng, De-Sheng; Xie, Chuan-Miao; Zhao, Jing-Jing; Chen, Min-Shan; Peng, Rui-Qing; Li, Dan-Dan; Wang, Ying; Tang, Yan; Wang, Qi-Jing; Zhang, Zhi-Ling; Zhang, Xiao-Fei; Jiang, Li-Juan; Zhou, Zi-Qi; Zhu, Qian; He, Jia; Liu, Yuan; Zhou, Fang-Jian; Xia, Jian-Chuan
2018-01-01
Cytokine-induced killer (CIK) cells that are stimulated using mature dendritic cells (DCs), referred to as (DC-CIK cells) exhibit superior anti-tumor potency. Anti-programmed death-1 (PD-1) antibodies reinvigorate T cell-mediated antitumor immunity. This phase I study aimed to assess the safety and clinical activity of immunotherapy with PD-1 blockade (pembrolizumab)-activated autologous DC-CIK cells in patients with advanced solid tumors. Patients with selected types of advanced solid tumors received a single intravenous infusion of activated autologous DC-CIK cells weekly for the first month and every 2 weeks thereafter. The primary end points were safety and adverse event (AE) profiles. Antitumor responses, overall survival (OS), progression-free survival (PFS) and cytolytic activity were secondary end points. Treatment-related AEs occurred in 20/31 patients. Grade 3 or 4 toxicities, including fever and chills, were observed in two patients. All treatment-related AEs were reversible or controllable. The cytotoxicity of DC-CIK cells induced up-regulation of PD-L1 expression on autologous tumor cells. When activated using pembrolizumab ex vivo , DC-CIK cells exerted superior antitumor properties and elevated IFN-γ secretion. Objective responses (complete or partial responses) were observed in 7 of the 31patients.These responses were durable, with 6 of 7 responses lasting more than 5 months. The overall disease control rate in the patients was 64.5%. At the time of this report, the median OS and PFS were 270 and 162 days, respectively. In conclusions, treatment with pembrolizumab-activated autologous DC-CIK cells was safe and exerted encouraging antitumor activity in advanced solid tumors. A larger phase II trial is warranted.
Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.
Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito
2015-08-01
Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity
Naveed, Shams-un-nisa; Clements, Debbie; Jackson, David J.; Philp, Christopher; Billington, Charlotte K.; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W.; Johnston, Sebastian L.; Shaw, Dominick E.
2017-01-01
Rationale: Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. Objectives: To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Methods: Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Measurements and Main Results: Airway smooth muscle cells generated pro–MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P < 0.05), which was dependent on MMP-1 activation. In asthma, airway pro–MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV1 and worsening asthma symptoms. Conclusions: MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness. PMID:27967204
NASA Astrophysics Data System (ADS)
Zhou, Yitian; Zhou, Ping; Xin, Yinqiang; Wang, Jie; Zhu, Zhiqiang; Hu, Ji; Wei, Shicheng; Ma, Hongwei
2014-11-01
Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.
Hirano, T; Abe, K; Gotoh, M; Oka, K
1995-12-01
Certain anti-cancer agents are known to induce apoptosis in human tumour cells. However, these agents are intrinsically cytotoxic against cells of normal tissue origin, including myelocytes and immunocytes. Here we show that a naturally occurring flavone of citrus origin, tangeretin (5,6,7,8,4'-pentamethoxyflavone), induces apoptosis in human promyelocytic leukaemia HL-60 cells, whereas the flavone showed no cytotoxicity against human peripheral blood mononuclear cells (PBMCs). The growth of HL-60 cells in vitro assessed by [3H]thymidine incorporation or tetrazolium crystal formation was strongly suppressed in the presence of tangeretin; the IC50 values range between 0.062 and 0.173 microM. Apoptosis of HL-60 cells, assessed by cell morphology and DNA fragmentation, was demonstrated in the presence of > 2.7 microM tangeretin. Flow cytometric analysis of tangeretin-treated HL-60 cells also demonstrated apoptotic cells with low DNA content and showed a decrease of G1 cells and a concomitant increase of S and/or G2/M cells. Apoptosis was evident after 24 h of incubation with tangeretin, and the tangeretin effect as assessed by DNA fragmentation or growth inhibition was significantly attenuated in the presence of Zn2+, which is known to inhibit Ca(2+)-dependent endonuclease activity. Ca2+ and Mg2+, in contrast, promoted the effect of tangeretin. Cycloheximide significantly decreased the tangeretin effect on HL-60 cell growth, suggesting that protein synthesis is required for flavonoid-induced apoptosis. Tangeretin showed no cytotoxicity against either HL-60 cells or mitogen-activated PBMCs even at high concentration (27 microM) as determined by a dye exclusion test. Moreover, the flavonoid was less effective on growth of human T-lymphocytic leukaemia MOLT-4 cells or on blastogenesis of PBMCs. These results suggest that tangeretin inhibits growth of HL-60 cells in vitro, partially through induction of apoptosis, without causing serious side-effects on immune cells.
Effect of Spaceflight on the Functions of NK and LAK Cells
NASA Technical Reports Server (NTRS)
Pierson, Duane L.; Grimm, Elizabeth A.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)
1999-01-01
Spaceflight-associated stress alters some aspects of the human immune response. In this study, we determined the effects of 10 days aboard the Space Shuttle on the cytotoxic activity of NK and LAK cells. The subjects of this study were crewmembers of two 10-day shuttle flights. Ten-ml blood specimens were obtained from ten astronauts 10 days before launch, immediately after landing, and 3 days after landing. PBMCs were separated from the blood specimens and stored at -800 C. All PBMCs were thawed simultaneously, and the cytotoxic activities of NK and LAK cells were measured by a 4-hour Cr-51 release assay. K562 cells were used to assess NK-cell cytotoxicity. After 4 days of IL-2 activation, the LAK cell cytotoxic activity was determined using K562 and Daudi cells as the target cells. NK-cell cytotoxicity was decreased at landing (p less than 0.0005) in 9/10 astronauts, and in most cases recovered to preflight levels by 3 days after landing; NK-cell cytotoxicity was increased in one astronaut at landing. LAK cytotoxic activity against K562 cells was decreased at landing in 6/10 astronauts (p=0.018), and activity against Daudi cells was decreased in 7/10 astronauts (p=0.01). Phenotyping of PBMCs and LAK cells showed alterations in some surface markers and adhesion molecules (CD1 1 b, CD1 1 c, CD1 1 a, CD1 6, L-Selectin and CD3). Thus spaceflight leads to a decrease in the functions of NK and LAK cells in most astronauts.
NASA Astrophysics Data System (ADS)
Lan, Tian; Cheng, Kai; Ren, Tina; Arce, Stephen Hugo; Tseng, Yiider
2016-09-01
Cell migration is an essential process in organism development and physiological maintenance. Although current methods permit accurate comparisons of the effects of molecular manipulations and drug applications on cell motility, effects of alterations in subcellular activities on motility cannot be fully elucidated from those methods. Here, we develop a strategy termed cell-nuclear (CN) correlation to parameterize represented dynamic subcellular activities and to quantify their contributions in mesenchymal-like migration. Based on the biophysical meaning of the CN correlation, we propose a cell migration potential index (CMPI) to measure cell motility. When the effectiveness of CMPI was evaluated with respect to one of the most popular cell migration analysis methods, Persistent Random Walk, we found that the cell motility estimates among six cell lines used in this study were highly consistent between these two approaches. Further evaluations indicated that CMPI can be determined using a shorter time period and smaller cell sample size, and it possesses excellent reliability and applicability, even in the presence of a wide range of noise, as might be generated from individual imaging acquisition systems. The novel approach outlined here introduces a robust strategy through an analysis of subcellular locomotion activities for single cell migration assessment.
p53 Is a Key Regulator for Osthole-Triggered Cancer Pathogenesis
Huang, Ssu-Ming; Tsai, Cheng-Fang; Wang, Min-Ying
2014-01-01
Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development. PMID:25013761
An integrated cell-free metabolic platform for protein production and synthetic biology
Jewett, Michael C; Calhoun, Kara A; Voloshin, Alexei; Wuu, Jessica J; Swartz, James R
2008-01-01
Cell-free systems offer a unique platform for expanding the capabilities of natural biological systems for useful purposes, i.e. synthetic biology. They reduce complexity, remove structural barriers, and do not require the maintenance of cell viability. Cell-free systems, however, have been limited by their inability to co-activate multiple biochemical networks in a single integrated platform. Here, we report the assessment of biochemical reactions in an Escherichia coli cell-free platform designed to activate natural metabolism, the Cytomim system. We reveal that central catabolism, oxidative phosphorylation, and protein synthesis can be co-activated in a single reaction system. Never before have these complex systems been shown to be simultaneously activated without living cells. The Cytomim system therefore promises to provide the metabolic foundation for diverse ab initio cell-free synthetic biology projects. In addition, we describe an improved Cytomim system with enhanced protein synthesis yields (up to 1200 mg/l in 2 h) and lower costs to facilitate production of protein therapeutics and biochemicals that are difficult to make in vivo because of their toxicity, complexity, or unusual cofactor requirements. PMID:18854819
Androgen receptor polyglutamine repeat length affects receptor activity and C2C12 cell development.
Sheppard, Ryan L; Spangenburg, Espen E; Chin, Eva R; Roth, Stephen M
2011-10-20
Testosterone (T) has an anabolic effect on skeletal muscle and is believed to exert its local effects via the androgen receptor (AR). The AR harbors a polymorphic stretch of glutamine repeats demonstrated to inversely affect receptor transcriptional activity in prostate and kidney cells. The effects of AR glutamine repeat length on skeletal muscle are unknown. In this study we examined the effect of AR CAG repeat length on AR function in C2C12 cells. AR expression vectors harboring 14, 24, and 33 CAG repeats were used to assess AR transcriptional activity. C2C12 cell proliferation, differentiation, gene expression, myotube formation, and myonuclear fusion index were assessed. Transcriptional activity increased with increasing repeat length and in response to testosterone (AR14 = 3.91 ± 0.26, AR24 = 25.21 ± 1.72, AR33 = 36.08 ± 3.22 relative light units; P < 0.001). Ligand activation was increased for AR33 (2.10 ± 0.04) compared with AR14 (1.54 ± 0.09) and AR24 (1.57 ± 0.05, P < 0.001). AR mRNA expression was elevated in each stably transfected line. AR33 cell proliferation (20,512.3 ± 1,024.0) was decreased vs. AR14 (27,604.17 ± 1,425.3; P < 0.001) after 72 h. Decreased CK activity in AR14 cells (54.9 ± 2.9 units/μg protein) in comparison to AR33 (70.8 ± 8.1) (P < 0.05) was noted. The myonuclear fusion index was lower for AR14 (15.21 ± 3.24%) and AR33 (9.97 ± 3.14%) in comparison to WT (35.07 ± 5.60%, P < 0.001). AR14 and AR33 cells also displayed atypical myotube morphology. RT-PCR revealed genotype differences in myostatin and myogenin expression. We conclude that AR polyglutamine repeat length is directly associated with transcriptional activity and alters the growth and development of C2C12 cells. This polymorphism may contribute to the heritability of muscle mass in humans.
Wang, Feng-qiang; Ariztia, Edgardo V; Boyd, Leslie R; Horton, Faith R; Smicun, Yoel; Hetherington, Jessica A; Smith, Phillip J; Fishman, David A
2010-04-01
Lysophosphatidic acid (LPA) has potent growth-regulatory effect in many cell types and has been linked to the in vivo tumor growth and metastasis in several malignancies. The goal of this study was to assess the regulation of (EC) microenvironment by LPA through the examination of its effect on cell proliferation, migration, invasion, uPA activity, and matrix metalloproteinase (MMP) secretion/activation. All experiments were performed in vitro using an EC cell line, HEC-1A. Cell proliferation was determined using the Promega MTS proliferation assay following 48 h of exposures to different concentrations of LPA (0.1, 1.0 and 10.0 microM). Cell invasion was assessed using a modified Boyden chamber assay with collagen I coated on the membrane. HEC-1A motility was examined by Boyden chamber migration assay as well as the scratch wound closure assay on type I collagen. MMP secretion/activation in HEC-1A conditioned medium was detected by gelatin zymography. MMP-7 mRNA expression was determined using real-time PCR. uPA activity was measured using a coupled colorimetric assay. LPA, at the concentrations of 0.1 and 1.0 microM, significantly induced the proliferation of HEC-1A cells (p<0.01). At 10 microM, LPA- induced HEC-1A proliferation to a less extent and showed no significant effect on HEC-1A invasion and migration (p>0.05). Gelatin zymogram showed that HEC-1A cells secreted high levels of MMP-7, while MMP-2 and MMP-9 are barely detectable. In addition, LPA significantly enhanced uPA activity in HEC-1A conditioned medium in a concentration-dependent manner. LPA is a potent modulator of cellular proliferation and invasion for EC cells. It also has the capacity to stimulate the secretion/activity of uPA and MMP-7. Those results suggest that LPA is a bioactive modulator of EC microenvironment and may have a distinct regulation mechanism as observed in epithelial ovarian cancer. Copyright 2009. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna; Nowakowska, Maria; Szczubiałka, Krzysztof
2014-12-01
Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2
Selective Synthesis and Biological Evaluation of Sulfate-Conjugated Resveratrol Metabolites
Hoshino, Juma; Park, Eun-Jung; Kondratyuk, Tamara P.; Marler, Laura; Pezzuto, John M.; van Breemen, Richard B.; Mo, Shunyan; Li, Yongchao; Cushman, Mark
2010-01-01
Five resveratrol sulfate metabolites were synthesized and assessed for activities known to be mediated by resveratrol: inhibition of tumor necrosis factor (TNF)-α-induced NFκB activity, cylcooxygenases (COX-1 and COX-2), aromatase, nitric oxide production in endotoxin-stimulated macrophages, and proliferation of KB or MCF7 cells, induction of quinone reductase 1 (QR1), accumulation in the sub-G1 phase of the cell cycle, and quenching of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. Two metabolites showed activity in these assays; the 3-sulfate exhibited QR1 induction, DPPH free radical scavenging, and COX-1 and COX-2 inhibitory activities, and the 4′-sulfate inhibited NFκB induction, as well as COX-1 and COX-2 activities. Resveratrol, as well as its 3′-sulfate and 4-sulfate, inhibit NO production by NO scavenging and down-regulation of iNOS expression in RAW 264.7 cells. Resveratrol sulfates displayed low antiproliferative activity and negligible uptake in MCF7 cells. PMID:20527891
Patterson, Jesse C.; Klimenko, Evguenia S.; Thorner, Jeremy
2014-01-01
Eukaryotic cells use multiple mitogen-activated protein kinase (MAPK) cascades to evoke appropriate responses to external stimuli. In Saccharomyces cerevisiae, the MAPK Fus3 is activated by pheromone-binding G protein-coupled receptors to promote mating, whereas the MAPK Hog1 is activated by hyperosmotic stress to elicit the high osmolarity glycerol (HOG) response. Although these MAPK pathways share several upstream components, exposure to either pheromone or osmolyte alone triggers only the appropriate response. We used fluorescent localization- and transcription-specific reporters to assess activation of these pathways in individual cells on the minute and hour timescale, respectively. Dual activation of these two MAPK pathways occurred over a broad range of stimulant concentrations and temporal regimes in wild-type cells subjected to co-stimulation. Thus, signaling specificity is achieved through an “insulation” mechanism, not a “cross-inhibition” mechanism. Furthermore, we showed that there was a critical period during which Hog1 activity had to occur for proper insulation of the HOG pathway. PMID:20959523
Arctigenin induces apoptosis in colon cancer cells through ROS/p38MAPK pathway.
Li, Qing-chun; Liang, Yun; Tian, Yuan; Hu, Guang-rui
2016-01-01
In the current study the antiproliferative effect of arctigenin, plant lignin, was evaluated on human colon cancer cell line HT-29. Furthermore, attempts were made to explore the signaling mechanism which may be responsible for its effect. Cell growth inhibition was assessed by MTT and LDH assays. Flow cytometric analysis was performed to determine cell arrest in the cell cycle phase and apoptosis. Furthermore, to confirm the apoptotic activity of arctigenin, caspase-9 and -3 activities analysis was performed. The levels of reactive oxygen species (ROS) and p38 mitogen activated protein kinase (MAPK) were investigated to determine their role in inducing apoptosis in arctigenin-treated HT-29 colon cancer cell line. MTT and LDH results demonstrated significant cell growth inhibitory effect of arctigenin on HT-29 cells in a dose-dependent manner. Furthermore, increase in cell number arrested at G2/M phase was observed in flow cytometric analysis upon arctigenin treatment. In addition, arctigenin increased the apoptotic ratio in a dose-dependent manner. The involvement of intrinsic apoptotic pathway was indicated by the activation of caspase-9 and -3. Moreover, increased ROS production, activation of p38 MAPK and changes in mitochondrial membrane potential (ΔΨm) also revealed the role of intrinsic apoptotic signaling pathway in cell growth inhibition after arctigenin exposure. Arctigenin induces apoptosis in HT-29 colon cancer cells by regulating ROS and p38 MAPK pathways.
Elsaid, Ahmed F; Shaheen, Magda; Ghoneum, Mamdooh
2018-03-01
Aging is associated with a decline in natural killer (NK) and natural killer T (NKT) cell function that may contribute to increased susceptibility to malignancy and infection. A preliminary investigation was conducted examining the hypothesis that arabinoxylan rice bran (Biobran/MGN-3), a denatured hemicellulose with known immunomodulatory activity, could counteract this decline in NK/NKT cell activity in geriatrics. A total of 12 healthy geriatric subjects of both sexes and over 56 years old, participated in a randomized, double-blind, placebo-controlled clinical trial. A total of six subjects served as control and six subjects ingested Biobran/MGN-3 (500 mg/day) for 30 days. The effect of Biobran/MGN-3 supplementation on NK/NKT cell activity was assessed using the degranulation assay. All study subjects were monitored for the development of any inadvertent side effects. In addition, the pharmacological effects of Biobran/MGN-3 on blood cell components and liver and kidney functions were also assessed. Results demonstrated that Biobran/MGN-3 had no effect on the total percentage of NK cells, however it enhanced the cytotoxic activity of induced NK cell expression of cluster of differentiation 107a, when compared with baseline values and with the placebo group (P<0.05). Furthermore, there were no side effects observed, indicating that Biobran/MGN-3 supplementation was safe at the utilized dosage and for the duration of administration. Various additional beneficial effects were observed, including improved mean corpuscular volume and reduced hepatic aspartate aminotransferase enzyme levels, which suggested improved liver function. It was concluded that Biobran/MGN-3 induces a significant increase in NK activity which may increase resistance to viral infections and cancers in the geriatric population. However, additional clinical trials should be conducted in the future to verify these findings.
Guo, Fan; Wang, Huiwen; Li, Liya; Zhou, Heng; Wei, Haidong; Jin, Weilin; Wang, Qiang; Xiong, Lize
2013-04-01
This study aimed to investigate the protective effect of the M9 region (residues 290-562) of amino-Nogo-A fused to the human immunodeficiency virus trans-activator TAT in an in vitro model of ischemia-reperfusion induced by oxygen-glucose deprivation (OGD) in HT22 hippocampal neurons, and to investigate the role of NADPH oxidase in this protection. Transduction of TAT-M9 was analyzed by immunofluorescence staining and western blot. The biologic activity of TAT-M9 was assessed by its effects against OGD-induced HT22 cell damage, compared with a mutant M9 fusion protein or vehicle. Cellular viability and lactate dehydrogenase (LDH) release were assessed. Neuronal apoptosis was evaluated by flow cytometry. The Bax/Bcl-2 ratio was determined by western blotting. Reactive oxygen species (ROS) levels and NADPH oxidase activity were also measured in the presence or absence of an inhibitor or activator of NADPH oxidase. Our results confirmed the delivery of the protein into HT22 cells by immunofluorescence and western blot. Addition of 0.4 μmol/L TAT-M9 to the culture medium effectively improved neuronal cell viability and reduced LDH release induced by OGD. The fusion protein also protected HT22 cells from apoptosis, suppressed overexpression of Bax, and inhibited the reduction in Bcl-2 expression. Furthermore, TAT-M9, as well as apocynin, decreased NADPH oxidase activity and ROS content. The protective effects of the TAT-M9 were reversed by TBCA, an agonist of NADPH oxidase. In conclusion, TAT-M9 could be successfully transduced into HT22 cells, and protected HT22 cells against OGD damage by inhibiting NADPH oxidase-mediated oxidative stress. These findings suggest that the TAT-M9 protein may be an efficient therapeutic agent for neuroprotection.
Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi
2017-01-01
Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters
Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...
Isolation of Primary Human Skeletal Muscle Cells
Spinazzola, Janelle M.; Gussoni, Emanuela
2017-01-01
Primary myoblast culture is a valuable tool in research of muscle disease, pathophysiology, and pharmacology. This protocol describes techniques for dissociation of cells from human skeletal muscle biopsies and enrichment for a highly myogenic population by fluorescence-activated cell sorting (FACS). We also describe methods for assessing myogenicity and population expansion for subsequent in vitro study. PMID:29152538
Ferreira, Isabel C. F. R.; Barros, Lillian; Carvalho, Ana Maria; Soares, Graça; Henriques, Mariana
2014-01-01
The present work aims to assess the antibacterial potential of phenolic extracts, recovered from plants obtained on the North East of Portugal, and of their phenolic compounds (ellagic, caffeic, and gallic acids, quercetin, kaempferol, and rutin), against bacteria commonly found on skin infections. The disk diffusion and the susceptibility assays were used to identify the most active extracts and phenolic compounds. The effect of selected phenolic compounds on animal cells was assessed by determination of cellular metabolic activity. Gallic acid had a higher activity, against gram-positive (S. epidermidis and S. aureus) and gram-negative bacteria (K. pneumoniae) at lower concentrations, than the other compounds. The caffeic acid, also, showed good antibacterial activity against the 3 bacteria used. The gallic acid was effective against the 3 bacteria without causing harm to the animal cells. Gallic and caffeic acid showed a promising applicability as antibacterial agents for the treatment of infected wounds. PMID:24804249
Daily intake of Lactobacillus casei Shirota increases natural killer cell activity in smokers.
Reale, Marcella; Boscolo, Paolo; Bellante, Veronica; Tarantelli, Chiara; Di Nicola, Marta; Forcella, Laura; Li, Qing; Morimoto, Kanehisa; Muraro, Raffaella
2012-07-01
Dietary probiotics supplementation exerts beneficial health effects. Since cigarette smoking reduces natural killer (NK) activity, we evaluated the effect of Lactobacillus casei Shirota (LcS) intake on NK cytotoxic activity in male smokers. The double-blind, placebo-controlled, randomised study was conducted on seventy-two healthy Italian blue-collar male smokers randomly divided for daily intake of LcS powder or placebo. Before and after 3 weeks of intake, peripheral blood mononuclear cells were isolated and NK activity and CD16⁺ cells' number were assessed. Daily LcS intake for 3 weeks significantly increased NK activity (P < 0.001). The increase in NK activity was paralleled by an increase in CD16⁺ cells (P < 0.001). Before intake, NK cytotoxic activity inversely correlated with the number of cigarettes smoked (R - 0.064). LcS intake prevented the smoke-dependent expected NK activity reduction. The analysis of the distribution of changes in smoke-adjusted NK activity demonstrated that the positive variations were significantly associated with LcS intake, while the negative variations were associated with placebo intake (median value of distributions of differences, 20.98 lytic unit (LU)/10⁷ cells for LcS v. - 4.38 LU/10⁷ cells for placebo, P = 0.039). In conclusion, 3 weeks of daily LcS intake in Italian male smokers was associated with a higher increase in cytotoxic activity and CD16⁺ cells' number in comparison to the placebo intake group.
Synthesis and biological evaluation of a series of non-hemiacetal ester derivatives of artemisinin.
Zuma, Nonkululeko H; Smit, Frans J; de Kock, Carmen; Combrinck, Jill; Smith, Peter J; N'Da, David D
2016-10-21
In an attempt to improve the efficacy and stability of current, clinically used artemisinins, a series non-hemiacetal ester derivatives of artemisinin were synthesized and evaluated for their in vitro antiplasmodial and anticancer activities as well as cytotoxicities. These esters were synthesized through the reaction of acid anhydrides, or acid chlorides with artemisinin derived alcohol. In vitro antiplasmodial activity assessments were conducted against intraerythrocytic NF54 and Dd2 Plasmodium falciparum strains. Cytotoxicities were assessed, using normal human fetal lung fibroblast (WI-38) and Chinese hamster ovarian (CHO) mammalian cell lines, while anticancer activities were tested by using panels with three cell lines, consisting of renal (TK10), melanoma (UACC62) and breast (MCF7) cancer cells. Most compounds were found active against the breast cancer cell line. Since antiplasmodial activities for most compounds were found comparable only to that of artesunate, this study did not yield any esters with significantly improved antimalarial efficacies, nor did it deliver any promising antitumor hits. However, from the outcomes of this study, compounds with good safety profiles and increased thermal stabilities, compared to the clinically used artemisinins, were identified. The benzoate derivative 11 was found to have antimalarial activity, comparable to that of dihydroartemisinin and was it subsequently identified as a candidate for further investigation in the urgent search for new, safe and effective antimalarial drugs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Guangwen; Yang, Tianming; Wang, Chaoyuan
2013-06-15
Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearingmore » mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.« less
Endurance Test and Evaluation of Alkaline Water Electrolysis Cells
NASA Technical Reports Server (NTRS)
Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.
1985-01-01
The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.
Chen, Xi; Li, Kai; Zhao, Guoqing
2018-04-18
BACKGROUND Propofol has antitumor effects against various cancers. However, the mechanism of action of propofol in HeLa human cervical cancer cells has not been elucidated. MATERIAL AND METHODS We treated HeLa human cervical cancer cells with different concentrations of propofol. Cell viability was evaluated with Cell Counting Kit-8 and apoptosis was analyzed by annexin V-fluorescein isothiocyanate and propidium iodide staining and flow cytometry. Autophagosome formation was evaluated based on microtubule-associated protein light chain (LC)3 conversion and light chain 3 puncta formation. Autophagosome clearance was assessed according to p62 protein level and autolysosome generation. RESULTS We found that propofol decreased cell viability and increased autophagosome generation in HeLa cells. Autophagosome formation was evaluated based on LC3 conversion and LC3 puncta formation. Autophagosome clearance was assessed according to p62 protein level. The AMPK/mTOR signaling pathway was found to be activated in propofol-induced autophagosome accumulation. Fluorescence analysis using LysoTracker dye revealed that propofol blocked autophagosome-lysosome fusion. Administration of rapamycin increased autophagosome clearance in propofol-treated HeLa cells. Additionally, propofol induced endoplasmic reticulum (ER) stress and disrupted intracellular Ca2+ balance, thereby enhancing autophagosome accumulation. Suppressing ER stress by treatment with tauroursodeoxycholic acid (TUDCA) enhanced these effects, suggesting that the cytotoxicity of propofol is related to induction of ER stress. CONCLUSIONS This study is the first to provide evidence that propofol-mediated autophagy regulation is an underlying part of the mechanism by which propofol regulates HeLa cells progression.
Wang, Wei Jie; Chen, Di; Jiang, Ming Zuo; Xu, Bing; Li, Xiao Wei; Chu, Yi; Zhang, Yu Jie; Mao, Ren; Liang, Jie; Fan, Dai Ming
2018-02-01
To explore the relationship between gasdermin D (GSDMD) and gastric cancer (GC) cell proliferation, and to determine whether the downregulated expression of GSDMD contributed to the tumorigenesis and proliferation of GC cells. GSDMD expressions in GC tissues and matched adjacent non-cancerous tissues were assessed by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry. The effect of GSDMD on cell proliferation in vitro was assessed by the colony formation assay and cell viability assays. In vivo, xenografted tumors in nude mice were evaluated. The cell cycle was analyzed by flow cytometry. In addition, the alterations of several cell cycle-related and cell signaling pathway proteins were analyzed by Western blot. GSDMD expression was decreased in GC, and the decreased expression of GSDMD could markedly promote the proliferation of tumors in vivo and in vitro. The downregulation of GSDMD accelerated S/G 2 cell transition by activating extracellular signal regulated kinase, signal transducer and activator of transcription 3 and phosphatidylinositol 3 kinase/protein kinase B signaling pathways and regulating cell cycle-related proteins in GC. GSDMD may protect against cell proliferation of GC, and it may be used as a diagnostic and treatment strategy for GC. © 2018 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.
Shirasaki, Hideaki; Kanaizumi, Etsuko; Himi, Tetsuo
2017-11-01
Numerous reports have shown that cysteinyl leukotrienes (CysLTs) contribute to tissue accumulation of eosinophils in allergic airway inflammation. To date, only a few studies have reported that CysLTs promote chemotactic activity of human eosinophils in vitro. The purpose of this study was to investigate whether CysLTs promote chemotaxis in the human eosinophilic cell line, EoL-1. EoL-1 cells were induced to differentiate into mature eosinophil-like cells via incubation with butyric acid and cytokines (IL-3, IL-5 and GM-CSF). The chemotactic activity of the differentiated EoL-1 cells was assessed using the commercial cell migration assay kit. LTD 4 elicited dose-related chemotactic activity in the differntiated EoL-1 cells in the range of 1-100 nM. A typical bell-shaped dose-response curve was observed with optimal activity at 10 nM. The chemotactic activity elicited by LTD 4 (10 nM) was significantly inhibited by montelukast (control, 345 ± 19.2 × 10 3 RFU; LTD 4 10 nM alone, 511 ± 39.2 × 10 3 RFU; LTD 4 10 nM plus montelukast 100 nM, 387 ± 28.2 × 10 3 RFU). LTD 4 induces migration in eosinophilic cells via activation of CysLT1 receptor. The present in vitro model may be useful for elucidation of the mechanism underlying CysLT-induced tissue eosinophilia.
A Novel Three-Dimensional Immune Oncology Model for High-Throughput Testing of Tumoricidal Activity.
Sherman, Hilary; Gitschier, Hannah J; Rossi, Ann E
2018-01-01
The latest advancements in oncology research are focused on autologous immune cell therapy. However, the effectiveness of this type of immunotherapy for cancer remediation is not equivalent for all patients or cancer types. This suggests the need for better preclinical screening models that more closely recapitulate in vivo tumor biology. The established method for investigating tumoricidal activity of immunotherapies has been study of two-dimensional (2D) monolayer cultures of immortalized cancer cell lines or primary tumor cells in standard tissue culture vessels. Indeed, a proven means to examine immune cell migration and invasion are 2D chemotaxis assays in permeabilized supports or Boyden chambers. Nevertheless, the more in vivo -like three-dimensional (3D) multicellular tumor spheroids are quickly becoming the favored model to examine immune cell invasion and tumor cell cytotoxicity. Accordingly, we have developed a 3D immune oncology model by combining 96-well permeable support systems and 96-well low-attachment microplates. The use of the permeable support system enables assessment of immune cell migration, which was tested in this study as chemotactic response of natural killer NK-92MI cells to human stromal-cell derived factor-1 (SDF-1α). Immune invasion was assessed by measuring NK-92MI infiltration into lung carcinoma A549 cell spheroids that were formed in low-attachment microplates. The novel pairing of the permeable support system with low-attachment microplates permitted simultaneous investigation of immune cell homing, immune invasion of tumor spheroids, and spheroid cytotoxicity. In effect, the system represents a more comprehensive and in vivo -like immune oncology model that can be utilized for high-throughput study of tumoricidal activity.
Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon
2015-01-01
Background and objectives Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. Methods The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Results Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Conclusions Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies. PMID:22068162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koike, Eiko; Kobayashi, Takahiro
2005-12-15
We hypothesized that diesel exhaust particles (DEP) induce the activation of antigen-presenting cells (APC) in lung. The present study was designed to clarify the following about DEP: (1) whether it affects the expression of Ia and B7 molecules in alveolar macrophages (AM) as a mature cell or in peripheral blood monocytes (PBM) as an immature cell (2) if it affects the antigen-presenting (AP) activity of PBM (3) what component of DEP is responsible for the effects, and (4) whether the effect of DEP is related to oxidative stress. DEP was extracted with methylene chloride. Cells were exposed to whole DEP,more » organic extract, or residual particles for 24 h. Cell-surface molecules were measured by flow cytometry. AP activity was assessed by antigen-specific T cell proliferation. Whole DEP or organic extract significantly increased the expression of Ia and B7 molecules on PBM but not on AM. No significant effect of residual particles was observed. A low concentration of organic extract also increased the AP activity of PBM. When the induction of an antioxidative enzyme was assessed, heme oxygenase-1 protein was found to be significantly increased by exposure to whole DEP, and the organic extract was more effective than the residual particles. Furthermore, the organic extract-induced expression of Ia antigen on PBM was reduced by the addition of an antioxidative agent. These results suggest that DEP may act on immature APC and enhance their AP activity and that the action contributing to oxidative stress may be mediated by organic compounds of DEP.« less
A novel research model for evaluating sunscreen protection in the UV-A1.
Figueiredo, Sônia Aparecida; de Moraes, Dayane Cristina; Vilela, Fernanda Maria Pinto; de Faria, Amanda Natalina; Dos Santos, Marcelo Henrique; Fonseca, Maria José Vieira
2018-01-01
The use of a broad spectrum sunscreen is considered one of the main and most popular measures for preventing the damaging effects of ultraviolet radiation (UVR) on the skin. In this study we have developed a novel in vitro method to assess sunscreens efficacy to protect calcineurin enzyme activity, a skin cell marker. The photoprotective efficacy of sunscreen products was assessed by measuring the UV-A1 radiation-induced depletion of calcineurin (Cn) enzyme activity in primary neonatal human dermal fibroblast (HDFn) cell lysates. After exposure to 24J/cm 2 UV-A1 radiation, the sunscreens containing larger amounts of UV-A1 filters (brand B), the astaxanthin (UV-A1 absorber) and the Tinosorb® M (UV-A1 absorber) were capable of preventing loss of Cn activity when compared to the sunscreens formulations of brand A (low concentration of UV-A1 filters), with the Garcinia brasiliensis extract (UV-B absorber) and with the unprotected cell lysate and exposed to irradiation (Irradiated Control - IC). The Cn activity assay is a reproducible, accurate and selective technique for evaluating the effectiveness of sunscreens against the effects of UV-A1 radiation. The developed method showed that calcineurin activity have the potential to act as a biological indicator of UV-A1 radiation-induced damages in skin and the assay might be used to assess the efficacy of sunscreens agents and plant extracts prior to in vivo tests. Copyright © 2017 Elsevier B.V. All rights reserved.
Guisier, Florian; Bohn, Pierre; Patout, Maxime; Piton, Nicolas; Farah, Insaf; Vera, Pierre; Thiberville, Luc; Salaün, Mathieu
2017-01-01
Prediction of treatment outcome of non-small cell lung cancer (NSCLC) with EGFR inhibitors on the basis of the genetic analysis of the tumor can be incorrect in case of rare or complex mutations, bypass molecular activation pathways, or pharmacodynamic variations. The aim of this study was to develop an ex vivo and in vivo real-time quantitative imaging test for EGFR inhibitors sensitivity assessment. Erlotinib resistant (A549, H460, H1975), insensitive (H1650) and hypersensitive (HCC827) cell lines were injected subcutaneously in Nude mice. Tumor xenografts from mice treated with Erlotinib were imaged ex vivo and in vivo using probe-based confocal laser endomicroscopy (pCLE) and NucView 488 Caspase 3 substrate, a fluorescent probe specific for the activated caspase 3. Assessment of apoptosis at 24h post treatment, both ex vivo in explanted tumor xenografts and in vivo, showed a significant difference between resistant cell lines (A549, H460 and H1975) and insensitive (H1650) or hypersensitive (HCC827) ones (p<0.05 for ex vivo imaging, p≤0.02 for in vivo imaging). There was also a significant difference between insensitive and hypersensitive cell lines, both ex vivo (p<0.05) and in vivo (p = 0.01). Real-time in vivo and ex vivo assessment of apoptosis using pCLE differentiates resistant from sensitive NSCLC xenografts to Erlotinib.
Ong, Huan Ting; Redmond, Sharon L; Marano, Robert J; Atlas, Marcus D; von Unge, Magnus; Aabel, Peder; Dilley, Rodney J
2017-03-15
Stem cell therapies for tympanic membrane repair have shown initial experimental success using mesenchymal stem cells in rat models to promote healing; however, the mechanisms providing this benefit are not known. We investigated in vitro the paracrine effects of human adipose-derived stem cells (ADSCs) on wound healing mechanisms for human tympanic membrane-derived keratinocytes (hTM) and immortalized human keratinocytes (HaCaT). ADSC conditioned media (CM ADSC ) were assessed for paracrine activity on keratinocyte proliferation and migration, with hypoxic conditions for ADSC culture used to generate contrasting effects on cytokine gene expression. Keratinocytes cultured in CM ADSC showed a significant increase in cell number compared to serum-free cultures and further significant increases in hypoxic CM ADSC . Assessment of ADSC gene expression on a cytokine array showed a range of wound healing cytokines expressed and under stringent hypoxic and serum-free conditions was upregulated (VEGF A, MMP9, Tissue Factor, PAI-1) or downregulated (CXCL5, CCL7, TNF-α). Several of these may contribute to the activity of conditioned media on the keratinocytes with potential applications in TM perforation repair. VEGFA protein was confirmed by immunoassay to be increased in conditioned media. Together with gene regulation associated with hypoxia in ADSCs, this study has provided several strong leads for a stem cell-derived approach to TM wound healing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokobza, Sivan M.; Jiang, Yanyan; Weber, Anika M.
