Sample records for cell adjuvant effects

  1. HIV-1 protease has a genetic T-cell adjuvant effect which is negatively regulated by proteolytic activity.

    PubMed

    Kim, Kwang Soon; Jin, Dong Bin; Ahn, So Shin; Park, Ki Seok; Seo, Sang Hwan; Suh, You Suk; Sung, Young Chul

    2010-08-01

    HIV protease (PR) mediates the processing of human immunodeficiency virus (HIV) polyproteins and is necessary for the viral production. Recently, HIV PR was shown to possess both cytotoxic and chaperone like activity. We demonstrate here that HIV PR can serve as a genetic adjuvant that enhances the HIV Env and human papillomavirus (HPV) DNA vaccine-induced T-cell response in a dose-dependent manner, only when codelivered with DNA vaccine. Interestingly, the T-cell adjuvant effects of HIV PR were increased by introducing several mutations that inhibited its proteolytic activity, indicating that the adjuvant properties were inversely correlated with its proteolytic activity. Conversely, the introduction of a mutation in the flap region of HIV PR limiting the access to the core domain of HIV PR inhibited the T-cell adjuvant effect, suggesting that the HIV PR chaperone like activity may play a role in mediating T-cell adjuvant properties. A similar adjuvant effect was also observed in adenovirus vaccine, indicating vaccine type independency. These findings suggest that HIV PR can modulate T-cell responses elicited by a gene-based vaccine positively by inherent chaperone like activity and negatively by its proteolytic activity.

  2. Dendritic cell-targeting DNA-based mucosal adjuvants for the development of mucosal vaccines

    PubMed Central

    Kataoka, Kosuke; Fujihashi, Kohtaro

    2009-01-01

    In order to establish effective mucosal immunity against various mucosal pathogens, vaccines must be delivered via the mucosal route and contain effective adjuvant(s). Since mucosal adjuvants can simply mix with the antigen, it is relatively easy to adapt them for different types of vaccine development. Even in simple admixture vaccines, the adjuvant itself must be prepared without any complications. Thus, CpG oligodeoxynucleotides or plasmids encoding certain cDNA(s) would be potent mucosal adjuvant candidates when compared with other substances that can be used as mucosal adjuvants. The strategy of a DNA-based mucosal adjuvant facilitates the targeting of mucosal dendritic cells, and thus is an effective and safe approach. It would also provide great flexibility for the development of effective vaccines for various mucosal pathogens. PMID:19722892

  3. Roles of Alum and Monophosphoryl Lipid A Adjuvants in Overcoming CD4+ T Cell Deficiency to Induce Isotype-Switched IgG Antibody Responses and Protection by T-Dependent Influenza Vaccine

    PubMed Central

    Ko, Eun-Ju; Lee, Young-Tae; Kim, Ki-Hye; Lee, Youri; Jung, Yu-Jin; Kim, Min-Chul; Lee, Yu-Na; Kang, Taeuk; Kang, Sang-Moo

    2016-01-01

    Vaccine adjuvant effects in CD4 deficient condition largely remain unknown. We investigated the roles of combined monophosphoryl lipid A (MPL) and Alum adjuvant (MPL+Alum) in inducing immunity after immunization of CD4-knockout (CD4KO) and wild-type (WT) mice with T-dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched antibodies, IgG secreting cell responses, and protection in CD4KO mice, which were comparable to those in WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting macrophages from alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the safety. Additional studies in CD4-depleted WT mice and MHCII KO mice suggest that MHCII positive antigen presenting cells contribute to providing alternative B cell help in CD4 deficient condition in the context of MPL+Alum adjuvanted vaccination. PMID:27881702

  4. Immunostimulatory Oligodeoxynucleotides Containing the CpG Motif are Effective as Immune Adjuvants in Tumor Antigen Immunization

    NASA Astrophysics Data System (ADS)

    Weiner, George J.; Liu, Hsin-Ming; Wooldridge, James E.; Dahle, Christopher E.; Krieg, Arthur M.

    1997-09-01

    Recent advances in our understanding of the immune response are allowing for the logical design of new approaches to cancer immunization. One area of interest is the development of new immune adjuvants. Immunostimulatory oligodeoxynucleotides containing the CpG motif (CpG ODN) can induce production of a wide variety of cytokines and activate B cells, monocytes, dendritic cells, and NK cells. Using the 38C13 B cell lymphoma model, we assessed whether CpG ODN can function as immune adjuvants in tumor antigen immunization. The idiotype served as the tumor antigen. Select CpG ODN were as effective as complete Freund's adjuvant at inducing an antigen-specific antibody response but were associated with less toxicity. These CpG ODN induced a higher titer of antigen-specific IgG2a than did complete Freund's adjuvant, suggesting an enhanced TH1 response. Mice immunized with CpG ODN as an adjuvant were protected from tumor challenge to a degree similar to that seen in mice immunized with complete Freund's adjuvant. We conclude that CpG ODN are effective as immune adjuvants and are attractive as part of a tumor immunization strategy.

  5. Adjuvant effects of saponins on animal immune responses*

    PubMed Central

    Rajput, Zahid Iqbal; Hu, Song-hua; Xiao, Chen-wen; Arijo, Abdullah G.

    2007-01-01

    Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines, ISCOMs (immunostimulating complexes), Freund’s complete adjuvant, Freund’s incomplete adjuvant, alums, bacterial toxins etc., are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed. PMID:17323426

  6. Topical CpG Adjuvantation of a Protein-Based Vaccine Induces Protective Immunity to Listeria monocytogenes

    PubMed Central

    Cheng, Wing Ki; Wee, Kathleen; Kollmann, Tobias R.

    2014-01-01

    Robust CD8+ T cell responses are essential for immune protection against intracellular pathogens. Using parenteral administration of ovalbumin (OVA) protein as a model antigen, the effect of the Toll-like receptor 9 (TLR9) agonist, CpG oligodeoxynucleotide (ODN) 1826, as an adjuvant delivered either topically, subcutaneously, or intramuscularly on antigen-specific CD8+ T cell responses in a mouse model was evaluated. Topical CpG adjuvant increased the frequency of OVA-specific CD8+ T cells in the peripheral blood and in the spleen. The more effective strategy to administer topical CpG adjuvant to enhance CD8+ T cell responses was single-dose administration at the time of antigen injection with a prime-boost regimen. Topical CpG adjuvant conferred both rapid and long-lasting protection against systemic challenge with recombinant Listeria monocytogenes expressing the cytotoxic T lymphocyte (CTL) epitope of OVA257–264 (strain Lm-OVA) in a TLR9-dependent manner. Topical CpG adjuvant induced a higher proportion of CD8+ effector memory T cells than parenteral administration of the adjuvant. Although traditional vaccination strategies involve coformulation of antigen and adjuvant, split administration using topical adjuvant is effective and has advantages of safety and flexibility. Split administration of topical CpG ODN 1826 with parenteral protein antigen is superior to other administration strategies in enhancing both acute and memory protective CD8+ T cell immune responses to subcutaneous protein vaccines. This vaccination strategy induces rapid and persistent protective immune responses against the intracellular organism L. monocytogenes. PMID:24391136

  7. Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.

    PubMed

    Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina

    2016-01-01

    Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.

  8. Cathepsin-mediated Necrosis Controls the Adaptive Immune Response by Th2 (T helper type 2)-associated Adjuvants*

    PubMed Central

    Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen

    2013-01-01

    Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415

  9. Al adjuvants can be tracked in viable cells by lumogallion staining.

    PubMed

    Mile, Irene; Svensson, Andreas; Darabi, Anna; Mold, Matthew; Siesjö, Peter; Eriksson, Håkan

    2015-07-01

    The mechanism behind the adjuvant effect of aluminum salts is poorly understood notwithstanding that aluminum salts have been used for decades in clinical vaccines. In an aqueous environment and at a nearly neutral pH, the aluminum salts form particulate aggregates, and one plausible explanation of the lack of information regarding the mechanisms could be the absence of an efficient method of tracking phagocytosed aluminum adjuvants and thereby the intracellular location of the adjuvant. In this paper, we want to report upon the use of lumogallion staining enabling the detection of phagocytosed aluminum adjuvants inside viable cells. Including micromolar concentrations of lumogallion in the culture medium resulted in a strong fluorescence signal from cells that had phagocytosed the aluminum adjuvant. The fluorescence appeared as spots in the cytoplasm and by confocal microscopy and co-staining with probes presenting fluorescence in the far-red region of the spectrum, aluminum adjuvants could to a certain extent be identified as localized in acidic vesicles, i.e., lysosomes. Staining and detection of intracellular aluminum adjuvants was achieved not only by diffusion of lumogallion into the cytoplasm, thereby highlighting the presence of the adjuvant, but also by pre-staining the aluminum adjuvant prior to incubation with cells. Pre-staining of aluminum adjuvants resulted in bright fluorescent particulate aggregates that remained fluorescent for weeks and with only a minor reduction of fluorescence upon extensive washing or incubation with cells. Both aluminum oxyhydroxide and aluminum hydroxyphosphate, two of the most commonly used aluminum adjuvants in clinical vaccines, could be pre-stained with lumogallion and were easily tracked intracellularly after incubation with phagocytosing cells. Staining of viable cells using lumogallion will be a useful method in investigations of the mechanisms behind aluminum adjuvants' differentiation of antigen-presenting cells into inflammatory cells. Information will be gained regarding the phagosomal pathways and the events inside the phagosomes, and thereby the ultimate fate of phagocytosed aluminum adjuvants could be resolved. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Immunopotentiation by SGP and Quil A. II. Identification of responding cell populations.

    PubMed

    Flebbe, L M; Braley-Mullen, H

    1986-04-15

    The adjuvants SGP (a starch-acrylamide polymer) and Quil A (purified saponin) were shown to markedly augment antibody responses to T-independent (TI) antigens, suggesting that their adjuvant effects may be at least partially mediated through B cells. The ability of both adjuvants to augment primary responses to trinitrophenyl (TNP)-Ficoll (TI-2 antigen) in athymic nude mice further suggested these adjuvants affect B cells. SGP, however, did not induce a response to the T-dependent (TD) antigen dinitrophenyl-keyhole limpet hemocyanin (DNP-KLH) in athymic nude mice, indicating it was unable to replace the requirement for T-helper cells for responses to TD antigens. Responses to TNP-lipopolysaccharide (LPS) were augmented by SGP in CBA/N X Balb/c immune defective (xid) mice. However, SGP was unable to induce a response to TNP-Ficoll in xid mice. The SGP and Quil A augmented responses to TNP-Ficoll were completely inhibited by the mitotic inhibitor, Velban, indicating that SGP and Quil A increased the plaque-forming cell (PFC) response primarily by stimulating cell proliferation, and not by recruitment of antigen-reactive cells. The effects of the adjuvants on secondary responses were investigated using adoptive transfer experiments. SGP and A1(OH)3 both increased the induction of hapten-specific memory B cells in mice primed with DNP-KLH. SGP, Quil A, and A1(OH)3 also increased priming of carrier specific T cells. Priming of memory B cells with DNP-KLH and either A1(OH)3 or SGP was prevented when T cells were depleted with anti-lymphocyte serum (ALS) at the time of antigen priming, indicating that the augmentation of memory B-cell priming by SGP and A1(OH)3 was dependent on the presence of functional T cells. SGP and Quil A were both unable to augment memory cell induction to the TI antigen, TNP-Ficoll, even though both adjuvants markedly augmented primary IgM and IgG responses to this antigen. Based on these results, it is suggested that SGP and Quil A can mediate their adjuvant effects primarily by a direct or indirect effect on B cells although the adjuvants may also affect T cells to some extent.

  11. Effects of granulocyte-macrophage colony-stimulating factor and foreign helper protein as immunologic adjuvants on the T-cell response to vaccination with tyrosinase peptides.

    PubMed

    Scheibenbogen, Carmen; Schadendorf, Dirk; Bechrakis, Nikolaos E; Nagorsen, Dirk; Hofmann, Udo; Servetopoulou, Fotini; Letsch, Anne; Philipp, Armin; Foerster, Michael H; Schmittel, Alexander; Thiel, Eckhard; Keilholz, Ulrich

    2003-03-20

    Immunologic adjuvants are used to augment the immunogenicity of MHC class I-restricted peptide vaccines, but this effect has rarely been systematically evaluated in a clinical trial. We have investigated, in a phase I study, whether addition of the 2 adjuvants GM-CSF and KLH can enhance the T-cell response to MHC class I peptide vaccines. Forty-three high-risk melanoma patients who were clinically free of disease received 6 vaccinations with MHC class I-restricted tyrosinase peptides alone, with either GM-CSF or KLH or with a combination of both adjuvants. The primary end point was induction of tyrosinase-specific T cells, and serial T-cell monitoring was performed in unstimulated peripheral blood samples before and after the second, fourth and sixth vaccinations by ELISPOT assay. Tyrosinase-specific IFN-gamma-producing T cells were detected as early as 2 weeks after the second vaccination in 5 of 9 patients vaccinated with tyrosinase peptides in combination with GM-CSF and KLH but not in any patient vaccinated with tyrosinase peptides without adjuvants or in combination with either adjuvant alone. After 6 vaccinations, tyrosinase-specific T cells were found in patients immunized with peptides either without adjuvants (3 of 9 patients) or in combination with the single adjuvant GM-CSF (4 of 9 patients) but not with KLH (0 of 10 patients). Our results suggest that addition of either GM-CSF or KLH as a single adjuvant has little impact on the immunogenicity of tyrosinase peptides. The combined application of GM-CSF and KLH was associated with early induction of T-cell responses. Copyright 2003 Wiley-Liss, Inc.

  12. Aluminium based adjuvants and their effects on mitochondria and lysosomes of phagocytosing cells.

    PubMed

    Ohlsson, Lars; Exley, Christopher; Darabi, Anna; Sandén, Emma; Siesjö, Peter; Eriksson, Håkan

    2013-11-01

    Aluminium oxyhydroxide, Al(OH)3 is one of few compounds approved as an adjuvant in human vaccines. However, the mechanism behind its immune stimulating properties is still poorly understood. In vitro co-culture of an aluminium adjuvant and the human monocytic cell line THP-1 resulted in reduced cell proliferation. Inhibition occurred at concentrations of adjuvant several times lower than would be found at the injection site using a vaccine formulation containing an aluminium adjuvant. Based on evaluation of the mitochondrial membrane potential, THP-1 cells showed no mitochondrial rupture after co-culture with the aluminium adjuvant, instead an increase in mitochondrial activity was seen. The THP-1 cells are phagocytosing cells and after co-culture with the aluminium adjuvant the phagosomal pathway was obstructed. Primary or early phagosomes mature into phagolysosomes with an internal pH of 4.5 - 5 and carry a wide variety of hydrolysing enzymes. Co-culture with the aluminium adjuvant yielded a reduced level of acidic vesicles and cathepsin L activity, a proteolytic enzyme of the phagolysosomes, was almost completely inhibited. THP-1 cells are an appropriate in vitro model in order to investigate the mechanism behind the induction of a phagocytosing antigen presenting cell into an inflammatory cell by aluminium adjuvants. Much information will be gained by investigating the phagosomal pathway and what occurs inside the phagosomes and to elucidate the ultimate fate of phagocytosed aluminium particles. © 2013.

  13. Airway structural cells regulate TLR5-mediated mucosal adjuvant activity.

    PubMed

    Van Maele, L; Fougeron, D; Janot, L; Didierlaurent, A; Cayet, D; Tabareau, J; Rumbo, M; Corvo-Chamaillard, S; Boulenouar, S; Jeffs, S; Vande Walle, L; Lamkanfi, M; Lemoine, Y; Erard, F; Hot, D; Hussell, T; Ryffel, B; Benecke, A G; Sirard, J-C

    2014-05-01

    Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin's mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.

  14. Adjuvant effect in aquaculture fish of cell-wall glycolipids isolated from acid-fast bacteria.

    PubMed

    Matsumoto, Megumi; Araki, Kyosuke; Nishimura, Sayaka; Kuriyama, Hideki; Nakanishi, Teruyuki; Shiozaki, Kazuhiro; Takeuchi, Yutaka; Yamamoto, Atsushi

    2018-08-01

    Mycobacteriosis and nocardiosis in cultured fish caused by infections with acid-fast bacteria, are responsible for large economic losses globally. In this study, we suggest a novel adjuvant using glycolipids that activates host immune systems. The immune response to glycolipids stimulation was investigated using ginbuna crucian carp. Ginbuna vaccinated with FKC (formalin-killed cells) + glycolipids isolated from Mycobacterium sp., upregulated inflammatory- and Th1-related cytokines, and a DTH (delayed-type hypersensitivity) response was confirmed only in ginbuna vaccinated with FKC + glycolipids. These observations suggest that glycolipids activated host innate and cell-mediated immunity. Subsequently, we evaluated the adjuvant effect of glycolipids against amberjack nocardiosis. In a challenge test, a higher survival rate was observed in amberjack vaccinated with FKC + glycolipids emulsified with conventional oil adjuvant than in fish vaccinated with FKC + oil adjuvant without glycolipids. Therefore, glycolipids potentially could be used as a practical, economical and safe adjuvant for aquaculture fish. Copyright © 2018. Published by Elsevier Ltd.

  15. Propionibacterium acnes Enhances the Immunogenicity of HIVBr18 Human Immunodeficiency Virus-1 Vaccine

    PubMed Central

    Teixeira, Daniela; Ishimura, Mayari Eika; Apostólico, Juliana de Souza; Viel, Jacqueline Miyuki; Passarelli, Victor Cabelho; Cunha-Neto, Edecio; Rosa, Daniela Santoro; Longo-Maugéri, Ieda Maria

    2018-01-01

    Immunization of BALB/c mice with HIVBr18, a DNA vaccine containing 18 CD4+ T cell epitopes from human immunodeficiency virus (HIV), induced specific CD4+ and CD8+ T cell responses in a broad, polyfunctional and persistent manner. With the aim of increasing the immunogenicity of this vaccine, the effect of Propionibacterium acnes as an adjuvant was evaluated. The adjuvant effects of this bacterium have been extensively demonstrated in both experimental and clinical settings. Herein, administration of two doses of HIVBr18, in the presence of P. acnes, increased the proliferation of HIV-1-specific CD4+ and CD8+ T lymphocytes, the polyfunctional profile of CD4+ T cells, the production of IFN-γ, and the number of recognized vaccine-encoded peptides. One of the bacterial components responsible for most of the adjuvant effects observed was a soluble polysaccharide extracted from the P. acnes cell wall. Furthermore, within 10 weeks after immunization, the proliferation of specific T cells and production of IFN-γ were maintained when the whole bacterium was administered, demonstrating a greater effect on the longevity of the immune response by P. acnes. Even with fewer immunization doses, P. acnes was found to be a potent adjuvant capable of potentiating the effects of the HIVBr18 vaccine. Therefore, P. acnes may be a potential adjuvant to aid this vaccine in inducing immunity or for therapeutic use. PMID:29467764

  16. Choice and Design of Adjuvants for Parenteral and Mucosal Vaccines

    PubMed Central

    Savelkoul, Huub F. J.; Ferro, Valerie A.; Strioga, Marius M.; Schijns, Virgil E. J. C.

    2015-01-01

    The existence of pathogens that escape recognition by specific vaccines, the need to improve existing vaccines and the increased availability of therapeutic (non-infectious disease) vaccines necessitate the rational development of novel vaccine concepts based on the induction of protective cell-mediated immune responses. For naive T-cell activation, several signals resulting from innate and adaptive interactions need to be integrated, and adjuvants may interfere with some or all of these signals. Adjuvants, for example, are used to promote the immunogenicity of antigens in vaccines, by inducing a pro-inflammatory environment that enables the recruitment and promotion of the infiltration of phagocytic cells, particularly antigen-presenting cells (APC), to the injection site. Adjuvants can enhance antigen presentation, induce cytokine expression, activate APC and modulate more downstream adaptive immune reactions (vaccine delivery systems, facilitating immune Signal 1). In addition, adjuvants can act as immunopotentiators (facilitating Signals 2 and 3) exhibiting immune stimulatory effects during antigen presentation by inducing the expression of co-stimulatory molecules on APC. Together, these signals determine the strength of activation of specific T-cells, thereby also influencing the quality of the downstream T helper cytokine profiles and the differentiation of antigen-specific T helper populations (Signal 3). New adjuvants should also target specific (innate) immune cells in order to facilitate proper activation of downstream adaptive immune responses and homing (Signal 4). It is desirable that these adjuvants should be able to exert such responses in the context of mucosal administered vaccines. This review focuses on the understanding of the potential working mechanisms of the most well-known classes of adjuvants to be used effectively in vaccines. PMID:26344951

  17. Rotavirus capsid VP6 tubular and spherical nanostructures act as local adjuvants when co-delivered with norovirus VLPs.

    PubMed

    Malm, M; Heinimäki, S; Vesikari, T; Blazevic, V

    2017-09-01

    A subunit protein vaccine candidate based on norovirus (NoV) virus-like particles (VLPs) and rotavirus (RV) VP6 protein against acute childhood gastroenteritis has been proposed recently. RV VP6 forms different oligomeric nanostructures, including tubes and spheres when expressed in vitro, which are highly immunogenic in different animal models. We have shown recently that recombinant VP6 nanotubes have an adjuvant effect on immunogenicity of NoV VLPs in mice. In this study, we investigated if the adjuvant effect is dependent upon a VP6 dose or different VP6 structural assemblies. In addition, local and systemic adjuvant effects as well as requirements for antigen co-delivery and co-localization were studied. The magnitude and functionality of NoV GII.4-specific antibodies and T cell responses were tested in mice immunized with GII.4 VLPs alone or different combinations of VLPs and VP6. A VP6 dose-dependent adjuvant effect on GII.4-specific antibody responses was observed. The adjuvant effect was found to be strictly dependent upon co-administration of NoV GII.4 VLPs and VP6 at the same anatomic site and at the same time. However, the adjuvant effect was not dependent on the types of oligomers used, as both nanotubes and nanospheres exerted adjuvant effect on GII.4-specific antibody generation and, for the first time, T cell immunity. These findings elucidate the mechanisms of VP6 adjuvant effect in vivo and support its use as an adjuvant in a combination NoV and RV vaccine. © 2017 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  18. Biological effects of Corynebacterium parvum. IV. Adjuvant and inhibitory activities on B lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, J.G.; Christie, G.H.; Scott, M.T.

    1973-05-01

    The PFC response to the thymus-independent antigen SIII (type 3 pneumococcal polysaccharide) was amplified in mice injected 4 days previously with killed Corynebacterium parvum. This adjuvant activity was demonstrable with high (2 to 50 mu g) but not low (0.1 to 0.5 mu g) doses of SIII. Induction of tolerance was unaffected. Depression of the response resulted from simultaneous injection of SIII with either C. parvum or Bordetella pertussis, while prior treatment with the latter was without effect. Responsiveness to SIII was transiently but potently suppressed in spleen cells transferred into lethally irradiated, C. parvum pretreated mice. Although C. parvummore » is an effective B cell adjuvant, other data imply that it acts indirectly on these lymphocytes. It is argued that both adjuvant and suppressive activities of C. parvum on the B cell response to SIII are most probably mediated by activated macrophages. (auth)« less

  19. Biological effects of Corynebacterium parvum. IV. Adjuvant and inhibitory activities on B lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, J.G.; Christie, G.H.; Scott, M.T.

    1973-05-01

    The PFC response to the thymus-independent antigen SIII(type 3 pneumococcal polysaccharide) was amplified in mice injected 4 days previously with killed Corynebacterium parvum. This adjuvant activity was demonstrable with high (2 to 50 mu g) but not low (0.1 to 0.5 mu g) doses of SIII. Induction of tolerance was unaffected. Depression of the response resulted from simultaneous injection of SIII with either C. parvum or Bordetella pertussis, while prior treatment with the latter was without effect. Responsiveness to SIII was transiently but potently suppressed in spleen cells transferred into lethally irradiated, C. parvum pretreated mice. Although C. parvum ismore » an effective B cell adjuvant, other data imply that it acts indirectly on these iymphocytes. It is argued that both adjuvant and suppressive activities of C. parvum on the B cell response to SIII are most probably mediated by activated macrophages. (auth)« less

  20. Relationship between the adjuvant and cytotoxic effects of the positive charges and polymerization in liposomes.

    PubMed

    Gasparri, Julieta; Speroni, Lucía; Chiaramoni, Nadia Silvia; del Valle Alonso, Silvia

    2011-06-01

    Vaccine development today encounters a main obstacle, which is the need for effective adjuvants suitable for clinical trials. Aluminum salts, discovered 70 years ago and, very recently, MF59, are the only types of adjuvants currently used in vaccines licensed by the U.S. Food and Drug Administration. Liposomes represent an alternative approach to vaccine adjuvants. In this article, we describe the inflammatory response and biological effect of polymerization and the addition of positive charges in liposome formulations. Nonpolymerized cationic (NP(+)) liposomes significantly reduce metabolism in Vero cells after 24 hours. Correspondingly, both NP(+) and polymerized cationic (P(+)) liposomes reduce cell viability following a 48-hour incubation. Similar results were obtained with cells from the peritoneal cavities of mice. Paradoxically, those liposomes that presented clearly cytostatic or cytotoxic effects in vitro stimulated metabolism and had a mitogenic effect in vivo. Finally, the adjuvant effect was tested by immunization in BALB/c mice. The major effect was obtained with NP(+) liposomes. Accordingly, we also demonstrated that NP(+) liposomes injected into the dermis produced an outstanding inflammatory reaction, showing the histopathological characteristics of an inoculation granuloma. Thus, positive charge would play an important role in the immunoadjuvant effect of liposomes by conferring them cytotoxic capacity.

  1. Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells

    PubMed Central

    Kim, Ki-Hye; Lee, Young-Tae; Hwang, Hye Suk; Kwon, Young-Man; Jung, Yu-Jin; Lee, Youri; Lee, Jong Seok; Lee, Yu-Na; Park, Soojin; Kang, Sang-Moo

    2015-01-01

    Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FI-RSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine-enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease. PMID:26468884

  2. Distinct Effects of Monophosphoryl Lipid A, Oligodeoxynucleotide CpG, and Combination Adjuvants on Modulating Innate and Adaptive Immune Responses to Influenza Vaccination.

    PubMed

    Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye; Kang, Sang-Moo

    2017-10-01

    Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination.

  3. Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo.

    PubMed

    Saint-Mezard, Pierre; Chavagnac, Cyril; Bosset, Sophie; Ionescu, Marius; Peyron, Eric; Kaiserlian, Dominique; Nicolas, Jean-Francois; Bérard, Frédéric

    2003-10-15

    Psychological stress affects the pathophysiology of infectious, inflammatory, and autoimmune diseases. However, the mechanisms by which stress could modulate immune responses in vivo are poorly understood. In this study, we report that application of a psychological stress before immunization exerts an adjuvant effect on dendritic cell (DC), resulting in increased primary and memory Ag-specific T cell immune responses. Acute stress dramatically enhanced the skin delayed-type hypersensitivity reaction to haptens, which is mediated by CD8(+) CTLs. This effect was due to increased migration of skin DCs, resulting in augmented CD8(+) T cell priming in draining lymph nodes and enhanced recruitment of CD8(+) T cell effectors in the skin upon challenge. This adjuvant effect of stress was mediated by norepinephrine (NE), but not corticosteroids, as demonstrated by normalization of the skin delayed-type hypersensitivity reaction and DC migratory properties following selective depletion of NE. These results suggest that release of NE by sympathetic nerve termini during a psychological stress exerts an adjuvant effect on DC by promoting enhanced migration to lymph nodes, resulting in increased Ag-specific T cell responses. Our findings may open new ways in the treatment of inflammatory diseases, e.g., psoriasis, allergic contact dermatitis, and atopic dermatitis.

  4. Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques.

    PubMed

    Sui, Yongjun; Zhu, Qing; Gagnon, Susan; Dzutsev, Amiran; Terabe, Masaki; Vaccari, Monica; Venzon, David; Klinman, Dennis; Strober, Warren; Kelsall, Brian; Franchini, Genoveffa; Belyakov, Igor M; Berzofsky, Jay A

    2010-05-25

    Adjuvant effects on innate as well as adaptive immunity may be critical for inducing protection against mucosal HIV and simian immunodeficiency virus (SIV) exposure. We therefore studied effects of Toll-like receptor agonists and IL-15 as mucosal adjuvants on both innate and adaptive immunity in a peptide/poxvirus HIV/SIV mucosal vaccine in macaques, and made three critical observations regarding both innate and adaptive correlates of protection: (i) adjuvant-alone without vaccine antigen impacted the intrarectal SIVmac251 challenge outcome, correlating with surprisingly long-lived APOBEC3G (A3G)-mediated innate immunity; in addition, even among animals receiving vaccine with adjuvants, viral load correlated inversely with A3G levels; (ii) a surprising threshold-like effect existed for vaccine-induced adaptive immunity control of viral load, and only antigen-specific polyfunctional CD8(+) T cells correlated with protection, not tetramer(+) T cells, demonstrating the importance of T-cell quality; (iii) synergy was observed between Toll-like receptor agonists and IL-15 for driving adaptive responses through the up-regulation of IL-15Ralpha, which can present IL-15 in trans, as well as for driving the innate A3G response. Thus, strategic use of molecular adjuvants can provide better mucosal protection through induction of both innate and adaptive immunity.

  5. Influence of the spray adjuvant on the toxicity effects of a glyphosate formulation.

    PubMed

    Coalova, Isis; Ríos de Molina, María Del Carmen; Chaufan, Gabriela

    2014-10-01

    In the present study, the influence of the spray adjuvant on the toxicity effects of a glyphosate formulation was examined in HEp-2 cell line. We determined the median lethal concentration (LC50) of Atanor® (glyphosate formulation), Impacto® (spray adjuvant) and the mixture of both agrochemicals. We also compared the toxicities of the pesticides individually and in mixture and we analyzed the effects on oxidative balance from each treatment. Our results showed that all the agrochemicals assayed induce dose and time-dependent cytotoxicity and that the toxicity of Impacto® with Atanor® (mixture) was additive on HEp-2 cell line. All the agrochemicals assayed produced an increase in catalase activity and glutathione levels, while no effects were observed for superoxide dismutase and glutathione-S-transferase activities. We found an important increase in ROS production in cells treated with Atanor® and mixture. Besides, all the agrochemicals used triggered caspase 3/7 activation and hence induced apoptosis pathway in this cell line. In conclusion, our results demonstrated that the addition of adjuvant to glyphosate formulation increase the toxicity of the mixture in cell culture. Furthermore, cell culture exposed to agrochemical mixture showed an increased ROS production and antioxidant defenses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A unique role of the cholera toxin A1-DD adjuvant for long-term plasma and memory B cell development.

