Bacterial persistence by RNA endonucleases
Maisonneuve, Etienne; Shakespeare, Lana J.; Jørgensen, Mikkel Girke; Gerdes, Kenn
2011-01-01
Bacteria form persisters, individual cells that are highly tolerant to different types of antibiotics. Persister cells are genetically identical to nontolerant kin but have entered a dormant state in which they are recalcitrant to the killing activity of the antibiotics. The molecular mechanisms underlying bacterial persistence are unknown. Here, we show that the ubiquitous Lon (Long Form Filament) protease and mRNA endonucleases (mRNases) encoded by toxin-antitoxin (TA) loci are required for persistence in Escherichia coli. Successive deletion of the 10 mRNase-encoding TA loci of E. coli progressively reduced the level of persisters, showing that persistence is a phenotype common to TA loci. In all cases tested, the antitoxins, which control the activities of the mRNases, are Lon substrates. Consistently, cells lacking lon generated a highly reduced level of persisters. Moreover, Lon overproduction dramatically increased the levels of persisters in wild-type cells but not in cells lacking the 10 mRNases. These results support a simple model according to which mRNases encoded by TA loci are activated in a small fraction of growing cells by Lon-mediated degradation of the antitoxins. Activation of the mRNases, in turn, inhibits global cellular translation, and thereby induces dormancy and persistence. Many pathogenic bacteria known to enter dormant states have a plethora of TA genes. Therefore, in the future, the discoveries described here may lead to a mechanistic understanding of the persistence phenomenon in pathogenic bacteria. PMID:21788497
Cho, Junho; Carr, Anita Nicole; Whitworth, Lisa; Johnson, Brent; Wilson, Kevin Scott
2017-03-01
When exposed to antibiotics, many bacteria respond by activating intracellular 'toxin' proteins, which arrest cell growth and induce formation of persister cells that survive antibiotics. After antibiotics are removed, persisters can regrow by synthesizing 'antitoxin' proteins that sequester toxin proteins. In Escherichia coli, MazE antitoxin sequesters the activity of MazF toxin, which extensively cleaves cellular RNAs. Although the functions of MazEF proteins are well characterized, there is surprisingly little known about their effects on cell structure. Here, using a combination of microscopy techniques, we visualized the effects of MazEF and three bactericidal antibiotics on E. coli cell morphology and infrastructure. When ectopically expressed in E. coli, MazF temporarily stalled cell growth and induced persister formation, but only mildly elevated DNA mutagenesis. Viewed by electron microscopy, MazF-expressing persister cells were arrested in cell growth and division. Their chromosomal DNAs were compacted into thread-like structures. Their ribosomes were excluded from their nucleoids. After exposure to ciprofloxacin, persister regrowth was activated by MazE. Cell division remained inhibited while cells became extraordinarily elongated, then divided multiple times during stationary growth phase. This extreme filamentation during persister regrowth was unique to ciprofloxacin-treated persisters, likely caused by inhibition of cell division during regrowth, and was not observed with kanamycin-treated persisters.
Mib1 contributes to persistent directional cell migration by regulating the Ctnnd1-Rac1 pathway.
Mizoguchi, Takamasa; Ikeda, Shoko; Watanabe, Saori; Sugawara, Michiko; Itoh, Motoyuki
2017-10-31
Persistent directional cell migration is involved in animal development and diseases. The small GTPase Rac1 is involved in F-actin and focal adhesion dynamics. Local Rac1 activity is required for persistent directional migration, whereas global, hyperactivated Rac1 enhances random cell migration. Therefore, precise control of Rac1 activity is important for proper directional cell migration. However, the molecular mechanism underlying the regulation of Rac1 activity in persistent directional cell migration is not fully understood. Here, we show that the ubiquitin ligase mind bomb 1 (Mib1) is involved in persistent directional cell migration. We found that knockdown of MIB1 led to an increase in random cell migration in HeLa cells in a wound-closure assay. Furthermore, we explored novel Mib1 substrates for cell migration and found that Mib1 ubiquitinates Ctnnd1. Mib1-mediated ubiquitination of Ctnnd1 K547 attenuated Rac1 activation in cultured cells. In addition, we found that posterior lateral line primordium cells in the zebrafish mib1 ta52b mutant showed increased random migration and loss of directional F-actin-based protrusion formation. Knockdown of Ctnnd1 partially rescued posterior lateral line primordium cell migration defects in the mib1 ta52b mutant. Taken together, our data suggest that Mib1 plays an important role in cell migration and that persistent directional cell migration is regulated, at least in part, by the Mib1-Ctnnd1-Rac1 pathway. Published under the PNAS license.
Modelling the role of Tax expression in HTLV-I persistence in vivo.
Li, Michael Y; Lim, Aaron G
2011-12-01
Human T-lymphotropic virus type I (HTLV-I) is a persistent human retrovirus characterized by life-long infection and risk of developing HAM/TSP, a progressive neurological and inflammatory disease, and adult T-cell leukemia (ATL). Chronically infected individuals often harbor high proviral loads despite maintaining a persistently activated immune response. Based on a new hypothesis for the persistence of HTLV-I infection, a three-dimensional compartmental model is constructed that describes the dynamic interactions among latently infected target cells, target-cell activation, and immune responses to HTLV-I, with an emphasis on understanding the role of Tax expression in the persistence of HTLV-I.
Stat3-induced S1PR1 expression is critical for persistent Stat3 activation in tumors
Lee, Heehyoung; Deng, Jiehui; Kujawski, Maciej; Yang, Chunmei; Liu, Yong; Herrmann, Andreas; Kortylewski, Marcin; Horne, David; Somlo, George; Forman, Stephen; Jove, Richard; Yu, Hua
2011-01-01
IL-6/Jak2 signaling is viewed critical for persistent Stat3 activation in cancer. However, IL-6-induced Stat3 activity is transient in normal physiology. Here we identify a mechanism important for persistent Stat3 activation in tumor cells and the tumor microenvironment. We show that sphingosine-1-phosphate receptor 1 (S1PR1), a G-protein-coupled receptor for lysophospholipid sphingosine-1-phosphate (S1P), is elevated in Stat3-positive tumors. Stat3 is a transcription factor for the S1pr1 gene. Enhanced S1pr1 expression activates Stat3 and upregulates Il6 gene expression, thereby accelerating tumor growth and metastasis. Conversely, silencing S1pr1 in tumor cells or immune cells inhibits tumor Stat3 activity, tumor growth and metastasis. S1P/S1PR1-induced Stat3 activation is persistent, in contrast to transient Stat3 activation by IL-6. S1PR1 activates Stat3 in part by upregulating Jak2 tyrosine kinase activity. We demonstrate that Stat3-induced S1pr1 expression, as well as S1P/S1PR1 pathway, is important for persistent Stat3 activation in cancer cells and the tumor microenvironment and for malignant progression. PMID:21102457
Stromal cells in chronic inflammation and tertiary lymphoid organ formation.
Buckley, Christopher D; Barone, Francesca; Nayar, Saba; Bénézech, Cecile; Caamaño, Jorge
2015-01-01
Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.
The biological effect of particles on epithelial cells involves, in part, oxidant generation and a cascade of reactions culminating in inflammatory mediator release. Whether there is an immediate short-lived activation or continued persistent response of the cells to the particle...
Goormaghtigh, Frédéric; Fraikin, Nathan; Putrinš, Marta; Hallaert, Thibaut; Hauryliuk, Vasili; Garcia-Pino, Abel; Sjödin, Andreas; Kasvandik, Sergo; Udekwu, Klas; Tenson, Tanel; Kaldalu, Niilo; Van Melderen, Laurence
2018-06-12
Persistence is a reversible and low-frequency phenomenon allowing a subpopulation of a clonal bacterial population to survive antibiotic treatments. Upon removal of the antibiotic, persister cells resume growth and give rise to viable progeny. Type II toxin-antitoxin (TA) systems were assumed to play a key role in the formation of persister cells in Escherichia coli based on the observation that successive deletions of TA systems decreased persistence frequency. In addition, the model proposed that stochastic fluctuations of (p)ppGpp levels are the basis for triggering activation of TA systems. Cells in which TA systems are activated are thought to enter a dormancy state and therefore survive the antibiotic treatment. Using independently constructed strains and newly designed fluorescent reporters, we reassessed the roles of TA modules in persistence both at the population and single-cell levels. Our data confirm that the deletion of 10 TA systems does not affect persistence to ofloxacin or ampicillin. Moreover, microfluidic experiments performed with a strain reporting the induction of the yefM-yoeB TA system allowed the observation of a small number of type II persister cells that resume growth after removal of ampicillin. However, we were unable to establish a correlation between high fluorescence and persistence, since the fluorescence of persister cells was comparable to that of the bulk of the population and none of the cells showing high fluorescence were able to resume growth upon removal of the antibiotic. Altogether, these data show that there is no direct link between induction of TA systems and persistence to antibiotics. IMPORTANCE Within a growing bacterial population, a small subpopulation of cells is able to survive antibiotic treatment by entering a transient state of dormancy referred to as persistence. Persistence is thought to be the cause of relapsing bacterial infections and is a major public health concern. Type II toxin-antitoxin systems are small modules composed of a toxic protein and an antitoxin protein counteracting the toxin activity. These systems were thought to be pivotal players in persistence until recent developments in the field. Our results demonstrate that previous influential reports had technical flaws and that there is no direct link between induction of TA systems and persistence to antibiotics. Copyright © 2018 Goormaghtigh et al.
Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.
2015-01-01
Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413
Pregnancy persistently affects memory T cell populations.
Kieffer, Tom E C; Faas, Marijke M; Scherjon, Sicco A; Prins, Jelmer R
2017-02-01
Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the constitution, size and activation status of peripheral human memory T-lymphocyte populations. Effector memory (EM) and central memory (CM) T-lymphocytes were analyzed using flow cytometry of peripheral blood from 14 nulligravid, 12 primigravid and 15 parous women that were on average 18 months postpartum. The short term effects were shown by the significantly higher CD4+ EM cell and activated CD4+ memory cell proportions in primigravid women compared to nulligravid women. The persistent effects found in this study were the significantly higher proportions of CD4+ EM, CD4+ CM and activated memory T cells in parous women compared to nulligravid women. In contrast to CD4+ cells, activation status of CD8+ memory cells did not differ between the groups. This study shows that pregnancy persistently affects the pre-pregnancy CD4+ memory cell pool in human peripheral blood. During pregnancy, CD4+ T-lymphocytes might differentiate into EM cells followed by persistent higher proportions of CD4+ CM and EM cells postpartum. The persistent effects of pregnancy on memory T cells found in this study support the hypothesis that memory T cells are generated during pregnancy and that these cells could be involved in the lower complication risks in multiparous pregnancies in humans. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Gargett, Tessa; Yu, Wenbo; Dotti, Gianpietro; Yvon, Eric S; Christo, Susan N; Hayball, John D; Lewis, Ian D; Brenner, Malcolm K; Brown, Michael P
2016-01-01
Chimeric antigen receptor (CAR) T cells have shown great promise in the treatment of hematologic malignancies but more variable results in the treatment of solid tumors and the persistence and expansion of CAR T cells within patients has been identified as a key correlate of antitumor efficacy. Lack of immunological “space”, functional exhaustion, and deletion have all been proposed as mechanisms that hamper CAR T-cell persistence. Here we describe the events following activation of third-generation CAR T cells specific for GD2. CAR T cells had highly potent immediate effector functions without evidence of functional exhaustion in vitro, although reduced cytokine production reversible by PD-1 blockade was observed after longer-term culture. Significant activation-induced cell death (AICD) of CAR T cells was observed after repeated antigen stimulation, and PD-1 blockade enhanced both CAR T-cell survival and promoted killing of PD-L1+ tumor cell lines. Finally, we assessed CAR T-cell persistence in patients enrolled in the CARPETS phase 1 clinical trial of GD2-specific CAR T cells in the treatment of metastatic melanoma. Together, these data suggest that deletion also occurs in vivo and that PD-1-targeted combination therapy approaches may be useful to augment CAR T-cell efficacy and persistence in patients. PMID:27019998
NASA Astrophysics Data System (ADS)
Maldiney, Thomas; Bessière, Aurélie; Seguin, Johanne; Teston, Eliott; Sharma, Suchinder K.; Viana, Bruno; Bos, Adrie J. J.; Dorenbos, Pieter; Bessodes, Michel; Gourier, Didier; Scherman, Daniel; Richard, Cyrille
2014-04-01
Optical imaging for biological applications requires more sensitive tools. Near-infrared persistent luminescence nanoparticles enable highly sensitive in vivo optical detection and complete avoidance of tissue autofluorescence. However, the actual generation of persistent luminescence nanoparticles necessitates ex vivo activation before systemic administration, which prevents long-term imaging in living animals. Here, we introduce a new generation of optical nanoprobes, based on chromium-doped zinc gallate, whose persistent luminescence can be activated in vivo through living tissues using highly penetrating low-energy red photons. Surface functionalization of this photonic probe can be adjusted to favour multiple biomedical applications such as tumour targeting. Notably, we show that cells can endocytose these nanoparticles in vitro and that, after intravenous injection, we can track labelled cells in vivo and follow their biodistribution by a simple whole animal optical detection, opening new perspectives for cell therapy research and for a variety of diagnosis applications.
Mechanisms of HIV persistence in HIV reservoirs.
Mzingwane, Mayibongwe L; Tiemessen, Caroline T
2017-03-01
The establishment and maintenance of HIV reservoirs that lead to persistent viremia in patients on antiretroviral drugs remains the greatest challenge of the highly active antiretroviral therapy era. Cellular reservoirs include resting memory CD4+ T lymphocytes, implicated as the major HIV reservoir, having a half-life of approximately 44 months while this is less than 6 hours for HIV in plasma. In some individuals, persistent viremia consists of invariant HIV clones not detected in circulating resting CD4+ T lymphocytes suggesting other possible sources of residual viremia. Some anatomical reservoirs that may harbor such cells include the brain and the central nervous system, the gastrointestinal tract and the gut-associated lymphoid tissue and other lymphoid organs, and the genital tract. The presence of immune cells and other HIV susceptible cells, occurring in differing compositions in anatomical reservoirs, coupled with variable and poor drug penetration that results in suboptimal drug concentrations in some sites, are all likely factors that fuel the continued low-level replication and persistent viremia during treatment. Latently, HIV-infected CD4+ T cells harboring replication-competent virus, HIV cell-to-cell spread, and HIV-infected T cell homeostatic proliferation due to chronic immune activation represent further drivers of this persistent HIV viremia during highly active antiretroviral therapy. Copyright © 2017 John Wiley & Sons, Ltd.
Ghosh, Anirban; Baltekin, Özden; Wäneskog, Marcus; Elkhalifa, Dina; Hammarlöf, Disa L; Elf, Johan; Koskiniemi, Sanna
2018-05-02
Bacterial populations can use bet-hedging strategies to cope with rapidly changing environments. One example is non-growing cells in clonal bacterial populations that are able to persist antibiotic treatment. Previous studies suggest that persisters arise in bacterial populations either stochastically through variation in levels of global signalling molecules between individual cells, or in response to various stresses. Here, we show that toxins used in contact-dependent growth inhibition (CDI) create persisters upon direct contact with cells lacking sufficient levels of CdiI immunity protein, which would otherwise bind to and neutralize toxin activity. CDI-mediated persisters form through a feedforward cycle where the toxic activity of the CdiA toxin increases cellular (p)ppGpp levels, which results in Lon-mediated degradation of the immunity protein and more free toxin. Thus, CDI systems mediate a population density-dependent bet-hedging strategy, where the fraction of non-growing cells is increased only when there are many cells of the same genotype. This may be one of the mechanisms of how CDI systems increase the fitness of their hosts. © 2018 The Authors.
Attachment defect in mouse fibroblasts (L cells) persistently infected with Chlamydia psittaci.
Moulder, J W; Levy, N J; Zeichner, S L; Lee, C K
1981-01-01
Almost all the cells in populations of mouse fibroblasts (L cells) persistently infected with the 6BC strain of Chlamydia psittaci were immune to superinfection with high multiplicities of C. psittaci, whether or not the L cells contained visible chlamydial inclusions. As ascertained by experiments with 14C-labeled C. psittaci, immunity to superinfection resulted from the failure of added chlamydiae to attach to persistently infected host cells. However, when exogenous C. psittaci was introduced into persistently infected L cells by centrifuging the inoculum onto host cell monolayers or by pretreating the monolayers with diethylaminoethyl-dextran, these chlamydiae produced expected numbers of infectious progeny. Persistently infected L cells were associated in an unknown way with a C. psittaci population that entered the host cells only with the aid of centrifugation or pretreatment with diethylaminoethyl-dextran. Inclusion-free, persistently infected L cells appeared to present at least two separate hindrances to chlamydial activity: blockage of the attachment of exogenous elementary bodies to persistently infected host cells and prevention of the initiation of chlamydial multiplication by means of a normal developmental cycle in the absence of added C. psittaci. Images PMID:7298188
Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy
Koppikar, Priya; Bhagwat, Neha; Kilpivaara, Outi; Manshouri, Taghi; Adli, Mazhar; Hricik, Todd; Liu, Fan; Saunders, Lindsay M.; Mullally, Ann; Abdel-Wahab, Omar; Leung, Laura; Weinstein, Abby; Marubayashi, Sachie; Goel, Aviva; Gönen, Mithat; Estrov, Zeev; Ebert, Benjamin L.; Chiosis, Gabriela; Nimer, Stephen D.; Bernstein, Bradley E.; Verstovsek, Srdan; Levine, Ross L.
2012-01-01
The identification of somatic activating mutations in JAK21–4 and in the thrombopoietin receptor (MPL)5 in the majority of myeloproliferative neoplasm (MPN) patients led to the clinical development of JAK2 kinase inhibitors6,7. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms, but does not significantly reduce or eliminate the MPN clone in most MPN patients. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic JAK2 inhibition. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK-STAT signaling and with heterodimerization between activated JAK2 and JAK1/TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible, such that JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, murine models, and patients treated with JAK2 inhibitors. RNA interference and pharmacologic studies demonstrate that JAK2 inhibitor persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors. PMID:22820254
Rollin, Guillaume; Tan, Xin; Tros, Fabiola; Dupuis, Marion; Nassif, Xavier; Charbit, Alain; Coureuil, Mathieu
2017-01-01
The Gram-positive human pathogen Staphylococcus aureus is a leading cause of severe bacterial infections. Recent studies have shown that various cell types could readily internalize S. aureus and infected cells have been proposed to serve as vehicle for the systemic dissemination of the pathogen. Here we focused on the intracellular behavior of the Community-Associated Methicillin-Resistant S. aureus strain USA300. Supporting earlier observations, we found that wild-type S. aureus strain USA300 persisted for longer period within endothelial cells than within macrophages and that a mutant displaying the small colony variant phenotype (ΔhemDBL) had increased intracellular persistence. Time-lapse microscopy revealed that initial persistence of wild-type bacteria in endothelial cells corresponded to distinct single cell events, ranging from active intracellular bacterial proliferation, leading to cell lysis, to non-replicating bacterial persistence even 1 week after infection. In sharp contrast, ΔhemDBL mutant bacteria were essentially non-replicating up to 10 days after infection. These findings suggest that internalization of S. aureus in endothelial cells triggers its persistence and support the notion that endothelial cells might constitute an intracellular persistence niche responsible for reported relapse of infection after antibiotic therapy. PMID:28769913
Damouche, Abderaouf; Pourcher, Guillaume; Pourcher, Valérie; Benoist, Stéphane; Busson, Elodie; Lataillade, Jean-Jacques; Le Van, Mélanie; Lazure, Thierry; Adam, Julien; Favier, Benoit; Vaslin, Bruno; Müller-Trutwin, Michaela; Lambotte, Olivier; Bourgeois, Christine
2017-12-01
We and others have demonstrated that adipose tissue is a reservoir for HIV. Evaluation of the mechanisms responsible for viral persistence may lead to ways of reducing these reservoirs. Here, we evaluated the immune characteristics of adipose tissue in HIV-infected patients receiving antiretroviral therapy (ART) and in non-HIV-infected patients. We notably sought to determine whether adipose tissue's intrinsic properties and/or HIV induced alteration of the tissue environment may favour viral persistence. ART-controlled HIV infection was associated with a difference in the CD4/CD8 T-cell ratio and an elevated proportion of Treg cells in subcutaneous adipose tissue. No changes in Th1, Th2 and Th17 cell proportions or activation markers expression on T cell (Ki-67, HLA-DR) could be detected, and the percentage of CD69-expressing resident memory CD4 + T cells was not affected. Overall, our results indicate that adipose-tissue-resident CD4 + T cells are not extensively activated during HIV infection. PD-1 was expressed by a high proportion of tissue-resident memory CD4 + T cells in both HIV-infected patients and non-HIV-infected patients. Our findings suggest that adipose tissue's intrinsic immunomodulatory properties may limit immune activation and thus may strongly contribute to viral persistence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
D'Angelo, Sandra P; Melchiori, Luca; Merchant, Melinda S; Bernstein, Donna B; Glod, John; Kaplan, Rosandra N; Grupp, Stephan A; Tap, William D; Chagin, Karen; Binder, Gwendolyn K; Basu, Samik; Lowther, Daniel E; Wang, Ruoxi; Bath, Natalie; Tipping, Alex; Betts, Gareth; Ramachandran, Indu; Navenot, Jean-Marc; Zhang, Hua; Wells, Daniel K; Van Winkle, Erin; Kari, Gabor; Trivedi, Trupti; Holdich, Tom; Pandite, Lini N; Amado, Rafael; Mackall, Crystal L
2018-06-11
We evaluated safety and activity of autologous T cells expressing NY-ESO-1c259, an affinity-enhanced T cell receptor (TCR) recognizing an HLA-A2-restricted NY-ESO-1/LAGE-1a-derived peptide, in patients with metastatic synovial sarcoma (NY-ESO-1c259T cells). Confirmed antitumor responses occurred in 50% of patients (6/12) and were characterized by tumor shrinkage over several months. Circulating NY-ESO-1c259T cells were present post-infusion in all patients and persisted for at least 6 months in all responders. Most infused NY-ESO-1c259T cells exhibited an effector memory phenotype following the ex vivo expansion, but the persisting pools comprised largely central memory and stem cell memory subsets, which remained polyfunctional and showed no evidence for T cell exhaustion despite persistent tumor burdens. Next generation sequencing of endogenous TCRs in CD8+ NY-ESO-1c259T cells revealed clonal diversity without contraction over time. These data suggest that regenerative pools of NY-ESO-1c259T cells produced a continuing supply of effector cells to mediate sustained, clinically meaningful antitumor effects. Copyright ©2018, American Association for Cancer Research.
Magistretti, Jacopo; Ragsdale, David S; Alonso, Angel
1999-01-01
Single Na+ channel activity was recorded in patch-clamp, cell-attached experiments performed on dendritic processes of acutely isolated principal neurones from rat entorhinal-cortex layer II. The distances of the recording sites from the soma ranged from ≈20 to ≈100 μm.Step depolarisations from holding potentials of −120 to −100 mV to test potentials of −60 to +10 mV elicited Na+ channel openings in all of the recorded patches (n= 16).In 10 patches, besides transient Na+ channel openings clustered within the first few milliseconds of the depolarising pulses, prolonged and/or late Na+ channel openings were also regularly observed. This ‘persistent’ Na+ channel activity produced net inward, persistent currents in ensemble-average traces, and remained stable over the entire duration of the experiments (≈9 to 30 min).Two of these patches contained <= 3 channels. In these cases, persistent Na+ channel openings could be attributed to the activity of one single channel.The voltage dependence of persistent-current amplitude in ensemble-average traces closely resembled that of whole-cell, persistent Na+ current expressed by the same neurones, and displayed the same characteristic low threshold of activation.Dendritic, persistent Na+ channel openings had relatively high single-channel conductance (≈20 pS), similar to what is observed for somatic, persistent Na+ channels.We conclude that a stable, persistent Na+ channel activity is expressed by proximal dendrites of entorhinal-cortex layer II principal neurones, and can contribute a significant low-threshold, persistent Na+ current to the dendritic processing of excitatory synaptic inputs. PMID:10601494
Adusumilli, Prasad S.; Cherkassky, Leonid; Villena-Vargas, Jonathan; Colovos, Christos; Servais, Elliot; Plotkin, Jason; Jones, David R.; Sadelain, Michel
2015-01-01
Translating the recent success of chimeric antigen receptor (CAR) T cell therapy for hematological malignancies to solid tumors will necessitate overcoming several obstacles, including inefficient T cell tumor infiltration and insufficient functional persistence. Taking advantage of an orthotopic model that faithfully mimics human pleural malignancy, we evaluated two routes of administration of mesothelin-targeted T cells using the M28z CAR. We found that intra-pleurally administered CAR T cells vastly out-performed systemically infused T cells, requiring 30-fold fewer M28z T cells to induce long-term complete remissions. Following intrapleural T cell administration, prompt in vivo antigen-induced T cell activation allowed robust CAR T cell expansion and effector differentiation, resulting in enhanced anti-tumor efficacy and functional T cell persistence for 200 days. Regional T cell administration also promoted efficient elimination of extrathoracic tumor sites. This therapeutic efficacy was dependent on early CD4+ T cell activation associated with a higher intra-tumoral CD4/CD8 cell ratios and CD28-dependent CD4+ T cell-mediated cytotoxicity. In contrast, intravenously delivered CAR T cells, even when accumulated at equivalent numbers in the pleural tumor, did not achieve comparable activation, tumor eradication or persistence. The remarkable ability of intrapleurally administered T cells to circulate and persist supports the concept of delivering optimal CAR T cell therapy through “regional distribution centers.” Based on these results, we are opening a phase I clinical trial to evaluate the safety of intrapleural administration of mesothelin-targeted CAR T cells in patients with primary or secondary pleural malignancies. PMID:25378643
Kalmbach, Brian; Chitwood, Raymond A.; Mauk, Michael D.
2012-01-01
We have addressed the source and nature of the persistent neural activity that bridges the stimulus-free gap between the conditioned stimulus (CS) and unconditioned stimulus (US) during trace eyelid conditioning. Previous work has demonstrated that this persistent activity is necessary for trace eyelid conditioning: CS-elicited activity in mossy fiber inputs to the cerebellum does not extend into the stimulus-free trace interval, which precludes the cerebellar learning that mediates conditioned response expression. In behaving rabbits we used in vivo recordings from a region of medial prefrontal cortex (mPFC) that is necessary for trace eyelid conditioning to test the hypothesis that neurons there generate activity that persists beyond CS offset. These recordings revealed two patterns of activity during the trace interval that would enable cerebellar learning. Activity in some cells began during the tone CS and persisted to overlap with the US, whereas in other cells, activity began during the stimulus-free trace interval. Injection of anterograde tracers into this same region of mPFC revealed dense labeling in the pontine nuclei, where recordings also revealed tone-evoked persistent activity during trace conditioning. These data suggest a corticopontine pathway that provides an input to the cerebellum during trace conditioning trials that bridges the temporal gap between the CS and US to engage cerebellar learning. As such, trace eyelid conditioning represents a well-characterized and experimentally tractable system that can facilitate mechanistic analyses of cortical persistent activity and how it is used by downstream brain structures to influence behavior. PMID:21957220
Garrison, Aaron T; Abouelhassan, Yasmeen; Kallifidas, Dimitris; Bai, Fang; Ukhanova, Maria; Mai, Volker; Jin, Shouguang; Luesch, Hendrik; Huigens, Robert W
2015-12-01
Conventional antibiotics are ineffective against non-replicating bacteria (for example, bacteria within biofilms). We report a series of halogenated phenazines (HP), inspired by marine antibiotic 1, that targets persistent bacteria. HP 14 demonstrated the most potent biofilm eradication activities to date against MRSA, MRSE, and VRE biofilms (MBEC = 0.2-12.5 μM), as well as the effective killing of MRSA persister cells in non-biofilm cultures. Frontline MRSA treatments, vancomycin and daptomycin, were unable to eradicate MRSA biofilms or non-biofilm persisters alongside 14. HP 13 displayed potent antibacterial activity against slow-growing M. tuberculosis (MIC = 3.13 μM), the leading cause of death by bacterial infection around the world. HP analogues effectively target persistent bacteria through a mechanism that is non-toxic to mammalian cells and could have a significant impact on treatments for chronic bacterial infections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlon, Brian P.; Nakayasu, Ernesto S.; Fleck, Laura E.
The current antibiotic crisis stems from two distinct phenomena-drug resistance, and drug tolerance. Resistance mechanisms such as drug efflux or modification prevent antibiotics from binding to their targets 1, allowing pathogens to grow. Antibiotic tolerance is the property of persister cells, phenotypic variants of regular bacteria 2. Antibiotics kill by corrupting targets, but these are inactive in dormant persisters, leading to tolerance. Persisters were first identified by Joseph Bigger in 1944, when he discovered a surviving sub-population of Staphylococcus following treatment with penicillin3. Persisters are largely responsible for recalcitrance of chronic diseases such as tuberculosis, and various infections associated withmore » biofilms - endocarditis, osteomyelitis, infections of catheters and indwelling devices, and deep-seated infections of soft tissues 4. There are a number of redundant pathways involved in persister formation5,6 precluding development of drugs inhibiting their formation. The acyldepsipeptide antibiotic (ADEP 4) has been shown to activate the ClpP protease resulting in death of growing cells 7. Here we show that ADEP4 activated ClpP becomes a fairly non-specific protease and kills persister cells by degradation of over 400 intracellular targets. clpP mutants are resistant to ADEP4 7, but we find that they display increased susceptibility to killing by a range of conventional antibiotics. Combining ADEP4 with rifampicin leads to eradication of persisters, stationary and biofilm populations of Staphylococcus aureus in vitro and in a deep-seated murine infection. Target corruption/activation provides an approach to killing persisters and eradicating chronic infections.« less
Bosch, Ronald J.; Macatangay, Bernard J.; Rinaldo, Charles R.; Riddler, Sharon A.; Mellors, John W.
2017-01-01
Antiretroviral therapy (ART) reduces levels of HIV-1 and immune activation but both can persist despite clinically effective ART. The relationships among pre-ART and on-ART levels of HIV-1 and activation are incompletely understood, in part because prior studies have been small or cross-sectional. To address these limitations, we evaluated measures of HIV-1 persistence, inflammation, T cell activation and T cell cycling in a longitudinal cohort of 101 participants who initiated ART and had well-documented sustained suppression of plasma viremia for a median of 7 years. During the first 4 years following ART initiation, HIV-1 DNA declined by 15-fold (93%) whereas cell-associated HIV-1 RNA (CA-RNA) fell 525-fold (>99%). Thereafter, HIV-1 DNA levels continued to decline slowly (5% per year) with a half-life of 13 years. Participants who had higher HIV-1 DNA and CA-RNA before starting treatment had higher levels while on ART, despite suppression of plasma viremia for many years. Markers of inflammation and T cell activation were associated with plasma HIV-1 RNA levels before ART was initiated but there were no consistent associations between these markers and HIV-1 DNA or CA-RNA during long-term ART, suggesting that HIV-1 persistence is not driving or driven by inflammation or activation. Higher levels of inflammation, T cell activation and cycling before ART were associated with higher levels during ART, indicating that immunologic events that occurred well before ART initiation had long-lasting effects despite sustained virologic suppression. These findings should stimulate studies of viral and host factors that affect virologic, inflammatory and immunologic set points prior to ART initiation and should inform the design of strategies to reduce HIV-1 reservoirs and dampen immune activation that persists despite ART. PMID:28426825
DNA-crosslinker cisplatin eradicates bacterial persister cells.
Chowdhury, Nityananda; Wood, Thammajun L; Martínez-Vázquez, Mariano; García-Contreras, Rodolfo; Wood, Thomas K
2016-09-01
For all bacteria, nearly every antimicrobial fails since a subpopulation of the bacteria enter a dormant state known as persistence, in which the antimicrobials are rendered ineffective due to the lack of metabolism. This tolerance to antibiotics makes microbial infections the leading cause of death worldwide and makes treating chronic infections, including those of wounds problematic. Here, we show that the FDA-approved anti-cancer drug cisplatin [cis-diamminodichloroplatinum(II)], which mainly forms intra-strand DNA crosslinks, eradicates Escherichia coli K-12 persister cells through a growth-independent mechanism. Additionally, cisplatin is more effective at killing Pseudomonas aeruginosa persister cells than mitomycin C, which forms inter-strand DNA crosslinks, and cisplatin eradicates the persister cells of several pathogens including enterohemorrhagic E. coli, Staphylococcus aureus, and P. aeruginosa. Cisplatin was also highly effective against clinical isolates of S. aureus and P. aeruginosa. Therefore, cisplatin has broad spectrum activity against persister cells. Biotechnol. Bioeng. 2016;113: 1984-1992. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Particle retention by respiratory epithelial cells is associated with persistent biological effect
The biological effect of particles on respiratory epithelial cells involves, in part, the generation of an oxidative stress and a consequent cascade of reactions culminating in inflammatory mediator release. Whether there is either an immediate, transitory activation or a persist...
Chou, Cassie K.; Schietinger, Andrea; Liggitt, H. Denny; Tan, Xiaoxia; Funk, Sarah; Freeman, Gordon J.; Ratliff, Timothy L.; Greenberg, Norman M.; Greenberg, Philip D.
2012-01-01
Adoptive T cell therapy (ACT) for the treatment of established cancers is actively being pursued in clinical trials. However, poor in vivo persistence and maintenance of anti-tumor activity of transferred T cells remain major problems. Transforming growth factor beta (TGFβ) is a potent immunosuppressive cytokine that is often expressed at high levels within the tumor microenvironment, potentially limiting T cell mediated anti-tumor activity. Here, we used a model of autochthonous murine prostate cancer to evaluate the effect of cell intrinsic abrogation of TGFβ signaling in self/tumor specific CD8 T cells used in ACT to target the tumor in situ. We found that persistence and anti-tumor activity of adoptively transferred effector T cells deficient in TGFβ signaling was significantly improved in the cancerous prostate. However, over time, despite persistence in peripheral lymphoid organs, the numbers of transferred cells in the prostate decreased and the residual prostate infiltrating T cells were no longer functional. These findings reveal that TGFβ negatively regulates the accumulation and effector function of transferred self/tumor specific CD8 T cells and highlight that, when targeting a tumor antigen that is also expressed as a self-protein, additional substantive obstacles are operative within the tumor microenvironment, potentially hampering the success of ACT for solid tumors. PMID:22984076
Krenciute, Giedre; Prinzing, Brooke L; Yi, Zhongzhen; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Balyasnikova, Irina V; Gottschalk, Stephen
2017-07-01
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults and is virtually incurable with conventional therapies. Immunotherapy with T cells expressing GBM-specific chimeric antigen receptors (CAR) is an attractive approach to improve outcomes. Although CAR T cells targeting GBM antigens, such as IL13 receptor subunit α2 (IL13Rα2), HER2, and EGFR variant III (EGFRvIII), have had antitumor activity in preclinical models, early-phase clinical testing has demonstrated limited antiglioma activity. Transgenic expression of IL15 is an appealing strategy to enhance CAR T-cell effector function. We tested this approach in our IL13Rα2-positive glioma model in which limited IL13Rα2-CAR T-cell persistence results in recurrence of antigen-positive gliomas. T cells were genetically modified with retroviral vectors encoding IL13Rα2-CARs or IL15 (IL13Rα2-CAR.IL15 T cells). IL13Rα2-CAR.IL15 T cells recognized glioma cells in an antigen-dependent fashion, had greater proliferative capacity, and produced more cytokines after repeated stimulations in comparison with IL13Rα2-CAR T cells. No autonomous IL13Rα2-CAR.IL15 T-cell proliferation was observed; however, IL15 expression increased IL13Rα2-CAR T-cell viability in the absence of exogenous cytokines or antigen. In vivo , IL13Rα2-CAR.IL15 T cells persisted longer and had greater antiglioma activity than IL13Rα2-CAR T cells, resulting in a survival advantage. Gliomas recurring after 40 days after T-cell injection had downregulated IL13Rα2 expression, indicating that antigen loss variants occur in the setting of improved T-cell persistence. Thus, CAR T cells for GBM should not only be genetically modified to improve their proliferation and persistence, but also to target multiple antigens. Summary: Glioblastoma responds imperfectly to immunotherapy. Transgenic expression of IL15 in T cells expressing CARs improved their proliferative capacity, persistence, and cytokine production. The emergence of antigen loss variants highlights the need to target multiple tumor antigens. Cancer Immunol Res; 5(7); 571-81. ©2017 AACR . ©2017 American Association for Cancer Research.
Inducible nitric oxide synthase in T cells regulates T cell death and immune memory
Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit
2004-01-01
The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408
Merfa, Marcus V; Niza, Bárbara; Takita, Marco A; De Souza, Alessandra A
2016-01-01
Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis-CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions.
Merfa, Marcus V.; Niza, Bárbara; Takita, Marco A.; De Souza, Alessandra A.
2016-01-01
Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis—CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions. PMID:27375608
Cruz, Conrad Russell Y; Micklethwaite, Kenneth P; Savoldo, Barbara; Ramos, Carlos A; Lam, Sharon; Ku, Stephanie; Diouf, Oumar; Liu, Enli; Barrett, A John; Ito, Sawa; Shpall, Elizabeth J; Krance, Robert A; Kamble, Rammurti T; Carrum, George; Hosing, Chitra M; Gee, Adrian P; Mei, Zhuyong; Grilley, Bambi J; Heslop, Helen E; Rooney, Cliona M; Brenner, Malcolm K; Bollard, Catherine M; Dotti, Gianpietro
2013-10-24
Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control.
Olagnier, David; Sze, Alexandre; Bel Hadj, Samar; Chiang, Cindy; Steel, Courtney; Han, Xiaoying; Routy, Jean-Pierre; Lin, Rongtuan; Hiscott, John; van Grevenynghe, Julien
2014-12-01
The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis.
Bel Hadj, Samar; Chiang, Cindy; Steel, Courtney; Han, Xiaoying; Routy, Jean-Pierre; Lin, Rongtuan; Hiscott, John; van Grevenynghe, Julien
2014-01-01
The mechanisms involved in the persistence of activated CD4+ T lymphocytes following primary human T leukemia/lymphoma virus type 1 (HTLV-1) infection remain unclear. Here, we demonstrate that the HTLV-1 Tax oncoprotein modulates phosphorylation and transcriptional activity of the FOXO3a transcription factor, via upstream activation of the AKT pathway. De novo HTLV-1 infection of CD4+ T cells or direct lentiviral-mediated introduction of Tax led to AKT activation and AKT-dependent inactivation of FOXO3a, via phosphorylation of residues Ser253 and Thr32. Inhibition of FOXO3a signalling led to the long-term survival of a population of highly activated, terminally differentiated CD4+Tax+CD27negCCR7neg T cells that maintained the capacity to disseminate infectious HTLV-1. CD4+ T cell persistence was reversed by chemical inhibition of AKT activity, lentiviral-mediated expression of a dominant-negative form of FOXO3a or by specific small interfering RNA (siRNA)-mediated silencing of FOXO3a. Overall this study provides new mechanistic insight into the strategies used by HTLV-1 to increase long-term maintenance of Tax+CD4+ T lymphocytes during the early stages of HTLV-1 pathogenesis. PMID:25521510
1990-12-20
and infectious mononucleosis , as well as outbreaks of herpes simplex (Ishigami, 1919; Hinkle and Plummer, 1952; McClelland, Alexander, and Marks, 1982...Evans, A., and Neiderman, J., (1979). Psychosocial risk factors in the development of infectious mononucleosis . Psychosomatic Medicine, 41, 445-466...34Stress, Coping, and Infectious Illness: Persistently Low Natural Killer Cell Activity as a Host Ri-k Fa.ctor" 2. PERSONAL AUTHOR(S) Sandra M. Lev
Parra-Millán, Raquel; Guerrero-Gómez, David; Ayerbe-Algaba, Rafael; Pachón-Ibáñez, Maria Eugenia; Miranda-Vizuete, Antonio
2018-01-01
ABSTRACT Acinetobacter baumannii is a significant human pathogen associated with hospital-acquired infections. While adhesion, an initial and important step in A. baumannii infection, is well characterized, the intracellular trafficking of this pathogen inside host cells remains poorly studied. Here, we demonstrate that transcription factor EB (TFEB) is activated after A. baumannii infection of human lung epithelial cells (A549). We also show that TFEB is required for the invasion and persistence inside A549 cells. Consequently, lysosomal biogenesis and autophagy activation were observed after TFEB activation which could increase the death of A549 cells. In addition, using the Caenorhabditis elegans infection model by A. baumannii, the TFEB orthologue HLH-30 was required for survival of the nematode to infection, although nuclear translocation of HLH-30 was not required. These results identify TFEB as a conserved key factor in the pathogenesis of A. baumannii. IMPORTANCE Adhesion is an initial and important step in Acinetobacter baumannii infections. However, the mechanism of entrance and persistence inside host cells is unclear and remains to be understood. In this study, we report that, in addition to its known role in host defense against Gram-positive bacterial infection, TFEB also plays an important role in the intracellular trafficking of A. baumannii in host cells. TFEB was activated shortly after A. baumannii infection and is required for its persistence within host cells. Additionally, using the C. elegans infection model by A. baumannii, the TFEB orthologue HLH-30 was required for survival of the nematode to infection, although nuclear translocation of HLH-30 was not required. PMID:29600279
Cruz, Conrad Russell Y.; Micklethwaite, Kenneth P.; Savoldo, Barbara; Ramos, Carlos A.; Lam, Sharon; Ku, Stephanie; Diouf, Oumar; Liu, Enli; Barrett, A. John; Ito, Sawa; Shpall, Elizabeth J.; Krance, Robert A.; Kamble, Rammurti T.; Carrum, George; Hosing, Chitra M.; Gee, Adrian P.; Mei, Zhuyong; Grilley, Bambi J.; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Bollard, Catherine M.
2013-01-01
Autologous T cells expressing a CD19-specific chimeric antigen receptor (CD19.CAR) are active against B-cell malignancies, but it is unknown whether allogeneic CD19.CAR T cells are safe or effective. After allogeneic hematopoietic stem cell transplantation (HSCT), infused donor-derived virus-specific T cells (VSTs) expand in vivo, persist long term, and display antiviral activity without inducing graft-vs-host disease; therefore, we determined whether donor VSTs, engineered to express CD19.CAR, retained the characteristics of nonmanipulated allogeneic VSTs while gaining antitumor activity. We treated 8 patients with allogeneic (donor-derived) CD19.CAR-VSTs 3 months to 13 years after HSCT. There were no infusion-related toxicities. VSTs persisted for a median of 8 weeks in blood and up to 9 weeks at disease sites. Objective antitumor activity was evident in 2 of 6 patients with relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received cells while in remission remain disease free. In 2 of 3 patients with viral reactivation, donor CD19.CAR-VSTs expanded concomitantly with VSTs. Hence CD19.CAR-VSTs display antitumor activity and, because their number may be increased in the presence of viral stimuli, earlier treatment post-HSCT (when lymphodepletion is greater and the incidence of viral infection is higher) or planned vaccination with viral antigens may enhance disease control. This study is registered at clinicaltrials.gov as #NCT00840853. PMID:24030379
Hurton, Lenka V; Singh, Harjeet; Najjar, Amer M; Switzer, Kirsten C; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N
2016-11-29
Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T SCM ) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR + T cells with preserved T SCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19 + leukemia. Long-lived T cells were CD45RO neg CCR7 + CD95 + , phenotypically most similar to T SCM , and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR + T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.
Hurton, Lenka V.; Singh, Harjeet; Najjar, Amer M.; Switzer, Kirsten C.; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.
2016-01-01
Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials. PMID:27849617
Da Silva, Diane M; Woodham, Andrew W; Skeate, Joseph G; Rijkee, Laurie K; Taylor, Julia R; Brand, Heike E; Muderspach, Laila I; Roman, Lynda D; Yessaian, Annie A; Pham, Huyen Q; Matsuo, Koji; Lin, Yvonne G; McKee, Greg M; Salazar, Andres M; Kast, W Martin
2015-12-01
Human papillomavirus (HPV)-mediated suppression of Langerhans cell (LC) function can lead to persistent infection and development of cervical intraepithelial neoplasia (CIN). Women with HPV-induced high-grade CIN2/3 have not mounted an effective immune response against HPV, yet it is unknown if LC-mediated T cell activation from such women is functionally impaired against HPV. We investigated the functional activation of in vitro generated LC and their ability to induce HPV16-specific T cells from CIN2/3 patients after exposure to HPV16 followed by treatment with stabilized Poly-I:C (s-Poly-I:C). LC from patients exposed to HPV16 demonstrated a lack of costimulatory molecule expression, inflammatory cytokine secretion, and chemokine-directed migration. Conversely, s-Poly-I:C caused significant phenotypic and functional activation of HPV16-exposed LC, which resulted in de novo generation of HPV16-specific CD8(+) T cells. Our results highlight that LC of women with a history of persistent HPV infection can present HPV antigens and are capable of inducing an adaptive T cell immune response when given the proper stimulus, suggesting that s-Poly-I:C compounds may be attractive immunomodulators for LC-mediated clearance of persistent HPV infection. Copyright © 2015 Elsevier Inc. All rights reserved.
Takada, Honami; Imadome, Ken-Ichi; Shibayama, Haruna; Yoshimori, Mayumi; Wang, Ludan; Saitoh, Yasunori; Uota, Shin; Yamaoka, Shoji; Koyama, Takatoshi; Shimizu, Norio; Yamamoto, Kouhei; Fujiwara, Shigeyoshi; Miura, Osamu; Arai, Ayako
2017-01-01
Epstein-Barr virus (EBV) has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV). However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells.
Shibayama, Haruna; Yoshimori, Mayumi; Wang, Ludan; Saitoh, Yasunori; Uota, Shin; Yamaoka, Shoji; Koyama, Takatoshi; Shimizu, Norio; Yamamoto, Kouhei; Fujiwara, Shigeyoshi; Miura, Osamu
2017-01-01
Epstein–Barr virus (EBV) has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV). However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells. PMID:28346502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoneda, T.; Urade, M.; Sakuda, M.
We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growthmore » of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of /sup 125/I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound /sup 125/I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients.« less
Dunne, Karl A.; Allam, Amr; McIntosh, Anne; Houston, Stephanie A.; Cerovic, Vuk; Goodyear, Carl S.; Roe, Andrew J.; Beatson, Scott A.; Milling, Simon W.; Walker, Daniel; Wall, Daniel M.
2013-01-01
Adherent invasive Escherichia coli (AIEC) have been implicated as a causative agent of Crohn’s disease (CD) due to their isolation from the intestines of CD sufferers and their ability to persist in macrophages inducing granulomas. The rapid intracellular multiplication of AIEC sets it apart from other enteric pathogens such as Salmonella Typhimurium which after limited replication induce programmed cell death (PCD). Understanding the response of infected cells to the increased AIEC bacterial load and associated metabolic stress may offer insights into AIEC pathogenesis and its association with CD. Here we show that AIEC persistence within macrophages and dendritic cells is facilitated by increased proteasomal degradation of caspase-3. In addition S-nitrosylation of pro- and active forms of caspase-3, which can inhibit the enzymes activity, is increased in AIEC infected macrophages. This S-nitrosylated caspase-3 was seen to accumulate upon inhibition of the proteasome indicating an additional role for S-nitrosylation in inducing caspase-3 degradation in a manner independent of ubiquitination. In addition to the autophagic genetic defects that are linked to CD, this delay in apoptosis mediated in AIEC infected cells through increased degradation of caspase-3, may be an essential factor in its prolonged persistence in CD patients. PMID:23861899
Feng, Jie; Zhang, Shuo; Shi, Wanliang; Zubcevik, Nevena; Miklossy, Judith; Zhang, Ying
2017-01-01
Although the majority of patients with acute Lyme disease can be cured with the standard 2–4 week antibiotic treatment, about 10–20% of patients continue suffering from chronic symptoms described as posttreatment Lyme disease syndrome. While the cause for this is debated, one possibility is that persister bacteria are not killed by the current Lyme antibiotics and remain active in the system. It has been reported that essential oils have antimicrobial activities and some have been used by patients with persisting Lyme disease symptoms. However, the activity of essential oils against the causative agent Borrelia burgdorferi (B. burgdorferi) has not been well studied. Here, we evaluated the activity of 34 essential oils against B. burgdorferi stationary phase culture as a model for persister bacteria. We found that not all essential oils had activity against the B. burgdorferi stationary phase culture, with top five essential oils (oregano, cinnamon bark, clove bud, citronella, and wintergreen) at a low concentration of 0.25% showing high anti-persister activity that is more active than the known persister drug daptomycin. Interestingly, some highly active essential oils were found to have excellent anti-biofilm ability as shown by their ability to dissolve the aggregated biofilm-like structures. The top three hits, oregano, cinnamon bark, and clove bud completely eradicated all viable cells without any regrowth in subculture in fresh medium, whereas but not citronella and wintergreen did not have this effect. Carvacrol was found to be the most active ingredient of oregano oil showing excellent activity against B. burgdorferi stationary phase cells, while other ingredients of oregano oil p-cymene and α-terpinene had no apparent activity. Future studies are needed to characterize and optimize the active essential oils in drug combination studies in vitro and in vivo and to address their safety and pharmacokinetic properties before they can be considered as a novel treatment of persistent Lyme disease. PMID:29075628
Feng, Jie; Zhang, Shuo; Shi, Wanliang; Zubcevik, Nevena; Miklossy, Judith; Zhang, Ying
2017-01-01
Although the majority of patients with acute Lyme disease can be cured with the standard 2-4 week antibiotic treatment, about 10-20% of patients continue suffering from chronic symptoms described as posttreatment Lyme disease syndrome. While the cause for this is debated, one possibility is that persister bacteria are not killed by the current Lyme antibiotics and remain active in the system. It has been reported that essential oils have antimicrobial activities and some have been used by patients with persisting Lyme disease symptoms. However, the activity of essential oils against the causative agent Borrelia burgdorferi ( B. burgdorferi ) has not been well studied. Here, we evaluated the activity of 34 essential oils against B. burgdorferi stationary phase culture as a model for persister bacteria. We found that not all essential oils had activity against the B. burgdorferi stationary phase culture, with top five essential oils (oregano, cinnamon bark, clove bud, citronella, and wintergreen) at a low concentration of 0.25% showing high anti-persister activity that is more active than the known persister drug daptomycin. Interestingly, some highly active essential oils were found to have excellent anti-biofilm ability as shown by their ability to dissolve the aggregated biofilm-like structures. The top three hits, oregano, cinnamon bark, and clove bud completely eradicated all viable cells without any regrowth in subculture in fresh medium, whereas but not citronella and wintergreen did not have this effect. Carvacrol was found to be the most active ingredient of oregano oil showing excellent activity against B. burgdorferi stationary phase cells, while other ingredients of oregano oil p-cymene and α-terpinene had no apparent activity. Future studies are needed to characterize and optimize the active essential oils in drug combination studies in vitro and in vivo and to address their safety and pharmacokinetic properties before they can be considered as a novel treatment of persistent Lyme disease.
NASA Astrophysics Data System (ADS)
Pinto, Carla M. A.
2017-02-01
Low levels of viral load are found in HIV-infected patients, after many years under successful suppressive anti-retroviral therapy (ART). The factors leading to this persistence are still under debate, but it is now more or less accepted that the latent reservoir may be crucial to the maintenance of this residual viremia. In this paper, we study the role of the latent reservoir in the persistence of the latent reservoir and of the plasma viremia in a fractional-order (FO) model for HIV infection. Our model assumes that (i) the latently infected cells may undergo bystander proliferation, without active viral production, (ii) the latent cell activation rate decreases with time on ART, (iii) the productively infected cells' death rate is a function of the infected cell density. The proposed model provides new insights on the role of the latent reservoir in the persistence of the latent reservoir and of the plasma virus. Moreover, the fractional-order derivative distinguishes distinct velocities in the dynamics of the latent reservoir and of plasma virus. The later may be used to better approximations of HIV-infected patients data. To our best knowledge, this is the first FO model that deals with the role of the latent reservoir in the persistence of low levels of viremia and of the latent reservoir.
2014-01-01
Persistent spiking in response to a discrete stimulus is considered to reflect the active maintenance of a memory for that stimulus until a behavioral response is made. This response pattern has been reported in learning paradigms that impose a temporal gap between stimulus presentation and behavioral response, including trace eyeblink conditioning. However, it is unknown whether persistent responses are acquired as a function of learning or simply represent an already existing category of response type. This fundamental question was addressed by recording single-unit activity in the medial prefrontal cortex (mPFC) of rabbits during the initial learning phase of trace eyeblink conditioning. Persistent responses to the tone conditioned stimulus were observed in the mPFC during the very first training sessions. Further analysis revealed that most cells with persistent responses showed this pattern during the very first training trial, before animals had experienced paired training. However, persistent cells showed reliable decreases in response magnitude over the first training session, which were not observed on the second day of training or for sessions in which learning criterion was met. This modification of response magnitude was specific to persistent responses and was not observed for cells showing phasic tone-evoked responses. The data suggest that persistent responses to discrete stimuli do not require learning but that the ongoing robustness of such responses over the course of training is modified as a result of experience. Putative mechanisms for this modification are discussed, including changes in cellular or network properties, neuromodulatory tone, and/or the synaptic efficacy of tone-associated inputs. PMID:25080570
Wagner, Hans-Joachim; Scott, Rona S; Buchwald, Dedra; Sixbey, John W
2004-09-01
Implicit in the persistence of Epstein-Barr virus (EBV) in B lymphocytes is the successful circumvention of ongoing cell selection for competence of B cell receptors (BCRs). Because the EBV infection of B cells in vitro induces enzymatic machinery that is responsible for secondary immunoglobulin gene rearrangement, we examined the expression of the recombination-activating genes (RAGs) in peripheral blood mononuclear cells (PBMCs) from 26 patients with infectious mononucleosis (IM). RAG1 and/or RAG2 RNA was detected in PBMCs from 42% of patients with IM but not from healthy control subjects. EBV may usurp the cellular mechanism that diversifies the BCR, to guarantee a level of survival signaling sufficient for its own persistence.
Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection
Gordon, Claire L.; Thome, Joseph J.C.; Igarashi, Suzu
2017-01-01
T cell responses to viruses are initiated and maintained in tissue sites; however, knowledge of human antiviral T cells is largely derived from blood. Cytomegalovirus (CMV) persists in most humans, requires T cell immunity to control, yet tissue immune responses remain undefined. Here, we investigated human CMV-specific T cells, virus persistence and CMV-associated T cell homeostasis in blood, lymphoid, mucosal and secretory tissues of 44 CMV seropositive and 28 seronegative donors. CMV-specific T cells were maintained in distinct distribution patterns, highest in blood, bone marrow (BM), or lymph nodes (LN), with the frequency and function in blood distinct from tissues. CMV genomes were detected predominantly in lung and also in spleen, BM, blood and LN. High frequencies of activated CMV-specific T cells were found in blood and BM samples with low virus detection, whereas in lung, CMV-specific T cells were present along with detectable virus. In LNs, CMV-specific T cells exhibited quiescent phenotypes independent of virus. Overall, T cell differentiation was enhanced in sites of viral persistence with age. Together, our results suggest tissue T cell reservoirs for CMV control shaped by both viral and tissue-intrinsic factors, with global effects on homeostasis of tissue T cells over the lifespan. PMID:28130404
Tissue reservoirs of antiviral T cell immunity in persistent human CMV infection.
Gordon, Claire L; Miron, Michelle; Thome, Joseph J C; Matsuoka, Nobuhide; Weiner, Joshua; Rak, Michael A; Igarashi, Suzu; Granot, Tomer; Lerner, Harvey; Goodrum, Felicia; Farber, Donna L
2017-03-06
T cell responses to viruses are initiated and maintained in tissue sites; however, knowledge of human antiviral T cells is largely derived from blood. Cytomegalovirus (CMV) persists in most humans, requires T cell immunity to control, yet tissue immune responses remain undefined. Here, we investigated human CMV-specific T cells, virus persistence and CMV-associated T cell homeostasis in blood, lymphoid, mucosal and secretory tissues of 44 CMV seropositive and 28 seronegative donors. CMV-specific T cells were maintained in distinct distribution patterns, highest in blood, bone marrow (BM), or lymph nodes (LN), with the frequency and function in blood distinct from tissues. CMV genomes were detected predominantly in lung and also in spleen, BM, blood and LN. High frequencies of activated CMV-specific T cells were found in blood and BM samples with low virus detection, whereas in lung, CMV-specific T cells were present along with detectable virus. In LNs, CMV-specific T cells exhibited quiescent phenotypes independent of virus. Overall, T cell differentiation was enhanced in sites of viral persistence with age. Together, our results suggest tissue T cell reservoirs for CMV control shaped by both viral and tissue-intrinsic factors, with global effects on homeostasis of tissue T cells over the lifespan. @Gordon et al.
Characterization and Transcriptome Analysis of Acinetobacter baumannii Persister Cells.
Alkasir, Rashad; Ma, Yanan; Liu, Fei; Li, Jing; Lv, Na; Xue, Yong; Hu, Yongfei; Zhu, Baoli
2018-06-14
Acinetobacter baumannii is a nonfermenting Gram-negative bacillus. A. baumannii resistance is a significant obstacle to clinical infection treatment. The existence of persister cells (persisters) might represent the reason for therapy failure and relapse, and such cells may be the driving force behind rising resistance rates. In this study, A. baumannii ATCC 19606 was used as a target to explore the essential features of A. baumannii persisters. Antibiotic treatment of A. baumannii cultures at 50-fold the minimum inhibitory concentration resulted in a distinct plateau of surviving drug-tolerant persisters. The sensitive bacteria were lysed with ceftazidime, and the nonreplicating bacteria were isolated for transcriptome analysis using RNA sequencing. We analyzed the transcriptome of A. baumannii persisters and identified significantly differentially expressed genes, as well as their enriched pathways. The results showed that both the GP49 (HigB)/Cro (HigA) and DUF1044/RelB toxin/antitoxin systems were significantly increased during the persister incubation period. In addition, the activities of certain metabolic pathways (such as electron transport, adenosine triphosphate [ATP], and the citrate cycle) decreased sharply after antibiotic treatment and remained low during the persister period, while aromatic compound degradation genes were only upregulated in persisters. These results suggest the involvement of aromatic compound degradation genes in persister formation and maintenance. They further provide the first insight into the mechanism of persister formation in A. baumannii.
Cui, Peng; Niu, Hongxia; Shi, Wanliang; Zhang, Shuo; Zhang, Hao; Margolick, Joseph; Zhang, Wenhong; Zhang, Ying
2016-11-01
Persisters are small populations of quiescent bacterial cells that survive exposure to bactericidal antibiotics and are responsible for many persistent infections and posttreatment relapses. However, little is known about how to effectively kill persister bacteria. In the work presented here, we found that colistin, a membrane-active antibiotic, was highly active against Escherichia coli persisters at high concentrations (25 or 50 μg/ml). At a clinically relevant lower concentration (10 μg/ml), colistin alone had no apparent effect on E. coli persisters. In combination with other drugs, this concentration of colistin enhanced the antipersister activity of gentamicin and ofloxacin but not that of ampicillin, nitrofurans, and sulfa drugs in vitro The colistin enhancement effect was most likely due to increased uptake of the other antibiotics, as demonstrated by increased accumulation of fluorescence-labeled gentamicin. Interestingly, colistin significantly enhanced the activity of ofloxacin and nitrofurantoin but not that of gentamicin or sulfa drugs in the murine model of urinary tract infection. Our findings suggest that targeting bacterial membranes is a valuable approach to eradicating persisters and should have implications for more effective treatment of persistent bacterial infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mannitol Enhances Antibiotic Sensitivity of Persister Bacteria in Pseudomonas aeruginosa Biofilms
Barraud, Nicolas; Buson, Alberto; Jarolimek, Wolfgang; Rice, Scott A.
2013-01-01
The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF) patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF), suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10–40 mM) increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response. PMID:24349568
Exploiting persistent infection for selection of bovine herpesvirus 4 recombinants.
Donofrio, G; Martignani, E; Cavirani, S; Flammini, C F
2005-09-01
Bovine herpesvirus 4 (BoHV-4) is a gamma-herpesvirus with no clear disease association, and due to its biological characteristics, has been suggested as a gene delivery vector. It was demonstrated previously that recombinant BoHV-4 carrying a neomycin-resistance gene was able to infect a human rhabdomyosarcoma cell line (RD-4), resulting in no detectable cytopathic effect (CPE) and allowing selection of G418-resistant persistently-infected cells containing circular episomal viral DNA [Donofrio, G., Cavirani, S., van Santen, V.L., 2000a. Establishment of a cell line persistently infected with recombinant BoHV-4. J. Gen. Virol. 81, 1807-1814.]. Those cells produce infectious virus and infection is predominantly non-permissive and non-cytopathic. Starting from these results, the ability of RD-4 cells to sustain persistent infection was combined with positive selection activity conferred by the neomycin-expression cassette insert, as an easier way to select recombinants of BoHV-4 following homologous recombination in permissive cells. A tool for selecting BoHV-4 recombinants was developed by drug positive selection.
Chang, Ruey-Yi; Hsu, Ta-Wen; Chen, Yen-Lin; Liu, Shu-Fan; Tsai, Yi-Jer; Lin, Yun-Tong; Chen, Yi-Shiuan; Fan, Yi-Hsin
2013-09-27
Noncoding RNA (ncRNA) plays a critical role in modulating a broad range of diseases. All arthropod-borne flaviviruses produce short fragment ncRNA (sfRNA) collinear with highly conserved regions of the 3'-untranslated region (UTR) in the viral genome. We show that the molar ratio of sfRNA to genomic RNA in Japanese encephalitis virus (JEV) persistently infected cells is greater than that in acutely infected cells, indicating an sfRNA role in establishing persistent infection. Transfecting excess quantities of sfRNA into JEV-infected cells reduced interferon-β (IFN-β) promoter activity by 57% and IFN-β mRNA levels by 52%, compared to mock-transfected cells. Transfection of sfRNA into JEV-infected cells also reduced phosphorylation of interferon regulatory factor-3 (IRF-3), the IFN-β upstream regulator, and blocked roughly 30% of IRF-3 nuclear localization. Furthermore, JEV-infected sfRNA transfected cells produced 23% less IFN-β-stimulated apoptosis than mock-transfected groups did. Taken together, these results suggest that sfRNA plays a role against host-cell antiviral responses, prevents cells from undergoing apoptosis, and thus contributes to viral persistence. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.
2015-06-01
Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.
Thomas, Remy; van der Weyden, Louise; Rauch, Dan; Ratner, Lee; Nyborg, Jennifer K.; Ramos, Juan Carlos; Takai, Yoshimi; Shembade, Noula
2015-01-01
Persistent activation of NF-κB by the Human T-cell leukemia virus type 1 (HTLV-1) oncoprotein, Tax, is vital for the development and pathogenesis of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). K63-linked polyubiquitinated Tax activates the IKK complex in the plasma membrane-associated lipid raft microdomain. Tax also interacts with TAX1BP1 to inactivate the NF-κB negative regulatory ubiquitin-editing A20 enzyme complex. However, the molecular mechanisms of Tax-mediated IKK activation and A20 protein complex inactivation are poorly understood. Here, we demonstrated that membrane associated CADM1 (Cell adhesion molecule1) recruits Ubc13 to Tax, causing K63-linked polyubiquitination of Tax, and IKK complex activation in the membrane lipid raft. The c-terminal cytoplasmic tail containing PDZ binding motif of CADM1 is critical for Tax to maintain persistent NF-κB activation. Finally, Tax failed to inactivate the NF-κB negative regulator ubiquitin-editing enzyme A20 complex, and activate the IKK complex in the lipid raft in absence of CADM1. Our results thus indicate that CADM1 functions as a critical scaffold molecule for Tax and Ubc13 to form a cellular complex with NEMO, TAX1BP1 and NRP, to activate the IKK complex in the plasma membrane-associated lipid rafts, to inactivate NF-κB negative regulators, and maintain persistent NF-κB activation in HTLV-1 infected cells. PMID:25774694
ADOPTIVE-CELL-TRANSFER THERAPY FOR THE TREATMENT OF PATIENTS WITH CANCER
Dudley, Mark E.; Rosenberg, Steven A.
2008-01-01
Adoptive immunotherapy — the isolation of antigen-specific cells, their ex vivo expansion and activation, and subsequent autologous administration — is a promising approach to inducing antitumour immune responses. The molecular identification of tumour antigens and the ability to monitor the persistence and transport of transferred cells has provided new insights into the mechanisms of tumour immunotherapy. Recent studies have shown the effectiveness of cell-transfer therapies for the treatment of patients with selected metastatic cancers. These studies provide a blueprint for the wider application of adoptive-cell-transfer therapy, and emphasize the requirement for in vivo persistence of the cells for therapeutic efficacy. PMID:12951585
A B cell follicle sanctuary permits persistent productive SIV infection in elite controllers
Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A.; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I.; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W.; Axthelm, Michael K.; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M.; Edlefsen, Paul T.; Piatak, Michael; Estes, Jacob D.; Lifson, Jeffrey D.; Picker, Louis J.
2014-01-01
Chronic phase HIV/SIV replication is reduced by as much as 10,000-fold in elite controllers (EC) compared to typical progressors, but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here, we show that productive SIV infection in rhesus monkey EC is strikingly restricted to follicular helper CD4+ T cells (TFH), suggesting that while the potent SIV-specific CD8+ T cells of these monkeys can effectively clear productive infection from extra-follicular sites, their relative exclusion from B cell follicles limits elimination of infected TFH. Indeed, CD8+ lymphocyte depletion of EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH, with TFH restriction resuming upon CD8+ T cell recovery. Thus, B cell follicles constitute sanctuaries for persistent SIV replication in the presence of potent anti-viral CD8+ T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy. PMID:25599132
Yoshida, Motoharu; Jochems, Arthur; Hasselmo, Michael E
2013-01-01
Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing. Here we investigated the anatomical distribution of firing frequency adaptation, the medium spike after hyperpolarization potential (mAHP), subthreshold membrane potential oscillations, sag potential, input resistance and persistent firing, in MEC layer II principal cells using in vitro whole-cell patch clamp recordings in rats. Anatomical distributions of these properties were compared along both the dorso-ventral and medio-lateral axes, both with and without the cholinergic receptor agonist carbachol. We found that spike frequency adaptation is significantly stronger in ventral than in dorsal neurons both with and without carbachol. Spike frequency adaptation was significantly correlated with the duration of the mAHP, which also showed a gradient along the dorso-ventral axis. In carbachol, we found that about 50% of MEC layer II neurons show persistent firing which lasted more than 30 seconds. Persistent firing of MEC layer II neurons might contribute to grid cell firing by providing the excitatory drive. Dorso-ventral differences in spike frequency adaptation we report here are opposite from previous predictions by a computational model. We discuss an alternative mechanism as to how dorso-ventral differences in spike frequency adaptation could contribute to different scales of grid spacing.
1984-01-01
We studied the mechanism of lymphocytic choriomeningitis virus (LCMV) persistence and the suppression of cytotoxic T lymphocyte (CTL) responses in BALB/c WEHI mice infected at birth with LCMV Armstrong strain. Using adoptive transfer experiments we found that spleen cells from persistently infected (carrier) mice actively suppressed the expected LCMV-specific CTL response of spleen cells from normal adult mice. The suppression was specific for the CTL response and LCMV - specific antibody responses were not affected. Associated with the specific CTL suppression was the establishment of persistent LCMV infection. The transfer of spleen or lymph node cells containing LCMV - specific CTL resulted in virus clearance and prevented establishment of the carrier state. The suppression of LCMV -specific CTL responses by carrier spleen cells is not mediated by a suppressor cell, but is due to the presence of genetic variants of LCMV in spleens of carrier mice. Such virus variants selectively suppress LCMV-specific CTL responses and cause persistent infections in immunocompetent mice. In striking contrast, wild-type LCMV Armstrong, from which these variants were generated, induces a potent CTL response in immunocompetent mice and the LCMV infection is rapidly cleared. Our results show that LCMV variants that emerge during infection in vivo play a crucial role in the suppression of virus-specific CTL responses and in the maintenance of virus persistence. PMID:6332167
The immunological synapse: the gateway to the HIV reservoir
Kulpa, Deanna A; Brehm, Jessica H; Fromentin, Rémi; Cooper, Anthony; Cooper, Colleen; Ahlers, Jeffrey; Chomont, Nicolas; Sékaly, Rafick-Pierre
2013-01-01
A major challenge in the development of a cure for human immunodeficiency virus (HIV) has been the incomplete understanding of the basic mechanisms underlying HIV persistence during antiretroviral therapy. It is now realized that the establishment of a latently infected reservoir refractory to immune system recognition has thus far hindered eradication efforts. Recent investigation into the innate immune response has shed light on signaling pathways downstream of the immunological synapse critical for T-cell activation and establishment of T-cell memory. This has led to the understanding that the cell-to-cell contacts observed in an immunological synapse that involve the CD4+ T cell and antigen-presenting cell or T-cell–T-cell interactions enhance efficient viral spread and facilitate the induction and maintenance of latency in HIV-infected memory T cells. This review focuses on recent work characterizing the immunological synapse and the signaling pathways involved in T-cell activation and gene regulation in the context of HIV persistence. PMID:23772628
Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis
Palmer, Clovis S.; Cherry, Catherine L.; Sada-Ovalle, Isabel; Singh, Amit; Crowe, Suzanne M.
2016-01-01
Activation of the immune system occurs in response to the recognition of foreign antigens and receipt of optimal stimulatory signals by immune cells, a process that requires energy. Energy is also needed to support cellular growth, differentiation, proliferation, and effector functions of immune cells. In HIV-infected individuals, persistent viral replication, together with inflammatory stimuli contributes to chronic immune activation and oxidative stress. These conditions remain even in subjects with sustained virologic suppression on antiretroviral therapy. Here we highlight recent studies demonstrating the importance of metabolic pathways, particularly those involving glucose metabolism, in differentiation and maintenance of the activation states of T cells and monocytes. We also discuss how changes in the metabolic status of these cells may contribute to ongoing immune activation and inflammation in HIV- infected persons and how this may contribute to disease progression, establishment and persistence of the HIV reservoir, and the development of co-morbidities. We provide evidence that other viruses such as Epstein–Barr and Flu virus also disrupt the metabolic machinery of their host cells. Finally, we discuss how redox signaling mediated by oxidative stress may regulate metabolic responses in T cells and monocytes during HIV infection. PMID:27211546
Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben
2015-11-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. © FASEB.