2014-03-15
Purpose: To evaluate the combination of radiation and an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in preclinical models of human non-small cell lung cancer. Methods and Materials: Sensitivity to an EGFR TKI (gefitinib) or radiation was assessed using proliferation assays and clonogenic survival assays. Effects on receptor signal transduction pathways (pEGFR, pAKT, pMAPK) and apoptosis (percentage of cleaved PARP Poly (ADP-ribose) polymerase (PARP)) were assessed by Western blotting. Radiation-induced DNA damage was assessed by γH2AX immunofluorescence. Established (≥100 mm{sup 3}) EGFR-mutated (HCC287) or EGFR wild-type (A549) subcutaneous xenografts were treated with radiation (10 Gy, day 1) or gefitinib (50 mg/kg,more » orally, on days 1-3) or both. Results: In non-small cell lung cancer (NSCLC) cell lines with activating EGFR mutations (PC9 or HCC827), gefitinib treatment markedly reduced pEGFR, pAKT, and pMAPK levels and was associated with an increase in cleaved PARP but not in γH2AX foci. Radiation treatment increased the mean number of γH2AX foci per cell but did not significantly affect EGFR signaling. In contrast, NSCLC cell lines with EGFR T790M (H1975) or wild-type EGFR (A549) were insensitive to gefitinib treatment. The combination of gefitinib and radiation treatment in cell culture produced additive cell killing with no evidence of synergy. In xenograft models, a short course of gefitinib (3 days) did not significantly increase the activity of radiation treatment in wild-type EGFR (A549) tumors (P=.27), whereas this combination markedly increased the activity of radiation (P<.001) or gefitinib alone (P=.002) in EGFR-mutated HCC827 tumors, producing sustained tumor regressions. Conclusions: Gefitinib treatment increases clonogenic cell killing by radiation but only in cell lines sensitive to gefitinib alone. Our data suggest additive rather than synergistic interactions between gefitinib and radiation and that a combination of short-course gefitinib and high-dose/-fraction radiation may have the greatest potential against the subsets of lung cancers harboring activating mutations in the EGFR gene.« less
Luo, Zhenlong; Ji, Yudong; Tian, Dean; Zhang, Yong; Chang, Sheng; Yang, Chao; Zhou, Hongmin; Chen, Zhonghua Klaus
2018-06-08
Galectin-7 (Gal-7) has been associated with cell proliferation and apoptosis. It is known that Gal-7 antagonises TGFβ-mediated effects in hepatocytes by interacting with Smad3. Previously, we have demonstrated that Gal-7 is related to CD4+ T cells responses; nevertheless, its effect and functional mechanism on CD4+ T cells responses remain unclear. The murine CD4+ T cells were respectively cultured with Gal-7, anti-CD3/CD28 mAbs, or with anti-CD3/CD28 mAbs & Gal-7. The effects of Gal-7 on proliferation and the phenotypic changes in CD4+ T cells were assessed by flow cytometry. The cytokines from CD4+ T cells were analysed by quantitative real-time PCR. Subcellular localisation and expression of Smad3 were determined by immunofluorescence staining and Western blot, respectively. Gal-7 enhanced the proliferation of activated CD4+ T cells in a dose- and β-galactoside-dependent manner. Additionally, Gal-7 treatment did not change the ratio of Th2 cells in activated CD4+ T cells, while it increased the ratio of Th1 cells. Gal-7 also induced activated CD4+ T cells to produce a higher level of IFN-γ and TNF-α and a lower level of IL-10. Moreover, Gal-7 treatment significantly accelerated nuclear export of Smad3 in activated CD4+ T cells. These results revealed a novel role of Gal-7 in promoting proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting the TGFβ/Smad3 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.
Antigen presenting capacity of murine splenic myeloid cells.
Hey, Ying-Ying; Quah, Benjamin; O'Neill, Helen C
2017-01-11
The spleen is an important site for hematopoiesis. It supports development of myeloid cells from bone marrow-derived precursors entering from blood. Myeloid subsets in spleen are not well characterised although dendritic cell (DC) subsets are clearly defined in terms of phenotype, development and functional role. Recently a novel dendritic-like cell type in spleen named 'L-DC' was distinguished from other known dendritic and myeloid cells by its distinct phenotype and developmental origin. That study also redefined splenic eosinophils as well as resident and inflammatory monocytes in spleen. L-DC are shown to be distinct from known splenic macrophages and monocyte subsets. Using a new flow cytometric procedure, it has been possible to identify and isolate L-DC in order to assess their functional competence and ability to activate T cells both in vivo and in vitro. L-DC are readily accessible to antigen given intravenously through receptor-mediated endocytosis. They are also capable of CD8 + T cell activation through antigen cross presentation, with subsequent induction of cytotoxic effector T cells. L-DC are MHCII - cells and unable to activate CD4 + T cells, a property which clearly distinguishes them from conventional DC. The myeloid subsets of resident monocytes, inflammatory monocytes, neutrophils and eosinophils, were found to have varying capacities to take up antigen, but were uniformly unable to activate either CD4 + T cells or CD8 + T cells. The results presented here demonstrate that L-DC in spleen are distinct from other myeloid cells in that they can process antigen for CD8 + T cell activation and induction of cytotoxic effector function, while both L-DC and myeloid subsets remain unable to activate CD4 + T cells. The L-DC subset in spleen is therefore distinct as an antigen presenting cell.
T cell function in tuatara (Sphenodon punctatus).
Burnham, D Kim; Keall, Susan N; Nelson, Nicola J; Daugherty, Charles H
2005-05-01
Tuatara are the sole survivors of an entire order of reptiles that thrived during the age of the dinosaurs. Therefore, knowledge of their physiology is critical to understanding the phylogeny of reptiles. Previous studies of the immune system of the tuatara did not assess T cell function. We analyzed T cell function among six captive tuatara by assessing concanavalin A (Con A), phytohemagglutinin (PHA) and mixed lymphocyte reaction (MLR) induced T cell proliferation. Peripheral blood mononuclear cells from six out of six and four out of four tuatara tested exhibited significant proliferative responses to Con A and PHA, respectively, as measured by an MTT reduction assay. A lower level of proliferation was detected in an MLR. However, Con A activated lymphocytes were not cytotoxic for a xenogeneic murine mastocytoma cell line (P815).
Genetic deletion of COX-2 diminishes VEGF production in mouse retinal Müller cells.
Yanni, Susan E; McCollum, Gary W; Penn, John S
2010-07-01
Non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit COX activity, reduce the production of retinal VEGF and neovascularization in relevant models of ocular disease. We hypothesized that COX-2 mediates VEGF production in retinal Müller cells, one of its primary sources in retinal neovascular disease. The purpose of this study was to determine the role of COX-2 and its products in VEGF expression and secretion. These studies have more clearly defined the role of COX-2 and COX-2-derived prostanoids in retinal angiogenesis. Müller cells derived from wild-type and COX-2 null mice were exposed to hypoxia for 0-24 h. COX-2 protein and activity were assessed by western blot analysis and GC-MS, respectively. VEGF production was assessed by ELISA. Wild-type mouse Müller cells were treated with vehicle (0.1% DMSO), 10 microM PGE(2), or PGE(2) + 5 microM H-89 (a PKA inhibitor), for 12 h. VEGF production was assessed by ELISA. Hypoxia significantly increased COX-2 protein (p < 0.05) and activity (p < 0.05), and VEGF production (p < 0.0003). COX-2 null Müller cells produced significantly less VEGF in response to hypoxia (p < 0.05). Of the prostanoids, PGE(2) was significantly increased by hypoxia (p < 0.02). Exogenous PGE(2) significantly increased VEGF production by Müller cells (p < 0.0039), and this effect was inhibited by H-89 (p < 0.055). These data demonstrate that hypoxia induces COX-2, prostanoid production, and VEGF synthesis in Müller cells, and that VEGF production is at least partially COX-2-dependent. Our study suggests that PGE(2), signaling through the EP(2) and/or EP(4) receptor and PKA, mediates the VEGF response of Müller cells. Copyright 2010 Elsevier Ltd. All rights reserved.
Vaillier, D; Daculsi, R; Gualde, N
1995-01-01
We have studied the relationship between cytotoxic activity, size and granularity of murine interleukin-2-activated adherent killer cells issued from spleen cells cultured with high levels of IL-2. The effects of prostaglandin E2 (PGE2) and forskolin upon these cells were assessed. All adherent spleen cells obtained after 5 days of culture were large granular lymphocytes but presented a heterogeneity in size and granularity. After fractionation on a discontinuous-density Percoll gradient, four cellular subpopulations were isolated. Fluorescence-activated cell sorting analysis showed that cells of the lightest fraction (F1) were the largest, while the cells found in the heaviest fraction (F4) were much more granular than the cells collected in the two intermediate fractions (F2 and F3). The serine esterases level was higher in F4 than in unfractionated cells and diminished to about 40% in cells of fractions F2 and F3, which expressed a cytotoxic activity against YAC-1 cells higher than that in unfractionated cells or in F1 or F4, which presented the lowest cytotoxic activity. When AK cells were cultured for 48 h in the presence of either PGE2 or forskolin, which induce an intracellular increase of cAMP, we observed that PGE2 (1 microM) inhibited the cytotoxic activity, but surprisingly forskolin (2 microM) exerted a stimulating effect on the induction of cytotoxic activity. After fractionation on a discontinuous Percoll gradient we observed the same cellular distribution among PGE2 or forskolin-treated or -untreated cells, but PGE2 induced an increase of size and granularity. This effect of PGE2 was more potent on the cells collected in F4. However this variation of granularity was not associated with any variation in the serine esterase level. The cytotoxic activity of PGE2- or forskolin-treated cells did not present any significant variation relative to the control for cells collected in F2 and F3; on the other hand, forskolin-treated cells collected in F4 showed a significantly higher cytotoxicity than did the corresponding untreated or PGE2-treated cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, P.; Schlemper, B.; Molitor, E.
The ability of isolated rat liver endothelial and Kupffer cells to activate benzo(a)pyrene (BP), trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene (DDBP), trans-1,2-dihydroxy-1,2-dihydrochrysene (DDCH), and aflatoxin B{sub 1} (AFB{sub 1}) to mutagenic metabolites was assessed by means of a cell-mediated bacterial mutagenicity assay and compared with the ability of parenchymal cells to activate these compounds. Endothelial and Kupffer cells from untreated rats were able to activate AFB{sub 1} and DDBP; DDBP was activated even in the absence of an NADPH-generating system. Pretreating the animals with Aroclor 1254 strongly enhanced the mutagenicity of the dihydrodiol, whereas the mutagenicity of AFB{sub 1} showed a slight increase. BP andmore » DDCH were only activated by endothelial and Kupffer cells isolated from Aroclor 1254-pretreated rats. Parenchymal cells form untreated animals activated all four carcinogens tested; Aroclor 1254 enhanced the parenchymal cell-mediated mutagenicity of BP and DDCH but did not affect that of DDBP and clearly reduced that of AFB{sub 1}. The reduced mutagenicity of AFB{sub 1} correlates with the decrease in the amount of 2{alpha}-hydroxytestosterone formed when testosterone was incubated with parenchymal cell microsomes from Aroclor 1254-pretreated rats (compared with microsomes from untreated animals): the formation of 2{alpha}-hydroxytestosterone is specifically catalyzed by cytochrome P-450h, a hemoprotein thought to be involved in the activation of AFB{sub 1}. These results show that not only rat liver parenchymal cells, but also endothelial and Kupffer cells, activated several carcinogens to mutagenic metabolites.« less
No evidence of a role for mitochondrial complex I in Helicobacter pylori pathogenesis.
Ng, Garrett Z; Ke, Bi-Xia; Laskowski, Adrienne; Thorburn, David R; Sutton, Philip
2017-06-01
Complex I is the first enzyme complex in the mitochondrial respiratory chain, responsible for generating a large fraction of energy during oxidative phosphorylation. Recently, it has been identified that complex I deficiency can result in increased inflammation due to the generation of reactive oxygen species by innate immune cells. As a reduction in complex I activity has been demonstrated in human stomachs with atrophic gastritis, we investigated whether complex I deficiency could influence Helicobacter pylori pathogenesis. Ndufs6 gt/gt mice have a partial complex I deficiency. Complex I activity was quantified in the stomachs and immune cells of Ndufs6 gt/gt mice by spectrophotometric assays. Ndufs6 gt/gt mice were infected with H. pylori and bacterial colonization assessed by colony-forming assay, gastritis assessed histologically, and H. pylori -specific humoral response quantified by ELISA. The immune cells and stomachs of Ndufs6 gt/gt mice were found to have significantly decreased complex I activity, validating the model for assessing the effects of complex I deficiency in H. pylori infection. However, there was no observable effect of complex I deficiency on either H. pylori colonization, the resulting gastritis, or the humoral response. Although complex I activity is described to suppress innate immune responses and is decreased during atrophic gastritis in humans, our data suggest it does not affect H. pylori pathogenesis. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Nolan, Jacqueline; Cai, Chenzhoung; Nedosekin, Dmitry A.; Zharov, Vladimir P.
2017-02-01
Approximately 8 million people lose their lives due to cancer each year. Metastatic disease is responsible for 90% of those cancer-related deaths. Only viable circulating tumor cells (CTCs) that can survive in the blood circulation can create secondary tumors. Thus, real-time enumeration of CTCs and assessment of their viability in vivo has great biological significance. However, little progress has been made in this field. Conventional flow cytometry is the current technique being used for the assessment of cell viability, but there are many limitations to this technique: 1) cell properties may be altered during the extraction and processing method; 2) collection of cells from blood prevents the long-term study of individual cells in their natural biological environment; and 3) there are time-consuming preparation procedures. Whether it be for the assessment of antitumor drugs, where induction of apoptosis or necrosis is the preferred event, or the identification of nanoparticle-induced toxicity during nanotherapeutic treatment, it is clear that new approaches for assessment of the viability circulating blood cells and CTCs are urgently needed. We have developed a novel high speed, multicolor in vivo flow cytometry (FC) platform that integrates photoacoustic (PA) and fluorescence FC (PAFFC) and demonstrate its ability to enumerate rare circulating normal and abnormal (e.g. tumor) cells and assess their viability (e.g. apoptotic and necrotic) in a mouse model.
Huang, Wei Jan; Tung, Chun Wu; Ho, Cheng; Yang, Jen Tsung; Chen, Min Li; Chang, Pey Jium; Lee, Pei Hsien; Lin, Chun Liang; Wang, Jeng Yi
2007-01-01
While previous studies have demonstrated that diabetic nephropathy is attributable to glucose-derived dicarbonyl compounds, methylglyoxal (MGO)-inducing apoptosis in renal mesangial cells, the molecular mechanism of upper stream redox signaling modulation, has not been fully elucidated. Rat mesangial cells pretreated with or without superoxide dismutase, diphenyloniodium, SB203580, and manumycin A were cultured in methylglyoxal stress-induced apoptosis. Signaling protein expression, flow cytometry, and morphological features of apoptotic cell death were assessed. Methylglyoxal decreased cell viability in mesangial cells. Superoxide mediated methylglyoxal-induced caspase 3 cleavage. Pretreatment with diphenyloniodium, SB203580, and manumycin A reduced methylglyoxal augmentation of superoxide synthesis and caspase-3 activation. Methylglyoxal rapidly enhanced Ras activation and progressively increased cytosolic P38 and nuclear c-Jun activation. Scavenging of superoxide by superoxide dismutase or diphenyloniodium, inhibiting P38 by SB203580, and inhibiting Ras with manumycin A successfully reduced the promoting effect of methylglyoxal on P38 and c-Jun phosphorylation (activation). Furthermore, pretreatment with superoxide dismutase, diphenyloniodium, SB203580, and manumycin A significantly attenuated methylglyoxal induction of apoptosis on the basis of Annexin-V assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labelling (TUNEL) staining. This study has shown that methylglyoxal increased Ras modulation of superoxide-mediated P38 activation and c-Jun activation, which resulted in increased apoptosis.
Functional analysis of the sea urchin-derived arylsulfatase (Ars)-element in mammalian cells.
Watanabe, Satoshi; Watanabe, Sachiko; Sakamoto, Naoaki; Sato, Masahiro; Akasaka, Koji
2006-09-01
An insulator is a DNA sequence that has both enhancer-blocking activity, through its ability to modify the influence of neighboring cis-acting elements, and a barrier function that protects a transgene from being silenced by surrounding chromatin. Previously, we isolated and characterized a 582-bp-long element from the sea urchin arylsulfatase gene (Ars). This Ars-element was effective in sea urchin and Drosophila embryos and in plant cells. To investigate Ars-element activity in mammalian cells, we placed the element between the cytomegalovirus enhancer and a luciferase (luc) expression cassette. In contrast to controls lacking the Ars-element, NIH3T3 and 293T cells transfected with the element-containing construct displayed reduced luciferase activities. The Ars-element therefore acts as an enhancer-blocking element in mammalian cells. We assessed the barrier activity of the Ars-element using vectors in which a luc expression cassette was placed between two elements. Transfection experiments demonstrated that luc activity in these vectors was approximately ten-fold higher than in vectors lacking elements. Luc activities were well maintained even after 12 weeks in culture. Our observations demonstrate that the Ars-element has also a barrier activity. These results indicated that the Ars-element act as an insulator in mammalian cells.
Shokryazdan, P; Jahromi, M F; Liang, J B; Sieo, C C; Kalavathy, R; Idrus, Z; Ho, Y W
2017-11-01
Twelve previously isolated Lactobacillus strains were investigated for their in vitro bioactivities, including bile salt hydrolase (BSH), cholesterol-reducing and antioxidant activities, cytotoxic effects against cancer cells, enzyme activity, and biogenic amine production. Among them, only 4 strains showed relatively high BSH activity, whereas the rest exhibited low BSH activity. All 12 strains showed cholesterol-reducing and antioxidant activities, especially in their intact cells, which in most of the cases, the isolated strains were stronger in these activities than the tested commercial reference strains. None of the tested strains produced harmful enzymes (β-glucosidase and β-glucuronidase) or biogenic amines. Among the 12 strains, 3 strains were tested for their cytotoxic effects against 3 cancer cell lines, which exhibited strong cytotoxic effects, and they also showed selectivity in killing cancer cells when compared to normal cells. Hence, all 12 Lactobacillus strains could be considered good potential probiotic candidates because of their beneficial functional bioactivities. The Lactobacillus strains tested in this study could be considered good potential probiotic candidates for food/feed industry because of their beneficial functional bioactivities such as good cholesterol-reducing ability, high antioxidant activity, and good and selective cytotoxic effect against cancer cells. © 2017 Institute of Food Technologists®.
Hu, Guan-Jiu; Wang, Xiao-Yi; Shi, Wei; Bai, Chou-Yong; Wu, Jiang; Liu, Hong-Ling; Yu, Hong-Xia
2009-05-15
By using rat testicular germ cells in vitro toxicity testing method based on original cells culture, the reproduction toxicity of sewage treatment plant effluent of Chemical Industrial Park along the Yangtze River was evaluated, through cells changes in morphologic, activity and viability parameters. The results showed that both of the effluents from new developed Chemical Industrial Park A and provincial Chemical Industrial Park B contain reproductive toxic substances. The toxicity of Park A has more significant undergone changes in cells activity of sertoli cells (p < 0.01), spermatogenic cells (p < 0.05) and leyding cells (p < 0.05), lactate dehydrogenase activity (p < 0.01) and testosterone secretion (p < 0.01) than that of Park B. Sepermatogenic cells are more sensitive in indicating reproduction toxicity for testicular, compared with leyding cells and sertoli cells. This study demonstrated that, as an indispensable and complementary tool for water quality assessment, rat testicular germ cells in vitro toxicity testing based on original cells culture can be used to comprehensively evaluate the reproduction toxicity of sewage treatment plant effluent, and provide prompt and useful discharge quality information.
Paik, Yong-Han; Schwabe, Robert F; Bataller, Ramón; Russo, Maria P; Jobin, Christian; Brenner, David A
2003-05-01
Bacterial lipopolysaccharide (LPS) stimulates Kupffer cells and participates in the pathogenesis of alcohol-induced liver injury. However, it is unknown whether LPS directly affects hepatic stellate cells (HSCs), the main fibrogenic cell type in the injured liver. This study characterizes LPS-induced signal transduction and proinflammatory gene expression in activated human HSCs. Culture-activated HSCs and HSCs isolated from patients with hepatitis C virus-induced cirrhosis express LPS-associated signaling molecules, including CD14, toll-like receptor (TLR) 4, and MD2. Stimulation of culture-activated HSCs with LPS results in a rapid and marked activation of NF-kappaB, as assessed by in vitro kinase assays for IkappaB kinase (IKK), IkappaBalpha steady-state levels, p65 nuclear translocation, NF-kappaB-dependent luciferase reporter gene assays, and electrophoretic mobility shift assays. Lipid A induces NF-kappaB activation in a similar manner. Both LPS- and lipid A-induced NF-kappaB activation is blocked by preincubation with either anti-TLR4 blocking antibody (HTA125) or Polymyxin B. Lipid A induces NF-kappaB activation in HSCs from TLR4-sufficient (C3H/OuJ) mice but not from TLR4-deficient (C3H/HeJ) mice. LPS also activates c-Jun N-terminal kinase (JNK), as assessed by in vitro kinase assays. LPS up-regulates IL-8 and MCP-1 gene expression and secretion. LPS-induced IL-8 secretion is completely inhibited by the IkappaB super repressor (Ad5IkappaB) and partially inhibited by a specific JNK inhibitor, SP600125. LPS also up-regulates cell surface expression of ICAM-1 and VCAM-1. In conclusion, human activated HSCs utilize components of TLR4 signal transduction cascade to stimulate NF-kappaB and JNK and up-regulate chemokines and adhesion molecules. Thus, HSCs are a potential mediator of LPS-induced liver injury.
Gargett, Tessa; Yu, Wenbo; Dotti, Gianpietro; Yvon, Eric S; Christo, Susan N; Hayball, John D; Lewis, Ian D; Brenner, Malcolm K; Brown, Michael P
2016-01-01
Chimeric antigen receptor (CAR) T cells have shown great promise in the treatment of hematologic malignancies but more variable results in the treatment of solid tumors and the persistence and expansion of CAR T cells within patients has been identified as a key correlate of antitumor efficacy. Lack of immunological “space”, functional exhaustion, and deletion have all been proposed as mechanisms that hamper CAR T-cell persistence. Here we describe the events following activation of third-generation CAR T cells specific for GD2. CAR T cells had highly potent immediate effector functions without evidence of functional exhaustion in vitro, although reduced cytokine production reversible by PD-1 blockade was observed after longer-term culture. Significant activation-induced cell death (AICD) of CAR T cells was observed after repeated antigen stimulation, and PD-1 blockade enhanced both CAR T-cell survival and promoted killing of PD-L1+ tumor cell lines. Finally, we assessed CAR T-cell persistence in patients enrolled in the CARPETS phase 1 clinical trial of GD2-specific CAR T cells in the treatment of metastatic melanoma. Together, these data suggest that deletion also occurs in vivo and that PD-1-targeted combination therapy approaches may be useful to augment CAR T-cell efficacy and persistence in patients. PMID:27019998
Antibacterial potential assessment of jasmine essential oil against e. Coli.
Rath, C C; Devi, S; Dash, S K; Mishra, R K
2008-01-01
The antibacterial activity of Jasmine (Jasminum sambac L.) flower hydro steam distilled essential oil, synthetic blends and six major individual components was assessed against Escherichia coli (MTCC-443) strain. The activity was bactericidal. Minimum inhibitory concentration was determined by tube dilution technique, and the Minimum inhibitory concentration ranged between 1.9-31.25 mul/ml. Phenolcoefficient of the oil, synthetic blends and components varied between 0.6-1.7. The activity of the chemicals was possibly due to the inhibition of cell membrane synthesis.
Reduced superoxide dismutase activity in xeroderma pigmentosum fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishigori, C.; Miyachi, Y.; Imamura, S.
1989-10-01
This study was performed in order to assess the possible protective effect of superoxide dismutase (SOD) on ultraviolet (UV) damage in xeroderma pigmentosum (XP) fibroblasts. SOD activity in fibroblasts originating from seven xeroderma pigmentosum (XP) patients was significantly lower than that in normal cells (p less than 0.005). Average SOD activity in XP cells belonging to complementation group A was 3.68 +/- 0.54 (n = 7) and that in normal human cells was 5.79 +/- 1.59 (n = 6). Addition of SOD before and during UV irradiation (UVB and UVC) to the cells caused no change in the amount ofmore » unscheduled DNA synthesis and UV survival. A possible involvement of reduced SOD in XP and a possible protective effect by SOD on UV damage is discussed.« less
CD22 ligation inhibits downstream B cell receptor signaling and Ca(2+) flux upon activation.
Sieger, N; Fleischer, S J; Mei, H E; Reiter, K; Shock, A; Burmester, G R; Daridon, C; Dörner, T
2013-03-01
CD22 is a surface molecule exclusively expressed on B cells that regulates adhesion and B cell receptor (BCR) signaling as an inhibitory coreceptor of the BCR. Central downstream signaling molecules that are activated upon BCR engagement include spleen tyrosine kinase (Syk) and, subsequently, phospholipase Cγ2 (PLCγ2), which results in calcium (Ca(2+)) mobilization. The humanized anti-CD22 monoclonal antibody epratuzumab is currently being tested in clinical trials. This study was undertaken to determine the potential mechanism by which this drug regulates B cell activation. Purified B cells were preincubated with epratuzumab, and the colocalization of CD22 and CD79α, without BCR engagement, was assessed by confocal microscopy. The phosphorylation of Syk (Y348, Y352) and PLCγ2 (Y759) as well as the Ca(2+) flux in the cells were analyzed by flow cytometry upon stimulation of the BCR and/or Toll-like receptor 9 (TLR-9). The influence of CD22 ligation on BCR signaling was assessed by pretreating the cells with epratuzumab or F(ab')(2) fragment of epratuzumab, in comparison with control cells (medium alone or isotype-matched IgG1). Epratuzumab induced colocalization of CD22 and components of the BCR independent of BCR engagement, and also reduced intracellular Ca(2+) mobilization and diminished the phosphorylation of Syk and PLCγ2 after BCR stimulation in vitro. Inhibition of kinase phosphorylation was demonstrated in both CD27- and CD27+ B cells, and this appeared to be independent of Fc receptor signaling. Preactivation of the cells via the stimulation of TLR-9 did not circumvent the inhibitory effect of epratuzumab on BCR signaling. These findings are consistent with the concept of targeting CD22 to raise the threshold of BCR activation, which could offer therapeutic benefit in patients with autoimmune diseases. Copyright © 2013 by the American College of Rheumatology.
Ranjbarnejad, Tayebeh; Saidijam, Massoud; Moradkhani, Shirin; Najafi, Rezvan
2017-07-01
Colorectal cancer (CRC) is the most common cancer. A proper method to reduce mortality of CRC is chemoprevention to prevent initiation and promotion of intestinal tumorgenesis. One of the promising and developing chemopreventive agents is natural compounds found in plants. Frankincense, the resin extract from the Boswellia specious, has been used in traditional and modern medicine for treating various diseases with very minimal side effects. In the current study, we investigated the anti-cancer activity of methanolic extract of Boswellia serrata (B. serrata) on HT-29 human colon cancer cells. HT-29 cells were treated with different concentrations of B. serrata and cell viability was assessed by MTT assay. mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), MMP-9 and hypoxia-inducible factor-1 (HIF-1) were examined by quantitative real-time PCR. Apoptosis was evaluated by the proportion of sub-G1 cells. Prostaglandin E2 (PGE2) level and caspase 3 activity were determined by ELISA assay. Tube formation potential and HT-29 cells migration were assessed using three-dimensional vessel formation assay and scratch test. B. serrata extract considerably decreased the expression of mPGES-1, VEGF, CXCR4, MMP-2, MMP-9 and HIF-1. The caspase 3 activity and percent of cells in sub-G1 phase were increased by B. serrata extract. Cell viability, PGE2 generation, in vitro tube formation and cell migration were decreased significantly in B. serrata-treated HT-29 compared to the control group. Our findings suggest that B. serrata extract inhibits proliferation, angiogenesis and migration and induces apoptosis in HT-29 cells by inhibiting of mPGES-1 and decreasing the PGE2 level and its downstream targets. Copyright © 2017 Elsevier Inc. All rights reserved.
Hidalgo, Marta R.; Cubuk, Cankut; Amadoz, Alicia; Salavert, Francisco; Carbonell-Caballero, José; Dopazo, Joaquin
2017-01-01
Understanding the aspects of the cell functionality that account for disease or drug action mechanisms is a main challenge for precision medicine. Here we propose a new method that models cell signaling using biological knowledge on signal transduction. The method recodes individual gene expression values (and/or gene mutations) into accurate measurements of changes in the activity of signaling circuits, which ultimately constitute high-throughput estimations of cell functionalities caused by gene activity within the pathway. Moreover, such estimations can be obtained either at cohort-level, in case/control comparisons, or personalized for individual patients. The accuracy of the method is demonstrated in an extensive analysis involving 5640 patients from 12 different cancer types. Circuit activity measurements not only have a high diagnostic value but also can be related to relevant disease outcomes such as survival, and can be used to assess therapeutic interventions. PMID:28042959
OSTEOCLAST-INDUCED FOXP3+ CD8 T-CELLS LIMIT BONE LOSS IN MICE
Buchwald, Zachary S.; Kiesel, Jennifer R.; Yang, Chang; DiPaolo, Richard; Novack, Deborah V.; Aurora, Rajeev
2014-01-01
Osteoimmunology is the crosstalk between the skeletal and immune system. We have previously shown in vitro that osteoclasts (OC) crosspresent antigens to induce FoxP3 in CD8 T-cells (OCiTcREG), which then suppress osteoclast activity. Here we assessed the ability of OC-iTcREG to limit bone resorption in vivo. Mice lacking CD8 T-cells lose more bone in response to RANKL (Tnfsf11) administration. Using adoptive transfer experiments we demonstrate that FoxP3+ CD8 T-cells limit bone loss by RANKL administration. In ovariectomized mice, a murine model of postmenopausal osteoporosis, OC-iTcREG limited bone loss and increased bone density as assessed by serum markers, micro computed tomography (μCT) and histomorphometry. Indeed, OC-iTcREG—treated ovariectomized mice had decreased levels of effector T-cells in the bone marrow compared to untreated mice, and increased bone formation rates relative to bisphosphonate-treated mice. Our results provide the first in vivo evidence that OC-iTcREG have anti-resorptive activity and repress the immune system, thus extending the purview of osteoimmunology. PMID:23756229
Ramos de Carvalho, J Emanuel; Verwoert, Milan T; Vogels, Ilse M C; Schipper-Krom, Sabine; Van Noorden, Cornelis J F; Reits, Eric A; Klaassen, Ingeborg; Schlingemann, Reinier O
2018-01-01
Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. Viability, cell cycle progression, and reactive oxygen species (ROS) production were determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of nano-curcumin and curcumin on proteasome activity and the gene and protein expression of proteasome subunits PA28α, α7, β5, and β5i were assessed. Nano-curcumin (5-100 μM) did not show significant cytotoxicity or anti-oxidative effects against H2O2-induced oxidative stress, whereas curcumin (≥10 μM) was cytotoxic and a potent inducer of ROS production. Both nano-curcumin and curcumin induced changes in proteasome-mediated proteolytic activity characterized by increased activity of the proteasome subunits β2 and β5i/β1 and reduced activity of β5/β1i. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of household and immunoproteasome subunits. Nano-curcumin is less toxic to RPE cells and less prone to induce ROS production than curcumin. Both nano-curcumin and curcumin increase proteasome-mediated proteolytic activity. These results suggest that nano-curcumin may be regarded as a proteasome-modulating agent of limited cytotoxicity for RPE cells. The Author(s). Published by S. Karger AG, Basel.
Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent
Ren, Xuan; Dai, Mei; Lin, Li-Ping; Li, Pui-Kai; Ding, Jian
2009-01-01
Background and purpose: The critical role of blood supply in the growth of solid tumours makes blood vessels an ideal target for anti-tumour drug discovery. The anti-angiogenic and vascular disrupting activities of C9, a newly synthesized microtubule-depolymerizing agent, were investigated with several in vitro and in vivo models. Possible mechanisms involved in its activity were also assessed. Experimental approach: Microtubule-depolymerizing actions were assessed by surface plasmon resonance binding, competitive inhibition and cytoskeleton immunofluorescence. Anti-angiogenic and vascular disrupting activities were tested on proliferation, migration, tube formation with human umbilical vein endothelial cells, and in rat aortic ring, chick chorioallantoic membrane and Matrigel plug assays. Western blots and Rho activation assays were employed to examine the role of Raf-MEK-ERK (mitogen-activated ERK kinase, extracellular signal-regulated kinase) and Rho/Rho kinase signalling. Key results: C9 inhibited proliferation, migration and tube formation of endothelial cells and inhibited angiogenesis in aortic ring and chick chorioallantoic membrane assays. C9 induced disassembly of microtubules in endothelial cells and down-regulated Raf-MEK-ERK signalling activated by pro-angiogenic factors. In addition, C9 disrupted capillary-like networks and newly formed vessels in vitro and rapidly decreased perfusion of neovasculature in vivo. Endothelial cell contraction and membrane blebbing induced by C9 in neovasculature was dependent on the Rho/Rho kinase pathway. Conclusions and implications: Anti-angiogenic and vascular disruption by C9 was associated with changes in morphology and function of endothelial cells, involving the Raf-MEK-ERK and Rho/Rho kinase signalling pathways. These findings strongly suggest that C9 is a new microtubule-binding agent that could effectively target tumour vasculature. PMID:19302593
Kong, Desheng; Wang, Yan; Ji, Ping; Li, Wei; Ying, Tianlei; Huang, Jinghe; Wang, Chen; Wu, Yanling; Wang, Yanping; Chen, Weizao; Hao, Yanling; Hong, Kunxue; Shao, Yiming; Dimitrov, Dimiter S; Jiang, Shibo; Ma, Liying
2018-05-11
Current treatments cannot completely eradicate HIV-1 owing to the presence of latently infected cells which harbor transcriptionally silent HIV-1. However, defucosylated antibodies can readily kill latently infected cells after their activation to express envelope glycoprotein (Env) through antibody-dependent cellular cytotoxicity (ADCC). We herein aimed to test a defucosylated bispecific multivalent molecule consisting of domain-antibody and single-domain CD4, LSEVh-LS-F, for its HIV-1 neutralizing activity and ADCC against the reactivated latently infected cells, compared with the non-defucosylated molecule LSEVh-LS. LSEVh-LS-F's neutralizing activity against a panel of newly characterized Chinese HIV-1 clinical isolates was assessed by using TZM-bl- and PBMC-based assays. LSEVh-LS-F-mediated ADCC in the presence of NK cells against cell lines that stably express Env proteins, HIV-1-infected cells and LRA-reactivated HIV-1 latent cells, was measured using a lactate dehydrogenase (LDH) cytotoxicity assay or flow cytometry. LSEVh-LS-F and LSEVh-LS were equally effective in neutralized infection of all HIV-1 isolates tested with IC50 and IC90 values 3∼4-fold lower than those of VRC01. LSEVh-LS-F was more effective in NK-mediated killing of HIV-1 Env-expressing cell lines, HIV-1-infected cells, latency reactivation agents-reactivated ACH2 cells, and reactivated latently infected resting CD4 T cell line as well as resting CD4 T lymphocytes isolated from patients receiving highly active anti-retroviral therapy (HAART). LSEVh-LS-F exhibits broad HIV-1 neutralizing activity and enhanced ADCC against HIV-1-infected cells, reactivated latently infected cell lines and primary CD4 T cells, thus being a promising candidate therapeutic for eradicating the HIV-1 reservoir.
Bidad, Katayoon; Salehi, Eisa; Oraei, Mona; Saboor-Yaraghi, Ali-Akbar; Nicknam, Mohammad Hossein
2011-12-01
All-trans retinoic acid (ATRA), as an active metabolite of vitamin A, has been shown to affect immune cells. This study was performed to evaluate the effect of ATRA on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells. CD4+ T cells were separated from heparinized blood of healthy donors and were cultured in conditions, some with, some without ATRA. Viability was assessed by PI flowcytometry and proliferation was measured by MTT assay. CD69 expression was determined by flowcytometry as a measure of cell activation. Lineage-specific transcription factors (FOXP3, RORγt and T-bet) were examined by intracellular staining and flowcytometry. High doses of ATRA (0.1-1 mM) caused extensive cell death in both PBMCs and CD4+ T cells. Doses of ATRA equal to or lower than 10 µM did not adversely affect cell viability and proliferation in comparison to culture medium without ATRA. Doses of ATRA between 10 µM and 1nM significantly increased cell activation when compared to culture medium without ATRA. ATRA could increase FOXP3+ and also FOXP3+RORγt+ T cells while it decreased RORγt+ and T-bet+ T cells. This study showed that doses of ATRA up to 10 µM are safe when using with CD4+ T cells in terms of cell viability, proliferation and activation. We could also show that ATRA diverts the human immune response in neutral conditions (without adding polarizing cytokines) by increasing FOXP3+ cells and decreasing RORγt+ cells. ATRA could be regarded as a potential therapy in inflammatory conditions and autoimmunities.