    PubMed

    Bemark, Mats; Bergqvist, Peter; Stensson, Anneli; Holmberg, Anna; Mattsson, Johan; Lycke, Nils Y

    2011-02-01

    Adjuvants have traditionally been appreciated for their immunoenhancing effects, whereas their impact on immunological memory has largely been neglected. In this paper, we have compared three mechanistically distinct adjuvants: aluminum salts (Alum), Ribi (monophosphoryl lipid A), and the cholera toxin A1 fusion protein CTA1-DD. Their influence on long-term memory development was dramatically different. Whereas a single immunization i.p. with 4-hydroxy-3-nitrophenyl acetyl (NP)-chicken γ-globulin and adjuvant stimulated serum anti-NP IgG titers that were comparable at 5 wk, CTA1-DD-adjuvanted responses were maintained for >16 mo with a half-life of anti-NP IgG ∼36 wk, but <15 wk after Ribi or Alum. A CTA1-DD dose-dependent increase in germinal center (GC) size and numbers was found, with >60% of splenic B cell follicles hosting GC at an optimal CTA1-DD dose. Roughly 7% of these GC were NP specific. This GC-promoting effect correlated well with the persistence of long-term plasma cells in the bone marrow and memory B cells in the spleen. CTA1-DD also facilitated increased somatic hypermutation and affinity maturation of NP-specific IgG Abs in a dose-dependent fashion, hence arguing that large GC not only promotes higher Ab titers but also high-quality Ab production. Adoptive transfer of splenic CD80(+), but not CD80(-), B cells, at 1 y after immunization demonstrated functional long-term anti-NP IgG and IgM memory cells. To our knowledge, this is the first report to specifically compare and document that adjuvants can differ considerably in their support of long-term immune responses. Differential effects on the GC reaction appear to be the basis for these differences.

  7. Cord blood-derived cytokine-induced killer cellular therapy plus radiation therapy for esophageal cancer: a case report.

    PubMed

    Wang, Liming; Huang, Shigao; Dang, Yazheng; Li, Ming; Bai, Wen; Zhong, Zhanqiang; Zhao, Hongliang; Li, Yang; Liu, Yongjun; Wu, Mingyuan

    2014-12-01

    Esophageal cancer is a serious malignancy with regards to mortality and prognosis. Current treatment options include multimodality therapy mainstays of current treatment including surgery, radiation, and chemotherapy. Cell therapy for esophageal cancer is an advancing area of research. We report a case of esophageal cancer following cord blood-derived cytokine-induced killer cell infusion and adjuvant radiotherapy. Initially, she presented with poor spirit, full liquid diets, and upper abdominal pain. Through cell therapy plus adjuvant radiotherapy, the patient remitted and was self-reliant. Recognition of this curative effect of sequent therapy for esophageal cancer is important to enable appropriate treatment. This case highlights cord blood-derived cytokine-induced killer cell therapy significantly alleviates the adverse reaction of radiation and improves the curative effect. Cell therapy plus adjuvant radiotherapy can be a safe and effective treatment for esophageal cancer.

  8. Lung dendritic cells are stimulated by ultrafine particles and play a key role in particle adjuvant activity.

    PubMed

    de Haar, Colin; Kool, Mirjam; Hassing, Ine; Bol, Marianne; Lambrecht, Bart N; Pieters, Raymond

    2008-05-01

    The adjuvant activity of air pollution particles on allergic airway sensitization is well known, but the cellular mechanisms underlying this adjuvant potential are not clear. We sough to study the role of dendritic cells and the costimulatory molecules CD80 and CD86 in the adjuvant activity of ultrafine carbon black particles (CBP). The proliferation of CFSE-labeled DO11.10 CD4 cells was studied after intranasal exposure to particles and ovalbumin (OVA). Next the frequency of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells and their expression of CD80 and CD86 were studied in the peribronchial lymph nodes (PBLNs). The expression of costimulatory molecules was also studied on bone marrow-derived mDCs after exposure to CBPs in vitro, and the importance of costimulation in CBP adjuvant activity was assessed by using CD80/CD86-deficient mice or cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-Ig in vivo. Our data show that CBPs plus OVA caused proliferation of DO11.10 CD4 cells and high levels of cytokine production in the PBLNs. Furthermore, the combined CBP plus OVA exposure increased the number of mDCs and expression of costimulatory molecules in the PBLNs. In addition, CBPs upregulated the expression of CD80/CD86 molecules on dendritic cells in vitro, which are necessary for the particle adjuvant effects in vivo. Together this study shows the importance of dendritic cells and costimulation in particle adjuvant activity. Furthermore, we show for the first time that CBPs can also directly induce maturation of dendritic cells.

  9. Distinct Effects of Monophosphoryl Lipid A, Oligodeoxynucleotide CpG, and Combination Adjuvants on Modulating Innate and Adaptive Immune Responses to Influenza Vaccination

    PubMed Central

    Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye

    2017-01-01

    Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination. PMID:29093654

  10. A New Adjuvant Combined with Inactivated Influenza Enhances Specific CD8 T Cell Response in Mice and Decreases Symptoms in Swine Upon Challenge.

    PubMed

    Bouguyon, Edwige; Goncalves, Elodie; Shevtsov, Alexander; Maisonnasse, Pauline; Remyga, Stepan; Goryushev, Oleg; Deville, Sebastien; Bertho, Nicolas; Ben Arous, Juliette

    2015-11-01

    Vaccination is the most effective way to control swine influenza virus (SIV) in the field. Classical vaccines are based on inactivated antigens formulated with an oil emulsion or a polymeric adjuvant. Standard adjuvants enhance the humoral response and orient the immune response toward a Th2 response. An important issue is that current vaccines do not protect against new strains. One approach to improve cross-protection is to enhance Th1 and cytotoxic responses. The development of adjuvants orienting the immune response of inactivated vaccines toward Th1/Cytotoxic responses would be highly beneficial. This study shows that the water in oil in water emulsion adjuvant Montanide™ ISA 201 VG allows the induction of anti-influenza CD8 T cell in mice and induces homologous protection against an H1N1 challenge in swine. Such adjuvants that induce both humoral and cell-mediated immunity could improve the protection conferred by SIV vaccines in the field.

  11. Immunologic correlates of protection and potential role for adjuvants to improve influenza vaccines in older adults.

    PubMed

    McElhaney, Janet E; Coler, Rhea N; Baldwin, Susan L

    2013-07-01

    The decrease in influenza vaccine efficacy in the elderly is associated with a decline in the stimulation of cell-mediated and cytotoxic T-lymphocyte responses required for clinical protection against influenza, and may be particularly problematic when this population is administered split-virus vaccines that lack conserved viral proteins. Adjuvants, which act through innate immune mechanisms, are known to enhance both humoral and T-cell-mediated responses to influenza vaccines in this population. Adjuvant effects including enhanced antigen presentation, activation and maturation of dendritic cells and production of inflammatory cytokines can drive the desired cell-mediated immune responses. Toll-like receptor ligands comprise one class of adjuvants, which interact with external and internal receptors associated with dendritic cells and other APCs, leading to the regulation and production of important inflammatory cytokines. Potential advances in the production of more effective influenza vaccines for older people include the addition of adjuvants to standard split-virus vaccines and the use of alternate routes of vaccine delivery to augment the response to influenza infection. In this review, the authors discuss the impact of immune senescence on the response to influenza vaccination, the correlates of protection against influenza disease and the progress being made in the design of better influenza vaccines for the population aged 65 years and older.

  12. Formulation of a mmaA4 Gene Deletion Mutant of Mycobacterium bovis BCG in Cationic Liposomes Significantly Enhances Protection against Tuberculosis

    PubMed Central

    Derrick, Steven C.; Dao, Dee; Yang, Amy; Kolibab, Kris; Jacobs, William R.; Morris, Sheldon L.

    2012-01-01

    A new vaccination strategy is urgently needed for improved control of the global tuberculosis (TB) epidemic. Using a mouse aerosol Mycobacterium tuberculosis challenge model, we investigated the protective efficacy of a mmaA4 gene deletion mutant of Mycobacterium bovis BCG (ΔmmaA4BCG) formulated in dimethyl dioctadecyl ammonium bromide (DDA) – D(+) trehalose 6,6 dibenenate (TDB) (DDA/TDB) adjuvant. In previous studies, deletion of the mmaA4 gene was shown to reduce the suppression of IL-12 production often seen after mycobacterial infections. While the non-adjuvanted ΔmmaA4BCG strain did not protect mice substantially better than conventional BCG against a tuberculous challenge in four protection experiments, the protective responses induced by the ΔmmaA4BCG vaccine formulated in DDA/TDB adjuvant was consistently increased relative to nonadjuvanted BCG controls. Furthermore, the ΔmmaA4BCG-DDA/TDB vaccine induced significantly higher frequencies of multifunctional (MFT) CD4 T cells expressing both IFNγ and TNFα (double positive) or IFNγ, TNFα and IL-2 (triple positive) than CD4 T cells derived from mice vaccinated with BCG. These MFT cells were characterized by having higher IFNγ and TNFα median fluorescence intensity (MFI) values than monofunctional CD4 T cells. Interestingly, both BCG/adjuvant and ΔmmaA4BCG/adjuvant formulations induced significantly higher frequencies of CD4 T cells expressing TNFα and IL-2 than nonadjuvanted BCG or ΔmmaA4BCG vaccines indicating that BCG/adjuvant mixtures may be more effective at inducing central memory T cells. Importantly, when either conventional BCG or the mutant were formulated in adjuvant and administered to SCID mice or immunocompromised mice depleted of IFNγ, significantly lower vaccine-derived mycobacterial CFU were detected relative to immunodeficient mice injected with non-adjuvanted BCG. Overall, these data suggest that immunization with the ΔmmaA4BCG/adjuvant formulation may be an effective, safe, and relatively inexpensive alternative to vaccination with conventional BCG. PMID:22442674

  13. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity.

    PubMed

    Mesnage, R; Bernay, B; Séralini, G-E

    2013-11-16

    Pesticides are always used in formulations as mixtures of an active principle with adjuvants. Glyphosate, the active ingredient of the major pesticide in the world, is an herbicide supposed to be specific on plant metabolism. Its adjuvants are generally considered as inert diluents. Since side effects for all these compounds have been claimed, we studied potential active principles for toxicity on human cells for 9 glyphosate-based formulations. For this we detailed their compositions and toxicities, and as controls we used a major adjuvant (the polyethoxylated tallowamine POE-15), glyphosate alone, and a total formulation without glyphosate. This was performed after 24h exposures on hepatic (HepG2), embryonic (HEK293) and placental (JEG3) cell lines. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. The compositions in adjuvants were analyzed by mass spectrometry. Here we demonstrate that all formulations are more toxic than glyphosate, and we separated experimentally three groups of formulations differentially toxic according to their concentrations in ethoxylated adjuvants. Among them, POE-15 clearly appears to be the most toxic principle against human cells, even if others are not excluded. It begins to be active with negative dose-dependent effects on cellular respiration and membrane integrity between 1 and 3ppm, at environmental/occupational doses. We demonstrate in addition that POE-15 induces necrosis when its first micellization process occurs, by contrast to glyphosate which is known to promote endocrine disrupting effects after entering cells. Altogether, these results challenge the establishment of guidance values such as the acceptable daily intake of glyphosate, when these are mostly based on a long term in vivo test of glyphosate alone. Since pesticides are always used with adjuvants that could change their toxicity, the necessity to assess their whole formulations as mixtures becomes obvious. This challenges the concept of active principle of pesticides for non-target species. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. TLR4 ligands lipopolysaccharide and monophosphoryl lipid a differentially regulate effector and memory CD8+ T Cell differentiation.

    PubMed

    Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M

    2014-05-01

    Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.

  15. TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation

    PubMed Central

    Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.

    2014-01-01

    Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688

  16. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo

    PubMed Central

    Munks, Michael W.; McKee, Amy S.; MacLeod, Megan K.; Powell, Roger L.; Degen, Jay L.; Reisdorph, Nichole A.; Kappler, John W.

    2010-01-01

    It has been recognized for nearly 80 years that insoluble aluminum salts are good immunologic adjuvants and that they form long-lived nodules in vivo. Nodule formation has long been presumed to be central for adjuvant activity by providing an antigen depot, but the composition and function of these nodules is poorly understood. We show here that aluminum salt nodules formed within hours of injection and contained the clotting protein fibrinogen. Fibrinogen was critical for nodule formation and required processing to insoluble fibrin by thrombin. DNase treatment partially disrupted the nodules, and the nodules contained histone H3 and citrullinated H3, features consistent with extracellular traps. Although neutrophils were not essential for nodule formation, CD11b+ cells were implicated. Vaccination of fibrinogen-deficient mice resulted in normal CD4 T-cell and antibody responses and enhanced CD8 T-cell responses, indicating that nodules are not required for aluminum's adjuvant effect. Moreover, the ability of aluminum salts to retain antigen in the body, the well-known depot effect, was unaffected by the absence of nodules. We conclude that aluminum adjuvants form fibrin-dependent nodules in vivo, that these nodules have properties of extracellular traps, and the nodules are not required for aluminum salts to act as adjuvants. PMID:20876456

  17. Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA.

    PubMed

    Morishita, Masaki; Takahashi, Yuki; Matsumoto, Akihiro; Nishikawa, Makiya; Takakura, Yoshinobu

    2016-12-01

    For cancer immunotherapy via tumor antigen vaccination in combination with an adjuvant, major challenges include the identification of a particular tumor antigen and efficient delivery of the antigen as well as adjuvant to antigen-presenting cells. In this study, we proposed an efficient exosome-based tumor antigens-adjuvant co-delivery system using genetically engineered tumor cell-derived exosomes containing endogenous tumor antigens and immunostimulatory CpG DNA. Murine melanoma B16BL6 cells were transfected with a plasmid vector encoding a fusion streptavidin (SAV; a protein that binds to biotin with high affinity)-lactadherin (LA; an exosome-tropic protein) protein, yielding genetically engineered SAV-LA-expressing exosomes (SAV-exo). SAV-exo were combined with biotinylated CpG DNA to prepare CpG DNA-modified exosomes (CpG-SAV-exo). Fluorescent microscopic observation revealed the successful modification of exosomes with CpG DNA by SAV-biotin interaction. CpG-SAV-exo showed efficient and simultaneous delivery of exosomes with CpG DNA to murine dendritic DC2.4 cells in culture. Treatment with CpG-SAV-exo effectively activated DC2.4 cells and enhanced tumor antigen presentation capacity. Immunization with CpG-SAV-exo exhibited stronger in vivo antitumor effects in B16BL6 tumor-bearing mice than simple co-administration of exosomes and CpG DNA. Thus, genetically engineered CpG-SAV-exo is an effective exosome-based tumor antigens-adjuvant co-delivery system that will be useful for cancer immunotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21

    PubMed Central

    Welsby, Iain; Detienne, Sophie; N’Kuli, Francisca; Thomas, Séverine; Wouters, Sandrine; Bechtold, Viviane; De Wit, Dominique; Gineste, Romain; Reinheckel, Thomas; Elouahabi, Abdelatif; Courtoy, Pierre J.; Didierlaurent, Arnaud M.; Goriely, Stanislas

    2017-01-01

    The adjuvant properties of the saponin QS-21 have been known for decades. It is a component of the Adjuvant System AS01 that is used in several vaccine candidates. QS-21 strongly potentiates both cellular and humoral immune responses to purified antigens, yet how it activates immune cells is largely unknown. Here, we report that QS-21 directly activated human monocyte-derived dendritic cells (moDCs) and promoted a pro-inflammatory transcriptional program. Cholesterol-dependent QS-21 endocytosis followed by lysosomal destabilization and Syk kinase activation were prerequisites for this response. Cathepsin B, a lysosomal cysteine protease, was essential for moDC activation in vitro and contributed to the adjuvant effects of QS-21 in vivo. Collectively, these findings provide new insights into the pathways involved in the direct activation of antigen-presenting cells by a clinically relevant QS-21 formulation. PMID:28105029

  19. Contemporary adjuvant polymethyl methacrylate cementation optimally limits recurrence in primary giant cell tumor of bone patients compared to bone grafting: a systematic review and meta-analysis

    PubMed Central

    2013-01-01

    Background Reports of recurrence following restructuring of primary giant cell tumor (GCT) defects using polymethyl methacrylate (PMMA) bone cementation or allogeneic bone graft with and without adjuvants for intralesional curettage vary widely. Systematic review and meta-analysis were conducted to investigate efficacy of PMMA bone cementation and allogeneic bone grafting following intralesional curettage for GCT. Methods Medline, EMBASE, Google Scholar, and Cochrane databases were searched for studies reporting GCT of bone treatment with PMMA cementation and/or bone grafting with or without adjuvant therapy following intralesional curettage of primary GCTs. Pooled risk ratios and 95% confidence intervals (CIs) for local recurrence risks were calculated by fixed-effects methods. Results Of 1,690 relevant titles, 6 eligible studies (1,293 patients) spanning March 2008 to December 2011 were identified in published data. Treatment outcomes of PMMA-only (n = 374), bone graft-only (n = 436), PMMA with or without adjuvant (PMMA + adjuvant; n = 594), and bone graft filling with or without adjuvant (bone graft + adjuvant; n = 699) were compared. Bone graft-only patients exhibited higher recurrence rates than PMMA-treated patients (RR 2.09, 95% CI (1.64, 2.66), Overall effect: Z = 6.00; P <0.001), and bone graft + adjuvant patients exhibited higher recurrence rates than PMMA + adjuvant patients (RR 1.66, 95% CI (1.21, 2.28), Overall effect: Z = 3.15, P = 0.002). Conclusions Local recurrence was minimal in PMMA cementation patients, suggesting that PMMA is preferable for routine clinical restructuring in eligible GCT patients. Relationships between tumor characteristics, other modern adjuvants, and recurrence require further exploration. PMID:23866921

  20. Low-intensity ultrasound adjuvant therapy: enhancement of doxorubicin-induced cytotoxicity and the acoustic mechanisms involved.

    PubMed

    Kondo, Takashi; Yoshida, Toru; Ogawa, Ryohei; Hassan, Mariame A; Furusawa, Yukihiro; Zhao, Qing-Li; Watanabe, Akihiko; Morii, Akihiro; Feril, Loreto B; Tachibana, Katsuro; Kitagawa, Hiroshi; Tabuchi, Yoshiaki; Takasaki, Ichiro; Shehata, Mohammad H; Kudo, Nobuki; Tsukada, Kazuhiro

    2009-06-01

    In this study, the effects of low-intensity pulsed ultrasound (LIU) as an adjuvant to doxorubicin (DOX) treatment was further investigated in comparison to hyperthermia as another widely used adjuvant. The effects were compared with respect to cell killing and apoptosis induction in U937 cells. Human primary liver cancer (PLC) cells were also used to evaluate the effects of the combinations. The use of an echo contrast agent was investigated for further enhancement of cytotoxicity. Finally, the acoustic mechanisms involved were investigated. The effects of different treatment regimens on cell viability were determined using the Trypan blue dye-exclusion test. Apoptosis induction was detected by flow cytometry using fluorescein isothiocyanate-annexin V and propidium iodide staining. The mechanistic study involved electron paramagnetic spin trapping for detecting free radical formation as an indicator of the occurrence of inertial cavitation and spectrophotometry for sucrose hydrolysis as an indicator for noncavitational effects. The combination treatments exerted synergistic effects on cytotoxicity depending on the acoustic conditions used. The use of LIU as an adjuvant to DOX treatment was shown to be superior to the use of hyperthermia as an adjuvant. Moreover, the combination seems to be promising for other cancer types provided that the acoustic conditions are properly selected with respect to drug concentration. The key ultrasound mechanism responsible for the synergism observed was shown to be the production of free radicals by inertial cavitation. Non-cavitational forces were also shown to contribute to the effect. This study is motivating to engage in in vivo research with various cancer types as a step toward clinical applicability and is emphasizing on the importance of developing therapeutic protocols for setting LIU parameters with respect to other therapeutic conditions.

  1. Murabutide revisited: a review of its pleiotropic biological effects.

    PubMed

    Jakopin, Žiga

    2013-01-01

    Despite the great efforts put into their development, the list of clinically approved immunological adjuvants is still very short. Evolution of the knowledge of the immune system has enabled for rational design of novel adjuvants and has led to the conclusion that more than one type of adjuvant will be required. Derivatives of muramyl dipeptide (MDP), the minimal immunomodulatory structure of bacterial cell wall peptidoglycan, have gained considerable attention in the past decades, because of their potent adjuvant effects. Murabutide is a safe derivative of MDP, which interacts with cells of the immune system, both innate and adaptive, and exerts its effect through activation of Nod2. The transcriptional response of murabutide-stimulated macrophages revealed enhanced expression of genes coding for various proteins such as immune mediators and their receptors, transcription factors and kinases, ion channels/transporters and proteins involved in cell metabolic activity, thus reflecting a broad spectrum of biological effects. In addition to its well recognized adjuvant effect, murabutide has also been shown to enhance the host's resistance against microbial infections, nonspecific resistance against tumors and the induction of cytokines and chemokines implicated in enhancing the immune response and hematopoesis. This article provides an insight into the mechanism of action of murabutide and its interactions with the cells of the immune system in vitro and in vivo. On account of its numerous biological effects, murabutide has been the subject of several clinical studies. Many of these have confirmed its potential to synergize with cytokines of therapeutic interest in potentiating the tumoricidal activity of macrophages or targeting chronic viral diseases, as well as reducing the cytokine dosage needed to achieve a therapeutic effect. This review covers the findings of all relevant studies and focuses on the role of murabutide and its potential in the treatment of several microbial diseases.

  2. MyD88/CD40 Genetic Adjuvant Function in Cutaneous Atypical Antigen-Presenting Cells Contributes to DNA Vaccine Immunogenicity

    PubMed Central

    Slawin, Kevin M.; Levitt, Jonathan M.; Spencer, David M.

    2016-01-01

    Therapeutic DNA-based vaccines aim to prime an adaptive host immune response against tumor-associated antigens, eliminating cancer cells primarily through CD8+ cytotoxic T cell-mediated destruction. To be optimally effective, immunological adjuvants are required for the activation of tumor-specific CD8+ T cells responses by DNA vaccination. Here, we describe enhanced anti-tumor efficacy of an in vivo electroporation-delivered DNA vaccine by inclusion of a genetically encoded chimeric MyD88/CD40 (MC) adjuvant, which integrates both innate and adaptive immune signaling pathways. When incorporated into a DNA vaccine, signaling by the MC adjuvant increased antigen-specific CD8+ T cells and promoted elimination of pre-established tumors. Interestingly, MC-enhanced vaccine efficacy did not require direct-expression of either antigen or adjuvant by local antigen-presenting cells, but rather our data supports a key role for MC function in “atypical” antigen-presenting cells of skin. In particular, MC adjuvant-modified keratinocytes increased inflammatory cytokine secretion, upregulated surface MHC class I, and were able to increase in vitro and in vivo priming of antigen-specific CD8+ T cells. Furthermore, in the absence of critical CD8α+/CD103+ cross-priming dendritic cells, MC was still able to promote immune priming in vivo, albeit at a reduced level. Altogether, our data support a mechanism by which MC signaling activates an inflammatory phenotype in atypical antigen-presenting cells within the cutaneous vaccination site, leading to an enhanced CD8+ T cell response against DNA vaccine-encoded antigens, through both CD8α+/CD103+ dendritic cell-dependent and independent pathways. PMID:27741278

  3. Cell Recruitment and Cytokines in Skin Mice Sensitized with the Vaccine Adjuvants: Saponin, Incomplete Freund’s Adjuvant, and Monophosphoryl Lipid A

    PubMed Central

    Vitoriano-Souza, Juliana; Moreira, Nádia das Dores; Teixeira-Carvalho, Andréa; Carneiro, Cláudia Martins; Siqueira, Fernando Augusto Mathias; Vieira, Paula Melo de Abreu; Giunchetti, Rodolfo Cordeiro; Moura, Sandra Aparecida de Lima; Fujiwara, Ricardo Toshio; Melo, Maria Norma; Reis, Alexandre Barbosa

    2012-01-01

    Vaccine adjuvants are substances associated with antigens that are fundamental to the formation of an intense, durable, and fast immune response. In this context, the use of vaccine adjuvants to generate an effective cellular immune response is crucial for the design and development of vaccines against visceral leishmaniasis. The objective of this study was to evaluate innate inflammatory response induced by the vaccine adjuvants saponin (SAP), incomplete Freund’s adjuvant (IFA), and monophosphoryl lipid A (MPL). After a single dose of adjuvant was injected into the skin of mice, we analyzed inflammatory reaction, selective cell migration, and cytokine production at the injection site, and inflammatory cell influx in the peripheral blood. We found that all vaccine adjuvants were able to promote cell recruitment to the site without tissue damage. In addition, they induced selective migration of neutrophils, macrophages, and lymphocytes. The influx of neutrophils was notable at 12 h in all groups, but at other time points it was most evident after inoculation with SAP. With regard to cytokines, the SAP led to production of interleukin (IL)-2, IL-6, and IL-4. IFA promoted production of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, IL-17, IL-4, and IL-10. We also observed that MPL induced high production of IL-2, TNF-α, and IFN-γ, in addition to IL-6, IL-17, and IL-10. In peripheral blood, values of certain cell populations in the local response changed after stimulation. Our data demonstrate that the three vaccine adjuvants stimulate the early events of innate immune response at the injection site, suggesting their ability to increase the immunogenicity of co-administered antigens. Moreover, this work provides relevant information about elements of innate and acquired immune response induced by vaccine adjuvants administered alone. PMID:22829882

  4. Production, purification and immunogenicity of recombinant Ebola virus proteins - A comparison of Freund's adjuvant and adjuvant system 03.

    PubMed

    Melén, Krister; Kakkola, Laura; He, Felix; Airenne, Kari; Vapalahti, Olli; Karlberg, Helen; Mirazimi, Ali; Julkunen, Ilkka

    2017-04-01

    There is an urgent need for Ebola virus (EBOV) proteins, EBOV-specific antibodies and recombinant antigens to be used in diagnostics and as potential vaccine candidates. Our objective was to produce and purify recombinant proteins for immunological assays and for the production of polyclonal EBOV specific antibodies. In addition, a limited comparison of the adjuvant effects of Freund's complete adjuvant (FCA) and adjuvant system 03 (AS03) was carried out. Recombinant EBOV GST-VP24, -VP30, -VP35, -VP40 and -NP were produced in E. coli and purified with affinity chromatography followed by preparative gel electrophoresis. Recombinant EBOV GP-His was produced in Sf9 insect cells and purified by preparative gel electrophoresis. To compare the adjuvant effect of FCA and AS03, 12 rabbits were immunized four times with one of the six recombinant EBOV proteins using FCA or AS03. In addition, three guinea pigs were immunized with EBOV VP24 using FCA. With the exception of sera from two rabbits immunized with GST-VP24, the antisera against all other EBOV proteins showed very high and specific antibody responses after three to four immunizations. The adjuvant effect of AS03 was comparable to that of FCA. The produced antibodies recognized the corresponding EBOV proteins in wild type EBOV-infected cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine

    PubMed Central

    Teng, Xindong; Tian, Maopeng; Li, Jianrong; Tan, Songwei; Yuan, Xuefeng; Yu, Qi; Jing, Yukai; Zhang, Zhiping; Yue, Tingting; Zhou, Lei; Fan, Xionglin

    2015-01-01

    Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8+ epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6′-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4+ Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ+ CD8+ T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8+ T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine. PMID:25905680

  6. Immunogenicity and protective efficacy of DMT liposome-adjuvanted tuberculosis subunit CTT3H vaccine.

    PubMed

    Teng, Xindong; Tian, Maopeng; Li, Jianrong; Tan, Songwei; Yuan, Xuefeng; Yu, Qi; Jing, Yukai; Zhang, Zhiping; Yue, Tingting; Zhou, Lei; Fan, Xionglin

    2015-01-01

    Different strategies have been proposed for the development of protein subunit vaccine candidates for tuberculosis (TB), which shows better safety than other types of candidates and the currently used Bacillus Calmette-Guérin (BCG) vaccine. In order to develop more effective protein subunits depending on the mechanism of cell-mediated immunity against TB, a polyprotein CTT3H, based on 5 immunodominant antigens (CFP10, TB10.4, TB8.4, Rv3615c, and HBHA) with CD8(+) epitopes of Mycobacterium tuberculosis, was constructed in this study. We vaccinated C57BL/6 mice with a TB subunit CTT3H protein in an adjuvant of dimethyldioctadecylammonium/monophosphoryl lipid A/trehalose 6,6'-dibehenate (DDA/MPL/TDB, DMT) liposome to investigate the immunogenicity and protective efficacy of this novel vaccine. Our results demonstrated that DMT liposome-adjuvanted CTT3H vaccine not only induced an antigen-specific CD4(+) Th1 response, but also raised the number of PPD- and CTT3H-specific IFN-γ(+) CD8(+) T cells and elicited strong CTL responses against TB10.4, which provided more effective protection against a 60 CFU M. tuberculosis aerosol challenge than PBS control and DMT adjuvant alone. Our findings indicate that DMT-liposome is an effective adjuvant to stimulate CD8(+) T cell responses and the DMT-adjuvanted subunit CTT3H vaccine is a promising candidate for the next generation of TB vaccine.

  7. CD40L-adjuvanted DNA/modified vaccinia virus Ankara simian immunodeficiency virus SIV239 vaccine enhances SIV-specific humoral and cellular immunity and improves protection against a heterologous SIVE660 mucosal challenge.