Nowicki, Theodore S; Escuin-Ordinas, Helena; Avramis, Earl; Chmielowski, Bartosz; Chodon, Thinle; Berent-Maoz, Beata; Wang, Xiaoyan; Kaplan-Lefko, Paula; Yang, Lili; Baltimore, David; Economou, James S; Ribas, Antoni; Comin-Anduix, Begoña
2018-06-01
Adoptive cell therapy (ACT) consisting of genetically engineered T cells expressing tumor antigen-specific T-cell receptors displays robust initial antitumor activity, followed by loss of T-cell activity/persistence and frequent disease relapse. We characterized baseline and longitudinal T-cell phenotype variations resulting from different manufacturing and administration protocols in patients who received ACT. Patients with melanoma who enrolled in the F5-MART-1 clinical trial (NCT00910650) received infusions of MART-1 T-cell receptors transgenic T cells with MART-1 peptide-pulsed dendritic cell vaccination. Patients were divided into cohorts based on several manufacturing changes in the generation and administration of the transgenic T cells: decreasing ex vivo stimulation/expansion time, increased cell dose, and receiving fresh instead of cryopreserved cells. T-cell phenotypes were analyzed by flow cytometry at baseline and longitudinally in peripheral blood. Transgenic T cells with shorter ex vivo culture/expansion periods displayed significantly increased expression of markers associated with less differentiated naive/memory populations, as well as significantly decreased expression of the inhibitory receptor programmed death 1 (PD1). Patients receiving fresh infusions of transgenic cells demonstrated expansion of central memory T cells and delayed acquisition of PD1 expression compared with patients who received cryopreserved products. Freshly infused transgenic T cells showed persistence and expansion of naive and memory T-cell populations and delayed acquisition of PD1 expression, which correlated with this cohort's superior persistence of transgenic cells and response to dendritic cell vaccines. These results may be useful in designing future ACT protocols.
Nowicki, Theodore S.; Escuin-Ordinas, Helena; Avramis, Earl; Chmielowski, Bartosz; Chodon, Thinle; Berent-Maoz, Beata; Wang, Xiaoyan; Kaplan-Lefko, Paula; Yang, Lili; Baltimore, David; Economou, James S.; Ribas, Antoni
2018-01-01
Adoptive cell therapy (ACT) consisting of genetically engineered T cells expressing tumor antigen-specific T-cell receptors displays robust initial antitumor activity, followed by loss of T-cell activity/persistence and frequent disease relapse. We characterized baseline and longitudinal T-cell phenotype variations resulting from different manufacturing and administration protocols in patients who received ACT. Patients with melanoma who enrolled in the F5-MART-1 clinical trial (NCT00910650) received infusions of MART-1 T-cell receptors transgenic T cells with MART-1 peptide-pulsed dendritic cell vaccination. Patients were divided into cohorts based on several manufacturing changes in the generation and administration of the transgenic T cells: decreasing ex vivo stimulation/expansion time, increased cell dose, and receiving fresh instead of cryopreserved cells. T-cell phenotypes were analyzed by flow cytometry at baseline and longitudinally in peripheral blood. Transgenic T cells with shorter ex vivo culture/expansion periods displayed significantly increased expression of markers associated with less differentiated naive/memory populations, as well as significantly decreased expression of the inhibitory receptor programmed death 1 (PD1). Patients receiving fresh infusions of transgenic cells demonstrated expansion of central memory T cells and delayed acquisition of PD1 expression compared with patients who received cryopreserved products. Freshly infused transgenic T cells showed persistence and expansion of naive and memory T-cell populations and delayed acquisition of PD1 expression, which correlated with this cohort’s superior persistence of transgenic cells and response to dendritic cell vaccines. These results may be useful in designing future ACT protocols. PMID:29470191
Fukazawa, Yoshinori; Lum, Richard; Okoye, Afam A; Park, Haesun; Matsuda, Kenta; Bae, Jin Young; Hagen, Shoko I; Shoemaker, Rebecca; Deleage, Claire; Lucero, Carissa; Morcock, David; Swanson, Tonya; Legasse, Alfred W; Axthelm, Michael K; Hesselgesser, Joseph; Geleziunas, Romas; Hirsch, Vanessa M; Edlefsen, Paul T; Piatak, Michael; Estes, Jacob D; Lifson, Jeffrey D; Picker, Louis J
2015-02-01
Chronic-phase HIV and simian immunodeficiency virus (SIV) replication is reduced by as much as 10,000-fold in elite controllers (ECs) compared with typical progressors (TPs), but sufficient viral replication persists in EC tissues to allow viral sequence evolution and induce excess immune activation. Here we show that productive SIV infection in rhesus monkey ECs, but not TPs, is markedly restricted to CD4(+) follicular helper T (TFH) cells, suggesting that these EC monkeys' highly effective SIV-specific CD8(+) T cells can effectively clear productive SIV infection from extrafollicular sites, but their relative exclusion from B cell follicles prevents their elimination of productively infected TFH cells. CD8(+) lymphocyte depletion in EC monkeys resulted in a dramatic re-distribution of productive SIV infection to non-TFH cells, with restriction of productive infection to TFH cells resuming upon CD8(+) T cell recovery. Thus, B cell follicles constitute 'sanctuaries' for persistent SIV replication in the presence of potent anti-viral CD8(+) T cell responses, potentially complicating efforts to cure HIV infection with therapeutic vaccination or T cell immunotherapy.
Palmer, Clovis S; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M
2018-01-01
An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals.
NASA Technical Reports Server (NTRS)
Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.
2002-01-01
Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.
MEK-Dependent Negative Feedback Underlies BCR-ABL-Mediated Oncogene Addiction
Asmussen, Jennifer; Lasater, Elisabeth A.; Tajon, Cheryl; Oses-Prieto, Juan; Jun, Young-wook; Taylor, Barry S.; Burlingame, Alma; Craik, Charles S.; Shah, Neil P.
2014-01-01
The clinical experience with BCR-ABL tyrosine kinase inhibitors (TKIs) for the treatment of chronic myeloid leukemia (CML) provides compelling evidence for oncogene addiction. Yet, the molecular basis of oncogene addiction remains elusive. Through unbiased quantitative phosphoproteomic analyses of CML cells transiently exposed to BCR-ABL TKI, we identified persistent downregulation of growth factor receptor (GF-R) signaling pathways. We then established and validated a tissue-relevant isogenic model of BCR-ABL-mediated addiction, and found evidence for myeloid GF-R signaling pathway rewiring that profoundly and persistently dampens physiologic pathway activation. We demonstrate that eventual restoration of ligand-mediated GF-R pathway activation is insufficient to fully rescue cells from a competing apoptotic fate. In contrast to previous work with BRAFV600E in melanoma cells, feedback inhibition following BCR-ABL TKI treatment is markedly prolonged, extending beyond the time required to initiate apoptosis. Mechanistically, BCR-ABL-mediated oncogene addiction is facilitated by persistent high levels of MEK-dependent negative feedback. PMID:24362263
Role of T cell death in maintaining immune tolerance during persistent viral hepatitis.
Larrubia, Juan Ramón; Lokhande, Megha Uttam; García-Garzón, Silvia; Miquel, Joaquín; Subirá, Dolores; Sanz-de-Villalobos, Eduardo
2013-03-28
Virus-specific T cells play an important role in the resolution of hepatic infection. However, during chronic hepatitis infection these cells lack their effector functions and fail to control the virus. Hepatitis B virus and hepatitis C virus have developed several mechanisms to generate immune tolerance. One of these strategies is the depletion of virus-specific T cells by apoptosis. The immunotolerogenic liver has unique property to retain and activate naïve T cell to avoid the over reactivation of immune response against antigens which is exploited by hepatotropic viruses to persist. The deletion of the virus-specific T cells occurs by intrinsic (passive) apoptotic mechanism. The pro-apoptotic molecule Bcl-2 interacting mediator (Bim) has attracted increasing attention as a pivotal involvement in apoptosis, as a regulator of tissue homeostasis and an enhancer for the viral persistence. Here, we reviewed our current knowledge on the evidence showing critical role of Bim in viral-specific T cell death by apoptotic pathways and helps in the immune tolerance.
Decoupling activation and exhaustion of B cells in spontaneous controllers of HIV infection
Sciaranghella, Gaia; Tong, Neath; Mahan, Alison E.; Suscovich, Todd J.; Alter, Galit
2013-01-01
Objective To define the impact of chronic viremia and associated immune activation on B-cell exhaustion in HIV infection. Design Progressive HIV infection is marked by B-cell anergy and exhaustion coupled with dramatic hypergammaglobulinemia. Although both upregulation of CD95 and loss of CD21 have been used as markers of infection-associated B-cell dysfunction, little is known regarding the specific profiles of dysfunctional B cells and whether persistent viral replication and its associated immune activation play a central role in driving B-cell dysfunction. Methods Multiparameter flow cytometry was used to define the profile of dysfunctional B cells. The changes in the expression of CD21 and CD95 were tracked on B-cell subpopulations in patients with differential control of viral replication. Results Although the emergence of exhausted, CD21low tissue-like memory B cells followed similar patterns in both progressors and controllers, the frequency of CD21low activated memory B cells was lower in spontaneous controllers. Conclusion Our results suggest that the loss of CD21 and the upregulation of CD95 occur as separate events during the development of B-cell dysfunction. The loss of CD21 is a marker of B-cell exhaustion induced in the absence of appreciable viral replication, whereas the upregulation of CD95 is tightly linked to persistent viral replication and its associated immune activation. Thus, these dysfunctional profiles potentially represent two functionally distinct states within the B-cell compartment. PMID:23135171
Class III HD-Zip activity coordinates leaf development in Physcomitrella patens.
Yip, Hoichong Karen; Floyd, Sandra K; Sakakibara, Keiko; Bowman, John L
2016-11-01
Land plant bodies develop from meristems, groups of pluripotent stem cells, which may persist throughout the life of a plant or, alternatively, have a transitory existence. Early diverging land plants exhibit indeterminate (persistent) growth in their haploid gametophytic generation, whereas later diverging lineages exhibit indeterminate growth in their diploid sporophytic generation, raising the question of whether genetic machinery directing meristematic functions was co-opted between generations. Class III HD-Zip (C3HDZ) genes are required for the establishment and maintenance of shoot apical meristems in flowering plants. We demonstrate that in the moss Physcomitrella patens, C3HDZ genes are expressed in transitory meristems in both the gametophytic and sporophytic generations, but not in the persistent shoot meristem of the gametyphyte. Loss-of-function of P. patens C3HDZ was engineered using ectopic expression of miR166, an endogenous regulator of C3HDZ gene activity. Loss of C3HDZ gene function impaired the function of gametophytic transitory meristematic activity but did not compromise the functioning of the persistent shoot apical meristem during the gametophyte generation. These results argue against a wholesale co-option of meristematic gene regulatory networks from the gametophyte to the sporophyte during land plant evolution, instead suggesting that persistent meristems with a single apical cell in P. patens and persistent complex meristems in flowering plants are regulated by different genetic programs. Copyright © 2016 Elsevier Inc. All rights reserved.
Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.
Sandalova, Elena; Laccabue, Diletta; Boni, Carolina; Tan, Anthony T; Fink, Katja; Ooi, Eng Eong; Chua, Robert; Shafaeddin Schreve, Bahar; Ferrari, Carlo; Bertoletti, Antonio
2010-08-19
Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza) pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR), proliferation (Ki-67/Bcl-2(low)) and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV). CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza) were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.
Fernandes, Jason R; Berthoud, Tamara K; Kumar, Ashok; Angel, Jonathan B
2017-01-01
HIV infection causes a profound depletion of gut derived Th17 cells, contributing to loss of mucosal barrier function and an increase in microbial translocation, thus driving systemic immune activation. Despite normalization of circulating CD4+ T cell counts with highly active antiretroviral therapy (HAART), Th17 frequency and function often remain impaired. Given the importance of interleukin (IL)-23 in the generation and stabilization of Th17 cells we hypothesized that impaired IL-23 signaling causes persistent Th17 dysfunction in HIV infection. The effects of in vitro HIV infection on responses to IL-23 in Th17 cells were examined. These included the production of IL-17, phosphorylated STAT3 (pSTAT3) and the transcription of retinoic acid orphan receptor C (RORC) gene. Blood derived Th17 cells from untreated and HAART-treated HIV-infected individuals were also examined for the IL-23 induced production of phosphorylated STAT3 (pSTAT3) and the expression of the IL-23 receptors. In vitro HIV infection significantly inhibited IL-17 production and IL-23 induced pSTAT3 while expression of RORC RNA was unaffected. Th17 cells isolated from untreated and HAART-treated HIV-infected individuals showed complete loss of IL-23 induced pSTAT3 without a decrease in the expression of the IL-23 receptors. This study is the first to demonstrate an effect of HIV on the IL-23 signaling pathway in Th17 cells. We show that in vitro and in vivo HIV infection results in impaired IL-23 signaling which is not reversed by HAART nor is it a result of reduced receptor expression, suggesting that HIV interferes with IL-23-activated signaling pathways. These findings may explain the inability of HAART to restore Th17 frequency and function and the resulting persistent chronic immune activation observed in HIV infected individuals.
Viral Evasion of Natural Killer Cell Activation
Ma, Yi; Li, Xiaojuan; Kuang, Ersheng
2016-01-01
Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections. PMID:27077876
Viral Evasion of Natural Killer Cell Activation.
Ma, Yi; Li, Xiaojuan; Kuang, Ersheng
2016-04-12
Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.
Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Poirazi, Panayiota
2014-07-01
Technological advances have unraveled the existence of small clusters of co-active neurons in the neocortex. The functional implications of these microcircuits are in large part unexplored. Using a heavily constrained biophysical model of a L5 PFC microcircuit, we recently showed that these structures act as tunable modules of persistent activity, the cellular correlate of working memory. Here, we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes. We show that (a) NMDA-mediated dendritic spikes gate the induction of persistent firing in the microcircuit. (b) The minimum network size required for persistent activity induction is inversely proportional to the synaptic drive of each excitatory neuron. (c) Relaxation of connectivity and synaptic delay constraints eliminates the gating effect of NMDA spikes, albeit at a cost of much larger networks. (d) Persistent activity termination by increased inhibition depends on the strength of the synaptic input and is negatively modulated by dADP. (e) Slow synaptic mechanisms and network activity contain predictive information regarding the ability of a given stimulus to turn ON and/or OFF persistent firing in the microcircuit model. Overall, this study zooms out from dendrites to cell assemblies and suggests a tight interaction between dendritic non-linearities and network properties (size/connectivity) that may facilitate the short-memory function of the PFC.
Uchii, Masako; Sakai, Mariko; Hotta, Yuhei; Saeki, Satoshi; Kimoto, Naoya; Hamaguchi, Akinori; Kitayama, Tetsuya; Kunori, Shunji
2017-11-01
Saxagliptin, a potent and selective DPP-4 inhibitor, exhibits a slow dissociation from DPP-4. We investigated the sustained effects of saxagliptin on renal DPP-4 activity in a washout study using renal tubular (HK-2) cells, and in a pharmacodynamic study using normal rats. In HK-2 cells, the inhibitory potency of saxagliptin on DPP-4 activity persisted after washout, while that of sitagliptin was clearly reduced. In normal rats, a single treatment of saxagliptin or sitagliptin inhibited the plasma DPP-4 activity to similar levels. The inhibitory action of saxagliptin on the renal DPP-4 activity was retained, even when its inhibitory effect on the plasma DPP-4 activity disappeared. However, the inhibitory action of sitagliptin on the renal DPP-4 activity was abolished in correlation with the inhibition of the plasma DPP-4 activity. In situ staining showed that saxagliptin suppressed the DPP-4 activity in both glomerular and tubular cells and its inhibitory effects were significantly higher than those of sitagliptin. Saxagliptin exerted a sustained inhibitory effect on the renal DPP-4 activity in vitro and in vivo. The long binding action of saxagliptin in renal tubular cells might involve the sustained inhibition of renal DPP-4. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Memoryless self-reinforcing directionality in endosomal active transport within living cells
NASA Astrophysics Data System (ADS)
Chen, Kejia; Wang, Bo; Granick, Steve
2015-06-01
In contrast to Brownian transport, the active motility of microbes, cells, animals and even humans often follows another random process known as truncated Lévy walk. These stochastic motions are characterized by clustered small steps and intermittent longer jumps that often extend towards the size of the entire system. As there are repeated suggestions, although disagreement, that Lévy walks have functional advantages over Brownian motion in random searching and transport kinetics, their intentional engineering into active materials could be useful. Here, we show experimentally in the classic active matter system of intracellular trafficking that Brownian-like steps self-organize into truncated Lévy walks through an apparent time-independent positive feedback such that directional persistence increases with the distance travelled persistently. A molecular model that allows the maximum output of the active propelling forces to fluctuate slowly fits the experiments quantitatively. Our findings offer design principles for programming efficient transport in active materials.
The role of STATs in transcriptional control and their impact on cellular function.
Bromberg, J; Darnell, J E
2000-05-15
The STAT proteins (Signal Transducers and Activators of Transcription), were identified in the last decade as transcription factors which were critical in mediating virtually all cytokine driven signaling. These proteins are latent in the cytoplasm and become activated through tyrosine phosphorylation which typically occurs through cytokine receptor associated kinases (JAKs) or growth factor receptor tyrosine kinases. Recently a number of non-receptor tyrosine kinases (for example src and abl) have been found to cause STAT phosphorylation. Phosphorylated STATs form homo- or hetero-dimers, enter the nucleus and working coordinately with other transcriptional co-activators or transcription factors lead to increased transcriptional initiation. In normal cells and in animals, ligand dependent activation of the STATs is a transient process, lasting for several minutes to several hours. In contrast, in many cancerous cell lines and tumors, where growth factor dysregulation is frequently at the heart of cellular transformation, the STAT proteins (in particular Stats 1, 3 and 5) are persistently tyrosine phosphorylated or activated. The importance of STAT activation to growth control in experiments using anti-sense molecules or dominant negative STAT protein encoding constructs performed in cell lines or studies in animals lacking specific STATs strongly indicate that STATs play an important role in controlling cell cycle progression and apoptosis. Stat1 plays an important role in growth arrest, in promoting apoptosis and is implicated as a tumor suppressor; while Stats 3 and 5 are involved in promoting cell cycle progression and cellular transformation and preventing apoptosis. Many questions remain including: (1) a better understanding of how the STAT proteins through association with other factors increase transcription initiation; (2) a more complete definition of the sets of genes which are activated by different STATs and (3) how these sets of activated genes differ as a function of cell type. Finally, in the context of many cancers, where STATs are frequently persistently activated, an understanding of the mechanisms leading to their constitutive activation and defining the potential importance of persistent STAT activation in human tumorigenesis remains. Oncogene (2000).
Carvidi, Alexander B.; Smith, Louis C. B.; Khan, Shahzada; Trapecar, Martin; Stoddart, Cheryl A.; Kuritzkes, Daniel R.
2018-01-01
HIV-1-infected cells persist indefinitely despite the use of combination antiretroviral therapy (ART), and novel therapeutic strategies to target and purge residual infected cells in individuals on ART are urgently needed. Here, we demonstrate that CD4+ T cell-associated HIV-1 RNA is often highly enriched in cells expressing CD30, and that cells expressing this marker considerably contribute to the total pool of transcriptionally active CD4+ lymphocytes in individuals on suppressive ART. Using in situ RNA hybridization studies, we show co-localization of CD30 with HIV-1 transcriptional activity in gut-associated lymphoid tissues. We also demonstrate that ex vivo treatment with brentuximab vedotin, an antibody-drug conjugate (ADC) that targets CD30, significantly reduces the total amount of HIV-1 DNA in peripheral blood mononuclear cells obtained from infected, ART-suppressed individuals. Finally, we observed that an HIV-1-infected individual, who received repeated brentuximab vedotin infusions for lymphoma, had no detectable virus in peripheral blood mononuclear cells. Overall, CD30 may be a marker of residual, transcriptionally active HIV-1 infected cells in the setting of suppressive ART. Given that CD30 is only expressed on a small number of total mononuclear cells, it is a potential therapeutic target of persistent HIV-1 infection. PMID:29470552
Helicobacter pylori induces activation of human peripheral γδ+ T lymphocytes.
Romi, Benedetta; Soldaini, Elisabetta; Pancotto, Laura; Castellino, Flora; Del Giudice, Giuseppe; Schiavetti, Francesca
2011-04-29
Helicobacter pylori is a gram-negative bacterium that causes gastric and duodenal diseases in humans. Despite a robust antibody and cellular immune response, H. pylori infection persists chronically. To understand if and how H. pylori could modulate T cell activation, in the present study we investigated in vitro the interaction between H. pylori and human T lymphocytes freshly isolated from peripheral blood of H. pylori-negative donors. A direct interaction of live, but not killed bacteria with purified CD3+ T lymphocytes was observed by microscopy and confirmed by flow cytometry. Live H. pylori activated CD3+ T lymphocytes and predominantly γδ+ T cells bearing the TCR chain Vδ2. Upon interaction with H. pylori, these cells up-regulated the activation molecule CD69 and produced cytokines (such as TNFα, IFNγ) and chemokines (such as MIP-1β, RANTES) in a non-antigen-specific manner. This activation required viable H. pylori and was not exhibited by other gram-negative bacteria. The cytotoxin-associated antigen-A (CagA), was at least partially responsible of this activation. Our results suggest that H. pylori can directly interact with T cells and modulate the response of γδ+ T cells, thereby favouring an inflammatory environment which can contribute to the chronic persistence of the bacteria and eventually to the gastric pathology.
Human papillomavirus-exposed Langerhans cells are activated by stabilized Poly-I:C.
Da Silva, Diane M; Woodham, Andrew W; Rijkee, Laurie K; Skeate, Joseph G; Taylor, Julia R; Koopman, Maaike E; Brand, Heike E; Wong, Michael K; McKee, Greg M; Salazar, Andres M; Kast, W Martin
2015-12-01
Human papillomaviruses (HPV) establish persistent infections because of evolved immune evasion mechanisms, particularly HPV-mediated suppression of the immune functions of Langerhans cells (LC), the antigen presenting cells of the epithelium. Polyinosinic-polycytidilic acid (Poly-I:C) is broadly immunostimulatory with the ability to enhance APC expression of costimulatory molecules and inflammatory cytokines resulting in T cell activation. Here we investigated the activation of primary human LC derived from peripheral blood monocytes after exposure to HPV16 virus like particles followed by treatment with stabilized Poly-I:C compounds (s-Poly-I:C), and their subsequent induction of HPV16-specific T cells. Our results indicate that HPV16 particles alone were incapable of inducing LC activation as demonstrated by the lack of costimulatory molecules, inflammatory cytokines, chemokine-directed migration, and HPV16-specific CD8 + T cells in vitro . Conversely, s-Poly-I:C caused significant upregulation of costimulatory molecules and induction of chemokine-directed migration of LC that were pre-exposed to HPV16. In HLA-A*0201-positive donors, s-Poly-I:C treatment was able to induce CD8 + T cell immune responses against HPV16-derived peptides. Thus, s-Poly-I:C compounds are attractive for translation into therapeutics in which they could potentially mediate clearance of persistent HPV infection.
CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response.
Chatterjee, Shilpak; Daenthanasanmak, Anusara; Chakraborty, Paramita; Wyatt, Megan W; Dhar, Payal; Selvam, Shanmugam Panneer; Fu, Jianing; Zhang, Jinyu; Nguyen, Hung; Kang, Inhong; Toth, Kyle; Al-Homrani, Mazen; Husain, Mahvash; Beeson, Gyda; Ball, Lauren; Helke, Kristi; Husain, Shahid; Garrett-Mayer, Elizabeth; Hardiman, Gary; Mehrotra, Meenal; Nishimura, Michael I; Beeson, Craig C; Bupp, Melanie Gubbels; Wu, Jennifer; Ogretmen, Besim; Paulos, Chrystal M; Rathmell, Jeffery; Yu, Xue-Zhong; Mehrotra, Shikhar
2018-01-09
Heightened effector function and prolonged persistence, the key attributes of Th1 and Th17 cells, respectively, are key features of potent anti-tumor T cells. Here, we established ex vivo culture conditions to generate hybrid Th1/17 cells, which persisted long-term in vivo while maintaining their effector function. Using transcriptomics and metabolic profiling approaches, we showed that the enhanced anti-tumor property of Th1/17 cells was dependent on the increased NAD + -dependent activity of the histone deacetylase Sirt1. Pharmacological or genetic inhibition of Sirt1 activity impaired the anti-tumor potential of Th1/17 cells. Importantly, T cells with reduced surface expression of the NADase CD38 exhibited intrinsically higher NAD + , enhanced oxidative phosphorylation, higher glutaminolysis, and altered mitochondrial dynamics that vastly improved tumor control. Lastly, blocking CD38 expression improved tumor control even when using Th0 anti-tumor T cells. Thus, strategies targeting the CD38-NAD + axis could increase the efficacy of anti-tumor adoptive T cell therapy. Copyright © 2017 Elsevier Inc. All rights reserved.
Persistent neural activity in head direction cells
NASA Technical Reports Server (NTRS)
Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)
2003-01-01
Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.
Summerhill, Susan; Stroud, Timothy; Nagendra, Roshini; Perros-Huguet, Christelle; Trevethick, Michael
2008-01-01
The aim was to establish a robust, 96-well, cell-based assay to assess the potency and persistence of action of agonists acting at human recombinant beta(2) adrenoceptors expressed in CHO (Chinese Hamster Ovary) cells and to compare this with published duration of action data in guinea pig isolated trachea and human bronchus. Cells were treated with either: (i) beta-adrenoceptor agonist for 30 min, washed and cyclicAMP (cAMP) measured 30 min later-termed 'washed' cells or, (ii) treated with solvent for 30 min, washed, and then treated with beta-adrenoceptor agonist for 30 min and cAMP measured-termed 'unwashed' cells. The 'washed' EC(50) was divided by the 'unwashed' EC(50) to determine a rightward shift concentration ratio, which was indicative of the persistence of action at the receptor. At the beta(2) adrenoceptor salmeterol, carmoterol and indacaterol were resistant to washing with a concentration ratio of <5, indicating a long persistence of action, whereas formoterol, isoprenaline and salbutamol were washed out with a ratio of 32, >294 and >800 respectively, suggesting a shorter persistence of action. At beta(1) and beta(3) adrenoceptors all compounds washed out. The persistent effects of salmeterol at beta(2) following washing could be reversed by the selective beta(2) antagonist ICI 118551, suggesting continued receptor activation. The data presented agree well with published data assessing duration of action of beta(2) agonists in human isolated bronchus and guinea pig isolated trachea. Key features are: (a) it is a 96-well format which can be used to assess many compounds in a single experiment, (b) both potency and persistence of agonist action are assessed in the same assay, (c) any effects of concentration on the persistence of action can be highlighted, and (d) it allows triage of compounds prior to tissue bath studies thus reducing the use of animal tissue.
Yeku, Oladapo O; Brentjens, Renier J
2016-04-15
Chimaeric antigen receptor (CAR) T-cells are T-cells that have been genetically modified to express an artificial construct consisting of a synthetic T-cell receptor (TCR) targeted to a predetermined antigen expressed on a tumour. Coupling the T-cell receptor to a CD3ζ signalling domain paved the way for first generation CAR T-cells that were efficacious against cluster of differentiation (CD)19-expressing B-cell malignancies. Optimization with additional signalling domains such as CD28 or 4-1BB in addition to CD3ζ provided T-cell activation signal 2 and further improved the efficacy and persistence of these second generation CAR T-cells. Third generation CAR T-cells which utilize two tandem costimulatory domains have also been reported. In this review, we discuss a different approach to optimization of CAR T-cells. Through additional genetic modifications, these resultant armored CAR T-cells are typically modified second generation CAR T-cells that have been further optimized to inducibly or constitutively secrete active cytokines or express ligands that further armor CAR T-cells to improve efficacy and persistence. The choice of the 'armor' agent is based on knowledge of the tumour microenvironment and the roles of other elements of the innate and adaptive immune system. Although there are several variants of armored CAR T-cells under investigation, here we focus on three unique approaches using interleukin-12 (IL-12), CD40L and 4-1BBL. These agents have been shown to further enhance CAR T-cell efficacy and persistence in the face of a hostile tumour microenvironment via different mechanisms. © 2016 Authors; published by Portland Press Limited.
Yeku, Oladapo O.; Brentjens, Renier J.
2017-01-01
Chimaeric antigen receptor (CAR) T-cells are T-cells that have been genetically modified to express an artificial construct consisting of a synthetic T-cell receptor (TCR) targeted to a predetermined antigen expressed on a tumour. Coupling the T-cell receptor to a CD3ζ signalling domain paved the way for first generation CAR T-cells that were efficacious against cluster of differentiation (CD)19-expressing B-cell malignancies. Optimization with additional signalling domains such as CD28 or 4-1BB in addition to CD3ζ provided T-cell activation signal 2 and further improved the efficacy and persistence of these second generation CAR T-cells. Third generation CAR T-cells which utilize two tandem costimulatory domains have also been reported. In this review, we discuss a different approach to optimization of CAR T-cells. Through additional genetic modifications, these resultant armored CAR T-cells are typically modified second generation CAR T-cells that have been further optimized to inducibly or constitutively secrete active cytokines or express ligands that further armor CAR T-cells to improve efficacy and persistence. The choice of the ‘armor’ agent is based on knowledge of the tumour microenvironment and the roles of other elements of the innate and adaptive immune system. Although there are several variants of armored CAR T-cells under investigation, here we focus on three unique approaches using interleukin-12 (IL-12), CD40L and 4-1BBL. These agents have been shown to further enhance CAR T-cell efficacy and persistence in the face of a hostile tumour microenvironment via different mechanisms. PMID:27068948
Toyoda, M; Ihara, T; Nakano, T; Ito, M; Kamiya, H
1999-03-17
In response to two types of measles virus (MV) antigens, a vaccine strain CAM and a wild strain isolated in 1994, the expression of IL-2 receptor alpha (CD25)(+)CD45RO(+)CD4(+) T-lymphocytes (T-cell activation) was analyzed by flow cytometry. In 75 healthy subjects with measles hemagglutination inhibition tests > or =1:16, the percentage of T-cell activation was significantly increased compared with that in seronegative individuals (p) < 0.05). Moreover, the T-cell expression was not significantly different among the vaccinated (n = 38), the naturally infected (n = 28) and the subclinically infected (exposed with wild type without history of measles infection and HI titers > or =1:16) (n = 10) groups. T-cell activation stimulated with MV antigens and HI antibody titers persisted for almost 30 years in the vaccinated group. These results suggest that cell-mediated immunity persists for long periods after vaccination and does not be influenced by antigenic drift.
Cellular STAT3 functions via PCBP2 to restrain Epstein-Barr Virus lytic activation in B lymphocytes.
Koganti, Siva; Clark, Carissa; Zhi, Jizu; Li, Xiaofan; Chen, Emily I; Chakrabortty, Sharmistha; Hill, Erik R; Bhaduri-McIntosh, Sumita
2015-05-01
A major hurdle to killing Epstein-Barr virus (EBV)-infected tumor cells using oncolytic therapy is the presence of a substantial fraction of EBV-infected cells that does not support the lytic phase of EBV despite exposure to lytic cycle-promoting agents. To determine the mechanism(s) underlying this refractory state, we developed a strategy to separate lytic from refractory EBV-positive (EBV(+)) cells. By examining the cellular transcriptome in separated cells, we previously discovered that high levels of host STAT3 (signal transducer and activator of transcription 3) curtail the susceptibility of latently infected cells to lytic cycle activation signals. The goals of the present study were 2-fold: (i) to determine the mechanism of STAT3-mediated resistance to lytic activation and (ii) to exploit our findings to enhance susceptibility to lytic activation. We therefore analyzed our microarray data set, cellular proteomes of separated lytic and refractory cells, and a publically available STAT3 chromatin immunoprecipitation sequencing (ChIP-Seq) data set to identify cellular PCBP2 [poly(C)-binding protein 2], an RNA-binding protein, as a transcriptional target of STAT3 in refractory cells. Using Burkitt lymphoma cells and EBV(+) cell lines from patients with hypomorphic STAT3 mutations, we demonstrate that single cells expressing high levels of PCBP2 are refractory to spontaneous and induced EBV lytic activation, STAT3 functions via cellular PCBP2 to regulate lytic susceptibility, and suppression of PCBP2 levels is sufficient to increase the number of EBV lytic cells. We expect that these findings and the genome-wide resources that they provide will accelerate our understanding of a longstanding mystery in EBV biology and guide efforts to improve oncolytic therapy for EBV-associated cancers. Most humans are infected with Epstein-Barr virus (EBV), a cancer-causing virus. While EBV generally persists silently in B lymphocytes, periodic lytic (re)activation of latent virus is central to its life cycle and to most EBV-related diseases. However, a substantial fraction of EBV-infected B cells and tumor cells in a population is refractory to lytic activation. This resistance to lytic activation directly and profoundly impacts viral persistence and the effectiveness of oncolytic therapy for EBV(+) cancers. To identify the mechanisms that underlie susceptibility to EBV lytic activation, we used host gene and protein expression profiling of separated lytic and refractory cells. We find that STAT3, a transcription factor overactive in many cancers, regulates PCBP2, a protein important in RNA biogenesis, to regulate susceptibility to lytic cycle activation signals. These findings advance our understanding of EBV persistence and provide important leads on devising methods to improve viral oncolytic therapies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Peixoto, António; Evaristo, César; Munitic, Ivana; Monteiro, Marta; Charbit, Alain; Rocha, Benedita; Veiga-Fernandes, Henrique
2007-01-01
To study in vivo CD8 T cell differentiation, we quantified the coexpression of multiple genes in single cells throughout immune responses. After in vitro activation, CD8 T cells rapidly express effector molecules and cease their expression when the antigen is removed. Gene behavior after in vivo activation, in contrast, was quite heterogeneous. Different mRNAs were induced at very different time points of the response, were transcribed during different time periods, and could decline or persist independently of the antigen load. Consequently, distinct gene coexpression patterns/different cell types were generated at the various phases of the immune responses. During primary stimulation, inflammatory molecules were induced and down-regulated shortly after activation, generating early cells that only mediated inflammation. Cytotoxic T cells were generated at the peak of the primary response, when individual cells simultaneously expressed multiple killer molecules, whereas memory cells lost killer capacity because they no longer coexpressed killer genes. Surprisingly, during secondary responses gene transcription became permanent. Secondary cells recovered after antigen elimination were more efficient killers than cytotoxic T cells present at the peak of the primary response. Thus, primary responses produced two transient effector types. However, after boosting, CD8 T cells differentiate into long-lived killer cells that persist in vivo in the absence of antigen. PMID:17485515
Chu, Z L; DiDonato, J A; Hawiger, J; Ballard, D W
1998-06-26
The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV1) chronically activates transcription factor NF-kappaB by a mechanism involving degradation of IkappaBalpha, an NF-kappaB-associated cytoplasmic inhibitor. Tax-induced breakdown of IkappaBalpha requires phosphorylation of the inhibitor at Ser-32 and Ser-36, which is also a prerequisite for the transient activation of NF-kappaB in cytokine-treated T lymphocytes. However, it remained unclear how Tax interfaces with the cellular NF-kappaB/IkappaB signaling machinery to generate a chronic rather than a transient NF-kappaB response. We now demonstrate that Tax associates with cytokine-inducible IkappaB kinase (IKK) complexes containing catalytic subunits IKKalpha and IKKbeta, which mediate phosphorylation of IkappaBalpha at Ser-32 and Ser-36. Unlike their transiently activated counterparts in cytokine-treated cells, Tax-associated forms of IKK are constitutively active in either Tax transfectants or HTLV1-infected T lymphocytes. Moreover, point mutations in Tax that ablate its IKK-binding function also prevent Tax-mediated activation of IKK and NF-kappaB. Together, these findings suggest that the persistent activation of NF-kappaB in HTLV1-infected T-cells is mediated by a direct Tax/IKK coupling mechanism.
Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice.
Rani, Reena; Li, Jie; Pang, Qishen
2008-12-01
Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here, we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/-Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas wild-type cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53.
Differential p53 engagement in response to oxidative and oncogenic stresses in Fanconi anemia mice
Rani, Reena; Li, Jie; Pang, Qishen
2008-01-01
Members of the Fanconi anemia (FA) protein family are involved in repair of genetic damage caused by DNA cross-linkers. It is not clear whether the FA proteins function in oxidative DNA damage and oncogenic stress response. Here we report that deficiency in the Fanca gene in mice elicits a p53-dependent growth arrest and DNA damage response to oxidative DNA damage and oncogenic stress. Using a Fanca-/- Trp53-/- double knockout model and a functionally switchable p53 retrovirus, we define the kinetics, dependence, and persistence of p53-mediated response to oxidative and oncogenic stresses in Fanca-/- cells. Notably, oxidative stress induces persistent p53 response in Fanca-/- cells, likely due to accumulation of unrepaired DNA damage. On the other hand, whereas WT cells exhibit prolonged response to oncogene activation, the p53-activating signals induced by oncogenic ras are short-lived in Fanca-/- cells, suggesting that Fanca may be required for the cell to engage p53 during constitutive ras activation. We propose that the FA proteins protect cells from stress-induced proliferative arrest and tumor evolution by acting as a modulator of the signaling pathways that link FA to p53. PMID:19047147
Immunological implications of pregnancy-induced microchimerism
Kinder, Jeremy M.; Stelzer, Ina A.; Arck, Petra C.; Way, Sing Sing
2017-01-01
Immunological identity is traditionally defined by genetically encoded antigens, with equal maternal and paternal contributions as a result of Mendelian inheritance. However, vertically transferred maternal cells also persist in individuals at very low levels throughout postnatal development. Reciprocally, mothers are seeded during pregnancy with genetically foreign fetal cells that persist long after parturition. Recent findings suggest that these microchimeric cells expressing noninherited familially relevant antigenic traits are not accidental souvenirs of pregnancy, but are purposefully retained within mothers and their offspring to promote genetic fitness by improving the outcome of future pregnancies. Here, we discuss the immunological implications, benefits and potential consequences of individuals being constitutively chimeric with a biologically active ‘microchiome’ of genetically foreign cells. PMID:28480895
Defraine, Valerie; Verstraete, Laure; Van Bambeke, Françoise; Anantharajah, Ahalieyah; Townsend, Eleanor M; Ramage, Gordon; Corbau, Romu; Marchand, Arnaud; Chaltin, Patrick; Fauvart, Maarten; Michiels, Jan
2017-01-01
We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa . This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli . Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa , possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections.
Defraine, Valerie; Verstraete, Laure; Van Bambeke, Françoise; Anantharajah, Ahalieyah; Townsend, Eleanor M.; Ramage, Gordon; Corbau, Romu; Marchand, Arnaud; Chaltin, Patrick; Fauvart, Maarten; Michiels, Jan
2017-01-01
We recently described the novel anti-persister compound 1-[(2,4-dichlorophenethyl)amino]-3-phenoxypropan-2-ol (SPI009), capable of directly killing persister cells of the Gram-negative pathogen Pseudomonas aeruginosa. This compound also shows antibacterial effects against non-persister cells, suggesting that SPI009 could be used as an adjuvant for antibacterial combination therapy. Here, we demonstrate the broad-spectrum activity of SPI009, combined with different classes of antibiotics, against the clinically relevant ESKAPE pathogens Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa, Enterococcus faecium and Burkholderia cenocepacia and Escherichia coli. Importantly, SPI009 re-enabled killing of antibiotic-resistant strains and effectively lowered the required antibiotic concentrations. The clinical potential was further confirmed in biofilm models of P. aeruginosa and S. aureus where SPI009 exhibited effective biofilm inhibition and eradication. Caenorhabditis elegans infected with P. aeruginosa also showed a significant improvement in survival when SPI009 was added to conventional antibiotic treatment. Overall, we demonstrate that SPI009, initially discovered as an anti-persister molecule in P. aeruginosa, possesses broad-spectrum activity and is highly suitable for the development of antibacterial combination therapies in the fight against chronic infections. PMID:29312259
Smucker, Kelly; Smith, Lisa L.; Lozanski, Arletta; Zhong, Yiming; Ruppert, Amy S.; Lucas, David; Williams, Katie; Zhao, Weiqiang; Rassenti, Laura; Ghia, Emanuela; Kipps, Thomas J.; Mantel, Rose; Jones, Jeffrey; Flynn, Joseph; Maddocks, Kami; O’Brien, Susan; Furman, Richard R.; James, Danelle F.; Clow, Fong; Lozanski, Gerard; Johnson, Amy J.; Byrd, John C.
2014-01-01
The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has outstanding activity in patients with chronic lymphocytic leukemia. Most patients experience lymphocytosis, representing lymphocyte egress from nodal compartments. This resolves within 8 months in the majority of patients, but a subgroup has lymphocytosis lasting >12 months. Here we report a detailed characterization of patients with persistent lymphocytosis during ibrutinib therapy. Signaling evaluation showed that while BTK is inhibited, downstream mediators of B-cell receptor (BCR) signaling are activated in persistent lymphocytes. These cells cannot be stimulated through the BCR and do not show evidence of target gene activation. Flow cytometry for κ and λ expression, IGHV sequencing, Zap-70 methylation, and targeted gene sequencing in these patients are identical at baseline and later time points, suggesting that persistent lymphocytes do not represent clonal evolution. In vitro treatment with targeted kinase inhibitors shows that they are not addicted to a single survival pathway. Finally, progression-free survival is not inferior for patients with prolonged lymphocytosis vs those with traditional responses. Thus, prolonged lymphocytosis is common following ibrutinib treatment, likely represents the persistence of a quiescent clone, and does not predict a subgroup of patients likely to relapse early. PMID:24415539
Ling, Binhua; Mohan, Mahesh; Lackner, Andrew A; Green, Linda C; Marx, Preston A; Doyle, Lara A; Veazey, Ronald S
2010-12-15
Although patients with human immunodeficiency virus type 1 infection who are receiving antiretroviral therapy and those with long-term, nonprogressive infection (LTNPs) usually have undetectable viremia, virus persists in tissue reservoirs throughout infection. However, the distribution and magnitude of viral persistence and replication in tissues has not been adequately examined. Here, we used the simian immunodeficiency virus (SIV) macaque model to quantify and compare viral RNA and DNA in the small (jejunum) and large (colon) intestine of LTNPs. In LTNPs with chronic infection, the colon had consistently higher viral levels than did the jejunum. The colon also had higher percentages of viral target cells (memory CD4(+) CCR5(+) T cells) and proliferating memory CD4(+) T cells than did the jejunum, whereas markers of cell activation were comparable in both compartments. These data indicate that the large intestine is a major viral reservoir in LTNPs, which may be the result of persistent, latently infected cells and higher turnover of naive and central memory CD4(+) T cells in this major immunologic compartment.
Measles Virus Persistent Infection of Human Induced Pluripotent Stem Cells.
Naaman, Hila; Rabinski, Tatiana; Yizhak, Avi; Mizrahi, Solly; Avni, Yonat Shemer; Taube, Ran; Rager, Bracha; Weinstein, Yacov; Rall, Glenn; Gopas, Jacob; Ofir, Rivka
2018-02-01
In this study, we found that the measles virus (MV) can infect human-induced pluripotent stem cells (hiPSCs). Wild-type MV strains generally use human signaling lymphocyte activation molecule (SLAM; CD150) as a cellular receptor, while vaccine strains such as the Edmonston strain can use both CD150 and CD46 as receptors. It is not yet known how early in the embryonal differentiation stages these receptors are expressed. We established two hiPSCs (BGU-iPSCs and EMF-iPSCs) which express CD46 and CD150. Both cell types can be infected by MV to form persistent, noncytopathic cell lines that release infectious MV particles. Following MV persistent infection, BGU-iPSCs and EMF-iPSCs remain pluripotent and can differentiate in vitro into the three germ layers. This includes cells expressing the neuronal differentiation markers: NF68 and miRNA-124. Since the MV does not integrate into the cell's genome, it can be utilized as a vehicle to systematically introduce genes into iPSC, to dissect and to define factors regulating lineage differentiation.
Cerqueira, Sofia A; Tan, Min; Li, Shijun; Juillard, Franceline; McVey, Colin E; Kaye, Kenneth M; Simas, J Pedro
2016-09-01
Viruses have evolved mechanisms to hijack components of cellular E3 ubiquitin ligases, thus modulating the ubiquitination pathway. However, the biological relevance of such mechanisms for viral pathogenesis in vivo remains largely unknown. Here, we utilized murid herpesvirus 4 (MuHV-4) infection of mice as a model system to address the role of MuHV-4 latency-associated nuclear antigen (mLANA) E3 ligase activity in gammaherpesvirus latent infection. We show that specific mutations in the mLANA SOCS box (V199A, V199A/L202A, or P203A/P206A) disrupted mLANA's ability to recruit Elongin C and Cullin 5, thereby impairing the formation of the Elongin BC/Cullin 5/SOCS (EC5S(mLANA)) complex and mLANA's E3 ligase activity on host NF-κB and Myc. Although these mutations resulted in considerably reduced mLANA binding to viral terminal repeat DNA as assessed by electrophoretic mobility shift assay (EMSA), the mutations did not disrupt mLANA's ability to mediate episome persistence. In vivo, MuHV-4 recombinant viruses bearing these mLANA SOCS box mutations exhibited a deficit in latency amplification in germinal center (GC) B cells. These findings demonstrate that the E3 ligase activity of mLANA contributes to gammaherpesvirus-driven GC B cell proliferation. Hence, pharmacological inhibition of viral E3 ligase activity through targeting SOCS box motifs is a putative strategy to control gammaherpesvirus-driven lymphoproliferation and associated disease. The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause lifelong persistent infection and play causative roles in several human malignancies. Colonization of B cells is crucial for virus persistence, and access to the B cell compartment is gained by virus-driven proliferation in germinal center (GC) B cells. Infection of B cells is predominantly latent, with the viral genome persisting as a multicopy episome and expressing only a small subset of viral genes. Here, we focused on latency-associated nuclear antigen (mLANA) encoded by murid herpesvirus-4 (MuHV-4), which exhibits homology in sequence, structure, and function to KSHV LANA (kLANA), thereby allowing the study of LANA-mediated pathogenesis in mice. Our experiments show that mLANA's E3 ubiquitin ligase activity is necessary for efficient expansion of latency in GC B cells, suggesting that the development of pharmacological inhibitors of LANA E3 ubiquitin ligase activity may allow strategies to interfere with gammaherpesvirus-driven lymphoproliferation and associated disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Prusty, Bhupesh K.; Böhme, Linda; Bergmann, Birgit; Siegl, Christine; Krause, Eva; Mehlitz, Adrian; Rudel, Thomas
2012-01-01
Both human herpes viruses and Chlamydia are highly prevalent in the human population and are detected together in different human disorders. Here, we demonstrate that co-infection with human herpes virus 6 (HHV6) interferes with the developmental cycle of C. trachomatis and induces persistence. Induction of chlamydial persistence by HHV6 is independent of productive virus infection, but requires the interaction and uptake of the virus by the host cell. On the other hand, viral uptake is strongly promoted under co-infection conditions. Host cell glutathione reductase activity was suppressed by HHV6 causing NADPH accumulation, decreased formation of reduced glutathione and increased oxidative stress. Prevention of oxidative stress restored infectivity of Chlamydia after HHV6-induced persistence. We show that co-infection with Herpes simplex virus 1 or human Cytomegalovirus also induces chlamydial persistence by a similar mechanism suggesting that Chlamydia -human herpes virus co-infections are evolutionary shaped interactions with a thus far unrecognized broad significance. PMID:23077614
Niepa, Tagbo H R; Wang, Hao; Gilbert, Jeremy L; Ren, Dacheng
2017-03-01
Antibiotic resistance is a major challenge to the treatment of bacterial infections associated with medical devices and biomaterials. One important intrinsic mechanism of such resistance is the formation of persister cells that are phenotypic variants of microorganisms and highly tolerant to antibiotics. Recently, we reported a new approach to eradicating persister cells of Pseudomonas aeruginosa using low-level direct electrochemical current (DC) and synergy with the antibiotic tobramycin. To further understand the underlying mechanism and develop this technology toward possible medical applications, we investigated the electricidal activities of non-metallic biomaterial on persister and biofilm cells of P. aeruginosa using graphite-based TGON™ 805 electrodes. We employed both single and dual chamber systems to compare electrochemical factors of TGON and stainless steel 304 electrodes. The results revealed that TGON-based treatments were highly effective against P. aeruginosa persister cells. In the single chamber system, complete eradication of planktonic persister cells (corresponding to a 7-log killing) was achieved with 70μA/cm 2 DC using TGON electrodes within 40min of treatment, while the cell viability in biofilms was reduced by 2 logs within 1h. The killing effects were dose and time dependent with higher current densities requiring less time. Moreover, reduction reactions were found more effective than oxidation reactions, confirming that metal cations are not indispensable, although they may facilitate cell killing. The findings of this study can help develop electrochemical technologies to eradicate persister and biofilm cells for more effective treatment of medical device and biomaterial associated infections. Infections associated with medical devices and biomaterials present a major challenge due to high-level tolerance of microbes to conventional antibiotics. It is well established that such tolerance is due to the formation of dormant persister cells and multicellular structures known as biofilms. Recent studies have demonstrated electrochemical treatment as a promising alternative to eradicate bacterial infections, since the killing mechanism is independent of the growth phase of bacterial cells, but relies on various electrochemical species interplaying during the treatment. The current study investigated major bactericidal properties of the electrochemical currents mediated via TGON, a carbon-based electrode material. Up to total eradication of Pseudomonas aeruginosa persister cells was achieved. The new knowledge of electrochemical properties and the bioactivity of TGON may help develop new methods/devices to eradicate bacterial infections by delivering safe levels of electrochemical currents. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Neske, Garrett T; Patrick, Saundra L; Connors, Barry W
2015-01-21
The recurrent synaptic architecture of neocortex allows for self-generated network activity. One form of such activity is the Up state, in which neurons transiently receive barrages of excitatory and inhibitory synaptic inputs that depolarize many neurons to spike threshold before returning to a relatively quiescent Down state. The extent to which different cell types participate in Up states is still unclear. Inhibitory interneurons have particularly diverse intrinsic properties and synaptic connections with the local network, suggesting that different interneurons might play different roles in activated network states. We have studied the firing, subthreshold behavior, and synaptic conductances of identified cell types during Up and Down states in layers 5 and 2/3 in mouse barrel cortex in vitro. We recorded from pyramidal cells and interneurons expressing parvalbumin (PV), somatostatin (SOM), vasoactive intestinal peptide (VIP), or neuropeptide Y. PV cells were the most active interneuron subtype during the Up state, yet the other subtypes also received substantial synaptic conductances and often generated spikes. In all cell types except PV cells, the beginning of the Up state was dominated by synaptic inhibition, which decreased thereafter; excitation was more persistent, suggesting that inhibition is not the dominant force in terminating Up states. Compared with barrel cortex, SOM and VIP cells were much less active in entorhinal cortex during Up states. Our results provide a measure of functional connectivity of various neuron types in barrel cortex and suggest differential roles for interneuron types in the generation and control of persistent network activity. Copyright © 2015 the authors 0270-6474/15/351089-17$15.00/0.
Takahashi, Izumi; Yoshino, Masami
2015-10-01
In this study, we examined the functional coupling between Na(+)-activated potassium (KNa) channels and Na(+) influx through voltage-dependent Na(+) channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability (Po) of KNa channels increased with increasing Na(+) concentration in a bath solution, whereas it decreased by the substitution of Na(+) with an equimolar concentration of Li(+). The Po of KNa channels was also found to be reduced by bath application of a high concentration of TTX (1 μM) and riluzole (100 μM), which inhibits both fast (INaf) and persistent (INaP) Na(+) currents, whereas it was unaffected by a low concentration of TTX (10 nM), which selectively blocks INaf. Bath application of Cd(2+) at a low concentration (50 μM), as an inhibitor of INaP, also decreased the Po of KNa channels. Conversely, bath application of the inorganic Ca(2+)-channel blockers Co(2+) and Ni(2+) at high concentrations (500 μM) had little effect on the Po of KNa channels, although Cd(2+) (500 μM) reduced the Po of KNa channels. Perforated whole cell clamp analysis further indicated the presence of sustained outward currents for which amplitude was dependent on the amount of Na(+) influx. Taken together, these results indicate that KNa channels could be activated by Na(+) influx passing through voltage-dependent persistent Na(+) channels. The functional significance of this coupling mechanism was discussed in relation to the membrane excitability of Kenyon cells and its possible role in the formation of long-term memory. Copyright © 2015 the American Physiological Society.
Rivera-Toledo, Evelyn; Salido-Guadarrama, Iván; Rodríguez-Dorantes, Mauricio; Torres-González, Laura; Santiago-Olivares, Carlos; Gómez, Beatriz
2017-02-15
Cells susceptible to persistent viral infections undergo important changes in their biological functions as a consequence of the expression of viral gene products that are capable of altering the gene expression profile of the host cell. Previously, we reported that persistence of the RSV genome in a mouse macrophage cell line induces important alterations in cell homeostasis, including constitutive expression of IFN-β and other pro-inflammatory cytokines. Here, we postulated that changes in the homeostasis of non-infected macrophages could be induced by soluble factors secreted by persistently RSV- infected macrophages. To test this hypothesis, non-infected mouse macrophages were treated with conditioned medium (CM) collected from cultures of persistently RSV-infected macrophages. Total RNA was extracted and a microarray-based gene expression analysis was performed. Non-infected macrophages, treated under similar conditions with CM obtained from cultures of non-infected macrophages, were used as a control to establish differential gene expression between the two conditions. Results showed that CM from the persistently RSV-infected cultures altered expression of a total of 95 genes in non-infected macrophages, resulting in an antiviral gene-transcription profile along with inhibition of the inflammatory response, since some inflammatory genes were down-regulated, including Nlrp3 and Il-1 β, both related to the inflammasome pathway. However, down-regulation of Nlrp3 and Il-1 β was reversible upon acute RSV infection. Additionally, we observed that the inflammatory response, evaluated by secreted IL-1 β, a final product of the inflammasome activity, was enhanced during acute RSV infection in macrophages treated with CM from persistently RSV-infected cultures, compared to that in macrophages treated with the control CM. This suggests that soluble factors secreted during RSV persistence may induce an exacerbated inflammatory response in non-infected cells. Copyright © 2017 Elsevier B.V. All rights reserved.
SigB is a dominant regulator of virulence in Staphylococcus aureus small-colony variants.
Mitchell, Gabriel; Fugère, Alexandre; Pépin Gaudreau, Karine; Brouillette, Eric; Frost, Eric H; Cantin, André M; Malouin, François
2013-01-01
Staphylococcus aureus small-colony variants (SCVs) are persistent pathogenic bacteria characterized by slow growth and, for many of these strains, an increased ability to form biofilms and to persist within host cells. The virulence-associated gene expression profile of SCVs clearly differs from that of prototypical strains and is often influenced by SigB rather than by the agr system. One objective of this work was to confirm the role of SigB in the control of the expression of virulence factors involved in biofilm formation and intracellular persistence of SCVs. This study shows that extracellular proteins are involved in the formation of biofilm by three SCV strains, which, additionally, have a low biofilm-dispersing activity. It was determined that SigB activity modulates biofilm formation by strain SCV CF07-S and is dominant over that of the agr system without being solely responsible for the repression of proteolytic activity. On the other hand, the expression of fnbA and the control of nuclease activity contributed to the SigB-dependent formation of biofilm of this SCV strain. SigB was also required for the replication of CF07-S within epithelial cells and may be involved in the colonization of lungs by SCVs in a mouse infection model. This study methodically investigated SigB activity and associated mechanisms in the various aspects of SCV pathogenesis. Results confirm that SigB activity importantly influences the production of virulence factors, biofilm formation and intracellular persistence for some clinical SCV strains.
Liang, Emily C; Sceats, Lindsay; Bayless, Nicholas L; Strauss-Albee, Dara M; Kubo, Jessica; Grant, Philip M; Furman, David; Desai, Manisha; Katzenstein, David A; Davis, Mark M; Zolopa, Andrew R; Blish, Catherine A
2014-08-01
Generalized immune activation during HIV infection is associated with an increased risk of cardiovascular disease, neurocognitive disease, osteoporosis, metabolic disorders, and physical frailty. The mechanisms driving this immune activation are poorly understood, particularly for individuals effectively treated with antiretroviral medications. We hypothesized that viral characteristics such as sequence diversity may play a role in driving HIV-associated immune activation. We therefore sequenced proviral DNA isolated from peripheral blood mononuclear cells from HIV-infected individuals on fully suppressive antiretroviral therapy. We performed phylogenetic analyses, calculated viral diversity and divergence in the env and pol genes, and determined coreceptor tropism and the frequency of drug resistance mutations. Comprehensive immune profiling included quantification of immune cell subsets, plasma cytokine levels, and intracellular signaling responses in T cells, B cells, and monocytes. These antiretroviral therapy-treated HIV-infected individuals exhibited a wide range of diversity and divergence in both env and pol genes. However, proviral diversity and divergence in env and pol, coreceptor tropism, and the level of drug resistance did not significantly correlate with markers of immune activation. A clinical history of virologic failure was also not significantly associated with levels of immune activation, indicating that a history of virologic failure does not inexorably lead to increased immune activation as long as suppressive antiretroviral medications are provided. Overall, this study demonstrates that latent viral diversity is unlikely to be a major driver of persistent HIV-associated immune activation. Chronic immune activation, which is associated with cardiovascular disease, neurologic disease, and early aging, is likely to be a major driver of morbidity and mortality in HIV-infected individuals. Although treatment of HIV with antiretroviral medications decreases the level of immune activation, levels do not return to normal. The factors driving this persistent immune activation, particularly during effective treatment, are poorly understood. In this study, we investigated whether characteristics of the latent, integrated HIV provirus that persists during treatment are associated with immune activation. We found no relationship between latent viral characteristics and immune activation in treated individuals, indicating that qualities of the provirus are unlikely to be a major driver of persistent inflammation. We also found that individuals who had previously failed treatment but were currently effectively treated did not have significantly increased levels of immune activation, providing hope that past treatment failures do not have a lifelong "legacy" impact. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Zheng, Bin; Bai, Yang; Chen, Hongbin; Pan, Huizhuo; Ji, Wanying; Gong, Xiaoqun; Wu, Xiaoli; Wang, Hanjie; Chang, Jin
2018-05-14
Optical imaging for biological applications is in need of more sensitive tool. Persistent luminescent nanophosphors enable highly sensitive in vivo optical detection and almost completely avoids tissue autofluorescence. Nevertheless, the actual persistent luminescent nanophosphors necessitates ex vivo activation before systemic operation, which severely restricted the use of long-term imaging in vivo. Hence, we introduced a novel generation of optical nanophosphors, based on (Zn2SiO4: Mn): Y3+, Yb3+, Tm3+ upconverting persistent luminescent nanophosphors, these nanophosphors can be excited in vivo through living tissues by highly penetrating near-infrared light. We can trace labeled tumor therapeutic macrophages in vivo after endocytosing these nanophosphors in vitro and follow macrophages biodistribution by a simple whole animal optical detection. These nanophosphors will open novel potentials for cell therapy research and for a variety of diagnosis applications in vivo.
Kankuri, Esko; Mervaala, Elina E; Storvik, Markus; Ahola, Aija M J; Levijoki, Jouko; Müller, Dominik N; Finckenberg, Piet; Mervaala, Eero M
2015-06-01
Hypertension and persistent activation of the renin-angiotensin system (RAS) are predisposing factors for the development of acute kidney injury (AKI). Although bone-marrow-derived stromal cells (BMSCs) have shown therapeutic promise in treatment of AKI, the impact of pathological RAS on BMSC functionality has remained unresolved. RAS and its local components in the bone marrow are involved in several key steps of cell maturation processes. This may also render the BMSC population vulnerable to alterations even in the early phases of RAS pathology. We isolated transgenic BMSCs (TG-BMSCs) from young end-organ-disease-free rats with increased RAS activation [human angiotensinogen/renin double transgenic rats (dTGRs)] that eventually develop hypertension and die of end-organ damage and kidney failure at 8 weeks of age. Control cells (SD-BMSCs) were isolated from wild-type Sprague-Dawley rats. Cell phenotype, mitochondrial reactive oxygen species (ROS) production and respiration were assessed, and gene expression profiling was carried out using microarrays. Cells' therapeutic efficacy was evaluated in a rat model of acute ischaemia/reperfusion-induced AKI. Serum urea and creatinine were measured at 24 h and 48 h. Acute tubular damage was scored and immunohistochemistry was used for evaluation for markers of inflammation [monocyte chemoattractant protein (MCP-1), ED-1], and kidney injury [kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL)]. TG-BMSCs showed distinct mitochondrial morphology, decreased cell respiration and increased production of ROS. Gene expression profiling revealed a pronounced pro-inflammatory phenotype. In contrast with the therapeutic effect of SD-BMSCs, administration of TG-BMSCs in the AKI model resulted in exacerbation of kidney injury and high mortality. Our results demonstrate that early persistent RAS activation can dramatically compromise therapeutic potential of BMSCs by causing a shift into a pro-inflammatory phenotype with mitochondrial dysfunction.
Persistent inflammation in HIV infection: established concepts, new perspectives.
Nasi, Milena; Pinti, Marcello; Mussini, Cristina; Cossarizza, Andrea
2014-10-01
Immune activation is now considered a main driving force for the progressive immune failure in HIV infection. During the early phases of infection, a rapid depletion of gastrointestinal CD4+ T cells occurs that is followed by a deterioration of the gut epithelium and by the subsequent translocation of microbial products into the blood. Activation of innate immunity results in massive production of proinflammatory cytokines, which can trigger activation induced cell death phenomena among T lymphocytes. Moreover, persistent antigenic stimulation and inflammatory status causes immune exhaustion. The chronic immune activation also damages lymphoid tissue architecture, so contributing to the impairment of immune reconstitution. Recently, new mechanisms were identified, so opening new perspective on the innate immune sensing in HIV-1 infection. Cell death is followed by the release of molecules containing "damage-associated molecular patterns", that trigger a potent innate immune response through the engagement of Toll-like receptors. Then, also different types of HIV-related nucleic acids can act as potent stimulators of innate immunity. All these events contribute to the loss of T cell homeostatic regulation and to the failure of adaptive immunity. Copyright © 2014 Elsevier B.V. All rights reserved.
Walsh, Kevin B; Teijaro, John R; Zuniga, Elina I; Welch, Megan J; Fremgen, Daniel M; Blackburn, Shawn D; von Tiehl, Karl F; Wherry, E John; Flavell, Richard A; Oldstone, Michael B A
2012-06-14
TLR7 is an innate signaling receptor that recognizes single-stranded viral RNA and is activated by viruses that cause persistent infections. We show that TLR7 signaling dictates either clearance or establishment of life-long chronic infection by lymphocytic choriomeningitis virus (LCMV) Cl 13 but does not affect clearance of the acute LCMV Armstrong 53b strain. TLR7(-/-) mice infected with LCMV Cl 13 remained viremic throughout life from defects in the adaptive antiviral immune response-notably, diminished T cell function, exacerbated T cell exhaustion, decreased plasma cell maturation, and negligible antiviral antibody production. Adoptive transfer of TLR7(+/+) LCMV immune memory cells that enhanced clearance of persistent LCMV Cl 13 infection in TLR7(+/+) mice failed to purge LCMV Cl 13 infection in TLR7(-/-) mice, demonstrating that a TLR7-deficient environment renders antiviral responses ineffective. Therefore, methods that promote TLR7 signaling are promising treatment strategies for chronic viral infections. Copyright © 2012 Elsevier Inc. All rights reserved.
Alterations in adaptive immunity persist during long-duration spaceflight.
Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2015-01-01
It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8 + T-cell maturation. A reduction in general T-cell function (both CD4 + and CD8 + ) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4 + T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions.
Alterations in adaptive immunity persist during long-duration spaceflight
Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2015-01-01
Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716
Characterization of multi-drug tolerant persister cells in Streptococcus suis.
Willenborg, Jörg; Willms, Daniela; Bertram, Ralph; Goethe, Ralph; Valentin-Weigand, Peter
2014-05-12
Persister cells constitute a subpopulation of dormant cells within a microbial population which are genetically identical but phenotypically different to regular cells. Notably, persister cells show an elevated tolerance to antimicrobial agents. Thus, they are considered to represent a microbial 'bet-hedging' strategy and are of particular importance in pathogenic bacteria. We studied the ability of the zoonotic pathogen Streptococcus (S.) suis to form multi-drug tolerant variants and identified persister cells dependent on the initial bacterial growth phase. We observed lower numbers of persisters in exponential phase cultures than in stationary growth phase populations. S. suis persister cells showed a high tolerance to a variety of antibiotics, and the phenotype was not inherited as tested with four passages of S. suis populations. Furthermore, we provide evidence that the persister phenotype is related to expression of genes involved in general metabolic pathways since we found higher numbers of persister cells in a mutant strain defective in the catabolic arginine deiminase system as compared to its parental wild type strain. Finally, we observed persister cell formation also in other S. suis strains and pathogenic streptococcal species. Taken together, this is the first study that reports multi-drug tolerant persister cells in the zoonotic pathogen S. suis.
Survival of Pseudomonas aeruginosa exposed to sunlight resembles the phenom of persistence.
Forte Giacobone, Ana F; Oppezzo, Oscar J
2015-01-01
During exposure of Pseudomonas aeruginosa stationary phase cells to natural solar radiation, a reduction in the rate of loss of bacterial viability was observed when survival fractions were lower than 1/10,000. This reduction was independent of the growth medium used and of the initial bacterial concentration, and was also observed when irradiation was performed with artificial UVA radiation (365nm, 47Wm(-2)). These results indicate the presence of a small bacterial subpopulation with increased tolerance to radiation. Such a tolerance is non-heritable, since survival curves comparable to those of the parental strain were obtained from survivors to long-term exposure to radiation. The radiation response described here resembles the phenomenon called persistence, which consists of the presence of a small subpopulation of slow-growing cells which are able to survive antibiotic treatment within a susceptible bacterial population. The condition of persister cells is acquired via a reversible switch and involves active defense systems towards oxidative stress. Persistence is probably responsible for biphasic responses of bacteria to several stress conditions, one of which may be exposure to sunlight. The models currently used to analyze the lethal action of sunlight overestimate the effect of high-dose irradiation. These models could be improved by including the potential formation of persister cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Palmer, Guy H.; Machado, Joel; Fernandez, Paula; Heussler, Volker; Perinat, Therese; Dobbelaere, Dirk A. E.
1997-01-01
Infection of cattle with the protozoan Theileria parva results in uncontrolled T lymphocyte proliferation resulting in lesions resembling multicentric lymphoma. Parasitized cells exhibit autocrine growth characterized by persistent translocation of the transcriptional regulatory factor nuclear factor κB (NFκB) to the nucleus and consequent enhanced expression of interleukin 2 and the interleukin 2 receptor. How T. parva induces persistent NFκB activation, required for T cell activation and proliferation, is unknown. We hypothesized that the parasite induces degradation of the IκB molecules which normally sequester NFκB in the cytoplasm and that continuous degradation requires viable parasites. Using T. parva-infected T cells, we showed that the parasite mediates continuous phosphorylation and proteolysis of IκBα. However, IκBα reaccumulated to high levels in parasitized cells, which indicated that T. parva did not alter the normal NFκB-mediated positive feedback loop which restores cytoplasmic IκBα. In contrast, T. parva mediated continuous degradation of IκBβ resulting in persistently low cytoplasmic IκBβ levels. Normal IκBβ levels were only restored following T. parva killing, indicating that viable parasites are required for IκBβ degradation. Treatment of T. parva-infected cells with pyrrolidine dithiocarbamate, a metal chelator, blocked both IκB degradation and consequent enhanced expression of NFκB dependent genes. However treatment using the antioxidant N-acetylcysteine had no effect on either IκB levels or NFκB activation, indicating that the parasite subverts the normal IκB regulatory pathway downstream of the requirement for reactive oxygen intermediates. Identification of the critical points regulated by T. parva may provide new approaches for disease control as well as increase our understanding of normal T cell function. PMID:9356483
Kamata, Shigeyuki; Kishimoto, Takashi; Kobayashi, Soichi; Miyazaki, Masaru; Ishikura, Hiroshi
2007-07-01
AFP-producing gastric carcinoma (AFPGC) is a highly malignant variant of gastric cancer. An effective chemotherapy is needed to improve on the poor outcome of this disease. Survival signals activated by intracellular kinase networks could be involved in chemoresistance in malignant tumors. We investigated the role of a pivotal kinase pathway, the mammalian target of rapamycin complex 1 (mTORC1) pathway, in the effectiveness of chemotherapeutic agents in three AFPGC cell lines (GCIY, FU97 and Takigawa) as well as in four cell lines of conventional-type gastric carcinoma (CGC). AFPGC cells were generally resistant to multiple chemotherapeutic agents, including cisplatin, while CGC cells were generally sensitive. Downstream targets of mTORC1, including p70S6K and 4EBP1, were phosphorylated in all cell lines. Interestingly, cisplatin virtually abolished phosphorylation of p70S6K and 4EBP1 in CGC cells, while phosphorylation was maintained in cisplatin-treated AFPGC cells. The addition of rapamycin, an inhibitor of mTORC1, diminished the remaining activity of mTORC1 and significantly intensified the cytotoxic action of cisplatin in AFPGC cells. These results suggested that persistent activity of mTORC1 signals in cisplatin-treated AFPGC cells is involved in the mechanisms of cisplatin resistance in AFPGC. Finally, combined treatment of rapamycin and cisplatin significantly suppressed the subcutaneously implanted GCIY cells. In conclusion rapamycin may be a potential supplemental agent for the treatment of AFPGC when used in combination with cisplatin.
Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R. Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A.; Davidson, Michael W.; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M.; Fabry, Ben
2015-01-01
Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton–ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell–ECM adhesion and traction force generation.—Thievessen, I., Fakhri, N., Steinwachs, J., Kraus, V., McIsaac, R. S., Gao, L., Chen, B.-C., Baird, M. A., Davidson, M. W., Betzig, E., Oldenbourg, R., Waterman, C., M., Fabry, B. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. PMID:26195589
Survival of bactericidal antibiotic treatment by tolerant persister cells of Klebsiella pneumoniae.