U-937 Toxicity Testing of Lunar Dust Stimulant (JSC-1A-vf)
NASA Technical Reports Server (NTRS)
Bales, Kristyn; Hammond, Dianne; Wallace, William; Jeevarajan, Antony
2007-01-01
With NASA planning to extend the human presence to the moon by 2020, the dangers of the lunar environment must be assessed and appropriate countermeasures must be developed. Possible toxic effects of the lunar dust are of particular importance to human health because of the dust's chemical composition, reactivity, and small size. This project focuses on the toxicity of lunar dust stimulant (JSC-1A-vf), in both its active and passive forms, using U-937 human monocyte cells. Simulant was mechanically activated from its passive form by grinding, and its ability to produce hydroxyl radicals was determined. To test for toxicity, active and passivated simulant was diluted in media and applied to the cells for various time periods. Toxicity was then estimated using flow cytometry on the Guava Personal Cell Analysis system. Preliminary results suggest that passivated stimulant is slightly toxic, with an increase in toxicity for activated stimulant. Toxicity results may be affected by cell lysing behavior and quenching of hydroxyl radical production by the cell media.
Martinez, Luis; Thames, Easter; Kim, Jinna; Chaudhuri, Gautam; Singh, Rajan; Pervin, Shehla
2016-07-29
Breast cancer is a complex heterogeneous disease where many distinct subtypes are found. Younger African American (AA) women often present themselves with aggressive form of breast cancer with unique biology which is very difficult to treat. Better understanding the biology of AA breast tumors could lead to development of effective treatment strategies. Our previous studies indicate that AA but not Caucasian (CA) triple negative (TN) breast cancer cells were sensitive to nitrosative stress-induced cell death. In this study, we elucidate possible mechanisms that contribute to nitric oxide (NO)-induced apoptosis in AA TN breast cancer cells. Breast cancer cells were treated with various concentrations of long-acting NO donor, DETA-NONOate and cell viability was determined by trypan blue exclusion assay. Apoptosis was determined by TUNEL and caspase 3 activity as well as changes in mitochondrial membrane potential. Caspase 3 and Bax cleavage, levels of Cu/Zn superoxide dismutase (SOD) and Mn SOD was assessed by immunoblot analysis. Inhibition of Bax cleavage by Calpain inhibitor, and levels of reactive oxygen species (ROS) as well as SOD activity was measured in NO-induced apoptosis. In vitro and in vivo effect of NO treatment on mammary cancer stem cells (MCSCs) was assessed. NO induced mitocondria-mediated apoptosis in all AA but not in CA TN breast cancer cells. We found significant TUNEL-positive cells, cleavage of Bax and caspase-3 activation as well as depolarization mitochondrial membrane potential only in AA TN breast cancer cells exposed to NO. Inhibition of Bax cleavage and quenching of ROS partially inhibited NO-induced apoptosis in AA TN cells. Increase in ROS coincided with reduction in SOD activity in AA TN breast cancer cells. Furthermore, NO treatment of AA TN breast cancer cells dramatically reduced aldehyde dehydrogenase1 (ALDH1) expressing MCSCs and xenograft formation but not in breast cancer cells from CA origin. Ethnic differences in breast tumors dictate a need for tailoring treatment options more suited to the unique biology of the disease.
Regorafenib inhibited gastric cancer cells growth and invasion via CXCR4 activated Wnt pathway.
Lin, Xiao-Lin; Xu, Qi; Tang, Lei; Sun, Li; Han, Ting; Wang, Li-Wei; Xiao, Xiu-Ying
2017-01-01
Regorafenib is an oral small-molecule multi kinase inhibitor. Recently, several clinical trials have revealed that regorafenib has an anti-tumor activity in gastric cancer. However, only part of patients benefit from regorafenib, and the mechanisms of regorafenib's anti-tumor effect need further demonstrating. In this study, we would assess the potential anti-tumor effects and the underlying mechanisms of regorafenib in gastric cancer cells, and explore novel biomarkers for patients selecting of regorafenib. The anti-tumor effects of regorafenib on gastric cancer cells were analyzed via cell proliferation and invasion. The underlying mechanisms were demonstrated using molecular biology techniques. We found that regorafenib inhibited cell proliferation and invasion at the concentration of 20μmol/L and in a dose dependent manner. The anti-tumor effects of regorafenib related to the decreased expression of CXCR4, and elevated expression and activation of CXCR4 could reverse the inhibition effect of regorafenib on gastric cancer cells. Further studies revealed that regorafenib reduced the transcriptional activity of Wnt/β-Catenin pathway and led to decreased expression of Wnt pathway target genes, while overexpression and activation of CXCR4 could attenuate the inhibition effect of regorafenib on Wnt/β-Catenin pathway. Our findings demonstrated that regorafenib effectively inhibited cell proliferation and invasion of gastric cancer cells via decreasing the expression of CXCR4 and further reducing the transcriptional activity of Wnt/β-Catenin pathway.
Wree, Alexander; Eguchi, Akiko; McGeough, Matthew D; Pena, Carla A; Johnson, Casey D; Canbay, Ali; Hoffman, Hal M; Feldstein, Ariel E
2014-03-01
Inflammasome activation plays a central role in the development of drug-induced and obesity-associated liver disease. However, the sources and mechanisms of inflammasome-mediated liver damage remain poorly understood. Our aim was to investigate the effect of NLRP3 inflammasome activation on the liver using novel mouse models. We generated global and myeloid cell-specific conditional mutant Nlrp3 knock-in mice expressing the D301N Nlrp3 mutation (ortholog of D303N in human NLRP3), resulting in a hyperactive NLRP3. To study the presence and significance of NLRP3-initiated pyroptotic cell death, we separated hepatocytes from nonparenchymal cells and developed a novel flow-cytometry-based (fluorescence-activated cell sorting; FACS) strategy to detect and quantify pyroptosis in vivo based on detection of active caspase 1 (Casp1)- and propidium iodide (PI)-positive cells. Liver inflammation was quantified histologically by FACS and gene expression analysis. Liver fibrosis was assessed by Sirius Red staining and quantitative polymerase chain reaction for markers of hepatic stellate cell (HSC) activation. NLRP3 activation resulted in shortened survival, poor growth, and severe liver inflammation; characterized by neutrophilic infiltration and HSC activation with collagen deposition in the liver. These changes were partially attenuated by treatment with anakinra, an interleukin-1 receptor antagonist. Notably, hepatocytes from global Nlrp3-mutant mice showed marked hepatocyte pyroptotic cell death, with more than a 5-fold increase in active Casp1/PI double-positive cells. Myeloid cell-restricted mutant NLRP3 activation resulted in a less-severe liver phenotype in the absence of detectable pyroptotic hepatocyte cell death. Our data demonstrate that global and, to a lesser extent, myeloid-specific NLRP3 inflammasome activation results in severe liver inflammation and fibrosis while identifying hepatocyte pyroptotic cell death as a novel mechanism of NLRP3-mediated liver damage. © 2014 by the American Association for the Study of Liver Diseases.
CP-25 Attenuates the Activation of CD4+ T Cells Stimulated with Immunoglobulin D in Human.
Wu, Yu-Jing; Chen, Heng-Shi; Chen, Wen-Sheng; Dong, Jin; Dong, Xiao-Jie; Dai, Xing; Huang, Qiong; Wei, Wei
2018-01-01
Researchers have shown that the level of immunoglobulin D (IgD) is often elevated in patients with autoimmune diseases. The possible roles of IgD on the function of human T cell activation are still unclear. Paeoniflorin-6'- O -benzene sulfonate (code: CP-25), the chemistry structural modifications of paeoniflorin, was a novel drug of anti-inflammation and immunomodulation. The aims of this study were to determine if human CD4 + T cells could be activated by IgD via the IgD receptor (IgDR)-Lck pathway and whether the novel compound CP-25 could affect the activation of T cells by regulating Lck. Human CD4 + T cells were purified from peripheral blood mononuclear cells using microbeads. T cell viability and proliferation were detected by Cell Counting Kit-8 and CFSE Cell Proliferation Kit. Cytokines secreted by T cells were assessed with the Quantibody Human Inflammation Array. The binding affinity and expression of IgDR on T cells were detected by flow cytometry, and protein expression of IgDR, Lck, and P-Lck were analyzed by western blot. IgD was shown to bind to IgDR on CD4 + T cells in a concentration-dependent manner and stimulate the activation and proliferation of these cells by enhancing phosphorylation of the activating tyrosine residue of Lck (Tyr 394 ). CP-25 inhibited the IgD-stimulated activation and proliferation of CD4 + T cells, as well as the production of inflammatory cytokines; it was thus suggested that this process might be related to the downregulation of Lck (Tyr 394 ) phosphorylation. These results demonstrate that IgD amplifies the activation of CD4 + T cells, which could be mediated by Lck phosphorylation. Further, CP-25, via its ability to modulate Lck, is a novel potential therapeutic agent for the treatment of human autoimmune diseases.
Heindl, Stefan; Eggenstein, Evelyn; Keller, Simone; Kneissl, Julia; Keller, Gisela; Mutze, Kathrin; Rauser, Sandra; Gasteiger, Georg; Drexler, Ingo; Hapfelmeier, Alexander; Höfler, Heinz; Luber, Birgit
2012-05-01
The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated. Reliable biomarkers for the identification of patients who are likely to benefit from the treatment are not available. The aim of the study was to examine the drug sensitivity of five gastric cancer cell lines towards cetuximab as a single agent and to establish predictive markers for chemosensitivity in this cell culture model. The effect of a combination of cetuximab with chemotherapy was compared between a sensitive and a nonsensitive cell line. EGFR expression, activation and localisation, the presence and subcellular localisation of the cell adhesion molecule E-cadherin as well as MET activation were examined by Western blot analysis, flow cytometry and immunofluorescence staining. Cells were treated with varying concentrations of cetuximab and cisplatin and 5-fluorouracil in tumour-relevant concentrations. The biological endpoint was cell viability, which was measured by XTT cell proliferation assay. Response to treatment was evaluated using statistical methods. We assessed the activity of cetuximab in five gastric cancer cell lines (AGS, KATOIII, MKN1, MKN28 and MKN45). The viability of two cell lines, MKN1 and MKN28, was significantly reduced by cetuximab treatment. High EGFR expression and low levels of receptor activation were associated with cetuximab responsiveness. MET activation as well as mutations of KRAS and CDH1 (gene encoding E-cadherin) was associated with cetuximab resistance. These data indicate that our examinations may be clinically relevant, and the candidate markers should therefore be tested in clinical studies.
Derfuss, Tobias; Fickenscher, Helmut; Kraft, Michael S.; Henning, Golo; Lengenfelder, Doris; Fleckenstein, Bernhard; Meinl, Edgar
1998-01-01
Viruses have evolved different strategies to interfere with host cell apoptosis. Herpesvirus saimiri (HVS) and other lymphotropic herpesviruses code for proteins that are homologous to the cellular antiapoptotic Bcl-2. In this study HVS-Bcl-2 was stably expressed in the human leukemia cell line Jurkat and in the murine T-cell hybridoma DO to assess its antiapoptotic spectrum and to gain further insight into its mode of action. HVS- Bcl-2 prevented apoptosis that occurs as a result of a disturbance of intracellular homeostasis by, for example, DNA damage or menadione, which gives rise to oxygen radicals. In Jurkat cells, HVS-Bcl-2 also inhibited apoptosis mediated by the death receptor CD95. In DO cells, HVS-Bcl-2 did not interfere with CD95-mediated apoptosis but blocked dexamethasone-induced cell death. Mitochondrial damage is a central coordinating event in apoptosis induced by different stimuli. To assess the integrity of mitochondria, we used rhodamine 123, which is released upon disturbance of the mitochondrial membrane potential, and determined the release of cytochrome c into the cytosol. Both signs of mitochondrial damage were prevented by HVS-Bcl-2. This viral protein also inhibited the generation of caspase-3-like DEVDase activity and blocked the cleavage of poly(ADP-ribose) polymerase, a natural substrate of caspase-3-like proteases. In conclusion, HVS-Bcl-2 protects against a great variety of apoptotic stimuli, stabilizes mitochondria, and acts upstream of the generation of caspase-3-like activity. PMID:9621051
Valdez-Flores, Marco A; Vargas-Poussou, Rosa; Verkaart, Sjoerd; Tutakhel, Omar A Z; Valdez-Ortiz, Angel; Blanchard, Anne; Treard, Cyrielle; Hoenderop, Joost G J; Bindels, René J M; Jeleń, Sabina
2016-12-01
Gitelman syndrome (GS) is an autosomal recessive salt-wasting tubular disorder resulting from loss-of-function mutations in the thiazide-sensitive NaCl cotransporter (NCC). Functional analysis of these mutations has been limited to the use of Xenopus laevis oocytes. The aim of the present study was, therefore, to analyze the functional consequences of NCC mutations in a mammalian cell-based assay, followed by analysis of mutated NCC protein expression as well as glycosylation and phosphorylation profiles using human embryonic kidney (HEK) 293 cells. NCC activity was assessed with a novel assay based on thiazide-sensitive iodide uptake in HEK293 cells expressing wild-type or mutant NCC (N59I, R83W, I360T, C421Y, G463R, G731R, L859P, or R861C). All mutations caused a significantly lower NCC activity. Immunoblot analysis of the HEK293 cells revealed that 1) all NCC mutants have decreased NCC protein expression; 2) mutant N59I, R83W, I360T, C421Y, G463R, and L859P have decreased NCC abundance at the plasma membrane; 3) mutants C421Y and L859P display impaired NCC glycosylation; and 4) mutants N59I, R83W, C421Y, C731R, and L859P show affected NCC phosphorylation. In conclusion, we developed a mammalian cell-based assay in which NCC activity assessment together with a profiling of mutated protein processing aid our understanding of the pathogenic mechanism of the NCC mutations. Copyright © 2016 the American Physiological Society.
Silvestri, M; Oddera, S; Scarso, L; Pistoia, V; Tasso, P; Rossi, G A
2000-05-01
beta2-adrenoreceptor agonists have the ability to downregulate in vitro the proliferative response of peripheral blood mononuclear cells (BMCs). This activity could be related to a variety of beta2-adrenoreceptor-mediated functions, including induction of cell apoptosis in activated T-cells. To test this hypothesis, BMCs from atopic subjects, sensitized to house dust mites (Dermatophagoides [Der p]) and/or to Parietaria were incubated with fenoterol (10(-8)-10(-5) M) in the presence of (a) purified allergen extracts (Der p [5 microg/mL] or Parietaria [5 microg/mL]) or (b) antigens (tetanus toxoid [1 microg/mL] or Candida albicans [5 x 10(5) bodies/mL]). The BMC proliferation was assessed by [3H] thymidine incorporation and cell apoptosis was assessed by evaluating DNA fragmentation by a fluorescence technique, using propidium iodide. In cultures stimulated with Der p or with Parietaria, fenoterol induced a dose-dependent inhibition of BMC proliferation, significant also at the lowest concentration tested (10(-8) M) (p < 0.05, each comparison). In contrast, the inhibitory activity of the drug on tetanus-toxoid-stimulated BMCs was significant only at the highest dose tested (10(-5)M) (p < 0.05), whereas no effect was seen when BMCs were stimulated with C. albicans extract (p > 0.05). The different inhibitory efficacy of fenoterol appeared to be related to the degree of activation of beta2-adrenoreceptors on the different BMC populations that responded to the different stimuli. Indeed, in the presence of fenoterol (10(-6) and 10(-5)M), a significant increase in cyclic adenosine monophosphate (cAMP) levels was seen in Der p- or Parietaria-stimulated cells (p < 0.05; each comparison), but not in cell cultures stimulated with tetanus toxoid or with C. albicans extracts (p > 0.05; each comparison). Finally, the percentage of cells with fragmented DNA was lower in cultures stimulated with Der p or Parietaria than in those stimulated with tetanus toxoid or C. albicans, and the presence of fenoterol did not modify cell apoptosis (p > 0.05; each comparison). Thus, the different inhibitory activity of fenoterol on BMCs activated by allergens (Der p or Parietaria) or by antigens (tetanus toxoid or C. albicans) seems to be related to differences in beta2-adrenoreceptor expression and/or function in the different antigen-specific T-cell subsets, but it is not influenced by changes in cell apoptosis.
NASA Astrophysics Data System (ADS)
Sreenivasan, Rajesh; Joshi, Preeti G.; Joshi, Nanda B.
1997-01-01
Photoinduced structural and functional changes were studied in the subcellular membranes isolated from HpD treated cells. Changes in the limiting anisotropy of lipid specific probes 1,6,Diphenyl-1,3,5,hexatriene (DPH) and 1-(4-Trimethyl ammonium 1,6 diphenyl)-1,3,5,hexatriene toulene sulphonate (TMA-DPH) incorporated into the membrane were used to assess the structural alterations while changes in the activity of the marker enzymes were used to assess the functional alterations. Our results suggest that damage to the endoplasmic reticulum may play an important role in the photosensitization of brain tumor cells.
Pterocarpus santalinus: an In Vitro study on its anti-Helicobacter pylori effect.
Narayan, Shoba; Veeraraghavan, Mani; Devi, C S Shyamala
2007-02-01
The anti-H. pylori activity of Pterocarpus santalinus (PS), a traditional herb, has been assessed and compared with that of bismuth subcitrate, through in vitro studies employing rat gastric epithelial cell cultures and H. pylori isolates from gastric mucosal biopsy patients. The MIC of PS was found to be 20 microg/mL. H. pylori was co-cultivated with rat gastric epithelial cells in the presence/absence of PS at its MIC. A reduction in the activity of urease, a normal appearance of the epithelial cells on electron microscopic examination, a decrease in lipid peroxidation and lactate dehydrogenase suggests the possible anti-H. pylori activity of PS. Copyright (c) 2006 John Wiley & Sons, Ltd.
A novel bicistronic sensor vector for detecting caspase-3 activation.
Vagner, Tatyana; Mouravlev, Alexandre; Young, Deborah
2015-01-01
Apoptosis is involved in pathological cell death of a wide range of human diseases. One of the most important biochemical markers of apoptosis is activation of caspase-3. Ability to detect caspase-3 activation early in the pathological process is important for determining the timing for interfering with apoptosis initiation and prevention of cell damage. Techniques allowing detection of caspase-3 activity at a single cell level show increased sensitivity, compared to biochemical assays; therefore, we developed a novel bicistronic caspase-3 sensor vector enabling detection of caspase-3 activity in individual cells. We employed green fluorescent protein (GFP) as a reporter for caspase-3 activation in our constructs and assessed the functionality of the generated constructs in transiently transfected Neuro2A and HEK293 cells under basal conditions and following application of okadaic acid (OA) or staurosporine (STS) to induce apoptosis. To ensure responsiveness of the new sensor vector to active caspase-3, we co-transfected the sensor with plasmid(s) overexpressing active caspase-3 and quantified GFP fluorescence using a plate reader. We observed an increase in GFP expression in cells transfected with the new bicistronic caspase-3 sensor in response to both OA and STS. We also showed a significant increase in GFP fluorescence intensity in cells co-expressing the sensor with the plasmid(s) encoding active caspase-3. We generated a novel bicistronic caspase-3 sensor vector which relies on a transcription factor/response element system. The obtained sensor combines high sensitivity of the single cell level detection with the possibility of automated quantification. Copyright © 2015 Elsevier Inc. All rights reserved.
Respiratory-related activity in hypoglossal neurons across sleep-waking states in cats.
Richard, C A; Harper, R M
1991-02-22
Activity of behaviorally identified neurons in the hypoglossal nuclei supplying the genioglossal muscles was assessed in intact, unanesthetized cats across sleep-wake states. Nineteen of 37 recorded cells discharged on a breath-by-breath or tonic basis with the respiratory cycle in at least one state. Most respiratory-related cells discharged more slowly during quiet sleep, whereas rates during rapid eye movement sleep were similar to those of waking.
Shiota, N; Kovanen, PT; Eklund, KK; Shibata, N; Shimoura, K; Niibayashi, T; Shimbori, C; Okunishi, H
2010-01-01
Background and purpose: Recent findings suggest the importance of mast cells in the pathogenesis of rheumatoid arthritis and their potential as a therapeutic target. Tranilast is an anti-allergic compound with a potent membrane-stabilizing effect on mast cells and a wide range of anti-inflammatory effects, thus may be advantageous in the treatment of arthritis. Here, we have evaluated the effects of tranilast on the progression of collagen-induced arthritis in mice. Experimental approach: Tranilast (400 mg·kg−1·day−1) was orally administered for 8 weeks to mice with established collagen-induced arthritis. Arthritis was assessed by clinical signs and X-ray scores. In paw tissue, the numbers of mast cells and osteoclasts were measured by histological analysis, and several inflammatory factors were assessed by RT-PCR and Western blot analysis.* Key results: TNF-α-positive mast cells were present extensively throughout the inflamed synovium of vehicle-treated arthritic mice, with some mast cells in close proximity to osteoclasts in areas of marked bone and cartilage destruction. Tranilast significantly reduced clinical and X-ray scores of arthritis and decreased numbers of TNF-α-positive mast cells and mRNA levels of TNF-α, chymase (mouse mast cell protease 4), tryptase (mouse mast cell protease 6), stem cell factor, interleukin-6, cathepsin-K, receptor activator of nuclear factor-κB, and of receptor activator of nuclear factor-κB-ligand, but increased interleukin-10 mRNA level in paws of arthritic mice. Osteoclast numbers were decreased by treatment with tranilast. Conclusions and implications: Tranilast possesses significant anti-rheumatic efficacy and, probably, this therapeutic effect is partly mediated by inhibition of mast cell activation and osteoclastogenesis. PMID:20067475
Inhibition of NFkappaB reduces cellular viability in GH3 pituitary adenoma cells.
Vender, John R; Laird, Melissa D; Dhandapani, Krishnan M
2008-05-01
Adenomas of the pituitary gland are among the most common types of tumors of the adult brain. Although adenomas are histologically benign, they may be associated with significant morbidity and mortality, mostly because of their invasive growth pattern and hormone hypersecretion. Current medical therapies are suppressive, acting at a receptor level. Thus, there is a need to identify novel cellular and molecular targets for pituitary tumors. We investigated the possible role of the NFkappaB transcription factor in pituitary tumor cell growth. The effect of NFkappaB pathway inhibition on cellular viability was studied in the GH3 pituitary adenoma cell line, a well-characterized rat cell line that secretes growth hormone and prolactin. Cells were treated with mechanistically diverse pharmacological NFkappaB pathway inhibitors or with molecular inhibitors that were overexpressed in tumor cells before the assessment of cellular viability. NFkappaB activity was also assessed in GH3 cells using deoxyribonucleic acid binding assays. GH3 cells exhibited constitutive NFkappaB activity, which contributed to increased cellular proliferation. Treatment with wedelolactone, an IkappaB kinase inhibitor, or overexpression of an IkappaB super-repressor reduced cell viability, further implicating NFkappaB in pituitary tumor cell growth. Pharmacological or molecular inhibition of Akt similarly reduced GH3 viability and NFkappaB binding, suggesting that constitutive activation of NFkappaB may be, at least in part, mediated by Akt. Directed targeting of the Akt and NFkappaB signaling pathways may be a useful adjunct in the clinical management of pituitary tumors. Further elucidation of this pathway may yield novel information regarding the behavior of pituitary tumors in humans.
Law, Mary E; Ferreira, Renan B; Davis, Bradley J; Higgins, Paul J; Kim, Jae-Sung; Castellano, Ronald K; Chen, Sixue; Luesch, Hendrik; Law, Brian K
2016-08-05
While localized malignancies often respond to available therapies, most disseminated cancers are refractory. Novel approaches, therefore, are needed for the treatment of metastatic disease. CUB domain-containing protein1 (CDCP1) plays an important role in metastasis and drug resistance; the mechanism however, is poorly understood. Breast cancer cell lines were engineered to stably express EGFR, CDCP1 or phosphorylation site mutants of CDCP1. These cell lines were used for immunoblot analysis or affinity purification followed by immunoblot analysis to assess protein phosphorylation and/or protein complex formation with CDCP1. Kinase activity was evaluated using phosphorylation site-specific antibodies and immunoblot analysis in in vitro kinase assays. Protein band excision and mass spectrometry was utilized to further identify proteins complexed with CDCP1 or ΔCDCP1, which is a mimetic of the cleaved form of CDCP1. Cell detachment was assessed using cell counting. This paper reports that CDCP1 forms ternary protein complexes with Src and EGFR, facilitating Src activation and Src-dependent EGFR transactivation. Importantly, we have discovered that a class of compounds termed Disulfide bond Disrupting Agents (DDAs) blocks CDCP1/EGFR/Src ternary complex formation and downstream signaling. CDCP1 and EGFR cooperate to induce detachment of breast cancer cells from the substratum and to disrupt adherens junctions. Analysis of CDCP1-containing complexes using proteomics techniques reveals that CDCP1 associates with several proteins involved in cell adhesion, including adherens junction and desmosomal cadherins, and cytoskeletal elements. Together, these results suggest that CDCP1 may facilitate loss of adhesion by promoting activation of EGFR and Src at sites of cell-cell and cell-substratum contact.
Levitt, Jonathan M; Yamashita, Hideyuki; Jian, Weiguo; Lerner, Seth P; Sonpavde, Guru
2010-05-01
Dasatinib is an orally administered multitargeted kinase inhibitor that targets Src family tyrosine kinases, Abl, c-Kit, and PDGFR. A preclinical study was conducted to evaluate dasatinib alone or combined with cisplatin for human transitional cell carcinoma (TCC). Expression of Src in a human TCC tissue microarray was evaluated by immunohistochemistry. The activity of dasatinib and/or cisplatin was evaluated in six human TCC cell lines. Western blot was done to assess Src and phosphorylated-Src (p-Src) expression. The activity of dasatinib alone and in combination with cisplatin was determined in murine subcutaneous xenografts. Sixty-two percent to 75% of human TCC expressed Src. Dasatinib displayed significant antiproliferative activity at nanomolar concentrations against two human TCC cell lines (RT4 and Hu456) that exhibited high Src and p-Src expression and were cisplatin-resistant. RT4 cells were the most sensitive and displayed the highest level of Src pathway activation (p-Src/Src ratio). Dasatinib downregulated p-Src in either sensitive or resistant cells. TCC cells that were sensitive to cisplatin (5637 and TCC-SUP) were highly resistant to dasatinib and exhibited low Src expression. Dasatinib showed antitumor activity in RT4 murine xenografts, and the combination of dasatinib and cisplatin was significantly more active than placebo. Combination dasatinib plus cisplatin significantly inhibited proliferation and promoted apoptosis in vivo. In conclusion, dasatinib displayed significant preclinical antitumor activity against Src-overexpressing human TCC with active Src signaling and was highly active in combination with cisplatin in vivo. Further clinical development might be warranted in selected human subjects.
Chen, Hannah H; Händel, Norman; Ngeow, Joanne; Muller, James; Hühn, Michael; Yang, Huei-Ting; Heindl, Mario; Berbers, Roos-Marijn; Hegazy, Ahmed N; Kionke, Janina; Yehia, Lamis; Sack, Ulrich; Bläser, Frank; Rensing-Ehl, Anne; Reifenberger, Julia; Keith, Julia; Travis, Simon; Merkenschlager, Andreas; Kiess, Wieland; Wittekind, Christian; Walker, Lisa; Ehl, Stephan; Aretz, Stefan; Dustin, Michael L; Eng, Charis; Powrie, Fiona; Uhlig, Holm H
2017-02-01
Patients with heterozygous germline mutations in phosphatase and tensin homolog deleted on chromosome 10 (PTEN) experience autoimmunity and lymphoid hyperplasia. Because regulation of the phosphoinositide 3-kinase (PI3K) pathway is critical for maintaining regulatory T (Treg) cell functions, we investigate Treg cells in patients with heterozygous germline PTEN mutations (PTEN hamartoma tumor syndrome [PHTS]). Patients with PHTS were assessed for immunologic conditions, lymphocyte subsets, forkhead box P3 (FOXP3) + Treg cell levels, and phenotype. To determine the functional importance of phosphatases that control the PI3K pathway, we assessed Treg cell induction in vitro, mitochondrial depolarization, and recruitment of PTEN to the immunologic synapse. Autoimmunity and peripheral lymphoid hyperplasia were found in 43% of 79 patients with PHTS. Immune dysregulation in patients with PHTS included lymphopenia, CD4 + T-cell reduction, and changes in T- and B-cell subsets. Although total CD4 + FOXP3 + Treg cell numbers are reduced, frequencies are maintained in the blood and intestine. Despite pathogenic PTEN mutations, the FOXP3 + T cells are phenotypically normal. We show that the phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP) downstream of PTEN is highly expressed in normal human Treg cells and provides complementary phosphatase activity. PHLPP is indispensable for the differentiation of induced Treg cells in vitro and Treg cell mitochondrial fitness. PTEN and PHLPP form a phosphatase network that is polarized at the immunologic synapse. Heterozygous loss of function of PTEN in human subjects has a significant effect on T- and B-cell immunity. Assembly of the PTEN-PHLPP phosphatase network allows coordinated phosphatase activities at the site of T-cell receptor activation, which is important for limiting PI3K hyperactivation in Treg cells despite PTEN haploinsufficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Han, Bing; Wang, Tong-Dan; Shen, Shao-Ming; Yu, Yun; Mao, Chan; Yao, Zhu-Jun; Wang, Li-Shun
2015-03-18
Annonaceous acetogenins are a family of natural products with antitumor activities. Annonaceous acetogenin mimic AA005 reportedly inhibits mammalian mitochondrial NADH-ubiquinone reductase (Complex I) and induces gastric cancer cell death. However, the mechanisms underlying its cell-death-inducing activity are unclear. We used SW620 colorectal adenocarcinoma cells to study AA005 cytotoxic activity. Cell deaths were determined by Trypan blue assay and flow cytometry, and related proteins were characterized by western blot. Immunofluorescence and subcellular fractionation were used to evaluate AIF nuclear translocation. Reactive oxygen species were assessed by using redox-sensitive dye DCFDA. AA005 induces a unique type of cell death in colorectal adenocarcinoma cells, characterized by lack of caspase-3 activation or apoptotic body formation, sensitivity to poly (ADP-ribose) polymerase inhibitor Olaparib (AZD2281) but not pan-caspase inhibitor Z-VAD.fmk, and dependence on apoptosis-inducing factor (AIF). AA005 treatment also reduced expression of mitochondrial Complex I components, and leads to accumulation of intracellular reactive oxygen species (ROS) at the early stage. Blocking ROS formation significantly suppresses AA005-induced cell death in SW620 cells. Moreover, blocking activation of RIP-1 by necroptosis inhibitor necrotatin-1 inhibits AIF translocation and partially suppresses AA005-induced cell death in SW620 cells demonstrating that RIP-1 protein may be essential for cell death. AA005 may trigger the cell death via mediated by AIF through caspase-3 independent pathway. Our work provided new mechanisms for AA005-induced cancer cell death and novel clues for cancer treatment via AIF dependent cell death.
Johal, Kamaljit; Hanson, Peter J
2000-01-01
The nitric oxide (NO)-donating nitroxybutyl ester of flurbiprofen (NO-flurbiprofen), shows reduced gastro-intestinal toxicity relative to flurbiprofen. NO may exert either pro- or anti-apoptotic effects, while non-steroidal anti-inflammatory drugs may induce apoptosis. The aim of the present work was therefore to compare the effects of flurbiprofen and NO-flurbiprofen on apoptosis in guinea-pig gastric mucous cells. Apoptotic activity was assessed by assay of caspase activity and from the fragmentation and condensation of nuclei. Incubation with flurbiprofen for 24 h produced a concentration-dependent induction of apoptosis in cells attached to the culture plate (caspase 3-like activity increased by 257% at 500 μM), while NO-flurbiprofen inhibited basal apoptosis (caspase 3-like activity decreased by 71% at 500 μM). Caspase activity and nuclear fragmentation were substantially increased in cells that had spontaneously detached from the culture plate. NO-flurbiprofen inhibited caspase activity (55% at 500 μM) but not nuclear fragmentation in these detached cells. NO flurbiprofen inhibited the activation of apoptosis by 25 μM C6-ceramide in cells attached to the culture plate. Inhibition of caspase activity by NO-flurbiprofen was detectable after 6 h of incubation with intact cells, but by contrast with the NO-donor S-nitrosyl-N-acetyl-penicillamine, was not demonstrable with cell homogenates. Activation of caspase 3-like activity by flurbiprofen was slow (>6 h incubation needed) and was inhibited by cycloheximide. The presence of a nitroxybutyl ester moiety on flurbiprofen prevents the pro-apoptotic activity of the parent compound and may contribute to the reduced gastro-intestinal toxicity of NO-flurbiprofen. PMID:10864887
Samaranayaka, Anusha G P; Kitts, David D; Li-Chan, Eunice C Y
2010-02-10
Pacific hake fish protein hydrolysate (FPH) with promising chemical assay based antioxidative capacity was studied for in vitro angiotensin-I-converting enzyme (ACE)-inhibitory potential, intestinal cell permeability characteristics, and intracellular antioxidative potential using the Caco-2 cell model system. FPH showed substrate-type inhibition of ACE with IC(50) of 161 microg of peptides/mL. HPLC analysis revealed that different peptides were responsible for antioxidative and ACE-inhibitory activity. FPH inhibited 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidation in Caco-2 cells at noncytotoxic concentrations. In vitro simulated gastrointestinal digestion increased (P < 0.05) antioxidative capacity; ACE-inhibitory activity of FPH remained unchanged, although individual peptide fractions showed decreased or no activity after digestion. Some FPH peptides passed through Caco-2 cells: the permeates showed 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity but no ACE-inhibitory activity. These results suggest the potential for application of Pacific hake FPH to reduce oxidative processes in vivo. Further studies are needed to assess prospective antihypertensive effects.
Neutrophil activator of matrix metalloproteinase-2 (NAM).
Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley
2006-01-01
We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.
Cre-mediated recombination in pituitary somatotropes
Nasonkin, Igor O.; Potok, Mary Anne; Camper, Sally A.
2009-01-01
We report a transgenic line with highly penetrant cre recombinase activity in the somatotrope cells of the anterior pituitary gland. Expression of the cre transgene is under the control of the locus control region of the human growth hormone gene cluster and the rat growth hormone promoter. Cre recombinase activity was assessed with two different lacZ reporter genes that require excision of a floxed stop sequence for expression: a chick β-actin promoter with the CMV enhancer transgene and a ROSA26 knock-in. Cre activity is detectable in the developing pituitary after initiation of Gh transcription and persists through adulthood with high penetrance in Gh expressing cells and lower penetrance in lactotropes, a cell type that shares a common origin with somatotropes. This Gh-cre transgenic line is suitable for efficient, cell-specific deletion of floxed regions of genomic DNA in differentiated somatotropes and a subset of lactotrope cells of the anterior pituitary gland. PMID:19039787
USDA-ARS?s Scientific Manuscript database
Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...
Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential
ALAM, BADRUL; MAJUMDER, RAJIB; AKTER, SHAHINA; LEE, SANG-HAN
2015-01-01
The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential. PMID:25624910
Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential.
Alam, Badrul; Majumder, Rajib; Akter, Shahina; Lee, Sang-Han
2015-02-01
The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential.
Watch Out for the "Living Dead": Cell-Free Enzymes and Their Fate.
Baltar, Federico
2017-01-01
Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the "gatekeepers" of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell's fate. In contrast, cell-free enzymes belong to a kind of "living dead" realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go "beyond the living things," studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles.
Ye, Ping; Cheng, Chao; Wu, Jie; Wang, Sihua; Sun, Yuan; Liu, Zheng; Xie, Aini; Xia, Jiahong
2014-01-01
Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects. PMID:25383620
Al-Ani, Bahjat
2013-01-01
We recently reported that (i) activation of the proinflammatory receptor, proteinase-activated receptor-2 (PAR-2) caused the release of an important biomarker in preeclampsia, soluble vascular endothelial growth factor receptor-1 (sVEGFR-1, also known as sFlt-1) from human umbilical vein endothelial cells (HUVECs), and (ii) that the anti-oxidant and anti-inflammatory agent, resveratrol, is capable of inhibiting the proinflammatory cytokine-induced sVEGFR-1 release from human placenta. Based on these findings and because PAR-2 is upregulated by proinflammatory cytokines, we sought to determine whether resveratrol can inhibit PAR-2-induced sVEGFR-1 release. PAR-2 expressing cells, HUVECs and human embryonic kidney cells (HEK-293) transfected with a human VEGFR-1 promoter-luciferase reporter construct were incubated with PAR-2-activating peptide and/or resveratrol. Cell supernatants were assayed for sVEGFR-1 by enzyme-linked immunosorbent assay (ELISA), and VEGFR-1 promoter-luciferase assay was performed on the harvested cell lysates. Preincubation of HEK-293 cells with resveratrol significantly inhibited PAR-2-induced VEGFR-1 promoter activity without affecting cell viability as assessed by MTT assay. The addition of resveratrol also blocked PAR-2-mediated sVEGFR-1 release from HUVECs. The present study demonstrates that resveratrol suppressed both VEGFR-1 promoter activity and sVEGFR-1 protein release induced by PAR-2 activation, which further endorses our recent findings of a potential therapeutic role for resveratrol in preeclampsia. PMID:26933402
The effect of hypogravity and hypergravity on cells of the immune system
NASA Technical Reports Server (NTRS)
Cogoli, A.