    PubMed

    Kwa, Suefen; Lai, Lilin; Gangadhara, Sailaja; Siddiqui, Mariam; Pillai, Vinod B; Labranche, Celia; Yu, Tianwei; Moss, Bernard; Montefiori, David C; Robinson, Harriet L; Kozlowski, Pamela A; Amara, Rama Rao

    2014-09-01

    It remains a challenge to develop a successful human immunodeficiency virus (HIV) vaccine that is capable of preventing infection. Here, we utilized the benefits of CD40L, a costimulatory molecule that can stimulate both dendritic cells (DCs) and B cells, as an adjuvant for our simian immunodeficiency virus (SIV) DNA vaccine in rhesus macaques. We coexpressed the CD40L with our DNA/SIV vaccine such that the CD40L is anchored on the membrane of SIV virus-like particle (VLP). These CD40L containing SIV VLPs showed enhanced activation of DCs in vitro. We then tested the potential of DNA/SIV-CD40L vaccine to adjuvant the DNA prime of a DNA/modified vaccinia virus Ankara (MVA) vaccine in rhesus macaques. Our results demonstrated that the CD40L adjuvant enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV CD8 and CD4 T cell responses, significantly delayed the acquisition of heterologous mucosal SIV infection, and improved viral control. Notably, the CD40L adjuvant enhanced the control of viral replication in the gut at the site of challenge that was associated with lower mucosal CD8 immune activation, one of the strong predictors of disease progression. Collectively, our results highlight the benefits of CD40L adjuvant for enhancing antiviral humoral and cellular immunity, leading to enhanced protection against a pathogenic SIV. A single adjuvant that enhances both humoral and cellular immunity is rare and thus underlines the importance and practicality of CD40L as an adjuvant for vaccines against infectious diseases, including HIV-1. Despite many advances in the field of AIDS research, an effective AIDS vaccine that can prevent infection remains elusive. CD40L is a key stimulator of dendritic cells and B cells and can therefore enhance T cell and antibody responses, but its overly potent nature can lead to adverse effects unless used in small doses. In order to modulate local expression of CD40L at relatively lower levels, we expressed CD40L in a membrane-bound form, along with SIV antigens, in a nucleic acid (DNA) vector. We tested the immunogenicity and efficacy of the CD40L-adjuvanted vaccine in macaques using a heterologous mucosal SIV infection. The CD40L-adjuvanted vaccine enhanced the functional quality of anti-Env antibody response and breadth of anti-SIV T cell responses and improved protection. These results demonstrate that VLP-membrane-bound CD40L serves as a novel adjuvant for an HIV vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Recent developments in leishmaniasis vaccine delivery systems.

    PubMed

    Bhowmick, Sudipta; Ali, Nahid

    2008-07-01

    The observation that recovery from infection with Leishmania confers immunity to reinfection suggests that control of leishmaniasis by vaccination may be possible. New generation vaccines, particularly those based on recombinant proteins and DNA, are found to be less immunogenic. There is an urgent need for the development of new and improved vaccine adjuvants. Based on their principal mechanisms of action, adjuvants can be broadly separated into two classes: immunostimulatory adjuvants and vaccine delivery systems. Vaccine delivery systems can carry both antigen and adjuvant for effective delivery to the antigen-presenting cells (APCs). In this article, we review the adjuvants, the delivery systems and their combinations used in the search of an effective vaccine against leishmaniasis. Based on current knowledge, cationic liposomes appear to have better prospects as effective delivery systems for developing a vaccine for leishmaniasis.

  9. The mechanism of action of MF59 - an innately attractive adjuvant formulation.

    PubMed

    O'Hagan, D T; Ott, G S; De Gregorio, E; Seubert, A

    2012-06-19

    MF59 is a safe and effective vaccine adjuvant which was originally approved to be included in a licensed influenza vaccine to be used in the elderly in Europe in 1997. The MF59 adjuvanted influenza vaccine (Fluad™) is now licensed in more than 20 countries worldwide and more than 85 million doses have been administered. More recently the vaccine adjuvant has also been shown to be safe and effective in young children and resulted in a significant increase in influenza vaccine efficacy in a controlled clinical trial in Europe. Since the early days of its discovery we have explored the mechanism of action of MF59, using a variety of available techniques. In recent years we have explored more thoroughly the mechanism of action using new and more sophisticated techniques. It is remarkable how consistent the data has been, using a variety of different approaches both in several small animal models and also using human immune cells in vitro. Here we present a summary of all the work performed to date on the mechanism of action of MF59 and we present a unified theory based on the accumulated data of how it exerts its adjuvant effects. A key element of the mechanism of action appears to be the creation of a transient 'immunocompetent' local environment at the injection site, resulting in the recruitment of key immune cells, which are able to take up antigen and adjuvant and transport them to the local lymph nodes, where the immune response is induced. This recruitment appears to be triggered by the induction of a chemokine driven gradient by the impact of MF59 on local cells, which are activated to secrete further chemokines, which are recruitment factors for more immune cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Combined influence of adjuvant therapy and interval after surgery on peripheral CD4+ T lymphocytes in patients with esophageal squamous cell carcinoma

    PubMed Central

    LING, YANG; FAN, LIEYING; DONG, CHUNLEI; ZHU, JING; LIU, YONGPING; NI, YAN; ZHU, CHANGTAI; ZHANG, CHANGSONG

    2010-01-01

    The aim of this study was to investigate possible differences in cellular immunity between chemo- and/or radiotherapy groups during a long interval after surgery in esophageal squamous cell carcinoma (ESCC) patients. Cellular immunity was assessed as peripheral lymphocyte subsets in response to chemotherapy (CT), radiotherapy (RT) and CT+RT by flow cytometric analysis. There were 139 blood samples obtained at different time points relative to surgery from 73 patients with ESCC. The changes in the absolute and relative proportions of lymphocyte phenotypes were significant among the adjuvant therapy groups. There were significant differences in the absolute counts of CD4+ and CD8+ T cells among the interval groups, and a lower CD4/CD8 ratio was found in patients following a prolonged interval. RT alone had a profound effect on the absolute counts of CD3+, CD4+ and CD8+ T cells compared with the other groups. CD4+ T cells exhibited a decreasing trend during a long interval, leading to a prolonged T-cell imbalance after surgery. Univariate analysis revealed that the interaction of the type of adjuvant therapy and the interval after surgery was correlated only with the percentage of CD4+ T cells. The percentage of CD4+ T cells can be used as an indicator of the cellular immunity after surgery in ESCC patients. However, natural killer cells consistently remained suppressed in ESCC patients following adjuvant therapy after surgery. These findings confirm an interaction between adjuvant therapy and the interval after surgery on peripheral CD4+ T cells, and implies that adjuvant therapy may have selective influence on the cellular immunity of ESCC patients after surgery. PMID:23136603

  11. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations

    NASA Astrophysics Data System (ADS)

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-08-01

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain.

  12. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations.

    PubMed

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-08-12

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al(3+) in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain.

  13. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations

    PubMed Central

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-01-01

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain. PMID:27515230

  14. Transcriptomics of the Vaccine Immune Response: Priming With Adjuvant Modulates Recall Innate Responses After Boosting.

    PubMed

    Santoro, Francesco; Pettini, Elena; Kazmin, Dmitri; Ciabattini, Annalisa; Fiorino, Fabio; Gilfillan, Gregor D; Evenroed, Ida M; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2018-01-01

    Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream adaptive response.

  15. Hydroxypropyl-β-Cyclodextrin Spikes Local Inflammation That Induces Th2 Cell and T Follicular Helper Cell Responses to the Coadministered Antigen

    PubMed Central

    Onishi, Motoyasu; Ozasa, Koji; Kobiyama, Kouji; Ohata, Keiichi; Kitano, Mitsutaka; Taniguchi, Keiichi; Homma, Tomoyuki; Kobayashi, Masanori; Sato, Akihiko; Katakai, Yuko; Yasutomi, Yasuhiro; Wijaya, Edward; Igarashi, Yoshinobu; Nakatsu, Noriyuki; Ise, Wataru; Inoue, Takeshi; Yamada, Hiroshi; Vandenbon, Alexis; Standley, Daron M.; Kurosaki, Tomohiro; Coban, Cevayir; Aoshi, Taiki; Kuroda, Etsushi

    2015-01-01

    Cyclodextrins are commonly used as a safe excipient to enhance the solubility and bioavailability of hydrophobic pharmaceutical agents. Their efficacies and mechanisms as drug-delivery systems have been investigated for decades, but their immunological properties have not been examined. In this study, we reprofiled hydroxypropyl-β-cyclodextrin (HP-β-CD) as a vaccine adjuvant and found that it acts as a potent and unique adjuvant. HP-β-CD triggered the innate immune response at the injection site, was trapped by MARCO+ macrophages, increased Ag uptake by dendritic cells, and facilitated the generation of T follicular helper cells in the draining lymph nodes. It significantly enhanced Ag-specific Th2 and IgG Ab responses as potently as did the conventional adjuvant, aluminum salt (alum), whereas its ability to induce Ag-specific IgE was less than that of alum. At the injection site, HP-β-CD induced the temporary release of host dsDNA, a damage-associated molecular pattern. DNase-treated mice, MyD88-deficient mice, and TBK1-deficient mice showed significantly reduced Ab responses after immunization with this adjuvant. Finally, we demonstrated that HP-β-CD–adjuvanted influenza hemagglutinin split vaccine protected against a lethal challenge with a clinically isolated pandemic H1N1 influenza virus, and the adjuvant effect of HP-β-CD was demonstrated in cynomolgus macaques. Our results suggest that HP-β-CD acts as a potent MyD88- and TBK1-dependent T follicular helper cell adjuvant and is readily applicable to various vaccines. PMID:25681338

  16. Adjuvant therapy for advanced renal cell carcinoma.

    PubMed

    Meissner, Matthew A; McCormick, Barrett Z; Karam, Jose A; Wood, Christopher G

    2018-07-01

    Locally advanced, non-metastatic renal cell carcinoma (RCC) is conventionally managed with surgery. However, patients are at a high risk of RCC recurrence and have poor survival outcomes. An effective adjuvant systemic treatment is needed to improve on these outcomes. Targeted molecular and immune-based therapies have been investigated, or are under investigation, but their role in this setting remains unclear. Areas covered: A comprehensive search of PubMed and ClinicalTrials.gov was performed for relevant literature. The following topics pertinent to adjuvant therapy in RCC were evaluated: strategies for patient selection, cytokine-based immunotherapy, vaccine therapy, VEGF and non-VEGF targeted molecular agents, and immune checkpoint inhibitors. Expert commentary: Strong evidence for the incorporation of adjuvant therapy in high-risk RCC is lacking. Multiple targeted molecular therapies have been examined with only one approved for use. Genetic and molecular-based prognostic models are needed to determine who may benefit from adjuvant therapy. Developing adjuvant therapy strategies in the future depends on the results of important ongoing trials with immunotherapy and targeted agents.

  17. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8+ T cell activation in the presence of adjuvant temozolomide

    PubMed Central

    Pellegatta, Serena; Eoli, Marica; Anghileri, Elena; Pollo, Bianca; Pessina, Sara; Frigerio, Simona; Servida, Maura; Cuppini, Lucia; Antozzi, Carlo; Cuzzubbo, Stefania; Corbetta, Cristina; Paterra, Rosina; Acerbi, Francesco; Ferroli, Paolo; DiMeco, Francesco; Fariselli, Laura; Parati, Eugenio A.; Bruzzone, Maria Grazia

    2018-01-01

    ABSTRACT In a two-stage phase II study, 24 patients with first diagnosis of glioblastoma (GBM) were treated with dendritic cell (DC) immunotherapy associated to standard radiochemotherapy with temozolomide (TMZ) followed by adjuvant TMZ. Three intradermal injections of mature DC loaded with autologous GBM lysate were administered before adjuvant TMZ, while 4 injections were performed during adjuvant TMZ. According to a two-stage Simon design, to proceed to the second stage progression-free survival (PFS) 12 months after surgery was expected in at least 8 cases enrolled in the first stage. Evidence of immune response and interaction with chemotherapy were investigated. After a median follow up of 17.4 months, 9 patients reached PFS12. In these patients (responders, 37.5%), DC vaccination induced a significant, persistent activation of NK cells, whose increased response was significantly associated with prolonged survival. CD8+ T cells underwent rapid expansion and priming but, after the first administration of adjuvant TMZ, failed to generate a memory status. Resistance to TMZ was associated with robust expression of the multidrug resistance protein ABCC3 in NK but not CD8+ T cells. The negative effect of TMZ on the formation of T cell-associated antitumor memory deserves consideration in future clinical trials including immunotherapy. PMID:29632727

  18. Improved efficacy of therapeutic vaccination with viable human umbilical vein endothelial cells against murine melanoma by introduction of OK432 as adjuvant.

    PubMed

    Xu, Maolei; Xing, Yun; Zhou, Ling; Yang, Xue; Yao, Wenjun; Xiao, Wen; Ge, Chiyu; Ma, Yanjun; Yang, Jie; Wu, Jie; Cao, Rongyue; Li, Taiming; Liu, Jingjing

    2013-06-01

    Vaccination with xenogeneic or syngeneic endothelial cells targeting tumor angiogenesis is effective for inhibiting tumor growth. OK432, an effective adjuvant, was mixed with viable human umbilical vein endothelial cells (HUVECs) to prepare a novel HUVECs-OK432 vaccine, which could have an improved therapeutic efficacy. In this study, HUVECs-OK432 was administrated in mice by subcutaneous injection in a therapeutic procedure. The results showed that a stronger HUVEC-specific Abs and cytotoxic T lymphocyte immune response were elicited, which resulted in significant inhibition on the growth of B16F10 melanoma and remarkably prolonged survival of B16F10 melanoma-bearing mice compared with HUVECs. Besides, parallel results were obtained in vitro showing a stronger inhibition of HUVEC proliferation by immune sera of HUVECs-OK432 than that of HUVECs. Moreover, histochemistry and immunohistochemistry analysis showed that HUVECs-OK432 induced large areas of continuous necrosis within tumors and significantly reduced the vessel density, correlating well with the extent of tumor inhibition. Our present results suggest that OK432 could be employed as an effective adjuvant for HUVEC vaccines and therefore should be useful for adjuvant immunotherapy of cancer.

  19. T Helper 1–Inducing Adjuvant Protects against Experimental Paracoccidioidomycosis

    PubMed Central

    de Oliveira, Leandro Licursi; Coltri, Kely Cristine; Cardoso, Cristina Ribeiro Barros; Roque-Barreira, Maria-Cristina; Panunto-Castelo, Ademilson

    2008-01-01

    Immunostimulatory therapy is a promising approach to improving the treatment of systemic fungal infections such as paracoccidioidomycosis (PCM), whose drug therapy is usually prolonged and associated with toxic side effects and relapses. The current study was undertaken to determine if the injection of a T helper (Th) 1–stimulating adjuvant in P. brasiliensis–infected mice could have a beneficial effect on the course of experimental PCM. For this purpose, mice were infected and treated with complete Freund's adjuvant (CFA), a well-established Th1 experimental inductor, or incomplete Freund's adjuvant (IFA - control group) on day 20 postinfection. Four weeks after treatment, the CFA-treated mice presented a mild infection in the lungs characterized by absence of epithelioid cell granulomas and yeast cells, whereas the control mice presented multiple sites of focal epithelioid granulomas with lymphomonocytic halos circumscribing a high number of viable and nonviable yeast cells. In addition, CFA administration induced a 2.4 log reduction (>99%) in the fungal burden when compared to the control group, and led to an improvement of immune response, reversing the immunosuppression observed in the control group. The immunotherapy with Th1-inducing adjuvant, approved to be used in humans, might be a valuable tool in the treatment of PCM and potentially useful to improve the clinical cure rate in humans. PMID:18335066

  20. Vaccinating for natural killer cell effector functions.

    PubMed

    Wagstaffe, Helen R; Mooney, Jason P; Riley, Eleanor M; Goodier, Martin R

    2018-01-01

    Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.

  1. Co-localization of a CD1d-binding glycolipid with an adenovirus-based malaria vaccine for a potent adjuvant effect.

    PubMed

    Li, Xiangming; Huang, Jing; Kawamura, Akira; Funakoshi, Ryota; Porcelli, Steven A; Tsuji, Moriya

    2017-05-31

    A CD1d-binding, invariant (i) natural killer T (NKT)-cell stimulatory glycolipid, α-Galactosylceramide (αGalCer), has been shown to act as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying a higher binding affinity for CD1d molecule and more potent adjuvant activity than αGalCer. In the present study, 7DW8-5 co-administered intramuscularly (i.m.) with a recombinant adenovirus expressing a Plasmodium yoelii circumsporozoite protein (PyCSP), AdPyCS, has led to a co-localization of 7DW8-5 and a PyCSP in draining lymph nodes (dLNs), particularly in dendritic cells (DCs). This occurrence initiates a cascade of events, such as the recruitment of DCs to dLNs and their activation and maturation, and the enhancement of the ability of DCs to prime CD8+ T cells induced by AdPyCS and ultimately leading to a potent adjuvant effect and protection against malaria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Simultaneous detection of circulating immunological parameters and tumor biomarkers in early stage breast cancer patients during adjuvant chemotherapy.

    PubMed

    Rovati, B; Mariucci, S; Delfanti, S; Grasso, D; Tinelli, C; Torre, C; De Amici, M; Pedrazzoli, P

    2016-06-01

    Chemotherapy-induced immune suppression has mainly been studied in patients with advanced cancer, but the influence of chemotherapy on the immune system in early stage cancer patients has so far not been studied systematically. The aim of the present study was to monitor the immune system during anthracycline- and taxane-based adjuvant chemotherapy in early stage breast cancer patients, to assess the impact of circulating tumor cells on selected immune parameters and to reveal putative angiogenic effects of circulating endothelial cells. Peripheral blood samples from 20 early stage breast cancer patients were analyzed using a flow cytometric multi-color of antibodies to enumerate lymphocyte and dendritic cell subsets, as well as endothelial and tumor cells. An enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of various serological factors. During chemotherapy, all immunological parameters and angiogenesis surrogate biomarkers showed significant decreases. The numbers of circulating tumor cells showed significant inverse correlations with the numbers of T helper cells, a lymphocyte subset directly related to effective anti-tumor responses. Reduced T helper cell numbers may contribute to systemic immunosuppression and, as such, the activation of dormant tumor cells. From our results we conclude that adjuvant chemotherapy suppresses immune function in early stage breast cancer patients. In addition, we conclude that the presence of circulating tumor cells, defined as pan-cytokeratin(+), CD326(+), CD45(-) cells, may serve as an important indicator of a patient's immune status. Further investigations are needed to firmly define circulating tumor cells as a predictor for the success of breast cancer adjuvant chemotherapy.

  3. Cell and molecular mechanisms of pathogenesis and treatment of cancer.

    PubMed Central

    Rew, D. A.

    1998-01-01

    Surgery remains the mainstay of treatment for most classes of human solid tumours, with the principal exception of lymphomas, but it is insufficient in many cases to guarantee cure. With few exceptions, recurrent and metastatic solid tumours continue to defy attempts to develop effective adjuvant therapies. Recent insights into tumour biology reveal an increasingly complex picture of cell and molecular processes which confer heterogeneity and resistance to treatment upon tumours. These insights may also yield new targets for more effective adjuvant therapies. PMID:9616488

  4. Inflammatory responses and side effects generated by several adjuvant-containing vaccines in turbot.

    PubMed

    Noia, M; Domínguez, B; Leiro, J; Blanco-Méndez, J; Luzardo-Álvarez, A; Lamas, J

    2014-05-01

    Several of the adjuvants used in fish vaccines cause adhesions in internal organs when they are injected intraperitoneally. We describe the damage caused by vaccines containing different adjuvants in the turbot Scophthalmus maximus and show that internal adhesions can be greatly reduced by injecting the fish in a specific way. Injection of fish with the needle directed towards the anterior part of the peritoneal cavity induced formation of a single cell-vaccine mass (CVM) that became attached to the parietal peritoneum. However, injection of the fish with the needle pointing in the opposite direction generated many small CVM that became attached to the visceral and parietal peritoneum and in some cases caused internal adhesions. We describe the structural and cellular changes in the adjuvant-induced CVMs. The CVMs mainly comprised neutrophils and macrophages, although most of the former underwent apoptosis, which was particularly evident from day 3 post-injection. The apoptotic cells were phagocytosed by macrophages, which were the dominant cell type from the first days onwards. All of the vaccines induced angiogenesis in the area of contact between the CVM and the mesothelium. Vaccines containing oil-based adjuvants or microspheres induced the formation of granulomas in the CVM; however, no granulomas were observed in the CVM induced by vaccines containing aluminium hydroxide or Matrix-Q(®) as adjuvants. All of the vaccines induced strong migration of cells to the peritoneal cavity. Although some of these cells remained unattached in the peritoneal cavity, most of them formed part of the CVM. We also observed migration of the cells from the peritoneal cavity to lymphoid organs, indicating bidirectional traffic of cells between the inflamed areas and these organs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A clinically applicable adjuvant for an atherosclerosis vaccine in mice.

    PubMed

    Kobiyama, Kouji; Vassallo, Melanie; Mitzi, Jessica; Winkels, Holger; Pei, Hong; Kimura, Takayuki; Miller, Jacqueline; Wolf, Dennis; Ley, Klaus

    2018-06-22

    Vaccination with MHC-II-restricted peptides from Apolipoprotein B (ApoB) with complete and incomplete Freund's adjuvant (CFA/IFA) is known to protect mice from atherosclerosis. This vaccination induces antigen-specific IgG1 and IgG2c antibody responses and a robust CD4 T cell response in lymph nodes. However, CFA/IFA cannot be used in humans. To find a clinically applicable adjuvant, we tested the effect of vaccinating Apoe-deficient mice with ApoB peptide P6 (TGAYSNASSTESASY). In a broad screening experiment, Addavax, a squalene oil similar to MF59, was the only adjuvant that showed similar efficacy as CFA/IFA. This was confirmed in a confirmation experiment for both the aortic arch and whole aorta analyzed by en face analysis after atherosclerotic lesion staining. Mechanistically, restimulated peritoneal cells from mice immunized with P6 in Addavax released significant amounts of IL-10. Unlike P6 in CFA/IFA, vaccination with P6 in Addavax did not induce any detectable IgG1 or IgG2c antibodies to P6. These data suggest that squalene-based adjuvants such as MF59 are good candidate adjuvants for developing a clinically effective atherosclerosis vaccine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Immunostimulatory activity of water-extractable polysaccharides from Cistanche deserticola as a plant adjuvant in vitro and in vivo

    PubMed Central

    Yang, Xiumei; Yang, Yu; Zhao, Gan; Wang, Bin; Wu, Daocheng

    2018-01-01

    A safe and effective vaccine adjuvant is important in modern vaccines. Various Chinese herbal polysaccharides can activate the immune system. Cistanche deserticola (CD) is a traditional Chinese herb and an adjuvant candidate. Here, we confirmed that water-extractable polysaccharides of CD (WPCD) could modulate immune responses in vitro and in vivo. In a dose-dependent manner, WPCD significantly promoted the maturation and function of murine marrow-derived dendritic cells (BM-DCs) through up-regulating the expression levels of MHC-II, CD86, CD80, and CD40, allogenic T cell proliferation, and the yields of IL-12 and TNF-α via toll-like receptor4 (TLR4), as indicated by in vitro experiments. In addition, its immunomodulatory activity was also observed in mice. WPCD effectively improved the titers of IgG, IgG1 and IgG2a and markedly enhanced the proliferation of T and B cells, the production of IFN-γ and IL-4 in CD4+ T cells and the expression level of IFN-γ in CD8+ T cells better than Alum. Furthermore, WPCD could markedly up-regulate the expression levels of CD40 and CD80 on DCs in spleen and down-regulate the Treg frequency. The study suggests that polysaccharides of Cistanche deserticola are a safe and effective vaccine adjuvant for eliciting both humoral immunity and cellular immunity by activating DCs via TLR4 signaling pathway. PMID:29360858

  7. Adjuvants in the Driver’s Seat: How Magnitude, Type, Fine Specificity and Longevity of Immune Responses Are Driven by Distinct Classes of Immune Potentiators

    PubMed Central

    Bergmann-Leitner, Elke S.; Leitner, Wolfgang W.

    2014-01-01

    The mechanism by which vaccine adjuvants enhance immune responses has historically been considered to be the creation of an antigen depot. From here, the antigen is slowly released and provided to immune cells over an extended period of time. This “depot” was formed by associating the antigen with substances able to persist at the injection site, such as aluminum salts or emulsions. The identification of Pathogen-Associated Molecular Patterns (PAMPs) has greatly advanced our understanding of how adjuvants work beyond the simple concept of extended antigen release and has accelerated the development of novel adjuvants. This review focuses on the mode of action of different adjuvant classes in regards to the stimulation of specific immune cell subsets, the biasing of immune responses towards cellular or humoral immune response, the ability to mediate epitope spreading and the induction of persistent immunological memory. A better understanding of how particular adjuvants mediate their biological effects will eventually allow them to be selected for specific vaccines in a targeted and rational manner. PMID:26344620

  8. Cyclophilin A as a potential genetic adjuvant to improve HIV-1 Gag DNA vaccine immunogenicity by eliciting broad and long-term Gag-specific cellular immunity in mice.

    PubMed

    Hou, Jue; Zhang, Qicheng; Liu, Zheng; Wang, Shuhui; Li, Dan; Liu, Chang; Liu, Ying; Shao, Yiming

    2016-01-01

    Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction.

  9. Activity of glycated chitosan and other adjuvants to PDT vaccines

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Banáth, Judit; Čiplys, Evaldas; Szulc, Zdzislaw; Bielawska, Alicja; Chen, Wei R.

    2015-03-01

    Glycated chitosan (GC), a water soluble galactose-conjugated natural polysaccharide, has proven to be an effective immunoadjuvant for treatment of tumors based on laser thermal therapy. It was also shown to act as adjuvant for tumor therapy with high-intensity ultrasound and in situ photodynamic therapy (PDT). In the present study, GC was examined as potential adjuvant to PDT-generated cancer vaccine. Two other agents, pure calreticulin protein and acid ceramidase inhibitor LCL521, were also tested as prospective adjuvants for use in conjunction with PDT vaccines. Single treatment with GC, included with PDT vaccine cells suspension, improved the therapeutic efficacy when compared to vaccine alone. This attractive prospect of GC application remains to be carefully optimized and mechanistically elucidated. Both calreticulin and LCL521 proved also effective adjuvants when combined with PDT vaccine tumor treatment.

  10. Modular MLV-VLPs co-displaying ovalbumin peptides and GM-CSF effectively induce expansion of CD11b+ APC and antigen-specific T cell responses in vitro.

    PubMed

    Gogesch, Patricia; Schülke, Stefan; Scheurer, Stephan; Mühlebach, Michael D; Waibler, Zoe

    2018-05-28

    The development of novel vaccination strategies is a persistent challenge to provide effective prophylactic treatments to encounter viral infections. In general, the physical conjugation of selected vaccine components, e.g. antigen and adjuvant, has been shown to enhance the immunogenicity and hence, can increase effectiveness of the vaccine. In our proof-of-concept study, we generated non-infectious, replication deficient Murine Leukemia Virus (MLV)-derived virus-like particles (VLPs) that physically link antigen and adjuvant in a modular fashion by co-displaying them on their surface. For this purpose, we selected the immunodominant peptides of the model antigen ovalbumin (OVA) and the cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) as non-classical adjuvant. Our results show that murine GM-CSF displayed on MLV-VLPs mediates expansion and proliferation of CD11b + cells within murine bone marrow and total spleen cells. Moreover, we show increased immunogenicity of modular VLPs co-displaying OVA peptides and GM-CSF by their elevated capacity to induce OVA-specific T cell-activation and -proliferation within OT-I and OT-II splenocyte cultures. These enhanced effects were not achieved by using an equimolar mixture of VLPs displaying either OVA or GM-CSF. Taken together, OVA and GM-CSF co-displaying MLV-VLPs are able to target and expand antigen presenting cells which in turn results in enhanced antigen-specific T cell activation and proliferation in vitro. These data suggest MLV-VLPs to be an attractive platform to flexibly combine antigen and adjuvant for novel modular vaccination approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Predictive and Prognostic Factors in Ovarian and Uterine Carcinosarcomas

    PubMed Central

    Cicin, İrfan; Özatlı, Tahsin; Türkmen, Esma; Özturk, Türkan; Özçelik, Melike; Çabuk, Devrim; Gökdurnalı, Ayşe; Balvan, Özlem; Yıldız, Yaşar; Şeker, Metin; Özdemir, Nuriye; Yapar, Burcu; Tanrıverdi, Özgür; Günaydin, Yusuf; Menekşe, Serkan; Öksüzoğlu, Berna; Aksoy, Asude; Erdogan, Bülent; Bekir Hacıoglu, M.; Arpaci, Erkan; Sevinç, Alper

    2016-01-01

    Background: Prognostic factors and the standard treatment approach for gynaecological carcinosarcomas have not yet been clearly defined. Although carcinosarcomas are more aggressive than pure epithelial tumours, they are treated similarly. Serous/clear cell and endometrioid components may be predictive factors for the efficacy of adjuvant chemotherapy (CT) or radiotherapy (RT) or RT in patients with uterine and ovarian carcinosarcomas. Heterologous carcinosarcomas may benefit more from adjuvant CT. Aims: We aimed to define the prognostic and predictive factors associated with treatment options in ovarian (OCS) and uterine carcinosarcoma (UCS). Study Design: Retrospective cross-sectional study Methods: We retrospectively reviewed the medical records of patients with ovarian and uterine carcinosarcoma from 2000 to 2013, and 127 women were included in this study (24 ovarian and 103 uterine). Patients admitted to seventeen oncology centres in Turkey between 2000 and December 2013 with a histologically proven diagnosis of uterine carcinosarcoma with FIGO 2009 stage I–III and patients with sufficient data obtained from well-kept medical records were included in this study. Stage IV tumours were excluded. The patient records were retrospectively reviewed. Data from 104 patients were evaluated for this study. Results: Age (≥70 years) was a poor prognostic factor for UCS (p=0.036). Pelvic±para aortic lymph node dissection did not affect overall survival (OS) (p=0.35). Macroscopic residual disease was related with OS (p<0.01). The median OS was significantly longer in stage I–II patients than stage III patients (p=0.03). Adjuvant treatment improved OS (p=0.013). Adjuvant radiotherapy tended to increase the median OS (p=0.075). However, this tendency was observed in UCS (p=0.08) rather than OCS (p=0.6).Adjuvant chemotherapy had no effect on OS (p=0.15).Adjuvant radiotherapy significantly prolonged the median OS in patients with endometrioid component (p=0.034). A serous/clear cell component was a negative prognostic factor (p=0.035). Patients with serous/clear cell histology for whom adjuvant chemotherapy was applied had significantly longer OS (p=0.019), and there was no beneficial effect of adjuvant radiotherapy (p=0.4). Adjuvant chemotherapy was effective in heterologous tumours (p=0.026). In multivariate analysis, the stage and chemotherapy were prognostic factors for all patients. Age was an independent prognostic factor for UCS. However, serous/clear cell histology and radiotherapy tended to be significant prognostic factors. Conclusion: The primary location, the histological type of sarcomatous and the epithelial component may be predictive factors for the efficacy of chemotherapy or radiotherapy in UCS and OCS. PMID:27761279

  12. Improved pertussis vaccines based on adjuvants that induce cell-mediated immunity.

    PubMed

    Allen, Aideen C; Mills, Kingston H G

    2014-10-01

    Bordetella pertussis is a Gram-negative bacterium that causes the severe and sometimes lethal respiratory disease whooping cough in infants and children. There has been a recent resurgence in the number of cases of pertussis in several countries with high vaccine coverage. This has been linked with waning or ineffective immunity induced by current acellular pertussis vaccines. These acellular pertussis vaccines are formulated with alum as the adjuvant, which promotes strong antibody responses but is less effective at inducing Th1-type responses crucial for effective bacterial clearance. Studies in animal models have demonstrated that replacing alum with alternative adjuvants, such as toll-like receptor agonists, can promote more robust cell-mediated immunity and confer a high level of protection against infection following respiratory challenge.