Li, Ying; Zhang, Luhua; Zhou, Yingshun; Zhang, Zhikun; Zhang, Xinzhuo
2018-03-01
Persister cells, a subpopulation of tolerant cells within the bacterial culture, are commonly thought to be responsible for antibiotic therapy failure and infection recurrence. Klebsiella pneumoniae is a notorious human pathogen for its increasing resistance to antibiotics and wide involvement in severe infections. In this study, we aimed to investigate the persister subpopulation of K. pneumoniae. The presence of persisters in K. pneumoniae was determined by treatment with high concentrations of antibiotics, used alone or in combination. The effect of low level of antibiotics on persister formation was investigated by pre-exposure of cells to antibiotics with low concentrations followed by higher doses. The dependence of persister levels on growth phase was determined by measuring the survival ability of cells along the growth stages upon exposure to a high concentration of antibiotic. Analysis on persister type was carried out by persister elimination assays.Results/Key findings. We show that K. pneumoniae produces high levels of tolerant persister cells to survive treatment by a variety of high concentrations of bactericidal antibiotics and persister formation is prevalent among K. pneumoniae clinical strains. Besides, we find that persister cells can be induced by low concentrations of antibiotics. Finally, we provide evidence that persister formation is growth phase-dependent and Type II persisters dominate the persister subpopulation during the entire exponential phase of K. pneumoniae. Our study describes the formation of tolerant persister cells that allow survival of treatment by high concentrations of antibiotics in K. pneumoniae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londei, M.; Savill, C.M.; Verhoef, A.
Rheumatoid arthritis is an autoimmune disease characterized by T-cell infiltration of the synovium of joints. Analysis of the phenotype and antigen specificity of the infiltrating cells may thus provide insight into the pathogenesis of rheumatoid arthritis. T cells were cloned with interleukin 2, a procedure that selects for in vivo-activated cells. All clones had the CD4 CDW29 phenotype. Their antigen specificity was tested by using a panel of candidate joint autoantigens. Four of 17 reacted against autologous blood mononuclear cells. Two clones proliferated in response to collagen type II. After 21 months, another set of clones was derived from synovialmore » tissue of the same joint. One of eight clones tested showed a strong proliferative response against collagen type II. The uncloned synovial T cells of a third operation from another joint also responded to collagen type II. The persistence of collagen type II-specific T cells in active rheumatoid joints over a period of 3 years suggests that collagen type II could be one of the autoantigens involved in perpetuating the inflammatory process in rheumatoid arthritis.« less
He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V.; Kenis, Paul J. A.; Wang, Fei
2011-01-01
Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell–extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon Gi-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL–C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells. PMID:21628423
Transient sodium current at subthreshold voltages: activation by EPSP waveforms
Carter, Brett C.; Giessel, Andrew J.; Sabatini, Bernardo L.; Bean, Bruce P.
2012-01-01
Summary Tetrodotoxin (TTX)-sensitive sodium channels carry large transient currents during action potentials and also “persistent” sodium current, a non-inactivating TTX-sensitive current present at subthreshold voltages. We examined gating of subthreshold sodium current in dissociated cerebellar Purkinje neurons and hippocampal CA1 neurons, studied at 37 °C with near-physiological ionic conditions. Unexpectedly, in both cell types small voltage steps at subthreshold voltages activated a substantial component of transient sodium current as well as persistent current. Subthreshold EPSP-like waveforms also activated a large component of transient sodium current, but IPSP-like waveforms engaged primarily persistent sodium current with only a small additional transient component. Activation of transient as well as persistent sodium current at subthreshold voltages produces amplification of EPSPs that is sensitive to the rate of depolarization and can help account for the dependence of spike threshold on depolarization rate, as previously observed in vivo. PMID:22998875
Current research on chronic active Epstein-Barr virus infection in Japan.
Fujiwara, Shigeyoshi; Kimura, Hiroshi; Imadome, Ken-ichi; Arai, Ayako; Kodama, Eiichi; Morio, Tomohiro; Shimizu, Norio; Wakiguchi, Hiroshi
2014-04-01
Epstein-Barr virus (EBV) infection is usually asymptomatic and persists lifelong. Although EBV-infected B cells have the potential for unlimited proliferation, they are effectively removed by the virus-specific cytotoxic T cells, and EBV-associated lymphoproliferative disease develops only in immunocompromised hosts. Rarely, however, individuals without apparent immunodeficiency develop chronic EBV infection with persistent infectious mononucleosis-like symptoms. These patients have high EBV-DNA load in the peripheral blood and systemic clonal expansion of EBV-infected T cells or natural killer (NK) cells. Their prognosis is poor with life-threatening complications including hemophagocytic lymphohistiocytosis, organ failure, and malignant lymphomas. The term "chronic active EBV infection" (CAEBV) is now generally used for this disease. The geographical distribution of CAEBV is markedly uneven and most cases have been reported from Japan and other East Asian countries. Here we summarize the current understanding of CAEBV and describe the recent progress of CAEBV research in Japan. © 2014 Japan Pediatric Society.
Hansen, Michelle J.; Chan, Sheau Pyng J.; Langenbach, Shenna Y.; Dousha, Lovisa F.; Jones, Jessica E.; Yatmaz, Selcuk; Seow, Huei Jiunn; Vlahos, Ross; Anderson, Gary P.; Bozinovski, Steven
2014-01-01
While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS) for 4 months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a transition from acute mediators (MIP-2α, KC and G-CSF) to sustained drivers of neutrophil and macrophage recruitment and activation (IL-17A and Serum Amyoid A (SAA)). Follicle-like lymphoid aggregates formed with CS exposure and persisted with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-elastase) which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic airway inflammation. PMID:25405776
Mina, Elin G; Marques, Cláudia N H
2016-08-10
Persister cells, a tolerant cell sub-population, are commonly associated with chronic and recurrent infections. However, little is known about their ability to actually initiate or establish an infection, become virulent and cause pathogenicity within a host. Here we investigated whether Staphylococcus aureus persister cells initiate an infection and are recognized by macrophages, while in a persister cell status, and upon awakening due to exposure to cis-2-decenoic acid (cis-DA). Our results show that S. aureus persister cells are not able to initiate infections in A. thaliana and present significantly reduced virulence towards C. elegans compared to total populations. In contrast, awakened S. aureus persister cells are able to initiate infections in A. thaliana and in C. elegans albeit, with lower mortality than total population. Furthermore, exposure of S. aureus persister cells to cis-DA led to a loss of tolerance to ciprofloxacin, and an increase of the bacterial fluorescence to levels found in total population. In addition, macrophage engulfment of persister cells was significantly lower than engulfment of total population, both before and following awakening. Overall our findings indicate that upon awakening of a persister population the cells regain their ability to infect hosts despite the absence of an increased immune response.
Characterization of multi-drug tolerant persister cells in Streptococcus suis
2014-01-01
Background Persister cells constitute a subpopulation of dormant cells within a microbial population which are genetically identical but phenotypically different to regular cells. Notably, persister cells show an elevated tolerance to antimicrobial agents. Thus, they are considered to represent a microbial ‘bet-hedging’ strategy and are of particular importance in pathogenic bacteria. Results We studied the ability of the zoonotic pathogen Streptococcus (S.) suis to form multi-drug tolerant variants and identified persister cells dependent on the initial bacterial growth phase. We observed lower numbers of persisters in exponential phase cultures than in stationary growth phase populations. S. suis persister cells showed a high tolerance to a variety of antibiotics, and the phenotype was not inherited as tested with four passages of S. suis populations. Furthermore, we provide evidence that the persister phenotype is related to expression of genes involved in general metabolic pathways since we found higher numbers of persister cells in a mutant strain defective in the catabolic arginine deiminase system as compared to its parental wild type strain. Finally, we observed persister cell formation also in other S. suis strains and pathogenic streptococcal species. Conclusions Taken together, this is the first study that reports multi-drug tolerant persister cells in the zoonotic pathogen S. suis. PMID:24885389
Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine
Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.
2012-01-01
Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID:22936983
Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.
German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro
2015-02-01
Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.
Naaman, Hila; Rall, Glenn; Matullo, Christine; Veksler-Lublinsky, Isana; Shemer-Avni, Yonat; Gopas, Jacob
2017-01-01
Measles virus (MV) infects a variety of lymphoid and non-lymphoid peripheral organs. However, in rare cases, the virus can persistently infect cells within the central nervous system. Although some of the factors that allow MV to persist are known, the contribution of host cell-encoded microRNAs (miRNA) have not been described. MiRNAs are a class of noncoding RNAs transcribed from genomes of all multicellular organisms and some viruses, which regulate gene expression in a sequence-specific manner. We have studied the contribution of host cell-encoded miRNAs to the establishment of MV persistent infection in human neuroblastoma cells. Persistent MV infection was accompanied by differences in the expression profile and levels of several host cell-encoded microRNAs as compared to uninfected cells. MV persistence infection of a human neuroblastoma cell line (UKF-NB-MV), exhibit high miRNA-124 expression, and reduced expression of cyclin dependent kinase 6 (CDK6), a known target of miRNA-124, resulting in slower cell division but not cell death. By contrast, acute MV infection of UKF-NB cells did not result in increased miRNA-124 levels or CDK6 reduction. Ectopic overexpression of miRNA-124 affected cell viability only in UKF-NB-MV cells, causing cell death; implying that miRNA-124 over expression can sensitize cells to death only in the presence of MV persistent infection. To determine if miRNA-124 directly contributes to the establishment of MV persistence, UKF-NB cells overexpressing miRNA-124 were acutely infected, resulting in establishment of persistently infected colonies. We propose that miRNA-124 triggers a CDK6-dependent decrease in cell proliferation, which facilitates the establishment of MV persistence in neuroblastoma cells. To our knowledge, this is the first report to describe the role of a specific miRNA in MV persistence.
Persistence of Epstein-Barr virus in self-reactive memory B cells.
Tracy, Sean I; Kakalacheva, Kristina; Lünemann, Jan D; Luzuriaga, Katherine; Middeldorp, Jaap; Thorley-Lawson, David A
2012-11-01
Epstein-Barr virus infection has been epidemiologically associated with the development of multiple autoimmune diseases, particularly systemic lupus erythematosus and multiple sclerosis. Currently, there is no known mechanism that can account for these associations. The germinal-center (GC) model of EBV infection and persistence proposes that EBV gains access to the memory B cell compartment via GC reactions by driving infected cells to differentiate using the virus-encoded LMP1 and LMP2a proteins, which act as functional homologues of CD40 and the B cell receptor, respectively. The ability of LMP2a, when expressed in mice, to allow escape of autoreactive B cells suggests that it could perform a similar role in infected GC B cells, permitting the survival of potentially pathogenic autoreactive B cells. To test this hypothesis, we cloned and expressed antibodies from EBV(+) and EBV(-) memory B cells present during acute infection and profiled their self- and polyreactivity. We find that EBV does persist within self- and polyreactive B cells but find no evidence that it favors the survival of pathogenic autoreactive B cells. On the contrary, EBV(+) memory B cells express lower levels of self-reactive and especially polyreactive antibodies than their uninfected counterparts do. Our work suggests that EBV has only a modest effect on the GC process, which allows it to access and persist within a subtly unique niche of the memory compartment characterized by relatively low levels of self- and polyreactivity. We suggest that this might reflect an active process where EBV and its human host have coevolved so as to minimize the virus's potential to contribute to autoimmune disease.
Zamora-Chimal, Jaime; Hernández-Ruiz, Joselín; Becker, Ingeborg
2017-04-01
The role of NKT cells in the resistance or susceptibility towards Leishmania infections remains to be defined, since controversial data persist. The response of these cells seems to depend on many variables such as the infection site, the number of infecting parasites, the virulence of the strain and the Leishmania species. We here revise the activation pathways leading to NKT cell activation. NKT cells can be activated by the direct pathway, in which Leishmania glycolipids are presented by CD1d molecules on antigen presenting cells, such as dendritic cells (DC), leading to the secretion of diverse cytokines by NKT. NKT cells can also be activated by the indirect pathway, in which Leishmania glycolipids, such as LPG, stimulate TLR2 in DC, inducing their IL-12 production, which in turn activates NKT cells. The review further analyzes the role of NKT cells in disease development, both in humans as in mouse models. Finally we propose the activation of NKT cells for controlling Leishmania infections. Copyright © 2016 Elsevier GmbH. All rights reserved.
Long-term protection against SHIV89.6P replication in HIV-1 Tat vaccinated cynomolgus monkeys.
Maggiorella, Maria Teresa; Baroncelli, Silvia; Michelini, Zuleika; Fanales-Belasio, Emanuele; Moretti, Sonia; Sernicola, Leonardo; Cara, Andrea; Negri, Donatella R M; Buttò, Stefano; Fiorelli, Valeria; Tripiciano, Antonella; Scoglio, Arianna; Caputo, Antonella; Borsetti, Alessandra; Ridolfi, Barbara; Bona, Roberta; ten Haaft, Peter; Macchia, Iole; Leone, Pasqualina; Pavone-Cossut, Maria Rosaria; Nappi, Filomena; Ciccozzi, Massimo; Heeney, Jonathan; Titti, Fausto; Cafaro, Aurelio; Ensoli, Barbara
2004-09-03
Vaccination with a biologically active Tat protein or tat DNA contained infection with the highly pathogenic SHIV89.6P virus, preventing CD4 T-cell decline and disease onset. Here we show that protection was prolonged, since neither CD4 T-cell decline nor active virus replication was observed in all vaccinated animals that controlled virus replication up to week 104 after the challenge. In contrast, virus persisted and replicated in peripheral blood mononuclear cells and lymph nodes of infected animals, two of which died. Tat-specific antibody, CD4 and CD8 T-cell responses were high and stable only in the animals controlling the infection. In contrast, Gag-specific antibody production and CD4 and CD8 T-cell responses were consistently and persistently positive only in the monkeys that did not control primary virus replication. These results indicate that vaccination with Tat protein or DNA induced long-term memory Tat-specific immune responses and controlled primary infection at its early stages allowing a long-term containment of virus replication and spread in blood and tissues.
Soria, Alessandro; Cavarelli, Mariangela; Sala, Stefania; Alessandrini, Anna Ida; Scarlatti, Gabriella; Lazzarin, Adriano; Castagna, Antonella
2008-06-01
An unexpected dramatic immune recovery was observed in a patient with full-blown AIDS receiving enfuvirtide-based antiretroviral therapy after multiple treatment failures. A complex interplay of viral and host factors, including the control of X4 viruses and proviral burden, may favor immune restoration with HIV neutralizing activity, despite persistent viremia.
Kim, Edy Y.; Battaile, John T.; Patel, Anand C.; You, Yingjian; Agapov, Eugene; Grayson, Mitchell H.; Benoit, Loralyn A.; Byers, Derek E.; Alevy, Yael; Tucker, Jennifer; Swanson, Suzanne; Tidwell, Rose; Tyner, Jeffrey W.; Morton, Jeffrey D.; Castro, Mario; Polineni, Deepika; Patterson, G. Alexander; Schwendener, Reto A.; Allard, John D.; Peltz, Gary; Holtzman, Michael J.
2008-01-01
To understand the pathogenesis of chronic inflammatory disease, we analyzed an experimental mouse model of a chronic lung disease that resembles asthma and chronic obstructive pulmonary disease (COPD) in humans. In this model, chronic lung disease develops after infection with a common type of respiratory virus is cleared to trace levels of noninfectious virus. Unexpectedly, the chronic inflammatory disease arises independently of an adaptive immune response and is driven by IL-13 produced by macrophages stimulated by CD1d-dependent TCR-invariant NKT cells. This innate immune axis is also activated in the lungs of humans with chronic airway disease due to asthma or COPD. These findings provide new insight into the pathogenesis of chronic inflammatory disease with the discovery that the transition from respiratory viral infection into chronic lung disease requires persistent activation of a novel NKT cell-macrophage innate immune axis. PMID:18488036
Development of CAR T cells designed to improve antitumor efficacy and safety
Jaspers, Janneke E.; Brentjens, Renier J.
2017-01-01
Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy against hematologic malignancies. Antitumor activity of CAR T cells, however, needs to be improved to increase therapeutic efficacy in both hematologic and solid cancers. Limitations to overcome are ‘on-target, off-tumor’ toxicity, antigen escape, short CAR T cell persistence, little expansion, trafficking to the tumor and inhibition of T cell activity by an inhibitory tumor microenvironment. Here we will discuss how optimizing the design of CAR T cells through genetic engineering addresses these limitations and improves the antitumor efficacy of CAR T cell therapy in pre-clinical models. PMID:28342824
Development of CAR T cells designed to improve antitumor efficacy and safety.
Jaspers, Janneke E; Brentjens, Renier J
2017-10-01
Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy against hematologic malignancies. Antitumor activity of CAR T cells, however, needs to be improved to increase therapeutic efficacy in both hematologic and solid cancers. Limitations to overcome are 'on-target, off-tumor' toxicity, antigen escape, short CAR T cell persistence, little expansion, trafficking to the tumor and inhibition of T cell activity by an inhibitory tumor microenvironment. Here we will discuss how optimizing the design of CAR T cells through genetic engineering addresses these limitations and improves the antitumor efficacy of CAR T cell therapy in pre-clinical models. Published by Elsevier Inc.
CD4 T Cell Responses in Latent and Chronic Viral Infections
Walton, Senta; Mandaric, Sanja; Oxenius, Annette
2013-01-01
The spectrum of tasks which is fulfilled by CD4 T cells in the setting of viral infections is large, ranging from support of CD8 T cells and humoral immunity to exertion of direct antiviral effector functions. While our knowledge about the differentiation pathways, plasticity, and memory of CD4 T cell responses upon acute infections or immunizations has significantly increased during the past years, much less is still known about CD4 T cell differentiation and their beneficial or pathological functions during persistent viral infections. In this review we summarize current knowledge about the differentiation, direct or indirect antiviral effector functions, and the regulation of virus-specific CD4 T cells in the setting of persistent latent or active chronic viral infections with a particular emphasis on herpes virus infections for the former and chronic lymphocytic choriomeningitis virus infection for the latter. PMID:23717308
Persistent Fatigue in Hematopoietic Stem Cell Transplantation Survivors
Hacker, Eileen Danaher; Fink, Anne M.; Peters, Tara; Park, Chang; Fantuzzi, Giamila; Rondelli, Damiano
2016-01-01
Background Fatigue is highly prevalent following hematopoietic stem cell transplantation (HCT). It has been described as intense and may last for years following treatment. Objective to compare fatigue, physical activity, sleep, emotional distress, cognitive function, and biological measures in HCT survivors with persistent fatigue (n = 25) to age- and gender-matched healthy controls with occasional tiredness (n = 25). Methods Data were collected using: (a) objective, real-time assessments of physical activity and sleep over 7 days; (b) patient-reported fatigue assessments; (c) computerized objective testing of cognitive functioning; and (d) biological measures. Differences between groups were examined using MANOVA. Results HCT survivors reported increased physical (p < .001), mental (p <.001), and overall fatigue (p < .001) as well as increased anxiety (p < .05) and depression (p < .01) compared to healthy controls. Red blood cell (RBC) levels were significantly lower in HCT survivors (p < .001). RBC levels for both groups, however, were in the normal range. TNF-α (p < .001) and IL-6 (p < .05) were significantly higher in HCT survivors. Conclusions Persistent fatigue in HCT survivors compared to healthy controls with occasional tiredness is accompanied by increased anxiety and depression along with decreased RBCs. Elevated TNF-α and IL-6 may be important biomarkers. Implications for Practice This study provides preliminary support for the conceptualization of fatigue as existing on a continuum, with tiredness anchoring one end and exhaustion the other. Persistent fatigue experienced by HCT survivors is more severe than the occasional tiredness of everyday life. PMID:27333126
Ivy and neurogliaform interneurons are a major target of μ opioid receptor modulation
Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan
2011-01-01
Mu opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous, but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABAB response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Further, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR-activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking PV basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR-activation. Together these findings identify a major, previously unrecognized, target of μOR-modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications. PMID:22016519
Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation.
Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan
2011-10-19
μ-Opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin-expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABA(B) response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that, across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Furthermore, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking parvalbumin basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR activation. Together, these findings identify a major, previously unrecognized, target of μOR modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications.
Zhu, Yanan; Underwood, Joanne; Macmillan, Derek; Shariff, Leila; O'Shaughnessy, Ryan; Harper, John I; Pickard, Chris; Friedmann, Peter S; Healy, Eugene; Di, Wei-Li
2017-11-01
Upregulation of kallikreins (KLKs) including KLK5 has been reported in atopic dermatitis (AD). KLK5 has biological functions that include degrading desmosomal proteins and inducing proinflammatory cytokine secretion through protease-activated receptor 2 (PAR2). However, due to the complex interactions between various cells in AD inflamed skin, it is difficult to dissect the precise and multiple roles of upregulated KLK5 in AD skin. We investigated the effect of upregulated KLK5 on the expression of epidermal-related proteins and cytokines in keratinocytes and on skin architecture. Lesional and nonlesional AD skin biopsies were collected for analysis of morphology and protein expression. The relationship between KLK5 and barrier-related molecules was investigated using an ex vivo dermatitis skin model with transient KLK5 expression and a cell model with persistent KLK5 expression. The influence of upregulated KLK5 on epidermal morphology was investigated using an in vivo skin graft model. Upregulation of KLK5 and abnormal expression of desmoglein 1 (DSG1) and filaggrin, but not PAR2 were identified in AD skin. PAR2 was increased in response to transient upregulation of KLK5, whereas persistently upregulated KLK5 did not show this effect. Persistently upregulated KLK5 degraded DSG1 and stimulated secretion of IL-8, IL-10, and thymic stromal lymphopoietin independent of PAR2 activity. With control of higher KLK5 activity by the inhibitor sunflower trypsin inhibitor G, restoration of DSG1 expression and a reduction in AD-related cytokine IL-8, thymic stromal lymphopoietin, and IL-10 secretion were observed. Furthermore, persistently elevated KLK5 could induce AD-like skin architecture in an in vivo skin graft model. Persistently upregulated KLK5 resulted in AD-like skin architecture and secretion of AD-related cytokines from keratinocytes in a PAR2 independent manner. Inhibition of KLK5-mediated effects may offer potential as a therapeutic approach in AD. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Xie, Li; Yamamoto, Brenda; Haoudi, Abdelali; Semmes, O John; Green, Patrick L
2006-03-01
HTLV-1 cellular transformation and disease induction is dependent on expression of the viral Tax oncoprotein. PDZ is a modular protein interaction domain used in organizing signaling complexes in eukaryotic cells through recognition of a specific binding motif in partner proteins. Tax-1, but not Tax-2, contains a PDZ-binding domain motif (PBM) that promotes the interaction with several cellular PDZ proteins. Herein, we investigate the contribution of the Tax-1 PBM in HTLV-induced proliferation and immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. We generated several HTLV-1 and HTLV-2 Tax viral mutants, including HTLV-1deltaPBM, HTLV-2+C22(+PBM), and HTLV-2+ C18(deltaPBM). All Tax mutants maintained the ability to significantly activate the CREB/ATF or NFkappaB signaling pathways. Microtiter proliferation assays revealed that the Tax-1 PBM significantly increases both HTLV-1- and HTLV-2-induced primary T-cell proliferation. In addition, Tax-1 PBM was responsible for the micronuclei induction activity of Tax-1 relative to that of Tax-2. Viral infection and persistence were severely attenuated in rabbits inoculated with HTLV-1deltaPBM. Our results provide the first direct evidence suggesting that PBM-mediated associations between Tax-1 and cellular proteins play a key role in HTLV-induced cell proliferation and genetic instability in vitro and facilitate viral persistence in vivo.
Hepatitis E virus persists in the presence of a type III interferon response.
Yin, Xin; Li, Xinlei; Ambardekar, Charuta; Hu, Zhimin; Lhomme, Sébastien; Feng, Zongdi
2017-05-01
The RIG-I-like RNA helicase (RLR)-mediated interferon (IFN) response plays a pivotal role in the hepatic antiviral immunity. The hepatitis A virus (HAV) and the hepatitis C virus (HCV) counter this response by encoding a viral protease that cleaves the mitochondria antiviral signaling protein (MAVS), a common signaling adaptor for RLRs. However, a third hepatotropic RNA virus, the hepatitis E virus (HEV), does not appear to encode a functional protease yet persists in infected cells. We investigated HEV-induced IFN responses in human hepatoma cells and primary human hepatocytes. HEV infection resulted in persistent virus replication despite poor spread. This was companied by a type III IFN response that upregulated multiple IFN-stimulated genes (ISGs), but type I IFNs were barely detected. Blocking type III IFN production or signaling resulted in reduced ISG expression and enhanced HEV replication. Unlike HAV and HCV, HEV did not cleave MAVS; MAVS protein size, mitochondrial localization, and function remained unaltered in HEV-replicating cells. Depletion of MAVS or MDA5, and to a less extent RIG-I, also diminished IFN production and increased HEV replication. Furthermore, persistent activation of the JAK/STAT signaling rendered infected cells refractory to exogenous IFN treatment, and depletion of MAVS or the receptor for type III IFNs restored the IFN responsiveness. Collectively, these results indicate that unlike other hepatotropic RNA viruses, HEV does not target MAVS and its persistence is associated with continuous production of type III IFNs.
Chronophin coordinates cell leading edge dynamics by controlling active cofilin levels
Delorme-Walker, Violaine; Seo, Ji-Yeon; Gohla, Antje; Fowler, Bruce; Bohl, Ben; DerMardirossian, Céline
2015-01-01
Cofilin, a critical player of actin dynamics, is spatially and temporally regulated to control the direction and force of membrane extension required for cell locomotion. In carcinoma cells, although the signaling pathways regulating cofilin activity to control cell direction have been established, the molecular machinery required to generate the force of the protrusion remains unclear. We show that the cofilin phosphatase chronophin (CIN) spatiotemporally regulates cofilin activity at the cell edge to generate persistent membrane extension. We show that CIN translocates to the leading edge in a PI3-kinase–, Rac1-, and cofilin-dependent manner after EGF stimulation to activate cofilin, promotes actin free barbed end formation, accelerates actin turnover, and enhances membrane protrusion. In addition, we establish that CIN is crucial for the balance of protrusion/retraction events during cell migration. Thus, CIN coordinates the leading edge dynamics by controlling active cofilin levels to promote MTLn3 cell protrusion. PMID:26324884
Lim, Michelle C C; Maubach, Gunter; Sokolova, Olga; Feige, Michael H; Diezko, Rolf; Buchbinder, Jörn; Backert, Steffen; Schlüter, Dirk; Lavrik, Inna N; Naumann, Michael
2017-01-01
The human pathogen Helicobacter pylori infects more than half of the world’s population and is a paradigm for persistent yet asymptomatic infection but increases the risk for chronic gastritis and gastric adenocarcinoma. For successful colonization, H. pylori needs to subvert the host cell death response, which serves to confine pathogen infection by killing infected cells and preventing malignant transformation. Infection of gastric epithelial cells by H. pylori provokes direct and fast activation of the proinflammatory and survival factor NF-κB, which regulates target genes, such as CXCL8, BIRC3 and TNFAIP3. However, it is not known how H. pylori exploits NF-κB activation and suppresses the inflammatory response and host apoptotic cell death, in order to avert the innate immune response and avoid cell loss, and thereby enhance colonization to establish long-term infection. Here we assign for the first time that H. pylori and also Campylobacter jejuni-induced ubiquitin-editing enzyme A20 bifunctionally terminates NF-κB activity and negatively regulates apoptotic cell death. Mechanistically, we show that the deubiquitinylase activity of A20 counteracts cullin3-mediated K63-linked ubiquitinylation of procaspase-8, therefore restricting the activity of caspase-8. Interestingly, another inducible NF-κB target gene, the scaffold protein p62, ameliorates the interaction of A20 with procaspase-8. In conclusion, pathogen-induced de novo synthesis of A20 regulates the shut-off of the survival factor NF-κB but, on the other hand, also impedes caspase-8-dependent apoptotic cell death so as to promote the persistence of pathogens. PMID:28574503
Synthetic Lethal Metabolic Targeting of Senescent Cells After Androgen Deprivation Therapy
2017-07-01
and improved cell killing. 15. SUBJECT TERMS prostate cancer, androgen deprivation therapy, senescence, proteotoxic stress , xenograft models...these persistent senescent cells is characterized by increased protein synthesis and notably an amplified proteotoxic stress response (PSR), a...experience high levels of proteotoxic stress . In Aim 1 we will examine the activity of metformin in eradicating senescent PCs following ADT in
Rastogi, Shivangi; Singh, Amit Kumar; Chandra, Gyan; Kushwaha, Pragati; Pant, Garima; Singh, Kavita; Mitra, Kalyan; Sashidhara, Koneni V; Krishnan, Manju Y
2017-05-01
Triacylglycerol (TAG) is important to mycobacteria both as cell envelope component and energy reservoir. Mycobacterium tuberculosis (Mtb) genome encodes at least 15 putative TAG synthase (tgs)s. We report that one of these genes, Rv3371, specific to pathogenic mycobacteria, when expressed in M. smegmatis leads to modifications in colony morphotype, bacterial architecture, cell surface properties and elevated TAG levels. Rv3371 was found to largely localize in the cell membrane. The Rv3371 promoter is minimally active during exponential growth in vitro, however, is up-regulated under stationary phase, hypoxia, nutrient starvation, nitrosative stress, low iron, in IFN-γ activated macrophages and infected mice. The low iron-induced expression of Rv3371 is likely due to the de-repression by Rv1404, which is probably activated by ideR. An Rv3371 deletion mutant of Mtb showed impaired non-replicating persistence in vitro and altered sensitivity to anti-mycobacterial drugs. In low iron medium, the Rv3371 deletion mutant showed reduced formation of TAG containing extracellular vesicles. Therefore Rv3371 is likely involved in Mtb growth arrest and cell wall alterations during persistence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Velayati, Ali Akbar; Abeel, Thomas; Shea, Terrance; Konstantinovich Zhavnerko, Gennady; Birren, Bruce; Cassell, Gail H; Earl, Ashlee M; Hoffner, Sven; Farnia, Parissa
2016-03-01
Mycobacterium tuberculosis (MTB) causes active tuberculosis (TB) in only a small percentage of infected people. In most cases, the infection is clinically latent, where bacilli can persist in human hosts for years without causing disease. Surprisingly, the biology of such persister cells is largely unknown. This study describes the isolation, identification, and whole-genome sequencing (WGS) of latent TB bacilli after 782days (26months) of latency (the ability of MTB bacilli to lie persistent). The in vitro double-stress model of latency (oxygen and nutrition) was designed for MTB culture. After 26months of latency, MTB cells that persisted were isolated and investigated under light and atomic force microscopy. Spoligotyping and WGS were performed to verify the identity of the strain. We established a culture medium in which MTB bacilli arrest their growth, reduce their size (0.3-0.1μm), lose their acid fastness (85-90%) and change their shape. Spoligopatterns of latent cells were identical to original H37Rv, with differences observed at spacers two and 14. WGS revealed only a few genetic changes relative to the already published H37Rv reference genome. Among these was a large 2064-bp insertion (RvD6), which was originally detected in both H37Ra and CDC1551, but not H37Rv. Here, we show cell-wall free cells of MTB bacilli in their latent state, and the biological adaptation of these cells was more phenotypic in nature than genomic. These cell-wall free cells represent a good model for understanding the nature of TB latency. Copyright © 2015 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.
Eicosanoids in Metabolic Syndrome
Hardwick, James P.; Eckman, Katie; Lee, Yoon Kwang; Abdelmegeed, Mohamed A.; Esterle, Andrew; Chilian, William M.; Chiang, John Y.; Song, Byoung-Joon
2013-01-01
Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism.The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS. PMID:23433458
Guo, Li; Xu, Ruobing; Zhao, Yiming; Liu, Dingxin; Liu, Zhijie; Wang, Xiaohua; Chen, Hailan; Kong, Michael G.
2018-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious nosocomial infections, and recurrent MRSA infections primarily result from the survival of persister cells after antibiotic treatment. Gas plasma, a novel source of ROS (reactive oxygen species) and RNS (reactive nitrogen species) generation, not only inactivates pathogenic microbes but also restore the sensitivity of MRSA to antibiotics. This study further found that sublethal treatment of MRSA with both plasma and plasma-activated saline increased the antibiotic sensitivity and promoted the eradication of persister cells by tetracycline, gentamycin, clindamycin, chloramphenicol, ciprofloxacin, rifampicin, and vancomycin. The short-lived ROS and RNS generated by plasma played a primary role in the process and induced the increase of many species of ROS and RNS in MRSA cells. Thus, our data indicated that the plasma treatment could promote the effects of many different classes of antibiotics and act as an antibiotic sensitizer for the treatment of antibiotic-resistant bacteria involved in infectious diseases. PMID:29628915
Chapuis, Aude G.; Roberts, Ilana M.; Thompson, John A.; Margolin, Kim A.; Bhatia, Shailender; Lee, Sylvia M.; Sloan, Heather L.; Lai, Ivy P.; Farrar, Erik A.; Wagener, Felecia; Shibuya, Kendall C.; Cao, Jianhong; Wolchok, Jedd D.; Greenberg, Philip D.
2016-01-01
Purpose Peripheral blood–derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti–CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses, highlighting the promise of this strategy. PMID:27269940
Chapuis, Aude G; Roberts, Ilana M; Thompson, John A; Margolin, Kim A; Bhatia, Shailender; Lee, Sylvia M; Sloan, Heather L; Lai, Ivy P; Farrar, Erik A; Wagener, Felecia; Shibuya, Kendall C; Cao, Jianhong; Wolchok, Jedd D; Greenberg, Philip D; Yee, Cassian
2016-11-01
Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8 + T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses, highlighting the promise of this strategy.
Eosinophilic Esophagitis: Relevance of Mast Cell Infiltration.
Strasser, Daniel S; Seger, Shanon; Bussmann, Christian; Pierlot, Gabin M; Groenen, Peter M A; Stalder, Anna K; Straumann, Alex
2018-05-17
Eosinophilic esophagitis (EoE) is a chronic-inflammatory disease characterized clinically by symptoms of esophageal dysfunction and histopathologically by a prominent eosinophilic inflammation. Despite eosinophils having histologically a pre-dominant position, their role in the immunopathogenesis of the disease is still questionable. Several other inflammatory cells are involved and may play a critical role as well. The purpose of this study was to characterize the mast cell infiltration, and to correlate it with clinical state of EoE. Using immunohistochemistry and quantitative morphometry, we extensively investigated eosinophils and mast cells in esophageal biopsies from patients with active EoE and from patients with EoE in remission, and compared the findings with healthy individuals. In EoE, epithelium and lamina propria were similarly infiltrated with eosinophils. In contrast, mast cells infiltration was limited to the epithelium, displaying a localized immune response. Interestingly, whereas epithelial mast cells and eosinophils were high in active EoE, some patients in remission e.g. normalized epithelial eosinophils, showed remaining high numbers of mast cells. Patient clustering supported 2 groups of patients in clinical remission, differentiating based on presence or absence of epithelial mast cells. Active EoE is characterized - in addition to the well-known tissue eosinophilia by a marked epithelium-restricted mast cell infiltration. Of interest, in a subgroup of patients, mast cell infiltration persisted despite clinical remission. To elucidate the clinical consequence of persistent epithelial mast cells infiltration further studies are required following patients in clinical remission longitudinally. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Silent memory engrams as the basis for retrograde amnesia
Roy, Dheeraj S.; Muralidhar, Shruti; Smith, Lillian M.
2017-01-01
Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams “silent engrams” and the cells bearing them “silent engram cells.” The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21–activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells. PMID:29078397
Silent memory engrams as the basis for retrograde amnesia.
Roy, Dheeraj S; Muralidhar, Shruti; Smith, Lillian M; Tonegawa, Susumu
2017-11-14
Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams "silent engrams" and the cells bearing them "silent engram cells." The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21-activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells.
Peyrusson, Frédéric
2018-01-01
ABSTRACT Gepotidacin (GSK2140944), a novel triazaacenaphthylene bacterial topoisomerase inhibitor, is currently in clinical development for the treatment of bacterial infections. This study examined in vitro its activity against intracellular Staphylococcus aureus (involved in the persistent character of skin and skin structure infections) by use of a pharmacodynamic model and in relation to cellular pharmacokinetics in phagocytic cells. Compared to oxacillin, vancomycin, linezolid, daptomycin, azithromycin, and moxifloxacin, gepotidacin was (i) more potent intracellularly (the apparent bacteriostatic concentration [Cs] was reached at an extracellular concentration about 0.7× its MIC and was not affected by mechanisms of resistance to the comparators) and (ii) caused a maximal reduction of the intracellular burden (maximum effect) of about −1.6 log10 CFU (which was better than that caused by linezolid, macrolides, and daptomycin and similar to that caused by moxifloxacin). After 24 h of incubation of infected cells with antibiotics at 100× their MIC, the intracellular persisting fraction was <0.1% with moxifloxacin, 0.5% with gepotidacin, and >1% with the other drugs. The accumulation and efflux of gepotidacin in phagocytes were very fast (kin and kout, ∼0.3 min−1; the plateau was reached within 15 min) but modest (intracellular concentration-to-extracellular concentration ratio, ∼1.6). In cell fractionation studies, about 40 to 60% of the drug was recovered in the soluble fraction and ∼40% was associated with lysosomes in uninfected cells. In infected cells, about 20% of cell-associated gepotidacin was recovered in a sedimentable fraction that also contained bacteria. This study highlights the potential for further study of gepotidacin to fight infections where intracellular niches may play a determining role in bacterial persistence and relapses. PMID:29358297
The role of HIV integration in viral persistence: no more whistling past the proviral graveyard
Maldarelli, Frank
2016-01-01
A substantial research effort has been directed to identifying strategies to eradicate or control HIV infection without a requirement for combination antiretroviral therapy (cART). A number of obstacles prevent HIV eradication, including low-level viral persistence during cART, long-term persistence of HIV-infected cells, and latent infection of resting CD4+ T cells. Mechanisms of persistence remain uncertain, but integration of the provirus into the host genome represents a central event in replication and pathogenesis of all retroviruses, including HIV. Analysis of HIV proviruses in CD4+ lymphocytes from individuals after prolonged cART revealed that a substantial proportion of the infected cells that persist have undergone clonal expansion and frequently have proviruses integrated in genes associated with regulation of cell growth. These data suggest that integration may influence persistence and clonal expansion of HIV-infected cells after cART is introduced, and these processes may represent key mechanisms for HIV persistence. Determining the diversity of host genes with integrants in HIV-infected cells that persist for prolonged periods may yield useful information regarding pathways by which infected cells persist for prolonged periods. Moreover, many integrants are defective, and new studies are required to characterize the role of clonal expansion in the persistence of replication-competent HIV. PMID:26829624
Manufacturing Natural Killer Cells as Medicinal Products
Chabannon, Christian; Mfarrej, Bechara; Guia, Sophie; Ugolini, Sophie; Devillier, Raynier; Blaise, Didier; Vivier, Eric; Calmels, Boris
2016-01-01
Natural Killer (NK) cells are innate lymphoid cells (ILC) with cytotoxic and regulatory properties. Their functions are tightly regulated by an array of inhibitory and activating receptors, and their mechanisms of activation strongly differ from antigen recognition in the context of human leukocyte antigen presentation as needed for T-cell activation. NK cells thus offer unique opportunities for new and improved therapeutic manipulation, either in vivo or in vitro, in a variety of human diseases, including cancers. NK cell activity can possibly be modulated in vivo through direct or indirect actions exerted by small molecules or monoclonal antibodies. NK cells can also be adoptively transferred following more or less substantial modifications through cell and gene manufacturing, in order to empower them with new or improved functions and ensure their controlled persistence and activity in the recipient. In the present review, we will focus on the technological and regulatory challenges of NK cell manufacturing and discuss conditions in which these innovative cellular therapies can be brought to the clinic. PMID:27895646
Sarmah, Swapnalee; Muralidharan, Pooja
2016-01-01
Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish. PMID:27556898
Sarmah, Swapnalee; Muralidharan, Pooja; Marrs, James A
2016-01-01
Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3-24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.
Bigler, L R; Tate Thigpen, J; Blessing, J A; Fiorica, J; Monk, B J
2004-01-01
This study was undertaken to estimate the antitumor activity of tamoxifen in patients with persistent or recurrent nonsquamous cell carcinoma of the cervix. Furthermore, the nature and degree of adverse effects from tamoxifen in this cohort of individuals was examined. Tamoxifen citrate was to be administered at a dose of 10 mg per orally twice a day until disease progression or unacceptable side effects prevented further therapy. A total of 34 patients (median age: 49 years) were registered to this trial; two were declared ineligible. Thirty-two patients were evaluable for adverse effects and 27 were evaluable for response. There were only six grades 3 and 4 adverse effects reported: leukopenia (in one patient), anemia (in two), emesis (in one), gastrointestinal distress (in one), and neuropathy (in one). The objective response rate was 11.1%, with one complete and two partial responses. In conclusion, tamoxifen appears to have minimal activity in nonsquamous cell carcinoma of the cervix.
A gastrointestinal anti-infectious biotherapeutic agent: the heat-treated Lactobacillus LB
Liévin-Le Moal, Vanessa
2016-01-01
Experimental in vitro and in vivo studies support the hypothesis that heat-treated, lyophilized Lactobacillus acidophilus LB cells and concentrated, neutralized spent culture medium conserve the variety of pharmacological, antimicrobial activities of the live probiotic strain against several infectious agents involved in well-established acute and persistent watery diarrhoea and gastritis. Heat-treated cells and heat-stable secreted molecules trigger multiple strain-specific activities explaining the therapeutic efficacy of L. acidophilus LB. This review discusses the current body of knowledge on the antimicrobial mechanisms of action exerted by L. acidophilus LB demonstrated in in vitro and in vivo experimental studies, and the evidence for the therapeutic efficacy of this anti-infectious biotherapeutic agent proved in randomized clinical trials for the treatment of acute and persistent watery diarrhoea associated with several intestinal infectious diseases in humans. PMID:26770268
Nabatanzi, Rose; Cose, Stephen; Joloba, Moses; Jones, Sarah Rowland; Nakanjako, Damalie
2018-03-15
HIV infection causes upregulation of markers of inflammation, immune activation and apoptosis of host adaptive, and innate immune cells particularly monocytes, natural killer (NK) and innate lymphoid cells (ILCs). Although antiretroviral therapy (ART) restores CD4 T-cell counts, the persistent aberrant activation of monocytes, NK and ILCs observed likely contributes to the incomplete recovery of T-cell effector functions. A better understanding of the effects of HIV infection and ART on the phenotype and function of circulating monocytes, NK, and ILCs is required to guide development of novel therapeutic interventions to optimize immune recovery.
DNA-based methods have considerably increased our understanding of the bacterial diversity of water distribution systems (WDS). However, as DNA may persist after cell death, the use of DNA-based methods cannot be used to describe metabolically-active microbes. In contrast, intra...
Opata, Michael M; Ibitokou, Samad A; Carpio, Victor H; Marshall, Karis M; Dillon, Brian E; Carl, Jordan C; Wilson, Kyle D; Arcari, Christine M; Stephens, Robin
2018-04-01
Protection at the peak of Plasmodium chabaudi blood-stage malaria infection is provided by CD4 T cells. We have shown that an increase in Th1 cells also correlates with protection during the persistent phase of malaria; however, it is unclear how these T cells are maintained. Persistent malaria infection promotes protection and generates both effector T cells (Teff), and effector memory T cells (Tem). We have previously defined new CD4 Teff (IL-7Rα-) subsets from Early (TeffEarly, CD62LhiCD27+) to Late (TeffLate, CD62LloCD27-) activation states. Here, we tested these effector and memory T cell subsets for their ability to survive and protect in vivo. We found that both polyclonal and P. chabaudi Merozoite Surface Protein-1 (MSP-1)-specific B5 TCR transgenic Tem survive better than Teff. Surprisingly, as Tem are associated with antigen persistence, Tem survive well even after clearance of infection. As previously shown during T cell contraction, TeffEarly, which can generate Tem, also survive better than other Teff subsets in uninfected recipients. Two other Tem survival mechanisms identified here are that low-level chronic infection promotes Tem both by driving their proliferation, and by programming production of Tem from Tcm. Protective CD4 T cell phenotypes have not been precisely determined in malaria, or other persistent infections. Therefore, we tested purified memory (Tmem) and Teff subsets in protection from peak pathology and parasitemia in immunocompromised recipient mice. Strikingly, among Tmem (IL-7Rαhi) subsets, only TemLate (CD62LloCD27-) reduced peak parasitemia (19%), though the dominant memory subset is TemEarly, which is not protective. In contrast, all Teff subsets reduced peak parasitemia by more than half, and mature Teff can generate Tem, though less. In summary, we have elucidated four mechanisms of Tem maintenance, and identified two long-lived T cell subsets (TemLate, TeffEarly) that may represent correlates of protection or a target for longer-lived vaccine-induced protection against malaria blood-stages.
Wu, Shuyan; Yu, Pak-Lam; Wheeler, Dave; Flint, Steve
2018-06-19
The aim of this study was to determine the gene expression associated with the persistence of a Listeria monocytogenes stationary phase population when facing lethal nisin treatment METHODS: RNA Seq analysis was used for gene expression profiling of the persister cells in rich medium (persister TN) compared with untreated cells (non-persister).The results were confirmed using RT PCR. Functional genes associated with the persister populations were identified in multiple systems, such as heat shock related stress response, cell wall synthesis, ATP-binding cassette (ABC) transport system, phosphotransferase system (PTS system), and SOS/DNA repair. This study pointed to genetic regulation of persister cells exposed to lethal nisin and provides some insight into possible mechanisms of impeding bacterial persistence. Copyright © 2018. Published by Elsevier Ltd.
Reiman, Jennifer M; Kumar, Sanjai; Rodriguez, Ingrid B; Gnidehou, Sedami; Ito, Koichi; Stanisic, Danielle I; Lee, Moses; McPhun, Virginia; Majam, Victoria; Willemsen, Nicole M; Batzloff, Michael R; Raja, Amber I; Dooley, Brad; Hoffman, Stephen L; Yanow, Stephanie K; Good, Michael F
2018-01-01
Blood stage malaria parasites attenuated with seco-cyclopropyl pyrrolo indole (CPI) analogues induce robust immunity in mice to homologous and heterologous malaria parasites and are being considered for the development of a human vaccine. However, it is not understood how attenuated parasites induce immunity. We showed that following vaccination, parasite DNA persisted in blood for several months, raising the possibility that ongoing immune stimulation may be critical. However, parasites were not seen microscopically beyond 24 h postvaccination. We aimed to provide a mechanistic understanding of immune induction. Mice were vaccinated with chemically attenuated Plasmodium chabaudi parasites. PCR and adoptive transfer studies were used to determine the presence of parasites and antigen in vivo . In other experiments, Plasmodium falciparum parasitised red blood cells were attenuated in vitro and RNA and antigen expression studied. We show that blood transferred from vaccinated mice into naïve mice activates T cells and induces complete protective immunity in the recipient mice strongly suggesting that there is persistence of parasite antigen postvaccination. This is supported by the presence of parasite RNA in vaccinated mice and both RNA and antigen expression in P. falciparum cultures treated with CPI drugs in vitro . In addition, drugs that block parasite growth also prevent the induction of immunity in vaccinated mice, indicating that some growth of attenuated parasites is required for immune induction. Attenuated parasites persist at submicroscopic levels in the blood of mice postvaccination with the ability to activate T cells and induce ongoing protective immune responses.
Persistent Fatigue in Hematopoietic Stem Cell Transplantation Survivors.
Hacker, Eileen Danaher; Fink, Anne M; Peters, Tara; Park, Chang; Fantuzzi, Giamila; Rondelli, Damiano
Fatigue is highly prevalent after hematopoietic stem cell transplantation (HCT). It has been described as intense and may last for years following treatment. The aim of this study is to compare fatigue, physical activity, sleep, emotional distress, cognitive function, and biological measures in HCT survivors with persistent fatigue (n = 25) with age- and gender-matched healthy controls with occasional tiredness (n = 25). Data were collected using (a) objective, real-time assessments of physical activity and sleep over 7 days; (b) patient-reported fatigue assessments; (c) computerized objective testing of cognitive functioning; and (d) biological measures. Differences between groups were examined using multivariate analysis of variance. Survivors of HCT reported increased physical (P < .001), mental (P < .001), and overall (P < .001) fatigue as well as increased anxiety (P < .05) and depression (P < .01) compared with healthy controls. Red blood cell (RBC) levels were significantly lower in HCT survivors (P < .001). Levels of RBC for both groups, however, were in the normal range. Tumor necrosis factor-α (P < .001) and interleukin-6 (P < .05) levels were significantly higher in HCT survivors. Persistent fatigue in HCT survivors compared with healthy controls with occasional tiredness is accompanied by increased anxiety and depression along with decreased RBC counts. Elevated tumor necrosis factor-α and interleukin-6 levels may be important biomarkers. This study provides preliminary support for the conceptualization of fatigue as existing on a continuum, with tiredness anchoring one end and exhaustion the other. Persistent fatigue experienced by HCT survivors is more severe than the occasional tiredness of everyday life.
The Deadly Dance of B Cells with Trypanosomatids.
Silva-Barrios, Sasha; Charpentier, Tania; Stäger, Simona
2018-02-01
B cells are notorious actors for the host's protection against several infectious diseases. So much so that early vaccinology seated its principles upon their long-term protective antibody secretion capabilities. Indeed, there are many examples of acute infectious diseases that are combated by functional humoral responses. However, some chronic infectious diseases actively induce immune deregulations that often lead to defective, if not deleterious, humoral immune responses. In this review we summarize how Leishmania and Trypanosoma spp. directly manipulate B cell responses to induce polyclonal B cell activation, hypergammaglobulinemia, low-specificity antibodies, limited B cell survival, and regulatory B cells, contributing therefore to immunopathology and the establishment of persistent infections. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kraft, John C; McConnachie, Lisa A; Koehn, Josefin; Kinman, Loren; Collins, Carol; Shen, Danny D; Collier, Ann C; Ho, Rodney J Y
2017-03-27
The aim of the present study was to determine whether a combination of anti-HIV drugs - tenofovir (TFV), lopinavir (LPV) and ritonavir (RTV) - in a lipid-stabilized nanosuspension (called TLC-ART101) could enhance and sustain intracellular drug levels and exposures in lymph node and blood cells above those in plasma. Four macaques were given a single dose of TLC-ART101 subcutaneously. Drug concentrations in plasma and mononuclear cells of the blood (PBMCs) and lymph nodes (LNMCs) were analysed using a validated combination LC-MS/MS assay. For the two active drugs (TFV, LPV), plasma and PBMC intracellular drug levels persisted for over 2 weeks; PBMC drug exposures were three- to four-fold higher than those in plasma. Apparent terminal half-lives (t1/2) of TFV and LPV were 65.3 and 476.9 h in plasma, and 169.1 and 151.2 h in PBMCs. At 24 and 192 h, TFV and LPV drug levels in LNMCs were up to 79-fold higher than those in PBMCs. Analysis of PBMC intracellular TFV and its active metabolite TFV-diphosphate (TFV-DP) indicated that intracellular exposures of total TFV and TFV-DP were markedly higher and persisted longer than in humans and macaques dosed with oral TFV prodrugs, tenofovir disoproxil fumarate (TDF) or tenofovir alafenamide (TAF). A simple, scalable three-drug combination, lipid-stabilized nanosuspension exhibited persistent drug levels in cells of lymph nodes and the blood (HIV host cells) and in plasma. With appropriate dose adjustment, TLC-ART101 may be a useful HIV treatment with a potential to impact residual virus in lymph nodes.
Langhans, Bettina; Nischalke, Hans Dieter; Krämer, Benjamin; Hausen, Annekristin; Dold, Leona; van Heteren, Peer; Hüneburg, Robert; Nattermann, Jacob; Strassburg, Christian P; Spengler, Ulrich
2017-05-01
CD4 + regulatory T cells (Tregs) expand during chronic hepatitis C virus (HCV) infection, inhibit antiviral immunity and promote fibrosis. Direct-acting antiviral agents (DAA) have revolutionized HCV therapy. However, it is unclear if Tregs are normalized after DAA-induced HCV elimination. We analyzed Tregs before (baseline), at end of therapy (EOT), 12 and 24weeks (SVR12, SVR24) and long-term (51±14weeks) after EOT in 26 genotype-1-infected patients who were successfully treated with sofosbuvir (SOF) plus interferon (IFN)/ribavirin (n=12) and IFN-free DAA regimens (SOF plus daclatasvir or simeprevir; n=14). Frequency, phenotype and suppressor function of peripheral Foxp3 + CD25 + CD4 + T cells were studied by multi-color flow cytometry and co-culture inhibition assays. Frequencies and activation status of Foxp3 + CD25 + CD4 + T cells remained elevated above those of normal controls in both treatment groups even long-term after HCV elimination. Co-culture assays indicated a dose-response relationship for functional inhibition of autologous CD4 + effector T cells and confirmed that activation of Tregs remained largely unchanged over the observation period. Unlike IFN-free regimens, SOF plus IFN/ribavirin induced a transiently increased frequency of Foxp3 + CD25 + CD4 + T cells at EOT (5.0% at baseline to 6.1% at EOT; p=0.001). These Foxp3 + CD25 + CD4 + T cells co-expressed the activation markers glycoprotein A repetitions predominant (GARP; p=0.012) and tumor necrosis factor receptor superfamily, member 4 (OX-40; p=0.001) but showed unchanged in vitro inhibitory activity. Although IFN-based DAA therapy induced transient expansion of activated Foxp3 + CD25 + CD4 + T cells, neither IFN-based nor IFN-free DAA regimens normalized frequencies and activation status of Tregs one year after viral elimination. Persistence of immunosuppressive Tregs may thus contribute to complications of liver disease even long-term after HCV cure. In chronic hepatitis C virus (HCV) infection, CD4 + regulatory T cells (Tregs) can reduce antiviral immune responses, promote liver fibrosis and may increase the risk for liver cancer, because they gradually expand during disease. Modern direct-acting antiviral agents (DAA) can "cure" hepatitis C in almost all treated patients. However, our study shows that DAA do not normalize the increased frequency and activation status of Tregs even long-term after HCV elimination. Tregs may persistently modulate functions of the immune system even after "cure" of hepatitis C. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Persistent induction of c-fos and c-jun expression by asbestos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heintz, N.H.; Mossman, B.T.; Janssen, Y.M.
To investigate the mechanisms of asbestos-induced carcinogenesis, expression of c-fos and c-jun protooncogenes was examined in rat pleural mesothelial cells and hamster tracheal epithelial cells after exposure to crocidolite or chrysotile asbestos. In contrast to phorbol 12-myristate 13-acetate, which induces rapid and transient increases in c-fos and c-jun mRNA, asbestos causes 2- to 5-fold increases in c-fos and c-jun mRNA that persist for at least 24 hr in mesothelial cells. The induction of c-fos and c-jun mRNA by asbestos in mesothelial cells is dose-dependent and is most pronounced with crocidolite, the type of asbestos most pathogenic in the causation ofmore » pleural mesothelioma. Induction of c-jun gene expression by asbestos occurs in tracheal epithelial cells but is not accompanied by a corresponding induction of c-fos gene expression. In both cell types, asbestos induces increases in protein factors that bind specifically to the DNA sites that mediate gene expression by the AP-1 family of transcription factors. The persistent induction of AP-1 transcription factors by asbestos suggests a model of asbestos-induced carcinogenesis involving chronic stimulation of cell proliferation through activation of the early response gene pathway that includes c-jun and/or c-fos. 30 refs., 5 figs.« less
Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition* | Office of Cancer Genomics
Acquired drug resistance prevents cancer therapies from achieving stable and complete responses. Emerging evidence implicates a key role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. The persister cell pool constitutes a reservoir from which drug-resistant tumours may emerge. Targeting persister cells therefore presents a therapeutic opportunity to impede tumour relapse. We previously found that cancer cells in a high mesenchymal therapy-resistant cell state are dependent on the lipid hydroperoxidase GPX4 for survival.
Chimeric switch receptor: switching for improved adoptive T-cell therapy against cancers.
Tay, Johan Ck; Zha, Shijun; Wang, Shu
2017-12-01
Adoptive T-lymphocyte transfer-based immunotherapy for cancers has seen huge leaps with both CARs and engineered TCRs. Despite this, issues relating to safety and efficacy persist. To address this, chimeric switch receptors have been created to reverse the outcomes of their original signaling pathways in order to confer immune cells with the ability to overcome the immunosuppressive tumor microenvironment and to allow them to have greater in vivo persistence. Activating switch receptors exploit the inhibitory molecules expressed by cancer cells to further stimulate the tumor antigen-specific T lymphocytes. On the other hand, inhibitory switch receptors inhibit the effects of tumor-reactive T lymphocytes on unintended targets. This paper reviews the switch receptors reported thus far, and lists out potential improvements and future works.
Mesquita, Inês; Moreira, Diana; Sampaio-Marques, Belém; Laforge, Mireille; Cordeiro-da-Silva, Anabela; Ludovico, Paula; Estaquier, Jérôme; Silvestre, Ricardo
2016-01-01
During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.
CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
Turtle, Cameron J.; Hanafi, Laïla-Aïcha; Berger, Carolina; Gooley, Theodore A.; Cherian, Sindhu; Hudecek, Michael; Sommermeyer, Daniel; Melville, Katherine; Pender, Barbara; Budiarto, Tanya M.; Robinson, Emily; Steevens, Natalia N.; Chaney, Colette; Soma, Lorinda; Chen, Xueyan; Li, Daniel; Cao, Jianhong; Heimfeld, Shelly; Jensen, Michael C.; Riddell, Stanley R.; Maloney, David G.
2016-01-01
BACKGROUND. T cells that have been modified to express a CD19-specific chimeric antigen receptor (CAR) have antitumor activity in B cell malignancies; however, identification of the factors that determine toxicity and efficacy of these T cells has been challenging in prior studies in which phenotypically heterogeneous CAR–T cell products were prepared from unselected T cells. METHODS. We conducted a clinical trial to evaluate CD19 CAR–T cells that were manufactured from defined CD4+ and CD8+ T cell subsets and administered in a defined CD4+:CD8+ composition to adults with B cell acute lymphoblastic leukemia after lymphodepletion chemotherapy. RESULTS. The defined composition product was remarkably potent, as 27 of 29 patients (93%) achieved BM remission, as determined by flow cytometry. We established that high CAR–T cell doses and tumor burden increase the risks of severe cytokine release syndrome and neurotoxicity. Moreover, we identified serum biomarkers that allow testing of early intervention strategies in patients at the highest risk of toxicity. Risk-stratified CAR–T cell dosing based on BM disease burden decreased toxicity. CD8+ T cell–mediated anti-CAR transgene product immune responses developed after CAR–T cell infusion in some patients, limited CAR–T cell persistence, and increased relapse risk. Addition of fludarabine to the lymphodepletion regimen improved CAR–T cell persistence and disease-free survival. CONCLUSION. Immunotherapy with a CAR–T cell product of defined composition enabled identification of factors that correlated with CAR–T cell expansion, persistence, and toxicity and facilitated design of lymphodepletion and CAR–T cell dosing strategies that mitigated toxicity and improved disease-free survival. TRIAL REGISTRATION. ClinicalTrials.gov NCT01865617. FUNDING. R01-CA136551; Life Science Development Fund; Juno Therapeutics; Bezos Family Foundation. PMID:27111235
Better Bet-Hedging with coupled positive and negative feedback loops
NASA Astrophysics Data System (ADS)
Narula, Jatin; Igoshin, Oleg
2011-03-01
Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.
Hendricks, Deborah W; Balfour, Henry H; Dunmire, Samantha K; Schmeling, David O; Hogquist, Kristin A; Lanier, Lewis L
2014-05-15
CMV induces the expansion of a unique subset of human NK cells expressing high levels of the activating CD94-NKG2C receptor that persist after control of the infection. We investigated whether this subset is CMV specific or is also responsive to acute infection with EBV. We describe a longitudinal study of CMV(-) and CMV(+) students who were acutely infected with EBV. The NKG2C(hi) NK subset was not expanded by EBV infection. However, EBV infection caused a decrease in the absolute number of immature CD56(bright)CD16(-) NK cells in the blood and, in CMV(+) individuals, induced an increased frequency of mature CD56(dim)NKG2A(+)CD57(+) NK cells in the blood that persisted into latency. These results provide further evidence that NKG2C(+) NK cells are CMV specific and suggest that EBV infection alters the repertoire of NK cells in the blood.
USDA-ARS?s Scientific Manuscript database
Since steroidogenesis is a critical component in the development of competent preovulatory follicles we hypothesized that granulosa cells from follicles of cows treated with normal levels of progesterone (CIDR) or with melengestrol acetate (MGA), which results in the development of persistent follic...
Wynn, Michelle L.; Kulesa, Paul M.; Schnell, Santiago
2012-01-01
Follow-the-leader chain migration is a striking cell migratory behaviour observed during vertebrate development, adult neurogenesis and cancer metastasis. Although cell–cell contact and extracellular matrix (ECM) cues have been proposed to promote this phenomenon, mechanisms that underlie chain migration persistence remain unclear. Here, we developed a quantitative agent-based modelling framework to test mechanistic hypotheses of chain migration persistence. We defined chain migration and its persistence based on evidence from the highly migratory neural crest model system, where cells within a chain extend and retract filopodia in short-lived cell contacts and move together as a collective. In our agent-based simulations, we began with a set of agents arranged as a chain and systematically probed the influence of model parameters to identify factors critical to the maintenance of the chain migration pattern. We discovered that chain migration persistence requires a high degree of directional bias in both lead and follower cells towards the target. Chain migration persistence was also promoted when lead cells maintained cell contact with followers, but not vice-versa. Finally, providing a path of least resistance in the ECM was not sufficient alone to drive chain persistence. Our results indicate that chain migration persistence depends on the interplay of directional cell movement and biased cell–cell contact. PMID:22219399
Khare, Sangeeta; Drake, Kenneth L.; Lawhon, Sara D.; Nunes, Jairo E. S.; Figueiredo, Josely F.; Rossetti, Carlos A.; Gull, Tamara; Everts, Robin E.; Lewin, Harris. A.; Adams, Leslie Garry
2016-01-01
It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer’s patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection. PMID:27653506
Khare, Sangeeta; Drake, Kenneth L; Lawhon, Sara D; Nunes, Jairo E S; Figueiredo, Josely F; Rossetti, Carlos A; Gull, Tamara; Everts, Robin E; Lewin, Harris A; Adams, Leslie Garry
It has long been a quest in ruminants to understand how two very similar mycobacterial species, Mycobacterium avium ssp. paratuberculosis (MAP) and Mycobacterium avium ssp. avium (MAA) lead to either a chronic persistent infection or a rapid-transient infection, respectively. Here, we hypothesized that when the host immune response is activated by MAP or MAA, the outcome of the infection depends on the early activation of signaling molecules and host temporal gene expression. To test our hypothesis, ligated jejuno-ileal loops including Peyer's patches in neonatal calves were inoculated with PBS, MAP, or MAA. A temporal analysis of the host transcriptome profile was conducted at several times post-infection (0.5, 1, 2, 4, 8 and 12 hours). When comparing the transcriptional responses of calves infected with the MAA versus MAP, discordant patterns of mucosal expression were clearly evident, and the numbers of unique transcripts altered were moderately less for MAA-infected tissue than were mucosal tissues infected with the MAP. To interpret these complex data, changes in the gene expression were further analyzed by dynamic Bayesian analysis. Bayesian network modeling identified mechanistic genes, gene-to-gene relationships, pathways and Gene Ontologies (GO) biological processes that are involved in specific cell activation during infection. MAP and MAA had significant different pathway perturbation at 0.5 and 12 hours post inoculation. Inverse processes were observed between MAP and MAA response for epithelial cell proliferation, negative regulation of chemotaxis, cell-cell adhesion mediated by integrin and regulation of cytokine-mediated signaling. MAP inoculated tissue had significantly lower expression of phagocytosis receptors such as mannose receptor and complement receptors. This study reveals that perturbation of genes and cellular pathways during MAP infection resulted in host evasion by mucosal membrane barrier weakening to access entry in the ileum, inhibition of Ca signaling associated with decreased phagosome-lysosome fusion as well as phagocytosis inhibition, bias toward Th2 cell immune response accompanied by cell recruitment, cell proliferation and cell differentiation; leading to persistent infection. Contrarily, MAA infection was related to cellular responses associated with activation of molecular pathways that release chemicals and cytokines involved with containment of infection and a strong bias toward Th1 immune response, resulting in a transient infection.
Miller, G G; Mukhachev, A Ya; Bykovsky, A F
2015-01-01
This review presents an information and proof evidence toward to the role of microvesicles, originating from the different sources pro- and eucaryotes in the initiation and development of persistence of several human and animal pathogens. Also an information about another properties of microvesicles, as well as the reference of role in the different somatic pathology, intercellular interaction and in the intracellular transport of biologically active macromolecules as well as life origin and evolutionary events.
Priceman, Saul J.; Gerdts, Ethan A.; Tilakawardane, Dileshni; Kennewick, Kelly T.; Murad, John P.; Park, Anthony K.; Jeang, Brook; Yamaguchi, Yukiko; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E.; Brown, Christine E.; Forman, Stephen J.
2018-01-01
ABSTRACT Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with “on-target off-tumor” activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies. PMID:29308300
Zhi, Huijun; Yang, Liangpeng; Kuo, Yu-Liang; Ho, Yik-Khuan; Shih, Hsiu-Ming; Giam, Chou-Zen
2011-01-01
Activation of I-κB kinases (IKKs) and NF-κB by the human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, is thought to promote cell proliferation and transformation. Paradoxically, expression of Tax in most cells leads to drastic up-regulation of cyclin-dependent kinase inhibitors, p21CIP1/WAF1 and p27KIP1, which cause p53-/pRb-independent cellular senescence. Here we demonstrate that p21CIP1/WAF1-/p27KIP1-mediated senescence constitutes a checkpoint against IKK/NF-κB hyper-activation. Senescence induced by Tax in HeLa cells is attenuated by mutations in Tax that reduce IKK/NF-κB activation and prevented by blocking NF-κB using a degradation-resistant mutant of I-κBα despite constitutive IKK activation. Small hairpin RNA-mediated knockdown indicates that RelA induces this senescence program by acting upstream of the anaphase promoting complex and RelB to stabilize p27KIP1 protein and p21CIP1/WAF1 mRNA respectively. Finally, we show that down-regulation of NF-κB by the HTLV-1 anti-sense protein, HBZ, delay or prevent the onset of Tax-induced senescence. We propose that the balance between Tax and HBZ expression determines the outcome of HTLV-1 infection. Robust HTLV-1 replication and elevated Tax expression drive IKK/NF-κB hyper-activation and trigger senescence. HBZ, however, modulates Tax-mediated viral replication and NF-κB activation, thus allowing HTLV-1-infected cells to proliferate, persist, and evolve. Finally, inactivation of the senescence checkpoint can facilitate persistent NF-κB activation and leukemogenesis. PMID:21552325
Leoni, M; Sens, P
2015-02-01
We study a generic model for the polarization and motility of self-propelled soft objects, biological cells, or biomimetic systems, interacting with a viscous substrate. The active forces generated by the cell on the substrate are modeled by means of oscillating force multipoles at the cell-substrate interface. Symmetry breaking and cell polarization for a range of cell sizes naturally "emerge" from long range mechanical interactions between oscillating units, mediated both by the intracellular medium and the substrate. However, the harnessing of cell polarization for motility requires substrate-mediated interactions. Motility can be optimized by adapting the oscillation frequency to the relaxation time of the system or when the substrate and cell viscosities match. Cellular noise can destroy mechanical coordination between force-generating elements within the cell, resulting in sudden changes of polarization. The persistence of the cell's motion is found to depend on the cell size and the substrate viscosity. Within such a model, chemotactic guidance of cell motion is obtained by directionally modulating the persistence of motion, rather than by modulating the instantaneous cell velocity, in a way that resembles the run and tumble chemotaxis of bacteria.
Rai, Priyamvada
2010-11-28
Activation of persistent DNA damage response (DDR) signaling is associated with the induction of a permanent proliferative arrest known as cellular senescence, a phenomenon intrinsically linked to both tissue aging as well as tumor suppression. The DNA damage observed in senescent cells has been attributed to elevated levels of reactive oxygen species (ROS), failing DNA damage repair processes, and/or oncogenic activation. It is not clear how labile molecules such as ROS are able to damage chromatin-bound DNA to a sufficient extent to invoke persistent DNA damage and DDR signaling. Recent evidence suggests that the nucleotide pool is a significant target for oxidants and that oxidized nucleotides, once incorporated into genomic DNA, can lead to the induction of a DNA strand break-associated DDR that triggers senescence in normal cells and in cells sustaining oncogene activation. Evasion of this DDR and resulting senescence is a key step in tumor progression. This review will explore the role of oxidation in the nucleotide pool as a major effector of oxidative stress-induced genotoxic damage and DDR in the context of cellular senescence and tumorigenic transformation. 2010 Elsevier B.V. All rights reserved.
Transcriptome profiling indicating canine parvovirus type 2a as a potential immune activator.
Fan, Xu-Xu; Gao, Yuan; Shu, Long; Wei, Yan-Quan; Yao, Xue-Ping; Cao, Sui-Zhong; Peng, Guang-Neng; Liu, Xiang-Tao; Sun, Shi-Qi
2016-12-01
Canine parvovirus type 2a (CPV-2a) is a variant of CPV-2, which is a highly contagious pathogen causing severe gastroenteritis and death in young dogs. However, how CPV-2 participates in cell regulation and immune response remains unknown. In this study, persistently infected MDCK cells were generated through culture passage of the CPV-2a-infected cells for ten generations. Our study showed that CPV-2a induces cell proliferation arrest and cell morphology alternation before the fourth generation, whereas, the cell morphology returns to normal after five times of passages. PCR detection of viral VP2 gene demonstrated that CPV-2a proliferate with cell passage. An immunofluorescence assay revealed that CPV-2a particles were mainly located in the cell nuclei of MDCK cell. Then transcriptome microarray revealed that gene expression pattern of MDCK with CPV-2a persistent infection is distinct compared with normal cells. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genome pathway analysis demonstrated that CPV-2a infection induces a series of membrane-associated genes expression, including many MHC protein or MHC-related complexes. These genes are closely related to signaling pathways of virus-host interaction, including antigen processing and presentation pathway, intestinal immune network, graft-versus-host disease, and RIG-I-like helicases signaling pathway. In contrast, the suppressed genes mediated by CPV-2a showed low enrichment in any category, and were only involved in pathways linking to synthesis and metabolism of amino acids, which was confirmed by qPCR analysis. Our studies indicated that CPV-2a is a natural immune activator and has the capacity to activate host immune responses, which could be used for the development of antiviral strategy and biomaterial for medicine.