1993-01-01
This article reviews the gravity effects discovered in T lymphocytes and other cells of the immune system. The strong depression of mitogenic activation first observed in an experiment conducted in Spacelab 1 in 1983 triggered several other investigations in space and on the ground in the clinostat and in the centrifuge in the past 10 years. During this period, great progress was made in our knowledge of the complex mechanism of T cell activation as well as the technology to analyze the lymphokines produced during stimulation. Nevertheless, several aspects of the steps leading to activation are not yet clear. Studies in hypogravity and hypergravity may contribute to answering some of the questions. A recent investigation in the U.S. Spacelab SLS-1, based on a new technology in which leukocytes are attached to microcarrier beads, showed that the strong inhibition of activation in microgravity is due to a malfunction of monocytes acting as accessory cells. In fact, interleukin-1 production is nearly nil in resuspended monocytes, whereas T cell activation is doubled in attached cells. In hypergravity, but not at 1g, concanavalin A bound to erythrocytes activates B lymphocytes in addition to T cells. The activation of Jurkat cells is also severely impaired in space. These recent results have raised new questions that have to be answered in experiments to be conducted in space and on Earth in this decade. The experimental system, based on the mitogenic activation of T lymphocytes and accessory cells attached to microcarriers, offers an optimum model for studying basic biological mechanisms of the cell to assess the immunological fitness of humans in space and to test the feasibility of bioprocesses in space as well as on Earth.
Activation of cell-mediated immunity by Morinda citrifolia fruit extract and its constituents.
Murata, Kazuya; Abe, Yumi; Futamura-Masudaa, Megumi; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki
2014-04-01
Morinda citrifolia, commonly known as noni, is a traditional natural medicine in French Polynesia and Hawaii. Functional foods derived from M. citrifolia fruit have been marketed to help prevent diseases and promote good health. The objective of this study was to assess the effects of M. citrifolia fruit on cell-mediated immunity. In the picryl chloride-induced contact dermatitis test, M. citrifolia fruit extract (Noni-ext) inhibited the suppression of cell-mediated immunity by immunosuppressive substances isolated from freeze-dried ascites of Ehrlich carcinoma-bearing mice (EC-sup). In addition, Noni-ext inhibited reduction of IL-2 production in EC-sup-treated mice and activated natural killer cells in normal mice. These results suggest that Noni-ext has multiple effects on the recovery of cell-mediated immunity. Furthermore, we investigated the active principles of Noni-ext and identified an iridoid glycoside, deacetylasperulosidic acid. Oral administration of deacetylasperulosidic acid inhibited the reduction of ear swelling, and also cancelled the suppression of IL-2 production along with the activation of natural killer cells in the same manner as that of Noni-ext.
Jiang, Xiaoxin; Zeng, Leping; Huang, Jufang; Zhou, Hui; Liu, Yubin
2015-04-28
In this study, we explored the cytotoxic effects of arctigenin, a natural lignan compound, on human hepatocellular carcinoma (HCC) cells and check the involvement of phosphatidylinositol 3-kinase (PI3-K)/Akt signaling. HCC cells were treated with different concentrations of arctigenin and cell viability and apoptosis were assessed. Manipulating Akt signaling was used to determine its role in the action of arctigenin. Arctigenin significantly inhibited the viability of HCC cells in a concentration-dependent manner. Arctigenin induced apoptosis and activation of caspase-9 and -3. Overexpression of a constitutively active Akt mutant blocked arctigenin-induced apoptosis. Combinational treatment with arctigenin and the PI3-K inhibitor LY294002 significantly enhanced apoptosis. Arctigenin reduced the expression of Bcl-xL, Mcl-1, and survivin and the phosphorylation of mTOR and S6K, which were significantly reversed by overexpression of constitutively active Akt. This is the first report about the anticancer activity of arctigenin in HCC cells, which is mediated by inactivation of PI3-K/Akt signaling. © 2015 Wiley Periodicals, Inc.
Kato, Hiroshi; Perl, Andras
2018-03-01
The mechanistic target of rapamycin (mTOR) has become a therapeutic target in systemic lupus erythematosus (SLE). In T cells, mTOR plays a central role in lineage specification, including development of regulatory cells (Treg cells). This study sought to investigate whether mTOR is activated within Treg cells and whether this contributes to the depletion and dysfunction of Treg cells in patients with SLE. Activities of mTOR complexes 1 (mTORC1) and 2 (mTORC2) were examined by quantifying phosphorylation of translation initiation factor 4E-binding protein 1, S6 kinase, and Akt in SLE patients relative to age- and sex-matched female healthy control subjects. Polarization of Treg cells from naive CD4+ T cells was assessed in the presence of interleukin-6 (IL-6), IL-17, and IL-21. The suppressor function of sorted CD4+CD25+ Treg cells was measured by determining their impact on the proliferation of autologous CD4+CD25- responder T cells. Treg cell expression of FoxP3, GATA-3, and CTLA-4 was monitored by flow cytometry. Autophagy was assessed using immunoblotting of light chain 3 lipidation. The effect of mTOR blockade was evaluated by testing the impact of rapamycin treatment on Treg cell function. SLE Treg cells exhibited increased activities of mTORC1 and mTORC2, whereas autophagy, the expression of GATA-3 and CTLA-4, and the suppressor function of Treg cells were diminished. IL-21, but not IL-6 or IL-17, blocked the development of Treg cells. IL-21 stimulated mTORC1 and mTORC2, and it abrogated the autophagy, differentiation, and function of Treg cells. Moreover, IL-21 constrained the expression of GATA-3 and CTLA-4 selectively in Treg cells. In turn, blockade of mTORC1 by 3-day rapamycin treatment enhanced transforming growth factor β production, while dual blockade of mTORC1 and mTORC2 by 4-week rapamycin treatment induced autophagy, restored the expression of GATA-3 and CTLA-4, and corrected Treg cell function. IL-21-driven mTOR activation is a pharmacologically targetable checkpoint of the deficient autophagy that underlies Treg cell dysfunction in SLE. © 2017, American College of Rheumatology.
Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E
2009-01-01
Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.
Jiang, Zhigang; Chang, Jitao; Wang, Fang; Yu, Li
2015-02-01
Clostridium perfringens epsilon toxin (Etx) is an extremely potent toxin, causing fatal enterotoxaemia in many animals. Several amino acids in domains I and II have been proposed to be critical for Etx to interact with MDCK cells. However, the critical amino acids in domain III remain undefined. Therefore, we assessed the effects of aromatic amino acids in domain III on Etx activity in this study. All of the results indicated that Y71 was critical for the cytotoxic activity of Etx towards MDCK cells, and this activity was dependent on the existence of an aromatic ring residue in position 71. Additionally, mutations in Y71 did not affect the binding of Etx to MDCK cells, indicating that Y71 is not a receptor binding site for Etx. In summary, we identified an amino acid in domain III that is important for the cytotoxic activity of Etx, thereby providing information on the structure-function relationship of Etx.
LU, WEN; DAI, BINGLING; MA, WEINA; ZHANG, YANMIN
2012-01-01
In the present study, we investigated the antitumor activity of HMQ1611, a novel synthetic taspine derivative, in vivo and evaluated associated potential antiangiogenesis mechanisms. The proliferation of A549 cells was examined by WST-1 assay in vitro. Tube formation and lung tissue vessel models were used to observe the antiangiogenic activity of HMQ1611. In addition, vascular enodthelial growth factor (VEGF) secretion and KDR kinase activities were measured by ELISA and the HTRF®KinEASE™-TK assay. In vivo, the antitumor activity was assessed by implantation of A549 cells in athymic mice. The results showed that HMQ1611 inhibited A549 cell proliferation and VEGF secretion, while it significantly inhibited tube formation and tissue vascularization. Furthermore, HMQ1611 inhibited A549 xenograft tumor growth. In conclusion, the results of our study suggest that HMQ1611 has latent properties for the inhibition of angiogenesis which are involved in its antitumor activity. PMID:23162661
Lu, Wen; Dai, Bingling; Ma, Weina; Zhang, Yanmin
2012-11-01
In the present study, we investigated the antitumor activity of HMQ1611, a novel synthetic taspine derivative, in vivo and evaluated associated potential antiangiogenesis mechanisms. The proliferation of A549 cells was examined by WST-1 assay in vitro. Tube formation and lung tissue vessel models were used to observe the antiangiogenic activity of HMQ1611. In addition, vascular enodthelial growth factor (VEGF) secretion and KDR kinase activities were measured by ELISA and the HTRF(®)KinEASE(™)-TK assay. In vivo, the antitumor activity was assessed by implantation of A549 cells in athymic mice. The results showed that HMQ1611 inhibited A549 cell proliferation and VEGF secretion, while it significantly inhibited tube formation and tissue vascularization. Furthermore, HMQ1611 inhibited A549 xenograft tumor growth. In conclusion, the results of our study suggest that HMQ1611 has latent properties for the inhibition of angiogenesis which are involved in its antitumor activity.
Eleftheriadis, Theodoros; Pissas, Georgios; Liakopoulos, Vassilios; Stefanidis, Ioannis
2018-07-01
It is generally hypothesized in the literature that indoleamine 2,3‑dioxygenase (IDO), by degrading L‑tryptophan along the kynurenine pathway, suppresses CD4+ T‑cell function by inducing apoptosis, inhibiting proliferation and promoting differentiation towards a regulatory phenotype. These effects are either accompanied or directly lead to alterations in cell metabolism. The present study evaluated the pathways that govern the effect of IDO on the utilization of the three main energy sources in CD4+ T‑cells. Two‑way mixed lymphocyte reactions were performed with or without oleate and/or the IDO inhibitor 1‑methyl‑DL‑tryptophan. In addition, isolated CD4+ T‑cells cultured in an oleate‑containing medium were activated in the presence or not of the general control nonderepressible 2 kinase (GCN2K) activator tryptophanol. L‑tryptophan, glucose and free fatty acid consumption, cell proliferation, apoptosis and the levels of key proteins involved in IDO‑mediated signal transduction, and glucose, glutamine and free fatty acid utilization were assessed. The results indicate that IDO decreased glycolysis and glutaminolysis by activating GCN2K, resulting in activation of AMP‑activated protein kinase (AMPK). In parallel with AMPK activation, IDO‑induced activation of aryl hydrocarbon receptor increased the expression of all carnitine palmitoyltransferase I isoenzymes, leading ultimately to increased free fatty acid oxidation and preservation of CD4+ T‑cell survival and proliferation. Thus, contrary to what is generally hypothesized, in a normal environment containing fatty acids, the immunosuppressive effect of IDO may not be due to a decrease in CD4+ T‑cell survival and proliferation, since IDO supplies the required energy for cell survival and proliferation by increasing free fatty acid oxidation.
Choi, Jin-Young; Ho, John Hsi-en; Pasoto, Sandra G; Bunin, Viviane; Kim, Sangtaek; Carrasco, Solange; Borba, Eduardo F; Gonçalves, Celio R; Costa, Priscila R; Kallas, Esper G; Bonfa, Eloisa; Craft, Joe
2015-01-01
Objective To assess circulating follicular helper-like CD4+ T (cTfh-like) cells in systemic lupus erythematosus (SLE) and determine their relationship to disease activity. Methods We analyzed blood samples from SLE patients, and as controls, Behçet’s disease (BD) patients and healthy individuals. We used flow cytometry to enumerate cTfh-like cells using as markers the C-X-C chemokine receptor type 5 (CXCR5), inducible T-cell costimulator (ICOS), programmed cell death protein-1 (PCDC1, PD-1), and secretion of interleukin-21 (IL-21). We compared the frequency of cTfh-like cells with that of circulating plasmablasts (CD19+IgD−CD38+) and evaluated their possible association with disease activity. Results cTfh-like T cells, identified as CXCR5hiICOShiPD-1hi, were expanded in the blood of SLE patients compared to BD and healthy controls. Such cells produced IL-21 with lower expression of CCR7, compared to circulating CXCR5hi central memory (Tcm) cells, enabling their distinction. PD-1, not ICOS or CXCR5, expression was significantly elevated in cTfh-like cells from SLE patients compared to controls. PD-1 expression among CXCR5hi cTfh-like cells correlated with disease activity, circulating plasmablasts, and anti-dsDNA antibody positivity, but not disease duration nor past organ injury; rather, it reflected current active disease. Conclusion We found that cTfh-like cells are associated with disease activity in SLE, suggesting that their presence indicates abnormal homeostasis of T-B cell collaboration with a causal relationship central to disease pathogenesis. These findings also suggest that cTfh-like cells provide a surrogate for aberrant GC activity in SLE, and that their PD-1 expression offers a tool for following disease activity and response to therapies. PMID:25581113
Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity.
Madureira, Joana; Pimenta, Andreia I; Popescu, Larisa; Besleaga, Alexandra; Dias, Maria Inês; Santos, Pedro M P; Melo, Rita; Ferreira, Isabel C F R; Cabo Verde, Sandra; Margaça, Fernanda M A
2017-02-01
A comprehensive assessment of the toxicity and antioxidant activity of cork boiling wastewater and the effects of gamma radiation on these parameters was performed. Antioxidant activity was evaluated using different methodologies as DPPH radical scavenging activity, reducing power and inhibition of β-carotene bleaching. The results have shown that gamma radiation can induce an increase on the antioxidant activity of cork boiling wastewater. Toxicity tests were performed to access the potential added value of the irradiated wastewaters and/or minimization of the impact for discharge in the environment. Two different methods for toxicity evaluation were followed, bacterial growth inhibition test and cytotoxicity assay, in order to predict the behavior of different cells (prokaryotic and eukaryotic) in the presence of cork wastewater. Non-treated cork boiling wastewater seemed to be non-toxic for prokaryotic cells (Pseudomonas fluorescens and Bacillus subtilis) but toxic for eukaryotic cells (A549 human cells and RAW264.7 mouse cells). The gamma radiation treatment at doses of 100 kGy appeared to increase the toxicity of cork compounds for all tested cells, which could be related to a toxic effect of radiolytic products of cork compounds in the wastewaters. Copyright © 2016 Elsevier Ltd. All rights reserved.
1,25D3 enhances antitumor activity of gemcitabine and cisplatin in human bladder cancer models
Ma, Yingyu; Yu, Wei-Dong; Trump, Donald L.; Johnson, Candace S.
2010-01-01
Background 1,25 dihydroxyvitamin D3 (1,25D3) potentiates the cytotoxic effects of several common chemotherapeutic agents. The combination of gemcitabine and cisplatin (GC) is a current standard chemotherapy regimen for bladder cancer. We investigated whether 1,25D3 could enhance the antitumor activity of GC in bladder cancer model systems. Methods Human bladder cancer T24 and UMUC3 cells were pretreated with 1,25D3 followed by GC. Apoptosis were assessed by annexin V staining. Caspase activation was examined by immunoblot analysis and substrate-based caspase activity assay. The cytotoxic effects were examined using MTT and in vitro clonogenic assay. p73 protein levels were assessed by immunoblot analysis. Knockdown of p73 was achieved by siRNA. The in vivo antitumor activity was assessed by in vivo excision clonogenic assay and tumor regrowth delay in the T24 xenograft model. Results 1,25D3 pretreatment enhanced GC-induced apoptosis and the activities of caspases- 8, 9 and 3 in T24 and UMUC3 cells. 1,25D3 synergistically reduced GC-suppressed surviving fraction in T24 cells. 1,25D3, gemcitabine, or cisplatin induced p73 accumulation, which was enhanced by GC or 1,25D3 and GC. p73 expression was lower in human primary bladder tumor tissue compared with adjacent normal tissue. Knockdown of p73 increased clonogenic capacity of T24 cells treated with 1,25D3, GC or 1,25D3 and GC. 1,25D3 and GC combination enhanced tumor regression compared with 1,25D3 or GC alone. Conclusions 1,25D3 potentiates GC-mediated growth inhibition in human bladder cancer models in vitro and in vivo, which involves p73 induction and apoptosis. PMID:20564622
Curcumin Sensitizes Silymarin to Exert Synergistic Anticancer Activity in Colon Cancer Cells.
Montgomery, Amanda; Adeyeni, Temitope; San, KayKay; Heuertz, Rita M; Ezekiel, Uthayashanker R
2016-01-01
We studied combinatorial interactions of two phytochemicals, curcumin and silymarin, in their action against cancer cell proliferation. Curcumin is the major component of the spice turmeric. Silymarin is a bioactive component of milk thistle used as a protective supplement against liver disease. We studied antiproliferative effects of curcumin alone, silymarin alone and combinations of curcumin and silymarin using colon cancer cell lines (DLD-1, HCT116, LoVo). Curcumin inhibited colon cancer cell proliferation in a concentration-dependent manner, whereas silymarin showed significant inhibition only at the highest concentrations assessed. We found synergistic effects when colon cancer cells were treated with curcumin and silymarin together. The combination treatment led to inhibition of colon cancer cell proliferation and increased apoptosis compared to single compound treated cells. Combination treated cells exhibited marked cell rounding and membrane blebbing of apoptotic cells. Curcumin treated cells showed 3-fold more caspase3/7 activity whereas combination treated cells showed 5-fold more activity compared to control and silymarin treated cells. When DLD-1 cells were pre-exposed to curcumin, followed by treatment with silymarin, the cells underwent a high amount of cell death. The pre-exposure studies indicated curcumin sensitization of silymarin effect. Our results indicate that combinatorial treatments using phytochemicals are effective against colorectal cancer.
Treg Cells Protect Dopaminergic Neurons against MPP+ Neurotoxicity via CD47-SIRPA Interaction.
Huang, Yan; Liu, Zhan; Cao, Bei-Bei; Qiu, Yi-Hua; Peng, Yu-Ping
2017-01-01
Regulatory T (Treg) cells have been associated with neuroprotection by inhibiting microglial activation in animal models of Parkinson's disease (PD), a progressive neurodegenerative disease characterized by dopaminergic neuronal loss in the nigrostriatal system. Herein, we show that Treg cells directly protect dopaminergic neurons against 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity via an interaction between the two transmembrane proteins CD47 and signal regulatory protein α (SIRPA). Primary ventral mesencephalic (VM) cells or VM neurons were pretreated with Treg cells before MPP+ treatment. Transwell co-culture of Treg cells and VM neurons was used to assess the effects of the Treg cytokines transforming growth factor (TGF)-β1 and interleukin (IL)-10 on dopaminergic neurons. Live cell imaging system detected a dynamic contact of Treg cells with VM neurons that were stained with CD47 and SIRPA, respectively. Dopaminergic neuronal loss, which was assessed by the number of tyrosine hydroxylase (TH)-immunoreactive cells, was examined after silencing CD47 in Treg cells or silencing SIRPA in VM neurons. Treg cells prevented MPP+-induced dopaminergic neuronal loss and glial inflammatory responses. TGF-β1 and IL-10 secreted from Treg cells did not significantly prevent MPP+-induced dopaminergic neuronal loss in transwell co-culture of Treg cells and VM neurons. CD47 and SIRPA were expressed by Treg cells and VM neurons, respectively. CD47-labeled Treg cells dynamically contacted with SIRPA-labeled VM neurons. Silencing CD47 gene in Treg cells impaired the ability of Treg cells to protect dopaminergic neurons against MPP+ toxicity. Similarly, SIRPA knockdown in VM neurons reduced the ability of Treg cell neuroprotection. Rac1/Akt signaling pathway in VM neurons was activated by CD47-SIRPA interaction between Treg cells and the neurons. Inhibiting Rac1/Akt signaling in VM neurons compromised Treg cell neuroprotection. Treg cells protect dopaminergic neurons against MPP+ neurotoxicity by a cell-to-cell contact mechanism underlying CD47-SIRPA interaction and Rac1/Akt activation. © 2017 The Author(s)Published by S. Karger AG, Basel.
Lai, Kenneth; Di Girolamo, Nick; Conway, Robert M; Jager, Martine J; Madigan, Michele C
2007-05-01
Ultraviolet radiation (UVR) can induce DNA damage and regulate the expression of factors important for tumour growth and metastasis, including matrix metalloproteinases (MMPs). Epidemiological studies suggest that chronic UVR exposure, especially during early adulthood, may be a risk factor in patients with choroidal melanoma. However, the effects of UV(R)-B on human choroidal melanocyte survival and growth are unknown. In this study, we investigated if UV(R)-B affected the in vitro survival, growth and MMP production of choroidal melanocytes and melanoma cells. Cultures of primary choroidal melanocytes and melanoma cell lines (OCM-1 and OCM-8) were exposed to UV(R)-B (0-30 mJ/cm(2)). The cell morphology and growth were examined, and cell viability was assessed using an MTT assay. Gelatin zymography was used to assess the enzymatic activity for MMP-2 and -9 in conditioned media following UV(R)-B treatment. UV(R)-B > or =20 mJ/cm(2) was cytotoxic for choroidal melanocytes. Cytotoxic doses of 5 to 10 mJ/cm(2) were found for OCM-8 and OCM-1 melanoma cell lines. Low levels of UV(R)-B (2.5 and 3.5 mJ/cm(2)) significantly reduced melanoma cell viability after 48 h, although melanocyte viability was not affected by doses of UV(R)-B <10 mJ/cm(2). Conditioned media from melanoma cells and melanocytes displayed pro-MMP-2 activity independent of UV(R)-B. Control and UV(R)-B-treated OCM-1 cells secreted active MMP-2 up to 72 h. Pro-MMP-9 activity was seen from 36 h for control and UV(R)-B-treated OCM-1 and OCM-8 cells. Melanocytes appeared more resistant to physiological doses of UV(R)-B than melanoma cells; the potential of melanocytes to initially survive DNA damage following UV(R)-B exposure may be relevant to the subsequent transformation of melanocytes to melanomas. Although UV(R)-B did not induce the production and/or activation of MMP-2 and -9 in melanocytes or melanoma cells, we are currently investigating whether DNA damage-response genes such as p53 and p21 can be regulated following UVR exposure, and whether they are important for choroidal melanoma development.
Lin, M; Sun, P; Zhang, G; Xu, X; Liu, G; Miao, H; Yang, Y; Xu, H; Zhang, L; Wu, P; Li, M
2014-03-01
Normal liver has a great potential of regenerative capacity after partial hepatectomy. In clinic, however, most patients receiving partial hepatectomy are usually suffering from chronic liver diseases with severely damaged hepatocyte population. Under these conditions, activation of hepatic progenitor cell (oval cell in rodents) population might be considered as an alternative mean to enhance liver functional recovery. Vitamin K2 has been shown to promote liver functional recovery in patients with liver cirrhosis. In this study, we explored the possibility of vitamin K2 treatment in activating hepatic oval cell for liver regeneration with the classic 2-acetamido-fluorene/partial hepatectomy (2-AAF/PH) model in Sprague-Dawley rats. In 2-AAF/PH animals, vitamin K2 treatment induced a dose-dependent increase of liver regeneration as assessed by the weight ratio of remnant liver versus whole body and by measuring serum albumin level. In parallel, a drastic expansion of oval cell population as assessed by anti-OV6 and anti-CK19 immunostaining was noticed in the periportal zone of the remnant liver. Since matrilin-2 was linked to oval cell proliferation and liver regeneration after partial hepatectomy, we assessed its expression at both the mRNA and protein levels. The results revealed a significant increase after vitamin K2 treatment in parallel with the expansion of oval cell population. Consistently, knocking down matrilin-2 expression in vivo largely reduced vitamin K2-induced liver regeneration and oval cell proliferation in 2-AAF/PH animals. In conclusion, these data suggest that vitamin K2 treatment enhances liver regeneration after partial hepatectomy, which is associated with oval cell expansion and matrilin-2 up-regulation.
NASA Astrophysics Data System (ADS)
Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy
2016-07-01
The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).
Effect of LED irradiation on the expression of MMP-3 and MMP-13 in SW1353 cells in vitro
NASA Astrophysics Data System (ADS)
Zeng, Chang-chun; Guo, Zhou-yi; Zhang, Feng-xue; Deng, Wen-di; Liu, Song-hao
2007-05-01
Matrix Metalloproteinase (MMP) plays an active role in remodeling cartilage in osteoarthritic cartilage. To find an effective method of prevention of osteoclasia, this in vitro study focuses on the expression of MMP-3 and MMP-13 in the SW1353 cells by LED irradiation. The human chondrosarcoma cell line SW1353 were stimulated with the proinflammatory cytokine IL-1beta or tumor necrosis factor-alpha (TNF-alpha), and were received the irradiation of LED (632nm, 4mW/cm2). The cell count was assessed over a 96-hour period by using Trypan blue dye exclusion assay, and the cell activity was evaluated with a Cell Counting Kit-8 Assays. The subsequent expression of MMP-3 and MMP-13 was quantified. Results of this experiment showed that the cultural cell activity was decreased, and the expression of MMP-3 and MMP-13 was increased by being stimulated with IL-1beta or TNF-alpha. After received LED irradiation, the death rate of cultural cell was increased and the expression of MMP-3 and MMP-13 was decreased significantly. The present study concluded that particular LED irradiation stimulates SW1353 cell proliferation activity and inhibit the MMP-3 and MMP-13 enzymatic activity. These findings might be clinically relevant, indicating that the low power laser irradiation treatment is likely to achieve the repair of articular cartilage in clinic.
O'Shea, Donal; Cawood, Tom J.; O'Farrelly, Cliona; Lynch, Lydia
2010-01-01
Background Obese individuals who smoke have a 14 year reduction in life expectancy. Both obesity and smoking are independantly associated with increased risk of malignancy. Natural killer cells (NK) are critical mediators of anti-tumour immunity and are compromised in obese patients and smokers. We examined whether NK cell function was differentially affected by cigarette smoke in obese and lean subjects. Methodology and Principal Findings Clinical data and blood were collected from 40 severely obese subjects (BMI>40 kg/m2) and 20 lean healthy subjects. NK cell levels and function were assessed using flow cytometry and cytotoxicity assays. The effect of cigarette smoke on NK cell ability to kill K562 tumour cells was assessed in the presence or absence of the adipokines leptin and adiponectin. NK cell levels were significantly decreased in obese subjects compared to lean controls (7.6 vs 16.6%, p = 0.0008). NK function was also significantly compromised in obese patients (30% +/− 13% vs 42% +/−12%, p = 0.04). Cigarette smoke inhibited NK cell ability to kill tumour cell lines (p<0.0001). NK cells from obese subjects were even more susceptible to the inhibitory effects of smoke compared to lean subjects (33% vs 28%, p = 0.01). Cigarette smoke prevented NK cell activation, as well as perforin and interferon-gamma secretion upon tumour challenge. Adiponectin but not leptin partially reversed the effects of smoke on NK cell function in both obese (p = 0.002) and lean controls (p = 0.01). Conclusions/Significance Obese subjects have impaired NK cell activity that is more susceptible to the detrimental effects of cigarette smoke compared to lean subjects. This may play a role in the increase of cancer and infection seen in this population. Adiponectin is capable of restoring NK cell activity and may have therapeutic potential for immunity in obese subjects and smokers. PMID:20107494
CCCTC-binding Factor Mediates Effects of Glucose On Beta Cell Survival
Tsui, Shanli; Dai, Wei; Lu, Luo
2013-01-01
Objectives Pancreatic islet β-cell survival is important in regulating insulin activities and maintaining glucose homeostasis. Recently, Pax6 has been shown to be essential for many vital functions in β-cells, though the molecular mechanisms of its regulation in β-cells remain unclear. The present study investigates the novel effects of glucose- and insulin-induced CTCF activity on Pax6 gene expression as well as the subsequent effects of insulin-activated signaling pathways on β-cell proliferation. Material and methods Pancreatic β-TC-1-6 cells were cultured in DMEM medium and stimulated with high concentrations of glucose (5 to 125 mM) and cell viability was assessed by MTT assays. The effect of CTCF on Pax6 was evaluated in high glucose-induced and CCCTC-binding Factor (CTCF)/Erk suppressed cells by promoter reporter and Western analyses. Results Increases in glucose and insulin concentrations up-regulated CTCF and consequently down-regulated Pax6 in β-cell survival and proliferation. Knocking-down CTCF directly affected Pax6 transcription through CTCF binding and blocked the response to glucose. Altered Erk activity mediated the effects of CTCF on controlling Pax6 expression, which partially regulates β-cell proliferation. Conclusions CTCF functions as a molecular mediator between insulin-induced upstream Erk signaling and Pax6 expression in pancreatic β-cells. This pathway may contribute to regulation of β-cell survival and proliferation. PMID:24354619
Acebedo, Alvin Resultay; Amor, Evangeline Cancio; Jacinto, Sonia Donaldo
2014-01-01
Voacanga globosa (Blanco), a plant endemic to the Philippines, is traditionally used especially by indigenous people of Bataan in the treatment of ulcers, wounds and tumorous growths. This study aimed to provide scientific evidence to therapeutic properties by determining cytotoxic and pro-apoptotic activity of HPLC fractions from leaves on HCT116 human colon carcinoma and A549 human lung carcinoma cell lines. Ethanolic extraction was performed on V globosa leaves followed by hexane and ethyl acetate partitioning. Silica gel column chromatography and high performance liquid chromatography (HPLC) produced MP1, MP2 and MP3 fractions. Cytotoxic activity of the fractions was determined through MTT assay against the cancer cell lines HCT116 and A549 and the non-cancer AA8 Chinese hamster ovarian cell line. Pro-apoptotic activities of the most active fractions were further assessed through DAPI staining, TUNEL assay and JC-1 mitochondrial membrane potential assay with HCT116 cells. While the MP1 fraction exerted no significant activity against all cell lines tested, MP2 and MP3 fractions demonstrated high toxicity against HCT116 and A549 cells. The MP3 fraction induced formation of apoptotic bodies, condensed DNA and other morphological changes consistent with apoptosis of HCT116 cells and TUNEL assay showed significant increase in DNA fragmentation over time. In these cells, the MP3 fraction also induced mitochondrial membrane destabilization, which is generally associated with the beginning of apoptosis. Phytochemical analysis demonstrated the presence only of saponins and terpenoids in the MP3 fraction. The results indicate that the MP3 fraction exerts cytotoxic activity on HCT116 cells via induction of apoptosis triggered by loss of mitochondrial membrane potential crucial for cell survival.
Larsen, Anna K; Hall, Arnaldur; Lundsgart, Henrik; Moghimi, S Moein
2013-01-01
Cationic polyplexes and lipoplexes are widely used as artificial systems for nucleic acid delivery into the cells, but they can also induce cell death. Mechanistic understanding of cell toxicity and biological side effects of these cationic entities is essential for optimization strategies and design of safe and efficient nucleic acid delivery systems. Numerous methods are presently available to detect and delineate cytotoxicity and cell death-mediated signals in cell cultures. Activation of caspases is part of the classical apoptosis program and increased caspase activity is therefore a well-established hallmark of programmed cell death. Additional methods to monitor cell death-related signals must, however, also be carried out to fully define the type of cell toxicity in play. These may include methods that detect plasma membrane damage, loss of mitochondrial membrane potential, phosphatidylserine exposure, and cell morphological changes (e.g., membrane blebbing, nuclear changes, cytoplasmic swelling, cell rounding). Here we describe a 96-well format protocol for detection of capsase-3/7 activity in cell lysates, based on a fluorescent caspase-3 assay, combined with a method to simultaneously determine relative protein contents in the individual wells.
Nikitina, Irina Yu; Kondratuk, Natalya A; Kosmiadi, George A; Amansahedov, Rasul B; Vasilyeva, Irina A; Ganusov, Vitaly V; Lyadova, Irina V
2012-01-01
Effector CD4 T cells represent a key component of the host's anti-tuberculosis immune defense. Successful differentiation and functioning of effector lymphocytes protects the host against severe M. tuberculosis (Mtb) infection. On the other hand, effector T cell differentiation depends on disease severity/activity, as T cell responses are driven by antigenic and inflammatory stimuli released during infection. Thus, tuberculosis (TB) progression and the degree of effector CD4 T cell differentiation are interrelated, but the relationships are complex and not well understood. We have analyzed an association between the degree of Mtb-specific CD4 T cell differentiation and severity/activity of pulmonary TB infection. The degree of CD4 T cell differentiation was assessed by measuring the percentages of highly differentiated CD27(low) cells within a population of Mtb- specific CD4 T lymphocytes ("CD27(low)IFN-γ(+)" cells). The percentages of CD27(low)IFN-γ+ cells were low in healthy donors (median, 33.1%) and TB contacts (21.8%) but increased in TB patients (47.3%, p<0.0005). Within the group of patients, the percentages of CD27(low)IFN-γ(+) cells were uniformly high in the lungs (>76%), but varied in blood (12-92%). The major correlate for the accumulation of CD27(low)IFN-γ(+) cells in blood was lung destruction (r = 0.65, p = 2.7 × 10(-7)). A cutoff of 47% of CD27(low)IFN-γ(+) cells discriminated patients with high and low degree of lung destruction (sensitivity 89%, specificity 74%); a decline in CD27(low)IFN-γ(+)cells following TB therapy correlated with repair and/or reduction of lung destruction (p<0.01). Highly differentiated CD27(low) Mtb-specific (CD27(low)IFN-γ(+)) CD4 T cells accumulate in the lungs and circulate in the blood of patients with active pulmonary TB. Accumulation of CD27(low)IFN-γ(+) cells in the blood is associated with lung destruction. The findings indicate that there is no deficiency in CD4 T cell differentiation during TB; evaluation of CD27(low)IFN-γ(+) cells provides a valuable means to assess TB activity, lung destruction, and tissue repair following TB therapy.
The Role of PAR2 in TGF-β1-Induced ERK Activation and Cell Motility
Ungefroren, Hendrik; Witte, David; Fiedler, Christian; Gädeken, Thomas; Kaufmann, Roland; Lehnert, Hendrik
2017-01-01
Background: Recently, the expression of proteinase-activated receptor 2 (PAR2) has been shown to be essential for activin receptor-like kinase 5 (ALK5)/SMAD-mediated signaling and cell migration by transforming growth factor (TGF)-β1. However, it is not known whether activation of non-SMAD TGF-β signaling (e.g., RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) signaling) is required for cell migration and whether it is also dependent on PAR2. Methods: RNA interference was used to deplete cells of PAR2, followed by xCELLigence technology to measure cell migration, phospho-immunoblotting to assess ERK1/2 activation, and co-immunoprecipitation to detect a PAR2–ALK5 physical interaction. Results: Inhibition of ERK signaling with the MEK inhibitor U0126 blunted the ability of TGF-β1 to induce migration in pancreatic cancer Panc1 cells. ERK activation in response to PAR2 agonistic peptide (PAR2–AP) was strong and rapid, while it was moderate and delayed in response to TGF-β1. Basal and TGF-β1-dependent ERK, but not SMAD activation, was blocked by U0126 in Panc1 and other cell types indicating that ERK activation is downstream or independent of SMAD signaling. Moreover, cellular depletion of PAR2 in HaCaT cells strongly inhibited TGF-β1-induced ERK activation, while the biased PAR2 agonist GB88 at 10 and 100 µM potentiated TGF-β1-dependent ERK activation and cell migration. Finally, we provide evidence for a physical interaction between PAR2 and ALK5. Our data show that both PAR2–AP- and TGF-β1-induced cell migration depend on ERK activation, that PAR2 expression is crucial for TGF-β1-induced ERK activation, and that the functional cooperation of PAR2 and TGF-β1 involves a physical interaction between PAR2 and ALK5. PMID:29261154
Gómez-Lechón, M José; Tolosa, Laia; Donato, M Teresa
2017-02-01
Drug attrition rates due to hepatotoxicity are an important safety issue considered in drug development. The HepG2 hepatoma cell line is currently being used for drug-induced hepatotoxicity evaluations, but its expression of drug-metabolizing enzymes is poor compared with hepatocytes. Different approaches have been proposed to upgrade HepG2 cells for more reliable drug-induced liver injury predictions. Areas covered: We describe the advantages and limitations of HepG2 cells transduced with adenoviral vectors that encode drug-metabolizing enzymes for safety risk assessments of bioactivable compounds. Adenoviral transduction facilitates efficient and controlled delivery of multiple drug-metabolizing activities to HepG2 cells at comparable levels to primary human hepatocytes by generating an 'artificial hepatocyte'. Furthermore, adenoviral transduction enables the design of tailored cells expressing particular metabolic capacities. Expert opinion: Upgraded HepG2 cells that recreate known inter-individual variations in hepatic CYP and conjugating activities due to both genetic (e.g., polymorphisms) or environmental (e.g., induction, inhibition) factors seems a suitable model to identify bioactivable drug and conduct hepatotoxicity risk assessments. This strategy should enable the generation of customized cells by reproducing human pheno- and genotypic CYP variability to represent a valuable human hepatic cell model to develop new safer drugs and to improve existing predictive toxicity assays.
Kilani-Jaziri, Soumaya; Mokdad-Bzeouich, Imen; Krifa, Mounira; Nasr, Nouha; Ghedira, Kamel; Chekir-Ghedira, Leila
2017-10-01
Many studies have been performed to assess the potential utility of natural products as immunomodulatory agents to enhance host responses and to reduce damage to the human body. To determine whether phenolic compounds (caffeic, ferulic, and p-coumaric acids) have immunomodulatory effects and clarify which types of immune effector cells are stimulated in vitro, we evaluated their effect on splenocyte proliferation and lysosomal enzyme activity. We also investigated the activity of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In addition, induction of the cellular antioxidant activity in splenocytes, macrophages, and red blood cells was determined by measuring the fluorescence of the DCF product. The study first results indicated that caffeic, ferulic, and p-coumaric acids significantly promote LPS-stimulated splenocyte proliferation, suggesting a potential activation of B cells, and enhanced humoral immune response in hosts treated by the tested natural products. Phenolic acids significantly enhanced the killing activity of isolated NK and CTL cells but had negligible effects on mitogen-induced proliferation of splenic T cells. We showed that caffeic acid enhances lysosomal enzyme activity in murine peritoneal macrophages, suggesting a potential role in activating such cells. Immunomodulatory activity was concomitant with the cellular antioxidant effect in macrophages and splenocytes of caffeic and ferulic acids. We conclude from this study that caffeic, ferulic, and p-coumaric acids exhibited an immunomodulatory effect which could be ascribed, in part, to their cytoprotective effect via their antioxidant capacity. Furthermore, these results suggest that these natural products could be potentially used to modulate immune cell functions in physiological and pathological conditions.