  13. Evaluation of the safety and adjuvant effect of a detoxified listeriolysin O mutant on the humoral response to dengue virus antigens

    PubMed Central

    Hernández‐Flores, K. G.; Calderón‐Garcidueñas, A. L.; Mellado‐Sánchez, G.; Ruiz‐Ramos, R.; Sánchez‐Vargas, L. A.; Thomas‐Dupont, P.; Izaguirre‐Hernández, I. Y.; Téllez‐Sosa, J.; Martínez‐Barnetche, J.; Wood, L.; Paterson, Y.; Cedillo‐Barrón, L.; López‐Franco, O.

    2017-01-01

    Summary Listeriolysin O (LLO) has been proposed as a potential carrier or adjuvant molecule in the vaccination field. However, the cytotoxic and pro‐apoptotic effects of LLO are the major limitations for this purpose. Here, we have performed a preclinical safety evaluation and characterized a new potential adjuvant application for a non‐cytolytic LLO mutant (dtLLO) to enhance and modulate the immune response against the envelope (E) protein from dengue virus. In addition, we have studied the adjuvant effects of dtLLO on human immune cells and the role of membrane cholesterol for the binding and proinflammatory property of the toxoid. Our in‐vivo results in the murine model confirmed that dtLLO is a safer molecule than wild‐type LLO (wtLLO), with a significantly increased survival rate for mice challenged with dtLLO compared with mice challenged with wtLLO (P < 0·001). Histopathological analysis showed non‐toxic effects in key target organs such as brain, heart, liver, spleen, kidney and lung after challenge with dtLLO. In vitro, dtLLO retained the capacity of binding to plasma membrane cholesterol on the surface of murine and human immune cells. Immunization of 6–8‐week‐old female BALB/c mice with a combination of dtLLO mixed with E protein elicited a robust specific humoral response with isotype diversification of immunoglobulin (Ig)G antibodies (IgG1 and IgG2a). Finally, we demonstrated that cholesterol and lipid raft integrity are required to induce a proinflammatory response by human cells. Taken together, these findings support a potential use of the dtLLO mutant as a safe and effective adjuvant molecule in vaccination. PMID:27886660

  14. Evaluation of the safety and adjuvant effect of a detoxified listeriolysin O mutant on the humoral response to dengue virus antigens.

    PubMed

    Hernández-Flores, K G; Calderón-Garcidueñas, A L; Mellado-Sánchez, G; Ruiz-Ramos, R; Sánchez-Vargas, L A; Thomas-Dupont, P; Izaguirre-Hernández, I Y; Téllez-Sosa, J; Martínez-Barnetche, J; Wood, L; Paterson, Y; Cedillo-Barrón, L; López-Franco, O; Vivanco-Cid, H

    2017-04-01

    Listeriolysin O (LLO) has been proposed as a potential carrier or adjuvant molecule in the vaccination field. However, the cytotoxic and pro-apoptotic effects of LLO are the major limitations for this purpose. Here, we have performed a preclinical safety evaluation and characterized a new potential adjuvant application for a non-cytolytic LLO mutant (dtLLO) to enhance and modulate the immune response against the envelope (E) protein from dengue virus. In addition, we have studied the adjuvant effects of dtLLO on human immune cells and the role of membrane cholesterol for the binding and proinflammatory property of the toxoid. Our in-vivo results in the murine model confirmed that dtLLO is a safer molecule than wild-type LLO (wtLLO), with a significantly increased survival rate for mice challenged with dtLLO compared with mice challenged with wtLLO (P < 0·001). Histopathological analysis showed non-toxic effects in key target organs such as brain, heart, liver, spleen, kidney and lung after challenge with dtLLO. In vitro, dtLLO retained the capacity of binding to plasma membrane cholesterol on the surface of murine and human immune cells. Immunization of 6-8-week-old female BALB/c mice with a combination of dtLLO mixed with E protein elicited a robust specific humoral response with isotype diversification of immunoglobulin (Ig)G antibodies (IgG1 and IgG2a). Finally, we demonstrated that cholesterol and lipid raft integrity are required to induce a proinflammatory response by human cells. Taken together, these findings support a potential use of the dtLLO mutant as a safe and effective adjuvant molecule in vaccination. © 2016 British Society for Immunology.

  15. Polyphenolics isolated from virgin coconut oil inhibits adjuvant induced arthritis in rats through antioxidant and anti-inflammatory action.

    PubMed

    Vysakh, A; Ratheesh, M; Rajmohanan, T P; Pramod, C; Premlal, S; Girish kumar, B; Sibi, P I

    2014-05-01

    We evaluated the protective efficacy of the polyphenolic fraction from virgin coconut oil (PV) against adjuvant induced arthritic rats. Arthritis was induced by intradermal injection of complete Freund's adjuvant. The activities of inflammatory, antioxidant enzymes and lipid peroxidation were estimated. PV showed high percentage of edema inhibition at a dose of 80mg/kg on 21st day of adjuvant arthritis and is non toxic. The expression of inflammatory genes such as COX-2, iNOS, TNF-α and IL-6 and the concentration of thiobarbituric acid reactive substance were decreased by treatment with PV. Antioxidant enzymes were increased and on treatment with PV. The increased level of total WBC count and C-reactive protein in the arthritic animals was reduced in PV treated rats. Synovial cytology showed that inflammatory cells and reactive mesothelial cells were suppressed by PV. Histopathology of paw tissue showed less edema formation and cellular infiltration on supplementation with PV. Thus the results demonstrated the potential beneficiary effect of PV on adjuvant induced arthritis in rats and the mechanism behind this action is due to its antioxidant and anti-inflammatory effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mast cells contribute to the mucosal adjuvant effect of CTA1-DD after IgG-complex formation.

    PubMed

    Fang, Yu; Larsson, Lisa; Mattsson, Johan; Lycke, Nils; Xiang, Zou

    2010-09-01

    Mast cell activation is one of the most dramatic immune-mediated responses the body can encounter. In the worst scenario (i.e., anaphylaxis), this response is fatal. However, the importance of mast cells as initiators and effectors of both innate and adaptive immunity in healthy individuals has recently been appreciated. It was reported that mast cell activation can be used as an adjuvant to promote Ag-specific humoral immune responses upon vaccination. In this study, we have used a clinically relevant mucosal adjuvant, cholera toxin A1 subunit (CTA1)-DD, which is a fusion protein composed of CTA1, the ADP-ribosylating part of cholera toxin, and DD, two Ig-binding domains derived from Staphylococcus aureus protein A. CTA1-DD in combination with polyclonal IgG induced degranulation and production of TNF-alpha from mouse mast cells. Furthermore, CTA1-DD and polyclonal IgG complex induced mast cell degranulation in mouse skin tissue and nasal mucosa. We also found that intranasal immunization with hapten (4-hydroxy-3-nitrophenyl) acetyl (NP) coupled to chicken gammaglobulin admixed with CTA1-DD complexed with polyclonal IgG greatly enhanced serum IgG anti-NP Ab responses and stimulated higher numbers of NP-specific plasma cells in the bone marrow as compared with that observed in mice immunized with NP-chicken gammaglobulin with CTA1-DD alone. This CTA1-DD/IgG complex-mediated enhancement was mast cell dependent because it was absent in mast cell-deficient Kit(W-sh/W-sh) mice. In conclusion, our data suggest that a clinically relevant adjuvant, CTA1-DD, exerts additional augmenting effects through activation of mucosal mast cells, clearly demonstrating that mast cells could be further exploited for improving the efficacy of mucosal vaccines.

  17. Just-in-time vaccines: Biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8(+) T cell responses in mice.

    PubMed

    Zhou, Weibin; Moguche, Albanus O; Chiu, David; Murali-Krishna, Kaja; Baneyx, François

    2014-04-01

    Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration "cold chain". Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8(+) T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8(+) T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. This paper reports that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize into a biocompatible adjuvant in a single step, enabling distributed and on-demand vaccine production and eliminating the need for refrigeration of vaccines. The findings highlight the possibility of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Use of the Microparticle Nanoscale Silicon Dioxide as an Adjuvant To Boost Vaccine Immune Responses against Influenza Virus in Neonatal Mice.

    PubMed

    Russell, Ryan F; McDonald, Jacqueline U; Lambert, Laura; Tregoning, John S

    2016-05-01

    Neonates are at a high risk of infection, but vaccines are less effective in this age group; tailored adjuvants could potentially improve vaccine efficacy. Increased understanding about danger sensing by the innate immune system has led to the rational design of novel adjuvants. But differences in the neonatal innate immune response, for example, to Toll-like receptor (TLR) agonists, can reduce the efficacy of these adjuvants in early life. We therefore targeted alternative danger-sensing pathways, focusing on a range of compounds described as inflammasome agonists, including nanoscale silicon dioxide (NanoSiO2), calcium pyrophosphate dihydrate (CPPD) crystals, and muramyl tripeptide (M-Tri-DAP), for their ability to act as adjuvants.In vitro, these compounds induced an interleukin 1-beta (IL-1β) response in the macrophage-like cell line THP1.In vivo, adult CB6F1 female mice were immunized intramuscularly with H1N1 influenza vaccine antigens in combination with NanoSiO2, CPPD, or M-Tri-DAP and subsequently challenged with H1N1 influenza virus (A/England/195/2009). The adjuvants boosted anti-hemagglutinin IgG and IgA antibody levels. Both adult and neonatal animals that received NanoSiO2-adjuvanted vaccines lost significantly less weight and recovered earlier after infection than control animals treated with antigen alone. Administration of the adjuvants led to an influx of activated inflammatory cells into the muscle but to little systemic inflammation measured by serum cytokine levels. Blocking IL-1β or caspase 1 in vivo had little effect on NanoSiO2 adjuvant function, suggesting that it may work through pathways other than the inflammasome. Here we demonstrate that NanoSiO2 can act as an adjuvant and is effective in early life. Vaccines can fail to protect the most at-risk populations, including the very young, the elderly, and the immunocompromised. There is a gap in neonatal immunity between the waning of maternal protection and routine infant immunization schedules, exacerbated by the failure of vaccines to work in the first months of life. One approach is to design age-specific formulations, with more-effective adjuvants, based on our understanding of the nature of the neonatal immune response. We chose to target the inflammasome, a molecular complex capable of detecting infection and cell damage and of triggering IL-1β-driven inflammation. We screened a range of compounds in vitro and in vivo and identified three lead candidates: NanoSiO2, CPPD, and M-Tri-DAP. Of these, NanoSiO2 was the most effective and boosted the anti-influenza virus response in both adult and neonatal mice. This finding is important for the development of age-specific vaccines, designed using our knowledge of the neonatal immune response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Unraveling Molecular Signatures of Immunostimulatory Adjuvants in the Female Genital Tract through Systems Biology

    PubMed Central

    Brinkenberg, Ingrid; Samuelson, Emma; Thörn, Karolina; Nielsen, Jens; Harandi, Ali M.

    2011-01-01

    Sexually transmitted infections (STIs) unequivocally represent a major public health concern in both industrialized and developing countries. Previous efforts to develop vaccines for systemic immunization against a large number of STIs in humans have been unsuccessful. There is currently a drive to develop mucosal vaccines and adjuvants for delivery through the genital tract to confer protective immunity against STIs. Identification of molecular signatures that can be used as biomarkers for adjuvant potency can inform rational development of potent mucosal adjuvants. Here, we used systems biology to study global gene expression and signature molecules and pathways in the mouse vagina after treatment with two classes of experimental adjuvants. The Toll-like receptor 9 agonist CpG ODN and the invariant natural killer T cell agonist alpha-galactosylceramide, which we previously identified as equally potent vaginal adjuvants, were selected for this study. Our integrated analysis of genome-wide transcriptome data determined which signature pathways, processes and networks are shared by or otherwise exclusive to these 2 classes of experimental vaginal adjuvants in the mouse vagina. To our knowledge, this is the first integrated genome-wide transcriptome analysis of the effects of immunomodulatory adjuvants on the female genital tract of a mammal. These results could inform rational development of effective mucosal adjuvants for vaccination against STIs. PMID:21666746

  20. Long-Term Persistence of Cell-Mediated and Humoral Responses to A(H1N1)pdm09 Influenza Virus Vaccines and the Role of the AS03 Adjuvant System in Adults during Two Randomized Controlled Trials

    PubMed Central

    Clément, Frédéric; Willekens, Julie; Dewé, Walthère; Walravens, Karl; Vaughn, David W.; Leroux-Roels, Geert

    2017-01-01

    ABSTRACT We investigated the role of AS03A (here AS03), an α-tocopherol oil-in-water emulsion-based adjuvant system, on the long-term persistence of humoral and cell-mediated immune responses to A(H1N1)pdm09 influenza vaccines. In two studies, a total of 261 healthy adults (≤60 years old) were randomized to receive two doses of AS03-adjuvanted vaccine containing 3.75 μg of hemagglutinin (HA) or nonadjuvanted vaccine containing 15 μg of hemagglutinin (in study A) or 3.75 μg of hemagglutinin (in study B) 21 days apart. Hemagglutination inhibition (HI) antibody, memory B-cell, and CD4+/CD8+ T-cell responses were characterized up to 1 year following dose 1. We also assessed the effects of age and seasonal influenza vaccination history. AS03-adjuvanted (3.75 μg HA) vaccine and nonadjuvanted vaccine at 15 μg but not at 3.75 μg HA elicited HI antibody responses persisting at levels that continued to meet European licensure criteria through month 12. At month 12, the geometric mean titer for AS03-adjuvanted vaccine was similar to that for nonadjuvanted (15-μg) vaccine in study A (1:86 and 1:88, respectively) and higher than that for nonadjuvanted (3.75-μg) vaccine in study B (1:77 and 1:35, respectively). A(H1N1)pdm09-specific CD4+ T-cell and B-cell responses were stronger in AS03-adjuvanted groups and persisted only in these groups for 12 months at levels exceeding prevaccination frequencies. Advancing age and a seasonal vaccination history tended to reduce HI antibody and memory B-cell responses and, albeit less consistently, CD4+ T-cell responses. Thus, AS03 seemed to enhance the persistence of humoral and cell-mediated responses to A(H1N1)pdm09 vaccine, allowing for antigen sparing and mitigating potential negative effects of age and previous seasonal vaccination. (These studies have been registered at ClinicalTrials.gov under registration no. NCT00968539 and NCT00989287.) PMID:28446441

  1. Long-Term Persistence of Cell-Mediated and Humoral Responses to A(H1N1)pdm09 Influenza Virus Vaccines and the Role of the AS03 Adjuvant System in Adults during Two Randomized Controlled Trials.

    PubMed

    van der Most, Robbert G; Clément, Frédéric; Willekens, Julie; Dewé, Walthère; Walravens, Karl; Vaughn, David W; Leroux-Roels, Geert

    2017-06-01

    We investigated the role of AS03 A (here AS03), an α-tocopherol oil-in-water emulsion-based adjuvant system, on the long-term persistence of humoral and cell-mediated immune responses to A(H1N1)pdm09 influenza vaccines. In two studies, a total of 261 healthy adults (≤60 years old) were randomized to receive two doses of AS03-adjuvanted vaccine containing 3.75 μg of hemagglutinin (HA) or nonadjuvanted vaccine containing 15 μg of hemagglutinin (in study A) or 3.75 μg of hemagglutinin (in study B) 21 days apart. Hemagglutination inhibition (HI) antibody, memory B-cell, and CD4 + /CD8 + T-cell responses were characterized up to 1 year following dose 1. We also assessed the effects of age and seasonal influenza vaccination history. AS03-adjuvanted (3.75 μg HA) vaccine and nonadjuvanted vaccine at 15 μg but not at 3.75 μg HA elicited HI antibody responses persisting at levels that continued to meet European licensure criteria through month 12. At month 12, the geometric mean titer for AS03-adjuvanted vaccine was similar to that for nonadjuvanted (15-μg) vaccine in study A (1:86 and 1:88, respectively) and higher than that for nonadjuvanted (3.75-μg) vaccine in study B (1:77 and 1:35, respectively). A(H1N1)pdm09-specific CD4 + T-cell and B-cell responses were stronger in AS03-adjuvanted groups and persisted only in these groups for 12 months at levels exceeding prevaccination frequencies. Advancing age and a seasonal vaccination history tended to reduce HI antibody and memory B-cell responses and, albeit less consistently, CD4 + T-cell responses. Thus, AS03 seemed to enhance the persistence of humoral and cell-mediated responses to A(H1N1)pdm09 vaccine, allowing for antigen sparing and mitigating potential negative effects of age and previous seasonal vaccination. (These studies have been registered at ClinicalTrials.gov under registration no. NCT00968539 and NCT00989287.). Copyright © 2017 van der Most et al.

  2. The effect of adjuvant radiation on survival in early stage clear cell ovarian carcinoma.

    PubMed

    Hogen, Liat; Thomas, Gillian; Bernardini, Marcus; Bassiouny, Dina; Brar, Harinder; Gien, Lilian T; Rosen, Barry; Le, Lisa; Vicus, Danielle

    2016-11-01

    To assess the impact of adjuvant radiotherapy (RT) on survival in patients with stage I and II ovarian clear cell carcinoma (OCCC). Data collection and analysis of stage I and II OCCC patients treated at two tertiary centers in Toronto, between 1995 and 2014, was performed. Descriptive statistics and Kaplan-Meier survival probability estimates were completed. The log-rank test was used to compare survival curves. 163 patients were eligible. 44 (27%) patients were treated with adjuvant RT: 37 of them received adjuvant chemotherapy (CT), and 7 had RT only. In the no-RT group, there were 119 patients: 83 patients received adjuvant CT and 36 had no adjuvant treatment. The 10year progression free survival (PFS) was 65% for patients treated with RT, and 59% no-RT patients. There were a total of 41 (25%) recurrences in the cohort: 12 (27.2%) patients in RT group and 29 (24.3%) in the no-RT group. On multivariable analysis, adjuvant RT was not significantly associated with an increased PFS (0.85 (0.44-1.63) p=0.63) or overall survival (OS) (0.84 (0.39-1.82) p=0.66). In the subset of 59 patients defined as high-risk: stage IC with positive cytology and/or surface involvement and stage II: RT was not found to be associated with a better PFS (HR 1.18 (95% CI: 0.55-2.54) or O S(HR 1.04 (95% CI: 0.40-2.69)). Adjuvant RT was not found to be associated with a survival benefit in patients with stage I and II ovarian clear cell carcinoma or in a high risk subset of patients including stage IC cytology positive/surface involvement and stage II patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Propionibacterium acnes induces an adjuvant effect in B-1 cells and affects their phagocyte differentiation via a TLR2-mediated mechanism.

    PubMed

    Gambero, Monica; Teixeira, Daniela; Butin, Liane; Ishimura, Mayari Eika; Mariano, Mario; Popi, Ana Flavia; Longo-Maugéri, Ieda Maria

    2016-09-01

    B-1 lymphocytes are present in large numbers in the mouse peritoneal cavity, as are macrophages, and are responsible for natural IgM production. These lymphocytes migrate to inflammatory foci and are also involved in innate immunity. It was also demonstrated that B-1 cells are able to differentiated into phagocytes (B-1CDP), which is characterized by expression of F4/80 and increased phagocytic activity. B-1 cell responses to antigens and adjuvants are poorly characterized. It has been shown that Propionibacterium acnes suspensions induce immunomodulatory effects in both macrophages and B-2 lymphocytes. We recently demonstrated that this bacterium has the ability to increase B-1 cell populations both in vitro and in vivo. P. acnes induces B-1CDP differentiation, increases the expression of TLR2, TLR4 and TLR9 and augments the expression of CD80, CD86 and CD40 in B-1 and B-1CDP cells. Because P. acnes has been shown to modulate TLR expression, in this study, we investigated the role of TLR2 and TLR4 in B-1 cell population, including B-1CDP differentiation and phagocytic activity in vitro and in vivo. Interestingly, we have demonstrated that TLR2 signaling could be involved in the increase in the B-1 cell population induced by P. acnes. Furthermore, the early differentiation of B-1CDP is also dependent of TLR2. It was also observed that TLR signals also interfere in the phagocytic ability of B-1 cells and their phagocytes. According to these data, it is clear that P. acnes promotes an important adjuvant effect in B-1 cells by inducing them to differentiate into B-1CDP cells and modulates their phagocytic functions both in vivo and in vitro. Moreover, most of these effects are mediated primarily via TLR2. These data reinforce the findings that such bacterial suspensions have powerful adjuvant properties. The responses of B-1 cells to exogenous stimulation indicate that these cells are important to the innate immune response. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity.

    PubMed

    Tacken, Paul J; Zeelenberg, Ingrid S; Cruz, Luis J; van Hout-Kuijer, Maaike A; van de Glind, Gerline; Fokkink, Remco G; Lambeck, Annechien J A; Figdor, Carl G

    2011-12-22

    Effective vaccines consist of 2 components: immunodominant antigens and effective adjuvants. Whereas it has been demonstrated that targeted delivery of antigens to dendritic cells (DCs) improves vaccine efficacy, we report here that co-targeting of TLR ligands (TLRLs) to DCs strongly enhances adjuvanticity and immunity. We encapsulated ligands for intracellular TLRs within biodegradable nanoparticles coated with Abs recognizing DC-specific receptors. Targeted delivery of TLRLs to human DCs enhanced the maturation and production of immune stimulatory cytokines and the Ag-specific activation of naive CD8(+) T cells. In vivo studies demonstrated that nanoparticles carrying Ag induced cytotoxic T-lymphocyte responses at 100-fold lower adjuvant dose when TLRLs were co-encapsulated instead of administered in soluble form. Moreover, the efficacy of these targeted TLRLs reduced the serum cytokine storm and related toxicity that is associated with administration of soluble TLRLs. We conclude that the targeted delivery of adjuvants may improve the efficacy and safety of DC-based vaccines.

  5. Aspects of Microparticle Utilization for Potentiation of Novel Vaccines: Promises and Risks

    NASA Astrophysics Data System (ADS)

    Ilyinskii, P.

    Many recombinant vaccines against novel (HIV, HCV) or ever-changing (influenza) infectious agents require the presence of adjuvants/delivery vehicles to induce strong immune responses. The necessity of their improvement led to the major effort towards development of vaccine delivery systems that are generally particulate (e.g., nano- and microparticles) and have comparable dimensions to the pathogens (viruses or bacteria). The mode of action of these adjuvants is not fully understood but implies the stimulation of the innate or antigen-specific immune responses, and/or the increase of antigen uptake or processing by antigen-presenting cells (APC). Moreover, enhancement of adjuvant activity through the use of micro- and nanoparticulate delivery systems often resulted from the synergistic effects producing immune responses stronger than those elicited by the adjuvant or delivery system alone. Among particulate adjuvants, biodegradable micro- and nanoparticles of poly(D,L-lactide-co-glycoside) (PLGA) or poly(D,L-lactide) (PLA) have been reported to enhance both humoral and cellular immune responses against an encapsulated protein antigen. Cationic and anionic polylactide co-glycolide (PLG) microparticles have been successfully used to adsorb a variety of agents, which include plasmid DNA, recombinant proteins and adjuvant active oligonucleotides and are also currently tested in several vaccine applications. Another approach envisions specific targeting of APC, especially peripheral DC and exploitation of particulate systems that are small enough for lymphatic uptake (polystyrene nanobeads). Micro- and nanoparticles offer the possibility of enhancement of their uptake by appropriate cells through manipulation of their surface properties. Still, questions regarding toxicity and molecular interaction between micro- and nano-particles and immune cells, tissues and whole organisms remain to be addressed. These risks and other possible side effects should be assessed in detail especially if mass-production and massive administration of such preparations is to be considered.

  6. Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen.

    PubMed

    Jesus, Sandra; Soares, Edna; Borchard, Gerrit; Borges, Olga

    2017-10-01

    This work aims to investigate the adjuvant effect of poly-ϵ-caprolactone/chitosan nanoparticles (NPs) for hepatitis B surface antigen (HBsAg) and the plasmid DNA encoding HBsAg (pRC/CMV-HBs). Both antigens were adsorbed onto preformed NPs. Vaccination studies were performed in C57BL/6 mice. Transfection efficiency was investigated in A549 cell line. HBsAg-adsorbed NPs generated strong anti-HBsAg IgG titers, mainly of IgG1 isotype, and induced antigen-specific IFN-γ and IL-17 secretion by spleen cells. The addition of pRC/CMV-HBs to the HBsAg-adsorbed NPs inhibited IL-17 secretion but had minor effect on IFN-γ levels. Lastly, pRC/CMV-HBs-loaded NPs generated a weak serum antibody response. Poly-ϵ-caprolactone/chitosan NPs provide a strong humoral adjuvant effect for HBsAg and induce a Th1/Th17-mediated cellular immune responses worth explore for hepatitis B virus vaccination.

  7. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines.

    PubMed

    Ahonen, Cory L; Wasiuk, Anna; Fuse, Shinichiro; Turk, Mary Jo; Ernstoff, Marc S; Suriawinata, Arief A; Gorham, James D; Kedl, Ross M; Usherwood, Edward J; Noelle, Randolph J

    2008-03-15

    Identification of Toll-like receptors (TLRs) and their ligands, and tumor necrosis factor-tumor necrosis factor receptor (TNF-TNFR) pairs have provided the first logical, hypothesis-based strategies to molecularly concoct adjuvants to elicit potent cell-mediated immunity via activation of innate and adaptive immunity. However, isolated activation of one immune pathway in the absence of others can be toxic, ineffective, and detrimental to long-term, protective immunity. Effective engineered vaccines must include agents that trigger multiple immunologic pathways. Here, we report that combinatorial use of CD40 and TLR agonists as a cancer vaccine, compared with monotherapy, elicits high frequencies of self-reactive CD8(+) T cells, potent tumor-specific CD8(+) memory, CD8(+) T cells that efficiently infiltrate the tumor-burdened target organ; therapeutic efficacy; heightened ratios of CD8(+) T cells to FoxP3(+) cells at the tumor site; and reduced hepatotoxicity. These findings provide intelligent strategies for the formulation of multifactorial vaccines to achieve maximal efficacy in cancer vaccine trials in humans.

  8. The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization.

    PubMed

    Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z

    2013-11-01

    We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.

  9. Subunit Vaccination of Mice against New World Cutaneous Leishmaniasis: Comparison of Three Proteins Expressed in Amastigotes and Six Adjuvants

    PubMed Central

    Aebischer, Toni; Wolfram, Markus; Patzer, Silke I.; Ilg, Thomas; Wiese, Martin; Overath, Peter

    2000-01-01

    A mixture of well-defined recombinant antigens together with an adjuvant that preferentially stimulates specific gamma interferon (IFN-γ)-secreting helper type 1 CD4+ T cells (Th1 cells) presents a rational option for a vaccine against leishmaniasis. The potential of this approach was investigated in murine infections with Leishmania mexicana, which are characterized by the absence of a parasite-specific Th1 response and uncontrolled parasite proliferation. A mixture of three antigens (glycoprotein 63, cysteine proteinases, and a membrane-bound acid phosphatase), which are all expressed in amastigotes, the mammalian stage of the parasite, were used for the immunization of C57BL/6 mice in combination with six adjuvants (interleukin 12 [IL-12], Detox, 4′-monophosphoryl lipid A, QS-21, Mycobacterium bovis BCG, and Corynebacterium parvum). All six vaccine formulations containing the mixture of recombinant antigens were protective against challenge infections with promastigotes, the insect stage of the parasite, in that mice controlled and healed infections but developed transient and, in certain cases, accentuated disease. The most effective adjuvants were IL-12 followed by Detox. Further studies using these two adjuvants showed that a similar protective effect was observed with a mixture of the corresponding native proteins, and mice which had controlled the infection showed a preponderance of IFN-γ-secreting CD4+ T cells in the lymph nodes draining the lesion. Using the recombinant proteins individually, it is shown that the relatively abundant cysteine proteinases and glycoprotein 63, but not the acid phosphatase, are able to elicit a protective response. The results are discussed in comparison to previous studies with subunit vaccines and with respect to cell biological aspects of antigen presentation in Leishmania-infected macrophages. PMID:10678945

  10. The parasite-derived rOv-ASP-1 is an effective antigen-sparing CD4+ T cell-dependent adjuvant for the trivalent inactivated influenza vaccine, and functions in the absence of MyD88 pathway.