Tipton, Christopher M; Fucile, Christopher F; Darce, Jaime; Chida, Asiya; Ichikawa, Travis; Gregoretti, Ivan; Schieferl, Sandra; Hom, Jennifer; Jenks, Scott; Feldman, Ron J; Mehr, Ramit; Wei, Chungwen; Lee, F. Eun-Hyung; Cheung, Wan Cheung; Rosenberg, Alexander F; Sanz, Iñaki
2015-01-01
Acute SLE courses with antibody-secreting cells (ASC) surges whose origin, diversity, and contribution to serum autoantibodies remain unknown. Deep sequencing, autoantibody proteome and single-cell analysis demonstrated highly diversified ASC punctuated by VH4-34 clones that produce dominant serum autoantibodies. A fraction of ASC clones contained unmutated autoantibodies, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment derived from a distinct subset of newly activated naïve cells of significant clonality that persist in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation with prolonged recruitment of recently activated naïve B cells. These findings shed light into SLE pathogenesis, help explain the benefit of anti-B cell agents and facilitate the design of future therapies. PMID:26006014
Saffold Virus Type 3 (SAFV-3) Persists in HeLa Cells
Himeda, Toshiki; Hosomi, Takushi; Okuwa, Takako; Muraki, Yasushi; Ohara, Yoshiro
2013-01-01
Saffold virus (SAFV) was identified as a human cardiovirus in 2007. Although several epidemiological studies have been reported, they have failed to provide a clear picture of the relationship between SAFV and human diseases. SAFV genotype 3 has been isolated from the cerebrospinal fluid specimen of patient with aseptic meningitis. This finding is of interest since Theiler’s murine encephalomyelitis virus (TMEV), which is the closely related virus, is known to cause a multiple sclerosis-like syndrome in mice. TMEV persistently infects in mouse macrophage cells in vivo and in vitro, and the viral persistence is essential in TMEV-induced demyelinating disease. The precise mechanism(s) of SAFV infection still remain unclear. In order to clarify the SAFV pathogenicity, in the present study, we studied the possibilities of the in vitro persistent infection of SAFV. The two distinct phenotypes of HeLa cells, HeLa-N and HeLa-R, were identified. In these cells, the type of SAFV-3 infection was clearly different. HeLa-N cells were lyticly infected with SAFV-3 and the host suitable for the efficient growth. On the other hand, HeLa-R cells were persistently infected with SAFV-3. In addition, the SAFV persistence in HeLa-R cells is independent of type I IFN response of host cells although the TMEV persistence in mouse macrophage cells depends on the response. Furthermore, it was suggested that SAFV persistence may be influenced by the expression of receptor(s) for SAFV infection on the host cells. The present findings on SAFV persistence will provide the important information to encourage the research of SAFV pathogenicity. PMID:23308162
Identifying Stem-like Cells Using Mitochondrial Membrane Potential | Center for Cancer Research
Therapies that are based on living cells promise to improve treatments for metastatic cancer and for many degenerative diseases. Lasting treatment of these maladies may require the durable persistence of cells. Long-term engraftment of cells – for months or years – and the generation of large numbers of progeny are characteristics of stem cells. Most approaches to isolate viable hematopoetic stem cells and therapeutically active T cells are based on immunophenotyping using highly multicolored flow cytometry. However, these methods do not directly measure the metabolic features of cells, which are known to be important in predicting cell fate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Libin; Perelson, Alan
2008-01-01
HIV-1 eradication from infected individuals has not been achieved with the use of highly active antiretroviral therapy (HAART) for a prolonged period of time. The cellular reservoir for HIV-1 in resting memory CD4{sup +} T cells remains a major obstacle to viral elimination. The reservoir does not decay significantly over long periods of time as is able to release replication competent HIV-1 upon cell activation. Residual ongoing viral replication may likely occur in many patients because low levels of virus can be detected in plasma by sensitive assays and transient episodes of viremia, or HIV-1 blips, are often observed inmore » patients even with successful viral suppression for many years. Here we review our current knowledge of the factors contributing to viral persistence, the latent reservoir, and blips, and mathematical models developed to explore them and their relationships. We show how mathematical modeling can help improve our understanding of HIV-1 dynamics in patients on HAART and the quantitative events underlying HIV-1 latency, reservoir stability, low-level viremic persistence, and emergence of intermittent viral blips. We also discuss treatment implications related to these studies.« less
Kortebi, Mounia; Milohanic, Eliane; Mitchell, Gabriel; Péchoux, Christine; Prevost, Marie-Christine; Cossart, Pascale; Bierne, Hélène
2017-11-01
Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called "viable but non-culturable" state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy.
NASA Astrophysics Data System (ADS)
Almahwasi, A. A.; Jeynes, J. C.; Merchant, M. J.; Bradley, D. A.; Regan, P. H.
2017-08-01
Ionising radiation can induce giant-nucleated cells (GCs) in the progeny of irradiated populations, as demonstrated in various cellular systems. Most in vitro studies have utilised quiescent cancerous or normal cell lines but it is not clear whether radiation-induced GCs persist in the progeny of normal replicated cells. In the current work we show persistent induction of GCs in the progeny of normal human-diploid skin fibroblasts (AG1522). These cells were originally irradiated with a single equivalent clinical dose of 0.2, 1 or 2 Gy of either X-ray or proton irradiation and maintained in an active state for various post-irradiation incubation interval times before they were replated for GC analysis. The results demonstrate that the formation of GCs in the progeny of X-ray or proton irradiated cells was increased in a dose-dependent manner when measured 7 days after irradiation and this finding is in agreement with that reported for the AG1522 cells using other radiation qualities. For the 1 Gy X-ray doses it was found that the GC yield increased continually with time up to 21 days post-irradiation. These results can act as benchmark data for such work and may have important implications for studies aimed at evaluating the efficacy of radiation therapy and in determining the risk of delayed effects particularly when applying protons.
Mitchell, Gabriel
2017-01-01
Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called “viable but non-culturable” state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy. PMID:29190284
HIV integration sites and implications for maintenance of the reservoir.
Symons, Jori; Cameron, Paul U; Lewin, Sharon R
2018-03-01
To provide an overview of recent research of how HIV integration relates to productive and latent infection and implications for cure strategies. How and where HIV integrates provides new insights into how HIV persists on antiretroviral therapy (ART). Clonal expansion of infected cells with the same integration site demonstrates that T-cell proliferation is an important factor in HIV persistence, however, the driver of proliferation remains unclear. Clones with identical integration sites harbouring defective provirus can accumulate in HIV-infected individuals on ART and defective proviruses can express RNA and produce protein. HIV integration sites differ in clonally expanded and nonexpanded cells and in latently and productively infected cells and this influences basal and inducible transcription. There is a growing number of cellular proteins that can alter the pattern of integration to favour latency. Understanding these pathways may identify new interventions to eliminate latently infected cells. Using advances in analysing HIV integration sites, T-cell proliferation of latently infected cells is thought to play a major role in HIV persistence. Clonal expansion has been demonstrated with both defective and intact viruses. Production of viral RNA and protein from defective viruses may play a role in driving chronic immune activation. The site of integration may determine the likelihood of proliferation and the degree of basal and induced transcription. Finally, host factors and gene expression at the time of infection may determine the integration site. Together these new insights may lead to novel approaches to elimination of latently infected cells.
Tahvildari, Babak; Wölfel, Markus; Duque, Alvaro; McCormick, David A
2012-08-29
The neocortex depends upon a relative balance of recurrent excitation and inhibition for its operation. During spontaneous Up states, cortical pyramidal cells receive proportional barrages of excitatory and inhibitory synaptic potentials. Many of these synaptic potentials arise from the activity of nearby neurons, although the identity of these cells is relatively unknown, especially for those underlying the generation of inhibitory synaptic events. To address these fundamental questions, we developed an in vitro submerged slice preparation of the mouse entorhinal cortex that generates robust and regular spontaneous recurrent network activity in the form of the slow oscillation. By performing whole-cell recordings from multiple cell types identified with green fluorescent protein expression and electrophysiological and/or morphological properties, we show that distinct functional subpopulations of neurons exist in the entorhinal cortex, with large variations in contribution to the generation of balanced excitation and inhibition during the slow oscillation. The most active neurons during the slow oscillation are excitatory pyramidal and inhibitory fast spiking interneurons, receiving robust barrages of both excitatory and inhibitory synaptic potentials. Weak action potential activity was observed in stellate excitatory neurons and somatostatin-containing interneurons. In contrast, interneurons containing neuropeptide Y, vasoactive intestinal peptide, or the 5-hydroxytryptamine (serotonin) 3a receptor, were silent. Our data demonstrate remarkable functional specificity in the interactions between different excitatory and inhibitory cortical neuronal subtypes, and suggest that it is the large recurrent interaction between pyramidal neurons and fast spiking interneurons that is responsible for the generation of persistent activity that characterizes the depolarized states of the cortex.
Cheng, Zheng-Xiang; Lan, Dan-Mei; Wu, Pei-Ying; Zhu, Yan-Hua; Dong, Yi; Ma, Lan; Zheng, Ping
2008-03-01
Dehydroepiandrosterone sulphate is one of the most important neurosteroids. In the present paper, we studied the effect of dehydroepiandrosterone sulphate on persistent sodium currents and its mechanism and functional consequence with whole-cell patch clamp recording method combined with a pharmacological approach in the rat medial prefrontal cortex slices. The results showed that dehydroepiandrosterone sulphate inhibited the amplitude of persistent sodium currents and the inhibitory effect was significant at 0.1 microM, reached maximum at 1 microM and decreased with the increase in the concentrations of above 1 microM. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was canceled by the Gi protein inhibitor and the protein kinase C inhibitor, but not by the protein kinase A inhibitor. The effect of dehydroepiandrosterone sulphate on persistent sodium currents was also canceled by the sigma-1 receptor blockers and the sigma-1 receptor agonist could mimic the effect of dehydroepiandrosterone sulphate. Dehydroepiandrosterone sulphate had no significant influence on neuronal excitability but could significantly inhibit chemical inhibition of mitochondria-evoked increase in persistent sodium currents. These results suggest that dehydroepiandrosterone sulphate inhibits persistent sodium currents via the activation of sigma-1 receptors-Gi protein-protein kinase C-coupled signaling pathway, and the main functional consequence of this effect of DHEAS is presumably to protect neurons under ischemia.
Behbakht, Kian; Sill, Michael W.; Darcy, Kathleen M.; Rubin, Stephen C.; Mannel, Robert S.; Waggoner, Steven; Schilder, Russell J.; Cai, Kathy Q.; Godwin, Andrew K.; Alpaugh, R. Katherine
2012-01-01
Purpose Patients with persistent/recurrent epithelial ovarian cancer/primary peritoneal cancer (EOC/PPC) have limited treatment options. AKT and PI3K pathway activation is common in EOC/PPC, resulting in constitutive activation of downstream mTOR. The GOG conducted a phase II evaluation of efficacy and safety for the mTOR inhibitor, temsirolimus in EOC/PPC and explored circulating tumor cells (CTC) and AKT/mTOR/downstream tumor markers. Methods Eligible women with measurable, persistent/recurrent EOC/PPC who had received 1–3 prior regimens were treated with 25 mg weekly IV temsirolimus until progression or intolerable toxicity. Primary endpoints were progression-free survival (PFS) ≥6-months, tumor response, and toxicity. CellSearch® system was used to examine CTC, and AKT/mTOR/downstream markers were evaluated by archival tumor immunohistochemistry. Kendall’s tau-b correlation coefficient (r) and Cox regression modeling were used to explore marker associations with baseline characteristics and outcome. Results Sixty patients were enrolled in a two-stage sequential design. Of 54 eligible and evaluable patients, 24.1% (90%CI 14.9%–38.6%) had PFS ≥6 months (median 3.1 months), 9.3% (90%CI 3.7%–23.4%) experienced a partial response. Grade 3/4 adverse events included metabolic(8), gastrointestinal(8), pain(6), constitutional(5) and pulmonary(4). Suggested associations were between cyclin D1 and PFS ≥6 months, PFS or survival; positive CTC pre-treatment and lack of response; and high CTC expression of M30 and PFS ≥6 months/longer PFS. Conclusions Temsirolimus appears to have modest activity in persistent/recurrent EOC/PPC; however, PFS is just below that required to warrant inclusion in phase III studies in unselected patients. Cyclin D1 as a selection marker and CTC measures merit further study. PMID:21752435
Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells
Fino, Cinzia; Sørensen, Michael A.; Semsey, Szabolcs
2017-01-01
ABSTRACT Bacterial persisters are phenotypic variants that survive antibiotic treatment in a dormant state and can be formed by multiple pathways. We recently proposed that the second messenger (p)ppGpp drives Escherichia coli persister formation through protease Lon and activation of toxin-antitoxin (TA) modules. This model found considerable support among researchers studying persisters but also generated controversy as part of recent debates in the field. In this study, we therefore used our previous work as a model to critically examine common experimental procedures to understand and overcome the inconsistencies often observed between results of different laboratories. Our results show that seemingly simple antibiotic killing assays are very sensitive to variations in culture conditions and bacterial growth phase. Additionally, we found that some assay conditions cause the killing of antibiotic-tolerant persisters via induction of cryptic prophages. Similarly, the inadvertent infection of mutant strains with bacteriophage ϕ80, a notorious laboratory contaminant, apparently caused several of the phenotypes that we reported in our previous studies. We therefore reconstructed all infected mutants and probed the validity of our model of persister formation in a refined assay setup that uses robust culture conditions and unravels the dynamics of persister cells through all bacterial growth stages. Our results confirm the importance of (p)ppGpp and Lon but no longer support a role of TA modules in E. coli persister formation under unstressed conditions. We anticipate that the results and approaches reported in our study will lay the ground for future work in the field. PMID:29233898
Ward-Kavanagh, Lindsay K.; Zhu, Junjia; Cooper, Timothy K.; Schell, Todd D.
2014-01-01
Adoptive immunotherapy has demonstrated efficacy in a subset of clinical and preclinical studies, but the T cells used for therapy often are rendered rapidly non-functional in tumor-bearing hosts. Recent evidence indicates that prostate cancer can be susceptible to immunotherapy, but most studies using autochthonous tumor models demonstrate only short-lived T-cell responses in the tolerogenic prostate microenvironment. Here, we assessed the efficacy of sublethal whole-body irradiation (WBI) to enhance the magnitude and duration of adoptively transferred CD8+ T cells in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. We demonstrate that WBI promoted high-level accumulation of granzyme B (GzB)-expressing donor T cells both in lymphoid organs and in the prostate of TRAMP mice. Donor T cells remained responsive to vaccination in irradiated recipients, but a single round of WBI-enhanced adoptive immunotherapy failed to impact significantly the existing disease. Addition of a second round of immunotherapy promoted regression of established disease in half of the treated mice, with no progressions observed. Regression was associated with long-term persistence of effector/memory phenotype CD8+ donor cells. Administration of the second round of adoptive immunotherapy led to reacquisition of GzB expression by persistent T cells from the first transfer. These results indicate that WBI conditioning amplifies tumor-specific T cells in the TRAMP prostate and lymphoid tissue, and suggest that the initial treatment alters the tolerogenic microenvironment to increase antitumor activity by a second wave of donor cells. PMID:24801834
Chen, Lei; Liu, Jin-cheng; Zhang, Xiao-nan; Guo, Yan-yan; Xu, Zhao-hui; Cao, Wei; Sun, Xiao-li; Sun, Wen-ji; Zhao, Ming-Gao
2008-06-01
Gentiopicroside is one of the secoiridoid compound isolated from Gentiana lutea. It exhibits analgesic activities in the mice. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission and induce glutamate NMDA NR2B receptor expression in the ACC. But little is known about Gentiopicroside on the persistent inflammatory pain and chronic pain-induced synaptic transmission changes in the ACC. The present study was undertaken to investigate its analgesic activities and central synaptic modulation to the peripheral painful inflammation. Gentiopicroside produced significant analgesic effects against persistent inflammatory pain stimuli in mice. Systemic administration of Gentiopicroside significantly reversed NR2B over-expression during the chronic phases of persistent inflammation caused by hind-paw administration of complete Freunds adjuvant (CFA) in mice. Whole-cell patch clamp recordings revealed that Gentiopicroside significantly reduced NR2B receptors mediated postsynaptic currents in the ACC. Our findings provide strong evidence that analgesic effects of Gentiopicroside involve down-regulation of NR2B receptors in the ACC to persistent inflammatory pain.
NASA Astrophysics Data System (ADS)
Pett-Ridge, J.
2017-12-01
Soils store more carbon than the atmosphere and terrestrial vegetation combined, yet the factors that control its persistence remain elusive. Recent insights have overturned the long-held assumption that carbon stability depends mostly on chemical `recalcitrance' of soil organic matter (SOM). Instead, an emerging paradigm emphasizes how environmental drivers like temperature and moisture, soil minerals, and microbial ecology interact to control SOM formation, stabilization, and turnover. Detailed spectroscopic and isotopic (14C) analyses of mineral-associated SOM show that the oldest carbon in soil may be easily broken down and respired in the laboratory, and that it biochemically resembles microbial cells and metabolites far more than plant material. This places microbial ecophysiology at the center of the soil carbon persistence question. Microbial cells likely interact with mineral surfaces as part of an ecological strategy to condition their environment (e.g. biofilm formation or extracellular enzyme production), and their diverse cellular components likely associate with minerals after cells die. Collectively, these microbial characteristics - metabolic activities, population growth strategies, and cellular biochemistry - can be thought of as `soil ecophysiological traits'. This presentation will explore potential traits that may be fruitful targets for studies evaluating the persistence and importance of microbial products as SOM precursors, and will highlight results showing that soil mineral type influences the microbial communities that colonize mineral surfaces, as well as the quantity and type of mineral-associated carbon that accumulates. I will propose a series of integrated approaches that used together can examine how genomic capacity and activities of soil microbiomes are shaped by edaphic conditions (moisture, temperature, redox regimes) and fundamentally affect the terrestrial soil C pool.
The JAK2 Inhibitor, AZD1480, Potently Blocks Stat3 Signaling and Oncogenesis in Solid Tumors
Hedvat, Michael; Huszar, Dennis; Herrmann, Andreas; Gozgit, Joseph M.; Schroeder, Anne; Sheehy, Adam; Buettner, Ralf; Proia, David; Kowolik, Claudia M.; Xin, Hong; Armstrong, Brian; Bebernitz, Geraldine; Weng, Shaobu; Wang, Lin; Ye, Minwei; McEachern, Kristen; Chen, Huawei; Morosini, Deborah; Bell, Kirsten; Alimzhanov, Marat; Ioannidis, Stephanos; McCoon, Patricia; Cao, Zhu A.; Yu, Hua; Jove, Richard; Zinda, Michael
2009-01-01
Summary Persistent activation of Stat3 is oncogenic and is prevalent in a wide variety of human cancers. Chronic cytokine stimulation is associated with Stat3 activation in some tumors, implicating cytokine receptor-associated Jak family kinases. Using Jak2 inhibitors, we demonstrate a central role of Jaks in modulating basal and cytokine-induced Stat3 activation in human solid tumor cell lines. Inhibition of Jak2 activity is associated with abrogation of Stat3 nuclear translocation and tumorigenesis. The Jak2 inhibitor, AZD1480, suppresses the growth of human solid tumor xenografts harboring persistent Stat3 activity. We demonstrate the essential role of Stat3 downstream of Jaks by inhibition of tumor growth using shRNA targeting Stat3. Our data support a key role of Jak kinase activity in Stat3-dependent tumorigenesis. PMID:19962667
Shandley, Sabrina; Wolf, E George; Schubert-Kappan, Christine M; Baugh, Laura M; Richards, Michael F; Prye, Jennifer; Arizpe, Helen M; Kalns, John
2017-01-01
Traumatic brain injury (TBI) may cause persistent cognitive dysfunction. A pilot clinical study was performed to determine if hyperbaric oxygen (HBO₂) treatment improves cognitive performance. It was hypothesized that stem cells, mobilized by HBO₂ treatment, are recruited to repair damaged neuronal tissue. This hypothesis was tested by measuring the relative abundance of stem cells in peripheral blood and cognitive performance during this clinical trial. The subject population consisted of 28 subjects with persistent cognitive impairment caused by mild to moderate TBI suffered during military deployment to Iraq or Afghanistan. Fluorescence-activated cell sorting (FACS) analysis was performed for stem cell markers in peripheral blood and correlated with variables resulting from standard tests of cognitive performance and post-traumatic stress disorder: ImPACT, BrainCheckers and PCL-M test results. HBO₂ treatment correlated with stem cell mobilization as well as increased cognitive performance. Together these results support the hypothesis that stem cell mobilization may be required for cognitive improvement in this population. Copyright© Undersea and Hyperbaric Medical Society.
Sebastian, Jees; Swaminath, Sharmada; Nair, Rashmi Ravindran; Jakkala, Kishor; Pradhan, Atul
2016-01-01
ABSTRACT Bacterial persisters are a subpopulation of cells that can tolerate lethal concentrations of antibiotics. However, the possibility of the emergence of genetically resistant mutants from antibiotic persister cell populations, upon continued exposure to lethal concentrations of antibiotics, remained unexplored. In the present study, we found that Mycobacterium tuberculosis cells exposed continuously to lethal concentrations of rifampin (RIF) or moxifloxacin (MXF) for prolonged durations showed killing, RIF/MXF persistence, and regrowth phases. RIF-resistant or MXF-resistant mutants carrying clinically relevant mutations in the rpoB or gyrA gene, respectively, were found to emerge at high frequency from the RIF persistence phase population. A Luria-Delbruck fluctuation experiment using RIF-exposed M. tuberculosis cells showed that the rpoB mutants were not preexistent in the population but were formed de novo from the RIF persistence phase population. The RIF persistence phase M. tuberculosis cells carried elevated levels of hydroxyl radical that inflicted extensive genome-wide mutations, generating RIF-resistant mutants. Consistent with the elevated levels of hydroxyl radical-mediated genome-wide random mutagenesis, MXF-resistant M. tuberculosis gyrA de novo mutants could be selected from the RIF persistence phase cells. Thus, unlike previous studies, which showed emergence of genetically resistant mutants upon exposure of bacteria for short durations to sublethal concentrations of antibiotics, our study demonstrates that continuous prolonged exposure of M. tuberculosis cells to lethal concentrations of an antibiotic generates antibiotic persistence phase cells that form a reservoir for the generation of genetically resistant mutants to the same antibiotic or another antibiotic. These findings may have clinical significance in the emergence of drug-resistant tubercle bacilli. PMID:27895008
Harper, David R.; Parracho, Helena M. R. T.; Walker, James; Sharp, Richard; Hughes, Gavin; Werthén, Maria; Lehman, Susan; Morales, Sandra
2014-01-01
Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce) enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.
Staffend, Nancy A; Hedges, Valerie L; Chemel, Benjamin R; Watts, Val J; Meisel, Robert L
2014-11-01
Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor-expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse.
Staffend, Nancy A.; Hedges, Valerie L.; Chemel, Benjamin R.; Watts, Val J.; Meisel, Robert L.
2013-01-01
Female sexual behavior is an established model of a naturally motivated behavior which is regulated by activity within the mesolimbic dopamine system. Repeated activation of the mesolimbic circuit by female sexual behavior elevates dopamine release and produces persistent postsynaptic alterations to dopamine D1 receptor signaling within the nucleus accumbens. Here we demonstrate that sexual experience in female Syrian hamsters significantly increases spine density and alters morphology selectively in D1 receptor expressing medium spiny neurons within the nucleus accumbens core, with no corresponding change in dopamine receptor binding or protein expression. Our findings demonstrate that previous life experience with a naturally motivated behavior has the capacity to induce persistent structural alterations to the mesolimbic circuit that can increase reproductive success and are analogous to the persistent structural changes following repeated exposure to many drugs of abuse. PMID:23934655
Toyoda, M; Ihara, T; Nakano, T; Ito, M; Kamiya, H
1999-04-09
We studied the expression of interleukin-2 receptor alpha (CD25)+ CD45RO+ CD4+ T lymphocytes (T-cell activation) in response to the rubella virus (RV) antigen (Matsuura strain, Biken, Osaka, Japan) using three-color-staining flow cytometry. The subjects were 48 healthy children (3-14 years old, 31 boys and 17 girls), who had received either monovalent vaccine (n = 5; mean age, 13.2 years) or measles-mumps-rubella (MMR) vaccine (n = 21; mean age, 10.5 years), had been naturally infected (n = 5; mean age, 11.4 years), or had been neither vaccinated nor naturally infected (n = 17; mean age, 10.0 years) and 62 healthy adolescents and adults (15-37 years old; 19 males and 43 females), who had received monovalent vaccine (n = 26, mean age, 27.4 years), had been naturally infected (n = 8; mean age, 24.0 years), or had been neither vaccinated nor naturally infected (n = 8; mean age, 16.5 years). Ninety-four of 110 subjects had HI titers > or = 1:16. T-cell activation in these subjects was significantly higher than that in 6 seronegative (HI titers < 1:8) subjects (p < 0.05). T-cell activation did not differ significantly with the history of exposure to RV. HI antibody titers > or = 1:16 and T-cell activation persisted in vaccinated subjects for > or = 20 years and was similar to those in naturally infected subjects. Our results suggest that cell-mediated immunity and humoral immunity persist for at least 20 years after vaccination.
Yang, Li-yun; He, Chang-yu; Chen, Xue-hua; Su, Li-ping; Liu, Bing-ya; Zhang, Hao
2016-01-01
Revival of dormant tumor cells may be an important tumor metastasis mechanism. We hypothesized that aurora kinase A (AURKA), a cell cycle control kinase, promotes the transition of laryngeal squamous cell carcinoma (LSCC) cells from G0 phase to active division. We therefore investigated whether AURKA could revive dormant tumor cells to promote metastasis. Western blotting revealed that AURKA expression was persistently low in dormant laryngeal cancer Hep2 (D-Hep2) cells and high in non-dormant (T-Hep2) cells. Decreasing AURKA expression in T-Hep2 cells induced dormancy and reduced FAK/PI3K/Akt pathway activity. Increasing AURKA expression in D-Hep2 cells increased FAK/PI3K/Akt pathway activity and enhanced cellular proliferation, migration, invasion and metastasis. In addition, FAK/PI3K/Akt pathway inhibition caused dormancy-like behavior and reduced cellular mobility, migration and invasion. We conclude that AURKA may revive dormant tumor cells via FAK/PI3K/Akt pathway activation, thereby promoting migration and invasion in laryngeal cancer. AURKA/FAK/PI3K/Akt inhibitors may thus represent potential targets for clinical LSCC treatment. PMID:27356739
High Frequency, Sustained T Cell Responses to PARV4 Suggest Viral Persistence In Vivo
Simmons, Ruth; Sharp, Colin; Sims, Stuart; Kloverpris, Henrik; Goulder, Philip; Simmonds, Peter; Bowness, Paul; Klenerman, Paul
2011-01-01
Background. Parvovirus 4 (PARV4) is a recently identified human virus that has been found in livers of patients infected with hepatitis C virus (HCV) and in bone marrow of individuals infected with human immunodeficiency virus (HIV). T cells are important in controlling viruses but may also contribute to disease pathogenesis. The interaction of PARV4 with the cellular immune system has not been described. Consequently, we investigated whether T cell responses to PARV4 could be detected in individuals exposed to blood-borne viruses. Methods. Interferon γ (IFN-γ) enzyme-linked immunospot assay, intracellular cytokine staining, and a tetrameric HLA-A*0201–peptide complex were used to define the lymphocyte populations responding to PARV4 NS peptides in 88 HCV-positive and 13 HIV-positive individuals. Antibody responses were tested using a recently developed PARV4 enzyme-linked immunosorbent assay. Results. High-frequency T cell responses against multiple PARV4 NS peptides and antibodies were observed in 26% of individuals. Typical responses to the NS pools were >1000 spot-forming units per million peripheral blood mononuclear cells. Conclusions. PARV4 infection is common in individuals exposed to blood-borne viruses and elicits strong T cell responses, a feature typically associated with persistent, contained infections such as cytomegalovirus. Persistence of PARV4 viral antigen in tissue in HCV-positive and HIV-positive individuals and/or the associated activated antiviral T cell response may contribute to disease pathogenesis. PMID:21502079
Ye, Jianxin; Silverman, Lee; Lairmore, Michael D.; Green, Patrick L.
2010-01-01
Human T-cell leukemia virus type 1 (HTLV-1) is associated with leukemia/lymphoma and neurologic disorders. Although the viral transcriptional activator Tax is the critical viral oncoprotein, Rex, which regulates the expression of the viral structural and enzymatic genes, is essential for efficient viral replication. Herein, we investigate the contribution of Rex in HTLV-1 immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. A Rex-deficient HTLV-1 (HTLVRex−) was constructed and characterized for viral gene expression, protein production, and immortalization capacity. Cells transiently transfected with the HTLVRex− proviral clone produced low detectable levels of p19 Gag. 729HTLVRex− stable transfectants produced functional Tax, but undetectable levels of Rex or p19 Gag. Coculture of irradiated 729HTLVRex− cells with peripheral blood mononuclear cells (PBMCs) resulted in sustained interleukin-2 (IL-2)–dependent growth of primary T lymphocytes. These cells carried the HTLVRex− genome and expressed tax/rex mRNA but produced no detectable Rex or p19 Gag. Rabbits inoculated with irradiated 729HTLVRex− cells or 729HTLVRex− cells transiently transfected with a Rex cDNA expression plasmid failed to become persistently infected or mount a detectable antibody response to the viral gene products. Together, our results provide the first direct evidence that Rex and its function to modulate viral gene expression and virion production is not required for in vitro immortalization by HTLV-1. However, Rex is critical for efficient infection of cells and persistence in vivo. PMID:12907436
Mahgoub, Mohamed; Iwami, Shingo; Nakaoka, Shinji; Koizumi, Yoshiki; Shimura, Kazuya; Matsuoka, Masao
2018-01-01
Viruses causing chronic infection artfully manipulate infected cells to enable viral persistence in vivo under the pressure of immunity. Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection mainly in CD4+ T cells in vivo and induces leukemia in this subset. HTLV-1–encoded Tax is a critical transactivator of viral replication and a potent oncoprotein, but its significance in pathogenesis remains obscure due to its very low level of expression in vivo. Here, we show that Tax is expressed in a minor fraction of leukemic cells at any given time, and importantly, its expression spontaneously switches between on and off states. Live cell imaging revealed that the average duration of one episode of Tax expression is ∼19 hours. Knockdown of Tax rapidly induced apoptosis in most cells, indicating that Tax is critical for maintaining the population, even if its short-term expression is limited to a small subpopulation. Single-cell analysis and computational simulation suggest that transient Tax expression triggers antiapoptotic machinery, and this effect continues even after Tax expression is diminished; this activation of the antiapoptotic machinery is the critical event for maintaining the population. In addition, Tax is induced by various cytotoxic stresses and also promotes HTLV-1 replication. Thus, it seems that Tax protects infected cells from apoptosis and increases the chance of viral transmission at a critical moment. Keeping the expression of Tax minimal but inducible on demand is, therefore, a fundamental strategy of HTLV-1 to promote persistent infection and leukemogenesis. PMID:29358408
Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu; Hsu, Sheng-Min; Chen, Shun-Hua
2017-02-15
Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK - ) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK - HSV-1 remain elusive. Using three genetically engineered HSV-1 TK - mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK - mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK - HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts. Copyright © 2017 American Society for Microbiology.
Huang, Chih-Yu; Yao, Hui-Wen; Wang, Li-Chiu; Shen, Fang-Hsiu
2016-01-01
ABSTRACT Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484–490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. IMPORTANCE Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK−) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK− HSV-1 remain elusive. Using three genetically engineered HSV-1 TK− mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK− mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK− HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts. PMID:27974554
Kogut, Michael H.; Swaggerty, Christina L.; Byrd, James Allen; Selvaraj, Ramesh; Arsenault, Ryan J.
2016-01-01
Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4–14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market. PMID:27472318
Kogut, Michael H; Swaggerty, Christina L; Byrd, James Allen; Selvaraj, Ramesh; Arsenault, Ryan J
2016-07-27
Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4-14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market.
Ryan, Christine; Giannoni, Francesca; Hardee, Cinnamon L.; Tremcinska, Irena; Katebian, Behrod; Wherley, Jennifer; Sahaghian, Arineh; Tu, Andy; Grogan, Tristan; Elashoff, David; Cooper, Laurence J.N.; Hollis, Roger P.; Kohn, Donald B.
2013-01-01
Abstract Chimeric antigen receptors (CARs) against CD19 have been shown to direct T-cells to specifically target B-lineage malignant cells in animal models and clinical trials, with efficient tumor cell lysis. However, in some cases, there has been insufficient persistence of effector cells, limiting clinical efficacy. We propose gene transfer to hematopoietic stem/progenitor cells (HSPC) as a novel approach to deliver the CD19-specific CAR, with potential for ensuring persistent production of effector cells of multiple lineages targeting B-lineage malignant cells. Assessments were performed using in vitro myeloid or natural killer (NK) cell differentiation of human HSPCs transduced with lentiviral vectors carrying first and second generations of CD19-specific CAR. Gene transfer did not impair hematopoietic differentiation and cell proliferation when transduced at 1–2 copies/cell. CAR-bearing myeloid and NK cells specifically lysed CD19-positive cells, with second-generation CAR including CD28 domains being more efficient in NK cells. Our results provide evidence for the feasibility and efficacy of the modification of HSPC with CAR as a strategy for generating multiple lineages of effector cells for immunotherapy against B-lineage malignancies to augment graft-versus-leukemia activity. PMID:23978226
Sanecka, Anna; Yoshida, Nagisa; Kolawole, Elizabeth Motunrayo; Patel, Harshil; Evavold, Brian D; Frickel, Eva-Maria
2018-01-01
T cell receptor-major histocompatibility complex (TCR-MHC) affinities span a wide range in a polyclonal T cell response, yet it is undefined how affinity shapes long-term properties of CD8 T cells during chronic infection with persistent antigen. Here, we investigate how the affinity of the TCR-MHC interaction shapes the phenotype of memory CD8 T cells in the chronically Toxoplasma gondii- infected brain. We employed CD8 T cells from three lines of transnuclear (TN) mice that harbor in their endogenous loci different T cell receptors specific for the same Toxoplasma antigenic epitope ROP7. The three TN CD8 T cell clones span a wide range of affinities to MHCI-ROP7. These three CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. In particular, the T cell clone of lowest affinity does not home to the brain. The two higher affinity T cell clones show differences in establishing resident-like memory populations (CD103 + ) in the brain with the higher affinity clone persisting longer in the host during chronic infection. Transcriptional profiling of naïve and activated ROP7-specific CD8 T cells revealed that Klf2 encoding a transcription factor that is known to be a negative marker for T cell trafficking is upregulated in the activated lowest affinity ROP7 clone. Our data thus suggest that TCR-MHC affinity dictates memory CD8 T cell fate at the site of infection.
Iino, Ryota; Sakakihara, Shouichi; Matsumoto, Yoshimi; Nishino, Kunihiko
2016-01-01
A directly accessible femtoliter droplet array as a platform for single-cell detection and collection of persister bacteria is described. Device microfabrication, femtoliter droplet array formation and concomitant enclosure of single cells, long-term culture and observation of single cells in droplets, and collection of identified persisters from single droplets are described in detail.
Persistent poliovirus infection of human fetal brain cells.
Pavio, N; Buc-Caron, M H; Colbère-Garapin, F
1996-09-01
It has been suggested that poliovirus (PV), the causative agent of poliomyelitis, could persist in surviving patients. We have previously shown that PV can persistently infect some human cell lines in vitro, particularly neuroblastoma cell lines. We report here an ex vivo model in which PV can persistently infect primary cultures of human fetal brain cells. Two mutations involving capsid residues 142 of VP2 and 95 of VP1 were repeatedly selected during the persistent infections. These residues are located in capsid regions known to be involved in interactions between PV and its receptor. During the first week after infection, viral antigens were found in cells of both the neuronal and glial lineages. In contrast, 2 weeks after infection, viral antigens were detected almost exclusively in cells of the neuronal lineage. They were detected predominantly in cells expressing a marker of early commitment to the neuronal lineage, MAP-5, particularly in neuroblasts. Viral antigens were also found in immature progenitors expressing a neuroepithelium marker, nestin, and in cells expressing a marker of postmitotic neurons, MAP-2. The presence of viral antigens in postmitotic neurons suggests that PV can persist in neurons of patients who have survived poliomyelitis.
Salivary Gland NK Cells Are Phenotypically and Functionally Unique
Brossay, Laurent
2011-01-01
Natural killer (NK) cells and CD8+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV). However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV) infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or Treg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells. PMID:21249177
Persister formation in Staphylococcus aureus is associated with ATP depletion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlon, Brian P.; Rowe, Sarah E.; Gandt, Autumn Brown
Persisters are dormant phenotypic variants of bacterial cells that are tolerant to killing by antibiotics1. Persisters are associated with chronic bacterial infection and antibiotic treatment failure. In Escherichia coli, toxin/antitoxin (TA) modules are responsible for persister formation. The mechanism of persister formation in Gram positive bacteria is unknown. Staphylococcus aureus is a major human pathogen, responsible for a variety of chronic and relapsing infections such as osteomyelitis, endocarditis and infections of implanted devices. Deleting TA modules in S. aureus did not affect the level of persisters. Here we show that S. aureus persisters are produced due to a stochastic entrancemore » to stationary phase accompanied by a drop in intracellular ATP. Cells expressing stationary state markers are present throughout the growth phase, increasing in frequency with cell density. Cell sorting revealed that expression of stationary markers was associated with a 100-1000 fold increased likelihood of survival to antibiotic challenge. We find that the antibiotic tolerance of these cells is due to a drop in intracellular ATP. The ATP level of the cell is predictive of bactericidal antibiotic efficacy and explains bacterial tolerance to antibiotic treatment.« less
Zhu, Yan; Fenik, Polina; Zhan, Guanxia; Somach, Rebecca; Xin, Ryan; Veasey, Sigrid
2016-08-01
Intermittent short sleep (ISS) is pervasive among students and workers in modern societies, yet the lasting consequences of repeated short sleep on behavior and brain health are largely unexplored. Wake-activated neurons may be at increased risk of metabolic injury across sustained wakefulness. To examine the effects of ISS on wake-activated neurons and wake behavior, wild-type mice were randomized to ISS (a repeated pattern of short sleep on 3 consecutive days followed by 4 days of recovery sleep for 4 weeks) or rested control conditions. Subsets of both groups were allowed a recovery period consisting of 4-week unperturbed activity in home cages with littermates. Mice were examined for immediate and delayed (following recovery) effects of ISS on wake neuron cell metabolics, cell counts, and sleep/wake patterns. ISS resulted in sustained disruption of sleep/wake activity, with increased wakefulness during the lights-on period and reduced wake bout duration and wake time during the lights-off period. Noradrenergic locus coeruleus (LC) and orexinergic neurons showed persistent alterations in morphology, and reductions in both neuronal stereological cell counts and fronto-cortical projections. Surviving wake-activated neurons evidenced persistent reductions in sirtuins 1 and 3 and increased lipofuscin. In contrast, ISS resulted in no lasting injury to the sleep-activated melanin concentrating hormone neurons. Collectively these findings demonstrate for the first time that ISS imparts significant lasting disturbances in sleep/wake activity, degeneration of wake-activated LC and orexinergic neurons, and lasting metabolic changes in remaining neurons most consistent with premature senescence. © 2016 Associated Professional Sleep Societies, LLC.
Zhang, Yajing; Zhang, Wenying; Dai, Hanren; Wang, Yao; Shi, Fengxia; Wang, Chunmeng; Guo, Yelei; Liu, Yang; Chen, Meixia; Feng, Kaichao; Zhang, Yan; Liu, Chuanjie; Yang, Qingming; Li, Suxia; Han, Weidong
2016-04-01
Anti-CD19 chimeric antigen receptor-modified T (CAR-T-19) cells have emerged as a powerful targeted immunotherapy for B-cell lineage acute lymphoblastic leukemia with a remarkable clinical response in recent trials. Nonetheless, few data are available on the subsequent clinical monitoring and treatment of the patients, especially those with disease recurrence after CAR-T-19 cell infusion. Here, we analyzed three patients who survived after our phase I clinical trial and who were studied by means of biomarkers reflecting persistence of CAR-T-19 cells in vivo and predictive factors directing further treatment. One patient achieved 9-week sustained complete remission and subsequently received an allogeneic hematopoietic stem cell transplant. Another patient who showed relapse after 20 weeks without detectable leukemia in the cerebrospinal fluid after CAR-T-19 cell treatment was able to achieve a morphological remission under the influence of stand-alone low-dose chemotherapeutic agents. The third patient gradually developed extensive extramedullary involvement in tissues with scarce immune- cell infiltration during a long period of hematopoietic remission after CAR-T-19 cell therapy. Long-term and discontinuous increases in serum cytokines (mainly interleukin 6 and C-reactive protein) were identified in two patients (Nos. 1 and 6) even though only a low copy number of CAR molecules could be detected in their peripheral blood. This finding was suggestive of persistent functional activity of CAR-T-19 cells. Combined analyses of laboratory biomarkers with their clinical manifestations before and after salvage treatment showed that the persistent immunosurveillance mediated by CAR-T-19 cells would inevitably potentiate the leukemia-killing effectiveness of subsequent chemotherapy in patients who showed relapse after CAR-T-19-induced remission.
Active motility in bimodular bacterial aggregates
NASA Astrophysics Data System (ADS)
Zeng, Yu; Liu, Bin
2017-11-01
Dispersal capability is essential for microorganisms to achieve long-distance translocation, thus crucial for their abundance in various environments. In general, active dispersals are attributed to the movements of self-powered planktonic cells, while sessile cells that live a colonial life often disperse passively through flow entrainments. Here, we report another means of active dispersal employed by aggregates of sessile cells. The spherical rosette colonies of the bacterium Caulobacter crescentus are aggregates of sessile stalked cells, of which a small proportion undergo cell division, grow active flagella and effect whole-rosette motility. We show that these rosettes actively disperse both in bulk water and near the solid-liquid interface. In particular, the proximity of a self-powered rosette to the solid surface promotes a rolling movement, leading to its persistent transportation along the solid boundary. The active dispersal of these rosettes demonstrated a novel mode of colonial transportation that is based on the division of labor between sessile and motile cells. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).
Stem Cells in Skeletal Tissue Engineering: Technologies and Models
Langhans, Mark T.; Yu, Shuting; Tuan, Rocky S.
2017-01-01
This review surveys the use of pluripotent and multipotent stem cells in skeletal tissue engineering. Specific emphasis is focused on evaluating the function and activities of these cells in the context of development in vivo, and how technologies and methods of stem cell-based tissue engineering for stem cells must draw inspiration from developmental biology. Information on the embryonic origin and in vivo differentiation of skeletal tissues is first reviewed, to shed light on the persistence and activities of adult stem cells that remain in skeletal tissues after embryogenesis. Next, the development and differentiation of pluripotent stem cells is discussed, and some of their advantages and disadvantages in the context of tissue engineering is presented. The final section highlights current use of multipotent adult mesenchymal stem cells, reviewing their origin, differentiation capacity, and potential applications to tissue engineering. PMID:26423296
NASA Astrophysics Data System (ADS)
Reid, Lola M.; Minato, Nagahiro; Gresser, Ion; Holland, John; Kadish, Anna; Bloom, Barry R.
1981-02-01
Baby hamster kidney or HeLa cells form tumors in 100% of athymic nude mice. When such cells are persistently infected (PI) with RNA viruses, such as mumps or measles virus, the tumor cells either fail to grow or form circumscribed benign nodules. Neither the parental nor the virus PI tumor cells form invasive or metastatic lesions in nude mice. Previous studies have indicated a correlation between the susceptibility of virus-PI tumor cells in vitro and the cytolytic activity of natural killer (NK) cells and their failure to grow in vivo. Because interferon (IF) is the principal regulatory molecule governing the differentiation of NK cells, it was possible to test the relevance of the IF--NK cell system in vivo to restriction of tumor growth by treatment of nude mice with anti-IF globulin. This treatment was shown to reduce both IF production and NK activity in spleen cells. Both parental and virus-PI tumor cells grew and formed larger tumors in nude mice treated with anti-IF globulin than in control nude mice. The viral-PI tumor cells and the uninfected parental cells formed tumors in treated mice that were highly invasive and often metastatic. Some human tumor types have been notoriously difficult to establish as tumor lines in nude mice (e.g., primary human prostatic carcinomas). When transplanted into nude mice treated either with anti-IF globulin or anti-lymphocyte serum, two prostatic carcinomas grew and produced neoplasms with local invasiveness and some metastases. The results are consistent with the view that interferon may be important in restricting the growth, invasiveness, and metastases of tumor cells by acting indirectly through components of the immune system, such as NK cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xia; Liu, Siwen; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016
2015-11-15
Background: Borna disease virus (BDV) is a neurotropic RNA virus persistently infecting mammalian hosts including humans. Lysine acetylation (Kac) is a key protein post-translational modification (PTM). The unexpectedly broad regulatory scope of Kac let us to profile the entire acetylome upon BDV infection. Methods: The acetylome was profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Results: We identified and quantified 791 Kac sites in 473 Kac proteins in human BDV Hu-H1-infected and non-infected oligodendroglial (OL) cells. Bioinformatic analysis revealed that BDV infection alters the acetylation of metabolic proteins, membrane-associated proteinsmore » and transmembrane transporter activity, and affects the acetylation of several lysine acetyltransferases (KAT). Conclusions: Upon BDV persistence the OL acetylome is manipulated towards higher energy and transporter levels necessary for shuttling BDV proteins to and from nuclear replication sites. - Highlights: • We used SILAC-based proteomics to analyze the acetylome of BDV infected OL cells. • We quantified 791Kac sites in 473 proteins. • Bioinformatic analysis revealed altered acetylation of metabolic proteins et al. • BDV manipulates the OL acetylome towards higher energy and transporter levels. • BDV infection is associated with enriched phosphate-associated metabolic processes.« less
Ahmed, Atique U; Rolle, Cleo E; Tyler, Matthew A; Han, Yu; Sengupta, Sadhak; Wainwright, Derek A; Balyasnikova, Irina V; Ulasov, Ilya V; Lesniak, Maciej S
2010-01-01
Oncolytic adenoviral virotherapy is an attractive treatment modality for cancer. However, following intratumoral injections, oncolytic viruses fail to efficiently migrate away from the injection site and are rapidly cleared by the immune system. We have previously demonstrated enhanced viral delivery and replicative persistence in vivo using human bone marrow–derived mesenchymal stem cells (MSCs) as delivery vehicles. In this study, we evaluated the immune response to adenovirus (Ad)-loaded MSCs using the semipermissive cotton rat (CR) model. First, we isolated MSCs from CR bone marrow aspirates. Real-time quantitative PCR analysis revealed that CR MSCs supported the replication of Ads in vitro. Moreover, we observed similar levels of suppression of T-cell proliferation in response to mitogenic stimulation, by MSCs alone and virus-loaded MSCs. Additionally, we found that MSCs suppressed the production of interferon-γ (IFN-γ) by activated T cells. In our in vivo model, CR MSCs enhanced the dissemination and persistence of Ad, compared to virus injection alone. Collectively, our data suggest that the use of MSCs as a delivery strategy for oncolytic Ad potentially offers a myriad of benefits, including improved delivery, enhanced dissemination, and increased persistence of viruses via suppression of the antiviral immune response. PMID:20588259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.
Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumormore » incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.« less
Hendricks, Deborah W.; Balfour, Henry H.; Dunmire, Samantha K.; Schmeling, David O.; Hogquist, Kristin A.; Lanier, Lewis L.
2014-01-01
Cytomegalovirus (CMV) induces the expansion of a unique subset of human NK cells expressing high levels of the activating CD94-NKG2C receptor that persist after control of the infection. We investigated whether this subset is indeed CMV-specific or is also responsive to acute infection with Epstein-Barr virus (EBV). Here we describe a longitudinal study of CMV-seronegative and -seropositive students who were acutely infected with EBV. The NKG2Chi NK subset was not expanded by EBV infection. However, EBV infection caused a decrease in the absolute number of immature CD56brightCD16− NK cells in the blood, and in CMV-seropositive individuals, induced an increased frequency of mature CD56dimNKG2A+CD57+ NK cells in the blood that persisted into latency. These results provide further evidence that NKG2C+ NK cells are CMV-specific, and suggest that EBV infection alters the repertoire of NK cells in the blood. PMID:24740502
Chimeric Antigen Receptor Therapy for Cancer
Barrett, David M.; Singh, Nathan; Porter, David L.; Grupp, Stephan A.; June, Carl H.
2014-01-01
Improved outcomes for patients with cancer hinge on the development of new targeted therapies with acceptable short-term and long-term toxicity. Progress in basic, preclinical, and clinical arenas spanning cellular immunology, synthetic biology, and cell-processing technologies has paved the way for clinical applications of chimeric antigen receptor– based therapies. This new form of targeted immunotherapy merges the exquisite targeting specificity of monoclonal antibodies with the potent cytotoxicity and long-term persistence provided by cytotoxic T cells. Although this field is still in its infancy, clinical trials have already shown clinically significant antitumor activity in neuroblastoma, chronic lymphocytic leukemia, and B cell lymphoma, and trials targeting a variety of other adult and pediatric malignancies are under way. Ongoing work is focused on identifying optimal tumor targets and on elucidating and manipulating both cell- and host-associated factors to support expansion and persistence of the genetically engineered cells in vivo. The potential to target essentially any tumor-associated cell-surface antigen for which a monoclonal antibody can be made opens up an entirely new arena for targeted therapy of cancer. PMID:24274181
Hu, Hua; Vervaeke, Koen; Storm, Johan F
2002-01-01
Coherent network oscillations in the brain are correlated with different behavioural states. Intrinsic resonance properties of neurons provide a basis for such oscillations. In the hippocampus, CA1 pyramidal neurons show resonance at theta (θ) frequencies (2-7 Hz). To study the mechanisms underlying θ-resonance, we performed whole-cell recordings from CA1 pyramidal cells (n = 73) in rat hippocampal slices. Oscillating current injections at different frequencies (ZAP protocol), revealed clear resonance with peak impedance at 2-5 Hz at ≈33 °C (increasing to ≈7 Hz at ≈38 °C). The θ-resonance showed a U-shaped voltage dependence, being strong at subthreshold, depolarized (≈-60 mV) and hyperpolarized (≈-80 mV) potentials, but weaker near the resting potential (-72 mV). Voltage clamp experiments revealed three non-inactivating currents operating in the subthresold voltage range: (1) M-current (IM), which activated positive to -65 mV and was blocked by the M/KCNQ channel blocker XE991 (10 μm); (2) h-current (Ih), which activated negative to -65 mV and was blocked by the h/HCN channel blocker ZD7288 (10 μm); and (3) a persistent Na+ current (INaP), which activated positive to -65 mV and was blocked by tetrodotoxin (TTX, 1 μm). In current clamp, XE991 or TTX suppressed the resonance at depolarized, but not hyperpolarized membrane potentials, whereas ZD7288 abolished the resonance only at hyperpolarized potentials. We conclude that these cells show two forms of θ-resonance: ‘M-resonance’ generated by the M-current and persistent Na+ current in depolarized cells, and ‘H-resonance’ generated by the h-current in hyperpolarized cells. Computer simulations supported this interpretation. These results suggest a novel function for M/KCNQ channels in the brain: to facilitate neuronal resonance and network oscillations in cortical neurons, thus providing a basis for an oscillation-based neural code. PMID:12482886
Nagasawa, Masayuki
2012-01-01
A 20-year-old patient with chronic active EBV infection (CAEBV) received peripheral blood stem cell transplantation (PBSCT) from HLA-one-locus-mismatched mother. Although EB-virus-infected T cells were eliminated after PBSCT, she developed EB-virus-positive B-cell lymphoma of recipient origin in the brain. By reducing the immunosuppressive therapy, the initial lesion disappeared. However, another lesion in the opposite lateral brain appeared later and was resistant to further reduction of immunosuppressive therapy. EBV-DNA was persistently negative after PBSCT in the peripheral blood. This case is suggestive in management of EBV reactivation after SCT and understanding alloimmune response to EBV. PMID:23213608
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, P.M.; Wohllk, N.; Huang, E.
1996-09-01
Familial persistent hyperinsulinemic hypoglycemia of infancy is a disorder of glucose homeostasis and is characterized by unregulated insulin secretion and profound hypoglycemia. Loss-of-function mutations in the second nucleotide-binding fold of the sulfonylurea receptor, a subunit of the pancreatic-islet {beta}-cell ATP-dependent potassium channel, has been demonstrated to be causative for persistent hyperinsulinemic hypoglycemia of infancy. We now describe three additional mutations in the first nucleotide-binding fold of the sulfonylurea-receptor gene. One point mutation disrupts the highly conserved Walker A motif of the first nucleotide-binding-fold region. The other two mutations occur in noncoding sequences required for RNA processing and are predicted tomore » disrupt the normal splicing pathway of the sulfonylurea-receptor mRNA precursor. These data suggest that both nucleotide-binding-fold regions of the sulfortylurea receptor are required for normal regulation of {beta}-cell ATP-dependent potassium channel activity and insulin secretion. 32 refs., 4 figs., 1 tab.« less
Source of Chronic Inflammation in Aging.
Sanada, Fumihiro; Taniyama, Yoshiaki; Muratsu, Jun; Otsu, Rei; Shimizu, Hideo; Rakugi, Hiromi; Morishita, Ryuichi
2018-01-01
Aging is a complex process that results from a combination of environmental, genetic, and epigenetic factors. A chronic pro-inflammatory status is a pervasive feature of aging. This chronic low-grade inflammation occurring in the absence of overt infection has been defined as "inflammaging" and represents a significant risk factor for morbidity and mortality in the elderly. The low-grade inflammation persists even after reversing pro-inflammatory stimuli such as LDL cholesterol and the renin-angiotensin system (RAS). Recently, several possible sources of chronic low-grade inflammation observed during aging and age-related diseases have been proposed. Cell senescence and dysregulation of innate immunity is one such mechanism by which persistent prolonged inflammation occurs even after the initial stimulus has been removed. Additionally, the coagulation factor that activates inflammatory signaling beyond its role in the coagulation system has been identified. This signal could be a new source of chronic inflammation and cell senescence. Here, we summarized the factors and cellular pathways/processes that are known to regulate low-grade persistent inflammation in aging and age-related disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, George M.; Mandell, Daniel J.; Lajoie, Marc J.
Recombinant cells and recombinant organisms persistently expressing nonstandard amino acids (NSAAs) are provided. Methods of making recombinant cells and recombinant organisms dependent on persistently expressing NSAAs for survival are also provided. These methods may be used to make safe recombinant cells and recombinant organisms and/or to provide a selective pressure to maintain one or more reassigned codon functions in recombinant cells and recombinant organisms.
Rajasuriar, Reena; Wright, Edwina; Lewin, Sharon R
2015-01-01
The purpose of this review was to summarize recent studies on the effect of early antiretroviral therapy (ART) in HIV-infected patients on markers of immune activation/inflammation, viral persistence and serious non-AIDS events. Early ART, initiated within days to months of HIV infection, was associated with marked reduction in T-cell activation often reaching levels observed in HIV-uninfected individuals. However, the impact of early ART on markers of innate immune activation, microbial translocation and inflammation/coagulation was less clear. Early ART has also been associated with a significant reduction in the frequency of latently infected cells, which was greater if ART was initiated within days to weeks rather than months following infection. However, few studies have evaluated the relationship between immune activation and viral reservoirs, specifically following early ART. Early ART may potentially reduce serious non-AIDS events and associated mortality, but most of these studies have extrapolated from changes in surrogate markers, such as CD4 : CD8 ratio. Early ART was associated with beneficial effects on multiple markers of immune activation, inflammation and viral persistence. Longer term prospective studies are still needed to determine whether early ART translates to a significant reduction in serious non-AIDS events and mortality.
[ENT inflammation and importance of fenspiride].
Jankowski, R
2002-09-01
PERSISTENT INFLAMMATION: Inflammation may persist despite the eviction of the aggressive agent because of the disruption of the regulator mechanisms. In such patients, drugs such as fenspiride can be effective at several levels, from onset of inflammation, in an attempt to control its progression. INHIBITION OF NEUROPHIL MIGRATION: Could be a very interesting propriety for controlling inflammation of the human respiratory mucosa. CONTROL OF FREE RADICALS: In certain cases, clearance of free oxygen radicals by cells implicated in the inflammatory process may be overrun. Fenespiride can limit the production of free radicals, probably at the level of the producing cells. ACTION ON THE ARACHIDONIC ACID CASCADE: The mechanism and site of action of fenspiride remains to be clarified. It does not act like conventional antiinflammatory drugs by inhibiting cyclo-oxygenase. ANTIHISTAMINE ACTIVITY: Fenspiride has a certain antihistamine activity, basically by blocking H1 receptors. This action should be tested in subjects with nonspecific nasal hyperreactivity. OTHER PROPERTIES: Fenspiride also has an alpha-1-adrenolytic activity and an inhibitor effect on cyclic AMP, two properties which could have an impact on inflammatory diseases of the upper airways.
Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells
Inami, Yoshihiro; Waguri, Satoshi; Sakamoto, Ayako; Kouno, Tsuguka; Nakada, Kazuto; Hino, Okio; Watanabe, Sumio; Ando, Jin; Iwadate, Manabu; Yamamoto, Masayuki; Lee, Myung-Shik; Tanaka, Keiji
2011-01-01
Suppression of autophagy is always accompanied by marked accumulation of p62, a selective autophagy substrate. Because p62 interacts with the Nrf2-binding site on Keap1, which is a Cullin 3–based ubiquitin ligase adapter protein, autophagy deficiency causes competitive inhibition of the Nrf2–Keap1 interaction, resulting in stabilization of Nrf2 followed by transcriptional activation of Nrf2 target genes. Herein, we show that liver-specific autophagy-deficient mice harbor adenomas linked to both the formation of p62- and Keap1-positive cellular aggregates and induction of Nrf2 targets. Importantly, similar aggregates were identified in more than 25% of human hepatocellular carcinomas (HCC), and induction of Nrf2 target genes was recognized in most of these tumors. Gene targeting of p62 in an HCC cell line markedly abrogates the anchorage-independent growth, whereas forced expression of p62, but not a Keap1 interaction-defective mutant, resulted in recovery of the growth defect. These results indicate the involvement of persistent activation of Nrf2 through the accumulation of p62 in hepatoma development. PMID:21482715
Jensen, Kara; dela Pena-Ponce, Myra Grace; Piatak, Michael; Shoemaker, Rebecca; Oswald, Kelli; Jacobs, William R.; Fennelly, Glenn; Lucero, Carissa; Mollan, Katie R.; Hudgens, Michael G.; Amedee, Angela; Kozlowski, Pamela A.; Estes, Jacob D.; Lifson, Jeffrey D.; Van Rompay, Koen K. A.; Larsen, Michelle
2016-01-01
ABSTRACT Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants. PMID:27655885
Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S; Aravindan, Natarajan
2013-01-01
Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK-PN-DW, MC-IXC and SK-N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion.
Aravindan, Sheeja; Natarajan, Mohan; Awasthi, Vibhudutta; Herman, Terence S.; Aravindan, Natarajan
2013-01-01
Recently, we demonstrated that radiation (IR) instigates the occurrence of a NFκB-TNFα feedback cycle which sustains persistent NFκB activation in neuroblastoma (NB) cells and favors survival advantage and clonal expansion. Further, we reported that curcumin targets IR-induced survival signaling and NFκB dependent hTERT mediated clonal expansion in human NB cells. Herein, we investigated the efficacy of a novel synthetic monoketone, EF24, a curcumin analog in inhibiting persistent NFκB activation by disrupting the IR-induced NFκB-TNFα-NFκB feedback signaling in NB and subsequent mitigation of survival advantage and clonal expansion. EF24 profoundly suppressed the IR-induced NFκB-DNA binding activity/promoter activation and, maintained the NFκB repression by deterring NFκB-dependent TNFα transactivation/intercellular secretion in genetically varied human NB (SH-SY5Y, IMR-32, SK–PN–DW, MC-IXC and SK–N-MC) cell types. Further, EF24 completely suppressed IR-induced NFκB-TNFα cross-signaling dependent transactivation/translation of pro-survival IAP1, IAP2 and Survivin and subsequent cell survival. In corroboration, EF24 treatment maximally blocked IR-induced NFκB dependent hTERT transactivation/promoter activation, telomerase activation and consequent clonal expansion. EF24 displayed significant regulation of IR-induced feedback dependent NFκB and NFκB mediated survival signaling and complete regression of NB xenograft. Together, the results demonstrate for the first time that, novel synthetic monoketone EF24 potentiates radiotherapy and mitigates NB progression by selectively targeting IR-triggered NFκB-dependent TNFα-NFκB cross-signaling maintained NFκB mediated survival advantage and clonal expansion. PMID:23967300
Decreased "ineffective erythropoiesis" preserves polycythemia in mice under long-term hypoxia.
Harada, Tomonori; Tsuboi, Isao; Hirabayashi, Yukio; Kosaku, Kazuhiro; Naito, Michiko; Hara, Hiroyuki; Inoue, Tohru; Aizawa, Shin
2015-05-01
Hypoxia induces innumerable changes in humans and other animals, including an increase in peripheral red blood cells (polycythemia) caused by the activation of erythropoiesis mediated by increased erythropoietin (EPO) production. However, the elevation of EPO is limited and levels return to normal ranges under normoxia within 5-7 days of exposure to hypoxia, whereas polycythemia continues for as long as hypoxia persists. We investigated erythropoiesis in bone marrow and spleens from mouse models of long-term normobaric hypoxia (10 % O2) to clarify the mechanism of prolonged polycythemia in chronic hypoxia. The numbers of erythroid colony-forming units (CFU-E) in the spleen remarkably increased along with elevated serum EPO levels indicating the activation of erythropoiesis during the first 7 days of hypoxia. After 14 days of hypoxia, the numbers of CFU-E returned to normoxic levels, whereas polycythemia persisted for >140 days. Flow cytometry revealed a prolonged increase in the numbers of TER119-positive cells (erythroid cells derived from pro-erythroblasts through mature erythrocyte stages), especially the TER119 (high) CD71 (high) population, in bone marrow. The numbers of annexin-V-positive cells among the TER119-positive cells particularly declined under chronic hypoxia, suggesting that the numbers of apoptotic cells decrease during erythroid cell maturation. Furthermore, RT-PCR analysis showed that the RNA expression of BMP-4 and stem cell factor that reduces apoptotic changes during erythroid cell proliferation and maturation was increased in bone marrow under hypoxia. These findings indicated that decreased apoptosis of erythroid cells during erythropoiesis contributes to polycythemia in mice during chronic exposure to long-term hypoxia.
Galbiati, Alessandro; Beauséjour, Christian; d'Adda di Fagagna, Fabrizio
2017-04-01
The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double-strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA-SCARS. Here, we developed a method, named 'DNA damage in situ ligation followed by proximity ligation assay' (DI-PLA) for the detection and imaging of DSBs in cells. DI-PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double-stranded DNA oligonucleotides, which are next recognized by antibiotin anti-bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI-PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI-PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Sequestration mechanisms that prevent high concentrations of free metal ions from persisting in metabolically active compartments of cells are thought to be central in tolerance of plants to high levels of divalent cation metals. Expression of "AtCAX2" or "AtCAX4", which encode divalent cation/proto...
Churchill, Melissa J.; Cowley, Daniel J.; Wesselingh, Steve L.; Gorry, Paul R.; Gray, Lachlan R.
2014-01-01
Human immunodeficiency virus type-1 (HIV-1) invades the central nervous system (CNS) during acute infection which can result in HIV-associated neurocognitive disorders (HAND) in up to 50% of patients, even in the presence of combination antiretroviral therapy (cART). Within the CNS, productive HIV-1 infection occurs in the perivascular macrophages and microglia. Astrocytes also become infected, although their infection is restricted and does not give rise to new viral particles. The major barrier to the elimination of HIV-1 is the establishment of viral reservoirs in different anatomical sites throughout the body and viral persistence during long-term treatment with cART. While the predominant viral reservoir is believed to be resting CD4+ T-cells in the blood, other anatomical compartments including the CNS, gut-associated lymphoid tissue, bone marrow, and genital tract can also harbor persistently infected cellular reservoirs of HIV-1. Viral latency is predominantly responsible for HIV-1 persistence, and is most likely governed at the transcriptional level. Current clinical trials are testing transcriptional activators, in the background of cART, in an attempt to purge these viral reservoirs and reverse viral latency. These strategies aim to activate viral transcription in cells constituting the viral reservoir, so they can be recognized and cleared by the immune system, while new rounds of infection are blocked by co-administration of cART. The CNS has several unique characteristics that may result in differences in viral transcription and in the way latency is established. These include CNS-specific cell types, different transcription factors, altered immune surveillance, and reduced antiretroviral drug bioavailability. A comprehensive understanding of viral transcription and latency in the CNS is required in order to determine treatment outcomes when using transcriptional activators within the CNS. PMID:25060300
Chang, Emery; Sigal, Alex
2018-01-01
Dendritic cell (DC)-to-T cell transmission is an example of infection in trans, in which the cell transmitting the virus is itself uninfected. During this mode of DC-to-T cell transmission, uninfected DCs concentrate infectious virions, contact T cells and transmit these virions to target cells. Here, we investigated the efficiency of DC-to-T cell transmission on the number of cells infected and the sensitivity of this type of transmission to the antiretroviral drugs tenofovir (TFV) and raltegravir (RAL). We observed activated monocyte-derived and myeloid DCs amplified T cell infection, which resulted in drug insensitivity. This drug insensitivity was dependent on cell-to-cell contact and ratio of DCs to T cells in coculture. DC-mediated amplification of HIV-1 infection was efficient regardless of virus tropism or origin. The DC-to-T cell transmission of the T/F strain CH077.t/2627 was relatively insensitive to TFV compared to DC-free T cell infection. The input of virus modulated the drug sensitivity of DC-to-T cell infection, but not T cell infection by cell-free virus. At high viral inputs, DC-to-T cell transmission reduced the sensitivity of infection to TFV. Transmission of HIV by DCs in trans may have important implications for viral persistence in vivo in environments, where residual replication may persist in the face of antiretroviral therapy. PMID:29293546
Infection and persistence of rhesus monkey rhadinovirus in immortalized B-cell lines.
Bilello, John P; Lang, Sabine M; Wang, Fred; Aster, Jon C; Desrosiers, Ronald C
2006-04-01
Similar to its close relative human herpesvirus 8, rhesus monkey rhadinovirus (RRV) persists predominantly in B cells of its natural host. Rhesus monkey B-cell lines immortalized by the Epstein-Barr-related virus from rhesus monkeys (rhEBV) were used as targets for infection by RRV. These cultured B cells were susceptible to infection by RRV and continued to produce low titers of RRV for months of continuous culture. Infection by RRV did not detectably alter the growth rates of these B-cell lines when it was measured at standard or reduced serum concentrations. Depending on the cell line, 5 to 40% of the B cells stained positive for the RRV genome by fluorescence in situ hybridization (FISH). Most RRV-positive cells showed a fine punctate nuclear staining pattern consistent with latent infection, while a small minority of cells (0.2 to 1%) contained large, intensely staining nuclear foci consistent with productive, replicative infection. Greater than 90% of the cells were rhEBV genome positive in a pattern consistent with latent infection, and again only a small minority of cells showed a productive, replicative staining pattern. Dual, two-color FISH staining revealed coinfection of numerous cells with both RRV and rhEBV, but productive replication of RRV and rhEBV was always observed in separate cells, never in the same cell. Thus, productive replication of RRV is unlinked to that of rhEBV; factors that influence activation to productive replication act separately on RRV and rhEBV, even within the same cell. The percentage of B cells expressing green fluorescent protein (GFP) early after infection with a recombinant RRV containing a GFP reporter gene was dose dependent and at a low multiplicity of infection increased progressively over time until 14 to 17 days after infection. These results establish a naturalistic cell culture system for the study of infection and persistence by RRV in rhesus monkey B cells.
Yang, Shoufeng; Hay, Iain D.; Cameron, David R.; Speir, Mary; Cui, Bintao; Su, Feifei; Peleg, Anton Y.; Lithgow, Trevor; Deighton, Margaret A.; Qu, Yue
2015-01-01
Biofilm formation is a major pathogenicity strategy of Staphylococcus epidermidis causing various medical-device infections. Persister cells have been implicated in treatment failure of such infections. We sought to profile bacterial subpopulations residing in S. epidermidis biofilms, and to establish persister-targeting treatment strategies to eradicate biofilms. Population analysis was performed by challenging single biofilm cells with antibiotics at increasing concentrations ranging from planktonic minimum bactericidal concentrations (MBCs) to biofilm MBCs (MBCbiofilm). Two populations of “persister cells” were observed: bacteria that survived antibiotics at MBCbiofilm for 24/48 hours were referred to as dormant cells; those selected with antibiotics at 8 X MICs for 3 hours (excluding dormant cells) were defined as tolerant-but-killable (TBK) cells. Antibiotic regimens targeting dormant cells were tested in vitro for their efficacies in eradicating persister cells and intact biofilms. This study confirmed that there are at least three subpopulations within a S. epidermidis biofilm: normal cells, dormant cells, and TBK cells. Biofilms comprise more TBK cells and dormant cells than their log-planktonic counterparts. Using antibiotic regimens targeting dormant cells, i.e. effective antibiotics at MBCbiofilm for an extended period, might eradicate S. epidermidis biofilms. Potential uses for this strategy are in antibiotic lock techniques and inhaled aerosolized antibiotics. PMID:26687035
Cotugno, Nicola; De Armas, Lesley; Pallikkuth, Suresh; Rinaldi, Stefano; Issac, Biju; Cagigi, Alberto; Rossi, Paolo; Palma, Paolo; Pahwa, Savita
2017-01-01
Despite effective antiretroviral therapy (ART), HIV-infected individuals with apparently similar clinical and immunological characteristics can vary in responsiveness to vaccinations. However, molecular mechanisms responsible for such impairment, as well as biomarkers able to predict vaccine responsiveness in HIV-infected children, remain unknown. Following the hypothesis that a B cell qualitative impairment persists in HIV-infected children (HIV) despite effective ART and phenotypic B cell immune reconstitution, the aim of the current study was to investigate B cell gene expression of HIV compared to age-matched healthy controls (HCs) and to determine whether distinct gene expression patterns could predict the ability to respond to influenza vaccine. To do so, we analyzed prevaccination transcriptional levels of a 96-gene panel in equal numbers of sort-purified B cell subsets (SPBS) isolated from peripheral blood mononuclear cells using multiplexed RT-PCR. Immune responses to H1N1 antigen were determined by hemaglutination inhibition and memory B cell ELISpot assays following trivalent-inactivated influenza vaccination (TIV) for all study participants. Although there were no differences in terms of cell frequencies of SPBS between HIV and HC, the groups were distinguishable based upon gene expression analyses. Indeed, a 28-gene signature, characterized by higher expression of genes involved in the inflammatory response and immune activation was observed in activated memory B cells (CD27 + CD21 - ) from HIV when compared to HC despite long-term viral control (>24 months). Further analysis, taking into account H1N1 responses after TIV in HIV participants, revealed that a 25-gene signature in resting memory (RM) B cells (CD27 + CD21 + ) was able to distinguish vaccine responders from non-responders (NR). In fact, prevaccination RM B cells of responders showed a higher expression of gene sets involved in B cell adaptive immune responses ( APRIL, BTK, BLIMP1 ) and BCR signaling ( MTOR, FYN, CD86 ) when compared to NR. Overall, these data suggest that a perturbation at a transcriptional level in the B cell compartment persists despite stable virus control achieved through ART in HIV-infected children. Additionally, the present study demonstrates the potential utility of transcriptional evaluation of RM B cells before vaccination for identifying predictive correlates of vaccine responses in this population.