Fluorescence-based assay as a new screening tool for toxic chemicals
Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey
2016-01-01
Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients. PMID:27653274
Fluorescence-based assay as a new screening tool for toxic chemicals.
Moczko, Ewa; Mirkes, Evgeny M; Cáceres, César; Gorban, Alexander N; Piletsky, Sergey
2016-09-22
Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.
Fluorescence-based assay as a new screening tool for toxic chemicals
NASA Astrophysics Data System (ADS)
Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey
2016-09-01
Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.
Louiz, I; Kinani, S; Gouze, M-E; Ben-Attia, M; Menif, D; Bouchonnet, S; Porcher, J M; Ben-Hassine, O K; Aït-Aïssa, S
2008-09-01
We used an array of in vitro cell-based bioassays to assess dioxin-like, estrogenic and (anti-)androgenic activities in organic extracts of sediments from the Bizerta lagoon, one of the largest Tunisian lagoons subjected to various anthropogenic and industrial pressures. The sediments were sampled both in winter and summer 2006 in 6 stations differently impacted and in one reference station located in the seawards entrance of Ghar el Melh lagoon. Chemical analyses of the 16 priority PAHs showed that the sediments were low to moderately contaminated (2-537 ng/g dry weight). By using the estrogen- (MELN) and androgen-responsive (MDA-kb2) reporter cell lines, significant estrogenic and anti-androgenic activities were detected only in the Menzel Bourguiba (MB) site, the most contaminated site, both in winter and summer. By using 7-ethoxyresorufin-O-deethylase (EROD) induction in the fish PLHC-1 cell line after both 4 and 24 h of cell exposure, dioxin-like activities were detected in all analysed samples. Dioxin-like activities were higher after 4 h exposure, and varied according to the sites and the sampling season. While highly significant correlation was observed between bioassay- and chemical analyses-derived toxic equivalents (TEQs), PAHs accounted for only a small part (up to 4%) of the detected biological activities, suggesting that other readily metabolised EROD-inducing compounds were present. This study argues for the use of short time exposure to assess biological TEQs in low contaminated samples and provides new induction equivalent factors (IEF(4h)) for 16 PAHs in the PLHC-1 cell line. Finally, our results stress the need to further characterise the nature of organic chemical contamination as well as its long-term impacts on aquatic wildlife in the Bizerta lagoon.
Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies.
Clement, Mathew; Pearson, James A; Gras, Stephanie; van den Berg, Hugo A; Lissina, Anya; Llewellyn-Lacey, Sian; Willis, Mark D; Dockree, Tamsin; McLaren, James E; Ekeruche-Makinde, Julia; Gostick, Emma; Robertson, Neil P; Rossjohn, Jamie; Burrows, Scott R; Price, David A; Wong, F Susan; Peakman, Mark; Skowera, Ania; Wooldridge, Linda
2016-10-17
CD8 + T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8 + T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8 + T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8 + T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, "blocking" anti-CD8 antibodies can suppress autoreactive CD8 + T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8 + T-cell compartment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenina, M.A.; Potapova, A.A.; Biryukov, A.V.
1987-01-01
The authors study the state of immunoregulatory process in patients with systemic lupus erythematosus at the T-T-cell interaction level and seek to test the possibility of the pharmacological modulation of this process. The proliferative activity of mononuclear lymphocytes, extracted from the blood of ten lupus patients, was assessed by measuring the incorporation of tritiated thymidine into cultures stimulated by phytohemagglutinin, concanavalin, and theophylline. The comparative effects of each of these agents on the immunoregulatory and proliferative activity of the lymphocytes are reported.
Genetically encoded sensors and fluorescence microscopy for anticancer research
NASA Astrophysics Data System (ADS)
Zagaynova, Elena V.; Shirmanova, Marina V.; Sergeeva, Tatiana F.; Klementieva, Natalia V.; Mishin, Alexander S.; Gavrina, Alena I.; Zlobovskay, Olga A.; Furman, Olga E.; Dudenkova, Varvara V.; Perelman, Gregory S.; Lukina, Maria M.; Lukyanov, Konstantin A.
2017-02-01
Early response of cancer cells to chemical compounds and chemotherapeutic drugs were studied using novel fluorescence tools and microscopy techniques. We applied confocal microscopy, two-photon fluorescence lifetime imaging microscopy and super-resolution localization-based microscopy to assess structural and functional changes in cancer cells in vitro. The dynamics of energy metabolism, intracellular pH, caspase-3 activation during staurosporine-induced apoptosis as well as actin cytoskeleton rearrangements under chemotherapy were evaluated. We have showed that new genetically encoded sensors and advanced fluorescence microscopy methods provide an efficient way for multiparameter analysis of cell activities
Corey, Deborah A; Kelley, Thomas J
2007-07-01
Niemann-Pick type C (NPC) disease is characterized at the cellular level by the intracellular accumulation of free cholesterol. We have previously identified a similar phenotype in cystic fibrosis (CF) cell models that results in the activation of the small GTPase RhoA. The hypothesis of this study was that NPC cells would also exhibit an increase in small GTPase activation. An examination of the active, GTP-bound form of GTPases revealed a basal increase in the content of the active-form Ras and RhoA small GTPases in NPC fibroblasts compared to wt controls. To assess whether this increase in GTP-bound Ras and RhoA manifests a functional outcome, the expression of the proliferation control proteins p21/waf1 and cyclin D were examined. Consistent with increased GTPase signaling, p21/waf1 expression is reduced and cyclin D expression is elevated in NPC fibroblasts. Interestingly, cell growth rate is not altered in NPC fibroblasts compared to wt cells. However, NPC sensitivity to statin treatment is reversed by addition of the isoprenoid geranylgeranyl pyrophosphate (GGPP), a modifier of RhoA. It is concluded that Ras and RhoA basal activation is elevated in NPC fibroblasts and has an impact on cell survival pathways.
Physiologically activated mammary fibroblasts promote postpartum mammary cancer
Guo, Qiuchen; Burchard, Julja; Spellman, Paul
2017-01-01
Women diagnosed with breast cancer within 5 years of childbirth have poorer prognosis than nulliparous or pregnant women. Weaning-induced breast involution is implicated, as the collagen-rich, immunosuppressive microenvironment of the involuting mammary gland is tumor promotional in mice. To investigate the role of mammary fibroblasts, isolated mammary PDGFRα+ cells from nulliparous and postweaning mice were assessed for activation phenotype and protumorigenic function. Fibroblast activation during involution was evident by increased expression of fibrillar collagens, lysyl oxidase, Tgfb1, and Cxcl12 genes. The ability of mammary tumors to grow in an isogenic, orthotopic transplant model was increased when tumor cells were coinjected with involution-derived compared with nulliparous-derived mammary fibroblasts. Mammary tumors in the involution-fibroblast group had increased Ly6C+ monocytes at the tumor border, and decreased CD8+ T cell infiltration and tumor cell death. Ibuprofen treatment suppressed involution-fibroblast activation and tumor promotional capacity, concurrent with decreases in tumor Ly6C+ monocytes, and increases in intratumoral CD8+ T cell infiltration, granzyme levels, and tumor cell death. In total, our data identify a COX/prostaglandin E2 (PGE2)–dependent activated mammary fibroblast within the involuting mammary gland that displays protumorigenic, immunosuppressive activity, identifying fibroblasts as potential targets for the prevention and treatment of postpartum breast cancer. PMID:28352652
Roy, Souvik; Das, Rituparna; Ghosh, Balaram; Chakraborty, Tania
2018-06-01
Flavonoids are the most investigated phytochemicals due to their pharmacological and therapeutic activities. Their ability to chelate with metal ions has resulted in the emergence of a new category of molecules with a broader spectrum of pharmacological activities. In this study, the ruthenium quercetin complex has been synthesized and anticancer activity has been evaluated on a well-defined model of DMH followed by DSS induced rat colon cancer and on human colon cancer cell line HT-29. The characterizations accomplished through UV-visible, NMR, IR, Mass spectra and XRD techniques, and antioxidant activity was assessed by DPPH, FRAP, and ABTS methods. In vitro study confirmed that the complex increased p53 expression, reduced VEGF and mTOR expression, apoptosis induction, and DNA fragmentation in the HT-29 cells. Acute and subacute toxicity study was also assessed and results from in vivo study revealed that complex was efficient to suppress ACF multiplicity and hyperplastic lesions and elevated the CAT, SOD, and glutathione levels. Furthermore, the complex was found to decrease cell proliferation and increased apoptotic events in tumor cells correlates upregulation of p53 and Bax and downregulation of Bcl2 expression. Our findings from the in vitro and in vivo study support the continued investigation of ruthenium quercetin complex possesses a potential chemotherapeutic activity against colon cancer and was efficient in reducing ACF multiplicity, hyperplastic lesions in the colon tissues of rats by inducing apoptosis. © 2018 Wiley Periodicals, Inc.
A versatile assay for RNA-binding proteins in living cells
Strein, Claudia; Alleaume, Anne-Marie; Rothbauer, Ulrich; Hentze, Matthias W.; Castello, Alfredo
2014-01-01
RNA-binding proteins (RBPs) control RNA fate from synthesis to decay. Since their cellular expression levels frequently do not reflect their in vivo activity, methods are needed to assess the steady state RNA-binding activity of RBPs as well as their responses to stimuli. While electrophoresis mobility shift assays (EMSA) have been used for such determinations, their results serve at best as proxies for the RBP activities in living cells. Here, we describe a quantitative dual fluorescence method to analyze protein–mRNA interactions in vivo. Known or candidate RBPs are fused to fluorescent proteins (eGFP, YFP), expressed in cells, cross-linked in vivo to RNA by ultraviolet light irradiation, and immunoprecipitated, after lysis, with a single chain antibody fragment directed against eGFP (GFP-binding protein, GBP). Polyadenylated RNA-binding activity of fusion proteins is assessed by hybridization with an oligo(DT) probe coupled with a red fluorophore. Since UV light is directly applied to living cells, the assay can be used to monitor dynamic changes in RNA-binding activities in response to biological or pharmacological stimuli. Notably, immunoprecipitation and hybridization can also be performed with commercially available GBP-coupled 96-well plates (GFP-multiTrap), allowing highly parallel RNA-binding measurements in a single experiment. Therefore, this method creates the possibility to conduct in vivo high-throughput RNA-binding assays. We believe that this fast and simple radioactivity-free method will find many useful applications in RNA biology. PMID:24664470
Cytolytic Activity Score to Assess Anticancer Immunity in Colorectal Cancer.
Narayanan, Sumana; Kawaguchi, Tsutomu; Yan, Li; Peng, Xuan; Qi, Qianya; Takabe, Kazuaki
2018-05-16
Elevated tumor-infiltrating lymphocytes (TILs) within the tumor microenvironment is a known positive prognostic factor in colorectal cancer (CRC). We hypothesized that since cytotoxic T cells release cytolytic proteins such as perforin (PRF1) and pro-apoptotic granzymes (GZMA) to attack cancer cells, a cytolytic activity score (CYT) would be a useful tool to assess anticancer immunity. Genomic expression data were obtained from 456 patients from The Cancer Genome Atlas (TCGA). CYT was defined by GZMA and PRF1 expression, and CIBERSORT was used to evaluate intratumoral immune cell composition. High CYT was associated with high microsatellite instability (MSI-H), as well as high levels of activated memory CD4+T cells, gamma-delta T cells, and M1 macrophages. CYT-high CRC patients had improved overall survival (p = 0.019) and disease-free survival (p = 0.016) compared with CYT-low CRC patients, especially in TIL-positive tumors. Multivariate analysis demonstrated that CYT- high associates with improved survival independently after controlling for age, lymphovascular invasion, colonic location, microsatellite instability, and TIL positivity. The levels of immune checkpoint molecules (ICMs)-programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), lymphocyte-activation gene 3 (LAG3), T cell immunoglobulin and mucin domain 3 (TIM3), and indoleamine 2,3-dioxygenase 1 (IDO1)-correlated significantly with CYT (p < 0.0001); with improved survival in CYT-high and ICM-low patients, and poorer survival in ICM-high patients. High CYT within CRC is associated with improved survival, likely due to increased immunity and cytolytic activity of T cells and M1 macrophages. High CYT is also associated with high expression of ICMs; thus, further studies to elucidate the role of CYT as a predictive biomarker of the efficacy of immune checkpoint blockade are warranted.
Kurakula, Kondababu; Hamers, Anouk A; van Loenen, Pieter; de Vries, Carlie J M
2015-06-19
Mucus hypersecretion and excessive cytokine synthesis is associated with many of the pathologic features of chronic airway diseases such as asthma. 6-Mercaptopurine (6-MP) is an immunosuppressive drug that is widely used in several inflammatory disorders. Although 6-MP has been used to treat asthma, its function and mechanism of action in airway epithelial cells is unknown. Confluent NCI-H292 and MLE-12 epithelial cells were pretreated with 6-MP followed by stimulation with TNFα or PMA. mRNA levels of cytokines and mucins were measured by RT-PCR. Western blot analysis was performed to assess the phosphorylation of IκBα and luciferase assays were performed using an NFκB reporter plasmid to determine NFκB activity. Periodic Acid Schiff staining was used to assess the production of mucus. 6-MP displayed no effect on cell viability up to a concentration of 15 μM. RT-PCR analysis showed that 6-MP significantly reduces TNFα- and PMA-induced expression of several proinflammatory cytokines in NCI-H292 and MLE-12 cells. Consistent with this, we demonstrated that 6-MP strongly inhibits TNFα-induced phosphorylation of IκBα and thus attenuates NFκB luciferase reporter activity. In addition, 6-MP decreases Rac1 activity in MLE-12 cells. 6-MP down-regulates gene expression of the mucin Muc5ac, but not Muc2, through inhibition of activation of the NFκB pathway. Furthermore, PMA- and TNFα-induced mucus production, as visualized by Periodic Acid Schiff (PAS) staining, is decreased by 6-MP. Our data demonstrate that 6-MP inhibits Muc5ac gene expression and mucus production in airway epithelial cells through inhibition of the NFκB pathway, and 6-MP may represent a novel therapeutic target for mucus hypersecretion in airway diseases.
Liu, Hongjun; Wang, Yiru; Chen, Bing
2018-01-01
Lidocaine displays antitumor activity by inducing apoptosis and suppressing tumor growth in human hepatocellular carcinoma (HepG2) cells in vitro. However, the molecular mechanism underlying lidocaine-mediated antitumor activity is unclear. In this study, HepG2 cells were treated with lidocaine, and cell proliferation and colony-forming ability were assessed. The expression level of cytoplasmic polyadenylation element binding protein 3 (CPEB3) was detected by real-time quantitative PCR and western blot. Lidocaine treatment resulted in decreased HepG2 cell viability and colony formation in a dose-dependent manner. In hepatocellular carcinoma patient samples, CPEB3 was downregulated and was associated with poor prognosis and high-grade malignancy. Additionally, CPEB3 was a critical mediator of lidocaine-induced repression of HepG2 cell proliferation. These results demonstrated that lidocaine decreased cell viability and colony-forming ability of HepG2 cells by upregulating CPEB3 expression.
Chen, Ping; Wen, Xiaofang; Wang, Bin; Hou, Diyu; Zou, Hong; Yuan, Qin; Yang, Hui; Xie, Jieqiong; Huang, Huifang
2018-05-01
Homoharringtonine (HHT) is a known anti-leukemia drug that inhibits multiple myeloma (MM) cells both in vitro and in vivo. Our prior study demonstrated that the potency of HHT in MM cells was compromised significantly when myeloma cells were co-cultured with BM stromal cells. This study aimed to investigate whether PI3K/Akt inhibitor LY294002 could potentiate the antimyeloma activity of HHT against MM cells adhered to BM stromal cells and in vivo xenograft models. A co-culture system composed of MM cells and human stromal cells was employed to mimic MM cells in bone marrow niche. The inhibitory and pro-apoptotic effect of HHT and LY294002 was determined by CCK-8 assay or flow cytometry. Expression of PI3K/Akt signaling molecules and anti-apoptotic protein myeloid cell leukemia-1 (Mcl-1) was assessed by western blot analysis and/or reverse transcription real-time quantitative PCR (RT-qPCR). MM xenografts were used to evaluate antitumor effect of combined therapy with HHT and LY294002. Adhesion to BM stromal cells rendered MM cells resistant to HHT whereas silencing Mcl-1 partly reversed the resistance. LY294002 induced apoptosis in MM cells and potentiated the antimyeloma effects of HHT by inhibiting the PI3K/Akt signal pathway which was abnormally activated during adhesion. LY294002 also enhanced the antimyeloma effect of HHT in in vivo xenograft models. These findings suggest that activation of PI3K/Akt signal pathway was responsible for the resistance to HHT in MM cells adhered to stromal cells. LY294002 can potentiate the antimyeloma activity of HHT both in vitro and in vivo, which may represent a new clinical treatment in MM.
Study of cell killing effect on S180 by ultrasound activating protoporphyrin IX.
Wang, Xiao Bing; Liu, Quan Hong; Wang, Pan; Tang, Wei; Hao, Qiao
2008-04-01
The present study was initiated to investigate the potential biological mechanism of cell killing effect on isolate sarcoma 180 (S180) cells induced by ultrasound activating protoporphyrin IX (PPIX). S180 cells were exposed to ultrasound for 30s duration, at a frequency of 2.2 MHz and an acoustic power of 3 W/cm(2) in the presence of 120 microM PPIX. The viability of cells was evaluated using trypan blue staining. The generation of oxygen free radicals in cell suspensions was detected immediately after treatment using a reactive oxygen detection kit. A copper reagent colorimetry method was used to measure the level of FFAs released into cell suspensions by the process of cell damage induced by ultrasound and PPIX treatment. Oxidative stress was assessed by measuring the activities of key antioxidant enzymes (i.e., SOD, CAT, GSH-PX) in S180 tumor cells. Treatment with ultrasound and PPIX together increased the cell damage rate to 50.91%, while treatment with ultrasound alone gave a cell damage rate to 24.24%, and PPIX alone kept this rate unchanged. Colorimetry and enzymatic chemical methods showed that the level of FFAs in cell suspension increased significantly after the treatment, while the activity of all the above enzymes decreased in tumor cells at different levels, and were associated with the generation of oxygen free radicals in cell suspension after treatment. The results indicate that oxygen free radicals may play an important role in improving the membrane lipid peroxidation, degrading membrane phospholipids to release FFAs, and decreasing the activities of the key antioxidant enzymes in cells. This biological mechanism might be involved in mediating the effects on S180 cells and resulting in the cell damage seen with SDT.
A Role of Fluoride on Free Radical Generation and Oxidative Stress in BV-2 Microglia Cells
Shuhua, Xi; Ziyou, Liu; Ling, Yan; Fei, Wang; Sun, Guifan
2012-01-01
The generation of ROS and lipid peroxidation has been considered to play an important role in the pathogenesis of chronic fluoride toxicity. In the present study, we observed that fluoride activated BV-2 microglia cell line by observing OX-42 expression in immunocytochemistry. Intracellular superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), reactive oxygen species (ROS), superoxide anions (O2 ∙−), nitric oxide synthase (NOS), nitrotyrosine (NT) and nitric oxide (NO), NOS in cell medium were determined for oxidative stress assessment. Our study found that NaF of concentration from 5 to 20 mg/L can stimuli BV-2 cells to change into activated microglia displaying upregulated OX-42 expression. SOD activities significantly decreased in fluoride-treated BV-2 cells as compared with control, and MDA concentrations and contents of ROS and O2 ∙− increased in NaF-treated cells. Activities of NOS in cells and medium significantly increased with fluoride concentrations in a dose-dependent manner. NT concentrations also increased significantly in 10 and 50 mg/L NaF-treated cells compared with the control cells. Our present study demonstrated that toxic effects of fluoride on the central nervous system possibly partly ascribed to activiting of microglia, which enhanced oxidative stress induced by ROS and reactive nitrogen species. PMID:22933830
Wehbe, Michel; Huguenin, Antoine; Leveque, Nicolas; Semler, Bert L; Hamze, Monzer; Andreoletti, Laurent; Bouin, Alexis
2016-04-01
Coxsackieviruses B (CV-B) (Picornaviridae) are a common infectious cause of acute myocarditis in children and young adults, a disease, which is a precursor to 10-20% of chronic myocarditis and dilated cardiomyopathy (DCM) cases. The mechanisms involved in the disease progression from acute to chronic myocarditis phase and toward the DCM clinical stage are not fully understood but are influenced by both viral and host factors. Subgenomic replicons of CV-B can be used to assess viral replication mechanisms in human cardiac cells and evaluate the effects of potential antiviral drugs on viral replication activities. Our objectives were to generate a reporter replicon from a cardiotropic prototype CV-B3/28 strain and to characterize its replication properties into human cardiac primary cells. To obtain this replicon, a cDNA plasmid containing the full CV-B3/28 genome flanked by a hammerhead ribozyme sequence and an MluI restriction site was generated and used as a platform for the insertion of sequences encoding emerald green fluorescent protein (EmGFP) in place of those encoding VP3. In vitro transcribed RNA from this plasmid was transfected into HeLa cells and human primary cardiac cells and was able to produce EmGFP and VP1-containing polypeptides. Moreover, non-structural protein biological activity was assessed by the specific cleavage of eIF4G1 by viral 2A(pro). Viral RNA replication was indirectly demonstrated by inhibition assays, fluoxetine was added to cell culture and prevented the EmGFP synthesis. Our results indicated that the EmGFP CV-B3 replicon was able to replicate and translate as well as the CV-B3/28 prototype strain. Our EmGFP CV-B3 replicon will be a valuable tool to readily investigate CV-B3 replication activities in human target cell models. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S., E-mail: prakash@mailbox.sc.edu
2014-01-01
Staphylococcal enterotoxin B (SEB) is a potent exotoxin produced by the Staphylococcus aureus. This toxin is classified as a superantigen because of its ability to directly bind with MHC-II class molecules followed by activation of a large proportion of T cells bearing specific Vβ-T cell receptors. Commonly associated with classic food poisoning, SEB has also been shown to induce toxic shock syndrome, and is also considered to be a potential biological warfare agent because it is easily aerosolized. In the present study, we assessed the ability of indole-3-carbinol (I3C) and one of its byproducts, 3,3′-diindolylmethane (DIM), found in cruciferous vegetables,more » to counteract the effects of SEB-induced activation of T cells in mice. Both I3C and DIM were found to decrease the activation, proliferation, and cytokine production by SEB-activated Vβ8{sup +} T cells in vitro and in vivo. Interestingly, inhibitors of histone deacetylase class I (HDAC-I), but not class II (HDAC-II), showed significant decrease in SEB-induced T cell activation and cytokine production, thereby suggesting that epigenetic modulation plays a critical role in the regulation of SEB-induced inflammation. In addition, I3C and DIM caused a decrease in HDAC-I but not HDAC-II in SEB-activated T cells, thereby suggesting that I3C and DIM may inhibit SEB-mediated T cell activation by acting as HDAC-I inhibitors. These studies not only suggest for the first time that plant-derived indoles are potent suppressors of SEB-induced T cell activation and cytokine storm but also that they may mediate these effects by acting as HDAC inhibitors. - Highlights: • I3C and DIM reduce SEB-induced T cell activation and inflammatory cytokines. • Inhibiting class I HDACs reduces T cell activation and inflammatory cytokines. • Inhibiting class II HDACs increases T cell activation and inflammatory cytokines. • I3C and DIM selectively reduce mRNA expression of class I HDACs. • Novel use and mechanism to counteract SEB with I3C and DIM.« less
Gramatzki, Dorothee; Herrmann, Caroline; Happold, Caroline; Becker, Katrin Anne; Gulbins, Erich; Weller, Michael; Tabatabai, Ghazaleh
2013-01-01
Background/Aims Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS) catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. Methods Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II–IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA) was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ)-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. Results Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. Conclusion Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS inhibition does not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PMID:23667632
Long non-coding RNA GAS5 aggravates hypoxia injury in PC-12 cells via down-regulating miR-124.
Hu, Xiaoli; Liu, Juan; Zhao, Gang; Zheng, Jiaping; Qin, Xia
2018-05-08
One important feature of cerebral ischemia is hypoxia injury in nerve cells. Growth arrest-specific transcript 5 (GAS5) is widely reported as a tumor suppressor gene; however, the investigations about its role in cerebrovascular disease are relatively rare. This study was aimed to explore the impact of GAS5 on hypoxia response in nervous cells. PC-12 cells were incubated under anoxic condition to induce hypoxia injury. Regulatory effects of GAS5 on miR-124 and miR-124 on ICAM-1 expression were assessed by qRT-PCR and/or Western blot. Targeting effect of miR-124 on ICAM-1 3'-untranslated regions (UTR) was evaluated through dual luciferase activity assay. The potential regulatory mechanism on hypoxia injury in PC-12 cells was assessed by detecting key elements of NF-κB and Notch signaling pathways using Western blot. GAS5 ectopic expression accentuated hypoxia injury in PC-12 cells. miR-124 expression was negatively regulated by GAS5 expression. Cells with overexpressions of GAS5 and miR-124 alleviated hypoxia injury as in compassion with cells only with GAS5 overexpression. ICAM-1 expression was negatively regulated by miR-124 expression. ICAM-1 was a functional target of miR-124. ICAM-1 overexpression aggravated hypoxia injury, but inversely, ICAM-1 silence diminished hypoxia damage. Besides, ICAM-1 expression was negatively related with activation of NF-κB and Notch pathways. GAS5-miR-124-ICAM-1 axis could regulate hypoxia injury in PC-12 cells. GAS5 might aggravate hypoxia injury via down-regulating miR-124, then up-regulating ICAM-1, and further enhancing activations of NF-κB and Notch pathways. © 2018 Wiley Periodicals, Inc.
While in vitro assays have been used to determine presence of estrogenic activity in many types of water, few studies have evaluated the potential estrogenic activity in source and treated drinking water samples. In a collaborative research study the U.S. Environmental Protection...
NASA Astrophysics Data System (ADS)
Pan, Wen-liang; Chen, Tong-sheng; Qu, Junle
2009-02-01
Artesunate (ART), a semi-synthetic derivative of the sesquiterpene artemisinin extracted from the Chinese herb Artemisia annua, exerts a broad spectrum of clinical activity against human cancers. Artemisinin-derivative combination chemotherapy is recommended by WHO since it acts rapidly and is well tolerated and particularly effective. In present investigation, we used CKK-8 assay to assess the inhibitory effects of ART on human lung adenocarcinoma (ASTC-a-1) cells. Apoptotic activity of ART in ASTC-a-1 cells was detected by means of nuclear staining with Hoechst33258. In order to monitor the activity of caspase-3 during ART-induced ASTC-a-1 cells apoptosis, the dynamical emission spectra of SCAT3, a FRET plasmid based on GFPs, were performed inside living cell expressed stably with SCAT3 after ART treatment. The results showed that (1) ART could inhibit ASTC-a-1 cells proliferation in a dose-dependent manner; (2) chromatin condensation was observed after ART treatment for 48 h; (3) the SCAT3 inside living cells were cleaved after ART treatment for 48 h, implying that caspase-3 was involved in the ART-induced apoptosis.
Cabazitaxel overcomes cisplatin resistance in germ cell tumour cells.
Gerwing, Mirjam; Jacobsen, Christine; Dyshlovoy, Sergey; Hauschild, Jessica; Rohlfing, Tina; Oing, Christoph; Venz, Simone; Oldenburg, Jan; Oechsle, Karin; Bokemeyer, Carsten; von Amsberg, Gunhild; Honecker, Friedemann
2016-09-01
Cisplatin-based chemotherapy is highly effective in metastasized germ cell tumours (GCT). However, 10-30 % of patients develop resistance to cisplatin, requiring salvage therapy. We investigated the in vitro activity of paclitaxel and the novel taxane cabazitaxel in cisplatin-sensitive and -resistant GCT cell lines. In vitro activity of paclitaxel and cabazitaxel was determined by proliferation assays, and mode of action of cabazitaxel was assessed by western blotting and two screening approaches, i.e. whole proteome analysis and a human apoptosis array. Activity of paclitaxel and cabazitaxel was not affected by cisplatin resistance, suggesting that there is no cross-resistance between these agents in vitro. Cabazitaxel treatment showed a strong inhibitory effect on colony formation capacity. Cabazitaxel induced classical apoptosis in all cell lines, reflected by cleavage of PARP and caspase 3, without inducing specific changes in the cell cycle distribution. Using the proteomic and human apoptosis array screening approaches, differential regulation of several proteins, including members of the bcl-2 family, was found, giving first insights into the mode of action of cabazitaxel in GCT. Cabazitaxel shows promising in vitro activity in GCT cells, independent of levels of cisplatin resistance.
Making Electricity with Fruit.
ERIC Educational Resources Information Center
Dispezio, Michael A.
1992-01-01
Describes how electrochemical cells exploit reduction-oxidation (redox) reactions to produce electric current. Presents an activity using a paper clip, copper wire, an apple, and a voltmeter where students can measure the voltage from an apple cell. Describes variables that can be changed to assess the impact on the voltage produced. (PR)
Corneau, Aurélien; Cosma, Antonio; Even, Sophie; Katlama, Christine; Le Grand, Roger; Frachet, Véronique; Blanc, Catherine; Autran, Brigitte
2017-01-01
Mass cytometry allows large multiplex analysis of cell cycle stages together with differentiation, activation, and exhaustion markers, allowing further assessment of the quiescence status of resting CD4 T cells. Peripheral blood CD4 T lymphocytes from 8 individuals, 4 healthy donors, and 4 HIV-infected on antiretroviral treatment (T) were stained with the same 26 monoclonal antibodies and dyes targeting surface and intracellular markers of differentiation, activation, exhaustion, and cell cycle stages. Samples were run on a CYTOF-2. Patterns of naïve [TN] CD4 T cells strongly differed from all other memory subsets central-memory (CM), transitional-memory (TM), effector-memory (EM), and terminally differentiated RA-expressing (TEMRA) subsets, while stem-cell memory (SCM) and T follicular-helper cells (TfH) were close to CM and TM cells with the highest percentages in cell cycle. EM and TEMRA were the most altered by HIV infection, with an increased frequency of activated and cycling cells. Activation markers and coinhibitory receptor expression differed among cell cycle stages, with HLA-DR fitting better than CD25 or CD38 with cycle, and opposite PD-1 gradients along differentiation and cell cycle. "Resting" DR-CD25- CD4+ T cells contained similar amounts of cells in G1 than the activated DR ± CD25± ones but three fold lower cells in S-G2-M. This broad multiplex mass cytometry analysis demonstrates some subsets of the so-called "resting" CD25-DR- CD4+ T cells contain noticeable amounts of cells into cycle or expressing coinhibitory receptors, opening new avenues for a redefinition of resting peripheral blood CD4 T cells harboring the HIV reservoirs. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.
McDonald, Claire L; Hennessy, Edel; Rubio-Araiz, Ana; Keogh, Brian; McCormack, William; McGuirk, Peter; Reilly, Mary; Lynch, Marina A
2016-11-01
The effects of Toll-like receptor (TLR) activation in peripheral cells are well characterized but, although several TLRs are expressed on cells of the brain, the consequences of their activation on neuronal function remain to be fully investigated, particularly in the context of assessing their potential as therapeutic targets in neurodegenerative diseases. Several endogenous TLR ligands have been identified, many of which are soluble factors released from cells exposed to stressors. In addition, amyloid-β (Aβ) the main constituent of the amyloid plaques in Alzheimer's disease (AD), activates TLR2, although it has also been shown to bind to several other receptors. The objective of this study was to determine whether activation of TLR2 played a role in the developing inflammatory changes and Aβ accumulation in a mouse model of AD. Wild type and transgenic mice that overexpress amyloid precursor protein and presenilin 1 (APP/PS1 mice) were treated with anti-TLR2 antibody for 7months from the age of 7-14months. We demonstrate that microglial and astroglial activation, as assessed by MHCII, CD68 and GFAP immunoreactivity was decreased in anti-TLR2 antibody-treated compared with control (IgG)-treated mice. This was associated with reduced Aβ plaque burden and improved performance in spatial learning. The data suggest that continued TLR2 activation contributes to the developing neuroinflammation and pathology and may be provide a strategy for limiting the progression of AD. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, C.-T.; Department of Biological Sciences, National Sun Yat-sen University, 804, Taiwan; He Shiping
2007-02-01
Selective serotonin reuptake inhibitors (SSRIs), a group of antidepressants, are generally used for treatment of various mood and anxiety disorders. There has been much research showing the anti-tumor and cytotoxic activities of some antidepressants; but the detailed mechanisms were unclear. In cultured human osteosarcoma cells (MG63), paroxetine reduced cell viability in a concentration- and time-dependent manner. Paroxetine caused apoptosis as assessed by propidium iodide-stained cells and increased caspase-3 activation. Although immunoblotting data revealed that paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH{sub 2}-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38more » MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine also induced [Ca{sup 2+}]{sub i} increases which involved the mobilization of intracellular Ca{sup 2+} stored in the endoplasmic reticulum and Ca{sup 2+} influx from extracellular medium. However, pretreatment with BAPTA/AM, a Ca{sup 2+} chelator, to prevent paroxetine-induced [Ca{sup 2+}]{sub i} increases did not protect cells from death. The results suggest that in MG63 cells, paroxetine caused Ca{sup 2+}-independent apoptosis via inducing p38 MAPK-associated caspase-3 activation.« less
Cold plasma selectivity in the interaction with various types of the cells
NASA Astrophysics Data System (ADS)
Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael
2011-10-01
Present research in the area of cold atmospheric plasma (CAP) demonstrates great potential in various areas including medicine and biology. Depending on their configuration they can be used for wound healing, sterilization, targeted cell/tissue removal, and cancer treatments. Here we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. The migration studies are focused on the CAP interaction with fibroblasts and corneal epithelial cells. Data show that various types of cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration which is around ~30-40%. Studies to assess the impact of CAP treatment on the activation state of integrins and focal adhesion size by immunofluorescence showed more active b1 integrin on the cell surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. Also responses of the various types of the cells to the cold plasma treatment on the example of the epithelial keratinocytes, papilloma and carcinoma cells are studied. Cell cycle, migration and cell vitality analysis were performed. The goal of this study is to understand the mechanism by which the CAP jet alters cell migration, influences adhesion and cell survival.
Neuropeptide Y inhibits cholangiocarcinoma cell growth and invasion
DeMorrow, Sharon; Onori, Paolo; Venter, Julie; Invernizzi, Pietro; Frampton, Gabriel; White, Mellanie; Franchitto, Antonio; Kopriva, Shelley; Bernuzzi, Francesca; Francis, Heather; Coufal, Monique; Glaser, Shannon; Fava, Giammarco; Meng, Fanyin; Alvaro, Domenico; Carpino, Guido; Gaudio, Eugenio
2011-01-01
No information exists on the role of neuropeptide Y (NPY) in cholangiocarcinoma growth. Therefore, we evaluated the expression and secretion of NPY and its subsequent effects on cholangiocarcinoma growth and invasion. Cholangiocarcinoma cell lines and nonmalignant cholangiocytes were used to assess NPY mRNA expression and protein secretion. NPY expression was assessed by immunohistochemistry in human liver biopsies. Cell proliferation and migration were evaluated in vitro by MTS assays and matrigel invasion chambers, respectively, after treatment with NPY or a neutralizing NPY antibody. The effect of NPY or NPY depletion on tumor growth was assessed in vivo after treatment with NPY or the neutralizing NPY antibody in a xenograft model of cholangiocarcinoma. NPY secretion was upregulated in cholangiocarcinoma compared with normal cholangiocytes. Administration of exogenous NPY decreased proliferation and cell invasion in all cholangiocarcinoma cell lines studied and reduced tumor cell growth in vivo. In vitro, the effects of NPY on proliferation were blocked by specific inhibitors for NPY receptor Y2, but not Y1 or Y5, and were associated with an increase in intracellular d-myo-inositol 1,4,5-trisphosphate and PKCα activation. Blocking of NPY activity using a neutralizing antibody promoted cholangiocarcinoma growth in vitro and in vivo and increased the invasiveness of cholangiocarcinoma in vitro. Increased NPY immunoreactivity in human tumor tissue occurred predominantly in the center of the tumor, with less expression toward the invasion front of the tumor. We demonstrated that NPY expression is upregulated in cholangiocarcinoma, which exerts local control on tumor cell proliferation and invasion. Modulation of NPY secretion may be important for the management of cholangiocarcinoma. PMID:21270292
Rudnicka, Caroline; Mochizuki, Satsuki; Okada, Yasunori; McLaughlin, Claire; Leedman, Peter J; Stuart, Lisa; Epis, Michael; Hoyne, Gerard; Boulos, Sherif; Johnson, Liam; Schlaich, Markus; Matthews, Vance
2016-10-01
Prostate cancer is one of the most prevalent cancers in men. It is critical to identify and characterize oncogenes that drive the pathogenesis of human prostate cancer. The current study builds upon previous research showing that a disintegrin and metallproteinase (ADAM)28 is involved in the pathogenesis of numerous cancers. Our novel study used overexpression, pharmacological, and molecular approaches to investigate the biological function of ADAM28 in human prostate cancer cells, with a focus on cell proliferation and migration. The results of this study provide important insights into the role of metalloproteinases in human prostate cancer.The expression of ADAM28 protein levels was assessed within human prostate tumors and normal adjacent tissue by immunohistochemistry. Immunocytochemistry and western blotting were used to assess ADAM28 protein expression in human prostate cancer cell lines. Functional assays were conducted to assess proliferation and migration in human prostate cancer cells in which ADAM28 protein expression or activity had been altered by overexpression, pharmacological inhibition, or by siRNA gene knockdown.The membrane bound ADAM28 was increased in human tumor biopsies and prostate cancer cell lines. Pharmacological inhibition of ADAM28 activity and/or knockdown of ADAM28 significantly reduced proliferation and migration of human prostate cancer cells, while overexpression of ADAM28 significantly increased proliferation and migration.ADAM28 is overexpressed in primary human prostate tumor biopsies, and it promotes human prostate cancer cell proliferation and migration. This study supports the notion that inhibition of ADAM28 may be a potential novel therapeutic strategy for human prostate cancer.