    PubMed

    Jain, Sonia; George, Parakkal Jovvian; Deng, Wanyan; Koussa, Joseph; Parkhouse, Kaela; Hensley, Scott E; Jiang, Jiu; Lu, Jie; Liu, Zhuyun; Wei, Junfei; Zhan, Bin; Bottazzi, Maria Elena; Shen, Hao; Lustigman, Sara

    2018-06-14

    Vaccination remains the most cost-effective biomedical approach for controlling influenza disease. In times of pandemics, however, these vaccines cannot be produced in sufficient quantities for worldwide use by the current manufacturing capacities and practices. What is needed is the development of adjuvanted vaccines capable of inducing an adequate or better immune response at a decreased antigen dose. Previously we showed that the protein adjuvant rOv-ASP-1 augments influenza-specific antibody titers and survival after virus challenge in both young adult and old-age mice when administered with the trivalent inactivated influenza vaccine (IIV3). In this study we show that a reduced amount of rOv-ASP-1, with 40-times less IIV3 can also induce protection. Apparently the potency of the rOv-ASP-1 adjuvanted IIV3 vaccine is independent of the IIV3-specific Th1/Th2 associated antibody responses, and independent of the presence of HAI antibodies. However, CD4 + T helper cells were indispensable for the protection. Further, rOv-ASP-1 with or without IIV3 elicited the increased level of various chemokines, which are known chemoattractant for immune cells, into the muscle 4 h after immunization, and significantly induced the recruitment of monocytes, macrophages and neutrophils into the muscles. The recruited monocytes had higher expression of the activation marker MHCII on their surface as well as CXCR3 and CCR2; receptors for IP-10 and MCP-1, respectively. These results show that the rOv-ASP-1 adjuvant allows substantial antigen sparing of IIV3 by stimulating at the site of injection the accumulation of chemokines and the recruitment of immune cells that can augment the activation of CD4 + T cell immune responses, essential for the production of antibody responses. Protection elicited by the rOv-ASP-1 adjuvanted IIV3 vaccine also appears to function in the absence of MyD88-signaling. Future studies will attempt to delineate the precise mechanisms by which the rOv-ASP-1 adjuvanted IIV3 vaccine works. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs.

    PubMed

    Dwivedi, Varun; Manickam, Cordelia; Dhakal, Santosh; Binjawadagi, Basavaraj; Ouyang, Kang; Hiremath, Jagadish; Khatri, Mahesh; Hague, Jacquelyn Gervay; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-04-15

    Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Near-Infrared Laser Adjuvant for Influenza Vaccine

    PubMed Central

    Kashiwagi, Satoshi; Yuan, Jianping; Forbes, Benjamin; Hibert, Mathew L.; Lee, Eugene L. Q.; Whicher, Laura; Goudie, Calum; Yang, Yuan; Chen, Tao; Edelblute, Beth; Collette, Brian; Edington, Laurel; Trussler, James; Nezivar, Jean; Leblanc, Pierre; Bronson, Roderick; Tsukada, Kosuke; Suematsu, Makoto; Dover, Jeffrey; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C.

    2013-01-01

    Safe and effective immunologic adjuvants are often essential for vaccines. However, the choice of adjuvant for licensed vaccines is limited, especially for those that are administered intradermally. We show that non-tissue damaging, near-infrared (NIR) laser light given in short exposures to small areas of skin, without the use of additional chemical or biological agents, significantly increases immune responses to intradermal influenza vaccination without augmenting IgE. The NIR laser-adjuvanted vaccine confers increased protection in a murine influenza lethal challenge model as compared to unadjuvanted vaccine. We show that NIR laser treatment induces the expression of specific chemokines in the skin resulting in recruitment and activation of dendritic cells and is safe to use in both mice and humans. The NIR laser adjuvant technology provides a novel, safe, low-cost, simple-to-use, potentially broadly applicable and clinically feasible approach to enhancing vaccine efficacy as an alternative to chemical and biological adjuvants. PMID:24349390

  13. Porcine Dendritic Cells as an In Vitro Model to Assess the Immunological Behaviour of Streptococcus suis Subunit Vaccine Formulations and the Polarizing Effect of Adjuvants

    PubMed Central

    Martelet, Léa; Lacouture, Sonia; Goyette-Desjardins, Guillaume; Beauchamp, Guy; Surprenant, Charles; Gottschalk, Marcelo; Segura, Mariela

    2017-01-01

    An in vitro porcine bone marrow-derived dendritic cell (DC) culture was developed as a model for evaluating immune polarization induced by adjuvants when administered with immunogens that may become vaccine candidates if appropriately formulated. The swine pathogen Streptococcus suis was chosen as a prototype to evaluate proposed S. suis vaccine candidates in combination with the adjuvants Poly I:C, Quil A ®, Alhydrogel ®, TiterMax Gold ® and Stimune ®. The toll-like receptor ligand Poly I:C and the saponin Quil A ® polarized swine DC cytokines towards a type 1 phenotype, with preferential production of IL-12 and TNF-α. The water-in-oil adjuvants TiterMax Gold ® and Stimune ® favoured a type 2 profile as suggested by a marked IL-6 release. In contrast, Alhydrogel ® induced a type 1/type 2 mixed cytokine profile. The antigen type differently modified the magnitude of the adjuvant effect, but overall polarization was preserved. This is the first comparative report on swine DC immune activation by different adjuvants. Although further swine immunization studies would be required to better characterize the induced responses, the herein proposed in vitro model is a promising approach that helps assessing behaviour of the vaccine formulation rapidly at the pre-screening stage and will certainly reduce numbers of animals used while advancing vaccinology science. PMID:28327531

  14. Laser vaccine adjuvants. History, progress, and potential.

    PubMed

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines.

  15. Laser vaccine adjuvants

    PubMed Central

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C

    2014-01-01

    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  16. Advax-Adjuvanted Recombinant Protective Antigen Provides Protection against Inhalational Anthrax That Is Further Enhanced by Addition of Murabutide Adjuvant

    PubMed Central

    Feinen, Brandon; Petrovsky, Nikolai; Verma, Anita

    2014-01-01

    Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy. PMID:24554695

  17. Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant.

    PubMed

    Feinen, Brandon; Petrovsky, Nikolai; Verma, Anita; Merkel, Tod J

    2014-04-01

    Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy.

  18. The Carbomer-Lecithin Adjuvant Adjuplex Has Potent Immunoactivating Properties and Elicits Protective Adaptive Immunity against Influenza Virus Challenge in Mice

    PubMed Central

    Wegmann, Frank; Moghaddam, Amin E.; Schiffner, Torben; Gartlan, Kate H.; Powell, Timothy J.; Russell, Rebecca A.; Baart, Matthijs; Carrow, Emily W.

    2015-01-01

    The continued discovery and development of adjuvants for vaccine formulation are important to safely increase potency and/or reduce the antigen doses of existing vaccines and tailor the adaptive immune response to newly developed vaccines. Adjuplex is a novel adjuvant platform based on a purified lecithin and carbomer homopolymer. Here, we analyzed the adjuvant activity of Adjuplex in mice for the soluble hemagglutinin (HA) glycoprotein of influenza A virus. The titration of Adjuplex revealed an optimal dose of 1% for immunogenicity, eliciting high titers of HA-specific IgG but inducing no significant weight loss. At this dose, Adjuplex completely protected mice from an otherwise lethal influenza virus challenge and was at least as effective as the adjuvants monophosphoryl lipid A (MPL) and alum in preventing disease. Adjuplex elicited balanced Th1-/Th2-type immune responses with accompanying cytokines and triggered antigen-specific CD8+ T-cell proliferation. The use of the peritoneal inflammation model revealed that Adjuplex recruited dendritic cells (DCs), monocytes, and neutrophils in the context of innate cytokine and chemokine secretion. Adjuplex neither triggered classical maturation of DCs nor activated a pathogen recognition receptor (PRR)-expressing NF-κB reporter cell line, suggesting a mechanism of action different from that reported for classical pathogen-associated molecular pattern (PAMP)-activated innate immunity. Taken together, these data reveal Adjuplex to be a potent and well-tolerated adjuvant with application for subunit vaccines. PMID:26135973

  19. Role of adjuvant chemoradiotherapy in T4N0 stage IV head and neck cancer: A National Cancer Database analysis.

    PubMed

    Kirke, Diana N; Qureshi, Muhammad M; Kamran, Sophia C; Ezzat, Waleed; Jalisi, Scharukh; Salama, Andrew; Everett, Peter C; Truong, Minh Tam

    2018-06-01

    The purpose of this study was to evaluate the role of postoperative adjuvant radiotherapy (surgery + adjuvant RT) versus adjuvant chemoradiotherapy (surgery + adjuvant CRT) in patients with T4N0M0, stage IV head and neck squamous cell carcinoma (HNSCC). Between 1998 and 2011, 3518 and 885 patients were treated with surgery + adjuvant RT and surgery + adjuvant CRT, respectively. Three-year overall survival (OS) rates were determined and crude and adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) were computed. Median follow-up was 41.8 months with 2193 reported deaths. The 3-year OS was 67.5% for surgery + adjuvant RT and 70.5% for surgery + adjuvant CRT (P = .013). For negative margins, the corresponding 3-year OS was 70.1% and 74.9% (P = .005). For positive margins, the corresponding 3-year OS was 56.0% and 60.6% (P = .079). On multivariate analysis, the beneficial effect for adjuvant CRT over adjuvant RT was not significant (HR 0.90; CI 0.79-1.03; P = .124). In this cohort of patients with T4N0 HNSCC treated with surgery, there was no observed survival benefit of adjuvant CRT over adjuvant RT on multivariate analysis. © 2018 Wiley Periodicals, Inc.

  20. Adjuvant properties of thermal component of hyperthermia enhanced transdermal immunization: effect on dendritic cells.

    PubMed

    Joshi, Neha; Duhan, Vikas; Lingwal, Neelam; Bhaskar, Sangeeta; Upadhyay, Pramod

    2012-01-01

    Hyperthermia enhanced transdermal (HET) immunization is a novel needle free immunization strategy employing application of antigen along with mild local hyperthermia (42°C) to intact skin resulting in detectable antigen specific Ig in serum. In the present study, we investigated the adjuvant effect of thermal component of HET immunization in terms of maturation of dendritic cells and its implication on the quality of the immune outcome in terms of antibody production upon HET immunization with tetanus toxoid (TT). We have shown that in vitro hyperthermia exposure at 42°C for 30 minutes up regulates the surface expression of maturation markers on bone marrow derived DCs. This observation correlated in vivo with an increased and accelerated expression of maturation markers on DCs in the draining lymph node upon HET immunization in mice. This effect was found to be independent of the antigen delivered and depends only on the thermal component of HET immunization. In vitro hyperthermia also led to enhanced capacity to stimulate CD4+ T cells in allo MLR and promotes the secretion of IL-10 by BMDCs, suggesting a potential for Th2 skewing of T cell response. HET immunization also induced a systemic T cell response to TT, as suggested by proliferation of splenocytes from immunized animal upon in vitro stimulation by TT. Exposure to heat during primary immunization led to generation of mainly IgG class of antibodies upon boosting, similar to the use of conventional alum adjuvant, thus highlighting the adjuvant potential of heat during HET immunization. Lastly, we have shown that mice immunized by tetanus toxoid using HET route exhibited protection against challenge with a lethal dose of tetanus toxin. Thus, in addition to being a painless, needle free delivery system it also has an immune modulatory potential.

  1. Protective antitumor immunity induced by tumor cell lysates conjugated with diphtheria toxin and adjuvant epitope in mouse breast tumor models

    PubMed Central

    Wang, Ze-Yu; Xing, Yun; Liu, Bin; Lu, Lei; Huang, Xiao; Ge, Chi-Yu; Yao, Wen-Jun; Xu, Mao-Lei; Gao, Zhen-Qiu; Cao, Rong-Yue; Wu, Jie; Li, Tai-Ming

    2012-01-01

    Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer. Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL). In this study, diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde, and the constructed cancer cell vaccine was named DT-TCL-M2. Subcutaneous injection of DT-TCL-M2 in mice effectively elicited tumor-specific polyclonal immune responses, including humoral and cellular immune responses. High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses. The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells. Moreover, the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model. DT-TCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model. These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo. Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection. PMID:22464650

  2. Effect of Currently Approved Carriers and Adjuvants on the Pre-Clinical Efficacy of a Conjugate Vaccine against Oxycodone in Mice and Rats

    PubMed Central

    Pravetoni, Marco; Vervacke, Jeffrey S.; Distefano, Mark D.; Tucker, Ashli M.; Laudenbach, Megan; Pentel, Paul R.

    2014-01-01

    Vaccination against the highly abused prescription opioid oxycodone has shown pre-clinical efficacy for blocking oxycodone effects. The current study further evaluated a candidate vaccine composed of oxycodone derivatized at the C6 position (6OXY) conjugated to the native keyhole limpet hemocyanin (nKLH) carrier protein. To provide an oxycodone vaccine formulation suitable for human studies, we studied the effect of alternative carriers and adjuvants on the generation of oxycodone-specific serum antibody and B cell responses, and the effect of immunization on oxycodone distribution and oxycodone-induced antinociception in mice and rats. 6OXY conjugated to tetanus toxoid (TT) or a GMP grade KLH dimer (dKLH) was as effective as 6OXY conjugated to the nKLH decamer in mice and rats, while the 6OXY hapten conjugated to a TT-derived peptide was not effective in preventing oxycodone-induced antinociception in mice. Immunization with 6OXY-TT s.c. absorbed on alum adjuvant provided similar protection to 6OXY-TT administered i.p. with Freund’s adjuvant in rats. The toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) adjuvant, alone or in combination with alum, offered no advantage over alum alone for generating oxycodone-specific serum antibodies or 6OXY-specific antibody secreting B cells in mice vaccinated with 6OXY-nKLH or 6OXY-TT. The immunogenicity of oxycodone vaccines may be modulated by TLR4 signaling since responses to 6OXY-nKLH in alum were decreased in TLR4-deficient mice. These data suggest that TT, nKLH and dKLH carriers provide consistent 6OXY conjugate vaccine immunogenicity across species, strains and via different routes of administration, while adjuvant formulations may need to be tailored to individual immunogens or patient populations. PMID:24797666

  3. Antibody-Antigen-Adjuvant Conjugates Enable Co-Delivery of Antigen and Adjuvant to Dendritic Cells in Cis but Only Have Partial Targeting Specificity

    PubMed Central

    Abuknesha, Ram; Uematsu, Satoshi; Akira, Shizuo; Nestle, Frank O.; Diebold, Sandra S.

    2012-01-01

    Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC) by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC) that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA) and CpG oligodeoxynucleotides (ODN). We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL) responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses. PMID:22808118

  4. N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride: An immune-enhancing adjuvant for hepatitis E virus recombinant polypeptide vaccine in mice.

    PubMed

    Tao, Wei; Zheng, Hai-Qun; Fu, Ting; He, Zhuo-Jing; Hong, Yan

    2017-08-03

    Adjuvants are essential for enhancing vaccine potency by improving the humoral and/or cell-mediated immune response to vaccine antigens. This study was performed to evaluate the immuno-enhancing characteristic of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC), the cationically modified chitosan, as an adjuvant for hepatitis E virus (HEV) recombinant polypeptide vaccine. Animal experiments showed that HTCC provides adjuvant activity when co-administered with HEV recombinant polypeptide vaccine by intramuscularly route. Vaccination using HTCC as an adjuvant was associated with increases of the serum HEV-specific IgG antibodies, splenocytes proliferation and the growths of CD4 + CD8 - T lymphocytes and IFN-γ-secreting T lymphocytes in peripheral blood. These findings suggested that HTCC had strong immuno-enhancing effect. Our findings are the first to demonstrate that HTCC is safe and effective in inducing a good antibody response and stimulating Th1-biased immune responses for HEV recombinant polypeptide vaccine.

  5. Melatonin and Fertoprotective Adjuvants: Prevention against Premature Ovarian Failure during Chemotherapy

    PubMed Central

    Jang, Hoon; Hong, Kwonho; Choi, Youngsok

    2017-01-01

    Premature ovarian failure is one of the side effects of chemotherapy in pre-menopausal cancer patients. Preservation of fertility has become increasingly important in improving the quality of life of completely recovered cancer patients. Among the possible strategies for preserving fertility such as ovarian tissue cryopreservation, co-treatment with a pharmacological adjuvant is highly effective and poses less of a burden on the human body. Melatonin is generally produced in various tissues and acts as a universally acting antioxidant in cells. Melatonin is now more widely used in various biological processes including treating insomnia and an adjuvant during chemotherapy. In this review, we summarize the information indicating that melatonin may be useful for reducing and preventing premature ovarian failure in chemotherapy-treated female patients. We also mention that many adjuvants other than melatonin are developed and used to inhibit chemotherapy-induced infertility. This information will give us novel insights on the clinical use of melatonin and other agents as fertoprotective adjuvants for female cancer patients. PMID:28590419

  6. Adjuvant effects of aluminium hydroxide-adsorbed allergens and allergoids – differences in vivo and in vitro

    PubMed Central

    Heydenreich, B; Bellinghausen, I; Lund, L; Henmar, H; Lund, G; Adler Würtzen, P; Saloga, J

    2014-01-01

    Allergen-specific immunotherapy (SIT) is a clinically effective therapy for immunoglobulin (Ig)E-mediated allergic diseases. To reduce the risk of IgE-mediated side effects, chemically modified allergoids have been introduced. Furthermore, adsorbance of allergens to aluminium hydroxide (alum) is widely used to enhance the immune response. The mechanisms behind the adjuvant effect of alum are still not completely understood. In the present study we analysed the effects of alum-adsorbed allergens and allergoids on their immunogenicity in vitro and in vivo and their ability to activate basophils of allergic donors. Human monocyte derived dendritic cells (DC) were incubated with native Phleum pratense or Betula verrucosa allergen extract or formaldehyde-or glutaraldehyde-modified allergoids, adsorbed or unadsorbed to alum. After maturation, DC were co-cultivated with autologous CD4+ T cells. Allergenicity was tested by leukotriene and histamine release of human basophils. Finally, in-vivo immunogenicity was analysed by IgG production of immunized mice. T cell proliferation as well as interleukin (IL)-4, IL-13, IL-10 and interferon (IFN)-γ production were strongly decreased using glutaraldehyde-modified allergoids, but did not differ between alum-adsorbed allergens or allergoids and the corresponding unadsorbed preparations. Glutaraldehyde modification also led to a decreased leukotriene and histamine release compared to native allergens, being further decreased by adsorption to alum. In vivo, immunogenicity was reduced for allergoids which could be partly restored by adsorption to alum. Our results suggest that adsorption of native allergens or modified allergoids to alum had no consistent adjuvant effect but led to a reduced allergenicity in vitro, while we observed an adjuvant effect regarding IgG production in vivo. PMID:24528247

  7. Adjuvant effects of aluminium hydroxide-adsorbed allergens and allergoids - differences in vivo and in vitro.

    PubMed

    Heydenreich, B; Bellinghausen, I; Lund, L; Henmar, H; Lund, G; Adler Würtzen, P; Saloga, J

    2014-06-01

    Allergen-specific immunotherapy (SIT) is a clinically effective therapy for immunoglobulin (Ig)E-mediated allergic diseases. To reduce the risk of IgE-mediated side effects, chemically modified allergoids have been introduced. Furthermore, adsorbance of allergens to aluminium hydroxide (alum) is widely used to enhance the immune response. The mechanisms behind the adjuvant effect of alum are still not completely understood. In the present study we analysed the effects of alum-adsorbed allergens and allergoids on their immunogenicity in vitro and in vivo and their ability to activate basophils of allergic donors. Human monocyte derived dendritic cells (DC) were incubated with native Phleum pratense or Betula verrucosa allergen extract or formaldehyde- or glutaraldehyde-modified allergoids, adsorbed or unadsorbed to alum. After maturation, DC were co-cultivated with autologous CD4(+) T cells. Allergenicity was tested by leukotriene and histamine release of human basophils. Finally, in-vivo immunogenicity was analysed by IgG production of immunized mice. T cell proliferation as well as interleukin (IL)-4, IL-13, IL-10 and interferon (IFN)-γ production were strongly decreased using glutaraldehyde-modified allergoids, but did not differ between alum-adsorbed allergens or allergoids and the corresponding unadsorbed preparations. Glutaraldehyde modification also led to a decreased leukotriene and histamine release compared to native allergens, being further decreased by adsorption to alum. In vivo, immunogenicity was reduced for allergoids which could be partly restored by adsorption to alum. Our results suggest that adsorption of native allergens or modified allergoids to alum had no consistent adjuvant effect but led to a reduced allergenicity in vitro, while we observed an adjuvant effect regarding IgG production in vivo. © 2014 British Society for Immunology.

  8. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome.

    PubMed

    Sharp, Fiona A; Ruane, Darren; Claass, Benjamin; Creagh, Emma; Harris, James; Malyala, Padma; Singh, Manomohan; O'Hagan, Derek T; Pétrilli, Virginie; Tschopp, Jurg; O'Neill, Luke A J; Lavelle, Ed C

    2009-01-20

    Many currently used and candidate vaccine adjuvants are particulate in nature, but their mechanism of action is not well understood. Here, we show that particulate adjuvants, including biodegradable poly(lactide-co-glycolide) (PLG) and polystyrene microparticles, dramatically enhance secretion of interleukin-1beta (IL-1beta) by dendritic cells (DCs). The ability of particulates to promote IL-1beta secretion and caspase 1 activation required particle uptake by DCs and NALP3. Uptake of microparticles induced lysosomal damage, whereas particle-mediated enhancement of IL-1beta secretion required phagosomal acidification and the lysosomal cysteine protease cathepsin B, suggesting a role for lysosomal damage in inflammasome activation. Although the presence of a Toll-like receptor (TLR) agonist was required to induce IL-1beta production in vitro, injection of the adjuvants in the absence of TLR agonists induced IL-1beta production at the injection site, indicating that endogenous factors can synergize with particulates to promote inflammasome activation. The enhancement of antigen-specific antibody production by PLG microparticles was independent of NALP3. However, the ability of PLG microparticles to promote antigen-specific IL-6 production by T cells and the recruitment and activation of a population of CD11b(+)Gr1(-) cells required NALP3. Our data demonstrate that uptake of microparticulate adjuvants by DCs activates the NALP3 inflammasome, and this contributes to their enhancing effects on innate and antigen-specific cellular immunity.

  9. Environmental adjuvants, apoptosis and the censorship over autoimmunity.

    PubMed

    Rovere-Querini, Patrizia; Manfredi, Angelo A; Sabbadini, Maria Grazia

    2005-11-01

    Alterations during apoptosis lead to the activation of autoreactive T cells and the production of autoantibodies. This article discusses the pathogenic potential of cells dying in vivo, dissecting the role of signals that favor immune responses (adjuvants) and the influence of genetic backgrounds. Diverse factors determine whether apoptosis leads or not to a self-sustaining, clinically apparent autoimmune disease. The in vivo accumulation of uncleared dying cells per se is not sufficient to cause disease. However, dying cells are antigenic and their complementation with immune adjuvants causes lethal diseases in predisposed lupus-prone animals. At least some adjuvant signals directly target the function and the activation state of antigen presenting cells. Several laboratories are aggressively pursuing the molecular identification of endogenous adjuvants. Sodium monourate and the high mobility group B1 protein (HMGB1) are, among those identified so far, well known to rheumatologists. However, even the complementation of apoptotic cells with potent adjuvant signals fail to cause clinical autoimmunity in most strains: autoantibodies generated are transient, do not undergo to epitope/spreading and do not cause disease. Novel tools for drug development will derive from the molecular identification of the constraints that prevent autoimmunity in normal subjects.

  10. Transferability study of CHO cell clustering assays for monitoring of pertussis toxin activity in acellular pertussis vaccines.

    PubMed

    Isbrucker, R; Daas, A; Wagner, L; Costanzo, A

    2016-01-01

    Current regulations for acellular pertussis (aP) vaccines require that they are tested for the presence of residual or reversion-derived pertussis toxin (PTx) activity using the mouse histamine sensitisation test (HIST). Although a CHO cell clustering assay can be used by manufacturers to verify if sufficient inactivation of the substance has occurred in-process, this assay cannot be used at present for the final product due to the presence of aluminium adjuvants which interfere with mammalian cell cultures. Recently, 2 modified CHO cell clustering assays which accommodate for the adjuvant effects have been proposed as alternatives to the HIST. These modified assays eliminate the adjuvant-induced cytotoxicity either through dilution of the vaccine (called the Direct Method) or by introducing a porous barrier between the adjuvant and the cells (the Indirect Method). Transferability and suitability of these methods for testing of products present on the European market were investigated during a collaborative study organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM). Thirteen laboratories participated in this study which included 4 aP-containing vaccines spiked by addition of PTx. This study also assessed the transferability of a standardised CHO cell clustering assay protocol for use with non-adjuvanted PTx preparations. Results showed that the majority of laboratories were able to detect the PTx spike in all 4 vaccines at concentrations of 4 IU/mL or lower using the Indirect Method. This sensitivity is in the range of the theoretical sensitivity of the HIST. The Direct Method however did not show the expected results and would need additional development work.

  11. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines

    PubMed Central

    Gasper, David J.; Neldner, Brandon; Plisch, Erin H.; Rustom, Hani; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M.

    2016-01-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the respiratory tract. PMID:27997610

  12. Effective Respiratory CD8 T-Cell Immunity to Influenza Virus Induced by Intranasal Carbomer-Lecithin-Adjuvanted Non-replicating Vaccines.

    PubMed

    Gasper, David J; Neldner, Brandon; Plisch, Erin H; Rustom, Hani; Carrow, Emily; Imai, Hirotaka; Kawaoka, Yoshihiro; Suresh, M

    2016-12-01

    CD8+ cytotoxic T lymphocytes (CTLs) are critical for clearing many viral infections, and protective CTL memory can be induced by vaccination with attenuated viruses and vectors. Non-replicating vaccines are typically potentiated by the addition of adjuvants that enhance humoral responses, however few are capable of generating CTL responses. Adjuplex is a carbomer-lecithin-based adjuvant demonstrated to elicit robust humoral immunity to non-replicating antigens. We report that mice immunized with non-replicating Adjuplex-adjuvanted vaccines generated robust antigen-specific CTL responses. Vaccination by the subcutaneous or the intranasal route stimulated systemic and mucosal CTL memory respectively. However, only CTL memory induced by intranasal vaccination was protective against influenza viral challenge, and correlated with an enhancement of memory CTLs in the airways and CD103+ CD69+ CXCR3+ resident memory-like CTLs in the lungs. Mechanistically, Myd88-deficient mice mounted primary CTL responses to Adjuplex vaccines that were similar in magnitude to wild-type mice, but exhibited altered differentiation of effector cell subsets. Immune potentiating effects of Adjuplex entailed alterations in the frequency of antigen-presenting-cell subsets in vaccine draining lymph nodes, and in the lungs and airways following intranasal vaccination. Further, Adjuplex enhanced the ability of dendritic cells to promote antigen-induced proliferation of naïve CD8 T cells by modulating antigen uptake, its intracellular localization, and rate of processing. Taken together, we have identified an adjuvant that elicits both systemic and mucosal CTL memory to non-replicating antigens, and engenders protective CTL-based heterosubtypic immunity to influenza A virus in the respiratory tract. Further, findings presented in this manuscript have provided key insights into the mechanisms and factors that govern the induction and programming of systemic and protective memory CTLs in the respiratory tract.

  13. On/off TLR signaling decides proinflammatory or tolerogenic dendritic cell maturation upon CD1d-mediated interaction with invariant NKT cells.

    PubMed

    Caielli, Simone; Conforti-Andreoni, Cristina; Di Pietro, Caterina; Usuelli, Vera; Badami, Ester; Malosio, Maria Luisa; Falcone, Marika

    2010-12-15

    Invariant NKT (iNKT) cells play an effector/adjuvant function during antimicrobial and antitumoral immunity and a regulatory role to induce immune tolerance and prevent autoimmunity. iNKT cells that differentially modulate adaptive immunity do not bear a unique phenotype and/or specific cytokine secretion profile, thus opening questions on how a single T cell subset can exert opposite immunological tasks. In this study, we show that iNKT cells perform their dual roles through a single mechanism of action relying on the cognate interaction with myeloid dendritic cells (DCs) and leading to opposite effects depending on the presence of other maturation stimuli simultaneously acting on DCs. The contact of murine purified iNKT cells with immature autologous DCs directly triggers the tolerogenic maturation of DCs, rendering them able to induce regulatory T cell differentiation and prevent autoimmune diabetes in vivo. Conversely, the interaction of the same purified iNKT cells with DCs, in the presence of simultaneous TLR4 stimulation, significantly enhances proinflammatory DC maturation and IL-12 secretion. The different iNKT cell effects are mediated through distinct mechanisms and activation of different molecular pathways within the DC: CD1d signaling and activation of the ERK1/2 pathway for the tolerogenic action, and CD40-CD40L interaction and NF-κB activation for the adjuvant effect. Our data suggest that the DC decision to undergo proinflammatory or tolerogenic maturation results from the integration of different signals received at the time of iNKT cell contact and could have important therapeutic implications for exploiting iNKT cell adjuvant/regulatory properties in autoimmune diseases, infections, and cancer.

  14. Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation

    PubMed Central

    den Brok, Martijn H.; Büll, Christian; Wassink, Melissa; de Graaf, Annemarie M.; Wagenaars, Jori A.; Minderman, Marthe; Thakur, Mayank; Amigorena, Sebastian; Rijke, Eric O.; Schrier, Carla C.; Adema, Gosse J.

    2016-01-01

    Saponin-based adjuvants (SBAs) are being used in animal and human (cancer) vaccines, as they induce protective cellular immunity. Their adjuvant potency is a factor of inflammasome activation and enhanced antigen cross-presentation by dendritic cells (DCs), but how antigen cross-presentation is induced is not clear. Here we show that SBAs uniquely induce intracellular lipid bodies (LBs) in the CD11b+ DC subset in vitro and in vivo. Using genetic and pharmacological interference in models for vaccination and in situ tumour ablation, we demonstrate that LB induction is causally related to the saponin-dependent increase in cross-presentation and T-cell activation. These findings link adjuvant activity to LB formation, aid the application of SBAs as a cancer vaccine component, and will stimulate development of new adjuvants enhancing T-cell-mediated immunity. PMID:27819292

  15. Innate signaling by mycobacterial cell wall components and relevance for development of adjuvants for subunit vaccines.