Cotugno, Nicola; De Armas, Lesley; Pallikkuth, Suresh; Rinaldi, Stefano; Issac, Biju; Cagigi, Alberto; Rossi, Paolo; Palma, Paolo; Pahwa, Savita
2017-01-01
Despite effective antiretroviral therapy (ART), HIV-infected individuals with apparently similar clinical and immunological characteristics can vary in responsiveness to vaccinations. However, molecular mechanisms responsible for such impairment, as well as biomarkers able to predict vaccine responsiveness in HIV-infected children, remain unknown. Following the hypothesis that a B cell qualitative impairment persists in HIV-infected children (HIV) despite effective ART and phenotypic B cell immune reconstitution, the aim of the current study was to investigate B cell gene expression of HIV compared to age-matched healthy controls (HCs) and to determine whether distinct gene expression patterns could predict the ability to respond to influenza vaccine. To do so, we analyzed prevaccination transcriptional levels of a 96-gene panel in equal numbers of sort-purified B cell subsets (SPBS) isolated from peripheral blood mononuclear cells using multiplexed RT-PCR. Immune responses to H1N1 antigen were determined by hemaglutination inhibition and memory B cell ELISpot assays following trivalent-inactivated influenza vaccination (TIV) for all study participants. Although there were no differences in terms of cell frequencies of SPBS between HIV and HC, the groups were distinguishable based upon gene expression analyses. Indeed, a 28-gene signature, characterized by higher expression of genes involved in the inflammatory response and immune activation was observed in activated memory B cells (CD27+CD21−) from HIV when compared to HC despite long-term viral control (>24 months). Further analysis, taking into account H1N1 responses after TIV in HIV participants, revealed that a 25-gene signature in resting memory (RM) B cells (CD27+CD21+) was able to distinguish vaccine responders from non-responders (NR). In fact, prevaccination RM B cells of responders showed a higher expression of gene sets involved in B cell adaptive immune responses (APRIL, BTK, BLIMP1) and BCR signaling (MTOR, FYN, CD86) when compared to NR. Overall, these data suggest that a perturbation at a transcriptional level in the B cell compartment persists despite stable virus control achieved through ART in HIV-infected children. Additionally, the present study demonstrates the potential utility of transcriptional evaluation of RM B cells before vaccination for identifying predictive correlates of vaccine responses in this population. PMID:28955330
Role of CLASP2 in microtubule stabilization and the regulation of persistent motility.
Drabek, Ksenija; van Ham, Marco; Stepanova, Tatiana; Draegestein, Katharina; van Horssen, Remco; Sayas, Carmen Laura; Akhmanova, Anna; Ten Hagen, Timo; Smits, Ron; Fodde, Riccardo; Grosveld, Frank; Galjart, Niels
2006-11-21
In motile fibroblasts, stable microtubules (MTs) are oriented toward the leading edge of cells. How these polarized MT arrays are established and maintained, and the cellular processes they control, have been the subject of many investigations. Several MT "plus-end-tracking proteins," or +TIPs, have been proposed to regulate selective MT stabilization, including the CLASPs, a complex of CLIP-170, IQGAP1, activated Cdc42 or Rac1, a complex of APC, EB1, and mDia1, and the actin-MT crosslinking factor ACF7. By using mouse embryonic fibroblasts (MEFs) in a wound-healing assay, we show here that CLASP2 is required for the formation of a stable, polarized MT array but that CLIP-170 and an APC-EB1 interaction are not essential. Persistent motility is also hampered in CLASP2-deficient MEFs. We find that ACF7 regulates cortical CLASP localization in HeLa cells, indicating it acts upstream of CLASP2. Fluorescence-based approaches show that GFP-CLASP2 is immobilized in a bimodal manner in regions near cell edges. Our results suggest that the regional immobilization of CLASP2 allows MT stabilization and promotes directionally persistent motility in fibroblasts.
Current views on HIV-1 latency, persistence, and cure.
Melkova, Zora; Shankaran, Prakash; Madlenakova, Michaela; Bodor, Josef
2017-01-01
HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called "shock and kill" strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.
Bortolotti, Francesca; Ruozi, Giulia; Falcione, Antonella; Doimo, Sara; Dal Ferro, Matteo; Lesizza, Pierluigi; Zentilin, Lorena; Banks, Lawrence; Zacchigna, Serena; Giacca, Mauro
2017-10-17
Transplantation of cells into the infarcted heart has significant potential to improve myocardial recovery; however, low efficacy of cell engraftment still limits therapeutic benefit. Here, we describe a method for the unbiased, in vivo selection of cytokines that improve mesenchymal stromal cell engraftment into the heart both in normal conditions and after myocardial infarction. An arrayed library of 80 secreted factors, including most of the currently known interleukins and chemokines, were individually cloned into adeno-associated viral vectors. Pools from this library were then used for the batch transduction of bone marrow-derived mesenchymal stromal cells ex vivo, followed by intramyocardial cell administration in normal and infarcted mice. Three weeks after injection, vector genomes were recovered from the few persisting cells and identified by sequencing DNA barcodes uniquely labeling each of the tested cytokines. The most effective molecule identified by this competitive engraftment screening was cardiotrophin-1, a member of the interleukin-6 family. Intracardiac injection of mesenchymal stromal cells transiently preconditioned with cardiotrophin-1 preserved cardiac function and reduced infarct size, parallel to the persistence of the transplanted cells in the healing hearts for at least 2 months after injection. Engraftment of cardiotrophin-1-treated mesenchymal stromal cells was consequent to signal transducer and activator of transcription 3-mediated activation of the focal adhesion kinase and its associated focal adhesion complex and the consequent acquisition of adhesive properties by the cells. These results support the feasibility of selecting molecules in vivo for their functional properties with adeno-associated viral vector libraries and identify cardiotrophin-1 as a powerful cytokine promoting cell engraftment and thus improving cell therapy of the infarcted myocardium. © 2017 American Heart Association, Inc.
Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells
Velmurugan, Ramraj; Challa, Dilip K.; Ram, Sripad; Ober, Raimund J.; Ward, E. Sally
2016-01-01
Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcγ receptor (FcγR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is pro-tumorigenic. In the current study we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcγR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies. PMID:27226489
Persister eradication: lessons from the world of natural products.
Keren, Iris; Mulcahy, Lawrence R; Lewis, Kim
2012-01-01
Persisters are specialized survivor cells that protect bacterial populations from killing by antibiotics. Persisters are dormant phenotypic variants of regular cells rather than mutants. Bactericidal antibiotics kill by corrupting their targets into producing toxic products; tolerance to antibiotics follows when targets are inactive. Transcriptome analysis of isolated persisters points to toxin/antitoxin modules as a principle component of persister formation. Mechanisms of persister formation are redundant, making it difficult to eradicate these cells. In Escherichia coli, toxins RelE and MazF cause dormancy by degrading mRNA; HipA inhibits translation by phosphorylating Ef-Tu; and TisB forms an anion channel in the membrane, leading to a decrease in pmf and ATP levels. Prolonged treatment of chronic infections with antibiotics selects for hip mutants that produce more persister cells. Eradication of tolerant persisters is a serious challenge. Some of the existing antibiotics are capable of killing persisters, pointing to ways of developing therapeutics to treat chronic infections. Mitomycin is a prodrug which is converted into a reactive compound forming adducts with DNA upon entering the cell. Prolonged treatment with aminoglycosides that cause mistranslation leading to misfolded peptides can sterilize a stationary culture of Pseudomonas aeruginosa, a pathogen responsible for chronic, highly tolerant infections of cystic fibrosis patients. Finally, one of the best bactericidal agents is rifampin, an inhibitor of RNA polymerase, and we suggest that it "kills" by preventing persister resuscitation. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Y.; Kobayashi, A.
1983-04-01
In the acute phase of Toxoplasma infection, the function of both helper T and B cells was suppressed in primary antibody responses to dinitrophenol (DNP)-conjugated protein antigens. During the course of infection, the suppressive effect on T cells seems to continue longer than that on B cells, since suppression in responses to sheep erythrocytes, a T-dependent antigen, persisted longer than those to DNP-Ficoll, a T-independent antigen. Plastic-adherent cells from the spleens of Toxoplasma-infected and X-irradiated (400 rads) mice had strong suppressor activity in primary anti-sheep erythrocyte antibody responses of normal mouse spleen cells in vitro. These data suggest that themore » activation of irradiation-resistant and plastic-adherent suppressor cells causes the suppression of both T and B cells in Toxoplasma-infected mice.« less
Tsai, Angela; Irrinki, Alivelu; Kaur, Jasmine; Cihlar, Tomas; Kukolj, George; Sloan, Derek D; Murry, Jeffrey P
2017-04-15
Antiretroviral therapy can suppress HIV replication to undetectable levels but does not eliminate latent HIV, thus necessitating lifelong therapy. Recent efforts to target this persistent reservoir have focused on inducing the expression of latent HIV so that infected cells may be recognized and eliminated by the immune system. Toll-like receptor (TLR) activation stimulates antiviral immunity and has been shown to induce HIV from latently infected cells. Activation of TLR7 leads to the production of several stimulatory cytokines, including type I interferons (IFNs). In this study, we show that the selective TLR7 agonist GS-9620 induced HIV in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals on suppressive antiretroviral therapy. GS-9620 increased extracellular HIV RNA 1.5- to 2-fold through a mechanism that required type I IFN signaling. GS-9620 also activated HIV-specific T cells and enhanced antibody-mediated clearance of HIV-infected cells. Activation by GS-9620 in combination with HIV peptide stimulation increased CD8 T cell degranulation, production of intracellular cytokines, and cytolytic activity. T cell activation was again dependent on type I IFNs produced by plasmacytoid dendritic cells. GS-9620 induced phagocytic cell maturation and improved effector-mediated killing of HIV-infected CD4 T cells by the HIV envelope-specific broadly neutralizing antibody PGT121. Collectively, these data show that GS-9620 can activate HIV production and improve the effector functions that target latently infected cells. GS-9620 may effectively complement orthogonal therapies designed to stimulate antiviral immunity, such as therapeutic vaccines or broadly neutralizing antibodies. Clinical studies are under way to determine if GS-9620 can target HIV reservoirs. IMPORTANCE Though antiretroviral therapies effectively suppress viral replication, they do not eliminate integrated proviral DNA. This stable intermediate of viral infection is persistently maintained in reservoirs of latently infected cells. Consequently, lifelong therapy is required to maintain viral suppression. Ultimately, new therapies that specifically target and eliminate the latent HIV reservoir are needed. Toll-like receptor agonists are potent enhancers of innate antiviral immunity that can also improve the adaptive immune response. Here, we show that a highly selective TLR7 agonist, GS-9620, activated HIV from peripheral blood mononuclear cells isolated from HIV-infected individuals with suppressed infection. GS-9620 also improved immune effector functions that specifically targeted HIV-infected cells. Previously published studies on the compound in other chronic viral infections show that it can effectively induce immune activation at safe and tolerable clinical doses. Together, the results of these studies suggest that GS-9620 may be useful for treating HIV-infected individuals on suppressive antiretroviral therapy. Copyright © 2017 Tsai et al.
Tsai, Angela; Irrinki, Alivelu; Kaur, Jasmine; Cihlar, Tomas; Kukolj, George
2017-01-01
ABSTRACT Antiretroviral therapy can suppress HIV replication to undetectable levels but does not eliminate latent HIV, thus necessitating lifelong therapy. Recent efforts to target this persistent reservoir have focused on inducing the expression of latent HIV so that infected cells may be recognized and eliminated by the immune system. Toll-like receptor (TLR) activation stimulates antiviral immunity and has been shown to induce HIV from latently infected cells. Activation of TLR7 leads to the production of several stimulatory cytokines, including type I interferons (IFNs). In this study, we show that the selective TLR7 agonist GS-9620 induced HIV in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals on suppressive antiretroviral therapy. GS-9620 increased extracellular HIV RNA 1.5- to 2-fold through a mechanism that required type I IFN signaling. GS-9620 also activated HIV-specific T cells and enhanced antibody-mediated clearance of HIV-infected cells. Activation by GS-9620 in combination with HIV peptide stimulation increased CD8 T cell degranulation, production of intracellular cytokines, and cytolytic activity. T cell activation was again dependent on type I IFNs produced by plasmacytoid dendritic cells. GS-9620 induced phagocytic cell maturation and improved effector-mediated killing of HIV-infected CD4 T cells by the HIV envelope-specific broadly neutralizing antibody PGT121. Collectively, these data show that GS-9620 can activate HIV production and improve the effector functions that target latently infected cells. GS-9620 may effectively complement orthogonal therapies designed to stimulate antiviral immunity, such as therapeutic vaccines or broadly neutralizing antibodies. Clinical studies are under way to determine if GS-9620 can target HIV reservoirs. IMPORTANCE Though antiretroviral therapies effectively suppress viral replication, they do not eliminate integrated proviral DNA. This stable intermediate of viral infection is persistently maintained in reservoirs of latently infected cells. Consequently, lifelong therapy is required to maintain viral suppression. Ultimately, new therapies that specifically target and eliminate the latent HIV reservoir are needed. Toll-like receptor agonists are potent enhancers of innate antiviral immunity that can also improve the adaptive immune response. Here, we show that a highly selective TLR7 agonist, GS-9620, activated HIV from peripheral blood mononuclear cells isolated from HIV-infected individuals with suppressed infection. GS-9620 also improved immune effector functions that specifically targeted HIV-infected cells. Previously published studies on the compound in other chronic viral infections show that it can effectively induce immune activation at safe and tolerable clinical doses. Together, the results of these studies suggest that GS-9620 may be useful for treating HIV-infected individuals on suppressive antiretroviral therapy. PMID:28179531
Sedegah, Martha; Brice, Gary T.; Rogers, William O.; Doolan, Denise L.; Charoenvit, Yupin; Jones, Trevor R.; Majam, Victoria F.; Belmonte, Arnel; Lu, Minh; Belmonte, Maria; Carucci, Daniel J.; Hoffman, Stephen L.
2002-01-01
The persistence of immunity to malaria induced in mice by a heterologous DNA priming and poxvirus boosting regimen was characterized. Mice were immunized by priming with DNA vaccine plasmids encoding the Plasmodium yoelii circumsporozoite protein (PyCSP) and murine granulocyte-macrophage colony-stimulating factor and boosting with recombinant vaccinia encoding PyCSP. BALB/c mice immunized with either high-dose (100 μg of p PyCSP plus 30 μg of pGM-CSF) or low-dose (1 μg of p PyCSP plus 1 μg of pGM-CSF DNA) priming were protected against challenge with 50 P. yoelii sporozoites. Protection 2 weeks after immunization was 70 to 100%, persisted at this level for at least 20 weeks, and declined to 30 to 40% by 28 weeks. Eight of eight mice protected at 20 weeks were still protected when rechallenged at 40 weeks. The antigen (Ag)-specific effector CD8+-T-cell population present 2 weeks after boosting had ex vivo Ag-specific cytolytic activity, expressed both gamma interferon (IFN-γ) and tumor necrosis factor alpha, and constituted 12 to 20% of splenic CD8+ T cells. In contrast, the memory CD8+-Ag-specific-cell population at 28 weeks lacked cytolytic activity and constituted only 6% of splenic CD8+ T cells, but at the single-cell level it produced significantly higher levels of IFN-γ than the effectors. High levels of Ag- or parasite-specific antibodies present 2 weeks after boosting had declined three- to sevenfold by 28 weeks. Low-dose priming was similarly immunogenic and as protective as high-dose priming against a 50-, but not a 250-, sporozoite challenge. These results demonstrate that a heterologous priming and boosting vaccination can provide lasting protection against malaria in this model system. PMID:12065488
The dead seed coat functions as a long-term storage for active hydrolytic enzymes
Raviv, Buzi; Aghajanyan, Lusine; Granot, Gila; Makover, Vardit; Frenkel, Omer; Gutterman, Yitzchak
2017-01-01
Seed development culminates in programmed cell death (PCD) and hardening of organs enclosing the embryo (e.g., pericarp, seed coat) providing essentially a physical shield for protection during storage in the soil. We examined the proposal that dead organs enclosing embryos are unique entities that store and release upon hydration active proteins that might increase seed persistence in soil, germination and seedling establishment. Proteome analyses of dead seed coats of Brassicaceae species revealed hundreds of proteins being stored in the seed coat and released upon hydration, many are stress-associated proteins such as nucleases, proteases and chitinases. Functional analysis revealed that dead seed coats function as long-term storage for multiple active hydrolytic enzymes (e.g., nucleases) that can persist in active forms for decades. Substances released from the dead seed coat of the annual desert plant Anastatica hierochuntica displayed strong antimicrobial activity. Our data highlighted a previously unrecognized feature of dead organs enclosing embryos (e.g., seed coat) functioning not only as a physical shield for embryo protection but also as a long-term storage for active proteins and other substances that are released upon hydration to the “seedsphere” and could contribute to seed persistence in the soil, germination and seedling establishment. PMID:28700755
The dead seed coat functions as a long-term storage for active hydrolytic enzymes.
Raviv, Buzi; Aghajanyan, Lusine; Granot, Gila; Makover, Vardit; Frenkel, Omer; Gutterman, Yitzchak; Grafi, Gideon
2017-01-01
Seed development culminates in programmed cell death (PCD) and hardening of organs enclosing the embryo (e.g., pericarp, seed coat) providing essentially a physical shield for protection during storage in the soil. We examined the proposal that dead organs enclosing embryos are unique entities that store and release upon hydration active proteins that might increase seed persistence in soil, germination and seedling establishment. Proteome analyses of dead seed coats of Brassicaceae species revealed hundreds of proteins being stored in the seed coat and released upon hydration, many are stress-associated proteins such as nucleases, proteases and chitinases. Functional analysis revealed that dead seed coats function as long-term storage for multiple active hydrolytic enzymes (e.g., nucleases) that can persist in active forms for decades. Substances released from the dead seed coat of the annual desert plant Anastatica hierochuntica displayed strong antimicrobial activity. Our data highlighted a previously unrecognized feature of dead organs enclosing embryos (e.g., seed coat) functioning not only as a physical shield for embryo protection but also as a long-term storage for active proteins and other substances that are released upon hydration to the "seedsphere" and could contribute to seed persistence in the soil, germination and seedling establishment.
Cre-mediated recombination in pituitary somatotropes
Nasonkin, Igor O.; Potok, Mary Anne; Camper, Sally A.
2009-01-01
We report a transgenic line with highly penetrant cre recombinase activity in the somatotrope cells of the anterior pituitary gland. Expression of the cre transgene is under the control of the locus control region of the human growth hormone gene cluster and the rat growth hormone promoter. Cre recombinase activity was assessed with two different lacZ reporter genes that require excision of a floxed stop sequence for expression: a chick β-actin promoter with the CMV enhancer transgene and a ROSA26 knock-in. Cre activity is detectable in the developing pituitary after initiation of Gh transcription and persists through adulthood with high penetrance in Gh expressing cells and lower penetrance in lactotropes, a cell type that shares a common origin with somatotropes. This Gh-cre transgenic line is suitable for efficient, cell-specific deletion of floxed regions of genomic DNA in differentiated somatotropes and a subset of lactotrope cells of the anterior pituitary gland. PMID:19039787
Tax-Independent Constitutive IκB Kinase Activation in Adult T-Cell Leukemia Cells1
Hironaka, Noriko; Mochida, Kanako; Mori, Naoki; Maeda, Michiyuki; Yamamoto, Naoki; Yamaoka, Shoji
2004-01-01
Abstract Adult T-cell leukemia (ATL) is a fatal T-cell malignancy that arises long after infection with human T-cell leukemia virus type I (HTLV-I). We reported previously that nuclear factor-κB (NF-κB) was constitutively activated in ATL cells, although expression of the viral proteins was barely detectable, including Tax, which was known to persistently activate NF-κB. Here we demonstrate that ATL cells that do not express detectable Tax protein exhibit constitutive IκB kinase (IKK) activity. Transfection studies revealed that a dominant-negative form of IKK1, and not of IKK2 or NF-κB essential modulator (NEMO), suppressed constitutive NFκB activity in ATL cells. This IKK activity was accompanied by elevated expression of p52, suggesting that the recently described noncanonical pathway of NF-κB activation operates in ATL cells. We finally show that specific inhibition of NF-κB by a super-repressor form of IκBα (SR-IκBα) in HTLV-I-infected T cells results in cell death regardless of Tax expression, providing definitive evidence of an essential role for NF-κB in the survival of ATL cells. In conclusion, the IKK complex is constitutively activated in ATL cells through a cellular mechanism distinct from that of Tax-mediated IKK activation. Further elucidation of this cellular mechanism should contribute to establishing a rationale for treatment of ATL. PMID:15153339
Wei, Datsen George; Chiang, Vicki; Fyne, Elizabeth; Balakrishnan, Mini; Barnes, Tiffany; Graupe, Michael; Hesselgesser, Joseph; Irrinki, Alivelu; Murry, Jeffrey P.; Stepan, George; Stray, Kirsten M.; Tsai, Angela; Yu, Helen; Spindler, Jonathan; Kearney, Mary; Spina, Celsa A.; McMahon, Deborah; Lalezari, Jacob; Sloan, Derek; Mellors, John; Geleziunas, Romas; Cihlar, Tomas
2014-01-01
Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART. PMID:24722454
Steering cell migration by alternating blebs and actin-rich protrusions.
Diz-Muñoz, Alba; Romanczuk, Pawel; Yu, Weimiao; Bergert, Martin; Ivanovitch, Kenzo; Salbreux, Guillaume; Heisenberg, Carl-Philipp; Paluch, Ewa K
2016-09-02
High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.
PD/MG BIMETALLIC CORROSION SYSTEMS FOR DECHLORINATION OF PCB CONTAMINATED MATRICES
Polychlorinated biphenyls (PCBs), a family of 209 compounds manufactured till mid70's, are toxic pollutants that persist in the environment. Enhanced corrosion of an active metal combined with catalytic hydrogenation properties of Pd in bimetallic cells can effectively reduce PCB...
Pulvermüller, Friedemann; Garagnani, Max
2014-08-01
Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure, which is, in part, determined by neuroanatomical structure. As the neurocomputational model provides a mechanistic explanation of how memory-related "disembodied" neuronal activity emerges in "embodied" APCs, it may be key to solving aspects of the embodiment debate and eventually to a better understanding of cognitive brain functions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Novella, Isabel S; Ebendick-Corpus, Bonnie E; Zárate, Selene; Miller, Eric L
2007-06-01
Arboviruses (arthropod-borne viruses) represent quintessential generalists, with the ability to infect and perform well in multiple hosts. However, antagonistic pleiotropy imposed a cost during the adaptation to persistent replication of vesicular stomatitis virus in sand fly cells and resulted in strains that initially replicated poorly in hamster cells, even when the virus was allowed to replicate periodically in the latter. Once a debilitated strain started replicating continuously in mammalian cells, fitness increased significantly. Fitness recovery did not entail back mutations or compensatory mutations, but instead, we observed the replacement of persistence-adapted genomes by mammalian cell-adapted strains with a full set of new, unrelated sequence changes. These mammalian cell-adapted genomes were present at low frequencies in the populations with a history of persistence for up to a year and quickly became dominant during mammalian infection, but coexistence was not stable in the long term. Periodic acute replication in mammalian cells likely contributed to extending the survival of minority genomes, but these genomes were also found in strictly persistent populations.
Tight coupling between nucleus and cell migration through the perinuclear actin cap
Kim, Dong-Hwee; Cho, Sangkyun; Wirtz, Denis
2014-01-01
ABSTRACT Although eukaryotic cells are known to alternate between ‘advancing’ episodes of fast and persistent movement and ‘hesitation’ episodes of low speed and low persistence, the molecular mechanism that controls the dynamic changes in morphology, speed and persistence of eukaryotic migratory cells remains unclear. Here, we show that the movement of the interphase nucleus during random cell migration switches intermittently between two distinct modes – rotation and translocation – that follow with high fidelity the sequential rounded and elongated morphologies of the nucleus and cell body, respectively. Nuclear rotation and translocation mediate the stop-and-go motion of the cell through the dynamic formation and dissolution, respectively, of the contractile perinuclear actin cap, which is dynamically coupled to the nuclear lamina and the nuclear envelope through LINC complexes. A persistent cell movement and nuclear translocation driven by the actin cap are halted following the disruption of the actin cap, which in turn allows the cell to repolarize for its next persistent move owing to nuclear rotation mediated by cytoplasmic dynein light intermediate chain 2. PMID:24639463
Lactase non-persistence is directed by DNA variation-dependent epigenetic aging
Labrie, Viviane; Buske, Orion J; Oh, Edward; Jeremian, Richie; Ptak, Carolyn; Gasiūnas, Giedrius; Maleckas, Almantas; Petereit, Rūta; Žvirbliene, Aida; Adamonis, Kęstutis; Kriukienė, Edita; Koncevičius, Karolis; Gordevičius, Juozas; Nair, Akhil; Zhang, Aiping; Ebrahimi, Sasha; Oh, Gabriel; Šikšnys, Virginijus; Kupčinskas, Limas; Brudno, Michael; Petronis, Arturas
2016-01-01
Inability to digest lactose due to lactase non-persistence is a common trait in adult mammals, with the exception of certain human populations that exhibit lactase persistence. It is not clear how the lactase gene can be dramatically downregulated with age in most individuals, but remains active in some. We performed a comprehensive epigenetic study of the human and mouse intestine using chromosome-wide DNA modification profiling and targeted bisulfite sequencing. Epigenetically-controlled regulatory elements were found to account for the differences in lactase mRNA levels between individuals, intestinal cell types and species. The importance of these regulatory elements in modulating lactase mRNA levels was confirmed by CRISPR-Cas9-induced deletions. Genetic factors contribute to epigenetic changes occurring with age at the regulatory elements, as lactase persistence- and non-persistence-DNA haplotypes demonstrated markedly different epigenetic aging. Thus, genetic factors facilitate a gradual accumulation of epigenetic changes with age to affect phenotypic outcome. PMID:27159559
Nakashima, Kenji; Takeuchi, Kenji; Chihara, Kazuyasu; Hotta, Hak; Sada, Kiyonao
2011-11-01
Persistent infection with hepatitis C virus (HCV) is closely correlated with type 2 diabetes. In this study, replication of HCV at different glucose concentrations was investigated by using J6/JFH1-derived cell-adapted HCV in Huh-7.5 cells and the mechanism of regulation of HCV replication by AMP-activated protein kinase (AMPK) as an energy sensor of the cell analyzed. Reducing the glucose concentration in the cell culture medium from 4.5 to 1.0 g/L resulted in suppression of HCV replication, along with activation of AMPK. Whereas treatment of cells with AMPK activator 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) suppressed HCV replication, compound C, a specific AMPK inhibitor, prevented AICAR's effect, suggesting that AICAR suppresses the replication of HCV by activating AMPK in Huh-7.5 cells. In contrast, compound C induced further suppression of HCV replication when the cells were cultured in low glucose concentrations or with metformin. These results suggest that low glucose concentrations and metformin have anti-HCV effects independently of AMPK activation. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.
Mahgoub, Mohamed; Yasunaga, Jun-Ichirou; Iwami, Shingo; Nakaoka, Shinji; Koizumi, Yoshiki; Shimura, Kazuya; Matsuoka, Masao
2018-02-06
Viruses causing chronic infection artfully manipulate infected cells to enable viral persistence in vivo under the pressure of immunity. Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection mainly in CD4+ T cells in vivo and induces leukemia in this subset. HTLV-1-encoded Tax is a critical transactivator of viral replication and a potent oncoprotein, but its significance in pathogenesis remains obscure due to its very low level of expression in vivo. Here, we show that Tax is expressed in a minor fraction of leukemic cells at any given time, and importantly, its expression spontaneously switches between on and off states. Live cell imaging revealed that the average duration of one episode of Tax expression is ∼19 hours. Knockdown of Tax rapidly induced apoptosis in most cells, indicating that Tax is critical for maintaining the population, even if its short-term expression is limited to a small subpopulation. Single-cell analysis and computational simulation suggest that transient Tax expression triggers antiapoptotic machinery, and this effect continues even after Tax expression is diminished; this activation of the antiapoptotic machinery is the critical event for maintaining the population. In addition, Tax is induced by various cytotoxic stresses and also promotes HTLV-1 replication. Thus, it seems that Tax protects infected cells from apoptosis and increases the chance of viral transmission at a critical moment. Keeping the expression of Tax minimal but inducible on demand is, therefore, a fundamental strategy of HTLV-1 to promote persistent infection and leukemogenesis. Copyright © 2018 the Author(s). Published by PNAS.
Grau-Expósito, Judith; Serra-Peinado, Carla; Miguel, Lucia; Navarro, Jordi; Curran, Adrià; Burgos, Joaquin; Ocaña, Imma; Ribera, Esteban; Torrella, Ariadna; Planas, Bibiana; Badía, Rosa; Castellví, Josep; Falcó, Vicenç; Crespo, Manuel; Buzon, Maria J
2017-07-11
Cells that actively transcribe HIV-1 have been defined as the "active viral reservoir" in HIV-infected individuals. However, important technical limitations have precluded the characterization of this specific viral reservoir during both treated and untreated HIV-1 infections. Here, we used a novel single-cell RNA fluorescence in situ hybridization-flow cytometry (FISH-flow) assay that requires only 15 million unfractionated peripheral blood mononuclear cells (PBMCs) to characterize the specific cell subpopulations that transcribe HIV RNA in different subsets of CD4 + T cells. In samples from treated and untreated HIV-infected patients, effector memory CD4 + T cells were the main cell population supporting HIV RNA transcription. The number of cells expressing HIV correlated with the plasma viral load, intracellular HIV RNA, and proviral DNA quantified by conventional methods and inversely correlated with the CD4 + T cell count and the CD4/CD8 ratio. We also found that after ex vivo infection of unstimulated PBMCs, HIV-infected T cells upregulated the expression of CD32. In addition, this new methodology detected increased numbers of primary cells expressing viral transcripts and proteins after ex vivo viral reactivation with latency reversal agents. This RNA FISH-flow technique allows the identification of the specific cell subpopulations that support viral transcription in HIV-1-infected individuals and has the potential to provide important information on the mechanisms of viral pathogenesis, HIV persistence, and viral reactivation. IMPORTANCE Persons infected with HIV-1 contain several cellular viral reservoirs that preclude the complete eradication of the viral infection. Using a novel methodology, we identified effector memory CD4 + T cells, immune cells preferentially located in inflamed tissues with potent activity against pathogens, as the main cells encompassing the transcriptionally active HIV-1 reservoir in patients on antiretroviral therapy. Importantly, the identification of such cells provides us with an important target for new therapies designed to target the hidden virus and thus to eliminate the virus from the human body. In addition, because of its ability to identify cells forming part of the viral reservoir, the assay used in this study represents an important new tool in the field of HIV pathogenesis and viral persistence. Copyright © 2017 Grau-Expósito et al.
Iino, Ryota; Matsumoto, Yoshimi; Nishino, Kunihiko; Yamaguchi, Akihito; Noji, Hiroyuki
2013-01-01
Single-cell analysis is a powerful method to assess the heterogeneity among individual cells, enabling the identification of very rare cells with properties that differ from those of the majority. In this Methods Article, we describe the use of a large-scale femtoliter droplet array to enclose, isolate, and analyze individual bacterial cells. As a first example, we describe the single-cell detection of drug-tolerant persisters of Pseudomonas aeruginosa treated with the antibiotic carbenicillin. As a second example, this method was applied to the single-cell evaluation of drug efflux activity, which causes acquired antibiotic resistance of bacteria. The activity of the MexAB-OprM multidrug efflux pump system from Pseudomonas aeruginosa was expressed in Escherichia coli and the effect of an inhibitor D13-9001 were assessed at the single cell level.
McElroy, Anita K; Akondy, Rama S; Harmon, Jessica R; Ellebedy, Ali H; Cannon, Deborah; Klena, John D; Sidney, John; Sette, Alessandro; Mehta, Aneesh K; Kraft, Colleen S; Lyon, Marshall G; Varkey, Jay B; Ribner, Bruce S; Nichol, Stuart T; Spiropoulou, Christina F
2017-06-15
A nurse who acquired Lassa virus infection in Togo in the spring of 2016 was repatriated to the United States for care at Emory University Hospital. Serial sampling from this patient permitted the characterization of several aspects of the innate and cellular immune responses to Lassa virus. Although most of the immune responses correlated with the kinetics of viremia resolution, the CD8 T-cell response was of surprisingly high magnitude and prolonged duration, implying prolonged presentation of viral antigens. Indeed, long after viremia resolution, there was persistent viral RNA detected in the semen of the patient, accompanied by epididymitis, suggesting the male reproductive tract as 1 site of antigen persistence. Consistent with the magnitude of acute T-cell responses, the patient ultimately developed long-term, polyfunctional memory T-cell responses to Lassa virus. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Adaptive NKG2C+CD57+ Natural Killer Cell and Tim-3 Expression During Viral Infections
Kared, Hassen; Martelli, Serena; Tan, Shu Wen; Simoni, Yannick; Chong, Meng Li; Yap, Siew Hwei; Newell, Evan W.; Pender, Sylvia L. F.; Kamarulzaman, Adeeba; Rajasuriar, Reena; Larbi, Anis
2018-01-01
Repetitive stimulation by persistent pathogens such as human cytomegalovirus (HCMV) or human immunodeficiency virus (HIV) induces the differentiation of natural killer (NK) cells. This maturation pathway is characterized by the acquisition of phenotypic markers, CD2, CD57, and NKG2C, and effector functions—a process regulated by Tim-3 and orchestrated by a complex network of transcriptional factors, involving T-bet, Eomes, Zeb2, promyelocytic leukemia zinc finger protein, and Foxo3. Here, we show that persistent immune activation during chronic viral co-infections (HCMV, hepatitis C virus, and HIV) interferes with the functional phenotype of NK cells by modulating the Tim-3 pathway; a decrease in Tim-3 expression combined with the acquisition of inhibitory receptors skewed NK cells toward an exhausted and cytotoxic phenotype in an inflammatory environment during chronic HIV infection. A better understanding of the mechanisms underlying NK cell differentiation could aid the identification of new immunological targets for checkpoint blockade therapies in a manner that is relevant to chronic infection and cancer. PMID:29731749
Noonan, Kimberly A.; Huff, Carol A.; Davis, Janice; Lemas, M. Victor; Fiorino, Susan; Bitzan, Jeffrey; Ferguson, Anna; Emerling, Amy; Luznik, Leo; Matsui, William; Powell, Jonathan; Fuchs, Ephraim; Rosner, Gary L.; Epstein, Caroline; Rudraraju, Lakshmi; Ambinder, Richard F.; Jones, Richard J.; Pardoll, Drew; Borrello, Ivan
2015-01-01
Successful adoptive T cell therapy (ACT) requires the ability to activate tumor-specific T cells with the ability to traffic to the tumor site and effectively kill their target as well as persist over time. We hypothesized that ACT using marrow-infiltrating lymphocytes (MILs) in multiple myeloma (MM) could impart greater antitumor immunity in that they were obtained from the tumor microenvironment. We describe the results from the first clinical trial using MILs in MM. Twenty-five patients with either newly diagnosed or relapsed disease had their MILs harvested, activated and expanded, and subsequently infused on the third day after myeloablative therapy. Cells were obtained and adequately expanded in all patients with anti-CD3/CD28 beads plus interleukin-2, and a median of 9.5 × 108 MILs were infused. Factors indicative of response to MIL ACT included (i) the presence of measurable myeloma-specific activity of the ex vivo expanded product, (ii) low endogenous bone marrow T cell interferon-γ production at baseline, (iii) a CD8+ central memory phenotype at baseline, and (iv) the generation and persistence of myeloma-specific immunity in the bone marrow at 1 year after ACT. Achieving at least a 90% reduction in disease burden significantly increased the progression-free survival (25.1 months versus 11.8 months; P = 0.01). This study demonstrates the feasibility and efficacy of MILs as a form of ACT with applicability across many hematologic malignancies and possibly solid tumors infiltrating the bone marrow. PMID:25995224
Integrin activation by a cold atmospheric plasma jet
NASA Astrophysics Data System (ADS)
Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael
2012-05-01
Current breakthrough research on cold atmospheric plasma (CAP) demonstrates that CAP has great potential in various areas, including medicine and biology, thus providing a new tool for living tissue treatment. In this paper, we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. We focus on the study of CAP interaction with fibroblasts and corneal epithelial cells. The data show that fibroblasts and corneal epithelial cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration. Both cell types reduced their migration rates by ˜30-40% after CAP compared to control cells. Also, the impact of CAP treatment on cell migration and persistence of fibroblasts after integrin activation by MnCl2, serum starvation or replating cells onto surfaces coated with integrin ligands is assessed; the results show that activation by MnCl2 or starvation attenuates cells’ responses to plasma. Studies carried out to assess the impact of CAP treatment on the activation state of β1 integrin and focal adhesion size by using immunofluorescence show that fibroblasts have more active β1 integrin on their surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly.
Persistence of Rift Valley fever virus in East Africa
NASA Astrophysics Data System (ADS)
Gachohi, J.; Hansen, F.; Bett, B.; Kitala, P.
2012-04-01
Rift Valley fever virus (RVFv) is a mosquito-borne pathogen of livestock, wildlife and humans that causes severe outbreaks in intervals of several years. One of the open questions is how the virus persists between outbreaks. We developed a spatially-explicit, individual-based simulation model of the RVFv transmission dynamics to investigate this question. The model, is based on livestock and mosquito population dynamics. Spatial aspects are explicitly represented by a set of grid cells that represent mosquito breeding sites. A grid cell measures 500 by 500m and the model considers a grid of 100 by 100 grid cells; the model thus operates on the regional scale of 2500km2. Livestock herds move between grid cells, and provide connectivity between the cells. The model is used to explore the spatio-temporal dynamics of RVFv persistence in absence of a wildlife reservoir in an east African semi-arid context. Specifically, the model assesses the importance of local virus persistence in mosquito breeding sites relative to global virus persistence mitigated by movement of hosts. Local persistence is determined by the length of time the virus remains in a mosquito breeding site once introduced. In the model, this is a function of the number of mosquitoes that emerge infected and their lifespan. Global persistence is determined by the level of connectivity between isolated grid cells. Our work gives insights into the ecological and epidemiological conditions under which RVFv persists. The implication for disease surveillance and management are discussed.
Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath
2017-08-03
The success of cancer vaccines is limited as most of them induce corrupted CD8 + T cell memory populations. We reported earlier that a natural immunomodulator, neem leaf glycoprotein (NLGP), therapeutically restricts tumor growth in a CD8 + T cell-dependent manner. Here, our objective is to study whether memory CD8 + T cell population is generated in sarcoma hosts after therapeutic NLGP treatment and their role in prevention of post-surgery tumor recurrence, in comparison to the immunostimulatory metronomic cyclophosphamide (CTX) treatment. We found that therapeutic NLGP and CTX treatment generates central memory CD8 + T (TCM) cells with characteristic CD44 + CD62L high CCR7 high IL-2 high phenotypes. But these TCM cells are functionally impaired to prevent re-appearance of tumors along with compromised proliferative, IL-2 secretive and cytotoxic status. This might be due to the presence of tumor load, even a small one in the host, which serves as a persistent source of tumor antigens thereby corrupting the TCM cells so generated. Surgical removal of the persisting tumors from the host restored the functional characteristics of memory CD8 + T cells, preventing tumor recurrence after surgery till end of the experiment. Moreover, we observed that generation of superior TCM cells in NLGP treated surgically removed tumor hosts is related to the activation of Wnt signalling in memory CD8 + T cells with concomitant inhibition of GSK-3β and stabilisation of β-catenin, which ultimately activates transcription of Wnt target genes, like, eomesodermin, a signature molecule of CD8 + TCM cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
TANAKA, NOZOMU; SAKAMOTO, KAZUKI; OKABE, HIROYUKI; FUJIOKA, AKIO; YAMAMURA, KEISUKE; NAKAGAWA, FUMIO; NAGASE, HIDEKI; YOKOGAWA, TATSUSHI; OGUCHI, KEI; ISHIDA, KEIJI; OSADA, AKIKO; KAZUNO, HIROMI; YAMADA, YUKARI; MATSUO, KENICHI
2014-01-01
TAS-102 is a novel oral nucleoside antitumor agent containing trifluridine (FTD) and tipiracil hydrochloride (TPI). The compound improves overall survival of colorectal cancer (CRC) patients who are insensitive to standard chemotherapies. FTD possesses direct antitumor activity since it inhibits thymidylate synthase (TS) and is itself incorporated into DNA. However, the precise mechanisms underlying the incorporation into DNA and the inhibition of TS remain unclear. We found that FTD-dependent inhibition of TS was similar to that elicited by fluorodeoxyuridine (FdUrd), another clinically used nucleoside analog. However, washout experiments revealed that FTD-dependent inhibition of TS declined rapidly, whereas FdUrd activity persisted. The incorporation of FTD into DNA was significantly higher than that of other antitumor nucleosides. Additionally, orally administered FTD had increased antitumor activity and was incorporated into DNA more effectively than continuously infused FTD. When TAS-102 was administered, FTD gradually accumulated in tumor cell DNA, in a TPI-independent manner, and significantly delayed tumor growth and prolonged survival, compared to treatment with 5-FU derivatives. TAS-102 reduced the Ki-67-positive cell fraction, and swollen nuclei were observed in treated tumor tissue. The amount of FTD incorporation in DNA and the antitumor activity of TAS-102 in xenograft models were positively and significantly correlated. These results suggest that TAS-102 exerts its antitumor activity predominantly due to its DNA incorporation, rather than as a result of TS inhibition. The persistence of FTD in the DNA of tumor cells treated with TAS-102 may underlie its ability to prolong survival in cancer patients. PMID:25230742
Hwang, Il-Young; Park, Chung; Harrison, Kathleen
2009-01-01
B lymphocyte–intrinsic Toll-like receptor (TLR) signals amplify humoral immunity and can exacerbate autoimmune diseases. We identify a new mechanism by which TLR signals may contribute to autoimmunity and chronic inflammation. We show that TLR4 signaling enhances B lymphocyte trafficking into lymph nodes (LNs), induces B lymphocyte clustering and interactions within LN follicles, leads to sustained in vivo B cell proliferation, overcomes the restriction that limits the access of nonantigen-activated B cells to germinal center dark zones, and enhances the generation of memory and plasma cells. Intravital microscopy and in vivo tracking studies of B cells transferred to recipient mice revealed that TLR4-activated, but not nonstimulated, B cells accumulated within the dark zones of preexisting germinal centers even when transferred with antigen-specific B cells. The TLR4-activated cells persist much better than nonstimulated cells, expanding both within the memory and plasma cell compartments. TLR-mediated activation of B cells may help to feed and stabilize the spontaneous and ectopic germinal centers that are so commonly found in autoimmune individuals and that accompany chronic inflammation. PMID:19917774
Cartwright, Emily K; Palesch, David; Mavigner, Maud; Paiardini, Mirko; Chahroudi, Ann; Silvestri, Guido
2016-08-01
Treatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4(+) T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4(+) TSCM are preserved in number but show (i) a decrease in the frequency of CCR5(+) cells, (ii) an expansion of the fraction of proliferating Ki-67(+) cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4(+) TSCM homeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4(+) CCR5(+) TSCM both in blood and in lymph nodes and a reduction in the fraction of proliferating CD4(+) Ki-67(+) TSCM in blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4(+) transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4(+) TSCM and central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4(+) TSCM homeostasis, and the observed stable level of virus in TSCM supports the hypothesis that these cells are a critical contributor to SIV persistence. Understanding the roles of various CD4(+) T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCM and TTM, respectively). CD4(+) TSCM are disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4(+) TSCM homeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTM and effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4(+) TSCM during suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Cartwright, Emily K.; Palesch, David; Mavigner, Maud; Paiardini, Mirko; Chahroudi, Ann
2016-01-01
ABSTRACT Treatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4+ T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4+ TSCM are preserved in number but show (i) a decrease in the frequency of CCR5+ cells, (ii) an expansion of the fraction of proliferating Ki-67+ cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4+ TSCM homeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4+ CCR5+ TSCM both in blood and in lymph nodes and a reduction in the fraction of proliferating CD4+ Ki-67+ TSCM in blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4+ transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4+ TSCM and central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4+ TSCM homeostasis, and the observed stable level of virus in TSCM supports the hypothesis that these cells are a critical contributor to SIV persistence. IMPORTANCE Understanding the roles of various CD4+ T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCM and TTM, respectively). CD4+ TSCM are disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4+ TSCM homeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTM and effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4+ TSCM during suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir. PMID:27170752
Olds, Peter; Park, Andrew; Schlesinger, Sarah J.
2011-01-01
Foxp3+ regulatory T cells (T reg cells) effectively suppress immunity, but it is not determined if antigen-induced T reg cells (iT reg cells) are able to persist under conditions of inflammation and to stably express the transcription factor Foxp3. We used spleen cells to stimulate the mixed leukocyte reaction (MLR) in the presence of transforming growth factor β (TGF-β) and retinoic acid. We found that the CD11chigh dendritic cell fraction was the most potent at inducing high numbers of alloreactive Foxp3+ cells. The induced CD4+CD25+Foxp3+ cells appeared after extensive proliferation. When purified from the MLR, iT reg cells suppressed both primary and secondary MLR in vitro in an antigen-specific manner. After transfer into allogeneic mice, iT reg cells persisted for 6 mo and prevented graft versus host disease (GVHD) caused by co-transferred CD45RBhi T cells. Similar findings were made when iT reg cells were transferred after onset of GVHD. The CNS2 intronic sequence of the Foxp3 gene in the persisting iT reg cells was as demethylated as the corresponding sequence of naturally occurring T reg cells. These results indicate that induced Foxp3+ T reg cells, after proliferating and differentiating into antigen-specific suppressive T cells, can persist for long periods while suppressing a powerful inflammatory disease. PMID:22084406
Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei
2016-10-01
RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.
STATs in cancer inflammation and immunity: a leading role for STAT3.
Yu, Hua; Pardoll, Drew; Jove, Richard
2009-11-01
Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-kappaB (NF-kappaB) and interleukin-6 (IL-6)-GP130-Janus kinase (JAK) pathways, and by opposing STAT1- and NF-kappaB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy.
Lambert, Linda C.; Trummell, Hoa Q.; Singh, Ashvani; Cassell, Gail H.; Bridges, Robert J.
1998-01-01
Murine chronic respiratory disease is characterized by persistent colonization of tracheal and bronchial epithelial cell surfaces by Mycoplasma pulmonis, submucosal and intraluminal immune and inflammatory cells, and altered airway activity. To determine the direct effect of M. pulmonis upon transepithelial ion transport in the absence of immune and inflammatory cell responses, primary mouse tracheal epithelial cell monolayers (MTEs) were apically infected and assayed in Ussing chambers. M. pulmonis-infected MTEs, but not those infected with a nonmurine mycoplasma, demonstrated reductions in amiloride-sensitive Na+ absorption, cyclic AMP, and cholinergic-stimulated Cl− secretion and transepithelial resistance. These effects were shown to require interaction of viable organisms with the apical surface of the monolayer and to be dependent upon organism number and duration of infection. Altered transport due to M. pulmonis was not merely a result of epithelial cell death as evidenced by the following: (i) active transport of Na+ and Cl−, albeit at reduced rates; (ii) normal cell morphology, including intact tight junctions, as demonstrated by electron microscopy; (iii) maintenance of a mean transepithelial resistance of 440 Ω/cm2; and (iv) lack of leakage of fluid from the basolateral to the apical surface of the monolayer. Alteration in epithelial ion transport in vitro is consistent with impaired pulmonary clearance and altered airway function in M. pulmonis-infected animals. Furthermore, the ability of M. pulmonis to alter transport without killing the host cell may explain its successful parasitism and long-term persistence in the host. Further study of the MTE-M. pulmonis model should elucidate the molecular mechanisms which mediate this reduction in transepithelial ion transport. PMID:9423868
Molina-Quiroz, Roberto C; Silva-Valenzuela, Cecilia; Brewster, Jennifer; Castro-Nallar, Eduardo; Levy, Stuart B; Camilli, Andrew
2018-01-09
Bacterial persistence is a transient, nonheritable physiological state that provides tolerance to bactericidal antibiotics. The stringent response, toxin-antitoxin modules, and stochastic processes, among other mechanisms, play roles in this phenomenon. How persistence is regulated is relatively ill defined. Here we show that cyclic AMP, a global regulator of carbon catabolism and other core processes, is a negative regulator of bacterial persistence in uropathogenic Escherichia coli , as measured by survival after exposure to a β-lactam antibiotic. This phenotype is regulated by a set of genes leading to an oxidative stress response and SOS-dependent DNA repair. Thus, persister cells tolerant to cell wall-acting antibiotics must cope with oxidative stress and DNA damage and these processes are regulated by cyclic AMP in uropathogenic E. coli IMPORTANCE Bacterial persister cells are important in relapsing infections in patients treated with antibiotics and also in the emergence of antibiotic resistance. Our results show that in uropathogenic E. coli , the second messenger cyclic AMP negatively regulates persister cell formation, since in its absence much more persister cells form that are tolerant to β-lactams antibiotics. We reveal the mechanism to be decreased levels of reactive oxygen species, specifically hydroxyl radicals, and SOS-dependent DNA repair. Our findings suggest that the oxidative stress response and DNA repair are relevant pathways to target in the design of persister-specific antibiotic compounds. Copyright © 2018 Molina-Quiroz et al.
Persistent Infection of Human Fetal Endothelial Cells with Rubella Virus
Perelygina, Ludmila; Zheng, Qi; Metcalfe, Maureen; Icenogle, Joseph
2013-01-01
Cardiovascular abnormalities are the leading cause of neonatal death among patients with congenital rubella syndrome (CRS). Although persistence of rubella virus (RV) in fetal endothelium has been repeatedly suggested as a possible cause of cardiovascular birth defects, evidence of the permissiveness of fetal endothelial cells to RV is lacking. In this study we evaluated the ability of RV to infect and persist in primary fetal endothelial cells derived from human umbilical vein (HUVEC). We found that wild type (wt) low passage clinical RV productively infected HUVEC cultures without producing cytopathology or ultrastructural changes. RV did not inhibit host cell protein synthesis, cell proliferation, or interfere with the cell cycle. Persistently infected cultures were easily established at low and high multiplicities of infection (MOI) with both laboratory and wt clinical RV strains. However, synchronous infections of entire HUVEC monolayers were only observed with clinical RV strains. The release of infectious virions into media remained at consistently high levels for several subcultures of infected HUVEC. The results indicate that macrovascular fetal endothelial cells are highly permissive to RV and allow slow persistent RV replication. The findings provide more evidence for the suggestion that vascular pathologies in CRS are triggered by persistent rubella virus infection of the endothelium. PMID:23940821
Crowell, Trevor A; Fletcher, James LK; Sereti, Irini; Pinyakorn, Suteeraporn; Dewar, Robin; Krebs, Shelly J; Chomchey, Nitiya; Rerknimitr, Rungsun; Schuetz, Alexandra; Michael, Nelson L; Phanuphak, Nittaya; Chomont, Nicolas; Ananworanich, Jintanat
2016-01-01
Introduction Colonic infiltration by HIV occurs soon after infection, establishing a persistent viral reservoir and a barrier to cure. We investigated virologic and immunologic correlates of detectable colonic HIV RNA during acute HIV infection (AHI) and their response to antiretroviral treatment (ART). Methods From 49,458 samples screened for HIV, 74 participants were enrolled during AHI and 41 consented to optional sigmoidoscopy, HIV RNA was categorized as detectable (≥50 copies/mg) or undetectable in homogenized colon biopsy specimens. Biomarkers and HIV burden in blood, colon and cerebrospinal fluid were compared between groups and after 24 weeks of ART. Results Colonic HIV RNA was detectable in 31 participants (76%) and was associated with longer duration since HIV exposure (median 16 vs. 11 days, p=0.02), higher median plasma levels of cytokines and inflammatory markers (CXCL10 476 vs. 148 pg/mL, p=0.02; TNF-RII 1036 vs. 649 pg/mL, p<0.01; neopterin 2405 vs. 1368 pg/mL, p=0.01) and higher levels of CD8+ T cell activation in the blood (human leukocyte antigen - antigen D related (HLA-DR)/CD38 expression 14.4% vs. 7.6%, p <0.01) and colon (8.9% vs. 4.5%, p=0.01). After 24 weeks of ART, participants with baseline detectable colonic HIV RNA demonstrated persistent elevations in total HIV DNA in colonic mucosal mononuclear cells (CMMCs) (median 61 vs. 0 copies/106 CMMCs, p=0.03) and a trend towards higher total HIV DNA in peripheral blood mononuclear cells (PBMC) (41 vs. 1.5 copies/106 PBMCs, p=0.06). There were no persistent differences in immune activation and inflammation. Conclusions The presence of detectable colonic HIV RNA at the time of ART initiation during AHI is associated with higher levels of proviral DNA after 24 weeks of treatment. Seeding of HIV in the gut may have long-lasting effects on the size of persistent viral reservoirs and may represent an important therapeutic target in eradication strategies. PMID:27637172
Werner, Erica; Wang, Huichen; Doetsch, Paul W.
2014-01-01
We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization. PMID:25271419
CARs: Driving T-cell specificity to enhance anti-tumor immunity
Kebriaei, Partow; Kelly, Susan S.; Manuri, Pallavi; Jena, Bipulendu; Jackson, Rineka; Shpall, Elizabeth; Champlin, Richard; Cooper, Laurence J. N.
2013-01-01
Adoptive transfer of antigen-specific T cells is a compelling tool to treat cancer. To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens, robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve the potency of genetically modified T cells. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, antitumor activity, paving the way for multi-center trials to establish the efficacy of this novel T-cell therapy. PMID:22202074
Histone modifications in the male germ line of Drosophila.
Hennig, Wolfgang; Weyrich, Alexandra
2013-02-22
In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation.
Yamamoto, Kazuhiko; Nihrane, Abdallah; Aglipay, Jason; Sironi, Juan; Arkin, Steven; Lipton, Jeffrey M; Ouchi, Toru; Liu, Johnson M
2008-01-01
Fanconi anemia (FA) predisposes to hematopoietic failure, birth defects, leukemia, and squamous cell carcinoma of the head and neck (HNSCC) and cervix. The FA/BRCA pathway includes 8 members of a core complex and 5 downstream gene products closely linked with BRCA1 or BRCA2. Precancerous lesions are believed to trigger the DNA damage response (DDR), and we focused on the DDR in FA and its putative role as a checkpoint barrier to cancer. In primary fibroblasts with mutations in the core complex FANCA protein, we discovered that basal expression and phosphorylation of ATM (ataxia telangiectasia mutated) and p53 induced by irradiation (IR) or mitomycin C (MMC) were upregulated. This heightened response appeared to be due to increased basal levels of ATM in cultured FANCA-mutant cells, highlighting the new observation that ATM can be regulated at the transcriptional level in addition to its well-established activation by autophosphorylation. Functional analysis of this response using gamma-H2AX foci as markers of DNA double-stranded breaks (DSBs) demonstrated abnormal persistence of only MMC- and not IR-induced foci. Thus, we describe a processing defect that leads to general DDR upregulation but specific persistence of DNA crosslinker-induced damage response foci. Underscoring the significance of these findings, we found resistance to DNA crosslinker-induced cell cycle arrest and apoptosis in a TP53-mutant, patient-derived HNSCC cell line, whereas a lymphoblastoid cell line derived from this same individual was not mutated at TP53 and retained DNA crosslinker sensitivity. Our results suggest that cancer in FA may arise from selection for cells that escape from a chronically activated DDR checkpoint.
Ensoli, Barbara; Bellino, Stefania; Tripiciano, Antonella; Longo, Olimpia; Francavilla, Vittorio; Marcotullio, Simone; Cafaro, Aurelio; Picconi, Orietta; Paniccia, Giovanni; Scoglio, Arianna; Arancio, Angela; Ariola, Cristina; Ruiz Alvarez, Maria J.; Campagna, Massimo; Scaramuzzi, Donato; Iori, Cristina; Esposito, Roberto; Mussini, Cristina; Ghinelli, Florio; Sighinolfi, Laura; Palamara, Guido; Latini, Alessandra; Angarano, Gioacchino; Ladisa, Nicoletta; Soscia, Fabrizio; Mercurio, Vito S.; Lazzarin, Adriano; Tambussi, Giuseppe; Visintini, Raffaele; Mazzotta, Francesco; Di Pietro, Massimo; Galli, Massimo; Rusconi, Stefano; Carosi, Giampiero; Torti, Carlo; Di Perri, Giovanni; Bonora, Stefano; Ensoli, Fabrizio; Garaci, Enrico
2010-01-01
Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4+ T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4+ and CD8+ cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4+ T cells and B cells with reduction of CD8+ T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4+ and CD8+ T cells were accompanied by increases of CD4+ and CD8+ T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis. Trial registration ClinicalTrials.gov NCT00751595 PMID:21085635
Ensoli, Barbara; Bellino, Stefania; Tripiciano, Antonella; Longo, Olimpia; Francavilla, Vittorio; Marcotullio, Simone; Cafaro, Aurelio; Picconi, Orietta; Paniccia, Giovanni; Scoglio, Arianna; Arancio, Angela; Ariola, Cristina; Ruiz Alvarez, Maria J; Campagna, Massimo; Scaramuzzi, Donato; Iori, Cristina; Esposito, Roberto; Mussini, Cristina; Ghinelli, Florio; Sighinolfi, Laura; Palamara, Guido; Latini, Alessandra; Angarano, Gioacchino; Ladisa, Nicoletta; Soscia, Fabrizio; Mercurio, Vito S; Lazzarin, Adriano; Tambussi, Giuseppe; Visintini, Raffaele; Mazzotta, Francesco; Di Pietro, Massimo; Galli, Massimo; Rusconi, Stefano; Carosi, Giampiero; Torti, Carlo; Di Perri, Giovanni; Bonora, Stefano; Ensoli, Fabrizio; Garaci, Enrico
2010-11-11
Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+) T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+) and CD8(+) cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+) T cells and B cells with reduction of CD8(+) T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+) and CD8(+) T cells were accompanied by increases of CD4(+) and CD8(+) T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis. ClinicalTrials.gov NCT00751595.
MacVinish, L J; Cope, G; Ropenga, A; Cuthbert, A W
2007-01-01
Background and purpose: Calu-3 cells are derived from serous cells of human lung submucosal glands, a prime target for therapy in cystic fibrosis (CF). Calu-3 cells can be cultured to form epithelia capable of transepithelial transport of chloride. A CF Calu-3 cell is not available. Experimental approach: A retroviral vector was used to cause persistent down regulation of CFTR using siRNA methodology, in Calu-3 cells. A Calu-3 cell line with CFTR content less than 5% of the original line has been established. Epithelia grown using the modified cells have been used in comparative studies of transporting capability. Key results: All aspects of cAMP activated chloride secretion were attenuated in the epithelia with reduced CFTR content. However transporting capability was reduced less than the CFTR content. From studies with the CFTR channel inhibitor, GlyH-101, it was concluded that wild type Calu-3 cells have a reserve of CFTR channels not located in the membrane, but available for replacement, while in the modified Calu-3 cell line there was little or no reserve. Lubiprostone, a putative ClC-2 activator, increased transepithelial chloride secretion in both modified and wild type Calu-3 epithelia. Modified Calu-3 epithelia with the residual CFTR currents blocked with GlyH-101 responded equally well to lubiprostone as those without the blocking agent. Conclusions and implications: It appears that lubiprostone is capable of stimulating a non-CFTR dependent transepithelial chloride secretion in Calu-3 monolayers, with obvious implications for CF therapy. Cell lines, however, do not always reflect the behaviour of the native tissue with integrity. PMID:17339840
Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A.; Lang, Karl S.
2016-01-01
Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8+ T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8+ T cells and for viral control. In contrast to specific antibodies, memory CD8+ T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453
Markers of nonselective and specific NK cell activation.
Fogel, Leslie A; Sun, Michel M; Geurs, Theresa L; Carayannopoulos, Leonidas N; French, Anthony R
2013-06-15
NK cell activation is controlled by the integration of signals from cytokine receptors and germline-encoded activation and inhibitory receptors. NK cells undergo two distinct phases of activation during murine CMV (MCMV) infection: a nonselective phase mediated by proinflammatory cytokines and a specific phase driven by signaling through Ly49H, an NK cell activation receptor that recognizes infected cells. We sought to delineate cell surface markers that could distinguish NK cells that had been activated nonselectively from those that had been specifically activated through NK cell receptors. We demonstrated that stem cell Ag 1 (Sca-1) is highly upregulated during viral infections (to an even greater extent than CD69) and serves as a novel marker of early, nonselective NK cell activation. Indeed, a greater proportion of Sca-1(+) NK cells produced IFN-γ compared with Sca-1(-) NK cells during MCMV infection. In contrast to the universal upregulation of Sca-1 (as well as KLRG1) on NK cells early during MCMV infection, differential expression of Sca-1, as well as CD27 and KLRG1, was observed on Ly49H(+) and Ly49H(-) NK cells late during MCMV infection. Persistently elevated levels of KLRG1 in the context of downregulation of Sca-1 and CD27 were observed on NK cells that expressed Ly49H. Furthermore, the differential expression patterns of these cell surface markers were dependent on Ly49H recognition of its ligand and did not occur solely as a result of cellular proliferation. These findings demonstrate that a combination of Sca-1, CD27, and KLRG1 can distinguish NK cells nonselectively activated by cytokines from those specifically stimulated through activation receptors.
NASA Astrophysics Data System (ADS)
Bae, S.; Bombardelli, F.; Wuertz, S.
2008-12-01
Understanding and managing microbial pollutions in water is one of the foremost challenges of establishing effective managements and remediation strategies to impaired water bodies polluted by uncharacterized fecal sources. Quantitative microbial source tracking (MST) approaches using fecal Bacteroidales and quantitative PCR (qPCR) assays to measure gene copies of host-specific 16S rRNA genetic markers are promising because they can allow for identifying and quantifying fecal loadings from a particular animal host and understanding the fate and transport of host-specific Bacteroidales over a range of conditions in water bodies. Similar to the case of traditional fecal indicator bacteria, a relatively long persistence of target DNA may hamper applied MST studies, if genetic markers cannot be linked to recent fecal pollution in water. We report a successful approach to removing the qPCR signal derived from free DNA and dead host-specific Bacteroidales cells by selectively binding the DNA and consequently inhibiting PCR amplification using light- activated propidium monoazide (PMA). Optimal PMA-qPCR conditions were determined as 100 µM of PMA concentration and a 10-min light exposure time at different solids concentrations in order to mimic a range of water samples. Under these conditions, PMA-qPCR resulted in the selective exclusion of DNA from heat- treated cells of non-culturable Bacteroidales in human feces and wastewater influent and effluent samples. Also, the persistence of feces-derived host-specific Bacteroidales DNA and their cells (determined by universal, human-, cow- and dog-specific Bacteroidales qPCR assays) in seawater was investigated in microcosms at environmental conditions. The average T99 (two log reduction) value for host-specific viable Bacteroidales cells was 28 h, whereas that for total host-specific Bacteroidales DNA was 177 h. Natural sunlight did not have a strong influence on the fate of fecal Bacteroidales cells and their DNA, presumably because the presence of oxygen significantly affected the viability and persistence of these obligate anaerobes. In conclusion, measuring Bacteroidales DNA in viable cells is recommended in applied MST studies because extracellular Bacteroidales DNA persists longer in the environment. The methods and results presented are helpful to improve the accuracy of MST applications, to develop a model of fate and transport of host-specific Bacteroidales, and to implement management practices to protect water quality.
Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh
2016-12-01
Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH-) and CD44-negative/CD24-negative (CD44-/CD24-) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer.
Anderton, P; Wild, T F; Zwingelstein, G
1983-01-01
In BGM cells chronically infected with measles virus, although the composition of the phospholipids is unaltered, the fatty acid composition is modified. Uninfected, lytic and persistently infected cells were labelled with [3H]arachidonic acid and [14C]stearic acid and their metabolic fate analysed. No difference in the total incorporation was observed in the different systems. However, the [14C]stearic acid and [3H]arachidonic acid were incorporated up to 2-fold and 13-fold respectively greater into the neutral lipid of persistently infected compared with that of uninfected cells. Both radioactive fatty acids were specifically accumulated in the triacylglycerol and non-esterified fatty acids fractions. Lytically infected cells were similar to uninfected cells. Although there was no significant difference in the incorporation of radioactivity into the total phospholipid in either system, there was a large decrease in [3H]arachidonic acid incorporated into phosphatidylethanolamine and to a lesser extent phosphatidylcholine and phosphatidylinositol in persistently infected cells. [14C]Stearic acid incorporation was also reduced in phosphatidylcholine and phosphatidylethanolamine fractions of persistently infected cells. PMID:6414459
Perelygina, Ludmila; Adebayo, Adebola; Metcalfe, Maureen; Icenogle, Joseph
2015-01-01
Both wild type (WT) and vaccine rubella virus (RV) can pass through the placenta to infect a human fetus, but only wtRV routinely causes pathology. To investigate possible reasons for this, we compared establishment of persistence of wtRV and RA27/3 vaccine strains in fetal endothelial cells. We showed that yields of RA27/3 and wtRV were similar after the first round of replication, but then only vaccine-infected cultures went through a crisis characterized by partial cell loss and gradual decline of virus titer followed by recovery and establishment of persistent cultures with low levels of RA27/3 secretion. We compared various steps of virus replication, but we were unable to identify changes, which might explain the 2-log difference in RA27/3 and wtRV yields in persistently infected cultures. Whole genome sequencing did not reveal selection of virus variants in either the wtRV or RA27/3 cultures. Quantitative single-cell analysis of RV replication by in situ hybridization detected, on average, 1–4 copies of negative-strand RNA and ~50 copies of positive-strand genomic RNA in cells infected with both vaccine and WT viruses. The distinct characteristics of RA27/3 replication were the presence of large amounts of negative-strand RV RNA and RV dsRNA at the beginning of the crisis and the accumulation of high amounts of genomic RNA in a subpopulation of infected cells during crisis and persistence. These results suggest that RA27/3 can persist in fetal endothelial cells, but the characteristics of persistence and mechanisms for the establishment and maintenance of persistence are different from wtRV. PMID:26177032
ERIC Educational Resources Information Center
Cohen-Matsliah, Sivan Ida; Seroussi, Yaron; Rosenblum, Kobi; Barkai, Edi
2008-01-01
Pyramidal neurons in the piriform cortex from olfactory-discrimination (OD) trained rats undergo synaptic modifications that last for days after learning. A particularly intriguing modification is reduced paired-pulse facilitation (PPF) in the synapses interconnecting these cells; a phenomenon thought to reflect enhanced synaptic release. The…
Lifelong memory responses perpetuate humoral TH2 immunity and anaphylaxis in food allergy.
Jiménez-Saiz, Rodrigo; Chu, Derek K; Mandur, Talveer S; Walker, Tina D; Gordon, Melissa E; Chaudhary, Roopali; Koenig, Joshua; Saliba, Sarah; Galipeau, Heather J; Utley, Adam; King, Irah L; Lee, Kelvin; Ettinger, Rachel; Waserman, Susan; Kolbeck, Roland; Jordana, Manel
2017-12-01
A number of food allergies (eg, fish, shellfish, and nuts) are lifelong, without any disease-transforming therapies, and unclear in their underlying immunology. Clinical manifestations of food allergy are largely mediated by IgE. Although persistent IgE titers have been attributed conventionally to long-lived IgE + plasma cells (PCs), this has not been directly and comprehensively tested. We sought to evaluate mechanisms underlying persistent IgE and allergic responses to food allergens. We used a model of peanut allergy and anaphylaxis, various knockout mice, adoptive transfer experiments, and in vitro assays to identify mechanisms underlying persistent IgE humoral immunity over almost the entire lifespan of the mouse (18-20 months). Contrary to conventional paradigms, our data show that clinically relevant lifelong IgE titers are not sustained by long-lived IgE + PCs. Instead, lifelong reactivity is conferred by allergen-specific long-lived memory B cells that replenish the IgE + PC compartment. B-cell reactivation requires allergen re-exposure and IL-4 production by CD4 T cells. We define the half-lives of antigen-specific germinal centers (23.3 days), IgE + and IgG 1 + PCs (60 and 234.4 days, respectively), and clinically relevant cell-bound IgE (67.3 days). These findings can explain lifelong food allergies observed in human subjects as the consequence of allergen exposures that recurrently activate memory B cells and identify these as a therapeutic target with disease-transforming potential. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Shiraishi, Kazunori; Shimura, Tsutomu; Taga, Masataka; Uematsu, Norio; Gondo, Yoichi; Ohtaki, Megu; Kominami, Ryo; Niwa, Ohtsura
2002-06-01
Untargeted mutation and delayed mutation are features of radiation-induced genomic instability and have been studied extensively in tissue culture cells. The mouse pink-eyed unstable (p(un)) mutation is due to an intragenic duplication of the pink-eyed dilution locus and frequently reverts back to the wild type in germ cells as well as in somatic cells. The reversion event can be detected in the retinal pigment epithelium as a cluster of pigmented cells (eye spot). We have investigated the reversion p(um) in F1 mice born to irradiated males. Spermatogonia-stage irradiation did not affect the frequency of the reversion in F1 mice. However, 6 Gy irradiation at the spermatozoa stage resulted in an approximately twofold increase in the number of eye spots in the retinal pigment epithelium of F1 mice. Somatic reversion occurred for the paternally derived p(un) alleles. In addition, the reversion also occurred for the maternally derived, unirradiated p(un) alleles at a frequency equal to that for the paternally derived allele. Detailed analyses of the number of pigmented cells per eye spot indicated that the frequency of reversion was persistently elevated during the proliferation cycle of the cells in the retinal pigment epithelium when the male parents were irradiated at the spermatozoa stage. The present study demonstrates the presence of a long-lasting memory of DNA damage and the persistent up-regulation of recombinogenic activity in the retinal pigment epithelium of the developing fetus.