Wnt/β-catenin pathway regulates Bmp2-mediated differentiation of dental follicle cells
Silvério, Karina G.; Davidson, Kathryn C.; James, Richard G.; Adams, Allison M.; Foster, Brian L.; Nociti, Francisco H.; Somermam, Martha J.; Moon, Randall T.
2013-01-01
Background and Objectives Bmp2-induced osteogenic differentiation has been shown to occur through the canonical Wnt/β-catenin pathway, whereas factors promoting canonical Wnt signaling in cementoblasts inhibited cell differentiation and promoted cell proliferation in vitro. The aim of this study was to investigate whether putative precursor cells of cementoblasts, dental follicle cells (murine SVF4 cells), when stimulated with Bmp2, would exhibit changes in genes/proteins associated with the Wnt/β-catenin pathway. Materials and Methods SVF4 cells were stimulated with Bmp2, and the following assays were carried out: 1) Wnt/β-catenin pathway activation assessed by western blot, β-catenin/TCF reporter assay, and gene expression of lymphoid enhancer-binding factor-1 (Lef1), transcription factor 7 (Tcf7), Wnt inhibitor factor 1 (Wif1) and Axin2, and 2) cementoblast/osteoblast differentiation assessed by mineralization in vitro, and mRNA levels of runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), osteocalcin (Ocn) and bone sialoprotein (Bsp) by qPCR after Wnt3a treatment and knockdown of β-catenin. Results Wnt3a induced β-catenin nuclear translocation and upregulated the transcriptional activity of a canonical Wnt-responsive reporter, suggesting the Wnt/β-catenin pathway functions in SVF4 cells. Activation of Wnt signaling with Wnt3a suppressed Bmp2-mediated induction of cementoblast/osteoblast maturation of SVF4 cells. However, β-catenin knockdown showed that Bmp2-induced expression of cementoblast/osteoblast differentiation markers requires endogenous β-catenin. Wnt3a down-regulated transcripts for Runx2, Alp and Ocn in SVF4 cells compared to untreated cells. In contrast, Bmp2 induction of Bsp transcripts occurred independent of Wnt/β-catenin signaling. Conclusions These data suggest that stabilization of β-catenin by Wnt-3a treatment inhibits Bmp2-mediated induction of cementoblast/osteoblast differentiation in SVF4 cells, although Bmp2 requires endogenous Wnt/β-catenin signaling to promote cell maturation. PMID:22150562
Johansson, Katarina; Cebula, Marcus; Rengby, Olle; Dreij, Kristian; Carlström, Karl E; Sigmundsson, Kristmundur; Piehl, Fredrik; Arnér, Elias S J
2017-02-20
Many transcription factors with importance in health and disease are redox regulated. However, how their activities may be intertwined in responses to redox-perturbing stimuli is poorly understood. To enable in-depth characterization of this aspect, we here developed a methodology for simultaneous determination of nuclear factor E2-related factor 2 (Nrf2), hypoxia-inducible factor (HIF), and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) activation at single-cell resolution, using a new tool named pTRAF (plasmid for transcription factor reporter activation based upon fluorescence). The pTRAF allowed determination of Nrf2, HIF, and NF-κB activities in a high-resolution and high-throughput manner, and we here assessed how redox therapeutics affected the activities of these transcription factors in human embryonic kidney cells (HEK293). Cross talk was detected between the three signaling pathways upon some types of redox therapeutics, also by using inducers typically considered specific for Nrf2, such as sulforaphane or auranofin, hypoxia for HIF activation, or tumor necrosis factor alpha (TNFα) for NF-κB stimulation. Doxorubicin, at low nontoxic doses, potentiated TNFα-induced activation of NF-κB and HIF, without effects in stand-alone treatment. Stochastic activation patterns in cell cultures were also considerable upon challenges with several redox stimuli. A novel strategy was here used to study simultaneous activation of Nrf2, HIF, and NF-κB in single cells. The method can also be adapted for studies of other transcription factors. The pTRAF provides new opportunities for in-depth studies of transcription factor activities. In this study, we found that upon challenges of cells with several redox-perturbing conditions, Nrf2, HIF, and NF-κB are uniquely responsive to separate stimuli, but can also display marked cross talk to each other within single cells. Antioxid. Redox Signal. 26, 229-246.
Bandyopadhyay, Somnath; Connolly, Sean E; Jabado, Omar; Ye, June; Kelly, Sheila; Maldonado, Michael A; Westhovens, Rene; Nash, Peter; Merrill, Joan T; Townsend, Robert M
2017-01-01
To characterise patients with active SLE based on pretreatment gene expression-defined peripheral immune cell patterns and identify clusters enriched for potential responders to abatacept treatment. This post hoc analysis used baseline peripheral whole blood transcriptomic data from patients in a phase IIb trial of intravenous abatacept (~10 mg/kg/month). Cell-specific genes were used with a published deconvolution algorithm to identify immune cell proportions in patient samples, and unsupervised consensus clustering was generated. Efficacy data were re-analysed. Patient data (n=144: abatacept: n=98; placebo: n=46) were grouped into four main clusters (C) by predominant characteristic cells: C1-neutrophils; C2-cytotoxic T cells, B-cell receptor-ligated B cells, monocytes, IgG memory B cells, activated T helper cells; C3-plasma cells, activated dendritic cells, activated natural killer cells, neutrophils; C4-activated dendritic cells, cytotoxic T cells. C3 had the highest baseline total British Isles Lupus Assessment Group (BILAG) scores, highest antidouble-stranded DNA autoantibody levels and shortest time to flare (TTF), plus trends in favour of response to abatacept over placebo: adjusted mean difference in BILAG score over 1 year, -4.78 (95% CI -12.49 to 2.92); median TTF, 56 vs 6 days; greater normalisation of complement component 3 and 4 levels. Differential improvements with abatacept were not seen in other clusters, except for median TTF in C1 (201 vs 109 days). Immune cell clustering segmented disease severity and responsiveness to abatacept. Definition of immune response cell types may inform design and interpretation of SLE trials and treatment decisions. NCT00119678; results.
Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.
Pu, Xinzhu; Wang, Zemin; Klaunig, James E
2015-08-06
Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.
Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K
2016-09-01
In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.
Torres-Atencio, Ivonne; Ainsua-Enrich, Erola; de Mora, Fernando; Picado, César; Martín, Margarita
2014-01-01
Background Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1–4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition. PMID:25329458
Indovina, Paola; Collini, Maddalena; Chirico, Giuseppe; Santini, Maria Teresa
2007-02-20
Hypoxia through HRE (hypoxia-responsive element) activity in MG-63 human osteosarcoma cells grown in monolayer and as very small, three-dimensional tumor spheroids was investigated using molecular imaging techniques. MG-63 cells were stably transfected with a vector constructed with multiple copies of the HRE sequence of the human vascular endothelial growth factor (VEGF) gene and with the enhanced green fluorescent protein (EGFP) coding sequence. During hypoxia when HIF-1alpha (hypoxia-inducible factor-1alpha) is stabilized, the binding of HIF-1 to the HRE sequences of the vector allows the transcription of EGFP and the appearance of fluorescence. Transfected monolayer cells were characterized by flow cytometric analysis in response to various hypoxic conditions and HIF-1alpha expression in these cells was assessed by Western blotting. Two-photon excitation (TPE) microscopy was then used to examine both MG-63-transfected monolayer cells and spheroids at 2 and 5 days of growth in normoxic conditions. Monolayer cells reveal almost no fluorescence, whereas even very small spheroids (<100 microm) after 2 days of growth contain regions of high fluorescence. For the first time in the literature, at least to our knowledge, it is demonstrated, using highly sensitive and non-perturbing molecular imaging techniques, that three-dimensional cell organization leads to almost immediate HRE activation. This activation of the HRE sequences, which control a wide variety of genes, suggests that monolayer cells and spheroids of the MG-63 cell line have different genes activated and thus diverse functional activities.
McCullen, M V; Li, H; Cam, M; Sen, S K; McVicar, D W; Anderson, S K
2016-09-01
The variegated expression of murine Ly49 loci has been associated with the probabilistic behavior of an upstream promoter active in immature cells, the Pro1 element. However, recent data suggest that Pro1 may be active in mature natural killer (NK) cells and function as an enhancer element. To assess directly if Pro1 transcripts are present in mature Ly49-expressing NK cells, RNA-sequencing of the total transcript pool was performed on freshly isolated splenic NK cells sorted for expression of either Ly49G or Ly49I. No Pro1 transcripts were detected from the Ly49a, Ly49c or Ly49i genes in mature Ly49(+) NK cells that contained high levels of Pro2 transcripts. Low levels of Ly49g Pro1 transcripts were found in both Ly49G(+) and Ly49G(-) populations, consistent with the presence of a small population of mature NK cells undergoing Ly49g gene activation, as previously demonstrated by culture of splenic NK cells in interleukin-2. Ly49 gene reporter constructs containing Pro1 failed to show any enhancer activity of Pro1 on Pro2 in a mature Ly49-expressing cell line. Taken together, the results are consistent with Pro1 transcription having a role in gene activation in developing NK, and argue against a role for Pro1 in Ly49 gene transcription by mature NK cells.
Slack, Barbara E.; Siniaia, Marina S.
2008-01-01
The mitogen-activated protein kinases (MAPKs) are activated by extracellular signals, and translocate to the nucleus where they modulate transcription. Integrin-mediated cell adhesion to extracellular matrix (ECM) proteins is required for efficient transmission of MAPK-based signals initiated by growth factors. However, the modulation of G protein-coupled receptor (GPCR) signaling by adhesion is less well understood. In the present study we assessed the impact of cell adhesion on MAPK activation by muscarinic M3 receptors. The muscarinic agonist carbachol more efficiently promoted stress fiber formation and tyrosine phosphorylation of focal adhesion-associated proteins in M3 receptor-expressing cells adherent to fibronectin or collagen type I, as compared to polylysine. Overall MAPK activation was robust in cells adherent to all three substrata. However, total levels of MAPK and mitogen-activated protein kinase kinase (MEK) in the nucleus were significantly greater in cells adherent to ECM proteins for 2.5 hours, and levels of activated MAPK and MEK in the nuclei of these cells were higher following carbachol stimulation, relative to levels in cells adherent to polylysine. MEK inhibitors did not prevent adhesion-dependent translocation of MAPK and MEK to the nucleus, and increased nuclear phospho-MEK levels in carbachol-stimulated cells. The results suggest that adhesion of cells to ECM triggers the redistribution of MAPK and MEK to the nucleus, possibly as a result of the cytoskeletal rearrangements that accompany cell spreading. This may represent a mechanism for priming the nucleus with MEK and MAPK, leading to more rapid and pronounced increases in intranuclear phospho-MAPK upon GPCR stimulation. PMID:15779001
Apigenin reduce lipoteichoic acid-induced inflammatory response in rat cardiomyoblast cells.
Gutiérrez-Venegas, Gloria; González-Rosas, Zeltzin
2017-02-01
Infective endocarditis is caused by Streptococcus sanguinis present in dental plaque, which can induce inflammatory responses in the endocardium. The present study depicts research on the properties of apigenin in embryonic mouse heart cells (H9c2) treated with lipoteichoic acid (LTA) obtained from S. sanguinis. Interleukin-1β and cyclooxygenase (COX)-2 expression were detected by reverse transcriptase polymerase chain reaction. In addition, western blot assays and immuno-fluorescence staining were used to assess translocation of nuclear factor kappa beta (NF-κB), degradation of IκB, as well as activity of the mitogen activated protein kinases: extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK). Effect of apigenin on cell viability was equally assessed in other experimental series. Our results showed that apigenin blocked activation of ERK, JNK, and p38 in cardiomyocytes treated with LTA in a dose-dependent fashion. Moreover, apigenin showed no cytotoxic effects; it blocked NF-κB translocation and IκB degradation. Our findings suggested that apigenin possessed potential value in the treatment of infectious endocarditis.
Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna M.; Nowakowska, Maria; Szczubiałka, Krzysztof
2015-01-01
Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2. PMID:25629028
Leem, Kang-Hyun; Kim, Myung-Gyou; Hahm, Young-Tae; Kim, Hye Kyung
2016-12-09
Opuntia ficus-indica var. saboten (OFS) has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na⁺-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C ) and p38 MAPK (SB203580) abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4) translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight) in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway.
Leem, Kang-Hyun; Kim, Myung-Gyou; Hahm, Young-Tae; Kim, Hye Kyung
2016-01-01
Opuntia ficus-indica var. saboten (OFS) has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na+-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C) and p38 MAPK (SB203580) abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4) translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight) in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway. PMID:27941667
Cao, Bo; Chen, Hong; Gao, Ying; Niu, Cong; Zhang, Yuan; Li, Ling
2015-03-01
The need to overcome cancer multidrug resistance (MDR) has fueled considerable interest in the development of novel synthetic antitumor agents with cytotoxicity against cancer cell lines with MDR. In this study, we aimed to investigate CIP-36, a novel podophyllotoxin derivative, for its inhibitory effects on human cancer cells from multiple sources, particularly cells with MDR in vitro. The human leukemia cell line, K562, and the adriamycin-resistant subline, K562/A02, were exposed to CIP-36 or anticancer agents, and various morphological and biochemical properties were assessed by Hoechst 33342 staining under a fluorescence microscope. Subsequently, cytotoxicity, cell growth curves and the cell cycle were analyzed. Finally, the effects of CIP-36 on topoisomerase IIα (Topo IIα) activity were determined. Treatment with CIP-36 significantly inhibited the growth of the K562 and MDR K562/A02 cells. Our data demonstrated that CIP-36 induced apoptosis, inhibited cell cycle progression and inhibited Topo IIα activity. These findings suggest that CIP-36 has the potential to overcome the multidrug resistance of K562/A02 cells by mediating Topo IIα activity.
Nickel, Sabrina; Selo, Mohammed Ali; Fallack, Juliane; Clerkin, Caoimhe G; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten
2017-12-01
Breast cancer resistance protein (BCRP/ABCG2) has previously been identified with high expression levels in human lung. The subcellular localisation and functional activity of the transporter in lung epithelia, however, remains poorly investigated. The aim of this project was to study BCRP expression and activity in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and to compare these findings with data obtained from the NCI-H441 cell line. BCRP expression levels in AT2 and AT1-like cells and in different passages of NCI-H441 cells were determined using q-PCR and immunoblot. Transporter localisation was confirmed by confocal laser scanning microscopy. Efflux and transport studies using the BCRP substrate BODIPY FL prazosin and the inhibitor Ko143 were carried out to assess BCRP activity in the different cell models. BCRP expression decreased during transdifferentiation from AT2 to AT1-like phenotype. Culturing NCI-H441 cells at an air-liquid interface or submersed did not change BCRP abundance, however, BCRP levels increased with passage number. BCRP was localised to the apical membrane and cytosol in NCI-H441 cells. In primary cells, the protein was found predominantly in the nucleus. Functional studies were consistent with expression data. BCRP is differently expressed in AT2 and AT1-like cells with lower abundance and activity in the latter ones. Nuclear BCRP might play a transcriptional role in distal lung epithelium. In NCI-H441 cells, BCRP is expressed in apical cell membranes and its activity is consistent with the localisation pattern.
Alnasser, Yossef; Kambhampati, Siva P; Nance, Elizabeth; Rajbhandari, Labchan; Shrestha, Shiva; Venkatesan, Arun; Kannan, Rangaramanujam M; Kannan, Sujatha
2018-04-27
Polyamidoamine (PAMAM) dendrimers are multifunctional nanoparticles with tunable physicochemical features, making them promising candidates for targeted drug delivery in the central nervous system (CNS). Systemically administered dendrimers have been shown to localize in activated glial cells, which mediate neuroinflammation in the CNS. These dendrimers delivered drugs specifically to activated microglia, producing significant neurological improvements in multiple brain injury models, including in a neonatal rabbit model of cerebral palsy. To gain further insight into the mechanism of dendrimer cell uptake, we utilized an in vitro model of primary glial cells isolated from newborn rabbits to assess the differences in hydroxyl-terminated generation 4 PAMAM dendrimer (D4-OH) uptake by activated and non-activated glial cells. We used fluorescently-labelled D4-OH (D-Cy5) as a tool for investigating the mechanism of dendrimer uptake. D4-OH PAMAM dendrimer uptake was determined by fluorescence quantification using confocal microscopy and flow cytometry. Our results indicate that although microglial cells in the mixed cell population demonstrate early uptake of dendrimers in this in vitro system, activated microglia take up more dendrimer compared to resting microglia. Astrocytes showed delayed and limited uptake. We also illustrated the differences in mechanism of uptake between resting and activated microglia using different pathway inhibitors. Both resting and activated microglia primarily employed endocytotic pathways, which are enhanced in activated microglial cells. Additionally, we demonstrated that hydroxyl terminated dendrimers are taken up by primary microglia using other mechanisms including pinocytosis, caveolae, and aquaporin channels for dendrimer uptake.
Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation.
Pan, Yinbing; Sun, Xiaodi; Jiang, Lai; Hu, Liang; Kong, Hong; Han, Yuan; Qian, Cheng; Song, Chao; Qian, Yanning; Liu, Wentao
2016-11-17
Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine. The microglial cell line BV-2 cells and mouse brain-derived endothelial cell line bEnd3 cells were used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signaling was assayed by western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using tail-flick tests. We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin. Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1β (IL-1β), but increased IL-6 and tumor necrosis factor-α (TNF-α) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine-induced microglial activation in the spinal cord and then attenuated the development of chronic morphine tolerance in mice. Metformin significantly attenuated morphine antinociceptive tolerance by suppressing morphine-induced microglial activation through increasing AMPK phosphorylation.
Naisbitt, Dean J; Yang, Emma L; Alhaidari, Mohammad; Berry, Neil G; Lawrenson, Alexandre S; Farrell, John; Martin, Philip; Strebel, Klaus; Owen, Andrew; Pye, Matthew; French, Neil S; Clarke, Stephen E; O'Neill, Paul M; Park, B Kevin
2015-11-28
Exposure to abacavir is associated with T-cell-mediated hypersensitivity reactions in individuals carrying human leukocyte antigen (HLA)-B57 : 01. To activate T cells, abacavir interacts directly with endogenous HLA-B57 : 01 and HLA-B57 : 01 expressed on the surface of antigen presenting cells. We have investigated whether chemical modification of abacavir can produce a molecule with antiviral activity that does not bind to HLA-B57 : 01 and activate T cells. An interdisciplinary laboratory study using samples from human donors expressing HLA-B57 : 01. Researchers were blinded to the analogue structures and modelling data. Sixteen 6-amino substituted abacavir analogues were synthesized. Computational docking studies were completed to predict capacity for analogue binding within HLA-B57 : 01. Abacavir-responsive CD8 clones were generated to study the association between HLA-B57 : 01 analogue binding and T-cell activation. Antiviral activity and the direct inhibitory effect of analogues on proliferation were assessed. Major histocompatibility complex class I-restricted CD8 clones proliferated and secreted IFNγ following abacavir binding to surface and endogenous HLA-B57 : 01. Several analogues retained antiviral activity and showed no overt inhibitory effect on proliferation, but displayed highly divergent antigen-driven T-cell responses. For example, abacavir and N-propyl abacavir were equally potent at activating clones, whereas the closely related analogues N-isopropyl and N-methyl isopropyl abacavir were devoid of T-cell activity. Docking abacavir analogues to HLA-B57 : 01 revealed a quantitative relationship between drug-protein binding and the T-cell response. These studies demonstrate that the unwanted T-cell activity of abacavir can be eliminated whilst maintaining the favourable antiviral profile. The in-silico model provides a tool to aid the design of safer antiviral agents that may not require a personalized medicines approach to therapy.
Lemper, Marie; De Groef, Sofie; Stangé, Geert; Baeyens, Luc; Heimberg, Harry
2016-09-01
When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.
Spurlock, Charles F.; Tossberg, John T.; Fuchs, Howard A.; Olsen, Nancy J.; Aune, Thomas M.
2011-01-01
Objective To assess defects in expression of critical cell cycle checkpoint genes and proteins in subjects with rheumatoid arthritis relative to presence or absence of methotrexate medication and assess the role of Jun N-terminal kinase in methotrexate induction of these genes. Methods Flow cytometry analysis was used to quantify changes in intracellular proteins, measure reactive oxygen species (ROS), and determine apoptosis in different lymphoid populations. Quantitative reverse transcriptase polymerase chain reaction (Q-RT-PCR) was employed to determine changes in cell cycle checkpoint target genes. Results RA subjects express lower baseline levels of MAPK9, TP53, CDKN1A, CDKN1B, CHEK2, and RANGAP1 messenger RNA (mRNA) and total JNK protein. MAPK9, TP53, CDKN1A, and CDKN1B mRNA expression, but not CHEK2, and RANGAP1, is higher in patients on low-dose MTX therapy. Further, JNK levels inversely correlate with CRP levels in RA patients. In tissue culture, MTX induces expression of both p53 and p21 by JNK2 and JNK1-dependent mechanisms, respectively, while CHEK2 and RANGAP1 are not induced by MTX. MTX also induces ROS production, JNK activation, and sensitivity to apoptosis in activated T cells. Supplementation with tetrahydrobiopterin blocks these MTX-mediated effects. Conclusions Our findings support the notion that MTX restores some, but not all of the proteins contributing to cell cycle checkpoint deficiencies in RA T cells by a JNK dependent pathway. PMID:22183962
Ciaglia, Elena; Malfitano, Anna Maria; Laezza, Chiara; Fontana, Angelo; Nuzzo, Genoveffa; Cutignano, Adele; Abate, Mario; Pelin, Marco; Sosa, Silvio; Bifulco, Maurizio; Gazzerro, Patrizia
2017-07-28
We assessed the immunomodulatory and anti-inflammatory effects of 9,11-dihydrogracilin A (DHG), a molecule derived from the Antarctic marine sponge Dendrilla membranosa . We used in vitro and in vivo approaches to establish DHG properties. Human peripheral blood mononuclear cells (PBMC) and human keratinocytes cell line (HaCaT cells) were used as in vitro system, whereas a model of murine cutaneous irritation was adopted for in vivo studies. We observed that DHG reduces dose dependently the proliferative response and viability of mitogen stimulated PBMC. In addition, DHG induces apoptosis as revealed by AnnexinV staining and downregulates the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription (STAT) and extracellular signal-regulated kinase (ERK) at late time points. These effects were accompanied by down-regulation of interleukin 6 (IL-6) production, slight decrease of IL-10 and no inhibition of tumor necrosis factor-alpha (TNF-α) secretion. To assess potential properties of DHG in epidermal inflammation we used HaCaT cells; this compound reduces cell growth, viability and migration. Finally, we adopted for the in vivo study the croton oil-induced ear dermatitis murine model of inflammation. Of note, topical use of DHG significantly decreased mouse ear edema. These results suggest that DHG exerts anti-inflammatory effects and its anti-edema activity in vivo strongly supports its potential therapeutic application in inflammatory cutaneous diseases.
Bruckheimer, Elizabeth M; Fazenbaker, Christine A; Gallagher, Sandra; Mulgrew, Kathy; Fuhrmann, Stacy; Coffman, Karen T; Walsh, William; Ready, Shannon; Cook, Kim; Damschroder, Melissa; Kinch, Michael; Kiener, Peter A; Woods, Rob; Gao, Changshou; Dall'Acqua, William; Wu, Herren; Coats, Steven
2009-01-01
EphA2 is a receptor tyrosine kinase that has been shown to be overexpressed in a variety of human tumor types. Previous studies demonstrated that agonist monoclonal antibodies targeting EphA2 induced the internalization and degradation of the receptor, thereby abolishing its oncogenic effects. In this study, the in vitro and in vivo antibody-dependent cell-mediated cytotoxicity (ADCC) activity of EphA2 effector-enhanced agonist monoclonal antibodies was evaluated. With tumor cell lines and healthy human peripheral blood monocytes, the EphA2 antibodies demonstrated ∼80% tumor cell killing. In a dose-dependent manner, natural killer (NK) cells were required for the in vitro ADCC activity and became activated as demonstrated by the induction of cell surface expression of CD107a. To assess the role of NK cells on antitumor efficacy in vivo, the EphA2 antibodies were evaluated in xenograft models in severe compromised immunodeficient (SCID) mice (which have functional NK cells and monocytes) and SCID nonobese diabetic (NOD) mice (which largely lack functional NK cells and monocytes). Dosing of EphA2 antibody in the SCID murine tumor model resulted in a 6.2-fold reduction in tumor volume, whereas the SCID/nonobese diabetic model showed a 1.6-fold reduction over the isotype controls. Together, these results demonstrate that the anti-EphA2 monoclonal antibodies may function through at least two mechanisms of action: EphA2 receptor activation and ADCC-mediated activity. These novel EphA2 monoclonal antibodies provide additional means by which host effector mechanisms can be activated for selective destruction of EphA2-expressing tumor cells. PMID:19484140
Saison, J; Ferry, T; Demaret, J; Maucort Boulch, D; Venet, F; Perpoint, T; Ader, F; Icard, V; Chidiac, C; Monneret, G
2014-01-01
The mechanisms sustaining the absence of complete immune recovery in HIV-infected patients upon long-term effective highly active anti-retroviral therapy (HAART) remain elusive. Immune activation, regulatory T cells (Tregs) or very low-level viraemia (VLLV) have been alternatively suspected, but rarely investigated simultaneously. We performed a cross-sectional study in HIV-infected aviraemic subjects (mean duration of HAART: 12 years) to concomitantly assess parameters associated independently with inadequate immunological response. Patients were classified as complete immunological responders (cIR, n = 48) and inadequate immunological responders (iIR, n = 39), depending on the CD4+ T cell count (> or < 500/mm3). Clinical and virological data (including very low-level viraemia) were collected. In parallel, immunophenotyping of CD4+ lymphocytes, including Treg subsets, and CD8+ T cells was performed. Percentages of activated CD4+ T cells, Tregs, effector Tregs and terminal effector Tregs were found to be significantly elevated in iIR. Neither the percentage of activated CD8+ T cells nor VLLV were found to be associated with iIR. In the multivariate analysis, nadir of CD4+ T cell count and percentage of Tregs were the only two parameters associated independently with iIR [odds ratio (OR) = 2·339, P = 0·001, and OR = 0·803, P = 0·041]. We present here the largest study investigating simultaneously the immune response to long-term HAART, activation of CD4+ and CD8+ T cells, Treg percentages and very low-level viraemia. Causative interactions between Tregs and CD4+ T cells should now be explored prospectively in a large patients cohort. PMID:24460818
Extracellular vesicles are independent metabolic units with asparaginase activity
Leonardi, Tommaso; Costa, Ana S. H.; Cossetti, Chiara; Peruzzotti-Jametti, Luca; Bernstock, Joshua D.; Saini, Harpreet K.; Gelati, Maurizio; Vescovi, Angelo Luigi; Bastos, Carlos; Faria, Nuno; Occhipinti, Luigi G.; Enright, Anton J.; Frezza, Christian; Pluchino, Stefano
2017-01-01
Extracellular vesicles (EVs) are membrane particles involved in the exchange of a broad range of bioactive molecules between cells and the microenvironment. While it has been shown that cells can traffic metabolic enzymes via EVs much remains to be elucidated with regard to their intrinsic metabolic activity. Accordingly, herein we assessed the ability of neural stem/progenitor cell (NSC)-derived EVs to consume and produce metabolites. Both our metabolomics and functional analyses revealed that EVs harbour L-asparaginase activity catalysed by the enzyme Asparaginase-like protein 1 (Asrgl1). Critically, we show that Asrgl1 activity is selective for asparagine and is devoid of glutaminase activity. We found that mouse and human NSC-derived EVs traffic ASRGL1. Our results demonstrate for the first time that NSC EVs function as independent, extracellular metabolic units able to modify the concentrations of critical nutrients, with the potential to affect the physiology of their microenvironment. PMID:28671681
Bouzenna, Hafsia; Hfaiedh, Najla; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène
2017-03-01
Citral, 3,7-dimethyl-2,6-octadienal, is a key component of several essential oils extracted from lemon-scented herbal plants. The present study was designed to investigate the antioxidant activities of citral and assess its possible protective effects against aspirin-induced toxicity in vitro. We used IEC-6 cells (rat small intestine epithelial cells). The antioxidant activities were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH), β-carotene/linoleic acid and Ferric reducing antioxidant power (FRAP). Cytotoxicity was evaluated by cell viability, anti-oxidant enzyme activities, malondialdehyde (MDA) production and by the expression of MAPKs (Mitogen-Activated Protein Kinases) pathways. According to results, citral showed an important antioxidant activity. It inhibited the oxidation of linoleic acid, a moderate DPPH was found and it showed a Ferric reducing antioxidant potential with an EC 50 value of 125±28.86μg/mL. Then, the co-treatment of aspirin with citral significantly decreased the aspirin-induced cell death, and the MDA level. It modulated the superoxide dismutase (SOD) and glutathione (GSH) activities. Also, the activation of MAPKs was attenuated by citral. These findings suggest that citral can protect IEC-6 cells against aspirin-induced oxidative stress that may help to discover new chemicals out of natural antioxidant substances. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Riddick, C A; Ring, W L; Baker, J R; Hodulik, C R; Bigby, T D
1997-05-15
The aim of this study was to assess the effect of dexamethasone on 5-lipoxygenase pathway expression in human peripheral blood monocytes and the acute monocytic leukemia cell line, THP-1. Cells were conditioned over a period of days with dexamethasone, at concentrations relevant in vivo, to study the effect of the glucocorticoid on calcium-ionophore-stimulated 5-lipoxygenase product and arachidonic acid release. The effect of dexamethasone on levels of immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and its activating protein (5-LAP) was also assessed. Dexamethasone increased the stimulated release of 5-lipoxygenase products from both monocytes and THP-1 cells in a dose-dependent fashion. The increase in product generation was not due to changes in the availability of arachidonic acid. However, immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP were increased by conditioning with dexamethasone. There was no apparent effect of the glucocorticoid on LTA4-hydrolase-immunoreactive protein levels or specific activity. We conclude that dexamethasone increases 5-lipoxygenase pathway expression in both monocytes and in THP-1 cells. This effect is due, at least in part, to increases in immunoreactive protein and steady-state messenger RNA encoding for 5-lipoxygenase and 5-LAP. These results suggest a role for glucocorticoids in the regulation of 5-lipoxygenase pathway expression in mononuclear phagocytes.
Investigation of the immunosuppressive activity of Physalin H on T lymphocytes.
Yu, Youjun; Sun, Lijuan; Ma, Lei; Li, Jiyu; Hu, Lihong; Liu, Jianwen
2010-03-01
Physalis angulata is an annual herb widely used in folk medicine. It is mainly used for treating rheumatoid arthritis (RA). Following bioactivity-guided isolation, a representative immunosuppressive compound, Physalin H was been identified from this herb medicine. The purpose of this work was to assess the immunosuppressive activity of Physalin H on T cells and to explore its potential mode of action. The results showed that Physalin H in a dose-dependent manner significantly inhibited the proliferation of T cells induced by concanavalin A (ConA) and by the mixed lymphocyte culture reaction (MLR). This inhibitive activity was mainly due to interfering DNA replication in G1 stages. In vivo experiments showed that, administration of Physalin H dose-dependently suppressed CD4(+) T cell mediated delayed-type hypersensitivity (DTH) reactions, and suppressed antigen-specific T-cell response in ovalbumin (OVA) immunized mice. Further study indicated that Physalin H could modulate Th1/Th2 cytokine balance and induce the production of immune regulation target Heme oxygenase (HO)-1 in T-cells in vitro. In this study, we demonstrated the immunosuppressive effect of Physalin H on T cells both in vitro and in vivo, and the immunosuppressive activity might be attributed to the suppression of T cell activation and proliferation, the modulation of Th1/Th2 cytokine balance and the induction of HO-1 in T cells. Copyright 2009 Elsevier B.V. All rights reserved.
Neuropeptides activate human mast cell degranulation and chemokine production
Kulka, Marianna; Sheen, Cecilia H; Tancowny, Brian P; Grammer, Leslie C; Schleimer, Robert P
2008-01-01
During neuronal-induced inflammation, mast cells may respond to stimuli such as neuropeptides in an FcεRI-independent manner. In this study, we characterized human mast cell responses to substance P (SP), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) and compared these responses to human mast cell responses to immunoglobulin E (IgE)/anti-IgE and compound 48/80. Primary cultured mast cells, generated from CD34+ progenitors in the presence of stem cell factor and interleukin-6 (IL-6), and human cultured mast cells (LAD2) were stimulated with these and other stimuli (gastrin, concanavalin A, radiocontrast media, and mannitol) and their degranulation and chemokine production was assessed. VIP and SP stimulated primary human mast cells and LAD cells to degranulate; gastrin, concanavalin A, radiocontrast media, mannitol, CGRP and NGF did not activate degranulation. While anti-IgE stimulation did not induce significant production of chemokines, stimulation with VIP, SP or compound 48/80 potently induced production of monocyte chemoattractant protein-1, inducible protein-10, monokine induced by interferon-γ (MIG), RANTES (regulated on activation, normal, T-cell expressed, and secreted) and IL-8. VIP, SP and compound 48/80 also activated release of tumour necrosis factor, IL-3 and granulocyte–macrophage colony-stimulating factor, but not IL-4, interferon-γ or eotaxin. Human mast cells expressed surface neurokinin 1 receptor (NK1R), NK2R, NK3R and VIP receptor type 2 (VPAC2) but not VPAC1 and activation of human mast cells by IgE/anti-IgE up-regulated expression of VPAC2, NK2R, and NK3R. These studies demonstrate the pattern of receptor expression and activation of mast cell by a host of G-protein coupled receptor ligands and suggest that SP and VIP activate a unique signalling pathway in human mast cells. These results are likely to have direct relevance to neuronally induced inflammatory diseases. PMID:17922833
In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells.
Lin, Hsin-Yi; Bumgardner, Joel D
2004-11-01
We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect Co-Cr-Mo alloy's corrosion properties and that alloy corrosion products change macrophage cell behavior. A custom cell culture corrosion cell was used to evaluate how culture medium, cells, and RCS altered alloy corrosion in 3-day tests. Corrosion was evaluated by measuring total charge transfer at a constant potential using a potentiostat and metal ion release by atomic emission spectroscopy. Viability, proliferation, and NO (nitric oxide) and IL-1beta (interlukin-1beta) release were used to assess cellular response to alloy corrosion products. In the presence of activated cells, total charge transfers and Co ion release were the lowest (p < 0.05). This was attributed to an enhancement of the surface oxide by RCS. Cr and Mo release were not different between cells and activated cells. Low levels of metal ions did not affect cell viability, proliferation, or NO release, though IL-1beta released from the activated cells was higher on the alloy compared to the controls. These data support the hypothesis that macrophage cells and their RCS affect alloy corrosion. Changes in alloy corrosion by cells may be important to the development of host responses to the alloy and its corrosion products.
Clinostat rotation induces apoptosis in luteal cells of the pregnant rat
NASA Technical Reports Server (NTRS)
Yang, Hyunwon; Bhat, Ganapathy K.; Sridaran, Rajagopala
2002-01-01
Recent studies have shown that microgravity induces changes at the cellular level, including apoptosis. However, it is unknown whether microgravity affects luteal cell function. This study was performed to assess whether microgravity conditions generated by clinostat rotation induce apoptosis and affect steroidogenesis by luteal cells. Luteal cells isolated from the corpora lutea of Day 8 pregnant rats were placed in equal numbers in slide flasks (chamber slides). One slide flask was placed in the clinostat and the other served as a stationary control. At 48 h in the clinostat, whereas the levels of progesterone and total cellular protein decreased, the number of shrunken cells increased. To determine whether apoptosis occurred in shrunken cells, Comet and TUNEL assays were performed. At 48 h, the percentage of apoptotic cells in the clinostat increased compared with that in the control. To investigate how the microgravity conditions induce apoptosis, the active mitochondria in luteal cells were detected with JC-1 dye. Cells in the control consisted of many active mitochondria, which were evenly distributed throughout the cell. In contrast, cells in the clinostat displayed fewer active mitochondria, which were distributed either to the outer edge of the cell or around the nucleus. These results suggest that mitochondrial dysfunction induced by clinostat rotation could lead to apoptosis in luteal cells and suppression of progesterone production.