    PubMed

    Tima, Hermann Giresse; Huygen, Kris; Romano, Marta

    2016-11-01

    Pathogen recognition receptors (PRRs) recognize pathogen-associated molecular patterns, triggering the induction of inflammatory innate responses and contributing to the development of specific adaptive immune responses. Novel adjuvants have been developed based on agonists of PRRs. Areas covered: Lipid pathogen-associated molecular patterns (PAMPs) present in the cell wall of mycobacteria are revised, with emphasis on agonists of C-type lectin receptors, signaling pathways, and preclinical data supporting their use as novel adjuvants inducing cell-mediated immune responses. Their potential use as lipid antigens in novel tuberculosis subunit vaccines is also discussed. Expert commentary: Few adjuvants are licensed for human use and mainly favour antibody-mediated protective immunity. Use of lipid PAMPs that trigger cell-mediated immune responses could lead to the development of adjuvants for vaccines against intracellular pathogens and cancer.

  16. Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine.

    PubMed

    Morse, Kaitlyn; Kimizuka, Yoshifumi; Chan, Megan P K; Shibata, Mai; Shimaoka, Yusuke; Takeuchi, Shu; Forbes, Benjamin; Nirschl, Christopher; Li, Binghao; Zeng, Yang; Bronson, Roderick T; Katagiri, Wataru; Shigeta, Ayako; Sîrbulescu, Ruxandra F; Chen, Huabiao; Tan, Rhea Y Y; Tsukada, Kosuke; Brauns, Timothy; Gelfand, Jeffrey; Sluder, Ann; Locascio, Joseph J; Poznansky, Mark C; Anandasabapathy, Niroshana; Kashiwagi, Satoshi

    2017-08-15

    Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has the capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. In this study we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations. We found that a continuous wave (CW) NIR laser adjuvant broadly modulates migratory DC (migDC) populations, specifically increasing and activating the Lang + and CD11b - Lang - subsets in skin, and that the Ab responses augmented by the CW NIR laser are dependent on DC subsets expressing CCR2 and Langerin. In comparison, a pulsed wave NIR laser adjuvant showed limited effects on the migDC subsets. Our vaccination study demonstrated that the efficacy of the CW NIR laser is significantly better than that of the pulsed wave laser, indicating that the CW NIR laser offers a desirable immunostimulatory microenvironment for migDCs. These results demonstrate the unique ability of the NIR laser adjuvant to selectively target specific migDC populations in skin depending on its parameters, and highlight the importance of optimization of laser parameters for desirable immune protection induced by an NIR laser-adjuvanted vaccine. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. Silica Nanoparticles as the Adjuvant for the Immunisation of Mice Using Hepatitis B Core Virus-Like Particles

    PubMed Central

    Skrastina, Dace; Petrovskis, Ivars; Lieknina, Ilva; Bogans, Janis; Renhofa, Regina; Ose, Velta; Dishlers, Andris; Dekhtyar, Yuri; Pumpens, Paul

    2014-01-01

    Advances in nanotechnology and nanomaterials have facilitated the development of silicon dioxide, or Silica, particles as a promising immunological adjuvant for the generation of novel prophylactic and therapeutic vaccines. In the present study, we have compared the adjuvanting potential of commercially available Silica nanoparticles (initial particles size of 10–20 nm) with that of aluminium hydroxide, or Alum, as well as that of complete and incomplete Freund's adjuvants for the immunisation of BALB/c mice with virus-like particles (VLPs) formed by recombinant full-length Hepatitis B virus core (HBc) protein. The induction of B-cell and T-cell responses was studied after immunisation. Silica nanoparticles were able to adsorb maximally 40% of the added HBc, whereas the adsorption capacity of Alum exceeded 90% at the same VLPs/adjuvant ratio. Both Silica and Alum formed large complexes with HBc VLPs that sedimented rapidly after formulation, as detected by dynamic light scattering, spectrophotometry, and electron microscopy. Both Silica and Alum augmented the humoral response against HBc VLPs to the high anti-HBc level in the case of intraperitoneal immunisation, whereas in subcutaneous immunisation, the Silica-adjuvanted anti-HBc level even exceeded the level adjuvanted by Alum. The adjuvanting of HBc VLPs by Silica resulted in the same typical IgG2a/IgG1 ratios as in the case of the adjuvanting by Alum. The combination of Silica with monophosphoryl lipid A (MPL) led to the same enhancement of the HBc-specific T-cell induction as in the case of the Alum and MPL combination. These findings demonstrate that Silica is not a weaker putative adjuvant than Alum for induction of B-cell and T-cell responses against recombinant HBc VLPs. This finding may have an essential impact on the development of the set of Silica-adjuvanted vaccines based on a long list of HBc-derived virus-like particles as the biological component. PMID:25436773

  18. NKT Cells as an Ideal Anti-Tumor Immunotherapeutic

    PubMed Central

    Fujii, Shin-ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-01-01

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon stimulation with α-GalCer/DCs, and mediated adjuvant effects, suppressing tumor growth in vivo. PMID:24348476

  19. Bacillus subtilis Spores as Vaccine Adjuvants: Further Insights into the Mechanisms of Action

    PubMed Central

    de Souza, Renata Damásio; Batista, Milene Tavares; Luiz, Wilson Barros; Cavalcante, Rafael Ciro Marques; Amorim, Jaime Henrique; Bizerra, Raíza Sales Pereira; Martins, Eduardo Gimenes; de Souza Ferreira, Luís Carlos

    2014-01-01

    Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains. PMID:24475289

  20. Immunomodulatory effects of HSV2 glycoprotein D in HSV1 infected mice: implications for immunotherapy of recurrent HSV infection.

    PubMed

    York, L J; Giorgio, D P; Mishkin, E M

    1995-12-01

    Immunological analyses in this laboratory and others have suggested that a nonrecurrent HSV seropositive immune status is more closely correlated with a type 1 T helper cell (Th1) response characterized by elevated levels of interferon-gamma and IL2 rather than high titers of virus-specific antibodies. Effective intervention with an immunotherapeutic vaccine may require modulation of the regulatory network of T helper cells such that there is selective restimulation and expansion of the Th1 response. We have established a murine model for assessing the immunomodulatory capacity of an HSV glycoprotein subunit vaccine in animals with pre-existing herpes immunity. Animals were infected with varying doses of HSV1 and then administered glycoprotein D (gD) vaccine adjuvanted with aluminum phosphate at 3-week intervals. Observed changes in serological and cellular responses indicated that administration of subunit vaccine adjuvanted with aluminum phosphate could shift a dominant Th1 response, induced by sensitization with live HSV, towards a Th2 profile of activity. These data suggest that use of aluminum based adjuvants will not selectively stimulate Th1-associated responses and alternative adjuvants may be required for effective use of subunit vaccine in an immunotherapeutic indication in humans.

  1. The Use of Xanthan Gum as Vaccine Adjuvant: An Evaluation of Immunostimulatory Potential in BALB/c Mice and Cytotoxicity In Vitro

    PubMed Central

    Oliveira, Thaís Larré; Collares, Thaís Farias; Monte, Leonardo Garcia; Inda, Guilherme Roig; Moreira, Angelita da Silveira

    2017-01-01

    The successful production of new, safe, and effective vaccines that generate immunological memory is directly related to adjuvant feature, which is responsible for increasing and/or modulating the immune response. Several compounds display adjuvant activity, including carbohydrates. These compounds play important roles in the immune response, as well as having biocompatible properties in vaccine formulations. One such carbohydrate is xanthan gum, a polysaccharide that is produced by the plant-pathogenic bacterium Xanthomonas spp., which has adjuvant attributes. This study evaluated the immune response induced by xanthan gum associated with ovalbumin in BALB/c mice, which were subcutaneously immunized, in terms of antibody production (IgG1, IgG2a, IgG2b, and IgG3), and assessed the levels of IFN-γ in the splenocyte culture using indirect ELISA. Furthermore, we investigated in vitro cytotoxicity of xanthan in the embryo fibroblasts cell line of the NIH/3T3 mouse by MTT assay and propidium iodide uptake assay. The mice immunized with ovalbumin plus xanthan gum exhibited higher antibody IgG1 responses than control groups. Furthermore, the xanthan polysaccharide was capable of increasing the immunogenicity of antigens by producing IFN-γ and did not exhibit cytotoxicity effects in NIH/3T3 mouse fibroblast cells, considered a promising candidate for vaccine adjuvant. PMID:28555192

  2. Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013.

    PubMed

    Genito, Christopher J; Beck, Zoltan; Phares, Timothy W; Kalle, Fanta; Limbach, Keith J; Stefaniak, Maureen E; Patterson, Noelle B; Bergmann-Leitner, Elke S; Waters, Norman C; Matyas, Gary R; Alving, Carl R; Dutta, Sheetij

    2017-07-05

    Malaria caused by Plasmodium falciparum continues to threaten millions of people living in the tropical parts of the world. A vaccine that confers sterile and life-long protection remains elusive despite more than 30years of effort and resources invested in solving this problem. Antibodies to a malaria vaccine candidate circumsporozoite protein (CSP) can block invasion and can protect humans against malaria. We have manufactured the Falciparum Malaria Protein-013 (FMP013) vaccine based on the nearly full-length P. falciparum CSP 3D7 strain sequence. We report here immunogenicity and challenge data on FMP013 antigen in C57BL/6 mice formulated with two novel adjuvants of the Army Liposome Formulation (ALF) series and a commercially available adjuvant Montanide ISA 720 (Montanide) as a control. ALF is a liposomal adjuvant containing a synthetic monophosphoryl lipid A (3D-PHAD®). In our study, FMP013 was adjuvanted with ALF alone, ALF containing aluminum hydroxide (ALFA) or ALF containing QS-21 (ALFQ). Adjuvants ALF and ALFA induced similar antibody titers and protection against transgenic parasite challenge that were comparable to Montanide. ALFQ was superior to the other three adjuvants as it induced higher antibody titers with improved boosting after the third immunization, higher serum IgG2c titers, and enhanced protection. FMP013+ALFQ also augmented the numbers of splenic germinal center-derived activated B-cells and antibody secreting cells compared to Montanide. Further, FMP013+ALFQ induced antigen-specific IFN-γ ELISPOT activity, CD4 + T-cells and a T H 1-biased cytokine profile. These results demonstrate that soluble CSP can induce a potent and sterile protective immune response when formulated with the QS-21 containing adjuvant ALFQ. Comparative mouse immunogenicity data presented here were used as the progression criteria for an ongoing non-human primate study and a regulatory toxicology study in preparation for a controlled human malaria infection (CHMI) trial. Published by Elsevier Ltd.

  3. Montanide ISA 71 VG adjuvant enhances antibody and cell-ediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella

    USDA-ARS?s Scientific Manuscript database

    The present study was conducted to investigate the immunoenhancing effects of ISA 71 VG adjuvant on profilin subunit antigen vaccination. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mixed with ISA 71 VG, and host imm...

  4. Montanide™ ISA 71 VG adjuvant enhances antibody and cell-mediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella. Experimental Parasitology

    USDA-ARS?s Scientific Manuscript database

    The present study was conducted to investigate the immunoenhancing effects of MontanideTM ISA 71 VG adjuvant on profilin subunit antigen vaccination. Broiler chickens were immunized subcutaneously with a purified Eimeria acervulina recombinant profilin protein, either alone or mixed with ISA 71 VG, ...

  5. Immunogenicity and Safety of a Booster Dose of an Investigational Adjuvanted Polyprotein HIV-1 Vaccine in Healthy Adults and Effect of Administration of Chloroquine

    PubMed Central

    Bourguignon, Patricia; Willekens, Julie; Janssens, Michel; Clement, Frédéric; Didierlaurent, Arnaud M.; Fissette, Laurence; Roman, François; Boutriau, Dominique

    2014-01-01

    This phase II study evaluated the effect of chloroquine on the specific CD8+ T-cell responses to and the safety of a booster dose of investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine containing 10 μg of recombinant fusion protein (F4) adjuvanted with the AS01B adjuvant system. Healthy adults aged 21 to 41 years, primed 3 years before with two F4/AS01B doses containing 10 or 30 μg of F4 (ClinicalTrials.gov registration number NCT00434512), were randomized (1:1) to receive the F4/AS01B booster administered alone or 2 days after chloroquine (300 mg). F4-specific CD8+/CD4+ T-cell responses were characterized by intracellular cytokine staining and lymphoproliferation assays and anti-F4 antibodies by enzyme-linked immunosorbent assays (ELISAs). No effect of chloroquine on CD4+/CD8+ T-cell and antibody responses and no vaccine effect on CD8+ T-cell responses (cytokine secretion or proliferation) were detected following F4/AS01B booster administration. In vitro, chloroquine had a direct inhibitory effect on AS01B adjuvant properties; AS01-induced cytokine production decreased upon coincubation of cells with chloroquine. In the pooled group of participants primed with F4/AS01B containing 10 μg of F4, CD4+ T-cell and antibody responses induced by primary vaccination persisted for at least 3 years. The F4/AS01B booster induced strong F4-specific CD4+ T-cell responses, which persisted for at least 6 months with similar frequencies and polyfunctional phenotypes as following primary vaccination, and high anti-F4 antibody concentrations, reaching higher levels than those following primary vaccination. The F4/AS01B booster had a clinically acceptable safety and reactogenicity profile. An F4/AS01B booster dose, administered alone or after chloroquine, induced robust antibody and F4-specific CD4+ T-cell responses but no significant CD8+ T-cell responses (cytokine secretion or proliferation) in healthy adults. (This study has been registered at ClinicalTrials.gov under registration number NCT00972725). PMID:24391139

  6. Modes of Action for Mucosal Vaccine Adjuvants

    PubMed Central

    2017-01-01

    Abstract Vaccine adjuvants induce innate immune responses and the addition of adjuvants to the vaccine helps to induce protective immunity in the host. Vaccines utilizing live attenuated or killed whole pathogens usually contain endogenous adjuvants, such as bacterial cell wall products and their genomic nucleic acids, which act as pathogen-associated molecular patterns and are sufficient to induce adaptive immune responses. However, purified protein- or antigen-based vaccines, including component or recombinant vaccines, usually lose these endogenous innate immune stimulators, so the addition of an exogenous adjuvant is essential for the success of these vaccine types. Although this adjuvant requirement is mostly the same for parental and mucosal vaccines, the development of mucosal vaccine adjuvants requires the specialized consideration of adapting the adjuvants to characteristic mucosal conditions. This review provides a brief overview of mucosa-associated immune response induction processes, such as antigen uptake and dendritic cell subset-dependent antigen presentation. It also highlights several mucosal vaccine adjuvants from recent reports, particularly focusing on their modes of action. PMID:28436755

  7. Modes of Action for Mucosal Vaccine Adjuvants.

    PubMed

    Aoshi, Taiki

    Vaccine adjuvants induce innate immune responses and the addition of adjuvants to the vaccine helps to induce protective immunity in the host. Vaccines utilizing live attenuated or killed whole pathogens usually contain endogenous adjuvants, such as bacterial cell wall products and their genomic nucleic acids, which act as pathogen-associated molecular patterns and are sufficient to induce adaptive immune responses. However, purified protein- or antigen-based vaccines, including component or recombinant vaccines, usually lose these endogenous innate immune stimulators, so the addition of an exogenous adjuvant is essential for the success of these vaccine types. Although this adjuvant requirement is mostly the same for parental and mucosal vaccines, the development of mucosal vaccine adjuvants requires the specialized consideration of adapting the adjuvants to characteristic mucosal conditions. This review provides a brief overview of mucosa-associated immune response induction processes, such as antigen uptake and dendritic cell subset-dependent antigen presentation. It also highlights several mucosal vaccine adjuvants from recent reports, particularly focusing on their modes of action.

  8. Adjuvant immunotherapy of experimental autoimmune encephalomyelitis: immature myeloid cells expressing CXCL10 and CXCL16 attract CXCR3+CXCR6+ and myelin-specific T cells to the draining lymph nodes rather than the central nervous system.

    PubMed

    O'Connor, Richard A; Li, Xujian; Blumerman, Seth; Anderton, Stephen M; Noelle, Randolph J; Dalton, Dyana K

    2012-03-01

    CFA is a strong adjuvant capable of stimulating cellular immune responses. Paradoxically, adjuvant immunotherapy by prior exposure to CFA or live mycobacteria suppresses the severity of experimental autoimmune encephalomyelitis (EAE) and spontaneous diabetes in rodents. In this study, we investigated immune responses during adjuvant immunotherapy of EAE. Induction of EAE in CFA-pretreated mice resulted in a rapid influx into the draining lymph nodes (dLNs) of large numbers of CD11b(+)Gr-1(+) myeloid cells, consisting of immature cells with ring-shaped nuclei, macrophages, and neutrophils. Concurrently, a population of mycobacteria-specific IFN-γ-producing T cells appeared in the dLNs. Immature myeloid cells in dLNs expressed the chemokines CXCL10 and CXCL16 in an IFN-γ-dependent manner. Subsequently, CD4(+) T cells coexpressing the cognate chemokine receptors CXCR3 and CXCR6 and myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+) T cells accumulated within the chemokine-expressing dLNs, rather than within the CNS. Migration of CD4(+) T cells toward dLN cells was abolished by depleting the CD11b(+) cells and was also mediated by the CD11b(+) cells alone. In addition to altering the distribution of MOG-specific T cells, adjuvant treatment suppressed development of MOG-specific IL-17. Thus, adjuvant immunotherapy of EAE requires IFN-γ, which suppresses development of the Th17 response, and diverts autoreactive T cells away from the CNS toward immature myeloid cells expressing CXCL10 and CXCL16 in the lymph nodes.

  9. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery

    NASA Astrophysics Data System (ADS)

    Mody, Karishma T.; Popat, Amirali; Mahony, Donna; Cavallaro, Antonino S.; Yu, Chengzhong; Mitter, Neena

    2013-05-01

    Vaccines have been at the forefront of improving human health for over two centuries. The challenges faced in developing effective vaccines flow from complexities associated with the immune system and requirement of an efficient and safe adjuvant to induce a strong adaptive immune response. Development of an efficient vaccine formulation requires careful selection of a potent antigen, efficient adjuvant and route of delivery. Adjuvants are immunological agents that activate the antigen presenting cells (APCs) and elicit a strong immune response. In the past decade, the use of mesoporous silica nanoparticles (MSNs) has gained significant attention as potential delivery vehicles for various biomolecules. In this review, we aim to highlight the potential of MSNs as vaccine delivery vehicles and their ability to act as adjuvants. We have provided an overview on the latest progress on synthesis, adsorption and release kinetics and biocompatibility of MSNs as next generation antigen carriers and adjuvants. A comprehensive summary on the ability of MSNs to deliver antigens and elicit both humoral and cellular immune responses is provided. Finally, we give insight on fundamental challenges and some future prospects of these nanoparticles as adjuvants.

  10. Suppressive Effects on the Immune Response and Protective Immunity to a JEV DNA Vaccine by Co-administration of a GM-CSF-Expressing Plasmid in Mice

    PubMed Central

    Chen, Hui; Gao, Na; Fan, Dongying; Wu, Jiangman; Zhu, Junping; Li, Jieqiong; Wang, Juan; Chen, Yanlei; An, Jing

    2012-01-01

    As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF. PMID:22493704

  11. Utility of up-front transoral robotic surgery in tailoring adjuvant therapy.

    PubMed

    Gildener-Leapman, Neil; Kim, Jeehong; Abberbock, Shira; Choby, Garret W; Mandal, Rajarsi; Duvvuri, Umamaheswar; Ferris, Robert L; Kim, Seungwon

    2016-08-01

    The purpose of this study was to describe how the up-front transoral robotic surgery (TORS) approach could be used to individually tailor adjuvant therapy based on surgical pathology. Between January 2009 and December 2013, 76 patients received TORS for oropharyngeal squamous cell carcinoma (OPSCC). Clinical predictors of adjuvant therapy were analyzed and comparisons were made between recommended treatment guidelines for up-front surgery versus definitive nonsurgical approaches. Advanced N classification, human papillomavirus (HPV)-positive tumor, extracapsular spread (ECS; 26 of 76), perineural invasion (PNI; 14 of 76), and positive margins (7 of 76) were significant predictors of adjuvant chemoradiotherapy (CRT) (p < .05). Up-front TORS deintensified adjuvant therapy; 76% of stage I/II and 46% of stage III/IV patients avoided CRT. Conversely, pathologic staging resulted in 33% of patients who would have received radiotherapy (RT) alone based on clinical staging, to be intensified to receive adjuvant CRT. The TORS approach deintensifies adjuvant therapy and provides valuable pathologic information to intensify treatment in select patients. TORS may be less effective in deintensification of adjuvant therapy in patients with clinically advanced N classification disease. © 2016 Wiley Periodicals, Inc. Head Neck 38:1201-1207, 2016. © 2016 Wiley Periodicals, Inc.

  12. Diatoms and diatomaceous earth as novel poultry vaccine adjuvants.

    PubMed

    Nazmi, A; Hauck, R; Davis, A; Hildebrand, M; Corbeil, L B; Gallardo, R A

    2017-02-01

    Diatoms are single cell eukaryotic microalgae; their surface possesses a porous nanostructured silica cell wall or frustule. Diatomaceous earth (DE) or diatomite is a natural siliceous sediment of diatoms. Since silica has been proved to have adjuvant capabilities, we propose that diatoms and DE may provide an inexpensive and abundant source of adjuvant readily available to use in livestock vaccines.In a first experiment, the safety of diatoms used as an adjuvant for in-ovo vaccination was investigated. In a second experiment, we assessed the humoral immune response after one in-ovo vaccination with inactivated Newcastle Disease Virus (NDV) and DE as adjuvant followed by 2 subcutaneous boosters on d 21 and 29 of age. In both experiments, results were compared to Freund's incomplete adjuvant and aluminum hydroxide.No detrimental effects on hatchability and chick quality were detected after in-ovo inoculation of diatoms and DE in experiments 1 and 2 respectively. In experiment 2 no humoral responses were detected after the in-ovo vaccination until 29 d of age. Seven d after the second subcutaneous booster an antibody response against NDV was detected in chickens that had received vaccines adjuvanted with Freund's incomplete adjuvant, aluminum hydroxide, and DE. These responses became significantly higher 10 d after the second booster. Finally, 15 d after the second booster, the humoral responses induced by the vaccine with Freund's incomplete adjuvant were statistically higher, followed by comparable responses induced by vaccines containing DE or aluminum hydroxide that were significantly higher than DE+PBS, PBS+INDV and PBS alone. From an applied perspective, we can propose that DE can serve as a potential adjuvant for vaccines against poultry diseases. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Toward the development of a stable, freeze-dried formulation of Helicobacter pylori killed whole cell vaccine adjuvanted with a novel mutant of E. coli heat-labile toxin

    PubMed Central

    Summerton, Nancy A.; Welch, Richard W.; Bondoc, Laureano; Yang, Huei-Hsiung; Pleune, Brett; Ramachandran, Naryaswamy; Harris, Andrea M.; Bland, Desiree; Jackson, W. James; Park, Sukjoon; Clements, John D.; Nabors, Gary S.

    2009-01-01

    No vaccine exists for the prevention of infection with the ubiquitous gastric pathogen Helicobacter pylori, and drug therapy for the infection is complicated by poor patient compliance, the high cost of treatment, and ineffectiveness against drug resistant strains. A new medical advancement is required to reduce the incidence of peptic ulcer disease and stomach cancer, two conditions caused by infection with H. pylori. Clinical trials have been performed with a formalin-inactivated Helicobacter pylori Whole Cell (HWC) vaccine, given orally in combination with the mucosal adjuvant mLT(R192G), a mutant of E. coli heat-labile toxin. Following the initial dose of this vaccine, some subjects experienced gastrointestinal side effects. To reduce side effects and potentially further increase the amount of adjuvant that can safely be administered with the HWC vaccine, experiments were performed with a form of LT that carried two mutations in the A subunit, a substitution of G for R at position 192, and A for L at position 211. The double-mutant LT (dmLT) adjuvant stimulated immune responses as effectively as the single mutant LT in mice. Additionally, following a challenge infection, the dmLT-adjuvanted vaccine was as effective as single mutant LT in reducing gastric urease levels (diagnostic for H. pylori infection), and H. pylori colonization in the stomach as assessed by quantitative analysis of stomach homogenates. A lyophilized formulation of HWC was developed to improve stability and to potentially reduce reliance on cold chain maintenance. It was observed that a dmLT-adjuvanted lyophilized vaccine was equally as protective in the mouse model as the liquid formulation as assessed by gastric urease analysis and analysis of stomach homogenates for viable H. pylori. No readily detectable effect of tonicity or moisture content was observed for the lyophilized vaccine within the formulation limits evaluated. In an accelerated stability study performed at 37°C the lyophilized vaccine remained equally as protective as vaccine stored at 2–8°C. The formulation selected for clinical development consisted of 2.5×1010 formalin-inactivated cells per ml in 6.5% trehalose, 0.5% mannitol, and 10 mM citrate buffer at pH 6.8. PMID:19897067

  14. Novel adjuvants & delivery vehicles for vaccines development: a road ahead.

    PubMed

    Mohan, Teena; Verma, Priyanka; Rao, D Nageswara

    2013-11-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines.

  15. Novel adjuvants & delivery vehicles for vaccines development: A road ahead

    PubMed Central

    Mohan, Teena; Verma, Priyanka; Rao, D. Nageswara

    2013-01-01

    The pure recombinant and synthetic antigens used in modern day vaccines are generally less immunogenic than older style live/attenuated and killed whole organism vaccines. One can improve the quality of vaccine production by incorporating immunomodulators or adjuvants with modified delivery vehicles viz. liposomes, immune stimulating complexes (ISCOMs), micro/nanospheres apart from alum, being used as gold standard. Adjuvants are used to augment the effect of a vaccine by stimulating the immune system to respond to the vaccine, more vigorously, and thus providing increased immunity to a particular disease. Adjuvants accomplish this task by mimicking specific sets of evolutionary conserved molecules which include lipopolysaccharides (LPS), components of bacterial cell wall, endocytosed nucleic acids such as dsRNA, ssDNA and unmethylated CpG dinucleotide containing DNA. This review provides information on various vaccine adjuvants and delivery vehicles being developed to date. From literature, it seems that the humoral immune responses have been observed for most adjuvants and delivery platforms while viral-vector, ISCOMs and Montanides have shown cytotoxic T-cell response in the clinical trials. MF59 and MPL® have elicited Th1 responses, and virus-like particles (VLPs), non-degradable nanoparticle and liposomes have also generated cellular immunity. Such vaccine components have also been evaluated for alternative routes of administration with clinical success reported for intranasal delivery of viral-vectors and proteosomes and oral delivery of VLP vaccines. PMID:24434331

  16. Human innate responses and adjuvant activity of TLR ligands in vivo in mice reconstituted with a human immune system.

    PubMed

    Cheng, Liang; Zhang, Zheng; Li, Guangming; Li, Feng; Wang, Li; Zhang, Liguo; Zurawski, Sandra M; Zurawski, Gerard; Levy, Yves; Su, Lishan

    2017-10-27

    TLR ligands (TLR-Ls) represent a class of novel vaccine adjuvants. However, their immunologic effects in humans remain poorly defined in vivo. Using a humanized mouse model with a functional human immune system, we investigated how different TLR-Ls stimulated human innate immune response in vivo and their applications as vaccine adjuvants for enhancing human cellular immune response. We found that splenocytes from humanized mice showed identical responses to various TLR-Ls as human PBMCs in vitro. To our surprise, various TLR-Ls stimulated human cytokines and chemokines differently in vivo compared to that in vitro. For example, CpG-A was most efficient to induce IFN-α production in vitro. In contrast, CpG-B, R848 and Poly I:C stimulated much more IFN-α than CpG-A in vivo. Importantly, the human innate immune response to specific TLR-Ls in humanized mice was different from that reported in C57BL/6 mice, but similar to that reported in nonhuman primates. Furthermore, we found that different TLR-Ls distinctively activated and mobilized human plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs) and monocytes in different organs. Finally, we showed that, as adjuvants, CpG-B, R848 and Poly I:C can all enhance antigen specific CD4 + T cell response, while only R848 and Poly I:C induced CD8 + cytotoxic T cells response to a CD40-targeting HIV vaccine in humanized mice, correlated with their ability to activate human mDCs but not pDCs. We conclude that humanized mice serve as a highly relevant model to evaluate and rank the human immunologic effects of novel adjuvants in vivo prior to testing in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety

    PubMed Central

    Petrovsky, Nikolai; Cooper, Peter D.