Local and Systemic Response of Mice to Interferon-α1 -Transfected Friend Leukemia Cells
Gabriele, Lucia; Kaido, Thomas; Woodrow, David; Moss, Jill; Ferrantini, Maria; Proletti, Enrico; Santodonato, Laura; Rozera, Carmela; Maury, Chantal; Gresser, Ion
1995-01-01
DBA/2 mice were injected subcutaneously with an interferon (IFN)-α/-resistant line of Friend erythroleukemia cells (FLC) transfected with the mouse IFN-α1 gene. These tumor cells produced IFN constitutively, and mice had persistently high levels of IFN in the circulation. We examined the IFN-induced host mechanisms responsible for the local inhibition of growth of these IFN-α-transfected FLC and some of the unusual systemic effects of constant interferonemia such as extramedullary hematopoiesis in the liver, an increase in myeloid cells in the spleen, and persistently elevated splenic natural killer (NK) cell activity. In addition, both DBA/2 +/bg and beige mice developed a rapid and specific resistance to intravenous challenge with parental FLC In previous experiments DBA/2 beige mice could not be protected by exogenous IFN-α/β. The differences in the response of mice to the constitutive production of IFN-α by IFN-α-transfected tumor cells and their response to exogenous IFN is discussed in terms of the effects of IFN on the host and of antitumor therapy. ImagesFigure 2Figure 3Figure 4Figure 5Figure 6 PMID:7639337
The Role of Helicobacter pylori Outer Membrane Proteins in Adherence and Pathogenesis
Oleastro, Mónica; Ménard, Armelle
2013-01-01
Helicobacter pylori is one of the most successful human pathogens, which colonizes the mucus layer of the gastric epithelium of more than 50% of the world’s population. This curved, microaerophilic, Gram-negative bacterium induces a chronic active gastritis, often asymptomatic, in all infected individuals. In some cases, this gastritis evolves to more severe diseases such as peptic ulcer disease, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. H. pylori has developed a unique set of factors, actively supporting its successful survival and persistence in its natural hostile ecological niche, the human stomach, throughout the individual’s life, unless treated. In the human stomach, the vast majority of H. pylori cells are motile in the mucus layer lining, but a small percentage adheres to the epithelial cell surfaces. Adherence to the gastric epithelium is important for the ability of H. pylori to cause disease because this intimate attachment facilitates: (1) colonization and persistence, by preventing the bacteria from being eliminated from the stomach, by mucus turnover and gastric peristalsis; (2) evasion from the human immune system and (3) efficient delivery of proteins into the gastric cell, such as the CagA oncoprotein. Therefore, bacteria with better adherence properties colonize the host at higher densities. H. pylori is one of the most genetically diverse bacterial species known and is equipped with an extraordinarily large set of outer membrane proteins, whose role in the infection and persistence process will be discussed in this review, as well as the different receptor structures that have been so far described for mucosal adherence. PMID:24833057
Macrophages are necessary for epimorphic regeneration in African spiny mice.
Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W
2017-05-16
How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration ( Acomys cahirinus ) and scarring ( Mus musculus ), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response.
Macrophages are necessary for epimorphic regeneration in African spiny mice
Simkin, Jennifer; Gawriluk, Thomas R; Gensel, John C; Seifert, Ashley W
2017-01-01
How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration (Acomys cahirinus) and scarring (Mus musculus), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response. DOI: http://dx.doi.org/10.7554/eLife.24623.001 PMID:28508748
Kim, Wooseong; Conery, Annie L.; Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Ausubel, Frederick M.; Mylonakis, Eleftherios
2015-01-01
Persisters are a subpopulation of normal bacterial cells that show tolerance to conventional antibiotics. Persister cells are responsible for recalcitrant chronic infections and new antibiotics effective against persisters would be a major development in the treatment of these infections. Using the reporter dye SYTOX Green that only stains cells with permeabilized membranes, we developed a fluorescence-based screening assay in a 384-well format for identifying compounds that can kill methicillin-resistant Staphylococcus aureus (MRSA) persisters. The assay proved robust and suitable for high throughput screening (Z`-factor: >0.7). In screening a library of hits from a previous screen, which identified compounds that had the ability to block killing of the nematode Caenorhabditis by MRSA, we discovered that the low molecular weight compound NH125, a bacterial histidine kinase inhibitor, kills MRSA persisters by causing cell membrane permeabilization, and that 5 μg/mL of the compound can kill all cells to the limit of detection in a 108 CFU/mL culture of MRSA persisters within 3h. Furthermore, NH125 disrupts 50% of established MRSA biofilms at 20 μg/mL and completely eradicates biofilms at 160 μg/mL. Our results suggest that the SYTOX Green screening assay is suitable for large-scale projects to identify small molecules effective against MRSA persisters and should be easily adaptable to a broad range of pathogens that form persisters. Since NH125 has strong bactericidal properties against MRSA persisters and high selectivity to bacteria, we believe NH125 is a good anti-MRSA candidate drug that should be further evaluated. PMID:26039584
Zhou, Juhua; Dudley, Mark E.; Rosenberg, Steven A.; Robbins, Paul F.
2007-01-01
Summary The authors recently reported that adoptive immunotherapy with autologous tumor-reactive tumor infiltrating lymphocytes (TILs) immediately following a conditioning nonmyeloablative chemotherapy regimen resulted in an enhanced clinical response rate in patients with metastatic melanoma. These observations led to the current studies, which are focused on a detailed analysis of the T-cell antigen reactivity as well as the in vivo persistence of T cells in melanoma patient 2098, who experienced a complete regression of all metastatic lesions in lungs and soft tissues following therapy. Screening of an autologous tumor cell cDNA library using transferred TILs resulted in the identification of novel mutated growth arrest-specific gene 7 (GAS7) and glyceral-dehyde-3-phosphate dehydrogenase (GAPDH) gene transcripts. Direct sequence analysis of the expressed T-cell receptor beta chain variable regions showed that the transferred TILs contained multiple T-cell clonotypes, at least six of which persisted in peripheral blood for a month or more following transfer. The persistent T cells recognized both the mutated GAS7 and GAPDH. These persistent tumor-reactive T-cell clones were detected in tumor cell samples obtained from the patient following adoptive cell transfer and appeared to be represented at higher levels in the tumor sample obtained 1 month following transfer than in the peripheral blood obtained at the same time. Overall, these results indicate that multiple tumor-reactive T cells can persist in the peripheral blood and at the tumor site for prolonged times following adoptive transfer and thus may be responsible for the complete tumor regression in this patient. PMID:15614045
Shalaby, Karim H; Lyons-Cohen, Miranda R; Whitehead, Gregory S; Thomas, Seddon Y; Prinz, Immo; Nakano, Hideki; Cook, Donald N
2017-11-14
Mechanisms that elicit mucosal T H 17 cell responses have been described, yet how these cells are sustained in chronically inflamed tissues remains unclear. We sought to understand whether maintenance of lung T H 17 inflammation requires environmental agents in addition to antigen and to identify the lung antigen-presenting cell (APC) types that sustain the self-renewal of T H 17 cells. Animals were exposed repeatedly to aspiration of ovalbumin alone or together with environmental adjuvants, including common house dust extract (HDE), to test their role in maintaining lung inflammation. Alternatively, antigen-specific effector/memory T H 17 cells, generated in culture with CD4 + T cells from Il17a fate-mapping mice, were adoptively transferred to assess their persistence in genetically modified animals lacking distinct lung APC subsets or cell-specific Toll-like receptor (TLR) 4 signaling. T H 17 cells were also cocultured with lung APC subsets to determine which of these could revive their expansion and activation. T H 17 cells and the consequent neutrophilic inflammation were poorly sustained by inhaled antigen alone but were augmented by inhalation of antigen together with HDE. This was associated with weight loss and changes in lung physiology consistent with interstitial lung disease. The effect of HDE required TLR4 signaling predominantly in lung hematopoietic cells, including CD11c + cells. CD103 + and CD11b + conventional dendritic cells interacted directly with T H 17 cells in situ and revived the clonal expansion of T H 17 cells both ex vivo and in vivo, whereas lung macrophages and B cells could not. T H 17-dependent inflammation in the lungs can be sustained by persistent TLR4-mediated activation of lung conventional dendritic cells. Published by Elsevier Inc.
Fineran, Paul; Lloyd-Evans, Emyr; Lack, Nathan A; Platt, Nick; Davis, Lianne C; Morgan, Anthony J; Höglinger, Doris; Tatituri, Raju Venkata V; Clark, Simon; Williams, Ian M; Tynan, Patricia; Al Eisa, Nada; Nazarova, Evgeniya; Williams, Ann; Galione, Antony; Ory, Daniel S; Besra, Gurdyal S; Russell, David G; Brenner, Michael B; Sim, Edith; Platt, Frances M
2016-11-18
Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis , achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.
Maree, Francois; de Klerk-Lorist, Lin-Mari; Gubbins, Simon; Zhang, Fuquan; Seago, Julian; Pérez-Martín, Eva; Reid, Liz; Scott, Katherine; van Schalkwyk, Louis; Bengis, Roy; Juleff, Nicholas
2016-01-01
ABSTRACT Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more efficiently in passaged cell cultures. These results may provide a mechanism for the dominance of particular viruses in an ecosystem. PMID:26962214
NASA Astrophysics Data System (ADS)
Lan, Tian; Cheng, Kai; Ren, Tina; Arce, Stephen Hugo; Tseng, Yiider
2016-09-01
Cell migration is an essential process in organism development and physiological maintenance. Although current methods permit accurate comparisons of the effects of molecular manipulations and drug applications on cell motility, effects of alterations in subcellular activities on motility cannot be fully elucidated from those methods. Here, we develop a strategy termed cell-nuclear (CN) correlation to parameterize represented dynamic subcellular activities and to quantify their contributions in mesenchymal-like migration. Based on the biophysical meaning of the CN correlation, we propose a cell migration potential index (CMPI) to measure cell motility. When the effectiveness of CMPI was evaluated with respect to one of the most popular cell migration analysis methods, Persistent Random Walk, we found that the cell motility estimates among six cell lines used in this study were highly consistent between these two approaches. Further evaluations indicated that CMPI can be determined using a shorter time period and smaller cell sample size, and it possesses excellent reliability and applicability, even in the presence of a wide range of noise, as might be generated from individual imaging acquisition systems. The novel approach outlined here introduces a robust strategy through an analysis of subcellular locomotion activities for single cell migration assessment.
McGonigle, John E; Purves, Joanne; Rolff, Jens
2016-06-01
Survival of bacteria within host cells and tissues presents a challenge to the immune systems of higher organisms. Escape from phagocytic immune cells compounds this issue, as immune cells become potential vehicles for pathogen dissemination. However, the duration of persistence within phagocytes and its contribution to pathogen load has yet to be determined. We investigate the immunological significance of intracellular persistence within the insect model Tenebrio molitor, assessing the extent, duration and location of bacterial recovery during a persistent infection. Relative abundance of Staphylococcus aureus in both intracellular and extracellular fractions was determined over 21 days, and live S. aureus were successfully recovered from both the hemolymph and within phagocytic immune cells across the entire time course. The proportion of bacteria recovered from within phagocytes also increased over time. Our results show that to accurately estimate pathogen load it is vital to account for bacteria persisting within immune cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Medjkane, Souhila; Perez-Sanchez, Cristina; Gaggioli, Cedric; Sahai, Erik; Treisman, Richard
2009-03-01
Rho GTPases control cytoskeletal dynamics through cytoplasmic effectors and regulate transcriptional activation through myocardin-related transcription factors (MRTFs), which are co-activators for serum response factor (SRF). We used RNA interference to investigate the contribution of the MRTF-SRF pathway to cytoskeletal dynamics in MDA-MB-231 breast carcinoma and B16F2 melanoma cells, in which basal MRTF-SRF activity is Rho-dependent. Depletion of MRTFs or SRF reduced cell adhesion, spreading, invasion and motility in culture, without affecting proliferation or inducing apoptosis. MRTF-depleted tumour cell xenografts showed reduced cell motility but proliferated normally. Tumour cells depleted of MRTF or SRF failed to colonize the lung from the bloodstream, being unable to persist after their arrival in the lung. Only a few genes show MRTF-dependent expression in both cell lines. Two of these, MYH9 (NMHCIIa) and MYL9 (MLC2), are also required for invasion and lung colonization. Conversely, expression of activated MAL/MRTF-A increases lung colonization by poorly metastatic B16F0 cells. Actin-based cell behaviour and experimental metastasis thus require Rho-dependent nuclear signalling through the MRTF-SRF network.
Efficacy of Lysine-Specific Demethylase 1 Inhibition in PCa
2016-08-01
specific demethylase 1 (LSD1) forms a complex with CoREST and has been well-characterized as an epigenetic regulator that mediates transcriptional...castration-resistant prostate cancer (CRPC), where AR activity persists and its function may be altered by epigenetic mechanisms. Specifically, we...hypothesized that LSD1 activity in PCa may allow tumor cells to epigenetically reprogram the AR cistrome by closing AR binding sites through which AR
Oduwole, Olayiwola O; Peltoketo, Hellevi; Poliandri, Ariel; Vengadabady, Laura; Chrusciel, Marcin; Doroszko, Milena; Samanta, Luna; Owen, Laura; Keevil, Brian; Rahman, Nafis A; Huhtaniemi, Ilpo T
2018-05-01
Spermatogenesis is regulated by the 2 pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). This process is considered impossible without the absolute requirement of LH-stimulated testicular testosterone (T) production. The role of FSH remains unclear because men and mice with inactivating FSH receptor (FSHR) mutations are fertile. We revisited the role of FSH in spermatogenesis using transgenic mice expressing a constitutively strongly active FSHR mutant in a LH receptor-null (LHR-null) background. The mutant FSHR reversed the azoospermia and partially restored fertility of Lhr-/- mice. The finding was initially ascribed to the residual Leydig cell T production. However, when T action was completely blocked with the potent antiandrogen flutamide, spermatogenesis persisted. Hence, completely T-independent spermatogenesis is possible through strong FSHR activation, and the dogma of T being a sine qua non for spermatogenesis may need modification. The mechanism for the finding appeared to be that FSHR activation maintained the expression of Sertoli cell genes considered androgen dependent. The translational message of our findings is the possibility of developing a new strategy of high-dose FSH treatment for spermatogenic failure. Our findings also provide an explanation of molecular pathogenesis for Pasqualini syndrome (fertile eunuchs; LH/T deficiency with persistent spermatogenesis) and explain how the hormonal regulation of spermatogenesis has shifted from FSH to T dominance during evolution.
Leptin Metabolically Licenses T Cells for Activation to Link Nutrition and Immunity
Saucillo, Donte C.; Gerriets, Valerie A.; Sheng, John; Rathmell, Jeffrey C.; MacIver, Nancie J.
2013-01-01
Immune responses are highly energy dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. While it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show here that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell-intrinsic and specific to activated effector T cells, as naïve T cells and Treg did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency. PMID:24273001
Zihni, Ceniz; Harris, Andrew R.; Bailly, Maryse; Charras, Guillaume T.; Balda, Maria S.; Matter, Karl
2012-01-01
Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells. PMID:23185572
Stanton, P K; Mody, I; Heinemann, U
1989-01-01
Mechanisms of action of norepinephrine (NE) on dentate gyrus granule cells were studied in rat hippocampal slices using extra- and intracellular recordings and measurements of stimulus and amino acid-induced changes in extracellular Ca2+ and K+ concentration. Bath application of NE (10-50 microM) induced long-lasting potentiation of perforant path evoked potentials, and markedly enhanced high-frequency stimulus-induced Ca2+ influx and K+ efflux, actions blocked by beta-receptor antagonists and mimicked by beta agonists. Enhanced Ca2+ influx was primarily postsynaptic, since presynaptic delta [Ca2+]o in the stratum moleculare synaptic field was not altered by NE. Interestingly, the potentiation of both ionic fluxes and evoked population potentials were antagonized by the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovalerate (APV). Furthermore, NE selectively enhanced the delta [Ca2+]o delta [K+]o and extracellular slow negative field potentials elicited by iontophoretically applied NMDA, but not those induced by the excitatory amino acid quisqualate. These results suggest that granule cell influx of Ca2+ through NMDA ionophores is enhanced by NE via beta-receptor activation. In intracellular recordings, NE depolarized granule cells (4.8 +/- 1.1 mV), and increased input resistance (RN) by 34 +/- 6.5%. These actions were also blocked by either the beta-antagonist propranolol or specific beta 1-blocker metoprolol. Moreover, the depolarization and RN increase persisted for long periods (93 +/- 12 min) after NE washout. In contrast, while NE, in the presence of APV, still depolarized granule cells and increased RN, APV made these actions quickly reversible upon NE washout (16 +/- 9 min). This suggested that NE induction of long-term, but not short-term, plasticity in the dentate gyrus requires NMDA receptor activation. NE may be enhancing granule cell firing by some combination of blockade on the late Ca2+-activated K+ conductance and depolarization of granule cells, both actions that can bring granule cells into a voltage range where NMDA receptors are more easily activated. Furthermore, NE also elicited activity-independent long-lasting depolarization and RN increases, which required functional NMDA receptors to persist.
G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV
Madireddy, Advaitha; Purushothaman, Pravinkumar; Loosbroock, Christopher P.; Robertson, Erle S.; Schildkraut, Carl L.; Verma, Subhash C.
2016-01-01
Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases. PMID:26837574
Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques
Micci, Luca; Ryan, Emily S.; Fromentin, Rémi; Bosinger, Steven E.; Harper, Justin L.; He, Tianyu; Paganini, Sara; Easley, Kirk A.; Chahroudi, Ann; Benne, Clarisse; Gumber, Sanjeev; McGary, Colleen S.; Rogers, Kenneth A.; Deleage, Claire; Lucero, Carissa; Byrareddy, Siddappa N.; Apetrei, Cristian; Estes, Jacob D.; Lifson, Jeffrey D.; Piatak, Michael; Chomont, Nicolas; Villinger, Francois; Silvestri, Guido; Brenchley, Jason M.; Paiardini, Mirko
2015-01-01
Despite successful control of viremia, many HIV-infected individuals given antiretroviral therapy (ART) exhibit residual inflammation, which is associated with non–AIDS-related morbidity and mortality and may contribute to virus persistence during ART. Here, we investigated the effects of IL-21 administration on both inflammation and virus persistence in ART-treated, SIV-infected rhesus macaques (RMs). Compared with SIV-infected animals only given ART, SIV-infected RMs given both ART and IL-21 showed improved restoration of intestinal Th17 and Th22 cells and a more effective reduction of immune activation in blood and intestinal mucosa, with the latter maintained through 8 months after ART interruption. Additionally, IL-21, in combination with ART, was associated with reduced levels of SIV RNA in plasma and decreased CD4+ T cell levels harboring replication-competent virus during ART. At the latest experimental time points, which were up to 8 months after ART interruption, plasma viremia and cell-associated SIV DNA levels remained substantially lower than those before ART initiation in IL-21–treated animals but not in controls. Together, these data suggest that IL-21 supplementation of ART reduces residual inflammation and virus persistence in a relevant model of lentiviral disease and warrants further investigation as a potential intervention for HIV infection. PMID:26551680
Virus-host interactions in persistently FMDV-infected cells derived from bovine pharynx
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease virus (FMDV) produces a disease in cattle characterized by vesicular lesions and a persistent infection with asymptomatic low-level production of virus. Here we describe the establishment of a persistently infected primary cell culture derived from bovine pharynx tissue (PBPT)...
Mapping EBNA-1 Domains Involved in Binding to Metaphase Chromosomes
Marechal, Vincent; Dehee, Axelle; Chikhi-Brachet, Roxane; Piolot, Tristan; Coppey-Moisan, Maité; Nicolas, Jean-Claude
1999-01-01
The Epstein-Barr virus (EBV) genome can persist in dividing human B cells as multicopy circular episomes. Viral episomes replicate in synchrony with host cell DNA and are maintained at a relatively constant copy number for a long time. Only two viral elements, the replication origin OriP and the EBNA-1 protein, are required for the persistence of viral genomes during latency. EBNA-1 activates OriP during the S phase and may also contribute to the partition and/or retention of viral genomes during mitosis. Indeed, EBNA-1 has been shown to interact with mitotic chromatin. Moreover, viral genomes are noncovalently associated with metaphase chromosomes. This suggests that EBNA-1 may facilitate the anchorage of viral genomes on cellular chromosomes, thus ensuring proper partition and retention. In the present paper, we have investigated the chromosome-binding activity of EBV EBNA-1, herpesvirus papio (HVP) EBNA-1, and various derivatives of EBV EBNA-1, fused to a variant of the green fluorescent protein. The results show that binding to metaphase chromosomes is a common property of EBV and HVP EBNA-1. Further studies indicated that at least three independent domains (CBS-1, -2, and -3) mediate EBNA-1 binding to metaphase chromosomes. In agreement with the anchorage model, two of these domains mapped to a region that has been previously demonstrated to be required for the long-term persistence of OriP-containing plasmids. PMID:10196336
Cunningham, Cameron R.; Champhekar, Ameya; Tullius, Michael V.; Dillon, Barbara Jane; Zhen, Anjie; de la Fuente, Justin Rafael; Herskovitz, Jonathan; Elsaesser, Heidi; Snell, Laura M.; Wilson, Elizabeth B.; de la Torre, Juan Carlos; Kitchen, Scott G.; Horwitz, Marcus A.; Bensinger, Steven J.; Smale, Stephen T.; Brooks, David G.
2016-01-01
Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. PMID:26808628
Sundin, Mikael; Lindblom, Anna; Örvell, Claes; Barrett, A.John; Sundberg, Berit; Watz, Emma; Wikman, Agneta; Broliden, Kristina; Le Blanc, Katarina
2014-01-01
Multipotent mesenchymal stromal cells (MSC) are used to improve the outcome of hematopoietic stem cell transplantation and in regenerative medicine. However, MSC may harbor persistent viruses that may compromise their clinical benefit. Retrospectively screened, 1 of 20 MSC from healthy donors contained parvovirus B19 (B19) DNA. We found that MSC express the B19 receptor (the globoside P antigen) and a co-receptor (Ku 80), and can transmit B19 to bone marrow cells in vitro, suggesting that the virus can persist in the marrow stroma of healthy individuals. Two stem cell transplant patients received the B19 positive MSC as treatment for graft-versus-host disease. Neither developed viremia nor symptomatic B19 infection. These results demonstrate for the first time that persistent B19 in MSC can infect hematopoietic cells and underscore the importance of monitoring B19 transmission by MSC products. PMID:18804048
The role of stromal cells in the persistence of chronic inflammation
Naylor, A J; Filer, A; Buckley, C D
2013-01-01
Inflammation is an unstable state; it either resolves or persists. Inflammatory reactions often have a propensity for specific anatomical sites. Why inflammation persists with specific tissue tropism remains obscure. Increasing evidence suggests that stromal cells which define tissue architecture are the key cells involved, and therefore make attractive therapeutic targets. Research on stromal cells in general and fibroblasts in particular has so far been hampered by a lack of fibroblast-specific cell markers. This review highlights our increasing understanding of the role of fibroblasts in inflammation, and suggests that these cells provide the cellular basis for site specific chronic inflammation. PMID:23199320
Sadiq, Faizan A; Flint, Steve; Li, YanJun; Ou, Kai; Yuan, Lei; He, Guo Qing
2017-09-01
Phenotypic changes or phase variation within biofilms is an important feature of bacterial dormant life. Enhanced resistance to antimicrobials is one of the distinct features displayed by a fraction of cells within biofilms. It is believed that persisters are mainly responsible for this phenotypic heterogeneity. However, there is still an unresolved debate on the formation of persisters. In this short review, we highlight all known genomic and proteomic changes encountered by bacterial cells within biofilms. We have also described all phenotypic changes displayed by bacterial cells within biofilms with particular emphasis on enhanced antimicrobial tolerance of biofilms with particular reference to persisters. In addition, all currently known models of persistence have been succinctly discussed.
2011-01-01
Background Natural Killer (NK) cells are the most abundant lymphocytes in the decidua during early gestation. The interactions of NK cells with the extravillous cytotrophoblast have been associated with a normal spiral artery remodeling process, an essential event for a successful pregnancy. Recent data indicate that alterations in the amount of decidual NK (dNK) cells contribute to the development of preeclampsia (PE). Moreover, genetic studies suggest that Killer Immunoglobulin-like Receptors (KIR) expressed in dNK cells influence the susceptibility to PE. Although dNK cells have been well characterized during early pregnancy, they have been scarcely studied in the third trimester of gestation. The aim of this work was to characterize dNK cells at the last trimester of gestation and to analyze the KIR genotype of healthy and PE women. Methods Decidual samples were obtained during Caesarean section from control (n = 10) and PE (n = 9) women. Flow cytometric analysis of CD3, CD56, CD16 and CD9 was used to characterize and quantify dNK cells in both groups. Cell surface markers from decidual leukocytes were compared with PBMC from healthy donors. KIR genotyping was performed in genomic DNA (control, n = 86; PE, n = 90) using PCR-SSP. Results The results indicate that dNK cells persist throughout pregnancy. They represented 20% of total leukocytes in control and PE groups, and they expressed the same cell surface markers (CD3-, CD56+, CD16- and CD9+) as dNK in the first trimester of gestation. There were no significant differences in the percentage of dNK cells between control and PE groups. The analysis of KIR gene frequencies and genotypes was not statistically different between control and PE groups. The ratio of activating to inhibitory genes indicated that the overall inhibitory balance (0.2-0.5) was more frequent in the PE group (control, 31.3% vs PE, 45.5%), and the activating balance (0.6-1.1) was more frequent in the control group (control, 68.6% vs PE, 54.4%). However this difference was not significant. Conclusion We demonstrated the persistence of dNK cells in PE and control women at the third trimester of pregnancy; these dNK cells had a similar phenotype to those found during early pregnancy. The predominance of a KIR inhibitory balance in the PE group could be associated to the physiopathology of PE. PMID:21247496
Fox, Jennifer M.; Moynihan, James R.; Mott, Bryan T.; Mazzone, Jennifer R.; Anders, Nicole M.; Brown, Patrick A.; Rudek, Michelle A.; Liu, Jun O.; Arav-Boger, Ravit; Posner, Gary H.
2016-01-01
Artemisinins, endoperoxide-containing molecules, best known as antimalarials, have potent antineoplastic activity. The established antimalarial, artesunate (AS), and the novel artemisinin-derived trioxane diphenylphosphate dimer 838 (ART-838) inhibited growth of all 23 tested acute leukemia cell lines, reduced cell proliferation and clonogenicity, induced apoptosis, and increased intracellular levels of reactive oxygen species (ROS). ART-838 was 88-fold more potent that AS in vitro, inhibiting all leukemia cell lines at submicromolar concentrations. Both ART-838 and AS cooperated with several established antileukemic drugs and newer kinase inhibitors to inhibit leukemia cell growth. ART-838 had a longer plasma half-life than AS in immunodeficient NOD-SCID-IL2Rgnull (NSG) mice, remaining at effective antileukemic concentrations for >8h. Intermittent cycles of ART-838 inhibited growth of acute leukemia xenografts and primagrafts in NSG mice, at higher potency than AS. Based on these preclinical data, we propose that AS, with its established low toxicity and low cost, and ART-838, with its higher potency and longer persistence in vivo, should be further developed toward integration into antileukemic regimens. PMID:26771236
Long, Adrienne H.; Haso, Waleed M.; Shern, Jack F.; Wanhainen, Kelsey M.; Murgai, Meera; Ingaramo, Maria; Smith, Jillian P.; Walker, Alec J.; Kohler, M. Eric; Venkateshwara, Vikas R.; Kaplan, Rosandra N.; Patterson, George H.; Fry, Terry J.; Orentas, Rimas J.; Mackall, Crystal L.
2015-01-01
Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic anti-tumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We discovered that tonic CAR CD3ζ phosphorylation, triggered by antigen-independent clustering of CAR scFvs, can induce early exhaustion of CAR T cells that limits anti-tumor efficacy. Such activation is present to varying degrees in all CARs studied, with the exception of the highly effective CD19 CAR. We further identify that CD28 costimulation augments, while 4-1BB costimulation ameliorates, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the dramatic anti-tumor effects of CD19 CARs and for the observations that CD19.BBz CAR T cells are more persistent than CD19.28z CAR T cells in clinical trials. PMID:25939063
Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs.
Moyron-Quiroz, Juan E; Rangel-Moreno, Javier; Hartson, Louise; Kusser, Kim; Tighe, Michael P; Klonowski, Kimberly D; Lefrançois, Leo; Cauley, Linda S; Harmsen, Allen G; Lund, Frances E; Randall, Troy D
2006-10-01
Secondary lymphoid organs (SLOs) promote primary immune responses by recruiting naive lymphocytes and activated APCs. However, their role in the persistence or responsiveness of memory lymphocytes is unclear. We tested whether memory cells were maintained and could respond to challenge in the absence of SLOs. We found that influenza-specific CD8 cells in the lung acquired a memory phenotype, underwent homeostatic proliferation, recirculated through nonlymphoid tissues, and responded to and cleared a challenge infection in the complete absence of SLOs. Similarly, influenza-specific virus-neutralizing antibody was generated and maintained in the absence of SLOs. Inducible bronchus-associated lymphoid tissue (iBALT) was also formed in the lungs of previously infected mice and may provide a niche for the maintenance of memory cells at the local level. These data show that SLOs are dispensable for the maintenance of immunologic memory and directly demonstrate the utility of local tissues, such as iBALT, in secondary immune responses.
Ng, Mei Rosa; Besser, Achim
2012-01-01
The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration. PMID:23091067
Grünvogel, Oliver; Colasanti, Ombretta; Lee, Ji-Young; Klöss, Volker; Belouzard, Sandrine; Reustle, Anna; Esser-Nobis, Katharina; Hesebeck-Brinckmann, Jasper; Mutz, Pascal; Hoffmann, Katrin; Mehrabi, Arianeb; Koschny, Ronald; Vondran, Florian W R; Gotthardt, Daniel; Schnitzler, Paul; Neumann-Haefelin, Christoph; Thimme, Robert; Binder, Marco; Bartenschlager, Ralf; Dubuisson, Jean; Dalpke, Alexander H; Lohmann, Volker
2018-06-01
Hepatitis C virus (HCV) infections most often result in chronic outcomes, although the virus constantly produces replication intermediates, in particular double-stranded RNA (dsRNA), representing potent inducers of innate immunity. We aimed to characterize the fate of HCV dsRNA in hepatocyte cultures to identify mechanisms contributing to viral persistence in presence of an active innate immune response. We analyzed hepatocyte-based culture models for HCV for induction of innate immunity, secretion of virus positive- or negative-strand RNA, and viral replication using different quantification methods and microscopy techniques. Expression of pattern recognition receptors was reconstituted in hepatoma cells by lentiviral transduction. HCV-infected cells secrete substantial amounts of virus positive- and negative-strand RNAs in extracellular vesicles (EVs), toward the apical and basolateral domain of hepatocytes. Secretion of negative-strand RNA was independent from virus production, and viral RNA secreted in EVs contained higher relative amounts of negative-strands, indicating that mostly virus dsRNA is released. A substantial part of viral replication complexes and dsRNA was found in the endosomal compartment and multivesicular bodies, indicating that secretion of HCV replication intermediates is mediated by the exosomal pathway. Block of vesicle release in HCV-positive cells increased intracellular dsRNA levels and increased activation of toll-like receptor 3, inhibiting HCV replication. Using hepatocyte-based culture models for HCV, we found a portion of HCV dsRNA intermediates to be released from infected cells in EVs, which reduces activation of toll-like receptor 3. This represents a novel mechanism how HCV evades host immune responses, potentially contributing to viral persistence. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers.
Shamji, Mohamed H; Durham, Stephen R
2017-12-01
Allergen immunotherapy is effective in patients with IgE-dependent allergic rhinitis and asthma. When immunotherapy is given continuously for 3 years, there is persistent clinical benefit for several years after its discontinuation. This disease-modifying effect is both antigen-specific and antigen-driven. Clinical improvement is accompanied by decreases in numbers of effector cells in target organs, including mast cells, basophils, eosinophils, and type 2 innate lymphoid cells. Immunotherapy results in the production of blocking IgG/IgG 4 antibodies that can inhibit IgE-dependent activation mediated through both high-affinity IgE receptors (FcεRI) on mast cells and basophils and low-affinity IgE receptors (FcεRII) on B cells. Suppression of T H 2 immunity can occur as a consequence of either deletion or anergy of antigen-specific T cells; induction of antigen-specific regulatory T cells; or immune deviation in favor of T H 1 responses. It is not clear whether the altered long-term memory resides within the T-cell or the B-cell compartment. Recent data highlight the role of IL-10-producing regulatory B cells and "protective" antibodies that likely contribute to long-term tolerance. Understanding mechanisms underlying induction and persistence of tolerance should identify predictive biomarkers of clinical response and discover novel and more effective strategies for immunotherapy. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Matsui, Shinichiro; Takeda, Yusuke; Isshiki, Yusuke; Yamazaki, Atsuko; Nakao, Sanshiro; Takaishi, Koji; Nagao, Yuhei; Hasegawa, Nagisa; Togasaki, Emi; Shimizu, Ryoh; Kawajiri, Chika; Sakai, Shio; Mimura, Naoya; Takeuchi, Masahiro; Ohwada, Chikako; Sakaida, Emiko; Iseki, Tohru; Imadome, Ken-Ichi; Nakaseko, Chiaki
2016-05-01
A 23-year-old woman presented with a persistent fever and shortness of breath. Computed tomography showed marked pericardial effusion, hepatosplenomegaly, and cervical and mediastinal lymph node swelling. Epstein-Barr virus (EBV) antibody titers were abnormally elevated, and the copy number of EBV-DNA was increased in peripheral blood. Based on these observations, she was diagnosed with chronic active EBV infection (CAEBV). The EBV-infected cells in her peripheral blood were CD4(+)T lymphocytes. Fever and pericardial effusion improved following treatment with a combination of prednisolone, etoposide, and cyclosporine; however, peripheral blood EBV-DNA levels remained high. The patient underwent allogeneic peripheral blood stem cell transplantation from an EBV-seronegative, HLA-matched sibling donor, with fludarabine and melphalan conditioning. The post-transplantation course was uneventful, except for mild skin acute graft-versus-host disease (grade 2). EBV-DNA became undetectable in peripheral blood 98 days post transplantation. She has since been in good health without disease recurrence. CAEBV is a potentially fatal disease caused by persistent EBV infection of T lymphocytes or natural killer cells, thus requiring prompt treatment and allogeneic transplantation. Pericardial effusion is rarely observed in CAEBV and can impede its diagnosis. Therefore, we should be aware that patients may present with marked pericardial effusion as an initial manifestation of CAEBV.
Oh, Jaeho; Edwards, Erin E.; McClatchey, P. Mason; Thomas, Susan N.
2015-01-01
ABSTRACT Selectins facilitate the recruitment of circulating cells from the bloodstream by mediating rolling adhesion, which initiates the cell–cell signaling that directs extravasation into surrounding tissues. To measure the relative efficiency of cell adhesion in shear flow for in vitro drug screening, we designed and implemented a microfluidic-based analytical cell adhesion chromatography system. The juxtaposition of instantaneous rolling velocities with elution times revealed that human metastatic cancer cells, but not human leukocytes, had a reduced capacity to sustain rolling adhesion with P-selectin. We define a new parameter, termed adhesion persistence, which is conceptually similar to migration persistence in the context of chemotaxis, but instead describes the capacity of cells to resist the influence of shear flow and sustain rolling interactions with an adhesive substrate that might modulate the probability of extravasation. Among cell types assayed, adhesion persistence to P-selectin was specifically reduced in metastatic but not leukocyte-like cells in response to a low dose of heparin. In conclusion, we demonstrate this as an effective methodology to identify selectin adhesion antagonist doses that modulate homing cell adhesion and engraftment in a cell-subtype-selective manner. PMID:26349809
He, Shan; Liu, Yongnian; Meng, Lijun; Sun, Hongxing; Wang, Ying; Ji, Yun; Purushe, Janaki; Chen, Pan; Li, Changhong; Madzo, Jozef; Issa, Jean-Pierre; Soboloff, Jonathan; Reshef, Ran; Moore, Bethany; Gattinoni, Luca; Zhang, Yi
2017-12-14
Memory T cells sustain effector T-cell production while self-renewing in reaction to persistent antigen; yet, excessive expansion reduces memory potential and impairs antitumor immunity. Epigenetic mechanisms are thought to be important for balancing effector and memory differentiation; however, the epigenetic regulator(s) underpinning this process remains unknown. Herein, we show that the histone methyltransferase Ezh2 controls CD8 + T memory precursor formation and antitumor activity. Ezh2 activates Id3 while silencing Id2, Prdm1 and Eomes, promoting the expansion of memory precursor cells and their differentiation into functional memory cells. Akt activation phosphorylates Ezh2 and decreases its control of these transcriptional programs, causing enhanced effector differentiation at the expense of T memory precursors. Engineering T cells with an Akt-insensitive Ezh2 mutant markedly improves their memory potential and capability of controlling tumor growth compared to transiently inhibiting Akt. These findings establish Akt-mediated phosphorylation of Ezh2 as a critical target to potentiate antitumor immunotherapeutic strategies.
Veeraraghavan, Jamunarani; Natarajan, Mohan; Herman, Terence S; Aravindan, Natarajan
2011-01-10
Radiation-induced amplification of reactive oxygen species (ROS) may be a sensing mechanism for activation of signaling cascades that influence cell fate. However, the regulated intrinsic mechanisms and targets of low-dose ionizing radiation (LDIR) are still unclear. Accordingly, we investigated the effects of LDIR on NFκB signal transduction and manganese superoxide dismutase (SOD2) activity in mice brain and gut. LDIR resulted in both dose-dependent and persistent NFκB activation in gut and brain. QPCR displayed a dose- and tissue-dependent differential modulation of 88 signaling molecules. With stringent criteria, a total of 15 (2cGy), 43 (10cGy) and 19 (50cGy) genes were found to be commonly upregulated between brain and gut. SOD2 immunostaining showed a LDIR-dose dependent increase. Consistent with the NFκB results, we observed a persistent increase in SOD2 activity after LDIR. Moreover, muting of LDIR-induced NFκB attenuated SOD2 transactivation and cellular localization. These results imply that exposure of healthy tissues to LDIR results in induced NFκB and SOD2 activity and transcriptional activation of NFκB-signal transduction/target molecules. More importantly, the results suggest that NFκB initiates a feedback response through transcriptional activation of SOD2 that may play a key role in the LDIR-induced oxidative stress response and may control the switch that directs cell fate. 2010 Elsevier B.V. All rights reserved.
Bergold, P J; Sweatt, J D; Winicov, I; Weiss, K R; Kandel, E R; Schwartz, J H
1990-01-01
Depending on the number or the length of exposure, application of serotonin can produce either short-term or long-term presynaptic facilitation of Aplysia sensory-to-motor synapses. The cAMP-dependent protein kinase, a heterodimer of two regulatory and two catalytic subunits, has been shown to become stably activated only during long-term facilitation. Both acquisition of long-term facilitation and persistent activation of the kinase is blocked by anisomycin, an effective, reversible, and specific inhibitor of protein synthesis in Aplysia. We report here that 2-hr exposure of pleural sensory cells to serotonin lowers the concentration of regulatory subunits but does not change the concentration of catalytic subunits, as assayed 24 hr later; 5-min exposure to serotonin has no effect on either type of subunit. Increasing intracellular cAMP with a permeable analog of cAMP together with the phosphodiesterase inhibitor isobutyl methylxanthine also decreased regulatory subunits, suggesting that cAMP is the second messenger mediating serotonin action. Anisomycin blocked the loss of regulatory subunits only when applied with serotonin; application after the 2-hr treatment with serotonin had no effect. In the Aplysia accessory radula contractor muscle, prolonged exposure to serotonin or to the peptide transmitter small cardioactive peptide B, both of which produce large increases in intracellular cAMP, does not decrease regulatory subunits. This mechanism of regulating the cAMP-dependent protein kinase therefore may be specific to the nervous system. We conclude that during long-term facilitation, new protein is synthesized in response to the facilitatory stimulus, which changes the ratio of subunits of the cAMP-dependent protein kinase. This alteration in ratio could persistently activate the kinase and produce the persistent phosphorylation seen in long-term facilitated sensory cells. Images PMID:1692622
Exploring viral reservoir: The combining approach of cell sorting and droplet digital PCR.
Gibellini, Lara; Pecorini, Simone; De Biasi, Sara; Pinti, Marcello; Bianchini, Elena; De Gaetano, Anna; Digaetano, Margherita; Pullano, Rosalberta; Lo Tartaro, Domenico; Iannone, Anna; Mussini, Cristina; Cossarizza, Andrea; Nasi, Milena
2018-02-01
Combined antiretroviral therapy (cART) blocks different steps of HIV replication and maintains plasma viral RNA at undetectable levels. The virus can remain in long-living cells and create a reservoir where HIV can restart replicating after cART discontinuation. A persistent viral production triggers and maintains a persistent immune activation, which is a well-known feature of chronic HIV infection, and contributes either to precocious aging, or to the increased incidence of morbidity and mortality of HIV positive patients. The new frontier of the treatment of HIV infection is nowadays eradication of the virus from all host cells and tissues. For this reason, it is crucial to have a clear and precise idea of where the virus hides, and which are the cells that keep it silent. Important efforts have been made to improve the detection of viral reservoirs, and new techniques are now giving the opportunity to characterize viral reservoirs. Among these techniques, a strategic approach based upon cell sorting and droplet digital PCR (ddPCR) is opening new horizons and opportunities of research. This review provides an overview of the methods that combine cell sorting and ddPCR for the quantification of HIV DNA in different cell types, and for the detection of its maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.
Wagner, Paula M; Sosa Alderete, Lucas G; Gorné, Lucas D; Gaveglio, Virginia; Salvador, Gabriela; Pasquaré, Susana; Guido, Mario E
2018-06-07
Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk. Here, we investigated whether the human glioblastoma T98G cells maintained quiescent or under proliferation keep a functional clock and whether cells display differential time responses to bortezomib chemotherapy. In arrested cultures, mRNAs for clock (Per1, Rev-erbα) and glycerophospholipid (GPL)-synthesizing enzyme genes, 32 P-GPL labeling, and enzyme activities exhibited circadian rhythmicity; oscillations were also found in the redox state/peroxiredoxin oxidation. In proliferating cells, rhythms of gene expression were lost or their periodicity shortened whereas the redox and GPL metabolisms continued to fluctuate with a similar periodicity as under arrest. Cell viability significantly changed over time after bortezomib treatment; however, this rhythmicity and the redox cycles were altered after Bmal1 knock-down, indicating cross-talk between the transcriptional and the metabolic oscillators. An intrinsic metabolic clock continues to function in proliferating cells, controlling diverse metabolisms and highlighting differential states of tumor suitability for more efficient, time-dependent chemotherapy when the redox state is high and GPL metabolism low.
PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma
Beldi-Ferchiou, Asma; Lambert, Marion; Dogniaux, Stéphanie; Vély, Frédéric; Vivier, Eric; Olive, Daniel; Dupuy, Stéphanie; Levasseur, Frank; Zucman, David; Lebbé, Céleste; Sène, Damien; Hivroz, Claire; Caillat-Zucman, Sophie
2016-01-01
Programmed Death-1 (PD-1), an inhibitory receptor expressed by activated lymphocytes, is involved in regulating T- and B-cell responses. PD-1 and its ligands are exploited by a variety of cancers to facilitate tumor escape through PD-1-mediated functional exhaustion of effector T cells. Here, we report that PD-1 is upregulated on Natural Killer (NK) cells from patients with Kaposi sarcoma (KS). PD-1 was expressed in a sub-population of activated, mature CD56dimCD16pos NK cells with otherwise normal expression of NK surface receptors. PD-1pos NK cells from KS patients were hyporesponsive ex vivo following direct triggering of NKp30, NKp46 or CD16 activating receptors, or short stimulation with NK cell targets. PD-1pos NK cells failed to degranulate and release IFNγ, but exogenous IL-2 or IL-15 restored this defect. That PD-1 contributed to NK cell functional impairment and was not simply a marker of dysfunctional NK cells was confirmed in PD-1-transduced NKL cells. In vitro, PD-1 was induced at the surface of healthy control NK cells upon prolonged contact with cells expressing activating ligands, i.e. a condition mimicking persistent stimulation by tumor cells. Thus, PD-1 appears to plays a critical role in mediating NK cell exhaustion. The existence of this negative checkpoint fine-tuning NK activation highlights the possibility that manipulation of the PD-1 pathway may be a strategy for circumventing tumor escape not only from the T cell-, but also the NK-cell mediated immune surveillance. PMID:27662664
Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer
Miot, Jennyfer; Remusat, Laurent; Duprat, Elodie; Gonzalez, Adriana; Pont, Sylvain; Poinsot, Mélanie
2015-01-01
Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is, however, thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had, however, never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II) oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate) encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidence of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasmic encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a survival strategy in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern environmental samples. PMID:26441847
She, Tiantian; Feng, Junnan; Lian, Shenyi; Li, Ruobing; Zhao, Chuanke; Song, Guoliang; Luo, Jie; Dawuti, Rouxianguli; Cai, Shaoqing; Qu, Like; Shou, Chengchao
2017-01-01
Sarsaparilla (Smilax Glabra Rhizome) exerts growth inhibitory effect on multiple cancer cells in vitro and in vivo, and redox-dependent persistent activation of ERK1/2 has been reported to underlie this effect. Here, we report an activation of ATM/ATR-dependent signaling pathway also as a mechanism for the cancer cell growth inhibition induced by the supernatant fraction of the water-soluble extract from sarsaparilla (SW). SW treatment (3.5 μg/μL) promoted the phosphorylations of ATM, ATR, and CHK1 in AGS and HT-29 cells. The ATM kinase inhibitor, KU55933, could reverse SW-induced ERK phosphorylation but not the reduced glutathione/oxidized glutathione (GSH/GSSG) imbalance in AGS cells. However, both the redox inhibitor glutathione (GSH) and ERK inhibitor U0126 antagonized SW-induced phosphorylations of ATM, ATR, and CHK1 in AGS cells. We further found KU55933 significantly antagonized SW-induced S phase arrest, apoptosis, autophagy and the resultant cell growth inhibition. Our results provide another molecular basis for the anticancer action of sarsaparilla.
Cunyat, Francesc; Rainho, Jennifer N.; West, Brian; Swainson, Louise; McCune, Joseph M.
2016-01-01
ABSTRACT Strategies aimed at eliminating persistent viral reservoirs from HIV-1-infected individuals have focused on CD4+ T-cell reservoirs. However, very little attention has been given to approaches that could promote elimination of tissue macrophage reservoirs. HIV-1 infection of macrophages induces phosphorylation of colony-stimulating factor 1 receptor (CSF-1R), which confers resistance to apoptotic pathways driven by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), thereby promoting viral persistence. In this study, we assessed whether CSF-1R antagonists (PLX647, PLX3397, and PLX5622) restored apoptotic sensitivity of HIV-1-infected macrophages in vitro. PLX647, PLX3397, and PLX5622 at clinically relevant concentrations blocked the activation of CSF-1R and reduced the viability of infected macrophages, as well as the extent of viral replication. Our data show that strategies targeting monocyte colony-stimulating factor (MCSF) signaling could be used to promote elimination of HIV-1-infected myeloid cells and to contribute to the elimination of persistent viral reservoirs. IMPORTANCE As the HIV/AIDS research field explores approaches to eliminate HIV-1 in individuals on suppressive antiviral therapy, those approaches will need to eliminate both CD4+ T-cell and myeloid cell reservoirs. Most of the attention has focused on CD4+ T-cell reservoirs, and scant attention has been paid to myeloid cell reservoirs. The distinct nature of the infection in myeloid cells versus CD4+ T cells will likely dictate different approaches in order to achieve their elimination. For CD4+ T cells, most strategies focus on promoting virus reactivation to promote immune-mediated clearance and/or elimination by viral cytopathicity. Macrophages resist viral cytopathic effects and CD8+ T-cell killing. Therefore, we have explored clearance strategies that render macrophages sensitive to viral cytopathicity. This research helps inform the design of strategies to promote clearance of the macrophage reservoir in infected individuals on suppressive antiviral therapy. PMID:27122585
Live cell interferometry quantifies dynamics of biomass partitioning during cytokinesis.
Zangle, Thomas A; Teitell, Michael A; Reed, Jason
2014-01-01
The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased asymmetry in mass partitioning which suggests the absence of active mass partitioning mechanisms after cleavage furrow positioning.
Persistently active neurons in human medial frontal and medial temporal lobe support working memory
Kamiński, J; Sullivan, S; Chung, JM; Ross, IB; Mamelak, AN; Rutishauser, U
2017-01-01
Persistent neural activity is a putative mechanism for the maintenance of working memories. Persistent activity relies on the activity of a distributed network of areas, but the differential contribution of each area remains unclear. We recorded single neurons in the human medial frontal cortex and the medial temporal lobe while subjects held up to three items in memory. We found persistently active neurons in both areas. Persistent activity of hippocampal and amygdala neurons was stimulus-specific, formed stable attractors, and was predictive of memory content. Medial frontal cortex persistent activity, on the other hand, was modulated by memory load and task set but was not stimulus-specific. Trial-by-trial variability in persistent activity in both areas was related to memory strength, because it predicted the speed and accuracy by which stimuli were remembered. This work reveals, in humans, direct evidence for a distributed network of persistently active neurons supporting working memory maintenance. PMID:28218914
Mandell, Michael A.
2017-01-01
In most natural infections or after recovery, small numbers of Leishmania parasites remain indefinitely in the host. Persistent parasites play a vital role in protective immunity against disease pathology upon reinfection through the process of concomitant immunity, as well as in transmission and reactivation, yet are poorly understood. A key question is whether persistent parasites undergo replication, and we devised several approaches to probe the small numbers in persistent infections. We find two populations of persistent Leishmania major: one rapidly replicating, similar to parasites in acute infections, and another showing little evidence of replication. Persistent Leishmania were not found in “safe” immunoprivileged cell types, instead residing in macrophages and DCs, ∼60% of which expressed inducible nitric oxide synthase (iNOS). Remarkably, parasites within iNOS+ cells showed normal morphology and genome integrity and labeled comparably with BrdU to parasites within iNOS− cells, suggesting that these parasites may be unexpectedly resistant to NO. Nonetheless, because persistent parasite numbers remain roughly constant over time, their replication implies that ongoing destruction likewise occurs. Similar results were obtained with the attenuated lpg2− mutant, a convenient model that rapidly enters a persistent state without inducing pathology due to loss of the Golgi GDP mannose transporter. These data shed light on Leishmania persistence and concomitant immunity, suggesting a model wherein a parasite reservoir repopulates itself indefinitely, whereas some progeny are terminated in antigen-presenting cells, thereby stimulating immunity. This model may be relevant to understanding immunity to other persistent pathogen infections. PMID:28096392
Yi, MinKyung; Hu, Fengyu; Joyce, Michael; Saxena, Vikas; Welsch, Christoph; Chavez, Deborah; Guerra, Bernadette; Yamane, Daisuke; Veselenak, Ronald; Pyles, Rick; Walker, Christopher M.; Tyrrell, Lorne; Bourne, Nigel; Lanford, Robert E.
2014-01-01
ABSTRACT Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 106 FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo. IMPORTANCE This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee challenged with cell culture-produced virus and provides novel insight into the forces shaping molecular evolution of that virus during 5 years of persistent infection. It demonstrates that a poorly fit virus can replicate for weeks within the liver in the absence of detectable viremia, an observation that expands current concepts of HCV pathogenesis and that is relevant to relapses observed with direct-acting antiviral therapies. PMID:24429362
Deakin, Nicholas O.; Turner, Christopher E.
2011-01-01
Individual metastatic tumor cells exhibit two interconvertible modes of cell motility during tissue invasion that are classified as either mesenchymal or amoeboid. The molecular mechanisms by which invasive breast cancer cells regulate this migratory plasticity have yet to be fully elucidated. Herein we show that the focal adhesion adaptor protein, paxillin, and the closely related Hic-5 have distinct and unique roles in the regulation of breast cancer cell lung metastasis by modulating cell morphology and cell invasion through three-dimensional extracellular matrices (3D ECMs). Cells depleted of paxillin by RNA interference displayed a highly elongated mesenchymal morphology, whereas Hic-5 knockdown induced an amoeboid phenotype with both cell populations exhibiting reduced plasticity, migration persistence, and velocity through 3D ECM environments. In evaluating associated signaling pathways, we determined that Rac1 activity was increased in cells devoid of paxillin whereas Hic-5 silencing resulted in elevated RhoA activity and associated Rho kinase–induced nonmuscle myosin II activity. Hic-5 was essential for adhesion formation in 3D ECMs, and analysis of adhesion dynamics and lifetime identified paxillin as a key regulator of 3D adhesion assembly, stabilization, and disassembly. PMID:21148292
β-Catenin Dosage Is a Critical Determinant of Tracheal Basal Cell Fate Determination
Brechbuhl, Heather M.; Ghosh, Moumita; Smith, Mary Kathryn; Smith, Russell W.; Li, Bilan; Hicks, Douglas A.; Cole, Brook B.; Reynolds, Paul R.; Reynolds, Susan D.
2011-01-01
The purpose of this study was to determine whether β-catenin regulates basal cell fate determination in the mouse trachea. Analysis of TOPGal transgene reporter activity and Wnt/β-catenin pathway gene expression suggested a role for β-catenin in basal cell proliferation and differentiation after naphthalene-mediated Clara-like and ciliated cell depletion. However, these basal cell activities occurred simultaneously, limiting precise determination of the role(s) played by β-catenin. This issue was overcome by analysis of β-catenin signaling in tracheal air-liquid interface cultures. The cultures could be divided into two phases: basal cell proliferation and basal cell differentiation. A role for β-catenin in basal cell proliferation was indicated by activation of the TOPGal transgene on proliferation days 3 to 5 and by transient expression of Myc (alias c-myc). Another peak of TOPGal transgene activity was detected on differentiation days 2 to 10 and was associated with the expression of Axin 2. These results suggest a role for β-catenin in basal to ciliated and basal to Clara-like cell differentiation. Genetic stabilization of β-catenin in basal cells shortened the period of basal cell proliferation but had a minor effect on this process. Persistent β-catenin signaling regulated basal cell fate by driving the generation of ciliated cells and preventing the production of Clara-like cells. PMID:21703416
Da Silva, Diane M.; Woodham, Andrew W.; Naylor, Paul H.; Egan, James E.; Berinstein, Neil L.
2016-01-01
Langerhans cells (LCs) are the antigen-presenting cells of the epithelial layer and are responsible for initiating immune responses against skin and mucosa-invading viruses. Human papillomavirus (HPV)-mediated suppression of LC function is a crucial mechanism of HPV immune evasion, which can lead to persistent infection and development of several human cancers, including cervical, anal, and head and neck cancers. The cell-derived cytokine-based biologic, IRX-2, consists of multiple well-defined cytokines and is broadly active on various immune cell subsets. In this study, we investigated primary human LC activation after exposure to HPV16, followed by treatment with IRX-2 in vitro, and evaluated their subsequent ability to induce HPV16-specific T cells. In contrast to its activity on dendritic cells, HPV16 alone is not sufficient to induce phenotypic and functional activation of LCs. However, IRX-2 induces a significant upregulation of antigen presentation and costimulatory molecules, T helper 1 (Th1)-associated cytokine release, and chemokine-directed migration of LCs pre-exposed to HPV16. Furthermore, LCs treated with IRX-2 after HPV16 exposure induced CD8+ T-cell responses against specific HLA-A*0201-binding HPV16 T-cell epitopes. The present study suggests that IRX-2 is an attractive immunomodulator for assisting the immune response in eradication of HPV-infected cells, thereby potentially preventing HPV-induced cancers. PMID:26653678
Da Silva, Diane M; Woodham, Andrew W; Naylor, Paul H; Egan, James E; Berinstein, Neil L; Kast, W Martin
2016-05-01
Langerhans cells (LCs) are the antigen-presenting cells of the epithelial layer and are responsible for initiating immune responses against skin and mucosa-invading viruses. Human papillomavirus (HPV)-mediated suppression of LC function is a crucial mechanism of HPV immune evasion, which can lead to persistent infection and development of several human cancers, including cervical, anal, and head and neck cancers. The cell-derived cytokine-based biologic, IRX-2, consists of multiple well-defined cytokines and is broadly active on various immune cell subsets. In this study, we investigated primary human LC activation after exposure to HPV16, followed by treatment with IRX-2 in vitro, and evaluated their subsequent ability to induce HPV16-specific T cells. In contrast to its activity on dendritic cells, HPV16 alone is not sufficient to induce phenotypic and functional activation of LCs. However, IRX-2 induces a significant upregulation of antigen presentation and costimulatory molecules, T helper 1 (Th1)-associated cytokine release, and chemokine-directed migration of LCs pre-exposed to HPV16. Furthermore, LCs treated with IRX-2 after HPV16 exposure induced CD8(+) T-cell responses against specific HLA-A*0201-binding HPV16 T-cell epitopes. The present study suggests that IRX-2 is an attractive immunomodulator for assisting the immune response in eradication of HPV-infected cells, thereby potentially preventing HPV-induced cancers.
SLAM- and nectin-4-independent noncytolytic spread of canine distemper virus in astrocytes.
Alves, Lisa; Khosravi, Mojtaba; Avila, Mislay; Ader-Ebert, Nadine; Bringolf, Fanny; Zurbriggen, Andreas; Vandevelde, Marc; Plattet, Philippe
2015-05-01
Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered "nectin-4-blind" recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes. While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS) infections is that persistence is based on noncytolytic cell-to-cell spread, which, in the case of CDV, was demonstrated to rely on functional membrane fusion machinery complexes. This inferred a mechanism where nucleocapsids are transmitted through macroscopically invisible microfusion events between infected and target cells. Here, we provide evidence that CDV induces such microfusions in a SLAM- and nectin-4-independent manner, thereby strongly suggesting the existence of a third receptor expressed in glial cells (referred to as GliaR). We propose that GliaR governs intercellular transfer of nucleocapsids and hence contributes to viral persistence in the brain and ensuing demyelinating lesions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Yoshida, Motoharu; Knauer, Beate; Jochems, Arthur
2012-01-01
Suppression of cholinergic receptors and inactivation of the septum impair short-term memory, and disrupt place cell and grid cell activity in the medial temporal lobe (MTL). Location-dependent hippocampal place cell firing during active waking, when the acetylcholine level is high, switches to time-compressed replay activity during quiet waking and slow-wave-sleep (SWS), when the acetylcholine level is low. However, it remains largely unknown how acetylcholine supports short-term memory, spatial navigation, and the functional switch to replay mode in the MTL. In this paper, we focus on the role of the calcium-activated non-specific cationic (CAN) current which is activated by acetylcholine. The CAN current is known to underlie persistent firing, which could serve as a memory trace in many neurons in the MTL. Here, we review the CAN current and discuss possible roles of the CAN current in short-term memory and spatial navigation. We further propose a novel theoretical model where the CAN current switches the hippocampal place cell activity between real-time and time-compressed sequential activity during encoding and consolidation, respectively. PMID:22435051
Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells
Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z.; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung’u, Thumbi; Walker, Bruce D.; Rosenberg, Eric S.; Yu, Xu G.
2017-01-01
HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells. PMID:28628034
Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.
Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias
2017-06-30
HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.
Lacar, Benjamin; Young, Stephanie Z; Platel, Jean-Claude; Bordey, Angélique
2011-12-01
In the postnatal neurogenic niche, two populations of astrocyte-like cells (B cells) persist, one acting as neural progenitor cells (NPCs, B1 cells) and one forming a structural boundary between the neurogenic niche and the striatum (B2 cells, niche astrocytes). Despite being viewed as two distinct entities, we found that B1 and B2 cells express the gap junction protein connexin 43 and display functional coupling involving 50-60 cells. Using neonatal electroporation to label slowly cycling radial glia-derived B1 cells, which send a basal process onto blood vessels, we further confirmed dye coupling between NPCs. To assess the functionality of the coupling, we used calcium imaging in a preparation preserving the three-dimensional architecture of the subventricular zone. Intercellular calcium waves were observed among B cells. These waves travelled bidirectionally between B1 and B2 cells and propagated on blood vessels. Inter-B-cell calcium waves were absent in the presence of a gap junction blocker but persisted with purinergic receptor blockers. These findings show that privileged microdomains of communication networks exist among NPCs and niche astrocytes. Such functional coupling between these two cell types suggests that niche astrocytes do not merely have a structural role, but may play an active role in shaping the behavior of NPCs. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Barnes, If H.A.; Bagnall, Mary C.; Browning, Darren D.; Thompson, Stuart A.; Manning, Georgina; Newell, Diane G.
2009-01-01
The contribution of γ-glutamyl transpeptidase (GGT) to Campylobacter jejuni virulence and colonization of the avian gut has been investigated. The presence of the ggt gene in C. jejuni strains directly correlated with the expression of GGT activity as measured by cleavage and transfer of the γ-glutamyl moiety. Inactivation of the monocistronic ggt gene in C. jejuni strain 81116 resulted in isogenic mutants with undetectable GGT activity; nevertheless, these mutants grew normally in vitro. However, the mutants had increased motility, a 5.4-fold higher invasion efficiency into INT407 cells in vitro and increased resistance to hydrogen peroxide stress. Moreover, the apoptosis-inducing activity of the ggt mutant was significantly lower than that of the parental strain. In vivo studies showed that, although GGT activity was not required for initial colonization of 1-day-old chicks, the enzyme was required for persistant colonization of the avian gut. PMID:17600669
Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity.
Ma, Xingzhe; Bi, Enguang; Huang, Chunjian; Lu, Yong; Xue, Gang; Guo, Xing; Wang, Aibo; Yang, Maojie; Qian, Jianfei; Dong, Chen; Yi, Qing
2018-05-09
CD8 + T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8 + or CD4 + T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function. © 2018 Ma et al.
Miller, Michelle M.; Fogle, Jonathan E.; Ross, Peter
2013-01-01
Abstract Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP+TGFb+ Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP+ Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb+ Treg-mediated T cell immune suppression during lentivirus infection. PMID:23373523
Miller, Michelle M; Fogle, Jonathan E; Ross, Peter; Tompkins, Mary B
2013-04-01
Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP(+)TGFb(+) Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP(+) Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb(+) Treg-mediated T cell immune suppression during lentivirus infection.
Shams El-Din, Ahmed Ali; El-Desoukey, Nermeen Ahmed; Amin Tawadrous, Dalia Gamil; Fouad, Neveen Mohammed Baha El-Din; Abdel-Mooti, Mohammed; Hotar, Said Fathy
2018-01-09
development of cytomegalovirus (CMV)-specific CD8+ T cell response is crucial in preventing symptomatic CMV infection specially, in stem cell transplant (SCT) patients. The aim of this study was to evaluate CMV-specific CD8+ T cell reconstitution in allogeneic SCT recipients and to study the possible association between CMV-specific CD8+ T cell recovery with protection from CMV reactivation and persistency. Human leuKocyte antigen (HLA)-tetramers were used for CMV-specific CD8+ cell quantitation by Flow cytometry in twenty post-allogeneic SCT patients. Nine patients (45%) developed rapid recovery of CMV-specific CD8+ cells, among them; 7 patients (78%) had no CMV reactivation in the first 95 days post-transplant. Five patients had developed persistent CMV viremia; all of them had not developed CMV-specific CD8+ recovery till day 95 post-transplant. Patients with persistent CMV viremia had a statistically significant lower means of CMV-specific CD8+ percent and absolute count compared to those without persistent viremia (p = .001, .015), respectively. The incidence of CMV reactivation and persistency was higher among patients with delayed CMV-specific CD8+ reconstitution in the first 95 days post-transplant. CMV-specific CD8+ cells can help in categorizing patients into risk groups: (early recovery/low risk) and (delayed recovery/increased risk), this tool may guide clinicians in the selection of patients who may profit from prophylactic antiviral therapy and frequent viral monitoring.
Development of a Model System for Tick-Borne Flavivirus Persistence in HEK 293T Cells
Mlera, Luwanika; Offerdahl, Danielle K.; Martens, Craig; Porcella, Stephen F.; Melik, Wessam
2015-01-01
ABSTRACT We devised a model system to study persistent infection by the tick-borne flavivirus Langat virus (LGTV) in 293T cells. Infection with a molecularly cloned LGTV strain produced an acute lytic crisis that left few surviving cells. The culture was repopulated by cells that were ~90% positive for LGTV E protein, thus initiating a persistent infection that was maintained for at least 35 weeks without additional lytic crises. Staining of cells for viral proteins and ultrastructural analysis revealed only minor differences from the acute phase of infection. Infectious LGTV decreased markedly over the study period, but the number of viral genomes remained relatively constant, suggesting the development of defective interfering particles (DIPs). Viral genome changes were investigated by RNA deep sequencing. At the initiation of persistent infection, levels of DIPs were below the limit of detection at a coverage depth of 11,288-fold, implying that DIPs are not required for initiation of persistence. However, after 15 passages, DIPs constituted approximately 34% of the total LGTV population (coverage of 1,293-fold). Furthermore, at this point, one specific DIP population predominated in which nucleotides 1058 to 2881 had been deleted. This defective genome specified an intact polyprotein that coded for a truncated fusion protein containing 28 N-terminal residues of E and 134 C-terminal residues of NS1. Such a fusion protein has not previously been described, and a possible function in persistent infection is uncertain. DIPs are not required for the initiation of persistent LGTV infection but may play a role in the maintenance of viral persistence. PMID:26045539
Eschbaumer, Michael; Stenfeldt, Carolina; Rekant, Steven I.; ...
2016-09-15
In order to investigate host factors associated with the establishment of persistent foot-and-mouth disease virus (FMDV) infection, the systemic response to vaccination and challenge was studied in 47 steers. Eighteen steers that had received a recombinant FMDV A vaccine 2 weeks earlier and 29 non-vaccinated steers were challenged by intra-nasopharyngeal deposition of FMDV A24. For up to 35 days after challenge, host factors including complete blood counts with T lymphocyte subsets, type I/III interferon (IFN) activity, neutralizing and total FMDV-specific antibody titers in serum, as well as antibody-secreting cells (in 6 non-vaccinated animals) were characterized in the context of viralmore » infection dynamics. As a result, vaccination generally induced a strong antibody response. There was a transient peak of FMDV-specific serum IgM in non-vaccinated animals after challenge, while IgM levels in vaccinated animals did not increase further. Both groups had a lasting increase of specific IgG and neutralizing antibody after challenge. Substantial systemic IFN activity in non-vaccinated animals coincided with viremia, and no IFN or viremia was detected in vaccinated animals. After challenge, circulating lymphocytes decreased in non-vaccinated animals, coincident with viremia, IFN activity, and clinical disease, whereas lymphocyte and monocyte counts in vaccinated animals were unaffected by vaccination but transiently increased after challenge. The CD4 +/CD8 + T cell ratio in non-vaccinated animals increased during acute infection, driven by an absolute decrease of CD8 + cells. In conclusion, the incidence of FMDV persistence was 61.5 % in non-vaccinated and 54.5 % in vaccinated animals. Overall, the systemic factors examined were not associated with the FMDV carrier/non-carrier divergence; however, significant differences were identified between responses of non-vaccinated and vaccinated cattle.« less
A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity.
Nolasco, Nahum; Juárez, Claudia; Morgado, Elvira; Meza, Enrique; Caba, Mario
2012-01-01
Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02:00 h) or day (10:00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02:00. PER1 was increased 2-8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eschbaumer, Michael; Stenfeldt, Carolina; Rekant, Steven I.
In order to investigate host factors associated with the establishment of persistent foot-and-mouth disease virus (FMDV) infection, the systemic response to vaccination and challenge was studied in 47 steers. Eighteen steers that had received a recombinant FMDV A vaccine 2 weeks earlier and 29 non-vaccinated steers were challenged by intra-nasopharyngeal deposition of FMDV A24. For up to 35 days after challenge, host factors including complete blood counts with T lymphocyte subsets, type I/III interferon (IFN) activity, neutralizing and total FMDV-specific antibody titers in serum, as well as antibody-secreting cells (in 6 non-vaccinated animals) were characterized in the context of viralmore » infection dynamics. As a result, vaccination generally induced a strong antibody response. There was a transient peak of FMDV-specific serum IgM in non-vaccinated animals after challenge, while IgM levels in vaccinated animals did not increase further. Both groups had a lasting increase of specific IgG and neutralizing antibody after challenge. Substantial systemic IFN activity in non-vaccinated animals coincided with viremia, and no IFN or viremia was detected in vaccinated animals. After challenge, circulating lymphocytes decreased in non-vaccinated animals, coincident with viremia, IFN activity, and clinical disease, whereas lymphocyte and monocyte counts in vaccinated animals were unaffected by vaccination but transiently increased after challenge. The CD4 +/CD8 + T cell ratio in non-vaccinated animals increased during acute infection, driven by an absolute decrease of CD8 + cells. In conclusion, the incidence of FMDV persistence was 61.5 % in non-vaccinated and 54.5 % in vaccinated animals. Overall, the systemic factors examined were not associated with the FMDV carrier/non-carrier divergence; however, significant differences were identified between responses of non-vaccinated and vaccinated cattle.« less
Select Host Restriction Factors Are Associated with HIV Persistence During Antiretroviral Therapy
ABDEL-MOHSEN, Mohamed; WANG, Charlene; STRAIN, Matthew C.; LADA, Steven M.; DENG, Xutao; COCKERHAM, Leslie R.; PILCHER, Christopher D.; HECHT, Frederick M.; LIEGLER, Teri; RICHMAN, Douglas D.; DEEKS, Steven G.; PILLAI, Satish K.