Pankratz, Shannon L; Tan, Ernest Y; Fine, Yumiko; Mercurio, Arthur M; Shaw, Leslie M
2009-01-23
The insulin receptor substrate (IRS) proteins are cytoplasmic adaptor molecules that function as signaling intermediates downstream of activated cell surface receptors. Based on data implicating IRS-2 but not IRS-1 in breast cancer invasion, survival, and metastasis, we assessed the contribution of IRS-1 and IRS-2 to aerobic glycolysis, which is known to impact tumor growth and progression. For this purpose, we used tumor cell lines derived from transgenic mice that express the polyoma virus middle T antigen (PyV-MT) in the mammary gland and that are wild-type (WT) or null for either Irs-1 (Irs-1-/-) or Irs-2 (Irs-2-/-). Aerobic glycolysis, as assessed by the rate of lactic acid production and glucose consumption, was diminished significantly in Irs-2-/- cells when compared with WT and Irs-1-/- cells. Expression of exogenous Irs-2 in Irs-2-/- cells restored the rate of glycolysis to that observed in WT cells. The transcription factor FoxO1 does not appear to be involved in Irs-2-mediated glycolysis. However, Irs-2 does regulate the surface expression of glucose transporter 1 (Glut1) as assessed by flow cytometry using a Glut1-specific ligand. Suppression of Glut1 expression inhibits Irs-2-dependent invasion, which links glycolysis to mammary tumor progression. Irs-2 was shown to be important for mammalian target of rapamycin (mTor) activation, and Irs-2-dependent regulation of Glut1 surface expression is rapamycin-sensitive. Collectively, our data indicate that Irs-2, but not Irs-1, promotes invasion by sustaining the aerobic glycolysis of mouse mammary tumor cells and that it does so by regulating the mTor-dependent surface expression of Glut1.
NASA Astrophysics Data System (ADS)
Kangloan, Pichet; Chayaburakul, Kanokporn; Santiboon, Toansakul
2018-01-01
The aims of this research study were 1) to develop students' learning achievements in biology course on foundational cell issue, 2) to examine students' satisfactions of their learning activities through the mixed media according to internet-based multi-instruction in biology on foundational cell issue at the 10th grade level were used in the first semester in the academic year 2014, which a sample size of 17 students in Rangsit University Demonstration School with cluster random sampling was selected. Students' learning administrations were instructed with the 3-instructional lesson plans according to the 5-Step Ladder Learning Management Plan (LLMP) namely; the maintaining lesson plan on the equilibrium of cell issue, a lesson plan for learning how to communicate between cell and cell division. Students' learning achievements were assessed with the 30-item Assessment of Learning Biology Test (ALBT), students' perceptions of their satisfactions were satisfied with the 20-item Questionnaire on Students Satisfaction (QSS), and students' learning activities were assessed with the Mixed Media Internet-Based Instruction (MMIBI) on foundational cell issue was designed. The results of this research study have found that: statistically significant of students' post-learning achievements were higher than their pre-learning outcomes and indicated that the differences were significant at the .05 level. Students' performances of their satisfaction to their perceptions toward biology class with the mixed media according to internet-based multi instruction in biology on foundational cell issue were the highest level and evidence of average mean score as 4.59.
Ersvaer, Elisabeth; Brenner, Annette K; Vetås, Kristin; Reikvam, Håkon; Bruserud, Øystein
2015-05-02
Cytarabine is used in the treatment of acute myeloid leukemia (AML). Low-dose cytarabine can be combined with valproic acid and all-trans retinoic acid (ATRA) as AML-stabilizing treatment. We have investigated the possible risk of immunotoxicity by this combination. We examined the effects of cytarabine combined with valproic acid and ATRA on in vitro activated human T cells, and we tested cytarabine at concentrations reached during in vivo treatment with high doses, conventional doses and low doses. T cells derived from blood donors were activated in vitro in cell culture medium alone or supplemented with ATRA (1 μM), valproic acid (500 or 1000 μM) or cytarabine (0.01-44 μM). Cell characteristics were assessed by flow cytometry. Supernatants were analyzed for cytokines by ELISA or Luminex. Effects on primary human AML cell viability and proliferation of low-dose cytarabine (0.01-0.5 μM) were also assessed. Statistical tests include ANOVA and Cluster analyses. Only cytarabine 44 μM had both antiproliferative and proapoptotic effects. Additionally, this concentration increased the CD4:CD8 T cell ratio, prolonged the expression of the CD69 activation marker, inhibited CD95L and heat shock protein (HSP) 90 release, and decreased the release of several cytokines. In contrast, the lowest concentrations (0.35 and 0.01 μM) did not have or showed minor antiproliferative or cytotoxic effects, did not alter activation marker expression (CD38, CD69) or the release of CD95L and HSP90, but inhibited the release of certain T cell cytokines. Even when these lower cytarabine concentrations were combined with ATRA and/or valproic acid there was still no or minor effects on T cell viability. However, these combinations had strong antiproliferative effects, the expression of both CD38 and CD69 was altered and there was a stronger inhibition of the release of FasL, HSP90 as well as several cytokines. Cytarabine (0.01-0.05 μM) showed a dose-dependent antiproliferative effect on AML cells, and in contrast to the T cells this effect reached statistical significance even at 0.01 μM. Even low levels of cytarabine, and especially when combined with ATRA and valproic acid, can decrease T cell viability, alter activation-induced membrane-molecule expression and decrease the cytokine release.
Giles-Gómez, Martha; Sandoval García, Jorge Giovanni; Matus, Violeta; Campos Quintana, Itzia; Bolívar, Francisco; Escalante, Adelfo
2016-01-01
Pulque is a Mexican traditional alcoholic, non-distilled, fermented beverage produced by the fermentation of the sap, known as aguamiel, extracted from several maguey (Agave) species. Pulque has traditionally been considered a healthy beverage due to its nutrient content and also a traditional medicine for the treatment of gastrointestinal disorders and intestinal infections. During pulque fermentation, the development of acidity, alcohol and viscosity define its final sensorial properties, developing an enriched environment where dominant lactic acid bacteria (LAB), including diverse Leuconostoc species, are present. Because traditional pulque is consumed directly from the fermentation vessel, the naturally associated LAB are ingested and reach the human small intestine alive. Here, we report the in vitro and in vivo probiotic assessment of Leuconostoc mesenteroides strain P45 isolated from pulque. This isolated LAB species exhibited lysozyme, acid (pH 3.5) and bile salts (0.1 and 0.3 % oxgall) resistance. Antibacterial activity against the pathogens Listeria monocytogenes, enteropathogenic Escherichia coli, Salmonella enterica serovar Typhi and S. enterica serovar Typhimurium were observed in assays involving cell-to-cell contact, cell-free 2× concentrated supernatants and cell-to-cell contact under exopolysaccharide-producing conditions. The in vivo probiotic assessment showed an anti-infective activity of L. mesenteroides P45 against S. enterica serovar Typhimurium in challenged male and female BALB/c mice. Analysis of the available genome sequence of strain P45 allowed identified a pre-bacteriocin coding gene and six peptidoglycan hydrolase enzymes, probably involved in the antimicrobial activity of this strain. The results presented in this study support some potential microbial mechanisms associated with the beneficial effects on human health of this LAB involved in the fermentation of pulque.
Hanaoka, H; Okazaki, Y; Satoh, T; Kaneko, Y; Yasuoka, H; Seta, N; Kuwana, M
2012-10-01
Antibodies against double-stranded DNA (dsDNA) are widely used to diagnose systemic lupus erythematosus (SLE) and evaluate its activity in patients. This study was undertaken to examine the clinical utility of circulating anti-dsDNA antibody-secreting cells for evaluating SLE patients. Anti-dsDNA antibody-secreting cells quantified using an enzyme-linked immunospot assay were detected in the spleen, bone marrow and peripheral blood from MRL/lpr but not in control BALB/c mice. Circulating anti-dsDNA antibody-secreting cells were detected in 29 (22%) of 130 patients with SLE, but in none of 49 with non-SLE connective-tissue disease or 18 healthy controls. The presence of circulating anti-dsDNA antibody-secreting cells was associated with persistent proteinuria, high SLE disease activity index and systemic lupus activity measures, and a high serum anti-dsDNA antibody titre measured with an enzyme-linked immunosorbent assay. The positive predictive value for active disease was 48% for circulating anti-dsDNA antibody-secreting cells versus 17% for serum anti-dsDNA antibodies. A prospective cohort of patients with circulating anti-dsDNA antibodies and inactive SLE showed that the cumulative disease flare-free rate was significantly lower in patients with than without circulating anti-dsDNA antibody-secreting cells (p < 0.001). Circulating anti-dsDNA antibody-secreting cells are a useful biomarker for assessing disease activity in SLE patients.
Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina
Haq, Wadood; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Euler, Thomas; Schubert, Timm
2014-01-01
During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells. PMID:25249942
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saad, Fawzy A.; Harvard Medical School, Boston, MA 02115; Torres, Marie
LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increasemore » their nuclear protein content when exposed to BAPN ({beta}-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.« less
Dudzinska, Dominika; Luzak, Boguslawa; Boncler, Magdalena; Rywaniak, Joanna; Sosnowska, Dorota; Podsedek, Anna; Watala, Cezary
2014-09-01
Many experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1-15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.
2012-01-01
Background As major regulators of normal chondrogenesis, the bone morphogenic protein (BMP) and transforming growth factor β (TGFB) signaling pathways may be involved in the development and progression of central chondrosarcoma. In order to uncover their possible implication, the aim of this study was to perform a systematic quantitative study of the expression of BMPs, TGFBs and their receptors and to assess activity of the corresponding pathways in central chondrosarcoma. Methods Gene expression analysis was performed by quantitative RT-PCR in 26 central chondrosarcoma and 6 healthy articular cartilage samples. Expression of endoglin and nuclear localization of phosphorylated Smad1/5/8 and Smad2 was assessed by immunohistochemical analysis. Results The expression of TGFB3 and of the activin receptor-like kinase ALK2 was found to be significantly higher in grade III compared to grade I chondrosarcoma. Nuclear phosphorylated Smad1/5/8 and Smad2 were found in all tumors analyzed and the activity of both signaling pathways was confirmed by functional reporter assays in 2 chondrosarcoma cell lines. Immunohistochemical analysis furthermore revealed that phosphorylated Smad1/5/8 and endoglin expression were significantly higher in high-grade compared to low-grade chondrosarcoma and correlated to each other. Conclusions The BMP and TGFβ signaling pathways were found to be active in central chondrosarcoma cells. The correlation of Smad1/5/8 activity to endoglin expression suggests that, as described in other cell types, endoglin could enhance Smad1/5/8 signaling in high-grade chondrosarcoma cells. Endoglin expression coupled to Smad1/5/8 activation could thus represent a functionally important signaling axis for the progression of chondrosarcoma and a regulator of the undifferentiated phenotype of high-grade tumor cells. PMID:23088614
Kumar, Manish; Chandel, Madhu; Kaur, Paramjeet; Pandit, Kritika; Kaur, Varinder; Kaur, Sandeep; Kaur, Satwinderjeet
2016-01-01
From the centuries, Lawsonia inermis L. (Henna) is utilized in traditional health care system as a medicinal and cosmetic agent. The present study was intended to assess antiradical, DNA protective and antiproliferative activity of water extract of Lawsonia inermis L. leaves (W-LI). Antioxidant activity was estimated using various in vitro assays such as DPPH, ABTS, superoxide anion radical scavenging, FRAP, deoxyribose degradation and DNA protection assay. Growth inhibitory effects of W-LI were assessed using MTT assay against different cancer cell lines viz. HeLa, MCF-7, A549, C6 and COLO-205. From the results of antioxidant assays, it was found that W-LI quenched DPPH and ABTS cation radicals with IC50 value of 352.77 µg/ml and 380.87 µg/ml respectively. It demonstrated hydroxyl radical scavenging potential of 59.75 % at highest test dose of 1000 µg/ml in deoxyribose degradation assay. The results of FRAP assay showed that W-LI also possesses significant reducing activity. Extract inhibited hydroxyl radical induced pBR322 plasmid DNA strand scission, thus conferring DNA protection. Growth inhibition of various cancer cell lines was achieved to the varying extent on treatment with W-LI. Further, it was observed that activity was quite promising against colon cancer COLO-205 cells (GI50 121.03 µg/ml). HPLC profiling of W-LI revealed the presence of different polyphenolic compounds such as ellagic acid, catechin, quercetin, kaempferol etc. which might be contributing towards antioxidant and cytotoxic activity. The present study demonstrated that polyphenols rich W-LI extract from leaves of L. inermis possesses ability to inhibit oxidative radicals and cancer cells proliferation. PMID:28337113
Lohmeyer, J; Nerreter, T; Dotterweich, J; Einsele, H; Seggewiss-Bernhardt, R
2018-03-24
Natural killer (NK) cells play a major role in host immunity against leukaemia and lymphoma. However, clinical trials applying NK cells have not been as efficient as hoped for. Patients treated with rapidly accelerated fibrosarcoma (RAF) inhibitors exhibit increased tumour infiltration by immune cells, suggesting that a combination of RAF inhibitors with immunotherapy might be beneficial. As mitogen-activated protein kinases (MAPKs) such as raf-1 proto-oncogene, serine/threonine kinase (CRAF) regulate NK cell functions, we performed an in-vitro investigation on the potential of clinically relevant short-acting tyrosine kinase inhibitors (TKIs) as potential adjuvants for NK cell therapy: NK cells from healthy human blood donors were thus treated with sorafenib, sunitinib or the pan-RAF inhibitor ZM336372 during ex-vivo expansion. Functional outcomes assessed after washout of the drugs included cytokine production, degranulation, cytotoxicity, apoptosis induction and signal transduction with/without target cell contact. Paradoxically, sorafenib enhanced NK cell effector functions in a time- and dose-dependent manner by raising the steady-state activation level. Of note, this did not lead to NK cell exhaustion, but enhanced activity against target cells such as K562 or Daudis mediated via the RAS/RAF/extracellular-regulated kinase (ERK) pathway, but not via protein kinase B (AKT). Our data will pave the path to develop a rationale for the considered use of RAF inhibitors such as sorafenib for pre-activation in NK cell-based adoptive immune therapy. © 2018 British Society for Immunology.
NASA Astrophysics Data System (ADS)
Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi
2017-01-01
Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.
Antibacterial Potential Assessment of Jasmine Essential Oil Against E. Coli
Rath, C. C.; Devi, S.; Dash, S. K.; Mishra, R. K.
2008-01-01
The antibacterial activity of Jasmine (Jasminum sambac L.) flower hydro steam distilled essential oil, synthetic blends and six major individual components was assessed against Escherichia coli (MTCC-443) strain. The activity was bactericidal. Minimum inhibitory concentration was determined by tube dilution technique, and the Minimum inhibitory concentration ranged between 1.9-31.25 μl/ml. Phenolcoefficient of the oil, synthetic blends and components varied between 0.6-1.7. The activity of the chemicals was possibly due to the inhibition of cell membrane synthesis. PMID:20046722
Olugbami, Jeremiah Olorunjuwon; Damoiseaux, Robert; France, Bryan; Onibiyo, Esther Modupe; Gbadegesin, Michael Adedapo; Sharma, Shivani; Gimzewski, James Kazimierz; Odunola, Oyeronke Adunni
2017-08-02
Epidemiological and experimental evidences have shown cancer as a leading cause of death worldwide. Although the folklore use of plants as a reliable source of health-restoring principles is well-documented, the search for more of such plants that are active against diseases, such as cancer, continues. We report here a laboratory-based evidence of the relevance of an ethanol leaf extract of Anogeissus leiocarpus (A2L) in comparison with resveratrol, a natural polyphenol, in cancer therapy. The quantitative assessment of flavonoid and phenolic contents involved quercetin and gallic acid as standards, respectively were determined using spectrophotometry. Cytotoxicity was determined fluorometrically using propidium-iodide-staining method. Antioxidant status, adenosine triphosphate (ATP) levels, caspase activities and mitochondrial integrity were assessed using fluorometry/luminometry. The antioxidant assay demonstrated that A2L possesses a strong antioxidant capacity as compared with the reference compounds, ascorbic acid and butylated hydroxytoluene. This is further buttressed by the significantly high level of phenolics obtained in the quantitative assessment of the extract. A 72-h post-treatment examination indicated that both A2L and resveratrol modulate the proliferation of HepG2 liver carcinoma cells in a time- and concentration-dependent manner. Determination of the total nuclei area, propidium-iodide negative and positive nuclei areas all further buttress the modulation of cell proliferation by A2L and resveratrol with the indication that the observed cell death is due to apoptosis and necrosis at lower and higher concentrations of treatments respectively. At lower concentrations (0.39-3.13 μg/mL), resveratrol possesses higher tendencies to activate caspases 3 and 7. Bioenergetically, both resveratrol and A2L do not adversely affect the cells at lower concentrations (0.39-6.25 μg/mL for resveratrol and 12.5-100.0 μg/mL for A2L) except at higher concentrations (12.5-25.0 μg/mL for resveratrol and 200-800 μg/mL for A2L) which are more pronounced in A2L-treated cells. Furthermore, the antioxidant status of HepG2 cells is not perturbed by resveratrol as compared with A2L. Assessment of 24-h post-treatment mitochondrial function shows that resveratrol is not mitotoxic as compared with A2L which exhibits mitotoxicity at its highest concentration. Taken together, findings from this study showed that A2L possesses strong antiproliferative activity and its prospect in the management of hepatocellular carcinoma deserves further investigation.
Malfitano, Anna Maria; Laezza, Chiara; Bertini, Simone; Marasco, Daniela; Tuccinardi, Tiziano; Bifulco, Maurizio; Manera, Clementina
2017-04-01
1,2-Dihydro-4-hydroxy-2-oxo-1,8-naphthyridine-3-carboxamide derivative VL15 has been recently developed as a selective cannabinoid CB2 receptor compound. Given the high selectivity of this compound at the cannabinoid CB2 receptor and the well-known protective function of this receptor in neurological disorders with autoimmune component like multiple sclerosis, we assessed the immunomodulatory properties of VL15. We assessed on activated peripheral blood mononuclear cells), proliferation and viability, cell cycle progression and measured activation markers and the expression of phosphorylated proteins. We found that VL15 reduces PBMC proliferation slightly affecting cell vitality, blocks the cell cycle progression and down-regulates the levels of T cell activation markers as well as the expression of phosphorylated proteins, NF-kB, IKKαβ, IKBα, ERK and Akt. VL15 was also used in drug-permeability assays on Caco-2 cell line to evaluate its oral bioavailability and on MDCKII-hMDR1 cell lines to estimate its propensity to cross the blood-brain barrier by passive diffusion, in order to potentially maintain its efficiency on the infiltrating auto-reactive lymphocytes in the central nervous system. In these models, VL15 showed high intestinal absorption and good blood-brain barrier penetration. Our findings suggest that VL15, by controlling the immune response, might find potential application as orally administered drug in pathologies like multiple sclerosis. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Al-Sebaei, Maisa O; Daukss, Dana M; Belkina, Anna C; Kakar, Sanjeev; Wigner, Nathan A; Cusher, Daniel; Graves, Dana; Einhorn, Thomas; Morgan, Elise; Gerstenfeld, Louis C
2014-01-01
Previous studies showed that loss of tumor necrosis factor α (TNFα) signaling delayed fracture healing by delaying chondrocyte apoptosis and cartilage resorption. Mechanistic studies showed that TNFα induced Fas expression within chondrocytes; however, the degree to which chondrocyte apoptosis is mediated by TNFα alone or dependent on the induction of Fas is unclear. This question was addressed by assessing fracture healing in Fas-deficient B6.MRL/Faslpr/J mice. Loss of Fas delayed cartilage resorption but also lowered bone fraction in the calluses. The reduced bone fraction was related to elevated rates of coupled bone turnover in the B6.MRL/Faslpr/J calluses, as evidenced by higher osteoclast numbers and increased osteogenesis. Analysis of the apoptotic marker caspase 3 showed fewer positive chondrocytes and osteoclasts in calluses of B6.MRL/Faslpr/J mice. To determine if an active autoimmune state contributed to increased bone turnover, the levels of activated T cells and Treg cells were assessed. B6.MRL/Faslpr/J mice had elevated Treg cells in both spleens and bones of B6.MRL/Faslpr/J but decreased percentage of activated T cells in bone tissues. Fracture led to ∼30% to 60% systemic increase in Treg cells in both wild-type and B6.MRL/Faslpr/J bone tissues during the period of cartilage formation and resorption but either decreased (wild type) or left unchanged (B6.MRL/Faslpr/J) the numbers of activated T cells in bone. These results show that an active autoimmune state is inhibited during the period of cartilage resorption and suggest that iTreg cells play a functional role in this process. These data show that loss of Fas activity specifically in chondrocytes prolonged the life span of chondrocytes and that Fas synergized with TNFα signaling to mediate chondrocyte apoptosis. Conversely, loss of Fas systemically led to increased osteoclast numbers during later periods of fracture healing and increased osteogenesis. These findings suggest that retention of viable chondrocytes locally inhibits osteoclast activity or matrix proteolysis during cartilage resorption. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. PMID:24677136
Immunologic and psychosocial status in chronic fatigue syndrome.
Nas, K; Cevik, R; Batum, S; Sarac, A J; Acar, S; Kalkanli, S
2011-01-01
The aim of the study was to investigate the immunologic functions and psychosocial status in patients with chronic fatigue syndrome (CFS). Twenty-five patients with CFS diagnosed by the international CFS definition criteria and 20 age- and gender-matched healthy controls were recruited. Depression was assessed by Beck Depression Inventory (BDI) and health status was assessed by Nottingham Health Profile (NHP). Monoclonal antibodies (MAbs) were measured to identify the following NK cell subsets: CD3, CD4, CD8 and CD56 and cytokine measurements were performed for IL2r, IL6 and IL8 in both patients and control subjects. The BDI and NHP scores of CFS group were found to be significantly higher than in the control group. The absolute numbers of CD56 cell were also significantly decreased in the patients with CFS compared with the healthy controls. There were no other significant differences of NK cell activity (CD3, CD4 and CD8) and there were significant differences in IL6 and IL2r levels between patients and controls. There were significant correlations between serum IL-6 level and sleep, social isolation and physical ability NHP subscores, and betweenCD56 NK cell activity and emotional reaction NHP sub score in CFS patients. Significantly higher ratios of psychological and physical disturbances were found in patients with CFS. Decreased CD56 NK cell activity and increased IL2r levels seem to be important immunopathologic changes in CFS. IL-6 and CD 56 NK cell activity may play an important role in sleep, physical, social, and physicological manifestations of CFS (Tab. 3, Fig. 1, Ref. 36). Full Text in free PDF www.bmj.sk.
Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment.
Giacoppo, Sabrina; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela
2017-07-14
Several lines of evidence suggest the consume of natural products for cancer prevention or treatment. In particular, isothiocyanates (ITCs) exerting anti-cancer properties, have received great interest as potential chemotherapeutic agents. This study was designed to assess the anti-proliferative activities of a new preparation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl ITC (moringin) complexed with alpha-cyclodextrin (moringin + α-CD; MAC) on SH-SY5Y human neuroblastoma cells. This new formulation arises in the attempt to overcome the poor solubility and stability of moringin alone in aqueous media. SH-SY5Y cells were cultured and exposed to increasing concentrations of MAC (1.0, 2.5 and 5.0 μg). Cell proliferation was examined by MTT and cell count assays. The cytotoxic activity of the MAC complex was assessed by lactate dehydrogenase (LDH) assay and trypan blue exclusion test. In addition, western blotting analyses for the main apoptosis-related proteins were performed. Treatment of SH-SY5Y cells with the MAC complex reduced cell growth in concentration dependent manner. Specifically, MAC exhibited a potent action in inhibiting the PI3K/Akt/mTOR pathway, whose aberrant activation was found in many types of cancer. MAC was also found to induce the nuclear factor-κB (NF-κB) p65 activation by phosphorylation and its translocation into the nucleus. Moreover, treatment with MAC was able to down-regulate MAPK pathway (results focused on JNK and p38 expression). Finally, MAC was found to trigger apoptotic death pathway (based on expression levels of cleaved-caspase 3, Bax/Bcl-2 balance, p53 and p21). These findings suggest that use of MAC complex may open novel perspectives to improve the poor prognosis of patients with neuroblastoma.
Cox, F F; Berezin, V; Bock, E; Lynch, M A
2013-04-03
Fibroblast growth loop (FGL) is a neural cell adhesion molecule (NCAM)-mimetic peptide that mimics the interaction of NCAM with fibroblast growth factor receptor (FGFR). FGL increases neurite outgrowth and promotes neuronal survival in vitro, and it has also been shown to have neuroprotective effects in vivo. More recent evidence has indicated that FGL has anti-inflammatory effects, decreasing age-related changes in microglial activation and production of inflammatory cytokines. These changes have been associated with an FGL-induced increase in expression of the glycoprotein, CD200, which interacts with its receptor to help maintain microglia in a quiescent state. However whether the FGL-induced anti-inflammatory effects are CD200-dependent has not been examined. The objective of this study was to address this question. Mixed glia were prepared from brain tissue of neonatal wildtype and CD200-deficient mice and preincubated with FGL prior to stimulation with lipopolysaccharide (LPS). Cells were assessed for mRNA expression of markers of microglial activation, CD11b, CD40 and intercellular adhesion molecule 1 (ICAM-1) and also the inflammatory cytokines, interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α, while supernatant concentrations of these cytokine were also assessed. LPS significantly increased all these parameters and the effect was greater in cells prepared from CD200-deficient mice. Whereas FGL attenuated the LPS-induced changes in cells from wildtype mice, it did not do so in cells from CD200-deficient mice. We conclude that the FGL-induced changes in microglial activation are CD200-dependent and demonstrate that the interaction of astrocytes with microglia is critically important for modulating microglial activation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Goetz, Benjamin; An, Wei; Mohapatra, Bhopal; Zutshi, Neha; Iseka, Fany; Storck, Matthew D.; Meza, Jane; Sheinin, Yuri; Band, Vimla; Band, Hamid
2016-01-01
CBL-family ubiquitin ligases are critical negative regulators of tyrosine kinase signaling, with a clear redundancy between CBL and CBL-B evident in the immune cell and hematopoietic stem cell studies. Since CBL and CBL-B are negative regulators of immune cell activation, elimination of their function to boost immune cell activities could be beneficial in tumor immunotherapy. However, mutations of CBL are associated with human leukemias, pointing to tumor suppressor roles of CBL proteins; hence, it is critical to assess the tumor-intrinsic roles of CBL and CBL-B in cancers. This has not been possible since the only available whole-body CBL-B knockout mice exhibit constitutive tumor rejection. We engineered a new CBL-Bflox/flox mouse, combined this with an existing CBLflox/flox mouse to generate CBLflox/flox; CBL-Bflox/flox mice, and tested the tissue-specific concurrent deletion of CBL and CBL-B using the widely-used CD4-Cre transgenic allele to produce a T-cell-specific double knockout. Altered T-cell development, constitutive peripheral T-cell activation, and a lethal multi-organ immune infiltration phenotype largely resembling the previous Lck-Cre driven floxed-CBL deletion on a CBL-B knockout background establish the usefulness of the new model for tissue-specific CBL/CBL-B deletion. Unexpectedly, CD4-Cre-induced deletion in a small fraction of hematopoietic stem cells led to expansion of certain non-T-cell lineages, suggesting caution in the use of CD4-Cre for T-cell-restricted gene deletion. The establishment of a new model of concurrent tissue-selective CBL/CBL-B deletion should allow a clear assessment of the tumor-intrinsic roles of CBL/CBL-B in non-myeloid malignancies and help test the potential for CBL/CBL-B inactivation in immunotherapy of tumors. PMID:27276677
AEA Cell-Bypass-Switch Activation: An Update
NASA Technical Reports Server (NTRS)
Keys, Denney; Rao, Gopalakrishna M.; Wannemacher, Harry
2002-01-01
The objectives of this project included the following: (1) verify the performance of AEA cell bypass protection device (CBPD) under simulated EOS-Aqua/Aura flight hardware configuration; (2) assess the safety of the hardware under an inadvertent firing of CBPD switch, as well as the closing of CBPD; and (3) confirm that the mode of operation of CBPD switch is the formation of a continuous low impedance path (a homogeneous low melting point alloy). The nominal performance of AEA CBPD under flight operating conditions (vacuum except zero-G, and high impedance cell) has been demonstrated. There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode). The formation of a continuous low impedance path (a homogeneous low melting point alloy) has been confirmed.
Choi, Eun Mi
2012-06-01
Antimycin A treatment of cells blocks the mitochondrial electron transport chain and leads to elevated ROS generation. In the present study, we investigated the protective effects of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, on antimycin A-induced toxicity in osteoblastic MC3T3-E1 cells. Osteoblastic MC3T3-E1 cells were pre-incubated with magnolol before treatment with antimycin A. Cell viability and mineralization of osteoblasts were assessed by MTT assay and Alizarin Red staining, respectively. Mitochondrial dysfunction in cells was measured by mitochondrial membrane potential (MMP), complex IV activity, and ATP level. The cellular antioxidant effect of magnolol in osteoblastic MC3T3-E1 cells was assessed by measuring cardiolipin oxidation, mitochondrial superoxide levels, and nitrotyrosine content. Phosphorylated cAMP-response element-binding protein (CREB ) was evaluated using ELISA assay. Pretreatment with magnolol prior to antimycin A exposure significantly reduced antimycin A-induced osteoblast dysfunction by preventing MMP dissipation, ATP loss, and CREB inactivation. Magnolol also reduced cardiolipin peroxidation, mitochondrial superoxide, and nitrotyrosine production induced by antimycin A. These results suggest that magnolol has a protective effect against antimycin A-induced cell damage by its antioxidant effects and the attenuation of mitochondrial dysfunction. All these data indicate that magnolol may reduce or prevent osteoblast degeneration in osteoporosis or other degenerative disorders.
Determination of tumor cell procoagulant activity by Sonoclot analysis in whole blood.
Amirkhosravi, A; Biggerstaff, J P; Warnes, G; Francis, D A; Francis, J L
1996-12-01
Coagulation activation in cancer may be due to expression of procoagulant activity (PCA) by tumor cells. Some PCA activate coagulation, while others influence platelet aggregation. Thus, clotting time assessments of PCA may not reflect the potential for hypercoagulability. We therefore studied the effect of various malignant and non-malignant cells on whole blood coagulation using the Sonoclot Analyzer. Five human (HT29 colon, J82 bladder, MCF-7 breast, BT-474 breast and A375 malignant melanoma) and three rodent (MC28, WEHI-164 and Neuro2a) cell lines were used. Rat thymocytes and peritoneal macrophages and human endotoxin-stimulated mononuclear cells and umbilical vein endothelial cells (HUVEC) were used as non-malignant controls. All tumor cells markedly shortened the recalcification time of citrated blood and the most potent (HT29 and J82) also increased clot rate (P < 0.01). The breast cancer cells MCF-7 and BT-474 expressed only weak PCA and did not affect clotting rate. None of the non-malignant cells significantly affected clotting time or rate in whole blood. J82 and HT29 cells grown in serum-rich media shortened the recalcification time of both normal and FVII-deficient plasmas. However, cells grown in serum-free conditions had significantly less PCA in FVII-deficient plasma. We conclude that the Sonoclot Analyzer is useful for determining cellular PCA; significant PCA is a feature of malignant cells and cells grown in medium containing serum supplements cannot be reliably evaluated for PCA.
Ge, Qingfeng; Ge, Panwei; Jiang, Donglei; Du, Nan; Chen, Jiahui; Yuan, Limin; Yu, Hai; Xu, Xin; Wu, Mangang; Zhang, Wangang; Zhou, Guanghong
2018-01-15
The analysis of antioxidants in foodstuffs has become an active area of research, leading to the recent development of numerous methods for assessing antioxidant capacity. Here we described the fabrication and validation of a novel and simple cell-based electrochemical biosensor for this purpose. The biosensor is used to assess the antioxidant capacity of cell-free extracts from Lactobacillus plantarum strains isolated from Chinese dry-cured ham. The biosensor relies on the determination of cellular reactive oxygen species (ROS) (the flux of H 2 O 2 released from RAW 264.7 macrophage cells) to indirectly assess changes in intracellular oxidative stress level as influenced by L. plantarum strains. A one-step acidified manganese dioxide (a-MnO 2 ) modified gold electrode (GE) was used to immobilize RAW 264.7 macrophage cells, which were then encapsulated in a 3D cell culture system consisting of alginate/ graphene oxide (NaAlg/GO). The biosensor exhibited a rapid and sensitive response for the detection of H 2 O 2 released from RAW264.7 cells. The detection limit was 0.02μM with a linear response from 0.05μM to 0.85μM and the biosensor was shown to have good stability and outstanding repeatability. This technique was then used for evaluating the antioxidant ability of extracts from L. plantarum NJAU-01. According to the electrochemical investigations and assays of SEM, TEM, and ROS, these cell-free extracts effectively reduced the oxidative stress levels in RAW264.7 cells under external stimulation. Extracts from L. plantarum strains at a dose of 10 10 CFU/mL showed the highest antioxidant activities with a relative antioxidant capacity (RAC) rate of 88.94%. Hence, this work provides a simple and efficient electrochemical biosensing platform based on RAW264.7 cells for fast, sensitive and quantitative assessment of antioxidant capacity of L. plantarum strains. The method demonstrates its potential for rapid screening for evaluating antioxidant properties of samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Single cell Hi-C reveals cell-to-cell variability in chromosome structure
Schoenfelder, Stefan; Yaffe, Eitan; Dean, Wendy; Laue, Ernest D.; Tanay, Amos; Fraser, Peter
2013-01-01
Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single cell Hi-C, combined with genome-wide statistical analysis and structural modeling of single copy X chromosomes, to show that individual chromosomes maintain domain organisation at the megabase scale, but show variable cell-to-cell chromosome territory structures at larger scales. Despite this structural stochasticity, localisation of active gene domains to boundaries of territories is a hallmark of chromosomal conformation. Single cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organisation underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns. PMID:24067610
Bettaib, Jamila; Talarmin, Hélène; Droguet, Mickaël; Magné, Christian; Boulaaba, Mondher; Giroux-Metges, Marie-Agnès; Ksouri, Riadh
2017-05-01
Polyphenolic compounds gained interest in the pharmaceutical research area due to their beneficial properties. Herein, antioxidant and cytoprotective capacities of T. gallica extract on H 2 O 2 -challenged rat small intestine epithelial cells were investigated. To set stress conditions, IEC-6 cultures were challenged with numerous H 2 O 2 doses and durations. Then, 40μM H 2 O 2 during 4h were selected to assess the cytoprotective effect of different T. gallica extract concentrations. Oxidative parameters, measured through CAT and SOD activities as well as MDA quantification were assessed. In addition, the expression of possibly involved MAPKs was also valued. Main results reported that T. gallica was rich in polyphenols and exhibited an important antioxidant activity (DPPH Assay, IC 50 =6μgmL -1 ; ABTS + test, IC 50 =50μgmL -1 ; Fe-reducing power, EC 50 =100μgmL -1 ). The exposure of IEC-6 cultures to 40μM H 2 O 2 during 4h caused oxidative stress manifested by (i) over 70% cell mortality, (ii) over-activity of CAT (246%), (iii) excess in MDA content (18.4nmolmg -1 ) and (iiii) a trigger of JNK phosphorylation. Pretreatment with T. gallica extract, especially when used at 0.25μgmL -1 , restored cell viability to 122%, and normal cell morphology in H 2 O 2 -chalenged cells. In addition, this extract normalized CAT activity and MDA content (100% and 14.7nmolmg -1 , respectively) to their basal levels as compared to control cells. Furthermore, stopping cell death seems to be due to dephosphorylated JNK MAPK exerted by T. gallica bioactive compounds. In all, T. gallica components provided a cross-talk between regulatory pathways leading to an efficient cytoprotection against harmful oxidative stimulus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Al-Rakan, Maha A; Hendrayani, Siti-Faujiah; Aboussekhra, Abdelilah
2016-08-02
Active fibroblasts, the predominant and the most active cells of breast cancer stroma, are responsible for tumor growth and spread. However, the molecular mediators and pathways responsible for stromal fibroblast activation, and their paracrine pro-carcinogenic effects are still not well defined. The CHEK2 tumor suppressor gene codes for a protein kinase, which plays important roles in the cellular response to various genotoxic stresses. Immunoblotting, quantitative RT-PCR and Immunofluorescence were used to assess the expression of CHEK2 in different primary breast fibroblasts and in tissues. The effect of CHEK2 on the expression and secretion of SDF-1 and IL-6 was evaluated by immunoblotting and ELISA. The WST-1 colorimetric assay was used to assess cell proliferation, while the BD BioCoat Matrigel invasion chambers were utilized to determine the effects of CHEK2 on the migratory and the invasiveness capacities of breast stromal fibroblasts as well as breast cancer cells. We have shown that CHEK2 is down-regulated in most cancer-associated fibroblasts (CAFs) as compared to their corresponding tumor counterpart fibroblasts (TCFs) at both the mRNA and protein levels. Interestingly, CHEK2 down-regulation using specific siRNA increased the expression/secretion of both cancer-promoting cytokines SDF-1 and IL-6, and transdifferentiated stromal fibroblasts to myofibroblasts. These cells were able to enhance the proliferation of non-cancerous epithelial cells, and also boosted the migration/invasion abilities of breast cancer cells in a paracrine manner. The later effect was SDF-1/IL-6-dependent. Importantly, ectopic expression of CHEK2 in active CAFs converted these cells to a normal state, with lower migration/invasion capacities and reduced paracrine pro-carcinogenic effects. These results indicate that CHEK2 possesses non-cell-autonomous tumor suppressor functions, and present the Chk2 protein as an important mediator in the functional interplay between breast carcinomas and their stromal fibroblasts.