    2015-01-01

    There is an ongoing need for new adjuvants to facilitate development of vaccines against HIV, tuberculosis, malaria and cancer, amongst many others. Unfortunately, the most potent adjuvants are often associated with toxicity and safety issues. Inulin, a plant-derived polysaccharide, has no immunological activity in its native soluble form but when crystallised into stable microparticles (delta inulin) acquires potent adjuvant activity. Delta inulin has been shown to enhance humoral and cellular immune responses against a broad range of co-administered viral, bacterial, parasitic and toxin antigens. Inulin normally crystallises as large heterogeneous particles with a broad size distribution and variable solubility temperatures. To ensure reproducible delta inulin particles with a consistent size distribution and temperature of solubility, a current Good Manufacturing Practice (cGMP) process was designed to produce Advax™ adjuvant. In its cGMP form, Advax™ adjuvant has proved successful in human trials of vaccines against seasonal and pandemic influenza, hepatitis B and insect sting anaphylaxis, enhancing antibody and T-cell responses while at the same time being safe and well tolerated. Advax™ adjuvant thereby represents a novel human adjuvant with positive effects on both humoral and cellular immunity. This review describes the discovery and development of Advax™ adjuvant and research into its unique mechanism of action. PMID:26407920

  18. Role of P-glycoprotein inhibitors in ceramide-based therapeutics for treatment of cancer.

    PubMed

    Morad, Samy A F; Davis, Traci S; MacDougall, Matthew R; Tan, Su-Fern; Feith, David J; Desai, Dhimant H; Amin, Shantu G; Kester, Mark; Loughran, Thomas P; Cabot, Myles C

    2017-04-15

    The anticancer properties of ceramide, a sphingolipid with potent tumor-suppressor properties, can be dampened via glycosylation, notably in multidrug resistance wherein ceramide glycosylation is characteristically elevated. Earlier works using the ceramide analog, C6-ceramide, demonstrated that the antiestrogen tamoxifen, a first generation P-glycoprotein (P-gp) inhibitor, blocked C6-ceramide glycosylation and magnified apoptotic responses. The present investigation was undertaken with the goal of discovering non-anti-estrogenic alternatives to tamoxifen that could be employed as adjuvants for improving the efficacy of ceramide-centric therapeutics in treatment of cancer. Herein we demonstrate that the tamoxifen metabolites, desmethyltamoxifen and didesmethyltamoxifen, and specific, high-affinity P-gp inhibitors, tariquidar and zosuquidar, synergistically enhanced C6-ceramide cytotoxicity in multidrug resistant HL-60/VCR acute myelogenous leukemia (AML) cells, whereas the selective estrogen receptor antagonist, fulvestrant, was ineffective. Active C6-ceramide-adjuvant combinations elicited mitochondrial ROS production and cytochrome c release, and induced apoptosis. Cytotoxicity was mitigated by introduction of antioxidant. Effective adjuvants markedly inhibited C6-ceramide glycosylation as well as conversion to sphingomyelin. Active regimens were also effective in KG-1a cells, a leukemia stem cell-like line, and in LoVo human colorectal cancer cells, a solid tumor model. In summary, our work details discovery of the link between P-gp inhibitors and the regulation and potentiation of ceramide metabolism in a pro-apoptotic direction in cancer cells. Given the active properties of these adjuvants in synergizing with C6-ceramide, independent of drug resistance status, stemness, or cancer type, our results suggest that the C6-ceramide-containing regimens could provide alternative, promising therapeutic direction, in addition to finding novel, off-label applications for P-gp inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice.

    PubMed

    Lin, Su-I; Huang, Ming-Hsi; Chang, Yu-Wen; Chen, I-Hua; Roffler, Steve; Chen, Bing-Mae; Sher, Yuh-Pyng; Liu, Shih-Jen

    2016-07-28

    Synthetic peptides are attractive for cancer immunotherapy because of their safety and flexibility. In this report, we identified a new B cell epitope of tumor-associated antigen L6 (TAL6) that could induce antibody-dependent cellular cytotoxicity (ADCC) in vivo. We incorporated the B cell epitope with a cytotoxic T lymphocyte (CTL) and a helper T (Th) epitope to form a chimeric long peptide. We formulated the chimeric peptide with different adjuvants to immunize HLA-A2 transgenic mice and evaluate their immunogenicity. The chimeric peptide formulated with an emulsion type nanoparticle (PELC) adjuvant and a toll-like receptor 9 agonist (CpG ODN) (PELC/CpG) induced the greatest ADCC and CTL responses. The induced anti-tumor immunity inhibited the growth of TAL6-positive cancer cells. Moreover, we observed that immunization with the chimeric peptide inhibited cancer cell migration in vitro and metastasis in vivo. These data suggest that a chimeric peptide containing both B and T cell epitopes of TAL6 formulated with PELC/CpG adjuvant is feasible for cancer immunotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Synergistic effects of plasma-activated medium and chemotherapeutic drugs in cancer treatment

    NASA Astrophysics Data System (ADS)

    Chen, Chao-Yu; Cheng, Yun-Chien; Cheng, Yi-Jing

    2018-04-01

    Chemotherapy is an important treatment method for metastatic cancer, but the drug-uptake efficiency of cancer cells needs to be enhanced in order to diminish the side effects of chemotherapeutic drugs and improve survival. The use of a nonequilibrium low-temperature atmospheric-pressure plasma jet (APPJ) has been demonstrated to exert selective effects in cancer therapy and to be able to enhance the uptake of molecules by cells, which makes an APPJ a good candidate adjuvant in combination chemotherapy. This study estimated the effects of direct helium-based APPJ (He-APPJ) exposure (DE) and He-APPJ-activated RPMI medium (PAM) on cell viability and migration. Both of these treatments decreased cell viability and inhibited cell migration, but to different degrees in different cell types. The use of PAM as a culture medium resulted in the dialkylcarbocyanine (DiI) fluorescent dye entering the cells more efficiently. PAM was combined with the anticancer drug doxorubicin (Doxo) to treat human heptocellular carcinoma HepG2 cells and human adenocarcinomic alveolar basal epithelial A549 cells. The results showed that the synergistic effects of combined PAM and Doxo treatment resulted in stronger lethality in cancer cells than did PAM or Doxo treatment alone. To sum up, PAM has potential as an adjuvant in combination with other drugs to improve curative cancer therapies.

  1. Therapeutic Vaccination against Adjuvant Arthritis Using Autoimmune T Cells Treated with Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Lider, Ofer; Karin, Nathan; Shinitzky, Meir; Cohen, Irun R.

    1987-07-01

    An ideal treatment for autoimmune diseases would be a nontoxic means of specifically neutralizing the autoreactive lymphocytes responsible for the disease. This goal has been realized in experimental autoimmunity models by immunizing rats or mice against their own autoimmune cells such that the animals generate an immune response specifically repressive to the disease-producing lymphocytes. This maneuver, termed lymphocyte vaccination, was demonstrated to be effective using some, but not all, autoimmune helper T-lymphocyte lines. We now report that T lymphocytes, otherwise incapable of triggering an immune response, can be transformed into effective immunogens by treating the cells in vitro with hydrostatic pressure. Clone A2b, as effector clone that recognized cartilage proteoglycan and caused adjuvant arthritis in Lewis rats, is such a cell. Untreated A2b could not trigger an immune response, but inoculating rats with pressure-treated A2b induced early remission of established adjuvant arthritis as well as resistance to subsequent disease. Specific resistance to arthritis was associated with anti-idiotypic T-cell reactivity to clone A2b and could be transferred from vaccinated rats to naive recipients using donor lymphoid cells. Aggregation of T-lymphocyte membrane components appeared to be important for an immune response because the effects of hydrostatic pressure could be reproduced by treatment of A2b with chemical cross-linkers or with agents disrupting the cytoskeleton. Populations of lymph node cells from antigen-primed rats, when treated with hydrostatic pressure, could also induce suppression of disease. Thus, effective vaccines can be developed without having to isolate the autoimmune T lymphocytes as lines or clones. These results demonstrate that effector T lymphocytes suitably treated may serve as agents for specifically controlling the immune system.

  2. Delineating the cell death mechanisms associated with skin electroporation.

    PubMed

    Schultheis, Katherine; Smith, Trevor R F; Kiosses, William B; Kraynyak, Kimberly A; Wong, Amelia; Oh, Janet; Broderick, Kate Elizabeth

    2018-06-28

    The immune responses elicited following delivery of DNA vaccines to the skin has previously been shown to be significantly enhanced by the addition of electroporation (EP) to the treatment protocol. Principally, EP increases the transfection of pDNA into the resident skin cells. In addition to increasing the levels of in vivo transfection, the physical insult induced by EP is associated with activation of innate pathways which are believed to mediate an adjuvant effect, further enhancing DNA vaccine responses. Here, we have investigated the possible mechanisms associated with this adjuvant effect, primarily focusing on the cell death pathways associated with the skin EP procedure independent of pDNA delivery. Using the minimally invasive CELLECTRA®-3P intradermal electroporation device that penetrates the epidermal and dermal layers of the skin, we have investigated apoptotic and necrotic cell death in relation to the vicinity of the electrode needles and electric field generated. Employing the well-established TUNEL assay, we detected apoptosis beginning as early as one hour after EP and peaking at the 4 hour time point. The majority of the apoptotic events were detected in the epidermal region directly adjacent to the electrode needle. Using a novel propidium iodide in vivo necrotic cell death assay, we detected necrotic events concentrated in the epidermal region adjacent to the electrode. Furthermore, we detected up-regulation of calreticulin expression on skin cells after EP, thus labeling these cells for uptake by dendritic cells and macrophages. These results allow us to delineate the cell death mechanisms occurring in the skin following intradermal EP independently of pDNA delivery. We believe these events contribute to the adjuvant effect observed following electroporation at the skin treatment site.

  3. Adjuvant-specific regulation of long-term antibody responses by ZBTB20

    PubMed Central

    Wang, Yinan

    2014-01-01

    The duration of antibody production by long-lived plasma cells varies with the type of immunization, but the basis for these differences is unknown. We demonstrate that plasma cells formed in response to the same immunogen engage distinct survival programs depending on the adjuvant. After alum-adjuvanted immunization, antigen-specific bone marrow plasma cells deficient in the transcription factor ZBTB20 failed to accumulate over time, leading to a progressive loss of antibody production relative to wild-type controls. Fetal liver reconstitution experiments demonstrated that the requirement for ZBTB20 was B cell intrinsic. No defects were observed in germinal center numbers, affinity maturation, or plasma cell formation or proliferation in ZBTB20-deficient chimeras. However, ZBTB20-deficient plasma cells expressed reduced levels of MCL1 relative to wild-type controls, and transgenic expression of BCL2 increased serum antibody titers. These data indicate a role for ZBTB20 in promoting survival in plasma cells. Strikingly, adjuvants that activate TLR2 and TLR4 restored long-term antibody production in ZBTB20-deficient chimeras through the induction of compensatory survival programs in plasma cells. Thus, distinct lifespans are imprinted in plasma cells as they are formed, depending on the primary activation conditions. The durability of vaccines may accordingly be improved through the selection of appropriate adjuvants. PMID:24711582

  4. Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes.

    PubMed

    Nikoopour, Enayat; Schwartz, Jordan A; Huszarik, Katrina; Sandrock, Christian; Krougly, Olga; Lee-Chan, Edwin; Singh, Bhagirath

    2010-05-01

    IL-17-producing T cells are regarded as potential pathogenic T cells in the induction of autoimmune diseases. Previously, we have shown that injection of adjuvants containing Mycobacterium, such as CFA or bacillus Calmette-Guérin, can prevent type 1 diabetes in NOD mice. We injected NOD mice with mycobacterial products s.c. and analyzed the IL-17-producing cells from the draining lymph nodes and spleen by restimulating whole-cell populations or CD4(+) T cells in vitro with or without IL-17-polarizing cytokines. Mice receiving CFA had a concomitant rise in the level of IL-17, IL-22, IL-10, and IFN-gamma in the draining lymph node and spleen. Adoptive transfer of splenocytes from CFA-injected NOD mice polarized with TGF-beta plus IL-6 or IL-23 delayed the development of diabetes in recipient mice. IL-17-producing cells induced by CFA maintained their IL-17-producing ability in the recipient mice. Injection of CFA also changed the cytokine profile of cells in pancreatic tissue by increasing IL-17, IL-10, and IFN-gamma cytokine gene expression. We suggest that the rise in the level of IL-17 after adjuvant therapy in NOD mice has a protective effect on type 1 diabetes development.

  5. Immunomodulatory Effects of dsRNA and Its Potential as Vaccine Adjuvant

    PubMed Central

    Jin, Bo; Sun, Tao; Yu, Xiao-Hong; Liu, Chao-Qun; Yang, Ying-Xiang; Lu, Ping; Fu, Shan-Feng; Qiu, Hui-Bin; Yeo, Anthony E. T.

    2010-01-01

    dsRNA can be detected by pattern recognition receptors, for example, TLR3, MDA-5, NLRP3 to induce proinflammatory cytokines responsible for innate/adaptive immunity. Recognized by endosomal TLR3 in myeloid DCs (mDCs), dsRNA can activate mDCs into mature antigen presenting cells (mAPCs) which in turn present antigen epitopes with MHC-I molecules to naïve T cells. Coadministration of protein and synthetic dsRNA analogues can elicit an antigen-specific Th1-polarized immune response which stimulates the CD8+ CTL response and possibly dampen Th17 response. Synthetic dsRNA analogues have been tested as vaccine adjuvant against viral infections in animal models. However, a dsRNA receptor, TLR3 can be expressed in tumor cells while other members of TLR family, for example, TLR4 and TLR2 have been shown to promote tumor progression, metastasis, and chemoresistance. Thus, the promising potential of dsRNA analogues as a tumor therapeutic vaccine adjuvant should be evaluated cautiously. PMID:20671921

  6. Eliciting Epitope-Specific CD8+ T Cell Response by Immunization with Microbial Protein Antigens Formulated with α-Galactosylceramide: Theory, Practice, and Protocols.

    PubMed

    Gilchuk, Pavlo; Knight, Frances C; Wilson, John T; Joyce, Sebastian

    2017-01-01

    CD8+ cytotoxic T lymphocytes confer protection against infectious diseases caused by viruses, bacteria, and parasites. Hence, significant efforts have been invested into devising ways to generate CD8+ T cell-targeted vaccines. Generation of microbe-free protein subunit vaccines requires a thorough knowledge of protective target antigens. Such antigens are proteolytically processed peptides presented by MHC class I molecules. To induce a robust antigen-specific CD8+ T cell response through vaccination, it is essential to formulate the antigen with an effective adjuvant. Here, we describe a versatile method for generating high-frequency antigen-specific CD8+ T cells through immunization of mice using the invariant natural killer T cell agonist α-galactosylceramide as the adjuvant.

  7. Experimental iron-inactivated Pasteurella multocida A: 1 vaccine adjuvanted with bacterial DNA is safe and protects chickens from fowl cholera.

    PubMed

    Herath, Chitra; Kumar, Pankaj; Singh, Mithilesh; Kumar, Devender; Ramakrishnan, Saravanan; Goswami, Tapas Kumar; Singh, Ajit; Ram, G C

    2010-03-08

    Fowl cholera is a serious problem in large and small scale poultry production. The present study describes the development and testing of an inactivated whole-cell, low-cost, safe, and effective vaccine for fowl cholera based on a previous work (Vaccine 23:5590-5598). Pasteurella multocida A: 1 grown in the presence of low FeCl(3) concentrations, inactivated with higher concentrations of FeCl(3), and adjuvanted with bacterial DNA from P. multocida B: 2 containing immunostimulatory CpG motifs protect chickens with a lethal P. multocida A: 1 challenge. Chickens were immunized with two whole-cell inactivated vaccine doses at 4 weeks apart and challenged 4 weeks after booster immunization. Experimental vaccines were pure, easy injectable, and caused very little distress in chickens due to their aqueous consistency. Vaccines and bacterial DNA (bDNA) posed no safety problems when chickens were injected subcutaneously (s.c.) with a single, double, and overdose of these preparations. Immunized chickens produced systemic IgY antibodies (Ab) responses and vaccine adjuvanted with bDNA protected 100% chickens from lethal intrapertoneal (i.p.) P. multocida A: 1 challenge. This work suggests that use of bDNA as an adjuvant can improve the cost-effectiveness of inactivated veterinary vaccines for their use in developing countries. Our future studies will focus on safety and potency evaluation of experimental and current vaccines using bDNA as an adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Development of Membrane-Bound GM-CSF and IL-18 as an Effective Tumor Vaccine

    PubMed Central

    Cheng, Ta-Chun; Chuang, Chih-Hung; Kao, Chien-Han; Hsieh, Yuan-Chin; Cheng, Kuang-Hung; Wang, Jaw-Yuan; Cheng, Chiu-Min; Chen, Chien-Shu; Cheng, Tian-Lu

    2015-01-01

    The development of effective adjuvant is the key factor to boost the immunogenicity of tumor cells as a tumor vaccine. In this study, we expressed membrane-bound granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-18 (IL-18) as adjuvants in tumor cells to stimulate immune response. B7 transmembrane domain fused GM-CSF and IL-18 was successfully expressed in the cell membrane and stimulated mouse splenocyte proliferation. Co-expression of GM-CSF and IL-18 reduced tumorigenesis (P<0.05) and enhanced tumor protective efficacy (P<0.05) significantly in comparison with GM-CSF alone. These results indicated that the combination of GM-CSF andIL-18 will enhance the immunogenicity of a cell-based anti-tumor vaccine. This membrane-bound approach can be applied to other cytokines for the development of novel vaccine strategies. PMID:26186692

  9. Pasteurella multocida toxin activates human monocyte-derived and murine bone marrow-derived dendritic cells in vitro but suppresses antibody production in vivo.

    PubMed

    Bagley, Kenneth C; Abdelwahab, Sayed F; Tuskan, Robert G; Lewis, George K

    2005-01-01

    Pasteurella multocida toxin (PMT) is a potent mitogen for fibroblasts and osteoblastic cells. PMT activates phospholipase C-beta through G(q)alpha, and the activation of this pathway is responsible for its mitogenic activity. Here, we investigated the effects of PMT on human monocyte-derived dendritic cells (MDDC) in vitro and show a novel activity for PMT. In this regard, PMT activates MDDC to mature in a dose-dependent manner through the activation of phospholipase C and subsequent mobilization of calcium. This activation was accompanied by enhanced stimulation of naive alloreactive T cells and dominant inhibition of interleukin-12 production in the presence of saturating concentrations of lipopolysaccharide. Surprisingly, although PMT mimics the activating effects of cholera toxin on human MDDC and mouse bone marrow-derived dendritic cells, we found that PMT is not a mucosal adjuvant and that it suppresses the adjuvant effects of cholera toxin in mice. Together, these results indicate discordant effects for PMT in vitro compared to those in vivo.

  10. [Role of Pharmacists in Completion of Adjuvant Cisplatin-Vinorelbine Chemotherapy in Japanese Patients with Non-small Cell Lung Cancer].

    PubMed

    Morimoto, Yoshihito; Takei, Hidefumi; Tachibana, Keisei; Nakazato, Yoko; Tanaka, Ryota; Nagashima, Yasushi; Watanabe, Kazuhiro; Seki, Reisuke; Shinohara, Takao; Kondo, Haruhiko

    2018-01-01

     Adjuvant cisplatin-vinorelbine chemotherapy has been shown to be effective in patients with completely resected non-small cell lung cancer (NSCLC) in several Phase III trials, but not yet in the Japanese population. Pharmacists are expected to assist patients with completion of adjuvant chemotherapy. The aim of this retrospective study was to evaluate the compliance with and safety of adjuvant cisplatin-vinorelbine chemotherapy in Japanese patients and to evaluate the contribution of pharmacists to completion of treatment. Thirty-four patients with NSCLC who received adjuvant cisplatin-vinorelbine chemotherapy at Kyorin University Hospital between January 2006 and June 2015 were reviewed. The treatment schedule comprised cisplatin 80 mg/m 2 on day 1 and vinorelbine 25 mg/m 2 on days 1 and 8 every 3 weeks. Four 3-week cycles were planned. A pharmacist provided guidance to all patients and monitored them for adverse effects thereafter. The pharmacist intervened with advice to doctors as necessary. The 4 cycles were administered in 67.6% of cases. There were no treatment-related deaths. The main grade 3 or 4 toxicities were neutropenia (76.5%) and anorexia (38.2%). The most common reason for discontinuation and dose reduction was anorexia. There were 56 instances of pharmacist intervention. In total, 96.4% of the pharmacist interventions were implemented by doctors, which included administration of an antiemetic on 15 occasions and hot fomentation for prevention of vasculitis on 7 occasions. Adjuvant cisplatin-vinorelbine chemotherapy was tolerated by most patients but was discontinued because of adverse events in some. Pharmacist intervention aids completion of planned chemotherapy and management of treatment-related adverse events.

  11. Enhanced anticancer effects of a mixture of low-dose mushrooms and Panax ginseng root extracts in human colorectal cancer cells.

    PubMed

    Lee, Mi So; Kim, Mi-Sook; Yoo, Jae Kuk; Lee, Ji Young; Ju, Jae Eun; Jeong, Youn Kyoung

    2017-09-01

    Worldwide, colorectal cancer is the third most common cancer in men and the second most common in women. As conventional colorectal cancer therapies result in various side effects, there is a need for adjuvant therapy that can enhance the conventional therapies without complications. In this study, we investigated the anticancer effects of combined mixture of the several medicinal mushrooms and Panax ginseng root extracts (also called Amex7) as an adjuvant compound in the treatment of human colorectal cancer. We observed the in vivo inhibitory effect of Amex7 (1.25, 6.25, and 12.5 ml/kg, oral administration, twice daily) on tumor growth in a mouse model xenografted with HT-29 human colorectal cancer cells. In vitro, at 6, 12, and 24 h after 4% Amex7 treatment, we analyzed cell cycle by flow cytometry and the expression levels of cell cycle progression, apoptosis, and DNA damage repair-related proteins using immunoblotting and immunofluorescence staining in HT-29 cell line. As a result, Amex7 significantly suppressed tumor growth in HT-29 human colorectal cancer cells and xenografts. In vitro, Amex7 induced G2/M arrest through the regulation of cell cycle proteins and cell death by apoptosis and autophagy. Additionally, Amex7 consistently induced DNA damage and delayed the repair of Amex7-induced DNA damage by reducing the level of HR repair proteins. In conclusion, Amex7 enhanced anticancer effects through the induction of G2/M arrest and cell death, including apoptosis and autophagy. Furthermore, Amex7 impaired DNA damage repair. The present study provides a scientific rationale for the clinical use of a combined mixture of medicinal mushrooms and P. ginseng root extracts as an adjuvant treatment in human colorectal cancer.

  12. Cholesteryl Pullulan Encapsulated TNF-α Nanoparticles Are an Effective Mucosal Vaccine Adjuvant against Influenza Virus

    PubMed Central

    Nagatomo, Daiki; Taniai, Madoka; Ariyasu, Harumi; Taniguchi, Mutsuko; Aga, Miho; Ariyasu, Toshio; Ohta, Tsunetaka; Fukuda, Shigeharu

    2015-01-01

    We encapsulated tumor necrosis factor-α (TNF-α), a major proinflammatory cytokine, into cholesteryl pullulan (CHP) to prepare TNF/CHP nanoparticles. In this report, we describe the immune-enhancing capability of the nanoparticles to act as a vaccine adjuvant. TNF/CHP nanoparticles showed excellent storage stability and enhanced host immune responses to external immunogens. The nanoparticles were effective via the nasal route of administration for inducing systemic IgG1 as well as mucosal IgA. We applied the nanoparticles in a model experimental influenza virus infection to investigate their adjuvant ability. TNF/CHP nanoparticles combined with a conventional split vaccine protected mice via nasal administration against a lethal challenge of A/PR/8/34 (H1N1) influenza virus. Mechanistic studies showed that the nanoparticles enhanced antigen uptake by dendritic cells (DCs) and moderately induced the expression of inflammation-related genes in nasopharynx lymphoid tissue (NALT), leading to the activation of both B and T cells. Preliminary safety study revealed no severe toxicity to TNF/CHP nanoparticles. Slight-to-moderate influences in nasal mucosa were observed only in the repeated administration and they seemed to be reversible. Our data show that TNF/CHP nanoparticles effectively enhance both humoral and cellular immunity and could be a potential adjuvant for vaccines against infectious diseases, especially in the mucosa. PMID:26421290

  13. Response of immune response genes to adjuvants poly [di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP), CpG oligodeoxynucleotide and emulsigen at intradermal injection site in pigs.

    PubMed

    Magiri, R B; Lai, K; Chaffey, A M; Wilson, H L; Berry, W E; Szafron, M L; Mutwiri, G K

    2016-07-01

    Understanding the mechanisms by which adjuvants mediate their effects provide critical information on how innate immunity influences the development of adaptive immunity. Despite being a critical vaccine component, the mechanisms by which adjuvants mediate their effects are not fully understood and this is especially true when they are used in large animals. This lack of understanding limits our ability to design effective vaccines. In the present study, we administered polyphosphazene (PCEP), CpG oligodeoxynucleotides (CpG), emulsigen or saline via an intradermal injection into pigs and assessed the impact on the expression of reported 'adjuvant response genes' over time. CpG induced a strong upregulation of the chemokine CXL10 several 'Interferon Response Genes', as well as TNFα, and IL-10, and a down-regulation of IL-17 genes. Emulsigen upregulated expression of chemokines CCL2 and CCL5, proinflammatory cytokines IL-6 and TNFα, as well as TLR9, and several IFN response genes. PCEP induced the expression of chemokine CCL2 and proinflammatory cytokine IL-6. These results suggest that emulsigen and CpG may promote recruitment of innate immune cells and Th1 type cytokine production but that PCEP may promote a Th-2 type immune response through the induction of IL-6, an inducer of B cell activity and differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. [Phase II clinical trial of autologous dendritic cell vaccine with immunologic adjuvant in cutaneous melanoma patients].

    PubMed

    Baldueva, I A; Novik, A V; Moiseenko, V M; Nekhaeva, T L; Danilova, A B; Danilov, A O; Protsenko, S A; Petrova, T Iu; Uleĭskaia, G I; Shchekina, L A; Semenova, A I; Mikhaĭlichenko, T D; Teletaeva, G M; Zhabina, A S; Volkov, N V; Komarov, Iu I

    2012-01-01

    This paper describes the clinical results and immunologic changes in cutaneous melanoma patients receiving active specific immunotherapy with autologous dendritic cell vaccine (DCV) in combination with cyclophosphamide used as immunologic adjuvant. Twenty eight patients with morphologically verified stage III-IV cutaneous melanoma receiving therapy in N. N. Petrov Research Institute of Oncology between 2008 and 2011 were included in the study. All patients signed an informed consent form. Nineteen patients (67,9%) received DCV in therapeutic setting, 9 (32,1%) received it in adjuvant setting. DCV therapy was well tolerated. No serious adverse events were registered. Frequent adverse events included Grade 1-2 unspecific symptoms (fever, fatigue, flu-like symptoms) observed in 22% patients after 3,5% of vaccinations. In therapeutic settings the use DCV lead to clinical effect (PR+SD) in 36,6% of patients. PR was observed in 5% of (95% CI 0-15%) patients, SD in 31,6% (95% CI 13-56%). Duration of the objective responses was 168-965+days. Addition of immunologic adjuvant (cyclophosphamide 300 mg/m2 IV 2 hours) 3 days before vaccination increased its efficacy. In this patients group (n=12) the therapy lead to clinical benefit in 42% (95% CI 17-69%) of cases, median time to progression was 91 (95% CI 55-126) days. This regimen was selected for adjuvant therapy. In the adjuvant therapy group (n=9) the median time to progression was 112 (95% CI 58-166) days. Immunologic monitoring showed correlation ofT- and B-cell immune response with DCV clinical efficacy (p<0,05), no correlation with delayed hypersensivity reaction was observed (p>0,1). DCV is well tolerated and shows immunological and clinical response in stage III-IV skin melanoma patients.

  15. Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo.

    PubMed

    Pi, Chia-Chen; Chu, Ching-Liang; Lu, Chu-Ying; Zhuang, Yu-Jing; Wang, Cheng-Li; Yu, Yao-Hsuan; Wang, Hui-Yi; Lin, Chih-Chung; Chen, Chun-Jen

    2014-01-09

    The fungus of Ganoderma is a basidiomycete that possesses a variety of pharmacological effects and has been used in traditional Asian medicine for centuries. Ganoderma formosanum is a native Ganoderma species isolated in Taiwan, and we have previously demonstrated that PS-F2, a polysaccharide fraction purified from the submerged culture broth of G. formosanum, exhibits immunostimulatory properties in macrophages. In this study, we further characterized the adjuvant functions of PS-F2. In vitro, PS-F2 stimulated dendritic cells (DCs) to produce proinflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-12/IL-23 p40. PS-F2 also stimulated DCs to express the maturation markers CD40, CD80, CD86, and MHC class II. In a murine splenocyte culture, PS-F2 treatment resulted in elevated expression of T-bet and interferon (IFN)-γ in T lymphocytes. When used as an adjuvant in vivo with the ovalbumin (OVA) antigen, PS-F2 stimulated OVA-specific antibody production and primed IFN-γ production in OVA-specific T lymphocytes. PS-F2-adjuvated immunization also induced OVA-specific CTLs, which protected mice from a challenge with tumor cells expressing OVA. Collectively, our data show that PS-F2 functions as an adjuvant capable of inducing a Th1-polarized adaptive immune response, which would be useful in vaccines against viruses and tumors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Membrane repair and immunological danger

    PubMed Central

    Andrews, Norma W.

    2005-01-01

    Antigens are able to elicit productive immune responses only when second signals are provided by adjuvant molecules. It is well established that exogenously acquired, pathogen-associated molecular patterns fulfil this adjuvant role when recognized by specific receptors on antigen-presenting cells. Recent evidence points to the existence of another class of adjuvant, which is apparently released from injured cells. Such endogenous adjuvants, referred to as 'danger' signals, could alert the immune system to situations that cause cell damage, but not necessarily those that involve infections. Endogenous adjuvants provide a good explanation for immune responses generated against tumours and autologous tissues, but it has been difficult to explain how a constant activation of the immune system is avoided, considering the frequency at which cells are injured in vivo. Here, we suggest that the efficiency with which cells reseal wounds in their plasma membrane might be an important factor in the balance between tolerance and autoimmunity. Recent observations in synaptotagmin-VII-deficient mice suggest that defective membrane repair could lead to autoimmunity in tissues that are more susceptible to mechanical injury. PMID:16138093

  17. A Protective Vaccine against Chlamydia Genital Infection Using Vault Nanoparticles without an Added Adjuvant.

    PubMed

    Jiang, Janina; Liu, Guangchao; Kickhoefer, Valerie A; Rome, Leonard H; Li, Lin-Xi; McSorley, Stephen J; Kelly, Kathleen A

    2017-01-19

    Chlamydia trachomatis genital infection is the most common sexually transmitted bacterial disease, causing a significant burden to females due to reproductive dysfunction. Intensive screening and antibiotic treatment are unable to completely prevent female reproductive dysfunction, thus, efforts have become focused on developing a vaccine. A major impediment is identifying a safe and effective adjuvant which induces cluster of differentiation 4 (CD4) cells with attributes capable of halting genital infection and inflammation. Previously, we described a natural nanocapsule called the vault which was engineered to contain major outer membrane protein (MOMP) and was an effective vaccine which significantly reduced early infection and favored development of a cellular immune response in a mouse model. In the current study, we used another chlamydial antigen, a polymorphic membrane protein G-1 (PmpG) peptide, to track antigen-specific cells and evaluate, in depth, the vault vaccine for its protective capacity in the absence of an added adjuvant. We found PmpG-vault immunized mice significantly reduced the genital bacterial burden and histopathologic parameters of inflammation following a C. muridarum challenge. Immunization boosted antigen-specific CD4 cells with a multiple cytokine secretion pattern and reduced the number of inflammatory cells in the genital tract making the vault vaccine platform safe and effective for chlamydial genital infection. We conclude that vaccination with a Chlamydia -vault vaccine boosts antigen-specific immunities that are effective at eradicating infection and preventing reproductive tract inflammation.