2015-01-01
Objective The eradication of HIV necessitates elimination of the HIV latent reservoir. Identifying host determinants governing latency and reservoir size in the setting of antiretroviral therapy (ART) is an important step in developing strategies to cure HIV infection. We sought to determine the impact of cell-intrinsic immunity on the HIV latent reservoir. Design We investigated the relevance of a comprehensive panel of established anti-HIV-1 host restriction factors to multiple established virologic and immunologic measures of viral persistence in HIV-1-infected, ART-suppressed individuals. Methods We measured the mRNA expression of 42 anti-HIV-1 host restriction factors, levels of cell-associated HIV-1 RNA, levels of total pol and 2-LTR circle HIV-1 DNA, and immunophenotypes of CD4+ T cells in 72 HIV-1-infected subjects on suppressive ART (23 subjects initiated ART <1 year post-infection, and 49 subjects initiated ART >1 year post-infection). Correlations were analyzed using non-parametric tests. Results The enhanced expression of a few select host restriction factors, p21, schlafen 11, and PAF1, was strongly associated with reduced CD4+ T cell-associated HIV RNA during ART (p<0.001). In addition, our data suggested that ART perturbs the regulatory relationship between CD4+ T cell activation and restriction factor expression. Lastly, cell-intrinsic immune responses were significantly enhanced in subjects who initiated ART during early versus chronic infection, and may contribute to the reduced reservoir size observed in these individuals. Conclusions Intrinsic immune responses modulate HIV persistence during suppressive ART, and may be manipulated to enhance the efficacy of ART and promote viral eradication through reversal of latency in vivo. PMID:25602681
Connor, J A; Tseng, H Y; Hockberger, P E
1987-05-01
Digital imaging of the Ca indicator fura-2 has been used to study the responses of developing granule cells in culture to depolarization and transmitter action. Unstimulated cells bathed in Krebs saline exhibited cytoplasmic Ca ion concentrations, [Ca2+], that were generally in the 30-60 nM range. Exposure of cells to high-potassium (25 mM) saline depolarized the membrane potential and produced an immediate rise in [Ca2+] that recovered within 2-3 min in normal saline. The response grew progressively larger over the first 20 d in culture. Transient increases in [Ca2+] to levels greater than 1 microM were observed after 12-14 d in vitro, at which time the cells displayed intense electrical activity when exposed to high K. At this stage, the increases were attenuated by blocking action potential activity with TTX. In TTX-treated or immature cells, in which the transient phase of the Ca change was relatively small, a second exposure to high K typically produced a much larger Ca response that the initial exposure. The duration of this facilitation of the response persisted for periods longer than 5 min. Application of the neurotransmitter GABA induced a transient increase in membrane conductance, with a reversal potential near resting potential (approx. -60 mV), and caused an intracellular Ca2+ increase that outlasted the exposure to GABA by several minutes. Glutamate, or kainate, induced an increase in membrane conductance but with a reversal potential more positive than spike threshold. These agents also elevated intracellular Ca2+, but unlike the case with GABA, this Ca response reversed rapidly upon removal of the transmitter. The facilitatory effect of repeated exposures to high-K saline, as well as the persistent Ca elevation following a brief GABA application, suggests that granule cells possess the capability of displaying activity-dependent changes in Ca levels in culture.
Teranishi, Hideto; Ishimura, Masataka; Koga, Yuuki; Eguchi, Katsuhide; Sonoda, Motoshi; Kobayashi, Tetsuko; Shiraishi, Satoru; Nakashima, Kentaro; Ikegami, Kouji; Aman, Murasaki; Yamamoto, Hidetaka; Takada, Hidetoshi; Ohga, Shouichi
2017-01-01
A 13-year-old boy was admitted to our hospital because of persistent diarrhea, abdominal pain, and bloody stools. The patient had experienced repeated hospitalizations for the treatment of respiratory infections since early childhood. Colonoscopic and pathological studies led to a diagnosis of gut-associated T-cell lymphoproliferative disease (T-cell LPD). Laboratory data showed T-lymphocytopenia (492/µl), increased serum IgG levels (1,984 mg/dl), and low serum antibody titers for specific pathogens. Combined immunodeficiency accompanied by T-LPD suggested the diagnosis of activated PI3Kδ syndrome (APDS). Genetic analyses identified a heterozygous mutation of the PIK3CD gene (c.1573 G to A p.Glu525Lys). Although prednisolone and cyclosporine therapy has controlled the T-cell LPD, this patient awaits allogeneic hematopoietic cell transplantation to achieve a complete cure of his APDS.
Sulindac metabolites inhibit epidermal growth factor receptor activation and expression.
Pangburn, Heather A; Kraus, Hanna; Ahnen, Dennis J; Rice, Pamela L
2005-09-02
Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a decreased mortality from colorectal cancer (CRC). NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2) signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF) receptor (EGFR). HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068), total EGFR, phosphorylated ERK1/2 (pERK1/2), total ERK1/2, activated caspase-3, and alpha-tubulin. EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. These results suggest that downregulation of EGFR signaling by sulindac metabolites may occur, at least in part, by inhibiting activation and expression of EGFR. Inhibition of EGFR signaling may account for part of the growth inhibitory and chemopreventive effects of these compounds.
A secreted protein is an endogenous chemorepellant in Dictyostelium discoideum
Phillips, Jonathan E.; Gomer, Richard H.
2012-01-01
Chemorepellants may play multiple roles in physiological and pathological processes. However, few endogenous chemorepellants have been identified, and how they function is unclear. We found that the autocrine signal AprA, which is produced by growing Dictyostelium discoideum cells and inhibits their proliferation, also functions as a chemorepellant. Wild-type cells at the edge of a colony show directed movement outward from the colony, whereas cells lacking AprA do not. Cells show directed movement away from a source of recombinant AprA and dialyzed conditioned media from wild-type cells, but not dialyzed conditioned media from aprA− cells. The secreted protein CfaD, the G protein Gα8, and the kinase QkgA are necessary for the chemorepellant activity of AprA as well as its proliferation-inhibiting activity, whereas the putative transcription factor BzpN is dispensable for the chemorepellant activity of AprA but necessary for inhibition of proliferation. Phospholipase C and PI3 kinases 1 and 2, which are necessary for the activity of at least one other chemorepellant in Dictyostelium, are not necessary for recombinant AprA chemorepellant activity. Starved cells are not repelled by recombinant AprA, suggesting that aggregation-phase cells are not sensitive to the chemorepellant effect. Cell tracking indicates that AprA affects the directional bias of cell movement, but not cell velocity or the persistence of cell movement. Together, our data indicate that the endogenous signal AprA acts as an autocrine chemorepellant for Dictyostelium cells. PMID:22711818
Maree, Francois; de Klerk-Lorist, Lin-Mari; Gubbins, Simon; Zhang, Fuquan; Seago, Julian; Pérez-Martín, Eva; Reid, Liz; Scott, Katherine; van Schalkwyk, Louis; Bengis, Roy; Charleston, Bryan; Juleff, Nicholas
2016-05-15
Foot-and-mouth disease (FMD) virus (FMDV) circulates as multiple serotypes and strains in many regions of endemicity. In particular, the three Southern African Territories (SAT) serotypes are maintained effectively in their wildlife reservoir, the African buffalo, and individuals may harbor multiple SAT serotypes for extended periods in the pharyngeal region. However, the exact site and mechanism for persistence remain unclear. FMD in buffaloes offers a unique opportunity to study FMDV persistence, as transmission from carrier ruminants has convincingly been demonstrated for only this species. Following coinfection of naive African buffaloes with isolates of three SAT serotypes from field buffaloes, palatine tonsil swabs were the sample of choice for recovering infectious FMDV up to 400 days postinfection (dpi). Postmortem examination identified infectious virus for up to 185 dpi and viral genomes for up to 400 dpi in lymphoid tissues of the head and neck, focused mainly in germinal centers. Interestingly, viral persistence in vivo was not homogenous, and the SAT-1 isolate persisted longer than the SAT-2 and SAT-3 isolates. Coinfection and passage of these SAT isolates in goat and buffalo cell lines demonstrated a direct correlation between persistence and cell-killing capacity. These data suggest that FMDV persistence occurs in the germinal centers of lymphoid tissue but that the duration of persistence is related to virus replication and cell-killing capacity. Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in domestic livestock and wildlife species. African buffaloes (Syncerus caffer) are the primary carrier hosts of FMDV in African savannah ecosystems, where the disease is endemic. We have shown that the virus persists for up to 400 days in buffaloes and that there is competition between viruses during mixed infections. There was similar competition in cell culture: viruses that killed cells quickly persisted more efficiently in passaged cell cultures. These results may provide a mechanism for the dominance of particular viruses in an ecosystem. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacIsaac, Zoe Marie, E-mail: zmm4a@virgina.edu; Shang, Hulan, E-mail: shanghulan@gmail.com; Agrawal, Hitesh, E-mail: hiteshdos@hotmail.com
2012-02-15
After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time,more » ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells undergo complete removal by one year.« less
Martins, Patrícia Rocha; Nascimento, Rodolfo Duarte; Lopes, Júlia Guimarães; Santos, Mônica Morais; de Oliveira, Cleida Aparecida; de Oliveira, Enio Chaves; Martinelli, Patrícia Massara; d'Ávila Reis, Débora
2015-05-01
Megacolon is frequently observed in patients who develop the digestive form of Chagas disease. It is characterized by dilation of the rectum-sigmoid portion and thickening of the colon wall. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase of infection. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we hypothesized that mast cells producing tryptase could influence the migration and the activation of eosinophils at the site, thereby contributing to the immunopathology of the chronic phase. We seek evidence of interactions between mast cells and eosinophils through (1) evaluation of eosinophils, regarding the expression of PAR2, a tryptase receptor; (2) correlation analysis between densities of mast cells and eosinophils; and (3) ultrastructural studies. The electron microscopy studies revealed signs of activation of mast cells and eosinophils, as well as physical interaction between these cells. Immunohistochemistry and correlation analyses point to the participation of tryptase immunoreactive mast cells in the migration and/or survival of eosinophils at the affected organ.
Different aspects of virus persistence (review).
Barnabishvili, N; Topuria, T; Gamtsemlidze, P; Topuria, M
2012-05-01
The article reviews different aspects of virus persistence in human organism. Persistence is a capability acquired and strengthened in the process of evolution of many viruses that is the means of maintenance of species. Viruses of measles, poliomyelitis, mite-like encephalitis, B and C hepatitis, herpes, retro and HIV viruses persist in human organism. Persistence is used by various viruses at various levels; they have different adaptive power and no different pathologic output. But in any case, the necessary condition is that virus should escape from elimination reactions of immune control system. At the same time, the important thing is not to save free virus but to save infected cell. While discussing long-term viral persistence, it is impossible to mark off distinctly the importance of biological participation of macroorganism and provoker in this process. The output of the relationship with infect cell is conditioned on the one hand by permissiveness of cell system, on the other hand by strain pathogen city. The details of attenuation mechanisms of microorganism's different reactions in cases of illness with the same strain are not known well yet. Although, it is clear that in chronic persistence the leading role still has immune system disbalance. In disbalance genesis of immunological equilibration virus-induced changes of immunocompetent cells are high.
Makarava, Natallia; Menz, Stephan; Theves, Matthias; Huisinga, Wilhelm; Beta, Carsten; Holschneider, Matthias
2014-10-01
Amoebae explore their environment in a random way, unless external cues like, e.g., nutrients, bias their motion. Even in the absence of cues, however, experimental cell tracks show some degree of persistence. In this paper, we analyzed individual cell tracks in the framework of a linear mixed effects model, where each track is modeled by a fractional Brownian motion, i.e., a Gaussian process exhibiting a long-term correlation structure superposed on a linear trend. The degree of persistence was quantified by the Hurst exponent of fractional Brownian motion. Our analysis of experimental cell tracks of the amoeba Dictyostelium discoideum showed a persistent movement for the majority of tracks. Employing a sliding window approach, we estimated the variations of the Hurst exponent over time, which allowed us to identify points in time, where the correlation structure was distorted ("outliers"). Coarse graining of track data via down-sampling allowed us to identify the dependence of persistence on the spatial scale. While one would expect the (mode of the) Hurst exponent to be constant on different temporal scales due to the self-similarity property of fractional Brownian motion, we observed a trend towards stronger persistence for the down-sampled cell tracks indicating stronger persistence on larger time scales.
Takahashi, Megumi; Wolf, Alexander M; Watari, Eiji; Norose, Yoshihiko; Ohta, Shigeo; Takahashi, Hidemi
2013-09-01
Measles virus (MV) is known for its ability to cause an acute infection with a potential of development of persistent infection. However, knowledge of how viral genes and cellular factors interact to cause or maintain the persistent infection has remained unclear. We have previously reported the possible involvement of mitochondrial short chain enoyl-CoA hydratase (ECHS), which is localized at mitochondria, in the regulation of MV replication. In this study we found increased functions of mitochondria in MV-persistently infected cells compared with uninfected or acutely infected cells. Furthermore, impairment of mitochondrial functions by treatment with mitochondrial inhibitors such as ethidium bromide (EtBr) or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced the cytopathic effects of extensive syncytial formation in persistently infected cells. These findings suggest that mitochondria are one of the subcellular organelles contributing to regulate persistent infection of MV. Recent studies showed mitochondria provide an integral platform for retinoic acid-inducible protein (RIG-I)-like cytosolic receptors (RLRs) signaling and participate in cellular innate antiviral immunity. Our findings not only reveal a role of mitochondria in RLR mediated antiviral signaling but also suggest that mitochondria contribute to the regulation of persistent viral infection. Copyright © 2013 Elsevier B.V. All rights reserved.
Mechanisms of Immune Evasion in Leishmaniasis
Gupta, Gaurav; Oghumu, Steve; Satoskar, Abhay R.
2013-01-01
Diseases caused by Leishmania present a worldwide problem, and current therapeutic approaches are unable to achieve a sterile cure. Leishmania is able to persist in host cells by evading or exploiting host immune mechanisms. A thorough understanding of these mechanisms could lead to better strategies for effective management of Leishmania infections. Current research has focused on parasite modification of host cell signaling pathways, entry into phagocytic cells, and modulation of cytokine and chemokine profiles that alter immune cell activation and trafficking to sites of infection. Immuno-therapeutic approaches that target these mechanisms of immune evasion by Leishmania offer promising areas for preclinical and clinical research. PMID:23415155
Patients with Long-Term Oral Carriage Harbor High-Persister Mutants of Candida albicans▿
LaFleur, Michael D.; Qi, Qingguo; Lewis, Kim
2010-01-01
Fungal biofilms produce a small number of persister cells which can tolerate high concentrations of fungicidal agents. Persisters form upon attachment to a surface, an important step in the pathogenesis of Candida strains. The periodic application of antimicrobial agents may select for strains with increased levels of persister cells. In order to test this possibility, 150 isolates of Candida albicans and C. glabrata were obtained from cancer patients who were at high risk for the development of oral candidiasis and who had been treated with topical chlorhexidine once a day. Persister levels were measured by exposing biofilms growing in the wells of microtiter plates to high concentrations of amphotericin B and plating for survivors. The persister levels of the isolates varied from 0.2 to 9%, and strains isolated from patients with long-term carriage had high levels of persisters. High-persister strains were isolated from every patient with Candida carriage of more than 8 consecutive weeks but from no patients with transient carriage. All of the high-persister isolates had an amphotericin B MIC that was the same as that for the wild type, indicating that these strains were drug-tolerant rather than drug-resistant mutants. Biofilms of the majority of high-persister strains also showed an increased tolerance to chlorhexidine and had the same MIC for this antimicrobial as the wild type. This study suggests that persister cells are clinically relevant, and antimicrobial therapy selects for high-persister strains in vivo. The drug tolerance of persisters may be a critical but overlooked component responsible for antimicrobial drug failure and relapsing infections. PMID:19841146
Wang, Min; Yang, Yang; Wang, Ching-Jung; Gamo, Nao J.; Jin, Lu E.; Mazer, James A.; Morrison, John H.; Wang, Xiao-Jing; Arnsten, Amy F.T.
2013-01-01
Summary Neurons in the primate dorsolateral prefrontal cortex (dlPFC) generate persistent firing in the absence of sensory stimulation, the foundation of mental representation. Persistent firing arises from recurrent excitation within a network of pyramidal Delay cells. Here, we examined glutamate receptor influences underlying persistent firing in primate dlPFC during a spatial working memory task. Computational models predicted dependence on NMDA receptor (NMDAR) NR2B stimulation, and Delay cell persistent firing was abolished by local NR2B NMDAR blockade or by systemic ketamine administration. AMPA receptors (AMPAR) contributed background depolarization to sustain network firing. In contrast, many Response cells -which likely predominate in rodent PFC- were sensitive to AMPAR blockade and increased firing following systemic ketamine, indicating that models of ketamine actions should be refined to reflect neuronal heterogeneity. The reliance of Delay cells on NMDAR may explain why insults to NMDARs in schizophrenia or Alzheimer’s Disease profoundly impair cognition. PMID:23439125
Qin, Qingsong; Lauver, Matthew; Maru, Saumya; Lin, Eugene; Lukacher, Aron E
2017-02-01
Mouse polyomavirus (MuPyV) causes a smoldering persistent infection in immunocompetent mice. To lower MuPyV infection in acutely and persistently infected mice, and study the impact of a temporal reduction in viral loads on the memory CD8 T cell response, we created a recombinant MuPyV in which a loxP sequence was inserted into the A2 strain genome upstream of the early promoter and another loxP sequence was inserted in cis into the intron shared by all three T antigens. Using mice transgenic for tamoxifen-inducible Cre recombinase, we demonstrated that reduction in MuPyV load during persistent infection was associated with differentiation of virus-specific CD8 T cells having a superior recall response. Evidence presented here supports the concept that reduction in viral load during persistent infection can promote differentiation of protective virus-specific memory CD8 T cells in patients at risk for diseases caused by human polyomaviruses. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhuo, Ya; Zhang, Yi-Fu; Wu, Hong-Jie; Qin, Lei; Wang, Yan-Ping; Liu, A-Min; Wang, Xin-Hong
2017-10-01
Both Galectin 9 (Gal-9)/T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) pathway and follicular helper CD4 + T (Tfh) cells play important roles in persistent hepatitis C virus (HCV) infection. Thus, we aimed to investigate the regulatory role of interaction between Gal-9/TIM-3 pathway and Tfh cells in chronic hepatitis C. A total of 44 chronic hepatitis C patients and 19 normal controls (NCs) were enrolled in this study. Purified CD4 + T cells were cultured by TIM-3 Fc protein, recombinant Gal-9, or IL-21 for 48h. TIM-3 expression, Tfh proportion, and IL-21 production was measured, respectively. The immunomodulatory role of Gal-9/TIM-3 and IL-21 was also investigated in HCV cell culture system in vitro. We found that the percentage corresponding to both TIM-3-positive and CXCR5 + ICOS + Tfh cells within CD4 + T cells, which correlated with HCV RNA replication, was significantly elevated in patients with chronic hepatitis C in comparison with those in NCs. Moreover, blockade of Gal-9/TIM-3 pathway by TIM-3 Fc protein increased Tfh cells proportion, IL-21 mRNA and protein expression within purified CD4 + T cells, while activation of Gal-9/TIM-3 signaling by Gal-9 stimulation decreased IL-21 production in both patients with chronic HCV infection and healthy individuals. Meanwhile, high concentrations (100 and 200ng/mL) of IL-21 stimulation also elevated TIM-3 expression on CD4 + T cells in chronic hepatitis C. Furthermore, TIM-3 blockage and IL-21 stimulation suppressed mRNA expressions of HCV-induced antiviral proteins (myxovirus resistance A and oligoadenylate synthetase) in Huh7.5 cells without affecting viral replication in HCV cell culture system. The interaction between Gal-9/TIM-3 pathway and Tfh cells contributed to viral persistent in chronic HCV infection, which might be pivotal for development of new therapeutic approaches for chronic hepatitis C. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Modeling T-cell proliferation: an investigation of the consequences of the Hayflick limit.
Pilyugin, S; Mittler, J; Antia, R
1997-05-07
Somatic cells, including immune cells such as T-cells have a limited capacity for proliferation and can only replicate for a finite number of generations (known as the Hayflick limit) before dying. In this paper we use mathematical models to investigate the consequences of introducing a Hayflick limit on the dynamics of T-cells stimulated with specific antigen. We show that while the Hayflick limit does not alter the dynamics of T-cell response to antigen over the short term, it may have a profound effect on the long-term immune response. In particular we show that over the long term the Hayflick limit may be important in determining whether an immune response can be maintained to a persistent antigen (or parasite). The eventual outcome is determined by the magnitude of the Hayflick limit, the extent to which antigen reduces the input of T-cells from the thymus, and the rate of antigen-induced proliferation of T-cells. Counter to what might be expected we show that the persistence of an immune response (immune memory) requires the density of persistent antigen to be less than a defined threshold value. If the amount of persistent antigen (or parasite) is greater than this threshold value then immune memory will be relatively short lived. The consequences of this threshold for persistent mycobacterial and HIV infections and for the generation of vaccines are discussed.
Li, Kairong; Leung, Alan W.; Guo, Qiuxia; Yang, Wentian
2014-01-01
Folding of the cortex and the persistence of radial glia (RG)-like cells called Bergmann glia (BG) are hallmarks of the mammalian cerebellum. Similar to basal RG in the embryonic neocortex, BG maintain only basal processes and continuously express neural stem cell markers. Past studies had focused on the function of BG in granule cell migration and how granule cell progenitors (GCP) regulate cerebellar foliation. The molecular control of BG generation and its role in cerebellar foliation are less understood. Here, we have analyzed the function of the protein tyrosine phosphatase Shp2 in mice by deleting its gene Ptpn11 in the entire cerebellum or selectively in the GCP lineage. Deleting Ptpn11 in the entire cerebellum by En1-cre blocks transformation of RG into BG but preserves other major cerebellar cell types. In the absence of BG, inward invagination of GCP persists but is uncoupled from the folding of the Purkinje cell layer and the basement membrane, leading to disorganized lamination and an absence of cerebellar folia. In contrast, removing Ptpn11 in the GCP lineage by Atoh1-cre has no effect on cerebellar development, indicating that Shp2 is not cell autonomously required in GCP. Furthermore, we demonstrate that Ptpn11 interacts with Fgf8 and is essential for ERK activation in RG and nascent BG. Finally, expressing constitutively active MEK1 rescues BG formation and cerebellar foliation in Shp2-deficient cerebella. Our results demonstrate an essential role of Shp2 in BG specification via fibroblast growth factor/extracellular signal-regulated protein kinase signaling, and reveal a crucial function of BG in organizing cerebellar foliation. PMID:24431450
HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ.
Giam, Chou-Zen; Semmes, Oliver John
2016-06-16
HTLV-1 (Human T-cell lymphotropic virus type 1) is a complex human delta retrovirus that currently infects 10-20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%-5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL) decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ), encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling-the ubiquitin E3 ligase, ring finger protein 8 (RNF8) and the ubiquitin E2 conjugating enzyme (UBC13)-to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided.
HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma—A Tale of Two Proteins: Tax and HBZ
Giam, Chou-Zen; Semmes, Oliver John
2016-01-01
HTLV-1 (Human T-cell lymphotropic virus type 1) is a complex human delta retrovirus that currently infects 10–20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%–5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL) decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ), encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling—the ubiquitin E3 ligase, ring finger protein 8 (RNF8) and the ubiquitin E2 conjugating enzyme (UBC13)—to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided. PMID:27322308
Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities
NASA Astrophysics Data System (ADS)
Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.
2017-12-01
Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity.
Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search
Fricke, G. Matthew; Letendre, Kenneth A.; Moses, Melanie E.; Cannon, Judy L.
2016-01-01
Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call “hotspots” within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search. PMID:26990103
Synaptic connectivity and spatial memory: a topological approach
NASA Astrophysics Data System (ADS)
Milton, Russell; Babichev, Andrey; Dabaghian, Yuri
2015-03-01
In the hippocampus, a network of place cells generates a cognitive map of space, in which each cell is responsive to a particular area of the environment - its place field. The peak response of each cell and the size of each place field have considerable variability. Experimental evidence suggests that place cells encode a topological map of space that serves as a basis of spatial memory and spatial awareness. Using a computational model based on Persistent Homology Theory we demonstrate that if the parameters of the place cells spiking activity fall inside of the physiological range, the network correctly encodes the topological features of the environment. We next introduce parameters of synaptic connectivity into the model and demonstrate that failures in synapses that detect coincident neuronal activity lead to spatial learning deficiencies similar to the ones that are observed in rodent models of neurodegenerative diseases. Moreover, we show that these learning deficiencies may be mitigated by increasing the number of active cells and/or by increasing their firing rate, suggesting the existence of a compensatory mechanism inherent to the cognitive map.
Runembert, Isabelle; Couette, Sylviane; Federici, Pierre; Colucci-Guyon, Emma; Babinet, Charles; Briand, Pascale; Friedlander, Gérard; Terzi, Fabiola
2004-11-01
Vimentin, an intermediate filament protein mainly expressed in mesenchyma-derived cells, is reexpressed in renal tubular epithelial cells under many pathological conditions, characterized by intense cell proliferation. Whether vimentin reexpression is only a marker of cell dedifferentiation or is instrumental in the maintenance of cell structure and/or function is still unknown. Here, we used vimentin knockout mice (Vim(-/-)) and an experimental model of acute renal injury (30-min bilateral renal ischemia) to explore the role of vimentin. Bilateral renal ischemia induced an initial phase of acute tubular necrosis that did not require vimentin and was similar, in terms of morphological and functional changes, in Vim(+/+) and Vim(-/-) mice. However, vimentin was essential to favor Na-glucose cotransporter 1 localization to brush-border membranes and to restore Na-glucose cotransport activity in regenerating tubular cells. We show that the effect of vimentin inactivation is specific and results in persistent glucosuria. We propose that vimentin is part of a structural network that favors carrier localization to plasma membranes to restore transport activity in injured kidneys.
Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge
Gonzalez-Pena, Dianelys; Nixon, Scott E.; O’Connor, Jason C.; Southey, Bruce R.; Lawson, Marcus A.; McCusker, Robert H.; Borras, Tania; Machuca, Debbie; Hernandez, Alvaro G.; Dantzer, Robert; Kelley, Keith W.; Rodriguez-Zas, Sandra L.
2016-01-01
Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis. PMID:26959683
Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge.
Gonzalez-Pena, Dianelys; Nixon, Scott E; O'Connor, Jason C; Southey, Bruce R; Lawson, Marcus A; McCusker, Robert H; Borras, Tania; Machuca, Debbie; Hernandez, Alvaro G; Dantzer, Robert; Kelley, Keith W; Rodriguez-Zas, Sandra L
2016-01-01
Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis.
Leitermann, Randy J; Sajdyk, Tammy J; Urban, Janice H
2012-10-01
Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA. Copyright © 2012 Elsevier B.V. All rights reserved.
Getting the “kill” into “shock and kill”: strategies to eliminate latent HIV
Kim, Youry; Anderson, Jenny L.; Lewin, Sharon R.
2018-01-01
Despite the success of antiretroviral therapy (ART), there is currently no HIV cure and treatment is lifelong. HIV persists during ART due to long lived and proliferating latently infected CD4+ T-cells. One strategy to eliminate latency is to activate virus production using latency reversing agents (LRAs) with the goal of triggering cell death through virus-induced cytolysis or immune-mediated clearance. However, multiple studies have demonstrated that activation of viral transcription alone is insufficient to induce cell death and some LRAs may counteract cell death by promoting cell survival. Here, we review new approaches to induce death of latently infected cells through apoptosis and inhibition of pathways critical for cell survival, which are often hijacked by HIV proteins. Given advances in the commercial development of compounds that induce apoptosis in cancer chemotherapy, these agents could move rapidly into clinical trials, either alone or in combination with LRAs, to eliminate latent HIV infection. PMID:29324227
Magistretti, Jacopo; Castelli, Loretta; Forti, Lia; D'Angelo, Egidio
2006-01-01
Cerebellar neurones show complex and differentiated mechanisms of action potential generation that have been proposed to depend on peculiar properties of their voltage-dependent Na+ currents. In this study we analysed voltage-dependent Na+ currents of rat cerebellar granule cells (GCs) by performing whole-cell, patch-clamp experiments in acute rat cerebellar slices. A transient Na+ current (INaT) was always present and had the properties of a typical fast-activating/inactivating Na+ current. In addition to INaT, robust persistent (INaP) and resurgent (INaR) Na+ currents were observed. INaP peaked at ∼−40 mV, showed half-maximal activation at ∼−55 mV, and its maximal amplitude was about 1.5% of that of INaT. INaR was elicited by repolarizing pulses applied following step depolarizations able to activate/inactivate INaT, and showed voltage- and time-dependent activation and voltage-dependent decay kinetics. The conductance underlying INaR showed a bell-shaped voltage dependence, with peak at −35 mV. A significant correlation was found between GC INaR and INaT peak amplitudes; however, GCs expressing INaT of similar size showed marked variability in terms of INaR amplitude, and in a fraction of cells INaR was undetectable. INaT, INaP and INaR could be accounted for by a 13-state kinetic scheme comprising closed, open, inactivated and blocked states. Current-clamp experiments carried out to identify possible functional correlates of INaP and/or INaR revealed that in GCs single action potentials were followed by depolarizing afterpotentials (DAPs). In a majority of cells, DAPs showed properties consistent with INaR playing a role in their generation. Computer modelling showed that INaR promotes DAP generation and enhances high-frequency firing, whereas INaP boosts near-threshold firing activity. Our findings suggest that special properties of voltage-dependent Na+ currents provides GCs with mechanisms suitable for shaping activity patterns, with potentially important consequences for cerebellar information transfer and computation. PMID:16527854
Fan, Heng-Yu; Liu, Zhilin; Cahill, Nicola; Richards, JoAnne S
2008-09-01
FSH activates the phosphatidylinositol-3 kinase (PI3K)/acute transforming retrovirus thymoma protein kinase pathway and thereby enhances granulosa cell differentiation in culture. To identify the physiological role of the PI3K pathway in vivo we disrupted the PI3K suppressor, Pten, in developing ovarian follicles. To selectively disrupt Pten expression in granulosa cells, Ptenfl/fl mice were mated with transgenic mice expressing cAMP response element recombinase driven by Cyp19 promoter (Cyp19-Cre). The resultant Pten mutant mice were fertile, ovulated more oocytes, and produced moderately more pups than control mice. These physiological differences in the Pten mutant mice were associated with hyperactivation of the PI3K/acute transforming retrovirus thymoma protein kinase pathway, decreased susceptibility to apoptosis, and increased proliferation of mutant granulosa cells. Strikingly, corpora lutea of the Pten mutant mice persisted longer than those of control mice. Although the follicular and luteal cell steroidogenesis in Ptenfl/fl;Cyp19-Cre mice was similar to controls, viable nonsteroidogenic luteal cells escaped structural luteolysis. These findings provide the novel evidence that Pten impacts the survival/life span of granulosa/luteal cells and that its loss not only results in the facilitated ovulation but also in the persistence of nonsteroidogenic luteal structures in the adult mouse ovary.
HIV-1 Latency: An Update of Molecular Mechanisms and Therapeutic Strategies
Battistini, Angela; Sgarbanti, Marco
2014-01-01
The major obstacle towards HIV-1 eradication is the life-long persistence of the virus in reservoirs of latently infected cells. In these cells the proviral DNA is integrated in the host’s genome but it does not actively replicate, becoming invisible to the host immune system and unaffected by existing antiviral drugs. Rebound of viremia and recovery of systemic infection that follows interruption of therapy, necessitates life-long treatments with problems of compliance, toxicity, and untenable costs, especially in developing countries where the infection hits worst. Extensive research efforts have led to the proposal and preliminary testing of several anti-latency compounds, however, overall, eradication strategies have had, so far, limited clinical success while posing several risks for patients. This review will briefly summarize the more recent advances in the elucidation of mechanisms that regulates the establishment/maintenance of latency and therapeutic strategies currently under evaluation in order to eradicate HIV persistence. PMID:24736215
Sanada, Luciana Sayuri; Sato, Karina Laurenti; Machado, Nathalia Leilane Berto; Carmo, Elisabete de Cássia do; Sluka, Kathleen A; Fazan, Valeria Paula Sassoli
2014-06-01
We investigated if changes in glial activity in cortical areas that process nociceptive stimuli persisted in adult rats after neonatal injury. Neonatal pain was induced by repetitive needle prickling on the right paw, twice per day for 15 days starting at birth. Wistar rats received either neonatal pain or tactile stimulation and were tested behaviorally for mechanical withdrawal thresholds of the paws and gait alterations, after 15 (P15) or 180 (P180) days of life. Brains from rats on P15 and P180 were immunostained for glial markers (GFAP, MCP-1, OX-42) and the following cortical areas were analyzed for immunoreactivity density: prefrontal, anterior insular, anterior cingulated, somatosensory and motor cortices. Withdrawal thresholds of the stimulated paw remained decreased on P180 after neonatal pain when compared to controls. Neonatal pain animals showed increased density for both GFAP and MCP-1 staining, but not for OX-42, in all investigated cortical areas on both experimental times (P15 and P180). Painful stimuli in the neonatal period produced pain behaviors immediately after injury that persisted in adult life, and was accompanied by increase in the glial markers density in cortical areas that process and interpret pain. Thus, long-lasting changes in cortical glial activity could be, at least in part, responsible for the persistent hyperalgesia in adult rats that suffered from neonatal pain. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.
King, Benjamin R; Samacoits, Aubin; Eisenhauer, Philip L; Ziegler, Christopher M; Bruce, Emily A; Zenklusen, Daniel; Zimmer, Christophe; Mueller, Florian; Botten, Jason
2018-06-15
Lymphocytic choriomeningitis mammarenavirus (LCMV) is an enveloped, negative-strand RNA virus that causes serious disease in humans but establishes an asymptomatic, lifelong infection in reservoir rodents. Different models have been proposed to describe how arenaviruses regulate the replication and transcription of their bisegmented, single-stranded RNA genomes, particularly during persistent infection. However, these models were based largely on viral RNA profiling data derived from entire populations of cells. To better understand LCMV replication and transcription at the single-cell level, we established a high-throughput, single-molecule fluorescence in situ hybridization (smFISH) image acquisition and analysis pipeline and examined viral RNA species at discrete time points from virus entry through the late stages of persistent infection in vitro We observed the transcription of viral nucleoprotein and polymerase mRNAs from the incoming S and L segment genomic RNAs, respectively, within 1 h of infection, whereas the transcription of glycoprotein mRNA from the S segment antigenome required ∼4 to 6 h. This confirms the temporal separation of viral gene expression expected due to the ambisense coding strategy of arenaviruses and also suggests that antigenomic RNA contained in virions is not transcriptionally active upon entry. Viral replication and transcription peaked at 36 h postinfection, followed by a progressive loss of viral RNAs over the next several days. During persistence, the majority of cells showed repeating cyclical waves of viral transcription and replication followed by the clearance of viral RNA. Thus, our data support a model of LCMV persistence whereby infected cells can spontaneously clear infection and become reinfected by viral reservoir cells that remain in the population. IMPORTANCE Arenaviruses are human pathogens that can establish asymptomatic, lifelong infections in their rodent reservoirs. Several models have been proposed to explain how arenavirus spread is restricted within host rodents, including the periodic accumulation and loss of replication-competent, but transcriptionally incompetent, viral genomes. A limitation of previous studies was the inability to enumerate viral RNA species at the single-cell level. We developed a high-throughput, smFISH assay and used it to quantitate lymphocytic choriomeningitis mammarenavirus (LCMV) replicative and transcriptional RNA species in individual cells at distinct time points following infection. Our findings support a model whereby productively infected cells can clear infection, including viral RNAs and antigen, and later be reinfected. This information improves our understanding of the timing and possible regulation of LCMV genome replication and transcription during infection. Importantly, the smFISH assay and data analysis pipeline developed here is easily adaptable to other RNA viruses. Copyright © 2018 American Society for Microbiology.
Immunology in the liver--from homeostasis to disease.
Heymann, Felix; Tacke, Frank
2016-02-01
The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.
Kar, Siddhartha; Wang, Meifang; Ham, Seung Wook; Carr, Brian I
2006-10-01
We previously synthesized a K-vitamin derivative, Cpd 5, which was a potent growth inhibitor of human tumor cells, including Hep3B hepatoma cells. However, being a quinone compound, Cpd 5 has the potential for generating toxic reactive oxygen species (ROS). We therefore synthesized a nonquinone sulfone derivative, H32, which has a sufone group substituting the quinone. The IC50 of H32 for Hep3B cells was found to be 2.5 microM, which was 2.5 and 3.2 times more potent than Cpd 5 and vitamin K3 respectively. It induced apoptosis in Hep3B cells but did not generate ROS when compared to Cpd 5. Interestingly, under similar culture conditions, normal rat hepatocytes were 14-fold more and 7-fold more resistant to the growth inhibitory effects of H32 than Hep3B and PLC/PRF5 cells respectively. H32 preferentially inhibited the activities of the cell cycle controlling Cdc25A phosphatase likely by binding to its catalytic cysteine. As a consequence, it induced inhibitory tyrosine phosphorylation of the Cdc25 substrate kinases Cdk2 and Cdk4 in Hep3B cells and the cells undergo an arrest in the G1 phase of the cell cycle. H32 also induced persistent phosphorylation of the MAPK protein ERK1/2, but marginal JNK1/2 and p38 phosphorylation. The ERK inhibitor U0126, added at least 30 min prior to H32, antagonized the growth inhibition induced by H32. However, the JNK and p38 inhibitors, JNKI-II and SB203580, were not able to antagonize H32 induced growth inhibition. Thus, H32 differentially inhibited growth of normal and liver tumor cells by preferentially inhibiting the actions of Cdc25 phosphatases and inducing persistent ERK phosphorylation.
Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients
NASA Astrophysics Data System (ADS)
Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis
2017-02-01
Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.
Long-term Persistence of Innate Lymphoid Cells in the Gut After Intestinal Transplantation.
Weiner, Joshua; Zuber, Julien; Shonts, Brittany; Yang, Suxiao; Fu, Jianing; Martinez, Mercedes; Farber, Donna L; Kato, Tomoaki; Sykes, Megan
2017-10-01
Little is known about innate lymphoid cell (ILC) populations in the human gut, and the turnover of these cells and their subsets after transplantation has not been described. Intestinal samples were taken from 4 isolated intestine and 3 multivisceral transplant recipients at the time of any operative resection, such as stoma closure or revision. ILCs were isolated and analyzed by flow cytometry. The target population was defined as being negative for lineage markers and double-positive for CD45/CD127. Cells were further stained to define ILC subsets and a donor-specific or recipient-specific HLA marker to analyze chimerism. Donor-derived ILCs were found to persist greater than 8 years after transplantation. Additionally, the percentage of cells thought to be lymphoid tissue inducer cells among donor ILCs was far higher than that among recipient ILCs. Our findings demonstrate that donor-derived ILCs persist long-term after transplantation and support the notion that human lymphoid tissue inducer cells may form in the fetus and persist throughout life, as hypothesized in rodents. Correlation between chimerism and rejection, graft failure, and patient survival requires further study.
Continuous tonic spike activity in spider warm cells in the absence of sensory input.
Gingl, E; Tichy, H
2006-09-01
The warm cells of the spider tarsal organ respond very sensitively to low-amplitude changes in temperature and discharge continuously as the rate of change in temperature reaches zero. To test whether the continuous tonic discharge remains without sensory input, we blocked the warm cell's receptive region by Epoxy glue. The activity continued in this situation, but its dependence on temperature changes was strongly reduced. We interpret this to mean that the warm cells exhibit specific intrinsic properties that underlie the generation of the tonic discharge. Experiments with electrical stimulation confirmed the observation that the warm cells persist in activity without an external drive. In warm cells with blocked receptive region, the response curves describing the relationship between the tonic discharge and the level of depolarization is the same for different temperatures. In warm cells with intact receptive region, the curves are shifted upward with rising temperature, as if the injected current is simply added to the receptor current. This indicates a modulating effect of the receptor current on the tonic discharge. Stimulation causes a change in the tonic discharge rate and thereby enables individual warm cells to signal the direction in addition to the magnitude of temperature changes.
Gillich, Nadine; Kuwata, Ryusei; Isawa, Haruhiko; Horie, Masayuki
2015-09-01
Culex tritaeniorhynchus rhabdovirus (CTRV) is a mosquito virus that establishes persistent infection without any obvious cell death. Therefore, occult infection by CTRV can be present in mosquito cell lines. In this study, it is shown that NIID-CTR cells, which were derived from Cx. tritaeniorhynchus, are persistently infected with a novel strain of CTRV. Complete genome sequencing of the infecting strain revealed that it is genetically similar but distinct from the previously isolated CTRV strain, excluding the possibility of contamination. These findings raise the importance of further CTRV studies, such as screening of CTRV in other mosquito cell lines. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.
G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV.
Madireddy, Advaitha; Purushothaman, Pravinkumar; Loosbroock, Christopher P; Robertson, Erle S; Schildkraut, Carl L; Verma, Subhash C
2016-05-05
Kaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS). Since quadruplexes have the tendency to obstruct DNA replication, we used G-quadruplex stabilizing compounds to examine their effect on latent DNA replication and the persistence of viral episomes. Our results showed that these G-quadruplex stabilizing compounds led to the activation of dormant origins of DNA replication, with preferential bi-directional pausing of replications forks moving out of the TR region, implicating the role of the G-rich TR in the perturbation of episomal DNA replication. Over time, treatment with PhenDC3 showed a loss of viral episomes in the infected cells. Overall, these data show that G-quadruplex stabilizing compounds retard the progression of replication forks leading to a reduction in DNA replication and episomal maintenance. These results suggest a potential role for G-quadruplex stabilizers in the treatment of KSHV-associated diseases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ya-Lin; Tsai, Hsing-Lyn; Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw
Highlights: Black-Right-Pointing-Pointer Two cell-based reporter platforms were established for screening of EBNA1 inhibitors. Black-Right-Pointing-Pointer EGCG acts as an inhibitor to block EBNA1 binding with the cognate oriP sequence. Black-Right-Pointing-Pointer EGCG debilitates EBNA1-dependent transcription enhancement and episome maintenance. Black-Right-Pointing-Pointer EGCG impairs persistence of EBV latency. Black-Right-Pointing-Pointer EGCG is a potent anti-EBV agent for targeting the latent cascade of EBV. -- Abstract: Because the expression of EBNA1 is prevalent in all EBV-associated tumors, it has become one of the most attractive drug targets for the discovery of anti-EBV compounds. In a cell-based reporter system, EBNA1 consistently upregulated the transcription of an oriP-Lucmore » mini-EBV episome by 6- to 8-fold. The treatment of cells with 50 {mu}M EGCG effectively blocked the binding of EBNA1 to oriP-DNA both in vivo and in vitro, which led to the abrogation of EBNA1-dependent episome maintenance and transcriptional enhancement. Importantly, the anti-EBNA1 effects caused by EGCG ultimately impaired the persistence of EBV latent infection. Our data suggest that the inhibition of EBNA1 activity by EGCG could be a promising starting point for the development of new protocols for anti-EBV therapy.« less
Activation of human herpesviruses 6 and 7 in patients with chronic fatigue syndrome.
Chapenko, S; Krumina, A; Kozireva, S; Nora, Z; Sultanova, A; Viksna, L; Murovska, M
2006-12-01
Human herpesvirus 6 (HHV-6) and 7 (HHV-7) have been suggested as possible triggering agents for chronic fatigue syndrome (CFS). To determine the possible association of HHV-6 and HHV-7 infections with CFS. The prevalence of latent/persistent and active viral infections by nPCR, characteristic of HHV-6 variants using restriction endonuclease analysis and changes of lymphocyte subsets in peripheral blood by laser flow-cytometry in 17 CFS patients was examined. In addition, 12 patients with unexplained chronic fatigue and 20 blood donors (BD) were studied. No difference in prevalence of latent/persistent single viral infections between the patients and BD was found but dual infection rate was significantly higher in CFS patients. Active HHV-6 and dual (HHV-6 + HHV-7) infections were detected in CFS patients only and frequency of HHV-7 reactivation was also significantly higher in these patients. HHV-6 variant B was predominant in CFS patients (12/13). The changes of immunological parameters in CFS patients with active dual infection were characterized by significant decrease of CD3+ and CD4+ T cells, significant increase of CD95+ cells and decrease of CD4+/CD8+ ratio. HHV-6 and HHV-7 may be involved in the pathogenesis of CFS and reactivation of both viruses may provoke changes in the phenotype of circulating lymphocytes.
Liu, Yinglin; Gardner, Carol R; Laskin, Jeffrey D; Laskin, Debra L
2013-02-01
The ability of rat hepatic sinusoidal endothelial cells (HSEC) to become activated in response to diverse inflammatory stimuli was analyzed. Whereas the classical macrophage activators, IFNγ and/or LPS upregulated expression of iNOS in HSEC, the alternative macrophage activators, IL-10 or IL-4+IL-13 upregulated arginase-1 and mannose receptor. Similar upregulation of iNOS and arginase-1 was observed in classically and alternatively activated Kupffer cells, respectively. Removal of inducing stimuli from the cells had no effect on expression of these markers, demonstrating that activation is persistent. Washing and incubation of IFNγ treated cells with IL-4+IL-13 resulted in decreased iNOS and increased arginase-1 expression, while washing and incubation of IL-4+IL-13 treated cells with IFNγ resulted in decreased arginase-1 and increased iNOS, indicating that classical and alternative activation of the cells is reversible. HSEC were more sensitive to phenotypic switching than Kupffer cells, suggesting greater functional plasticity. Hepatocyte viability and expression of PCNA, β-catenin and MMP-9 increased in the presence of alternatively activated HSEC. In contrast, the viability of hepatocytes pretreated for 2 h with 5 mM acetaminophen decreased in the presence of classically activated HSEC. These data demonstrate that activated HSEC can modulate hepatocyte responses following injury. The ability of hepatocytes to activate HSEC was also investigated. Co-culture of HSEC with acetaminophen-injured hepatocytes, but not control hepatocytes, increased the sensitivity of HSEC to classical and alternative activating stimuli. The capacity of HSEC to respond to phenotypic activators may represent an important mechanism by which they participate in inflammatory responses associated with hepatotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.
Susceptibility of Glucokinase-MODY Mutants to Inactivation by Oxidative Stress in Pancreatic β-Cells
Cullen, Kirsty S.; Matschinsky, Franz M.; Agius, Loranne; Arden, Catherine
2011-01-01
OBJECTIVE The posttranslational regulation of glucokinase (GK) differs in hepatocytes and pancreatic β-cells. We tested the hypothesis that GK mutants that cause maturity-onset diabetes of the young (GK-MODY) show compromised activity and posttranslational regulation in β-cells. RESEARCH DESIGN AND METHODS Activity and protein expression of GK-MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI) mutants were studied in β-cell (MIN6) and non–β-cell (H4IIE) models. Binding of GK to phosphofructo-2-kinase, fructose-2,6-bisphosphatase (PFK2/FBPase2) was studied by bimolecular fluorescence complementation in cell-based models. RESULTS Nine of 11 GK-MODY mutants that have minimal effect on enzyme kinetics in vitro showed decreased specific activity relative to wild type when expressed in β-cells. A subset of these were stable in non–β-cells but showed increased inactivation in conditions of oxidative stress and partial reversal of inactivation by dithiothreitol. Unlike the GK-MODY mutants, four of five GK-PHHI mutants had similar specific activity to wild type and Y214C had higher activity than wild type. The GK-binding protein PFK2/FBPase2 protected wild-type GK from oxidative inactivation and the decreased stability of GK-MODY mutants correlated with decreased interaction with PFK2/FBPase2. CONCLUSIONS Several GK-MODY mutants show posttranslational defects in β-cells characterized by increased susceptibility to oxidative stress and/or protein instability. Regulation of GK activity through modulation of thiol status may be a physiological regulatory mechanism for the control of GK activity in β-cells. PMID:22028181
Cullen, Kirsty S; Matschinsky, Franz M; Agius, Loranne; Arden, Catherine
2011-12-01
The posttranslational regulation of glucokinase (GK) differs in hepatocytes and pancreatic β-cells. We tested the hypothesis that GK mutants that cause maturity-onset diabetes of the young (GK-MODY) show compromised activity and posttranslational regulation in β-cells. Activity and protein expression of GK-MODY and persistent hyperinsulinemic hypoglycemia of infancy (PHHI) mutants were studied in β-cell (MIN6) and non-β-cell (H4IIE) models. Binding of GK to phosphofructo-2-kinase, fructose-2,6-bisphosphatase (PFK2/FBPase2) was studied by bimolecular fluorescence complementation in cell-based models. Nine of 11 GK-MODY mutants that have minimal effect on enzyme kinetics in vitro showed decreased specific activity relative to wild type when expressed in β-cells. A subset of these were stable in non-β-cells but showed increased inactivation in conditions of oxidative stress and partial reversal of inactivation by dithiothreitol. Unlike the GK-MODY mutants, four of five GK-PHHI mutants had similar specific activity to wild type and Y214C had higher activity than wild type. The GK-binding protein PFK2/FBPase2 protected wild-type GK from oxidative inactivation and the decreased stability of GK-MODY mutants correlated with decreased interaction with PFK2/FBPase2. Several GK-MODY mutants show posttranslational defects in β-cells characterized by increased susceptibility to oxidative stress and/or protein instability. Regulation of GK activity through modulation of thiol status may be a physiological regulatory mechanism for the control of GK activity in β-cells.
Park, Hae-Ran; Jo, Sung-Kee; Choi, Nam-Hee; Jung, Uhee
2012-05-01
Whole body irradiated mice appear to experience a down-regulation of the helper T (Th)1-like immune response, and maintain a persistent immunological imbalance. In the current study, we evaluated the effect of HemoHIM (an herbal product made from Angelica Radix, Cnidium officinale , and Paeonia japonica cultivated in Korea) to ameliorate the immunological imbalance induce in fractionated γ-irradiated mice. The mice were exposed to γ rays twice a week (0.5 Gy fractions) for a total dose of 5 Gy, and HemoHIM was administrated orally from 1 week before the first irradiation to 1 week before the final analysis. All experiments were performed 4 and 6 months after their first exposure. HemoHIM ameliorated the Th1- and Th2-related immune responses normally occur in irradiated mice with or without dinitrophenylated keyhole limpet hemocyanin immunization. HemoHIM also restored the natural killer cell activities without changing the percentage of natural killer cells in irradiated mice. Furthermore, the administration of HemoHIM prevented the reduction in levels of interleukin-12p70 in irradiated mice. Finally, we found that HemoHIM enhanced the phosphorylation of signal transducer and activator of transcription (STAT) 4 that was reduced in irradiated mice. Our findings suggest that HemoHIM ameliorates the persistent down-regulation of Th1-like immune responses by modulating the IL-12p70/pSTAT4 signaling pathway.
Saxena, Amol; Perez, Hugo
2004-11-01
Pigmented villonodular synovitis (PVNS) is relatively uncommon. The disorder results in increased proliferation of synovium causing villous or nodular changes of synovial-lined joints, bursae and tendon sheaths. This study examines the occurrence of PVNS about the ankle and its association with trauma. Ten patients over a 10-year period were identified as having PVNS of the ankle. The average age was 40.2 (range 27 to 62) years. There were four women and six men. Average followup was 4.5 (range 1 to 11) years from the initial surgery. Four patients had bone involvement. All patients who were athletically active before symptoms arose complained of persistent pain and swelling in the lateral ankle. Their initial clinical symptoms were indistinguishable from commonly associated pathologies with persistent lateral ankle pain (i.e. tenosynovitis, osteochondral defects, os trigonum injury, and tendon tears). All patients had magnetic resonance imaging (MRI) revealing PVNS, which is represented by low-signal appearing masses on T1- and T2-weighted images. All patients' histopathology results revealed multinucleated giant cells and foam cells laden with hemosiderin deposits. All patients had synovectomy and tenosynovectomy. Eight patients were able to return to some sports (range 4 to 12 months); two had continued pain, disability, and inability to return to sports because of recurrence. PVNS should be considered in athletically active patients with persistent lateral ankle pain and swelling, particularly if bone erosions are visible on plain radiographs.
[Cycloferon biological activity characteristics].
Utkina, T M; Potekhina, L P; Kartashova, O L; Vasilchenko, A S
2014-01-01
Study the effect of cycloferon in experimental and clinical conditions on persistence properties of aurococci as well as features of their morpho-functional reaction by atomic force microscopy. The study was carried out in 12 Staphylococcus aureus clones isolated from mucous membrane of nose anterior part of a resident carrier. The effect of cycloferon in vivo was evaluated in 26 resident staphylococci carriers under the control of anti-carnosine activity of staphylococci. Anti-carnosine activity was determined by O.V. Bukharin et al. (1999), biofilm formation -by G.A. O'Toole et al. (2000). Staphylococci treated with cycloferon were studied by atomic force microscopy in contact mode using scanning probe SMM-2000 microscope. The decrease of persistence properties of staphylococci under the effect of cycloferon in vitro and in vivo may be examined as one of the mechanisms of biological activity of the preparation. A significant increase of S. aureus surface roughness and changes in their morphology under the effect of cycloferon allow stating the disorder of barrier functions in the aurococci cell wall. The data obtained expand the understanding of cycloferon biological activity mechanisms.
Belova, Oxana A; Litov, Alexander G; Kholodilov, Ivan S; Kozlovskaya, Liubov I; Bell-Sakyi, Lesley; Romanova, Lidiya Iu; Karganova, Galina G
2017-10-01
Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a vector-borne zoonotic neuroinfection. For successful circulation in natural foci the virus has to survive in the vector for a long period of time. Information about the effect of long-term infection of ticks on properties of the viral population is of great importance. In recent years, changes in the eco-epidemiology of TBEV due to changes in distribution of ixodid ticks have been observed. These changes in TBEV-endemic areas could result in a shift of the main tick vector species, which in turn may lead to changes in properties of the virus. In the present study we evaluated the selective pressure on the TBEV population during persistent infection of various species of ticks and tick cell lines. TBEV effectively replicated and formed persistent infection in ticks and tick cell lines of the vector species (Ixodes spp.), potential vectors (Dermacentor spp.) and non-vector ticks (Hyalomma spp.). During TBEV persistence in Ixodes and Dermacentor ticks, properties of the viral population remained virtually unchanged. In contrast, persistent TBEV infection of tick cell lines from both vector and non-vector ticks favoured selection of viral variants with low neuroinvasiveness for laboratory mice and substitutions in the E protein that increased local positive charge of the virion. Thus, selective pressure on viral population may differ in ticks and tick cell lines during persistent infection. Nevertheless, virus variants with properties of the original strain adapted to mouse CNS were not eliminated from the viral population during long-term persistence of TBEV in ticks and tick cell lines. Copyright © 2017 Elsevier GmbH. All rights reserved.
Zhu, Yan; Fenik, Polina; Zhan, Guanxia; Somach, Rebecca; Xin, Ryan; Veasey, Sigrid
2016-01-01
Study Objectives: Intermittent short sleep (ISS) is pervasive among students and workers in modern societies, yet the lasting consequences of repeated short sleep on behavior and brain health are largely unexplored. Wake-activated neurons may be at increased risk of metabolic injury across sustained wakefulness. Methods: To examine the effects of ISS on wake-activated neurons and wake behavior, wild-type mice were randomized to ISS (a repeated pattern of short sleep on 3 consecutive days followed by 4 days of recovery sleep for 4 weeks) or rested control conditions. Subsets of both groups were allowed a recovery period consisting of 4-week unperturbed activity in home cages with littermates. Mice were examined for immediate and delayed (following recovery) effects of ISS on wake neuron cell metabolics, cell counts, and sleep/wake patterns. Results: ISS resulted in sustained disruption of sleep/wake activity, with increased wakefulness during the lights-on period and reduced wake bout duration and wake time during the lights-off period. Noradrenergic locus coeruleus (LC) and orexinergic neurons showed persistent alterations in morphology, and reductions in both neuronal stereological cell counts and fronto-cortical projections. Surviving wake-activated neurons evidenced persistent reductions in sirtuins 1 and 3 and increased lipofuscin. In contrast, ISS resulted in no lasting injury to the sleep-activated melanin concentrating hormone neurons. Conclusions: Collectively these findings demonstrate for the first time that ISS imparts significant lasting disturbances in sleep/wake activity, degeneration of wake-activated LC and orexinergic neurons, and lasting metabolic changes in remaining neurons most consistent with premature senescence. Citation: Zhu Y, Fenik P, Zhan G, Somach R, Xin R, Veasey S. Intermittent short sleep results in lasting sleep wake disturbances and degeneration of locus coeruleus and orexinergic neurons. SLEEP 2016;39(8):1601–1611. PMID:27306266
HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.
Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang
2017-08-01
Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.
Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia
NASA Astrophysics Data System (ADS)
Li, Hongyu; Valkenier, Hennie; Judd, Luke W.; Brotherhood, Peter R.; Hussain, Sabir; Cooper, James A.; Jurček, Ondřej; Sparkes, Hazel A.; Sheppard, David N.; Davis, Anthony P.
2016-01-01
Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especially promising activity, including deliverability, potency and persistence. Electrophysiological tests show strong effects in epithelia, close to those of natural anion channels. Toxicity assays yield negative results in three cell lines, suggesting that promotion of anion transport may not be deleterious to cells. We therefore conclude that synthetic anion carriers are realistic candidates for further investigation as treatments for cystic fibrosis.
NASA Astrophysics Data System (ADS)
Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter
2015-02-01
The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.
PERSISTENCE OF MESSENGER RNA THROUGH MITOSIS IN HELA CELLS
Hodge, L. D.; Robbins, E.; Scharff, M. D.
1969-01-01
The decrease in protein synthesis which occurs in mammalian cells during cell division is associated with significant disaggregation of polyribosomes. For determining whether messenger RNA survives this disaggregation, the reformation of polyribosomes was investigated in synchronized HeLa cells as they progressed from metaphase into interphase in the presence of 2 µg/ml Actinomycin D. The persistence of messenger during cell division was evidenced by: (1) a progressive increase in the rate of protein synthesis in both treated and untreated cells for 45 min after metaphase; (2) reformation of polyribosomes, as determined by both sucrose gradients and electron microscopy, within 30 min after the addition of Actinomycin D to metaphase cells; (3) the persistence of approximately 50% of the rapidly labeled nonribosomal RNA which had associated with polyribosomes just before metaphase; (4) the resumption of synthesis, following cell division, of 6 selected peptides in Actinomycin-treated cells. PMID:5761922
Zhou, Fu-Wen; Dong, Hong-Wei; Ennis, Matthew
2016-12-01
The main olfactory bulb (MOB) receives a rich noradrenergic innervation from the nucleus locus coeruleus. Despite the well-documented role of norepinephrine and β-adrenergic receptors in neonatal odor preference learning, identified cellular physiological actions of β-receptors in the MOB have remained elusive. β-Receptors are expressed at relatively high levels in the MOB glomeruli, the location of external tufted (ET) cells that exert an excitatory drive on mitral and other cell types. The present study investigated the effects of β-receptor activation on the excitability of ET cells with patch-clamp electrophysiology in mature mouse MOB slices. Isoproterenol and selective β 2 -, but not β 1 -, receptor agonists were found to enhance two key intrinsic currents involved in ET burst initiation: persistent sodium (I NaP ) and hyperpolarization-activated inward (I h ) currents. Together, the positive modulation of these currents increased the frequency and strength of ET cell rhythmic bursting. Rodent sniff frequency and locus coeruleus neuronal firing increase in response to novel stimuli or environments. The increase in ET excitability by β-receptor activation may better enable ET cell rhythmic bursting, and hence glomerular network activity, to pace faster sniff rates during heightened norepinephrine release associated with arousal. Copyright © 2016 the American Physiological Society.
An aberrant NOTCH2-BCR signaling axis in B cells from patients with chronic GVHD.
Poe, Jonathan C; Jia, Wei; Su, Hsuan; Anand, Sarah; Rose, Jeremy J; Tata, Prasanthi V; Suthers, Amy N; Jones, Corbin D; Kuan, Pei Fen; Vincent, Benjamin G; Serody, Jonathan S; Horwitz, Mitchell E; Ho, Vincent T; Pavletic, Steven Z; Hakim, Frances T; Owzar, Kouros; Zhang, Dadong; Blazar, Bruce R; Siebel, Christian W; Chao, Nelson J; Maillard, Ivan; Sarantopoulos, Stefanie
2017-11-09
B-cell receptor (BCR)-activated B cells contribute to pathogenesis in chronic graft-versus-host disease (cGVHD), a condition manifested by both B-cell autoreactivity and immune deficiency. We hypothesized that constitutive BCR activation precluded functional B-cell maturation in cGVHD. To address this, we examined BCR-NOTCH2 synergy because NOTCH has been shown to increase BCR responsiveness in normal mouse B cells. We conducted ex vivo activation and signaling assays of 30 primary samples from hematopoietic stem cell transplantation patients with and without cGVHD. Consistent with a molecular link between pathways, we found that BCR-NOTCH activation significantly increased the proximal BCR adapter protein BLNK. BCR-NOTCH activation also enabled persistent NOTCH2 surface expression, suggesting a positive feedback loop. Specific NOTCH2 blockade eliminated NOTCH-BCR activation and significantly altered NOTCH downstream targets and B-cell maturation/effector molecules. Examination of the molecular underpinnings of this "NOTCH2-BCR axis" in cGVHD revealed imbalanced expression of the transcription factors IRF4 and IRF8 , each critical to B-cell differentiation and fate. All- trans retinoic acid (ATRA) increased IRF4 expression, restored the IRF4 -to- IRF8 ratio, abrogated BCR-NOTCH hyperactivation, and reduced NOTCH2 expression in cGVHD B cells without compromising viability. ATRA-treated cGVHD B cells had elevated TLR9 and PAX5 , but not BLIMP1 (a gene-expression pattern associated with mature follicular B cells) and also attained increased cytosine guanine dinucleotide responsiveness. Together, we reveal a mechanistic link between NOTCH2 activation and robust BCR responses to otherwise suboptimal amounts of surrogate antigen. Our findings suggest that peripheral B cells in cGVHD patients can be pharmacologically directed from hyperactivation toward maturity.
Vilhena, Cláudia; Kaganovitch, Eugen; Shin, Jae Yen; Grünberger, Alexander; Behr, Stefan; Kristoficova, Ivica; Brameyer, Sophie; Kohlheyer, Dietrich; Jung, Kirsten
2018-01-01
Fluctuating environments and individual physiological diversity force bacteria to constantly adapt and optimize the uptake of substrates. We focus here on two very similar two-component systems (TCSs) of Escherichia coli belonging to the LytS/LytTR family: BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB. Both TCSs respond to extracellular pyruvate, albeit with different affinities, typically during postexponential growth, and each system regulates expression of a single transporter gene, yjiY and yhjX , respectively. To obtain insights into the biological significance of these TCSs, we analyzed the activation of the target promoters at the single-cell level. We found unimodal cell-to-cell variability; however, the degree of variance was strongly influenced by the available nutrients and differed between the two TCSs. We hypothesized that activation of either of the TCSs helps individual cells to replenish carbon resources. To test this hypothesis, we compared wild-type cells with the btsSR ypdAB mutant under two metabolically modulated conditions: protein overproduction and persister formation. Although all wild-type cells were able to overproduce green fluorescent protein (GFP), about half of the btsSR ypdAB population was unable to overexpress GFP. Moreover, the percentage of persister cells, which tolerate antibiotic stress, was significantly lower in the wild-type cells than in the btsSR ypdAB population. Hence, we suggest that the BtsS/BtsR and YpdA/YpdB network contributes to a balancing of the physiological state of all cells within a population. IMPORTANCE Histidine kinase/response regulator (HK/RR) systems enable bacteria to respond to environmental and physiological fluctuations. Escherichia coli and other members of the Enterobacteriaceae possess two similar LytS/LytTR-type HK/RRs, BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB, which form a functional network. Both systems are activated in response to external pyruvate, typically when cells face overflow metabolism during post-exponential growth. Single-cell analysis of the activation of their respective target genes yjiY and yhjX revealed cell-to-cell variability, and the range of variation was strongly influenced by externally available nutrients. Based on the phenotypic characterization of a btsSR ypdAB mutant compared to the parental strain, we suggest that this TCS network supports an optimization of the physiological state of the individuals within the population. Copyright © 2017 American Society for Microbiology.
Hanon, E; Hall, S; Taylor, G P; Saito, M; Davis, R; Tanaka, Y; Usuku, K; Osame, M; Weber, J N; Bangham, C R
2000-02-15
The role of the cellular immune response in human T-cell leukemia virus type I (HTLV-I) infection is not fully understood. A persistently activated cytotoxic T lymphocyte (CTL) response to HTLV-I is found in the majority of infected individuals. However, it remains unclear whether this CTL response is protective or causes tissue damage. In addition, several observations paradoxically suggest that HTLV-I is transcriptionally silent in most infected cells and, therefore, not detectable by virus-specific CTLs. With the use of a new flow cytometric procedure, we show here that a high proportion of naturally infected CD4+ peripheral blood mononuclear cells (PBMC) (between 10% and 80%) are capable of expressing Tax, the immunodominant target antigen recognized by virus-specific CTLs. Furthermore, we provide direct evidence that autologous CD8+ T cells rapidly kill CD4+ cells naturally infected with HTLV-I and expressing Tax in vitro by a perforin-dependent mechanism. Consistent with these observations, we observed a significant negative correlation between the frequency of Tax(11-19)-specific CD8+ T cells and the percentage of CD4+ T cells in peripheral blood of patients infected with HTLV-I. Those results are in accordance with the view that virus-specific CTLs participate in a highly efficient immune surveillance mechanism that persistently destroys Tax-expressing HTLV-I-infected CD4+ T cells in vivo. (Blood. 2000;95:1386-1392)
NAGATOMO, T; OHGA, S; TAKADA, H; NOMURA, A; HIKINO, S; IMURA, M; OHSHIMA, K; HARA, T
2004-01-01
To continue the search for immunological roles of breast milk, cDNA microarray analysis on cytokines and growth factors was performed for human milk cells. Among the 240 cytokine-related genes, osteopontin (OPN) gene ranked top of the expression. Real-time PCR revealed that the OPN mRNA levels in colostrum cells were approximately 100 times higher than those in PHA-stimulated peripheral blood mononuclear cells (PBMNCs), and 10 000 times higher than those in PB CD14+ cells. The median levels of OPN mRNA in early milk or mature milk cells were more than three times higher than those in colostrum cells. Western blot analysis of human milk showed appreciable expression of full-length and short form proteins of OPN. The concentrations of full-length OPN in early milk or mature milk whey continued to be higher than those in colostrum whey and plasma as assessed by ELISA. The early milk (3–7 days postpartum) contained the highest concentrations of OPN protein, while the late mature milk cells (1 years postpartum) had the highest expression of OPN mRNA of all the lactating periods. The results of immunohistochemical and immunocytochemical staining indicated that OPN-producing epithelial cells and macrophages are found in actively lactating mammary glands. These results suggest that the persistently and extraordinarily high expression of OPN in human milk cells plays a potential role in the immunological development of breast-fed infants. PMID:15373904
Antibacterial agent triclosan suppresses RBL-2H3 mast cell function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Rachel K., E-mail: rachel.palmer@maine.edu; Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469; Hutchinson, Lee M.
2012-01-01
Triclosan is a broad-spectrum antibacterial agent, which has been shown previously to alleviate human allergic skin disease. The purpose of this study was to investigate the hypothesis that the mechanism of this action of triclosan is, in part, due to effects on mast cell function. Mast cells play important roles in allergy, asthma, parasite defense, and carcinogenesis. In response to various stimuli, mast cells degranulate, releasing allergic mediators such as histamine. In order to investigate the potential anti-inflammatory effect of triclosan on mast cells, we monitored the level of degranulation in a mast cell model, rat basophilic leukemia cells, clonemore » 2H3. Having functional homology to human mast cells, as well as a very well defined signaling pathway leading to degranulation, this cell line has been widely used to gain insight into mast-cell driven allergic disorders in humans. Using a fluorescent microplate assay, we determined that triclosan strongly dampened the release of granules from activated rat mast cells starting at 2 μM treatment, with dose-responsive suppression through 30 μM. These concentrations were found to be non-cytotoxic. The inhibition was found to persist when early signaling events (such as IgE receptor aggregation and tyrosine phosphorylation) were bypassed by using calcium ionophore stimulation, indicating that the target for triclosan in this pathway is likely downstream of the calcium signaling event. Triclosan also strongly suppressed F-actin remodeling and cell membrane ruffling, a physiological process that accompanies degranulation. Our finding that triclosan inhibits mast cell function may explain the clinical data mentioned above and supports the use of triclosan or a mechanistically similar compound as a topical treatment for allergic skin disease, such as eczema. -- Highlights: ►The effects of triclosan on mast cell function using a murine mast cell model. ►Triclosan strongly inhibits degranulation of mast cells. ►Triclosan suppresses membrane ruffling of activated mast cells. ►Triclosan's effects persist when early mast cell signaling events are bypassed. ►Supports use of triclosan as a topical treatment for eczema.« less
Lassance, Luciana; Marino, Gustavo K; Medeiros, Carla S; Thangavadivel, Shanmugapriya; Wilson, Steven E
2018-05-01
The aim of this study was to determine whether bone marrow-derived fibrocytes migrate into the cornea after stromal scar-producing injury and differentiate into alpha-smooth muscle actin (αSMA) + myofibroblasts. Chimeric mice expressing green fluorescent protein (GFP) bone marrow cells had fibrosis (haze)-generating irregular phototherapeutic keratectomy (PTK). Multiplex immunohistochemistry (IHC) for GFP and fibrocyte markers (CD34, CD45, and vimentin) was used to detect fibrocyte infiltration into the corneal stroma and the development of GFP+ αSMA+ myofibroblasts. IHC for activated caspase-3, GFP and CD45 was used to detect fibrocyte and other hematopoietic cells undergoing apoptosis. Moderate haze developed in PTK-treated mouse corneas at 14 days after surgery and worsened, and persisted, at 21 days after surgery. GFP+ CD34+ CD45+ fibrocytes, likely in addition to other CD34+ and/or CD45+ hematopoietic and stem/progenitor cells, infiltrated the cornea and were present in the stroma in high numbers by one day after PTK. The fibrocytes and other bone marrow-derived cells progressively decreased at four days and seven days after surgery. At four days after PTK, 5% of the GFP+ cells expressed activated caspase-3. At 14 days after PTK, more than 50% of GFP+ CD45+ cells were also αSMA+ myofibroblasts. At 21 days after PTK, few GFP+ αSMA+ cells persisted in the stroma and more than 95% of those remaining expressed activated caspase-3, indicating they were undergoing apoptosis. GFP+ CD45+ SMA+ cells that developed from 4 to 21 days after irregular PTK were likely developed from fibrocytes. After irregular PTK in the strain of C57BL/6-C57/BL/6-Tg(UBC-GFP)30Scha/J chimeric mice, however, more than 95% of fibrocytes and other hematopoietic cells underwent apoptosis prior to the development of mature αSMA+ myofibroblasts. Most GFP+ CD45+ αSMA+ myofibroblasts that did develop subsequently underwent apoptosis-likely due to epithelial basement membrane regeneration and deprivation of epithelium-derived TGFβ requisite for myofibroblast survival. Copyright © 2018 Elsevier Ltd. All rights reserved.