Kozurková, Mária; Sabolová, Danica; Janovec, Ladislav; Mikes, Jaromír; Koval', Ján; Ungvarský, Ján; Stefanisinová, Miroslava; Fedorocko, Peter; Kristian, Pavol; Imrich, Ján
2008-04-01
The synthesis of novel 1',1''-(acridin-3,6-diyl)-3',3''-dialkyldiureas was reported. Their biological activity to inhibit cell proliferation was assessed by a MTT assay on two cell lines, HeLa and HCT-116, at micromolar concentration. 1',1''-(Acridin-3,6-diyl)-3',3''-dihexyldiurea hydrochloride was active on a HCT-116 cell line with an IC(50) value of 3.1 microM. The interaction of these compounds with calf thymus DNA was investigated by a variety of spectroscopic techniques including UV-vis, fluorescence and CD spectroscopy. From spectrofluorimetric titrations, binding constants for the DNA-drug complexes were determined (K=0.9-4.2x10(5) M(-1)). Antiproliferative activity of synthesized derivatives might be related to their intercalation into DNA.
Regulation of aldosterone secretion by mineralocorticoid receptor-mediated signaling.
Chong, Cherish; Hamid, Anis; Yao, Tham; Garza, Amanda E; Pojoga, Luminita H; Adler, Gail K; Romero, Jose R; Williams, Gordon H
2017-03-01
We posit the existence of a paracrine/autocrine negative feedback loop, mediated by the mineralocorticoid receptor (MR), regulating aldosterone secretion. To assess this hypothesis, we asked whether altering MR activity in zona glomerulosa (ZG) cells affects aldosterone production. To this end, we studied ex vivo ZG cells isolated from male Wistar rats fed chow containing either high (1.6% Na + (HS)) or low (0.03% Na + (LS)) amount of sodium. Western blot analyses demonstrated that MR was present in both the ZG and zona fasciculata/zona reticularis (ZF/ZR/ZR). In ZG cells isolated from rats on LS chow, MR activation by fludrocortisone produced a 20% and 60% reduction in aldosterone secretion basally and in response to angiotensin II (ANGII) stimulation, respectively. Corticosterone secretion was increased in these cells suggesting that aldosterone synthase activity was being reduced by fludrocortisone. In contrast, canrenoic acid, an MR antagonist, enhanced aldosterone production by up to 30% both basally and in response to ANGII. Similar responses were observed in ZG cells from rats fed HS. Modulating glucocorticoid receptor (GR) activity did not alter aldosterone production by ZG cells; however, altering GR activity did modify corticosterone production from ZF/ZR/ZR cells both basally and in response to adrenocorticotropic hormone (ACTH). Additionally, activating the MR in ZF/ZR/ZR cells strikingly reduced corticosterone secretion. In summary, these data support the hypothesis that negative ultra-short feedback loops regulate adrenal steroidogenesis. In the ZG, aldosterone secretion is regulated by the MR, but not the GR, an effect that appears to be secondary to a change in aldosterone synthase activity. © 2017 Society for Endocrinology.
Dalby, M J; Di Silvio, L; Harper, E J; Bonfield, W
2002-03-01
A bone cement, poly(ethylmethacrylate)/n-butylmethacrylate (PEMA/nBMA) has been developed with lower exotherm and monomer leaching compared to the traditional poly(methylmethacrylate)/methylmethacrylate (PMMA/MMA) cement. This study compares the in vitro biological response to the cements using primary human osteoblast-like cells (HOB). Cell attachment was qualified by immunolocalization of vinculin and actin cytoskeleton, showing more organization on PEMA/nBMA compared to PMMA/MMA. Proliferation was assessed using tritiated thymidine incorporation, and phenotype expression determined by measuring alkaline phosphatase (ALP) activity. An increase in proliferation and ALP activity was observed on PEMA/nBMA compared to PMMA/MMA. The results confirm the biocompatability of PEMA/nBMA, and an enhanced cell attachment and expression of differentiated cell phenotype.
Inhibitory effects of Broccolini leaf flavonoids on human cancer cells.
Wang, Bingfang; Zhang, Xuewu
2012-01-01
Broccolini (Brassica oleracea Italica × Alboglabra) is a hybrid between broccoli and Gai Lan, also known as Chinese broccoli and Chinese kale. The aim of this study was to assess the antitumor activity of Broccolini leaf flavonoids (BLF). Cell growth inhibition was evaluated using a standard colorimetric MTT assay, cellular morphology was observed using phase contrast microscopy and flow cytometry was introduced to further investigate cells apoptosis effect. The results showed that BLF possess a dose-dependent antiproliferative effects on four human cancer cell lines (SW480, HepG2, Hela, and A549) and apoptosis induction activity on SW480 cell line. Thus, the hybrid species Broccolini could be considered as a functional vegetable with potential in assisting for the treatment of four human cancers examined here. © Wiley Periodicals, Inc.
López-García, Jorge; Kuceková, Zdenka; Humpolíček, Petr; Mlček, Jiři; Sáha, Petr
2013-10-30
The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.
Podhorecka, Monika; Goracy, Aneta; Szymczyk, Agnieszka; Kowal, Malgorzata; Ibanez, Blanca; Jankowska-Lecka, Olga; Macheta, Arkadiusz; Nowaczynska, Aleksandra; Drab-Urbanek, Elzbieta; Chocholska, Sylwia; Jawniak, Dariusz; Hus, Marek
2017-05-23
B cell receptor (BCR) stimulation signal plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), and kinase inhibitors directed toward the BCR pathway are now the promising anti-leukemic drugs. Ibrutinib, a Bruton tyrosine kinase inhibitor, demonstrates promising clinical activity in CLL. It is reported that ibrutinib, additionally to directly targeting leukemic cells, also inhibits the interactions of these cells with T cells, macrophages and accessory cells. Assessment of these mechanisms is important because of their non -direct anti-leukemic effects and to identify possible side effects connected with long-term drug administration.The aim of this study was to assess the in vivo effects of ibrutinib on T-cell subpopulations and cytokine network in CLL. The analysis was performed on a group of 19 patients during first month of ibrutinib therapy. The standard multicolor flow cytometry and cytometric bead array methods were used for assessment of T-cell subsets and cytokines/chemokines, respectively.The data obtained indicates that Ibrutinib treatment results in changes in T-cell subpopulations and cytokine network in CLL patients. Particularly, a significant reduction of T regulatory cells in peripheral blood was observed. By targeting these populations of T cells Ibrutinib can stimulate rejection of tumor cells by the immune system.
Wong, Eric B; Mallet, Jean-François; Duarte, Jairo; Matar, Chantal; Ritz, Barry W
2014-04-01
Oral administration of bovine colostrum affects intestinal immunity, including an increased percentage of natural killer (NK) cells. However, effects on NK cell cytotoxic activity and resistance to infection as well as a potential mechanism remain unclear. Therefore, we investigated the effects of bovine colostrum (La Belle, Inc, Bellingham, WA) on the NK cytotoxic response to influenza infection and on toll-like receptor (TLR) activity in a primary intestinal epithelial cell culture. We hypothesized that colostrum would increase NK cell activity and that TLR-2 and TLR-4 blocking would reduce interleukin 6 production by epithelial cells in response to contact stimulation with colostrum. Four-month-old female C57BL/6 mice were supplemented with 1 g of colostrum per kilogram of body weight before and after infection with influenza A virus (H1N1). Animals were assessed for weight loss, splenic NK cell activity, and lung virus titers. Colostrum-supplemented mice demonstrated less reduction in body weight after influenza infection, indicating a less severe infection, increased NK cell cytotoxicity, and less virus burden in the lungs compared with controls. Colostrum supplementation enhanced NK cell cytotoxicity and improved the immune response to primary influenza virus infection in mice. To investigate a potential mechanism, a primary culture of small intestine epithelial cells was then stimulated with colostrum. Direct activation of epithelial cells resulted in increased interleukin 6 production, which was inhibited with TLR-2 and TLR-4 blocking antibodies. The interaction between colostrum and immunity may be dependent, in part, on the interaction of colostrum components with innate receptors at the intestinal epithelium, including TLR-2 and TLR-4. Copyright © 2014 Elsevier Inc. All rights reserved.
Smith, E M D; Jorgensen, A L; Beresford, M W
2017-10-01
Background Lupus nephritis (LN) affects up to 80% of juvenile-onset systemic lupus erythematosus (JSLE) patients. The value of commonly available biomarkers, such as anti-dsDNA antibodies, complement (C3/C4), ESR and full blood count parameters in the identification of active LN remains uncertain. Methods Participants from the UK JSLE Cohort Study, aged <16 years at diagnosis, were categorized as having active or inactive LN according to the renal domain of the British Isles Lupus Assessment Group score. Classic biomarkers: anti-dsDNA, C3, C4, ESR, CRP, haemoglobin, total white cells, neutrophils, lymphocytes, platelets and immunoglobulins were assessed for their ability to identify active LN using binary logistic regression modeling, with stepAIC function applied to select a final model. Receiver-operating curve analysis was used to assess diagnostic accuracy. Results A total of 370 patients were recruited; 191 (52%) had active LN and 179 (48%) had inactive LN. Binary logistic regression modeling demonstrated a combination of ESR, C3, white cell count, neutrophils, lymphocytes and IgG to be best for the identification of active LN (area under the curve 0.724). Conclusions At best, combining common classic blood biomarkers of lupus activity using multivariate analysis provides a 'fair' ability to identify active LN. Urine biomarkers were not included in these analyses. These results add to the concern that classic blood biomarkers are limited in monitoring discrete JSLE manifestations such as LN.
Okamoto, Takayuki; Akita, Nobuyuki; Hayashi, Tatsuya; Shimaoka, Motomu; Suzuki, Koji
2014-10-01
Endothelial cell (EC) interacts with adjacent EC through gap junction, and abnormal expression or function of Cxs is associated with cardiovascular diseases. In patients with endothelial dysfunction, the up-regulation of tissue factor (TF) expression promotes the pathogenic activation of blood coagulation, however the relationship between gap junctions and TF expression in ECs remains uncharacterized. ECs express the gap junction (GJ) proteins connexin32 (Cx32), Cx37, Cx40 and Cx43. We investigated the role of endothelial gap junctions, particularly Cx32, in modulating TF expression during vascular inflammation. Human umbilical vein endothelial cells (HUVECs) were stimulated with tumor necrosis factor-α (TNF-α) and TF activity was assessed in the presence of GJ blockers and an inhibitory anti-Cx32 monoclonal antibody. Treatment with GJ blockers and anti-Cx32 monoclonal antibody enhanced the TNF-α-induced TF activity and mRNA expression in HUVECs. TNF-α-activated effector HUVECs or mouse MS-1 cells were co-cultured with non-stimulated acceptor HUVECs and TF expression in acceptor HUVECs was detected. Effector EC induced TF expression in adjacent acceptor HUVECs through direct cell-cell interaction. Cell-cell interaction induced TF expression was reduced by anti-intercellular adhesion molecule-1 (ICAM1) monoclonal antibody. Soluble ICAM1-Fc fusion protein promotes TF expression. GJ blockers and anti-Cx32 monoclonal antibody enhanced TF expression induced by cell-cell interaction and ICAM1-Fc treatment. Blockade of endothelial Cx32 increased TF expression induced by TNF-α stimulation and cell-cell interaction which was at least partly dependent upon ICAM1. These results suggest that direct Cx32-mediated interaction modulates TF expression in ECs during vascular inflammation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dimitrova, Petya; Alipieva, Kalina; Grozdanova, Tsvetinka; Simova, Svetlana; Bankova, Vassya; Georgiev, Milen I; Popova, Milena P
2018-01-01
The Verbascum species are widely used traditional herb remedies against respiratory, inflammatory conditions and disorders. In the present study methanol extract of the aerial parts of the endemic Verbascum nobile Velen, was investigated and two novel iridoid glycosides 1 and 2, together with nine known constituents: iridoids, phenylethanoids, and saponins characteristic of Verbascum genus were identified. Further, the biological activity of the extract and selected isolated compounds on concanavalin (Con A)-induced T cell proliferation and activation of human Jurkat T cell line and splenic murine CD3 T cells was evaluated. T cell growth was studied by colorimetric-based WST proliferation assay while DNA content, cell cycling, dynamic of cell proliferation, expression of activation markers, intracellular expression of cytokine IFN-γ, and phosphorylation of ERK were analyzed by flow cytometry. Caspase-mediated apoptosis resulting in a poly (ADP-ribose) polymerase (PARP) cleavage was assessed by colorimetric in-cell kit. It was found that the extract, and all tested compounds (1, 2, 3 and 9) inhibited lectin-induced cell growth of Jurkat T cell line. The novel compounds decreased the frequencies of cells in S phase without causing a significant cell cycle arrest at G1 phase, caspases-mediated apoptosis and/or a profound change in the dynamic of splenic murine CD3 + T cell proliferation. Both compounds showed stronger inhibitory effect on Con A-induced ERK phosphorylation than the known bioactive compounds 3 and 9, and suppressed the expression of early activation marker CD69, the intracellular level of IFN-γ, and the generation of CD3 + IFN-γ + effectors. Our data suggest that the novel iridoid glycosides might have a potential to modulate T cell-related pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deep wells integrated with microfluidic valves for stable docking and storage of cells.
Jang, Yun-Ho; Kwon, Cheong Hoon; Kim, Sang Bok; Selimović, Seila; Sim, Woo Young; Bae, Hojae; Khademhosseini, Ali
2011-02-01
In this paper, we describe a microfluidic mechanism that combines microfluidic valves and deep wells for cell localization and storage. Cells are first introduced into the device via externally controlled flow. Activating on-chip valves was used to interrupt the flow and to sediment the cells floating above the wells. Thus, valves could be used to localize the cells in the desired locations. We quantified the effect of valves in the cell storage process by comparing the total number of cells stored with and without valve activation. We hypothesized that in deep wells external flows generate low shear stress regions that enable stable, long-term docking of cells. To assess this hypothesis we conducted numerical calculations to understand the influence of well depth on the forces acting on cells. We verified those predictions experimentally by comparing the fraction of stored cells as a function of the well depth and input flow rate upon activation of the valves. As expected, upon reintroduction of the flow the cells in the deep wells were not moved whereas those in shallow wells were washed away. Taken together, our paper demonstrates that deep wells and valves can be combined to enable a broad range of cell studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rodríguez, Diana Marcela; Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso
2012-12-01
Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine. Copyright © 2012 Elsevier Inc. All rights reserved.
Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael
2015-08-01
Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bedoya-López, Andrea; Estrada, Karel; Sanchez-Flores, Alejandro; Ramírez, Octavio T.; Altamirano, Claudia; Segovia, Lorenzo; Miranda-Ríos, Juan; Trujillo-Roldán, Mauricio A.; Valdez-Cruz, Norma A.
2016-01-01
Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28–34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system. PMID:26991106
Miron, Richard J.; Hedbom, Erik; Ruggiero, Sabrina; Bosshardt, Dieter D.; Zhang, Yufeng; Mauth, Corinna; Gemperli, Anja C.; Iizuka, Tateyuki; Buser, Daniel; Sculean, Anton
2011-01-01
In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo. PMID:21858092
Cladribine Analogues via O6-(Benzotriazolyl) Derivatives of Guanine Nucleosides
Satishkumar, Sakilam; Vuram, Prasanna K.; Relangi, Siva Subrahmanyam; Gurram, Venkateshwarlu; Zhou, Hong; Kreitman, Robert J.; Montemayor, Michelle M. Martínez; Yang, Lijia; Kaliyaperumal, Muralidharan; Sharma, Somesh; Pottabathini, Narender; Lakshman, Mahesh K.
2016-01-01
Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest on the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL), and chronic lymphocytic leukemia (CLL) cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribo analogue of cladribine possessed activity, but was least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, only cladribine and its ribose analogue were most active. PMID:26556315
Cladribine Analogues via O⁶-(Benzotriazolyl) Derivatives of Guanine Nucleosides.
Satishkumar, Sakilam; Vuram, Prasanna K; Relangi, Siva Subrahmanyam; Gurram, Venkateshwarlu; Zhou, Hong; Kreitman, Robert J; Montemayor, Michelle M Martínez; Yang, Lijia; Kaliyaperumal, Muralidharan; Sharma, Somesh; Pottabathini, Narender; Lakshman, Mahesh K
2015-10-09
Cladribine, 2-chloro-2'-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest in the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O⁶-(benzotriazol-1-yl)-2'-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities, and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL) and chronic lymphocytic leukemia (CLL), cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribose analogue of cladribine showed activity, but was the least active among the C6-NH₂-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, cladribine and its ribose analogue were most active.
2000-10-01
interfere with the function of the mammary cells in which they are expressed. Transgenic technology has been used to evaluate the effects of an activated... wheat germ agglutinin; pfu, plaque-forming units; Cy3, a red fluorescent used for visualization of cell structures in the presence of GFP; DAPI, a...tumorigenesis in mice. The second objective has been achieved in part using transgenic mouse technology. We have begun exploration of the third objective. BODY
Esposito, Germana; Teta, Roberta; Miceli, Roberta; Ceccarelli, Luca S.; Della Sala, Gerardo; Camerlingo, Rosa; Irollo, Elena; Mangoni, Alfonso; Pirozzi, Giuseppe; Costantino, Valeria
2015-01-01
The study of the secondary metabolites contained in the organic extract of Caribbean sponge Smenospongia aurea led to the isolation of smenothiazole A (3) and B (4), hybrid peptide/polyketide compounds. Assays performed using four solid tumor cell lines showed that smenothiazoles exert a potent cytotoxic activity at nanomolar levels, with selectivity over ovarian cancer cells and a pro-apoptotic mechanism. PMID:25603342
2012-01-01
Background In the direct pathway, T cells recognize intact donor major histocompatability complexes and allogeneic peptide on the surface of donor antigen presenting cells (APCs). Indirect allorecognition results from the recognition of processed alloantigen by self MHC complexes on self APCs. In this study, we wished to evaluate the relative contribution of different intragraft cells to the alloactivation of nave and memory T cells though the direct and the indirect pathway of allorecognition. Methods The processing of membrane fragments from IFN-treated single donor endothelial cells (EC), fibroblasts or renal epithelial cells (RPTEC) was evaluated by DiOC labeling of each cell type and flow cytometry following interaction with PBMC. Direct pathway activation of nave CD45RA+ or memory CD45RO+ CD4+ T cells was evaluated following coculture with IFN-treated and MHC class II-expressing EC, fibroblasts or RPTEC. Indirect pathway activation was assessed using CD45RA+ or CD45RO+ CD4+ T cells cocultured with autologous irradiated APCs in the absence or presence of sonicates derived from IFN-treated allogeneic EC, fibroblasts or RPTEC. Activation of T cells was assessed by [3H]thymidine incorporation and by ELISpot assays. Results We find that CD14+ APCs readily acquire membrane fragments from fibroblasts and RPTEC, but fail to acquire membrane fragments from intact EC. However, APCs process membranes from EC undergoing apoptosis.There was a notable direct pathway alloproliferative response of CD45RO+ CD4+ T cells to IFN-treated EC, but not to fibroblasts or RPTEC. Also, there was a minimal direct pathway response of CD45RA+ CD4+ T cells to all cell types. In contrast, we found that both CD45RA+ and CD45RO+ CD4+ T cells proliferated following coculture with autologous APCs in the presence of sonicates derived from IFN-treated EC, fibroblasts or RPTEC. By ELISpot, we found that these T cells stimulated via the indirect pathway also produced the cytokines IFN, IL-2, IL-4 and IL-5. Conclusions Recipient APCs may readily process membrane fragments from allogeneic intragraft cells, but not from EC unless they are undergoing apoptosis. This processing is sufficient for indirect pathway alloactivation of both CD45RA+ and CD45RO+ CD4+ T cells. Only graft vascular EC mediate direct pathway reactivation of CD4+ T cells. PMID:23369287
Watch Out for the “Living Dead”: Cell-Free Enzymes and Their Fate
Baltar, Federico
2018-01-01
Microbes are the engines driving biogeochemical cycles. Microbial extracellular enzymatic activities (EEAs) are the “gatekeepers” of the carbon cycle. The total EEA is the sum of cell-bound (i.e., cell-attached), and dissolved (i.e., cell-free) enzyme activities. Cell-free enzymes make up a substantial proportion (up to 100%) of the total marine EEA. Although we are learning more about how microbial diversity and function (including total EEA) will be affected by environmental changes, little is known about what factors control the importance of the abundant cell-free enzymes. Since cell-attached EEAs are linked to the cell, their fate will likely be linked to the factors controlling the cell’s fate. In contrast, cell-free enzymes belong to a kind of “living dead” realm because they are not attached to a living cell but still are able to perform their function away from the cell; and as such, the factors controlling their activity and fate might differ from those affecting cell-attached enzymes. This article aims to place cell-free EEA into the wider context of hydrolysis of organic matter, deal with recent studies assessing what controls the production, activity and lifetime of cell-free EEA, and what their fate might be in response to environmental stressors. This perspective article advocates the need to go “beyond the living things,” studying the response of cells/organisms to different stressors, but also to study cell-free enzymes, in order to fully constrain the future and evolution of marine biogeochemical cycles. PMID:29354095
Tsonkova, Violeta Georgieva; Sand, Fredrik Wolfhagen; Wolf, Xenia Asbæk; Grunnet, Lars Groth; Kirstine Ringgaard, Anna; Ingvorsen, Camilla; Winkel, Louise; Kalisz, Mark; Dalgaard, Kevin; Bruun, Christine; Fels, Johannes Josef; Helgstrand, Charlotte; Hastrup, Sven; Öberg, Fredrik Kryh; Vernet, Erik; Sandrini, Michael Paolo Bastner; Shaw, Allan Christian; Jessen, Carsten; Grønborg, Mads; Hald, Jacob; Willenbrock, Hanni; Madsen, Dennis; Wernersson, Rasmus; Hansson, Lena; Jensen, Jan Nygaard; Plesner, Annette; Alanentalo, Tomas; Petersen, Maja Borup Kjær; Grapin-Botton, Anne; Honoré, Christian; Ahnfelt-Rønne, Jonas; Hecksher-Sørensen, Jacob; Ravassard, Philippe; Madsen, Ole D; Rescan, Claude; Frogne, Thomas
2018-02-01
To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates. EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice. Cytokine induced apoptosis, glucolipotoxicity, and ER stress responses were assessed. Beta cell relevant mRNA and protein expression were investigated by qPCR and antibody staining. Hundreds of proteins or peptides were tested for their effect on insulin secretion and proliferation. Transplantation of EndoC-βH1 cells restored normoglycemia in streptozotocin induced diabetic mice. Both in vitro and in vivo, we observed a clear insulin response to glucose, and, in vitro, we found a significant increase in insulin secretion from EndoC-βH1 pseudoislets compared to monolayer cultures for both glucose and incretins. Apoptosis and ER stress were inducible in the cells and caspase 3/7 activity was elevated in response to cytokines, but not affected by the saturated fatty acid palmitate. By screening of various proteins and peptides, we found Bombesin (BB) receptor agonists and Pituitary Adenylate Cyclase-Activating Polypeptides (PACAP) to significantly induce insulin secretion and the proteins SerpinA6, STC1, and APOH to significantly stimulate proliferation. ER stress was readily induced by Tunicamycin and resulted in a reduction of insulin mRNA. Somatostatin (SST) was found to be expressed by 1% of the cells and manipulation of the SST receptors was found to significantly affect insulin secretion. Overall, the EndoC-βH1 cells strongly resemble human islet beta cells in terms of glucose and incretin stimulated insulin secretion capabilities. The cell line has an active cytokine induced caspase 3/7 apoptotic pathway and is responsive to ER stress initiation factors. The cells' ability to proliferate can be further increased by already known compounds as well as by novel peptides and proteins. Based on its robust performance during the functionality assessment assays, the EndoC-βH1 cell line was successfully used as a screening platform for identification of novel anti-diabetic drug candidates. Copyright © 2017 Novo Nordisk A/S. Published by Elsevier GmbH.. All rights reserved.
Di Giorgio, C; Boyer, L; De Meo, M; Laurant, C; Elias, R; Ollivier, E
2015-07-01
DIG, a liquid herbal preparation made from a mixture of diluted mother tinctures of Berberis vulgaris, Taraxacum officinale and Arctium lappa, was assessed for its antimutagenic properties against mitomycin C. The micronucleus assay on Chinese hamster ovary (CHO)-K1 cells was used to evaluate the in vitro anticlastogenic activity of DIG compared to those of separately diluted mother tinctures. The micronucleus assay was performed on mouse erythrocytes and the comet assay was performed on mouse liver, kidney, lung, brain and testicles to assess the protective effects of DIG (0.2 and 2 % at libitum) against an intraperitoneal injection of mitomycin C (1 mg Kg(-1)) in mice. DIG exerted a powerful anticlastogenic activity, under both pretreatment and simultaneous treatment conditions as assessed by the micronucleus assay in CHO-K1 cells. Its protective activity was greater than that observed for each mother tincture. DIG reduced micronuclei levels in mouse erythrocytes and suppressed >80 % of DNA strand breaks in the liver, kidney, lung, brain and testicles of mice exposed to mitomycin C.
Kang, Y-H; Kim, B-R; Choi, H J; Seo, J G; Kim, B-H; Han, M-S
2007-11-01
Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii. In laboratory studies, A diatom-lysing bacterium, Pseudomonas fluorescens HYK0210-SK09 showed strong algicidal activity against S. hantzschii, but a natural mesocosm study revealed that this bacterium failed to fully control natural blooms of Stephanodiscus at the low water temperatures that favour these blooms. Here, we sought to develop an effective immobilization strategy for enhancing the algicidal activity of HYK0210-SK09 in the natural setting. Bacterium HYK0210-SK09 was immobilized with various carriers including agar, alginate, polyurethane and cellulose sponge. The bacterial cells immobilized with cellulose sponge (CIS) induced more rapid and complete lysis of S. hantzschii than other carriers, and had a higher packing ability than polyurethane. Furthermore, CIS-immobilized cells showed higher lysis of S. hantzschii at the same concentrations as that of free cells (< or =1 x 10(7) cells ml(-1)), and had especially strong algicidal activity at the low temperatures (<10 degrees C). Based on these laboratory studies, we assessed the possible application of HYK0210-SK09 cells in the field by performing a mesocosm study during the winter season. The CIS-immobilized cells with species-specific activity towards the genera Stephanodiscus showed extremely high algicidal activity (up to 95%) against a bloom of Stephanodiscus hantzschii even at low water temperatures, because of high cell packing and subsequent cell protection against low temperatures and predators, whereas free cells showed negligible algicidal activities under these conditions. Immobilizing cells of HYK0210-SK09 in CIS foam, rather than in the other matrices tested, could achieve more efficient control of Stephanodiscus blooms and showed a significant algicidal activity on in vitro and in vivo blooms, even at low water temperature. Collectively, these results indicate that CIS of algicidal bacteria may form an important strategy for effective management of Stephanodiscus blooms at low water temperatures.
Rana, Chandan; Piplani, Honit; Vaish, Vivek; Nehru, Bimla; Sanyal, S N
2015-08-01
Uncontrolled cell proliferation is the hallmark of cancer, and cancer cells have typically acquired damage to genes that directly regulate their cell cycles. The synthesis of DNA onto the end of chromosome during the replicative phase of cell cycle by telomerase may be necessary for unlimited proliferation of cells. Telomerase, a ribonucleoprotein enzyme is considered as a universal therapeutic target of cancer because of its preferential expression in cancer cells and its presence in 90 % of tumors. We studied the regulation of telomerase and telomerase reverse transcriptase catalytic subunit (TERT) by diclofenac and curcumin, alone and also in combination, in 1, 2-dimethylhydrazine dihydrochloride-induced colorectal cancer in rats. The relationship of telomerase activity with tumors suppressor proteins (p51, Rb, p21), cell cycle machinery, and apoptosis was also studied. Telomerase is highly expressed in DMH group and its high activity is associated with increased TERT expression. However, telomerase is absent or is present at lower levels in normal tissue. CDK4, CDK2, cyclin D1, and cyclin E are highly expressed in DMH as assessed by RT-PCR, qRT-PCR, Western blot, and immunofluorescence analysis. Diclofenac and curcumin overcome these carcinogenic effects by downregulating telomerase activity, diminishing the expression of TERT, CDK4, CDK2, cyclin D1, and cyclin E. The anticarcinogenic effects shown after the inhibition of telomerase activity by diclofenac and curcumin may be associated with upregulation of tumor suppressor proteins p51, Rb, and p21, whose activation induces the cells cycle arrest and apoptosis.
Carrion, F; Nova, E; Ruiz, C; Diaz, F; Inostroza, C; Rojo, D; Mönckeberg, G; Figueroa, F E
2010-03-01
Mesenchymal stem cells (MSCs) exert suppressive effects in several disease models including lupus prone mice. However, autologous MSC therapy has not been tested in human systemic lupus erythematosus (SLE). We evaluate the safety and efficacy of bone marrow (BM)-derived MSCs in two SLE patients; the suppressor effect of these cells in-vitro and the change in CD4+CD25+FoxP3+ T regulatory (Treg) cells in response to treatment. Two females (JQ and SA) of 19 and 25 years of age, fulfilling the 1997 American College of Rheumatology (ACR) criteria for SLE were infused with autologous BM-derived MSCs. Disease activity indexes and immunological parameters were assessed at baseline, 1, 2, 7 and 14 weeks. Peripheral blood lymphocyte (PBL) subsets and Treg cells were quantitated by flow cytometry, and MSCs tested for in-vitro suppression of activation and proliferation of normal PBLs. No adverse effects or change in disease activity indexes were noted during 14 weeks of follow-up, although circulating Treg cells increased markedly. Patient MSCs effectively suppressed in-vitro PBL function. However, JQ developed overt renal disease 4 months after infusion. MSC infusion was without adverse effects, but did not modify initial disease activity in spite of increasing CD4+CD25+FoxP3+ cell counts. One patient subsequently had a renal flare. We speculate that the suppressive effects of MSC-induced Treg cells might be dependent on a more inflammatory milieu, becoming clinically evident in patients with higher degrees of disease activity.
Gan, Huachen; McKenzie, Raymond; Hao, Qin; Idell, Steven; Tang, Hua
2014-01-01
Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. Hence, there is a profound need for the identification of novel drugable targets to develop more specific and efficacious therapeutic intervention in IPF. In this study, we performed immunohistochemical analyses to assess the cell type-specific expression and activation of protein kinase D (PKD) family kinases in normal and IPF lung tissue sections. We also analyzed PKD activation and function in human lung epithelial cells. We found that PKD family kinases (PKD1, PKD2 and PKD3) were increased and activated in the hyperplastic and regenerative alveolar epithelial cells lining remodeled fibrotic alveolar septa and/or fibroblast foci in IPF lungs compared with normal controls. We also found that PKD family kinases were increased and activated in alveolar macrophages, bronchiolar epithelium, and honeycomb cysts in IPF lungs. Interestingly, PKD1 was highly expressed and activated in the cilia of IPF bronchiolar epithelial cells, while PKD2 and PKD3 were expressed in the cell cytoplasm and nuclei. In contrast, PKD family kinases were not apparently increased and activated in IPF fibroblasts or myofibroblasts. We lastly found that PKD was predominantly activated by poly-L-arginine, lysophosphatidic acid and thrombin in human lung epithelial cells and that PKD promoted epithelial barrier dysfunction. These findings suggest that PKD may participate in the pathogenesis of IPF and may be a novel target for therapeutic intervention in this disease.
Siddiqui-Jain, Adam; Hoj, Jacob P; Hargiss, J Blade; Hoj, Taylor H; Payne, Carter J; Ritchie, Collin A; Herron, Steven R; Quinn, Colette; Schuler, Jeffrey T; Hansen, Marc D H
2017-09-01
Stimulation of cultured epithelial cells with scatter factor/hepatocyte growth factor (HGF) results in individual cells detaching and assuming a migratory and invasive phenotype. Epithelial scattering recapitulates cancer progression and studies have implicated HGF signaling as a driver of cancer metastasis. Inhibitors of HGF signaling have been proposed to act as anti-cancer agents. We previously screened a small molecule library for compounds that block HGF-induced epithelial scattering. Most hits identified in this screen exhibit anti-mitotic properties. Here we assess the biological mechanism of a compound that blocks HGF-induced scattering with limited anti-mitotic activity. Analogs of this compound have one of two distinct activities: inhibiting either cell migration or cell proliferation with cell cycle arrest in G2/M. Each activity bears unique structure-activity relationships. The mechanism of action of anti-mitotic compounds is by inhibition of microtubule polymerization; these compounds entropically and enthalpically bind tubulin in the colchicine binding site, generating a conformational change in the tubulin dimer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rothschild, Pierre-Raphaël; Salah, Sawsen; Berdugo, Marianne; Gélizé, Emmanuelle; Delaunay, Kimberley; Naud, Marie-Christine; Klein, Christophe; Moulin, Alexandre; Savoldelli, Michèle; Bergin, Ciara; Jeanny, Jean-Claude; Jonet, Laurent; Arsenijevic, Yvan; Behar-Cohen, Francine; Crisanti, Patricia
2017-08-18
In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.
Santa-Cecília, Flávia V; Socias, Benjamin; Ouidja, Mohand O; Sepulveda-Diaz, Julia E; Acuña, Leonardo; Silva, Rangel L; Michel, Patrick P; Del-Bel, Elaine; Cunha, Thiago M; Raisman-Vozari, Rita
2016-05-01
In neurodegenerative diseases, the inflammatory response is mediated by activated glial cells, mainly microglia, which are the resident immune cells of the central nervous system. Activated microglial cells release proinflammatory mediators and neurotoxic factors that are suspected to cause or exacerbate these diseases. We recently demonstrated that doxycycline protects substantia nigra dopaminergic neurons in an animal model of Parkinson's disease. This effect was associated with a reduction of microglial cell activation, which suggests that doxycycline may operate primarily as an anti-inflammatory drug. In the present study, we assessed the anti-inflammatory potential of doxycycline using lipopolysaccharide (LPS)-activated primary microglial cells in culture as a model of neuroinflammation. Doxycycline attenuated the expression of key activation markers in LPS-treated microglial cultures in a concentration-dependent manner. More specifically, doxycycline treatment lowered the expression of the microglial activation marker IBA-1 as well as the production of ROS, NO, and proinflammatory cytokines (TNF-α and IL-1β). In primary microglial cells, we also found that doxycycline inhibits LPS-induced p38 MAP kinase phosphorylation and NF-kB nuclear translocation. The present results indicate that the effect of doxycycline on LPS-induced microglial activation probably occurs via the modulation of p38 MAP kinase and NF-kB signaling pathways. These results support the idea that doxycycline may be useful in preventing or slowing the progression of PD and other neurodegenerative diseases that exhibit altered glia function.
Li, Ming Yue; Mi, Chunliu; Wang, Ke Si; Wang, Zhe; Zuo, Hong Xiang; Piao, Lian Xun; Xu, Guang Hua; Li, Xuezheng; Ma, Juan; Jin, Xuejun
2017-08-25
Hypoxia enhances the development of solid tumors. Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that is dominantly expressed under hypoxia in solid tumor cells and is a key factor of tumor regulation. HIF-1α regulates several target genes involved in many aspects of cancer progression, including angiogenesis, metastasis, and cell proliferation, as well as imparting resistance to cancer treatment. In this study, we assessed shikonin, which derives from the traditional medical herb Lithospermum erythrorhizon, for its anti-cancer effects in hypoxia-induced human colon cancer cell lines. Shikonin showed potent inhibitory activity against hypoxia-induced HIF-1α activation in various human cancer cell lines and efficient scavenging activity of hypoxia-induced reactive oxygen species in tumor cells. Further analysis revealed that shikonin inhibited HIF-1α protein synthesis without affecting the expression of HIF-1α mRNA or degrading HIF-1α protein. It was subsequently shown to attenuate the activation of downstream mTOR/p70S6K/4E-BP1/eIF4E kinase. Shikonin also dose-dependently caused the cell cycle arrest of activated HCT116 cells and inhibited the proliferation of HCT116 and SW620 cells. Moreover, it significantly inhibited tumor growth in a xenograft modal. These findings suggest that shikonin could be considered for use as a potential drug in human colon cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Hong, Yu Ah; Bae, So Yeon; Ahn, Shin Young; Kim, Jieun; Kwon, Young Joo; Jung, Woon Yong; Ko, Gang Jee
2017-01-01
SIRT1 activation promotes the resistance of renal tubular cells to oxidative stress, and resveratrol is known as a SIRT1 activator. Resveratrol was injected intraperitoneally with iohexol for 24 hours. NRK-52E cells were pretreated with resveratrol for 24 hours and then exposed to iohexol for 3 hours. Renal function was measured by serum creatinine and cell survival was assessed by MTT assay. We investigated whether resveratrol attenuates oxidative stress and apoptosis in contrast-induced nephropathy (CIN). Serum creatinine and tubular injury increased significantly after iohexol treatment, and resveratrol co-treatment attenuated the renal injury. Cell survival decreased after iohexol exposure and resveratrol reduced cell death induced by iohexol. Resveratrol was accompanied with the activation of SIRT1 and PGC-1α and dephosphorylation of FoxO1 in mice with CIN. SIRT1 and PGC-1α expression were decreased by iohexol, and increased significantly in resveratrol-pretreated cells. These processes resulted in reduction of oxidative stress and apoptosis both in vivo and in vitro experiments. Resveratrol decreased inflammatory cell infiltration induced by iohexol in mice with CIN. SIRT1 inhibition using siRNA in tubular cells accentuated the decrease of cell viability by iohexol. Resveratrol attenuated CIN by modulating renal oxidative stress and apoptosis through activation of SIRT1-PGC-1α-FoxO1 signaling. The Author(s). Published by S. Karger AG, Basel.