Damouche, Abderaouf; Huot, Nicolas; Dejucq-Rainsford, Nathalie; Satie, Anne-Pascale; Mélard, Adeline; David, Ludivine; Gommet, Céline; Ghosn, Jade; Noel, Nicolas; Pourcher, Guillaume; Martinez, Valérie; Benoist, Stéphane; Béréziat, Véronique; Cosma, Antonio; Favier, Benoit; Vaslin, Bruno; Rouzioux, Christine; Capeau, Jacqueline; Müller-Trutwin, Michaela; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Lambotte, Olivier; Bourgeois, Christine
2015-01-01
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways. PMID:26402858
Non-Brownian dynamics and strategy of amoeboid cell locomotion.
Nishimura, Shin I; Ueda, Masahiro; Sasai, Masaki
2012-04-01
Amoeboid cells such as Dictyostelium discoideum and Madin-Darby canine kidney cells show the non-Brownian dynamics of migration characterized by the superdiffusive increase of mean-squared displacement. In order to elucidate the physical mechanism of this non-Brownian dynamics, a computational model is developed which highlights a group of inhibitory molecules for actin polymerization. Based on this model, we propose a hypothesis that inhibitory molecules are sent backward in the moving cell to accumulate at the rear of cell. The accumulated inhibitory molecules at the rear further promote cell locomotion to form a slow positive feedback loop of the whole-cell scale. The persistent straightforward migration is stabilized with this feedback mechanism, but the fluctuation in the distribution of inhibitory molecules and the cell shape deformation concurrently interrupt the persistent motion to turn the cell into a new direction. A sequence of switching behaviors between persistent motions and random turns gives rise to the superdiffusive migration in the absence of the external guidance signal. In the complex environment with obstacles, this combined process of persistent motions and random turns drives the simulated amoebae to solve the maze problem in a highly efficient way, which suggests the biological advantage for cells to bear the non-Brownian dynamics.
Laidlaw, Kamilla M.E.; Berhan, Samuel; Liu, Suhu; Silvestri, Giovannino; Holyoake, Tessa L.; Frank, David A.; Aggarwal, Bharat; Bonner, Michael Y.; Perrotti, Danilo
2016-01-01
The use of tyrosine kinase inhibitors (TKI), including nilotinib, has revolutionized the treatment of chronic myeloid leukemia (CML). However current unmet clinical needs include combating activation of additional survival signaling pathways in persistent leukemia stem cells after long-term TKI therapy. A ubiquitous signaling alteration in cancer, including CML, is activation of reactive oxygen species (ROS) signaling, which may potentiate stem cell activity and mediate resistance to both conventional chemotherapy and targeted inhibitors. We have developed a novel nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, imipramine blue (IB) that targets ROS generation. ROS levels are known to be elevated in CML with respect to normal hematopoietic stem/progenitor cells and not corrected by TKI. We demonstrate that IB has additive benefit with nilotinib in inhibiting proliferation, viability, and clonogenic function of TKI-insensitive quiescent CD34+ CML chronic phase (CP) cells while normal CD34+ cells retained their clonogenic capacity in response to this combination therapy in vitro. Mechanistically, the pro-apoptotic activity of IB likely resides in part through its dual ability to block NF-κB and re-activate the tumor suppressor protein phosphatase 2A (PP2A). Combining BCR-ABL1 kinase inhibition with NADPH oxidase blockade may be beneficial in eradication of CML and worthy of further investigation. PMID:27438151
Exosomes from uninfected cells activate transcription of latent HIV-1.
Barclay, Robert A; Schwab, Angela; DeMarino, Catherine; Akpamagbo, Yao; Lepene, Benjamin; Kassaye, Seble; Iordanskiy, Sergey; Kashanchi, Fatah
2017-07-14
HIV-1 infection causes AIDS, infecting millions worldwide. The virus can persist in a state of chronic infection due to its ability to become latent. We have previously shown a link between HIV-1 infection and exosome production. Specifically, we have reported that exosomes transport viral proteins and RNA from infected cells to neighboring uninfected cells. These viral products could then elicit an innate immune response, leading to activation of the Toll-like receptor and NF-κB pathways. In this study, we asked whether exosomes from uninfected cells could activate latent HIV-1 in infected cells. We observed that irrespective of combination antiretroviral therapy, both short- and long-length viral transcripts were increased in wild-type HIV-1-infected cells exposed to purified exosomes from uninfected cells. A search for a possible mechanism for this finding revealed that the exosomes increase RNA polymerase II loading onto the HIV-1 promoter in the infected cells. These viral transcripts, which include trans-activation response (TAR) RNA and a novel RNA that we termed TAR- gag , can then be packaged into exosomes and potentially be exported to neighboring uninfected cells, leading to increased cellular activation. To better decipher the exosome release pathways involved, we used siRNA to suppress expression of ESCRT (endosomal sorting complex required for transport) proteins and found that ESCRT II and IV significantly control exosome release. Collectively, these results imply that exosomes from uninfected cells activate latent HIV-1 in infected cells and that true transcriptional latency may not be possible in vivo , especially in the presence of combination antiretroviral therapy.
Bojsen, Rasmus; Regenberg, Birgitte; Gresham, David; Folkesson, Anders
2016-02-23
Fungal infections are an increasing clinical problem. Decreased treatment effectiveness is associated with biofilm formation and drug recalcitrance is thought to be biofilm specific. However, no systematic investigations have tested whether resistance mechanisms are shared between biofilm and planktonic populations. We performed multiplexed barcode sequencing (Bar-seq) screening of a pooled collection of gene-deletion mutants cultivated as biofilm and planktonic cells. Screening for resistance to the ergosterol-targeting fungicide amphotericin B (AmB) revealed that the two growth modes had significant overlap in AmB-persistent mutants. Mutants defective in sterol metabolism, ribosome biosynthesis, and the TORC1 and Ras pathways showed increased persistence when treated with AmB. The ras1, ras2 and tor1 mutants had a high-persister phenotype similar to wild-type biofilm and planktonic cells exposed to the TORC1 pathway inhibitor rapamycin. Inhibition of TORC1 with rapamycin also increased the proportion of persisters in Candida albicans and Candida glabrata. We propose that decreased TORC1-mediated induction of ribosome biosynthesis via Ras can lead to formation of AmB-persister cells regardless of whether the cells are in planktonic or biofilm growth mode. Identification of common pathways leading to growth mode-independent persister formation is important for developing novel strategies for treating fungal infections.
Sustained neurotensin exposure promotes cell surface recruitment of NTS2 receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perron, Amelie; Sharif, Nadder; Gendron, Louis
2006-05-12
In this study, we investigated whether persistent agonist stimulation of NTS2 receptors gives rise to down-regulation, in light of reports that their activation induced long-lasting effects. To address this issue, we incubated COS-7 cells expressing the rat NTS2 with neurotensin (NT) for up to 24 h and measured resultant cell surface [{sup 125}I]-NT binding. We found that NTS2-expressing cells retained the same surface receptor density despite efficient internalization mechanisms. This preservation was neither due to NTS2 neosynthesis nor recycling since it was not blocked by cycloheximide or monensin. However, it appeared to involve translocation of spare receptors from internal stores,more » as NT induced NTS2 migration from trans-Golgi network to endosome-like structures. This stimulation-induced regulation of cell surface NTS2 receptors was even more striking in rat spinal cord neurons. Taken together, these results suggest that sustained NTS2 activation promotes recruitment of intracellular receptors to the cell surface, thereby preventing functional desensitization.« less
Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030
Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J
2011-01-01
Background: Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Methods: Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH+/CD133+). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Results: Our results observed that ALDH+/CD133+ colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Conclusion: Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer. PMID:21694723
Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030.
Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J
2011-07-12
Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH(+)/CD133(+)). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Our results observed that ALDH(+)/CD133(+) colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer.
ERK reinforces actin polymerization to power persistent edge protrusion during motility
Mendoza, Michelle C.; Vilela, Marco; Juarez, Jesus E.; Blenis, John; Danuser, Gaudenz
2016-01-01
Cells move through perpetual protrusion and retraction cycles at the leading edge. These cycles are coordinated with substrate adhesion and retraction of the cell rear. Here, we tracked spatial and temporal fluctuations in the molecular activities of individual moving cells to elucidate how extracellular regulated kinase (ERK) signaling controlled the dynamics of protrusion and retraction cycles. ERK is activated by many cell-surface receptors and we found that ERK signaling specifically reinforced cellular protrusions so that they translated into rapid, sustained forward motion of the leading edge. Using quantitative fluorescent speckle microscopy (qFSM) and cross-correlation analysis, we showed that ERK controlled the rate and timing of actin polymerization by promoting the recruitment of the actin nucleator Arp2/3 to the leading edge. Arp2/3 activity generates branched actin networks that can produce pushing force. These findings support a model in which surges in ERK activity induced by extracellular cues enhance Arp2/3-mediated actin polymerization to generate protrusion power phases with enough force to counteract increasing membrane tension and to promote sustained motility. PMID:25990957
Persistence of Yellow Fever vaccine-induced antibodies after cord blood stem cell transplant.
Avelino-Silva, Vivian Iida; Freire, Marcos da Silva; Rocha, Vanderson; Rodrigues, Celso Arrais; Novis, Yana Sarkis; Sabino, Ester C; Kallas, Esper Georges
2016-04-02
We report the case of a cord blood haematopoietic stem cell transplant recipient who was vaccinated for Yellow Fever (YF) 7 days before initiating chemotherapy and had persistent YF antibodies more than 3 years after vaccination. Since the stem cell donor was never exposed to wild YF or to the YF vaccine, and our patient was not exposed to YF or revaccinated, this finding strongly suggests the persistence of recipient immunity. We briefly discuss potential consequences of incomplete elimination of recipient's leukocytes following existing haematopoietic cancer treatments.
Gutiérrez-Cacciabue, Dolores; Cid, Alicia G; Rajal, Verónica B
2016-01-01
In this work, sunlight inactivation of two indicator bacteria in freshwater, with and without solid particles, was studied and the persistence of culturable cells and total DNA was compared. Environmental water was used to prepare two matrices, with and without solid particles, which were spiked with Escherichia coli and Enterococcus faecalis. These matrices were used to prepare microcosm bags that were placed in two containers: one exposed to sunlight and the other in the dark. During one month, samples were removed from each container and detection was done by membrane filter technique and real-time PCR. Kinetic parameters were calculated to assess sunlight effect. Indicator bacteria without solid particles exposed to sunlight suffered an immediate decay (<4h) compared with the ones which were shielded from them. In addition, the survival of both bacteria with solid particles varied depending on the situation analyzed (T99 from 3 up to 60days), being always culturable E. coli more persistent than E. faecalis. On the other side, E. faecalis DNA persisted much longer than culturable cells (T99>40h in the dark with particles). In this case active cells were more prone to sunlight than total DNA and the protective effect of solid particles was also observed. Results highlight that the effects caused by the parameters which describe the behavior of culturable microorganisms and total DNA in water are different and must be included in simulation models but without forgetting that these parameters will also depend on bacterial properties, sensitizers, composition, type, and uses of the aquatic environment under assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
Rappl, Gunter; Pabst, Stefan; Riemann, Dagmar; Schmidt, Annette; Wickenhauser, Claudia; Schütte, Wolfgang; Hombach, Andreas A; Seliger, Barbara; Grohé, Christian; Abken, Hinrich
2011-07-01
Sarcoidosis can evolve into a chronic disease with persistent granulomas accompanied by progressive fibrosis. While an unlimited inflammatory response suggests an impaired immune control in sarcoid lesions, it stands in contrast to the massive infiltration with CD4(+)CD25(high)FoxP3(+) regulatory T cells. We here revealed that those Treg cells in affected lung lesions were mainly derived from activated natural Treg cells with GARP (LRRC32)-positive phenotype but exhibited reduced repressor capacities despite high IL-10 and TGF-beta 1 levels. The repressive capacity of blood Treg cells, in contrast, was not impaired compared to age-matched healthy donors. Treg derived cells in granuloma lesions have undergone extensive rounds of amplifications indicated by shortened telomeres compared to blood Treg cells of the same patient. Lesional Treg derived cells moreover secreted pro-inflammatory cytokines including IL-4 which sustains granuloma formation through fibroblast amplification and the activation of mast cells, the latter indicated by the expression of membrane-bound oncostatin M. Copyright © 2011 Elsevier Inc. All rights reserved.
Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation.
Velez, Tania E; Bryce, Paul J; Hulse, Kathryn E
2018-04-17
This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses. Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses. Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.
Okoye, Afam; Meier-Schellersheim, Martin; Brenchley, Jason M.; Hagen, Shoko I.; Walker, Joshua M.; Rohankhedkar, Mukta; Lum, Richard; Edgar, John B.; Planer, Shannon L.; Legasse, Alfred; Sylwester, Andrew W.; Piatak, Michael; Lifson, Jeffrey D.; Maino, Vernon C.; Sodora, Donald L.; Douek, Daniel C.; Axthelm, Michael K.; Grossman, Zvi; Picker, Louis J.
2007-01-01
Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4+ CCR5+ effector–memory T (TEM) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4+ memory T cell proliferation appears to prevent collapse of effector site CD4+ TEM cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4+ TEM cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4+ TEM cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4+ TEM cells from central–memory T (TCM) cell precursors. The instability of effector site CD4+ TEM cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5− CD4+ TCM cells. These data suggest that although CD4+ TEM cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4+ TCM cells. PMID:17724130
Okoye, Afam; Meier-Schellersheim, Martin; Brenchley, Jason M; Hagen, Shoko I; Walker, Joshua M; Rohankhedkar, Mukta; Lum, Richard; Edgar, John B; Planer, Shannon L; Legasse, Alfred; Sylwester, Andrew W; Piatak, Michael; Lifson, Jeffrey D; Maino, Vernon C; Sodora, Donald L; Douek, Daniel C; Axthelm, Michael K; Grossman, Zvi; Picker, Louis J
2007-09-03
Primary simian immunodeficiency virus (SIV) infections of rhesus macaques result in the dramatic depletion of CD4(+) CCR5(+) effector-memory T (T(EM)) cells from extra-lymphoid effector sites, but in most infections, an increased rate of CD4(+) memory T cell proliferation appears to prevent collapse of effector site CD4(+) T(EM) cell populations and acute-phase AIDS. Eventually, persistent SIV replication results in chronic-phase AIDS, but the responsible mechanisms remain controversial. Here, we demonstrate that in the chronic phase of progressive SIV infection, effector site CD4(+) T(EM) cell populations manifest a slow, continuous decline, and that the degree of this depletion remains a highly significant correlate of late-onset AIDS. We further show that due to persistent immune activation, effector site CD4(+) T(EM) cells are predominantly short-lived, and that their homeostasis is strikingly dependent on the production of new CD4(+) T(EM) cells from central-memory T (T(CM)) cell precursors. The instability of effector site CD4(+) T(EM) cell populations over time was not explained by increasing destruction of these cells, but rather was attributable to progressive reduction in their production, secondary to decreasing numbers of CCR5(-) CD4(+) T(CM) cells. These data suggest that although CD4(+) T(EM) cell depletion is a proximate mechanism of immunodeficiency, the tempo of this depletion and the timing of disease onset are largely determined by destruction, failing production, and gradual decline of CD4(+) T(CM) cells.
Detection and Persistence of Vi Antigen in Tissues of Actively Immunized Mice1
Gaines, Sidney; Currie, Julius A.; Tully, Joseph G.
1965-01-01
Gaines, Sidney (Walter Reed Army Institute of Research, Washington, D.C.), Julius A. Currie, and Joseph G. Tully. Detection and persistence of Vi antigen in tissues of actively immunized mice. J. Bacteriol. 89:776–781. 1965.—The presence, distribution, and persistence of Vi antigen in mouse tissue was determined by means of active immunization tests with tissue extracts. Mice were injected intraperitoneally with purified Vi antigen or Vi-containing bacilli. At appropriate intervals, animals were killed, and saline extracts of their tissues were prepared. Mice were immunized with these extracts and challenged 6 days later with 10 ld50 of Salmonella typhosa Ty2. Protection was afforded by tissue extracts from Vi-injected mice, but not by normal tissue extracts. That the immunizing capacity of tissue extracts from Vi-injected mice was attributable to Vi antigen was affirmed by the demonstration that these extracts stimulated the production of Vi antibody in mice, coated erythrocytes for agglutination by Vi antiserum, and inhibited agglutination of Vi-sensitized red blood cells by known Vi antisera. Vi antigen could be detected in the liver and spleen of mice injected with as little as 1 μg. In mice given 150 μg, the antigen was still present in liver tissue 231 days later. PMID:14273660
Heim, Cortney E; Vidlak, Debbie; Odvody, Jessica; Hartman, Curtis W; Garvin, Kevin L; Kielian, Tammy
2017-11-15
Prosthetic joint infection (PJI) is a devastating complication of joint arthroplasty surgery typified by biofilm formation. Currently, mechanisms whereby biofilms persist and evade immune-mediated clearance in immune competent patients remain largely ill-defined. Therefore, the current study characterized leukocyte infiltrates and inflammatory mediator expression in tissues from patients with PJI compared to aseptic loosening. CD33 + HLA-DR - CD66b + CD14 -/low granulocytic myeloid-derived suppressor cells (G-MDSCs) were the predominant leukocyte population at sites of human PJI compared to aseptic tissues. MDSCs inhibit T cell proliferation, which coincided with reduced T cells in PJIs compared to aseptic tissues. IL-10, IL-6, and CXCL1 were significantly elevated in PJI tissues and have been implicated in MDSC inhibitory activity, expansion, and recruitment, respectively, which may account for their preferential increase in PJIs. This bias towards G-MDSC accumulation during human PJI could account for the chronicity of these infections by preventing the pro-inflammatory, antimicrobial actions of immune effector cells. Animal models of PJI have revealed a critical role for MDSCs and IL-10 in promoting infection persistence; however, whether this population is prevalent during human PJI and across distinct bacterial pathogens remains unknown. This study has identified that granulocytic-MDSC infiltrates are unique to human PJIs caused by distinct bacteria, which are not associated with aseptic loosening of prosthetic joints. Better defining the immune status of human PJIs could lead to novel immune-mediated approaches to facilitate PJI clearance in combination with conventional antibiotics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
HIV-associated chronic immune activation
Paiardini, Mirko; Müller-Trutwin, Michaela
2013-01-01
Summary Systemic chronic immune activation is considered today as the driving force of CD4+ T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by antiretroviral therapy, with the extent of this residual immune activation being associated with CD4+ T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4+ T-cell loss has not been formally established. This article provides first a brief historical overview on how the perception of the causative role of immune activation has changed over the years and lists the different kinds of immune activation that have been observed to be characteristic for human immunodeficiency virus (HIV) infection. The mechanisms proposed to explain the chronic immune activation are multiple and are enumerated here, as well as the mechanisms proposed on how chronic immune activation could lead to AIDS. In addition, we summarize the lessons learned from natural hosts that know how to ‘show AIDS the door’, and discuss how these studies informed the design of novel immune modulatory interventions that are currently being tested. Finally, we review the current approaches aimed at targeting chronic immune activation and evoke future perspectives. PMID:23772616
The transcriptional programme of the androgen receptor (AR) in prostate cancer.
Lamb, Alastair D; Massie, Charlie E; Neal, David E
2014-03-01
The androgen receptor (AR) is essential for normal prostate and prostate cancer cell growth. AR transcriptional activity is almost always maintained even in hormone relapsed prostate cancer (HRPC) in the absence of normal levels of circulating testosterone. Current molecular techniques, such as chromatin-immunoprecipitation sequencing (ChIP-seq), have permitted identification of direct AR-binding sites in cell lines and human tissue with a distinct coordinate network evident in HRPC. The effectiveness of novel agents, such as abiraterone acetate (suppresses adrenal androgens) or enzalutamide (MDV3100, potent AR antagonist), in treating advanced prostate cancer underlines the on-going critical role of the AR throughout all stages of the disease. Persistent AR activity in advanced disease regulates cell cycle activity, steroid biosynthesis and anabolic metabolism in conjunction with regulatory co-factors, such as the E2F family, c-Myc and signal transducer and activator of transcription (STAT) transcription factors. Further treatment approaches must target these other factors. © 2013 The Authors. BJU International © 2013 BJU International.
Pinto, Rachel; Nambiar, Jonathan K; Leotta, Lisa; Counoupas, Claudio; Britton, Warwick J; Triccas, James A
2016-07-01
The characterisation of mycobacterial factors that influence or modulate the host immune response may aid the development of more efficacious TB vaccines. We have previously reported that Mycobacterium tuberculosis deficient in export of Phthiocerol Dimycocerosates (DIM) (MT103(ΔdrrC)) is more attenuated than wild type M. tuberculosis and provides sustained protective immunity compared to the existing BCG vaccine. Here we sought to define the correlates of immunity associated with DIM deficiency by assessing the impact of MT103(ΔdrrC) delivery on antigen presenting cell (APC) function and the generation of CD4(+) T cell antigen-specific immunity. MT103(ΔdrrC) was a potent activator of bone marrow derived dendritic cells, inducing significantly greater expression of CD86 and IL-12p40 compared to BCG or the MT103 parental strain. This translated to an increased ability to initiate early in vivo priming of antigen-specific CD4(+) T cells compared to BCG with enhanced release of IFN-γ and TNF upon antigen-restimulation. The heightened immunity induced by MT103(ΔdrrC) correlated with greater persistence within the spleen compared to BCG, however both MT103(ΔdrrC) and BCG were undetectable in the lung at 70 days post-vaccination. In immunodeficient RAG (-/-) mice, MT103(ΔdrrC) was less virulent than the parental MT103 strain, yet MT103(ΔdrrC) infected mice succumbed more rapidly compared to BCG-infected animals. These results suggest that DIM translocation plays a role in APC stimulation and CD4(+) T cell activation during M. tuberculosis infection and highlights the potential of DIM-deficient strains as novel TB vaccine candidates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hanaoka, H; Okazaki, Y; Satoh, T; Kaneko, Y; Yasuoka, H; Seta, N; Kuwana, M
2012-10-01
Antibodies against double-stranded DNA (dsDNA) are widely used to diagnose systemic lupus erythematosus (SLE) and evaluate its activity in patients. This study was undertaken to examine the clinical utility of circulating anti-dsDNA antibody-secreting cells for evaluating SLE patients. Anti-dsDNA antibody-secreting cells quantified using an enzyme-linked immunospot assay were detected in the spleen, bone marrow and peripheral blood from MRL/lpr but not in control BALB/c mice. Circulating anti-dsDNA antibody-secreting cells were detected in 29 (22%) of 130 patients with SLE, but in none of 49 with non-SLE connective-tissue disease or 18 healthy controls. The presence of circulating anti-dsDNA antibody-secreting cells was associated with persistent proteinuria, high SLE disease activity index and systemic lupus activity measures, and a high serum anti-dsDNA antibody titre measured with an enzyme-linked immunosorbent assay. The positive predictive value for active disease was 48% for circulating anti-dsDNA antibody-secreting cells versus 17% for serum anti-dsDNA antibodies. A prospective cohort of patients with circulating anti-dsDNA antibodies and inactive SLE showed that the cumulative disease flare-free rate was significantly lower in patients with than without circulating anti-dsDNA antibody-secreting cells (p < 0.001). Circulating anti-dsDNA antibody-secreting cells are a useful biomarker for assessing disease activity in SLE patients.
Python, Sylvie; Gerber, Markus; Suter, Rolf; Ruggli, Nicolas; Summerfield, Artur
2013-01-01
Plasmacytoid dendritic cells (pDC) have been shown to efficiently sense HCV- or HIV-infected cells, using a virion-free pathway. Here, we demonstrate for classical swine fever virus, a member of the Flaviviridae, that this process is much more efficient in terms of interferon-alpha induction when compared to direct stimulation by virus particles. By employment of virus replicon particles or infectious RNA which can replicate but not form de novo virions, we exclude a transfer of virus from the donor cell to the pDC. pDC activation by infected cells was mediated by a contact-dependent RNA transfer to pDC, which was sensitive to a TLR7 inhibitor. This was inhibited by drugs affecting the cytoskeleton and membrane cholesterol. We further demonstrate that a unique viral protein with ribonuclease activity, the viral Erns protein of pestiviruses, efficiently prevented this process. This required intact ribonuclease function in intracellular compartments. We propose that this pathway of activation could be of particular importance for viruses which tend to be mostly cell-associated, cause persistent infection, and are non-cytopathogenic. PMID:23785283
Cash, S; Dan, Y; Poo, M M; Zucker, R
1996-04-01
Synaptic activity is known to modulate neuronal connectivity in the nervous system. At developing Xenopus neuromuscular synapses in culture, repetitive postsynaptic application of ACh near the synapse leads to immediate and persistent synaptic depression, which was shown to be caused by reduction of presynaptic evoked transmitter release. However, little depression was found when ACh was applied to the muscle 20 microns or further from the synapse. Fluorescence imaging of cytosolic Ca2+ ([Ca2+]i) showed that each ACh pulse induced a transient elevation of myocyte [Ca2+]i that spread approximately 20 microns. Local photoactivated release of Ca2+ from the caged Ca2+ chelators nitr-5 or nitrophen in the postsynaptic cell was sufficient to induce persistent synaptic depression. These results support a model in which localized Ca2+ influx into the postsynaptic myocyte initiates transsynaptic retrograde modulation of presynaptic secretion mechanisms.
Wang, Xiaolei; Xu, Huanbin; Pahar, Bapi; Alvarez, Xavier; Green, Linda C; Dufour, Jason; Moroney-Rasmussen, Terri; Lackner, Andrew A; Veazey, Ronald S
2010-11-18
Infants infected with HIV have a more severe course of disease and persistently higher viral loads than HIV-infected adults. However, the underlying pathogenesis of this exacerbation remains obscure. Here we compared the rate of CD4(+) and CD8(+) T-cell proliferation in intestinal and systemic lymphoid tissues of neonatal and adult rhesus macaques, and of normal and age-matched simian immunodeficiency virus (SIV)-infected neonates. The results demonstrate infant primates have much greater rates of CD4(+) T-cell proliferation than adult macaques, and that these proliferating, recently "activated" CD4(+) T cells are infected in intestinal and other lymphoid tissues of neonates, resulting in selective depletion of proliferating CD4(+) T cells in acute infection. This depletion is accompanied by a marked increase in CD8(+) T-cell activation and production, particularly in the intestinal tract. The data indicate intestinal CD4(+) T cells of infant primates have a markedly accelerated rate of proliferation and maturation resulting in more rapid and sustained production of optimal target cells (activated memory CD4(+) T cells), which may explain the sustained "peak" viremia characteristic of pediatric HIV infection. Eventual failure of CD4(+) T-cell turnover in intestinal tissues may indicate a poorer prognosis for HIV-infected infants.
Yentur, Sibel P; Gurses, Candan; Demirbilek, Veysi; Adin-Cinar, Suzan; Kuru, Umit; Uysal, Serap; Yapici, Zuhal; Yilmaz, Gülden; Cokar, Ozlem; Onal, Emel; Gökyigit, Aysen; Saruhan-Direskeneli, Güher
2014-12-01
Subacute sclerosing panencephalitis (SSPE) is caused by a persistent measles virus infection. Regulatory mechanisms can be responsible for a failure of immunosurveillance in children with SSPE. In this study, peripheral blood cells of 71 patients with SSPE and 57 children with other diseases were compared phenotypically. The proportions of CD4(+), CD8(+) T, and NK cells were homogenous, whereas total CD3(+) T and Treg (CD4(+)CD25(+)CD152(+)) cells were decreased in patients with SSPE. The proportion of CD8(+) T cells expressing the inhibitory NKG2A(+) receptor was also decreased (1.7% ± 1.7% vs. 2.6% ± 1.9%, p = 0.007) in patients with SSPE, whereas the proportion of NK cells expressing activating NKG2C was increased compared with the control group (30.0% ± 17.3% vs. 22.2% ± 17.0%, p = 0.039). The decrease in the number of cells with regulatory phenotype, the lower presence of the inhibitory NK receptors on CD8(+) cells, and higher activating NK receptors on NK cells in SSPE indicate an upregulation of these cell types that favors their response. This state of active immune response may be caused by chronic stimulation of viral antigens leading to altered regulatory pathways.
Nagata, Keiko; Kumata, Keisuke; Nakayama, Yuji; Satoh, Yukio; Sugihara, Hirotsugu; Hara, Sayuri; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Hayashi, Kazuhiko
2017-04-01
Graves' disease is an autoimmune disease that results in and is the most common cause of hyperthyroidism, and the reactivation of persisting Epstein-Barr virus (EBV) in B lymphocytes induces the differentiation of host B cells into plasma cells. We previously reported that some EBV-infected B cells had thyrotropin receptor antibodies (TRAbs) as surface immunoglobulins (Igs), and EBV reactivation induced these TRAb+EBV+ cells to produce TRAbs. EBV reactivation induces Ig production from host B cells. The purpose of the present study was to examine total Ig productions from B cell culture fluids and to detect activation-induced cytidine deaminase (AID), nuclear factor kappa B (NF-κB), and EBV latent membrane protein (LMP) 1 in culture B cells during EBV reactivation induction and then we discussed the mechanisms of EBV reactivation-induced Ig production in relation to autoimmunity. We showed that the EBV reactivation induces the production of every isotype of Ig and suggested that the Ig production was catalyzed by AID through LMP1 and NF-κB. The results that the amount of IgM was significantly larger compared with IgG suggested the polyclonal B cell activation due to LMP1. We proposed the pathway of EBV reactivation induced Ig production; B cells newly infected with EBV are activated by polyclonal B cell activation and produce Igs through plasma cell differentiation induced by EBV reactivation. LMP1-induced AID enabled B cells to undergo class-switch recombination to produce every isotype of Ig. According to this mechanism, EBV rescues autoreactive B cells to produce autoantibodies, which contribute to the development and exacerbation of autoimmune diseases.
Kumata, Keisuke; Nakayama, Yuji; Satoh, Yukio; Sugihara, Hirotsugu; Hara, Sayuri; Matsushita, Michiko; Kuwamoto, Satoshi; Kato, Masako; Murakami, Ichiro; Hayashi, Kazuhiko
2017-01-01
Abstract Graves' disease is an autoimmune disease that results in and is the most common cause of hyperthyroidism, and the reactivation of persisting Epstein–Barr virus (EBV) in B lymphocytes induces the differentiation of host B cells into plasma cells. We previously reported that some EBV-infected B cells had thyrotropin receptor antibodies (TRAbs) as surface immunoglobulins (Igs), and EBV reactivation induced these TRAb+EBV+ cells to produce TRAbs. EBV reactivation induces Ig production from host B cells. The purpose of the present study was to examine total Ig productions from B cell culture fluids and to detect activation-induced cytidine deaminase (AID), nuclear factor kappa B (NF-κB), and EBV latent membrane protein (LMP) 1 in culture B cells during EBV reactivation induction and then we discussed the mechanisms of EBV reactivation-induced Ig production in relation to autoimmunity. We showed that the EBV reactivation induces the production of every isotype of Ig and suggested that the Ig production was catalyzed by AID through LMP1 and NF-κB. The results that the amount of IgM was significantly larger compared with IgG suggested the polyclonal B cell activation due to LMP1. We proposed the pathway of EBV reactivation induced Ig production; B cells newly infected with EBV are activated by polyclonal B cell activation and produce Igs through plasma cell differentiation induced by EBV reactivation. LMP1-induced AID enabled B cells to undergo class-switch recombination to produce every isotype of Ig. According to this mechanism, EBV rescues autoreactive B cells to produce autoantibodies, which contribute to the development and exacerbation of autoimmune diseases. PMID:28333576
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi; Yang, Manyi; Qu, Zhan
Molecule-targeted therapy has become the research focus for hepatocellular carcinoma (HCC). Persistent PI3K-AKT activation is often detected in HCC, representing a valuable oncotarget for treatment. Here, we tested the anti-HCC activity by a potent AKT inhibitor: AKT inhibitor 1/2 (AKTi-1/2). In both established (HepG2 and Huh-7) and primary human HCC cells, treatment with AKTi-1/2 inhibited cell survival and proliferation, but induced cell apoptosis. AKTi-1/2 blocked AKT-mTOR activation, yet simultaneously provoked cytoprotective autophagy in HCC cells. The latter was evidenced by ATG-5 and Beclin-1 upregulation, p62 downregulation as well as LC3B-GFP puncta formation. Autophagy inhibition, via pharmacological inhibitors (3-methyladenine, ammonium chloride,more » and bafilomycin A1) or Beclin-1 siRNA knockdown, significantly potentiated AKTi-1/2-induced HepG2 cell death and apoptosis. In nude mice, AKTi-1/2 intraperitoneal injection inhibited HepG2 tumor growth. Significantly, its anti-tumor activity in vivo was further sensitized when combined with Beclin-1 shRNA knockdown in HepG2 tumors. Together, these results demonstrate that autophagy activation serves as a main resistance factor of AKTi-1/2 in HCC cells. Autophagy prevention therefore sensitizes AKTi-1/2-induced anti-HCC activity in vitro and in vivo. - Highlights: • AKTi-1/2 inhibits human HCC cells in vitro. • Autophagy inhibitors sensitize AKTi-1/2-induced HCC cell death and apoptosis. • Beclin-1 siRNA potentiates AKTi-1/2-induced HepG2 cell death and apoptosis. • Beclin-1 knockdown augments AKTi-1/2-induced anti-HepG2 tumor activity in vivo.« less
GABA-independent GABAA Receptor Openings Maintain Tonic Currents
Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.
2013-01-01
Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601
Tran, Si C.; Pham, Tu M.; Nguyen, Lam N.; Park, Eun-Mee; Lim, Yun-Sook
2016-01-01
ABSTRACT Hepatitis C virus (HCV) infection often causes chronic hepatitis, liver cirrhosis, and ultimately hepatocellular carcinoma. However, the mechanisms underlying HCV-induced liver pathogenesis are still not fully understood. By transcriptome sequencing (RNA-Seq) analysis, we recently identified host genes that were significantly differentially expressed in cell culture-grown HCV (HCVcc)-infected cells. Of these, tribbles homolog 3 (TRIB3) was selected for further characterization. TRIB3 was initially identified as a binding partner of protein kinase B (also known as Akt). TRIB3 blocks the phosphorylation of Akt and induces apoptosis under endoplasmic reticulum (ER) stress conditions. HCV has been shown to enhance Akt phosphorylation for its own propagation. In the present study, we demonstrated that both mRNA and protein levels of TRIB3 were increased in the context of HCV replication. We further showed that promoter activity of TRIB3 was increased by HCV-induced ER stress. Silencing of TRIB3 resulted in increased RNA and protein levels of HCV, whereas overexpression of TRIB3 decreased HCV replication. By employing an HCV pseudoparticle entry assay, we further showed that TRIB3 was a negative host factor involved in HCV entry. Both in vitro binding and immunoprecipitation assays demonstrated that HCV NS3 specifically interacted with TRIB3. Consequently, the association of TRIB3 and Akt was disrupted by HCV NS3, and thus, TRIB3-Akt signaling was impaired in HCV-infected cells. Moreover, HCV modulated TRIB3 to promote extracellular signal-regulated kinase (ERK) phosphorylation, activator protein 1 (AP-1) activity, and cell migration. Collectively, these data indicate that HCV exploits the TRIB3-Akt signaling pathway to promote persistent viral infection and may contribute to HCV-mediated pathogenesis. IMPORTANCE TRIB3 is a pseudokinase protein that acts as an adaptor in signaling pathways for important cellular processes. So far, the functional involvement of TRIB3 in virus-infected cells has not yet been demonstrated. We showed that both mRNA and protein expression levels of TRIB3 were increased in the context of HCV RNA replication. Gene silencing of TRIB3 increased HCV RNA and protein levels, and thus, overexpression of TRIB3 decreased HCV replication. TRIB3 is known to promote apoptosis by negatively regulating the Akt signaling pathway under ER stress conditions. Most importantly, we demonstrated that the TRIB3-Akt signaling pathway was disrupted by NS3 in HCV-infected cells. These data provide evidence that HCV modulates the TRIB3-Akt signaling pathway to establish persistent viral infection. PMID:27252525
Synthetic lipophilic antioxidant BO-653 suppresses HCV replication.
Yasui, Fumihiko; Sudoh, Masayuki; Arai, Masaaki; Kohara, Michinori
2013-02-01
The influence of the intracellular redox state on the hepatitis C virus (HCV) life cycle is poorly understood. This study demonstrated the anti-HCV activity of 2,3-dihydro-5-hydroxy-2,2-dipentyl-4,6-di-tert-butylbenzofuran (BO-653), a synthetic lipophilic antioxidant, and examined whether BO-653's antioxidant activity is integral to its anti-HCV activity. The anti-HCV activity of BO-653 was investigated in HuH-7 cells bearing an HCV subgenomic replicon (FLR3-1 cells) and in HuH-7 cells infected persistently with HCV (RMT-tri cells). BO-653 inhibition of HCV replication was also compared with that of several hydrophilic and lipophilic antioxidants. BO-653 suppressed HCV replication in FLR3-1 and RMT-tri cells in a concentration-dependent manner. The lipophilic antioxidants had stronger anti-HCV activities than the hydrophilic antioxidants, and BO-653 displayed the strongest anti-HCV activity of all the antioxidants examined. Therefore, the anti-HCV activity of BO-653 was examined in chimeric mice harboring human hepatocytes infected with HCV. The combination treatment of BO-653 and polyethylene glycol-conjugated interferon-α (PEG-IFN) decreased serum HCV RNA titer more than that seen with PEG-IFN alone. These findings suggest that both the lipophilic property and the antioxidant activity of BO-653 play an important role in the inhibition of HCV replication. Copyright © 2012 Wiley Periodicals, Inc.
Caspase 3 promotes genetic instability and carcinogenesis
Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan
2015-01-01
Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249
Xia, Lu; Dai, Lei; Yu, Qinghua; Yang, Qian
2017-11-01
Transmissible gastroenteritis virus (TGEV) is a coronavirus characterized by diarrhea and high morbidity rates, and the mortality rate is 100% in piglets less than 2 weeks old. Pigs infected with TGEV often suffer secondary infection by other pathogens, which aggravates the severity of diarrhea, but the mechanisms remain unknown. Here, we hypothesized that persistent TGEV infection stimulates the epithelial-mesenchymal transition (EMT), and thus enterotoxigenic Escherichia coli (ETEC) can more easily adhere to generating cells. Intestinal epithelial cells are the primary targets of TGEV and ETEC infections. We found that TGEV can persistently infect porcine intestinal columnar epithelial cells (IPEC-J2) and cause EMT, consistent with multiple changes in key cell characteristics. Infected cells display fibroblast-like shapes; exhibit increases in levels of mesenchymal markers with a corresponding loss of epithelial markers; have enhanced expression levels of interleukin-1β (IL-1β), IL-6, IL-8, transforming growth factor β (TGF-β), and tumor necrosis factor alpha (TNF-α) mRNAs; and demonstrate increases in migratory and invasive behaviors. Additional experiments showed that the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) signaling pathways via TGF-β is critical for the TGEV-mediated EMT process. Cellular uptake is also modified in cells that have undergone EMT. TGEV-infected cells have higher levels of integrin α5 and fibronectin and exhibit enhanced ETEC K88 adhesion. Reversal of EMT reduces ETEC K88 adhesion and inhibits the expression of integrin α5 and fibronectin. Overall, these results suggest that TGEV infection induces EMT in IPEC-J2 cells, increasing the adhesion of ETEC K88 in the intestine and facilitating dual infection. IMPORTANCE Transmissible gastroenteritis virus (TGEV) causes pig diarrhea and is often followed by secondary infection by other pathogens. In this study, we showed that persistent TGEV infection induces an EMT in porcine intestinal columnar epithelial cells (IPEC-J2) and enhances the adhesion of the secondary pathogen ETEC K88. Additional experiments suggest that integrin α5 and fibronectin play an important role in TGEV-enhanced ETEC K88 adhesion. Reversal of EMT reduces the expression of integrin α5 and fibronectin and also reduces ETEC K88 adhesion. We conclude that TGEV infection triggers EMT and facilitates dual infection. Our results provide new insights into secondary infection and suggest that targeted anti-EMT therapy may have implications for the prevention and treatment of secondary infection. Copyright © 2017 American Society for Microbiology.
A dual role of p21 in stem cell aging.
Ju, Zhenyu; Choudhury, Aaheli Roy; Rudolph, K Lenhard
2007-04-01
A decline in adult stem cell function occurs during aging, likely contributing to the decline in organ homeostasis and regeneration with age. An emerging field in aging research is to analyze molecular pathways limiting adult stem cell function in response to macromolecular damage accumulation during aging. Current data suggest that the p21 cell cycle inhibitor has a dual role in stem cell aging: On one hand, p21 protects adult stem cells from acute genotoxic stress by preventing inappropriate cycling of acutely damaged stem cells. On the other hand, p21 activation impairs stem cell function and survival of aging telomere dysfunctional mice indicating that p21 checkpoint function is disadvantageous in the context of chronic and persistent damage, which accumulates during aging. This article focuses on these dual roles of p21 in aging stem cells.
Measles virus-induced suppression of immune responses.
Griffin, Diane E
2010-07-01
Measles is an important cause of child mortality that has a seemingly paradoxical interaction with the immune system. In most individuals, the immune response is successful in eventually clearing measles virus (MV) infection and in establishing life-long immunity. However, infection is also associated with persistence of viral RNA and several weeks of immune suppression, including loss of delayed type hypersensitivity responses and increased susceptibility to secondary infections. The initial T-cell response includes CD8+ and T-helper 1 CD4+ T cells important for control of infectious virus. As viral RNA persists, there is a shift to a T-helper 2 CD4+ T-cell response that likely promotes B-cell maturation and durable antibody responses but may suppress macrophage activation and T-helper 1 responses to new infections. Suppression of mitogen-induced lymphocyte proliferation can be induced by lymphocyte infection with MV or by lymphocyte exposure to a complex of the hemagglutinin and fusion surface glycoproteins without infection. Dendritic cells (DCs) are susceptible to infection and can transmit infection to lymphocytes. MV-infected DCs are unable to stimulate a mixed lymphocyte reaction and can induce lymphocyte unresponsiveness through expression of MV glycoproteins. Thus, multiple factors may contribute both to measles-induced immune suppression and to the establishment of durable protective immunity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan-o, Keiko; Matsumoto, Koichiro, E-mail: koichi@kokyu.med.kyushu-u.ac.jp; Asai-Tajiri, Yukari
Highlights: •Double-stranded RNA upregulates B7-H1 on BEAS-2B airway epithelial cells. •The upregulation of B7-H1 is attenuated by inhibition of PI3Kδ isoform. •PI3Kδ-mediated upregulation of B7-H1 is independent of NF-κB activation. •Inhibition of PI3Kδ may prevent persistent viral infection induced by B7-H1. -- Abstract: Airway viral infection disturbs the health-related quality of life. B7-H1 (also known as PD-L1) is a coinhibitory molecule associated with the escape of viruses from the mucosal immunity, leading to persistent infection. Most respiratory viruses generate double-stranded (ds) RNA during replication. The stimulation of cultured airway epithelial cells with an analog of viral dsRNA, polyinosinic-polycytidylic acid (polymore » IC) upregulates the expression of B7-H1 via activation of the nuclear factor κB(NF-κB). The mechanism of upregulation was investigated in association with phosphatidylinositol 3-kinases (PI3Ks). Poly IC-induced upregulation of B7-H1 was profoundly suppressed by a pan-PI3K inhibitor and partially by an inhibitor or a small interfering (si)RNA for PI3Kδ in BEAS-2B cells. Similar results were observed in the respiratory syncytial virus-infected cells. The expression of p110δ was detected by Western blot and suppressed by pretreatment with PI3Kδ siRNA. The activation of PI3Kδ is typically induced by oxidative stress. The generation of reactive oxygen species was increased by poly IC. Poly IC-induced upregulation of B7-H1 was attenuated by N-acetyl-L-cysteine, an antioxidant, or by oxypurinol, an inhibitor of xanthine oxidase. Poly IC-induced activation of NF-κB was suppressed by a pan-PI3K inhibitor but not by a PI3Kδ inhibitor. These results suggest that PI3Kδ mediates dsRNA-induced upregulation of B7-H1 without affecting the activation of NF-κB.« less
Fernandez, David R.; Telarico, Tiffany; Bonilla, Eduardo; Li, Qing; Banerjee, Sanjay; Middleton, Frank A.; Phillips, Paul E.; Crow, Mary K.; Oess, Stefanie; Muller-Esterl, Werner; Perl, Andras
2008-01-01
Persistent mitochondrial hyperpolarization (MHP) and enhanced calcium fluxing underlie aberrant T-cell activation and death pathway selection in systemic lupus erythematosus. Treatment with rapamycin, which effectively controls disease activity, normalizes CD3/CD28-induced calcium fluxing but fails to influence MHP, suggesting that altered calcium fluxing is downstream or independent of mitochondrial dysfunction. Here, we show that activity of the mammalian target of rapamycin (mTOR), which is a sensor of the mitochondrial transmembrane potential, is increased in lupus T cells. Activation of mTOR causes the over-expression of the Rab5A and HRES-1/Rab4 small GTPases that regulate endocytic recycling of surface receptors. Pull-down studies revealed a direct interaction of HRES-1/Rab4 with the T-cell receptor/CD3ζ chain (TCRζ). Importantly, the deficiency of the TCRζ chain and Lck and compensatory upregulation of the Fcε receptor type I γ chain (FcεRIγ) and Syk, which mediate enhanced calcium fluxing in lupus T cells, was reversed in patients treated with rapamcyin in vivo. Knockdown of HRES-1/Rab4 by siRNA and inhibitors of lysosomal function augmented TCRζ protein levels. The results suggest that activation of mTOR causes the loss of TCRζ in lupus T cells through HRES-1/Rab4-dependent lysosomal degradation. PMID:19201859
Nowak, Karolin; Linzner, Daniela; Thrasher, Adrian J; Lambert, Paul F; Di, Wei-Li; Burns, Siobhan O
2017-10-01
Loss-of-function mutations in the common gamma (γc) chain cytokine receptor subunit give rise to severe combined immunodeficiency characterized by lack of T and natural killer cells and infant death from infection. Hematopoietic stem cell transplantation or gene therapy offer a cure, but despite successful replacement of lymphoid immune lineages, a long-term risk of severe cutaneous human papilloma virus infections persists, possibly related to persistent γc-deficiency in other cell types. Here we show that keratinocytes, the only cell type directly infected by human papilloma virus, express functional γc and its co-receptors. After stimulation with the γc-ligand IL-15, γc-deficient keratinocytes show significantly impaired secretion of specific chemokines including CXCL1, CXCL8, and CCL20, resulting in reduced chemotaxis of dendritic cells and CD4 + T cells. Furthermore, γc-deficient keratinocytes also exhibit defective induction of T-cell chemotaxis in a model of stable human papilloma virus-18 infection. These findings suggest that persistent γc-deficiency in keratinocytes alters immune cell recruitment to the skin, which may contribute to the development and persistence of warts in this condition and would require different treatment approaches. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Margolis, David J.; Gartland, Andrew J.; Singer, Joshua H.; Detwiler, Peter B.
2014-01-01
Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs) in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator. PMID:24489706
The contribution of epigenetic memory to immunologic memory.
Zediak, Valerie P; Wherry, E John; Berger, Shelley L
2011-04-01
Memory T lymphocytes are distinct from antigen-inexperienced naïve T cells in that memory T cells can respond more rapidly when they re-encounter a pathogen. Work over the past decade has begun to define the epigenetic underpinnings of the transcriptional component of the memory T cell response. An emerging theme is the persistence of an active chromatin signature at relevant gene loci in resting memory T cells, even when those genes are transcriptionally inactive. This gives strength to the concept of gene poising, and has shown that memory T lymphocytes are an ideal model in which to further define various mechanisms of epigenetic poising. Copyright © 2011 Elsevier Ltd. All rights reserved.
Li, Guangming; Cheng, Menglan; Nunoya, Jun-ichi; Cheng, Liang; Guo, Haitao; Yu, Haisheng; Liu, Yong-jun; Su, Lishan; Zhang, Liguo
2014-01-01
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment. PMID:25077616
Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H
2010-12-01
Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.
Zhang, Hui-Ming; Imtiaz, Mohammad S; Laver, Derek R; McCurdy, David W; Offler, Christina E; van Helden, Dirk F; Patrick, John W
2015-03-01
Transfer cell morphology is characterized by a polarized ingrowth wall comprising a uniform wall upon which wall ingrowth papillae develop at right angles into the cytoplasm. The hypothesis that positional information directing construction of wall ingrowth papillae is mediated by Ca(2+) signals generated by spatiotemporal alterations in cytosolic Ca(2+) ([Ca(2+)]cyt) of cells trans-differentiating to a transfer cell morphology was tested. This hypothesis was examined using Vicia faba cotyledons. On transferring cotyledons to culture, their adaxial epidermal cells synchronously trans-differentiate to epidermal transfer cells. A polarized and persistent Ca(2+) signal, generated during epidermal cell trans-differentiation, was found to co-localize with the site of ingrowth wall formation. Dampening Ca(2+) signal intensity, by withdrawing extracellular Ca(2+) or blocking Ca(2+) channel activity, inhibited formation of wall ingrowth papillae. Maintenance of Ca(2+) signal polarity and persistence depended upon a rapid turnover (minutes) of cytosolic Ca(2+) by co-operative functioning of plasma membrane Ca(2+)-permeable channels and Ca(2+)-ATPases. Viewed paradermally, and proximal to the cytosol-plasma membrane interface, the Ca(2+) signal was organized into discrete patches that aligned spatially with clusters of Ca(2+)-permeable channels. Mathematical modelling demonstrated that these patches of cytosolic Ca(2+) were consistent with inward-directed plumes of elevated [Ca(2+)]cyt. Plume formation depended upon an alternating distribution of Ca(2+)-permeable channels and Ca(2+)-ATPase clusters. On further inward diffusion, the Ca(2+) plumes coalesced into a uniform Ca(2+) signal. Blocking or dispersing the Ca(2+) plumes inhibited deposition of wall ingrowth papillae, while uniform wall formation remained unaltered. A working model envisages that cytosolic Ca(2+) plumes define the loci at which wall ingrowth papillae are deposited. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Peterson, Jeanne S; McCall, Kimberly
2013-01-01
During the final stages of Drosophila melanogaster oogenesis fifteen nurse cells, sister cells to the oocyte, degenerate as part of normal development. This process involves at least two cell death mechanisms, caspase-dependent cell death and autophagy, as indicated by apoptosis and autophagy markers. In addition, mutations affecting either caspases or autophagy partially reduce nurse cell removal, leaving behind end-stage egg chambers with persisting nurse cell nuclei. To determine whether apoptosis and autophagy work in parallel to degrade and remove these cells as is the case with salivary glands during pupariation, we generated mutants doubly affecting caspases and autophagy. We found no significant increase in either the number of late stage egg chambers containing persisting nuclei or in the number of persisting nuclei per egg chamber in the double mutants compared to single mutants. These findings suggest that there is another cell death mechanism functioning in the ovary to remove all nurse cell remnants from late stage egg chambers.
Emergence of collective propulsion through cell-cell adhesion.
Matsushita, Katsuyoshi
2018-04-01
The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.
Emergence of collective propulsion through cell-cell adhesion
NASA Astrophysics Data System (ADS)
Matsushita, Katsuyoshi
2018-04-01
The mechanisms driving the collective movement of cells remain poorly understood. To contribute toward resolving this mystery, a model was formulated to theoretically explore the possible functions of polarized cell-cell adhesion in collective cell migration. The model consists of an amoeba cell with polarized cell-cell adhesion, which is controlled by positive feedback with cell motion. This model cell has no persistent propulsion and therefore exhibits a simple random walk when in isolation. However, at high density, these cells acquire collective propulsion and form ordered movement. This result suggests that cell-cell adhesion has a potential function, which induces collective propulsion with persistence.
The role of extracellular calcium in corticotropin-stimulated steroidogenesis.
Cheitlin, R; Buckley, D I; Ramachandran, J
1985-05-10
The role of extracellular Ca2+ in the binding of corticotropin (ACTH) to adrenocortical cell receptors as well as in the post-binding events involved in steroidogenesis were investigated. Binding studies using [125I-Tyr23,Phe2,Nle4]ACTH (1-38) peptide showed that extracellular Ca2+ is essential not only for the interaction of ACTH with its receptor, but also for continued occupancy of the receptor. In view of the requirement of Ca2+ for binding the hormone to the receptor, the role of Ca2+ in post-receptor events was investigated by covalently attaching the hormone to its receptor by photoaffinity labeling in the presence of Ca2+. Persistent activation of steroidogenesis induced by photoaffinity labeling in the presence of Ca2+ was depressed when cells were incubated in medium containing EGTA but was unaffected when the cells were merely washed and incubated in Ca2+-free medium. In the presence of EGTA, 8-Br-cAMP partially restored persistent activation of steroidogenesis. The concentration of extracellular Ca2+ required for restoring steroidogenesis was 10-fold lower than the concentration of Ca2+ needed for optimal binding of ACTH to its receptor. These results suggest that the primary role of extracellular Ca2+ in the action of ACTH is to facilitate the association of the hormone with its receptor.
Krueger, G R; Koch, B; Hoffmann, A; Rojo, J; Brandt, M E; Wang, G; Buja, L M
2001-01-01
Ten adult patients with persistent active HHV-6 variant A infection and clinical chronic fatigue syndrome (CFS) were studied over a period of 24 months after initial clinical diagnosis. CFS was diagnosed according to IIIP-revised CDC-criteria as defined by the CFS Expert Advisory Group to the German Federal Ministry of Health in 1994. Changes in HHV-6 antibody titer, viral DNA load, peripheral blood T lymphocytes and subpopulations, as well as CD4/CD8 cell ratio and cell death (apoptosis) were monitored. Data were collected for comparison with respective changes in acute HHV-6 infection and as a basis for future computer simulation studies. The results showed variable but slightly elevated numbers of HHV-6 DNA copies in the blood of patients with CFS, while PBL (peripheral blood lymphocyte) apoptosis rates were clearly increased. CD4/CD8 cell ratios varied from below 1 up to values as seen in autoimmune disorders. Contrary to acute HHV-6 infection, T lymphocytes do not exhibit the usual response to HHV-6, that is elevation of mature and immature populations suggesting a certain degree of unresponsiveness. The data suggest that persistent low-dose stimulation by HHV-6 may favor imbalanced immune response rather than overt immune deficiency. This hypothesis requires confirmation through additional functional studies.
Haymaker, Cara L; Wu, Richard C; Ritthipichai, Krit; Bernatchez, Chantale; Forget, Marie-Andrée; Chen, Jie Qing; Liu, Hui; Wang, Ena; Marincola, Francesco; Hwu, Patrick; Radvanyi, Laszlo G
2015-01-01
In a recent adoptive cell therapy (ACT) clinical trial using autologous tumor-infiltrating lymphocytes (TILs) in patients with metastatic melanoma, we found an association between CD8+ T cells expressing the inhibitory receptor B- and T-lymphocyte attenuator (BTLA) and clinical response. Here, we further characterized this CD8+BTLA+ TIL subset and their CD8+BTLA− counterparts. We found that the CD8+ BTLA+ TILs had an increased response to IL-2, were less-differentiated effector-memory (TEM) cells, and persisted longer in vivo after infusion. In contrast, CD8+BTLA− TILs failed to proliferate and expressed genes associated with T-cell deletion/tolerance. Paradoxically, activation of BTLA signaling by its ligand, herpes virus entry mediator (HVEM), inhibited T-cell division and cytokine production, but also activated the Akt/PKB pathway thus protecting CD8+BTLA+ TILs from apoptosis. Our results point to a new role of BTLA as a useful T-cell differentiation marker in ACT and a dual signaling molecule that curtails T-cell activation while also conferring a survival advantage for CD8+ T cells. These attributes may explain our previous observation that BTLA expression on CD8+ TILs correlates with clinical response to adoptive T-cell therapy in metastatic melanoma. PMID:26405566
Reversing Melanoma Cross-Resistance to BRAF and MEK Inhibitors by Co-Targeting the AKT/mTOR Pathway
Attar, Narsis; Ng, Charles; Chu, Connie; Guo, Deliang; Nazarian, Ramin; Chmielowski, Bartosz; Glaspy, John A.; Comin-Anduix, Begonya; Mischel, Paul S.; Lo, Roger S.; Ribas, Antoni
2011-01-01
Background The sustained clinical activity of the BRAF inhibitor vemurafenib (PLX4032/RG7204) in patients with BRAFV600 mutant melanoma is limited primarily by the development of acquired resistance leading to tumor progression. Clinical trials are in progress using MEK inhibitors following disease progression in patients receiving BRAF inhibitors. However, the PI3K/AKT pathway can also induce resistance to the inhibitors of MAPK pathway. Methodology/Principal Findings The sensitivity to vemurafenib or the MEK inhibitor AZD6244 was tested in sensitive and resistant human melanoma cell lines exploring differences in activation-associated phosphorylation levels of major signaling molecules, leading to the testing of co-inhibition of the AKT/mTOR pathway genetically and pharmacologically. There was a high degree of cross-resistance to vemurafenib and AZD6244, except in two vemurafenib-resistant cell lines that acquired a secondary mutation in NRAS. In other cell lines, acquired resistance to both drugs was associated with persistence or increase in activity of AKT pathway. siRNA-mediated gene silencing and combination therapy with an AKT inhibitor or rapamycin partially or completely reversed the resistance. Conclusions/Significance Primary and acquired resistance to vemurafenib in these in vitro models results in frequent cross resistance to MEK inhibitors, except when the resistance is the result of a secondary NRAS mutation. Resistance to BRAF or MEK inhibitors is associated with the induction or persistence of activity within the AKT pathway in the presence of these drugs. This resistance can be potentially reversed by the combination of a RAF or MEK inhibitor with an AKT or mTOR inhibitor. These combinations should be available for clinical testing in patients progressing on BRAF inhibitors. PMID:22194965
Petersen, Christopher T.; Hassan, Mojibade; Morris, Anna B.; Jeffery, Jasmin; Lee, Kunhee; Jagirdar, Neera; Staton, Ashley D.; Raikar, Sunil S.; Spencer, Harold T.; Sulchek, Todd; Flowers, Christopher R.
2018-01-01
Adoptive therapy with ex vivo–expanded genetically modified antigen-specific T cells can induce remissions in patients with relapsed/refractory cancer. The clinical success of this therapy depends upon efficient transduction and expansion of T cells ex vivo and their homing, persistence and cytotoxicity following reinfusion. Lower rates of ex vivo expansion and clinical response using anti-CD19 chimeric antigen receptor (CAR) T cells have been seen in heavily pretreated lymphoma patients compared with B-cell acute lymphoblastic leukemia patients and motivate the development of novel strategies to enhance ex vivo T cell expansion and their persistence in vivo. We demonstrate that inhibition of phosphatidylinositol 3-kinase δ (PI3Kδ) and antagonism of vasoactive intestinal peptide (VIP) signaling partially inhibits the terminal differentiation of T cells during anti-CD3/CD28 bead-mediated expansion (mean, 54.4% CD27+CD28+ T cells vs 27.4% in control cultures; P < .05). This strategy results in a mean of 83.7% more T cells cultured from lymphoma patients in the presence of PI3Kδ and VIP antagonists, increased survival of human T cells from a lymphoma patient in a murine xenograft model, enhanced cytotoxic activity of antigen-specific human CAR T cells and murine T cells against lymphoma, and increased transduction and expansion of anti-CD5 human CAR T cells. PI3Kδ and VIP antagonist-expanded T cells from lymphoma patients show reduced terminal differentiation, enhanced polyfunctional cytokine expression, and preservation of costimulatory molecule expression. Taken together, synergistic blockade of these pathways is an attractive strategy to enhance the expansion and functional capacity of ex vivo–expanded cancer-specific T cells. PMID:29386194
Nattermann, Jacob; Nischalke, Hans Dieter; Hofmeister, Valeska; Ahlenstiel, Golo; Zimmermann, Henning; Leifeld, Ludger; Weiss, Elisabeth H.; Sauerbruch, Tilman; Spengler, Ulrich
2005-01-01
Impaired activity of natural killer cells has been proposed as a mechanism contributing to viral persistence in hepatitis C virus (HCV) infection. Natural cytotoxicity is regulated by interactions of HLA-E with inhibitory CD94/NKG2A receptors on natural killer (NK) cells. Here, we studied whether HCV core encodes peptides that bind to HLA-E and inhibit natural cytotoxicity. We analyzed 30 HCV core-derived peptides. Peptide-induced stabilization of HLA-E expression was measured flow cytometrically after incubating HLA-E-transfected cells with peptides. NK cell function was studied with a 51chromium-release-assay. Intrahepatic HLA-E expression was analyzed by an indirect immunoperoxidase technique and flow cytometry of isolated cells using a HLA-E-specific antibody. We identified peptide aa35–44, a well-characterized HLA-A2 restricted T cell epitope, as a peptide stabilizing HLA-E expression and thereby inhibiting NK cell-mediated lysis. Blocking experiments confirmed that this inhibitory effect of peptide aa35–44 on natural cytotoxicity was mediated via interactions between CD94/NKG2A receptors and enhanced HLA-E expression. In line with these in vitro data we found enhanced intrahepatic HLA-E expression on antigen-presenting cells in HCV-infected patients. Our data indicate the existence of T cell epitopes that can be recognized by HLA-A2 and HLA-E. This dual recognition may contribute to viral persistence in hepatitis C. PMID:15681828
Schnohr, Peter; O'Keefe, James H; Lange, Peter; Jensen, Gorm Boje; Marott, Jacob Louis
2017-10-01
Aims The aim of this study was to investigate the impact of persistence and non-persistence in leisure time physical activity on coronary heart disease and all-cause mortality. Methods and results In the Copenhagen City Heart Study, we prospectively followed 12,314 healthy subjects for 33 years of maximum follow-up with at least two repeated measures of physical activity. The association between persistence and non-persistence in leisure time physical activity, coronary heart disease and all-cause mortality were assessed by multivariable Cox regression analyses. Coronary heart disease mortality for persistent physical activity in leisure compared to persistent sedentary activity were: light hazard ratio (HR) 0.76; 95% confidence interval (CI) 0.63-0.92, moderate HR 0.52; 95% CI 0.41-0.67, and high physical activity HR 0.51; 95% CI, 0.30-0.88. The differences in longevity were 2.8 years for light, 4.5 years for moderate and 5.5 years for high physical activity. A substantial increase in physical activity was associated with lower coronary heart disease mortality (HR 0.75; 95% CI 0.52-1.08) corresponding to 2.4 years longer life, whereas a substantial decrease in physical activity was associated with higher coronary heart disease mortality (HR 1.61; 95% CI 1.11-2.33) corresponding to 4.2 years shorter life than the unchanged group. A similar pattern was observed for all-cause mortality. Conclusion We found inverse dose-response relationships between persistent leisure time physical activity and both coronary heart disease and all-cause mortality. A substantial increase in physical activity was associated with a significant gain in longevity, whereas a decrease in physical activity was associated with even greater loss of longevity.
Lung Macrophages “Digest” Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway
2015-01-01
In contrast to short-lived neutrophils, macrophages display persistent presence in the lung of animals after pulmonary exposure to carbon nanotubes. While effective in the clearance of bacterial pathogens and injured host cells, the ability of macrophages to “digest” carbonaceous nanoparticles has not been documented. Here, we used chemical, biochemical, and cell and animal models and demonstrated oxidative biodegradation of oxidatively functionalized single-walled carbon nanotubes via superoxide/NO* → peroxynitrite-driven oxidative pathways of activated macrophages facilitating clearance of nanoparticles from the lung. PMID:24871084
Hasselmo, Michael E.
2008-01-01
This article presents a model of grid cell firing based on the intrinsic persistent firing shown experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in a shift in spiking phase in proportion to the integral of velocity. The convergence of input from different persistent firing neurons causes spiking in a grid cell only when the persistent firing neurons are within similar phase ranges. This model effectively simulates the two-dimensional firing of grid cells in open field environments, as well as the properties of theta phase precession. This model provides an alternate implementation of oscillatory interference models. The persistent firing could also interact on a circuit level with rhythmic inhibition and neurons showing membrane potential oscillations to code position with spiking phase. These mechanisms could operate in parallel with computation of position from visual angle and distance of stimuli. In addition to simulating two-dimensional grid patterns, models of phase interference can account for context-dependent firing in other tasks. In network simulations of entorhinal cortex, hippocampus and postsubiculum, the reset of phase effectively replicates context-dependent firing by entorhinal and hippocampal neurons during performance of a continuous spatial alternation task, a delayed spatial alternation task with running in a wheel during the delay period, and a hairpin maze task. PMID:19021258
Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan
2017-01-24
Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.
2014-01-01
Background Molecular latency allows HIV-1 to persist in resting memory CD4+ T-cells as transcriptionally silent provirus integrated into host chromosomal DNA. Multiple transcriptional regulatory mechanisms for HIV-1 latency have been described in the context of progressive epigenetic silencing and maintenance. However, our understanding of the determinants critical for the establishment of latency in newly infected cells is limited. Results In this study, we used a recently described, doubly fluorescent HIV-1 latency model to dissect the role of proviral integration sites and cellular activation state on direct non-productive infections at the single cell level. Proviral integration site mapping of infected Jurkat T-cells revealed that productively and non-productively infected cells are indistinguishable in terms of genomic landmarks, surrounding epigenetic landscapes, and proviral orientation relative to host genes. However, direct non-productive infections were inversely correlated with both cellular activation state and NFκB activity. Furthermore, modulating NFκB with either small molecules or by conditional overexpression of NFκB subunits was sufficient to alter the propensity of HIV-1 to directly enter a non-productive latent state in newly infected cells. Importantly, this modulatory effect was limited to a short time window post-infection. Conclusions Taken together, our data suggest that cellular activation state and NFκB activity during the time of infection, but not the site of proviral integration, are important regulators of direct HIV-1 non-productive infections. PMID:24502247
NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma.
Harhaj, Edward William; Giam, Chou-Zen
2018-05-03
The human T-cell leukemia virus type 1 (HTLV-1) is a complex deltaretrovirus linked to adult T-cell leukemia/lymphoma (ATLL), a fatal CD4+ malignancy in 3-5% of infected individuals. The HTLV-1 Tax regulatory protein plays indispensable roles in regulating viral gene expression and activating cellular signaling pathways that drive the proliferation and clonal expansion of T cells bearing HTLV-1 proviral integrations. Tax is a potent activator of NF-κB, a key signaling pathway that is essential for the survival and proliferation of HTLV-1 infected T cells. However, constitutive NF-κB activation by Tax also triggers a senescence response, suggesting the possibility that only T cells capable of overcoming NF-κB-induced senescence can selectively undergo clonal expansion after HTLV-1 infection. Tax expression is often silenced in the majority of ATLL due to genetic alterations in the tax gene or DNA hypermethylation of the 5'-LTR. Despite the loss of Tax, NF-κB activation remains persistently activated in ATLL due to somatic mutations in genes in the T/B-cell receptor (T/BCR) and NF-κB signaling pathways. In this review, we focus on the key events driving Tax-dependent and independent mechanisms of NF-κB activation during the multi-step process leading to ATLL. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Metabolic control of T-cell activation and death in SLE
Fernandez, David; Perl, Andras
2009-01-01
Systemic lupus erythematosus (SLE) is characterized by abnormal T-cell activation and death, processes which are crucially dependent on the controlled production of reactive oxygen intermediates (ROI) and of ATP in mitochondria. The mitochondrial transmembrane potential (Δψm) has conclusively emerged as a critical checkpoint of ATP synthesis and cell death. Lupus T cells exhibit persistent elevation of Δψm or mitochondrial hyperpolarization (MHP) as well as depletion of ATP and glutathione which decrease activation-induced apoptosis and instead predispose T cells for necrosis, thus stimulating inflammation in SLE. NO-induced mitochondrial biogenesis in normal T cells accelerates the rapid phase and reduces the plateau of Ca2+ influx upon CD3/CD28 co-stimulation, thus mimicking the Ca2+ signaling profile of lupus T cells. Treatment of SLE patients with rapamycin improves disease activity, normalizes CD3/CD28-induced Ca2+ fluxing but fails to affect MHP, suggesting that altered Ca2+ fluxing is downstream or independent of mitochondrial dysfunction. Understanding the molecular basis and consequences of MHP is essential for controlling T-cell activation and death signaling in SLE. Lupus T cells exhibit mitochondrial dysfunctionMitochondrial hyperpolarization (MHP) and ATP depletion predispose lupus T cells to death by necrosis which is pro-inflammatoryMHP is caused by depletion of glutathione and exposure to nitric oxide (NO)NO-induced mitochondrial biogenesis regenerates the Ca2+ signaling profile of lupus T cellsRapamycin treatment normalizes Ca2+ fluxing but not MHP, suggesting that the mammalian target of rapamycin, acts as a sensor and effector of MHP in SLE PMID:18722557