  18. A potential adjuvant chemotherapeutics, 18β-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2.

    PubMed

    Ma, Taotao; Huang, Cheng; Meng, Xiaoming; Li, Xiaofeng; Zhang, Yilong; Ji, Shuai; Li, Jun; Ye, Min; Liang, Hong

    2016-05-05

    Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by an effective adjuvant via epigenetic modification through targeting HDAC2. Molecular docking and SPR assay firstly reported that 18βGA, major metabolite of GA, could directly bind to HDAC2 and inhibit the activity of HDAC2. The effects and mechanisms of GA and 18βGA were assessed in CP-induced AKI in C57BL/6 mice, and in CP-treated HK-2 and mTEC cells lines. TUNEL and FCM results confirmed that GA and 18βGA could inhibit apoptosis of renal tubular epithelial cells induced by CP in vivo and in vitro. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by 18βGA in AKI models while siRNA BMP-7 could reduce the inhibitory effect of 18βGA on apoptosis. Results of current study indicated that 18βGA inhibited apoptosis of renal tubular epithelial cells via enhancing the level of BMP-7 epigenetically through targeting HDAC2, therefore protecting against CP-induced AKI. These available evidence, which led to an improved understanding of molecular recognition, suggested that 18βGA could serve as a potential clinical adjuvant in chemotherapy.

  19. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy.

    PubMed

    Duncan, Brynn B; Highfill, Steven L; Qin, Haiying; Bouchkouj, Najat; Larabee, Shannon; Zhao, Peng; Woznica, Iwona; Liu, Yuxin; Li, Youhua; Wu, Wengen; Lai, Jack H; Jones, Barry; Mackall, Crystal L; Bachovchin, William W; Fry, Terry J

    2013-10-01

    Multimodality therapy consisting of surgery, chemotherapy, and radiation will fail in approximately 40% of patients with pediatric sarcomas and result in substantial long-term morbidity in those who are cured. Immunotherapeutic regimens for the treatment of solid tumors typically generate antigen-specific responses too weak to overcome considerable tumor burden and tumor suppressive mechanisms and are in need of adjuvant assistance. Previous work suggests that inhibitors of DASH (dipeptidyl peptidase IV activity and/or structural homologs) enzymes can mediate tumor regression by immune-mediated mechanisms. Herein, we demonstrate that the DASH inhibitor, ARI-4175, can induce regression and eradication of well-established solid tumors, both as a single agent and as an adjuvant to a dendritic cell (DC) vaccine and adoptive cell therapy (ACT) in mice implanted with the M3-9-M rhabdomyosarcoma cell line. Treatment with effective doses of ARI-4175 correlated with recruitment of myeloid (CD11b) cells, particularly myeloid DCs, to secondary lymphoid tissues and with reduced frequency of intratumoral monocytic (CD11bLy6-CLy6-G) myeloid-derived suppressor cells. In immunocompetent mice, combining ARI-4175 with a DC vaccine or ACT with tumor-primed T cells produced significant improvements in tumor responses against well-established M3-9-M tumors. In M3-9-M-bearing immunodeficient (Rag1) mice, ACT combined with ARI-4175 produced greater tumor responses and significantly improved survival compared with either treatment alone. These studies warrant the clinical investigation of ARI-4175 for treatment of sarcomas and other malignancies, particularly as an adjuvant to tumor vaccines and ACT.

  20. Liposomal preparations of muramyl glycopeptides as immunomodulators and adjuvants.

    PubMed

    Turánek, Jaroslav; Ledvina, Miroslav; Kasná, Andrea; Vacek, Antonín; Hríbalova, Vera; Krejcí, Josef; Miller, Andrew D

    2006-04-12

    The need for safe and structurally defined immunomodulators and adjuvants is increasing in connection with the recently observed marked increase in the prevalence of pathological conditions characterized by immunodeficiency. Important groups of such compounds are muramyl glycopeptides, analogs of muramyl dipeptide (MDP), glucosaminyl-muramyl dipeptide (GMDP), and desmuramylpeptides. We have designed and synthesized new types of analogs with changes in both the sugar and the peptide parts of the molecule that show a high immunostimulating and adjuvant activity and suppressed adverse side effects. The introduction of lipophilic residues has also improved their incorporation into liposomes, which represent a suitable drug carrier. The proliposome-liposome method is based on the conversion of the initial proliposome preparation into liposome dispersion by dilution with the aqueous phase. The description of a home-made stirred thermostated cell and its link-up with a liquid delivery system for a rapid and automated preparation of multilamellar liposomes at strictly controlled conditions (sterility, temperature, dilution rate and schedule) is presented. The cell has been designed for laboratory-scale preparation of liposomes (300-1000 mg of phospholipid per run) in a procedure taking less than 90 min. The method can be readily scaled up. Examples of adjuvant and immunostimulatory effect of liposomal preparation in mice model will be presented.

  1. Efficacy of Rasayana Avaleha as adjuvant to radiotherapy and chemotherapy in reducing adverse effects.

    PubMed

    Vyas, Purvi; Thakar, A B; Baghel, M S; Sisodia, Arvind; Deole, Yogesh

    2010-10-01

    Cancer is the most dreadful disease affecting mankind. The available treatments such as chemotherapy and radiotherapy have cytotoxic effects, which are hazardous to the normal cells of the patient, causing many unnecessary effects. This further leads to complications of the therapy, impaired health, and deterioration of quality of life, resulting in mandatory stoppage of the treatment. In the present study, the efficacy of an Ayurvedic formulation, Rasayana Avaleha, has been evaluated as an adjuvant medication to modern radiotherapy and chemotherapy. A total of 36 cancer patients were registered in this trial and were divided into two groups, group A and group B. In group A, the patients were treated with radiotherapy and chemotherapy along with adjuvant Rasayana Avaleha (RT + CT + RA), while in group B only radiotherapy and chemotherapy (RT + CT) were given, as the control group. After assessing the results, it was observed that Rasayana Avaleha gave better results in controlling the adverse effect of chemotherapy and radiotherapy in comparison with the control group. Therefore, Rasayana Avaleha has proved to be an effective adjuvant therapy in protecting patients from the adverse effects of chemotherapy and radiotherapy.

  2. Transoral Resection of Human Papillomavirus (HPV)-Positive Squamous Cell Carcinoma of the Oropharynx: Outcomes with and Without Adjuvant Therapy.

    PubMed

    Jackson, Ryan S; Sinha, Parul; Zenga, Joseph; Kallogjeri, Dorina; Suko, Jasmina; Martin, Eliot; Moore, Eric J; Haughey, Bruce H

    2017-11-01

    With the rise of oropharyngeal squamous cell carcinoma associated with human papillomavirus (HPV), appropriate treatment strategies continue to be tailored toward minimizing treatment while preserving oncologic outcomes. This study aimed to compare the outcomes for those undergoing transoral resection with or without adjuvant therapy for HPV-related oropharyngeal carcinoma. A case-match cohort analysis was performed at two institutions on patients with HPV-related oropharyngeal squamous cell carcinoma. All the subjects underwent transoral surgery and neck dissection. The patients treated with surgery alone were matched 1:1 to those treated with surgery and adjuvant therapy using two groups identified as confounders: T-stage (T1/2 or T3/4) and number of pathologically positive lymph nodes (≤4 or >4). The study identified 105 matched pairs, with a median follow-up period of 42 months (range 3.1-102.3 months). The patients were staged as T1/T2 (86%) or T3/4 (14%). Each group had five patients with more than four positive lymph nodes. Adjuvant therapy significantly improved disease-free survival (hazard ratio [HR] 0.067; 95% confidence interval [CI] 0.01-0.62) and was associated with a lower risk of local and regional recurrence (risk ratio [RR] 0.096; 95% CI 0.02-0.47). No difference in disease-specific survival (HR 0.22; 95% CI 0.02-2.57) or overall survival (HR 0.18; 95% CI 0.01-2.4) was observed with the addition of adjuvant therapy. The risk of the gastrostomy tube was higher for those receiving adjuvant therapy (RR 7.3; 95% CI 2.6-20.6). Transoral surgery is an effective approach for the treatment of HPV-related oropharyngeal carcinoma. The addition of adjuvant therapy appears to decrease the risk of recurrence and improve disease-free survival but may not significantly improve overall survival.

  3. Functionalized graphene oxide serves as a novel vaccine nano-adjuvant for robust stimulation of cellular immunity

    NASA Astrophysics Data System (ADS)

    Xu, Ligeng; Xiang, Jian; Liu, Ye; Xu, Jun; Luo, Yinchan; Feng, Liangzhu; Liu, Zhuang; Peng, Rui

    2016-02-01

    Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual-polymer modified GOs (GO-PEG-PEI) can act as a positive modulator to promote the maturation of dendritic cells (DCs) and enhance their cytokine secretion through the activation of multiple toll-like receptor (TLR) pathways while showing low toxicity. Moreover, this GO-PEG-PEI can serve as an antigen carrier to effectively shuttle antigens into DCs. These two advantages enable GO-PEG-PEI to serve as a novel vaccine adjuvant. In the subsequent in vivo experiments, compared with free Ure B and clinically used aluminum-adjuvant-based vaccine (Alum-Ure B), GO-PEG-PEI-Ure B induces stronger cellular immunity via intradermal administration, suggesting promising applications in cancer immunotherapy. Our work not only presents a novel, highly effective GO-based vaccine nano-adjuvant, but also highlights the critical roles of surface chemistry for the rational design of nano-adjuvants.Benefiting from their unique physicochemical properties, graphene derivatives have attracted great attention in biomedicine. In this study, we carefully engineered graphene oxide (GO) as a vaccine adjuvant for immunotherapy using urease B (Ure B) as the model antigen. Ure B is a specific antigen for Helicobacter pylori, which is a class I carcinogen for gastric cancer. Polyethylene glycol (PEG) and various types of polyethylenimine (PEI) were used as coating polymers. Compared with single-polymer modified GOs (GO-PEG and GO-PEI), certain dual-polymer modified GOs (GO-PEG-PEI) can act as a positive modulator to promote the maturation of dendritic cells (DCs) and enhance their cytokine secretion through the activation of multiple toll-like receptor (TLR) pathways while showing low toxicity. Moreover, this GO-PEG-PEI can serve as an antigen carrier to effectively shuttle antigens into DCs. These two advantages enable GO-PEG-PEI to serve as a novel vaccine adjuvant. In the subsequent in vivo experiments, compared with free Ure B and clinically used aluminum-adjuvant-based vaccine (Alum-Ure B), GO-PEG-PEI-Ure B induces stronger cellular immunity via intradermal administration, suggesting promising applications in cancer immunotherapy. Our work not only presents a novel, highly effective GO-based vaccine nano-adjuvant, but also highlights the critical roles of surface chemistry for the rational design of nano-adjuvants. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09208f

  4. Cytotoxic effect of Erythroxylum daphnites extract is associated with G1 cell cycle arrest and apoptosis in oral squamous cell carcinoma.

    PubMed

    Elias, Silvia T; Macedo, Carolina C S; Simeoni, Luiz A; Silveira, Dâmaris; Magalhães, Pérola O; Lofrano-Porto, Adriana; Coletta, Ricardo D; Neves, Francisco A R; Guerra, Eliete N S

    2016-01-01

    Plant-derived molecules showing antineoplastic effects have recently gained increased attention as potential adjuvants to traditional therapies for various cancers. Cerrado biome in Brazil contains high floral biodiversity, but knowledge about the potential therapeutic effects of compounds derived from that flora is still limited. The present study investigated the antineoplastic activity of Erythroxylum daphnites Mart., a Brazilian native plant from Cerrado biome, in the SCC-9 oral squamous cell carcinoma cell line. Cells were treated with various concentrations of hexane extract of Erythroxylum daphnites leaves (EDH) and assessed for cytotoxicity, proliferation, and apoptosis. Thin layer chromatography was conducted to characterize the substances present in EDH. Our results showed that EDH exerted anti-proliferative effects in SCC-9 cells by stabilizing the cell cycle at G1 phase in association with reduced intracellular levels of cyclins D and E and increased level of p21. EDH also demonstrated pro-apoptotic properties, as shown by an increased expression of caspase-3. Triterpenes were the major constituents of EDH. Our findings demonstrated a cytotoxic effect of EDH against SCC-9 cells in vitro mediated by the restraint of cellular proliferation and induction of apoptosis. Taken together, these findings support EDH constituents as potential therapeutic adjuvants for oral cancer.

  5. Enhancement of bone consolidation in mandibular distraction osteogenesis: a contemporary review of experimental studies involving adjuvant therapies.

    PubMed

    Hong, Paul; Boyd, Daniel; Beyea, Steven D; Bezuhly, Michael

    2013-07-01

    One of the major disadvantages of mandibular distraction osteogenesis (MDO) is the prolonged time required for consolidation of the regenerate bone. The objective of the present study is to perform a contemporary review of various adjuvant therapies to enhance bone consolidation in MDO. A PubMed search for articles related to MDO, along with the references of those articles, was performed. Inclusion and exclusion criteria were applied to all experimental studies assessing adjuvant therapies to enhance bone consolidation. A total of 1414 titles and abstracts were initially reviewed; 61 studies were included for full review. Many studies involved growth factors, hormones, pharmacological agents, gene therapy, and stem cells. Other adjuvant therapies included mechanical stimulation, laser therapy, and hyperbaric oxygen. Majority of the studies demonstrated positive bone healing effects and thus adjuvant therapies remain a viable strategy to enhance and hasten the consolidation period. Although most studies have demonstrated promising results, many questions still remain, such as optimal amount, timing, and delivery methods required to stimulate the most favorable bone regeneration. As well, further studies comparing various adjuvant therapies and documentation of long-term adverse effects are required prior to clinical application. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Adjuvant therapy in renal cell carcinoma: does higher risk for recurrence improve the chance for success?

    PubMed

    Figlin, R A; Leibovich, B C; Stewart, G D; Negrier, S

    2018-02-01

    The success of targeted therapies, including inhibitors of the vascular endothelial growth factor pathway or the mammalian target of rapamycin, in the treatment of metastatic renal cell carcinoma led to interest in testing their efficacy in the adjuvant setting. Results from the first trials are now available, with other studies due to report imminently. This review provides an overview of adjuvant targeted therapy in renal cell carcinoma, including interpretation of currently available conflicting data and future direction of research. We discuss the key differences between the completed targeted therapy adjuvant trials, and highlight the importance of accurately identifying patients who are likely to benefit from adjuvant treatment. We also consider reasons why blinded independent radiology review and treatment dose may prove critical for adjuvant treatment success. The implications of using disease-free survival as a surrogate end point for overall survival from the patient perspective and measurement of health benefit have recently been brought into focus and are discussed. Finally, we discuss how the ongoing adjuvant trials with targeted therapies and checkpoint inhibitors may improve our understanding and ability to prevent tumor recurrence after nephrectomy in the future.

  7. QS-21: a potent vaccine adjuvant

    USDA-ARS?s Scientific Manuscript database

    QS-21 is an potent adjuvant derived from the bark of a Chilean tree, Quillaja saponaria. One of the advantages of this adjuvant is that it promotes a balanced humoral and cell-mediaed immune response and can be widely applicable to a variety of vaccines. This adjuvant has used for some veterinary va...

  8. Aluminum adjuvants of vaccines injected into the muscle: Normal fate, pathology and associated disease.

    PubMed

    Gherardi, R K; Aouizerate, J; Cadusseau, J; Yara, S; Authier, F J

    2016-06-01

    Aluminum oxyhydroxide (Alhydrogel(®)) is a nano-crystalline compound forming aggregates that has been introduced in vaccine for its immunologic adjuvant effect in 1926. It is the most commonly used adjuvant in human and veterinary vaccines but mechanisms by which it stimulates immune responses remain ill-defined. Although generally well tolerated on the short term, it has been suspected to occasionally cause delayed neurologic problems in susceptible individuals. In particular, the long-term persistence of aluminic granuloma also termed macrophagic myofasciitis is associated with chronic arthromyalgias and fatigue and cognitive dysfunction. Safety concerns largely depend on the long biopersistence time inherent to this adjuvant, which may be related to its quick withdrawal from the interstitial fluid by avid cellular uptake; and the capacity of adjuvant particles to migrate and slowly accumulate in lymphoid organs and the brain, a phenomenon documented in animal models and resulting from MCP1/CCL2-dependant translocation of adjuvant-loaded monocyte-lineage cells (Trojan horse phenomenon). These novel insights strongly suggest that serious re-evaluation of long-term aluminum adjuvant phamacokinetics and safety should be carried out. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Viral Vaccine Immunogenicity in Relation to Host Cell-Mediated and Humoral Immune Responses.

    DTIC Science & Technology

    1976-05-01

    adjuvants, particularly complete Freund’s adjuvant or Bordetella pertussis , were donors capable of consistently transferring adoptive immunity...vac- cine combined with adjuvants, particularly complete Freund’s adjuvant or Bordetella pertussis , were donors capable of consistently transferring...Freund’s adjuvant and Bordetella pertussis , are consistently capable of producing early and brisk serum neutralizing antibody responses in adoptively

  10. Vaccines, adjuvants and autoimmunity.

    PubMed

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Enhancement of antigen-specific CD4 + and CD8 + T cell responses using a self-assembled biologic nanolipoprotein particle vaccine

    DOE PAGES

    Weilhammer, Dina; Dunkle, Alexis D.; Blanchette, Craig D.; ...

    2017-02-14

    To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. Here, we utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4 + and CD8 + T cells in vitro compared to co-administration of free OVA andmore » MPLA. Upon intranasal immunization of mice harboring TCR-transgenic cells, NLPs enhanced the adjuvant effects of MPLA and the in vivo delivery of OVA, leading to significantly increased expansion of CD4 + and CD8 + T cells in lung-draining lymph nodes. Therefore, NLPs are a promising vaccine platform for inducing T cell responses following intranasal administration.« less

  12. Enhancement of antigen-specific CD4 + and CD8 + T cell responses using a self-assembled biologic nanolipoprotein particle vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilhammer, Dina; Dunkle, Alexis D.; Blanchette, Craig D.

    To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. Here, we utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4 + and CD8 + T cells in vitro compared to co-administration of free OVA andmore » MPLA. Upon intranasal immunization of mice harboring TCR-transgenic cells, NLPs enhanced the adjuvant effects of MPLA and the in vivo delivery of OVA, leading to significantly increased expansion of CD4 + and CD8 + T cells in lung-draining lymph nodes. Therefore, NLPs are a promising vaccine platform for inducing T cell responses following intranasal administration.« less

  13. Treatment of adjuvant arthritis with granulocyte-colony stimulating factor and peptide derived from heat shock protein 65.

    PubMed

    Brendolan, Andrea; Higuchi, Masanori; Sibley, Richard; Strober, Samuel

    2003-01-01

    Adjuvant arthritis in Lewis rats is induced by the subcutaneous injection of Mycobacterium tuberculosis in mineral oil, and the predominant T cell immune reactivity is against the heat shock protein 65 derived peptide 176-190. We treated Lewis rats with human recombinant G-CSF followed by (i.v) administration of peptide 176-190 after induction of adjuvant arthritis (AA), and observed decreased disease severity, joint destruction, new bone formation and joint ankylosis. Treatment with G-CSF alone was also effective, but to a lesser extent. In addition, we found that splenocytes from rats treated with G-CSF had reduced antigen presenting capacity compared with splenocytes from vehicle treated rats. Primed lymph node cells from G-CSF plus peptide treated rats showed a marked reduction in proliferation and secretion of IFN-gamma after stimulation with the heat shock protein peptide in vitro as compared to controls.

  14. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial.

    PubMed

    Howard, Leigh M; Hoek, Kristen L; Goll, Johannes B; Samir, Parimal; Galassie, Allison; Allos, Tara M; Niu, Xinnan; Gordy, Laura E; Creech, C Buddy; Prasad, Nripesh; Jensen, Travis L; Hill, Heather; Levy, Shawn E; Joyce, Sebastian; Link, Andrew J; Edwards, Kathryn M

    2017-01-01

    Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18-49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. ClinicalTrials.gov NCT01573312.

  15. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial

    PubMed Central

    Samir, Parimal; Galassie, Allison; Allos, Tara M.; Niu, Xinnan; Gordy, Laura E.; Creech, C. Buddy; Prasad, Nripesh; Jensen, Travis L.; Hill, Heather; Levy, Shawn E.; Joyce, Sebastian; Link, Andrew J.; Edwards, Kathryn M.

    2017-01-01

    Background Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. Objective and Methods We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18–49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Results Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Conclusions Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. Trial Registration ClinicalTrials.gov NCT01573312 PMID:28099485

  16. The adjuvanticity of ophiopogon polysaccharide liposome against an inactivated porcine parvovirus vaccine in mice.

    PubMed

    Fan, Yunpeng; Ma, Xia; Hou, Weifeng; Guo, Chao; Zhang, Jing; Zhang, Weimin; Ma, Lin; Song, Xiaoping

    2016-01-01

    In this study, the adjuvant activity of ophiopogon polysaccharide liposome (OPL) was investigated. The effects of OPL on the splenic lymphocyte proliferation of mice were measured in vitro. The results showed that OPL could significantly promote lymphocyte proliferation singly or synergistically with PHA and LPS and that the effect was better than ophiopogon polysaccharide (OP) at most of concentrations. The adjuvant activities of OPL, OP and mineral oil were compared in BALB/c mice inoculated with inactivated PPV in vivo. The results showed that OPL could significantly enhance lymphocyte proliferation, increase the proportion of CD4(+) and CD8(+) T cells, improve the HI antibody titre and specific IgG response, and promote the production of cytokines, and the efficacy of OPL was significantly better than that of OP. In addition, OPL significantly improved the cellular immune response compared with oil adjuvant. These results suggested that OPL possess superior adjuvanticity and that a medium dose had the best efficacy. Therefore, OPL can be used as an effective immune adjuvant for an inactivated PPV vaccine. Copyright © 2015. Published by Elsevier B.V.

  17. Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines.

    PubMed

    Moyle, Peter Michael

    Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination

    PubMed Central

    Bol, Kalijn F; Aarntzen, Erik H J G; Hout, Florentien E M in 't; Schreibelt, Gerty; Creemers, Jeroen H A; Lesterhuis, W Joost; Gerritsen, Winald R; Grunhagen, Dirk J; Verhoef, Cornelis; Punt, Cornelis J A; Bonenkamp, Johannes J; de Wilt, Johannes H W; Figdor, Carl G; de Vries, I Jolanda M

    2016-01-01

    Melanoma patients with regional metastatic disease are at high risk for recurrence and metastatic disease, despite radical lymph node dissection (RLND). We investigated the immunologic response and clinical outcome to adjuvant dendritic cell (DC) vaccination in melanoma patients with regional metastatic disease who underwent RLND with curative intent. In this retrospective study, 78 melanoma patients with regional lymph node metastasis who underwent RLND received autologous DCs loaded with gp100 and tyrosinase and were analyzed for functional tumor-specific T cell responses in skin-test infiltrating lymphocytes. The study shows that adjuvant DC vaccination in melanoma patients with regional lymph node metastasis is safe and induced functional tumor-specific T cell responses in 71% of the patients. The presence of functional tumor-specific T cells was correlated with a better 2-year overall survival (OS) rate. OS was significantly higher after adjuvant DC vaccination compared to 209 matched controls who underwent RLND without adjuvant DC vaccination, 63.6 mo vs. 31.0 mo (p = 0.018; hazard ratio 0.59; 95%CI 0.42–0.84). Five-year survival rate increased from 38% to 53% (p < 0.01). In summary, in melanoma patients with regional metastatic disease, who are at high risk for recurrence and metastatic disease after RLND, adjuvant DC vaccination is well tolerated. It induced functional tumor-specific immune responses in the majority of patients and these were related to clinical outcome. OS was significantly higher compared to matched controls. A randomized clinical trial is needed to prospectively validate the efficacy of DC vaccination in the adjuvant setting. PMID:26942068

  19. λ-Carrageenan improves the antitumor effect of dendritic cellbased vaccine.

    PubMed

    Li, Jinyao; Aipire, Adila; Li, Jinyu; Zhu, Hongge; Wang, Yanping; Guo, Wenjia; Li, Xiaoqin; Yang, Jia; Liu, Chunling

    2017-05-02

    In this study, we investigated the effect of λ-carrageenan on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We found that λ-carrageenan dose-dependently decreased the endocytosis of DCs, promoted DC maturation and increased cytokine production through TLR4 mediated signaling pathway. λ-carrageenan treatment also enhanced the ability of DCs in the stimulating allogenic splenocyte proliferation. In TC-1 tumor mouse model, HPV peptides pulsed λ-carrageenan-DC (HPV-CGN-DC) significantly inhibited tumor growth compared with control group. The frequencies of CD4+ and CD8+ T cells in spleens of tumor mice and their activation status were significantly increased in HPV-CGN-DC group, but the frequencies of natural regulatory T cells and CD11b+Gr-1+ cells were significantly decreased. Further, HPV-CGN-DC induced strong CD8+ T cell responses, which are negatively correlated with tumor volumes. The results suggested that λ-carrageenan promoted DC maturation through TLR4 signaling pathway and could be used as the adjuvant in DC-based vaccines.

  20. Recent advances in nontoxic Escherichia coli heat-labile toxin and its derivative adjuvants.

    PubMed

    Ma, Yongping

    2016-11-01

    The nontoxic heat-labile enterotoxin (LT) of Escherichia coli and the B subunit of LT (LTB) have been extensively studied as potent vaccine adjuvants. Areas covered: This review covers the area of enterotoxin based vaccine adjuvant and summarizes the development of nontoxic LT mutant (mLT) and LTB and their potency as oral, parenteral and injection adjuvants. Recent evidences indicated that the mechanism of LTB adjuvanticity was to enhance the turnover of dendritic cells (DCs) in spleen and increase DCs capacity to perform as antigen presentation cells (APCs) encountered with T cells. LTB also induces B and T cells clustering and delay/arrest in T-cell division following endocytosis or B-cell receptor (BCR) uptaking of antigen in a ganglioside-mediated manner. Expert commentary: It is pointed out that the immunogenicity of LTB (or LT) is more important than the receptor binding property (or ADP-ribosylation activity) for the adjuvanticity of LT toxoid. The immunogenicity of LTB (or LT) might confer unknown characteristics to maintain LT toxoid adjuvanticity.

  1. Recombinant interleukin-12 and interleukin-18 antitumor therapy in a guinea-pig hepatoma cell implant model.

    PubMed

    Shiratori, Ikuo; Suzuki, Yasuhiko; Oshiumi, Hiroyuki; Begum, Nasim A; Ebihara, Takashi; Matsumoto, Misako; Hazeki, Kaoru; Kodama, Ken; Kashiwazaki, Yasuo; Seya, Tsukasa

    2007-12-01

    Interleukin (IL)-12 and IL-18 are secreted by myeloid cells activated with adjuvants such as Bacillus Calmette-Guérin (BCG) cell wall. They induce T-helper 1 polarization in the host immune system and upregulate production of lymphocyte interferon-gamma, which leads to the induction of an antitumor gene program. It has been reported that humans have an immune system that more closely resembles that of the guinea pig in adjuvant-response features rather than the mouse system, which prevents the mouse results being extrapolated to human immunotherapy. Here we have constructed a tumor-implant system in guinea pigs to evaluate the antitumor potential of guinea pig IL-12 (gpIL-12) and guinea pig IL-18 (gpIL-18). Purified recombinant gpIL-12 and gpIL-18 were prepared and applied intraperitoneally to tumor-bearing (line 10 hepatoma) guinea pigs as the basis of the adjuvant immunotherapy. Intraperitoneal administration of gpIL-12 and gpIL-18 led to retardation of primary tumor growth and suppression of lymph-node metastasis in tumor-bearing guinea pigs. The permissible range of IL-12 appeared wider in guinea pigs than in mice. Even at an IL-12 dose higher than that in mice, there was no evidence of side-effects until day 26, when the guinea pigs were killed. gpIL-18 augmented the antitumor effect of gpIL-12 but exerted less ability to suppress lymph-node metastasis. The effects of gpIL-12 and gpIL-18 on the tumors implanted in guinea pigs will encourage us to use IL-12- and IL-18-inducible adjuvants for immunotherapy in human patients with solid cancer.

  2. Evaluation of adjuvant activity of fractions derived from Agaricus blazei, when in association with the recombinant LiHyp1 protein, to protect against visceral leishmaniasis.

    PubMed

    de Jesus Pereira, Nathália Cristina; Régis, Wiliam César Bento; Costa, Lourena Emanuele; de Oliveira, Jamil Silvano; da Silva, Alanna Gomes; Martins, Vivian Tamietti; Duarte, Mariana Costa; de Souza, José Roberto Rodrigues; Lage, Paula Sousa; Schneider, Mônica Santos; Melo, Maria Norma; Soto, Manuel; Soares, Sandra Aguiar; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz

    2015-06-01

    The development of effective prophylactic strategies to prevent leishmaniasis has become a high priority. No less important than the choice of an antigen, the association of an appropriate adjuvant is necessary to achieve a successful vaccination, as the majority of the tested antigens contain limited immunogenic properties, and need to be supplemented with immune response adjuvants in order to boost their immunogenicity. However, few effective adjuvants that can be used against leishmaniasis exist on the market today; therefore, it is possible to speculate that the research aiming to identify new adjuvants could be considered relevant. Recently, Agaricus blazei extracts have proved to be useful in enhancing the immune response to DNA vaccines against some diseases. This was based on the Th1 adjuvant activity of the polysaccharide-rich fractions from this mushroom. In this context, the present study evaluated purified fractions derived from Agaricus blazei as Th1 adjuvants through in vitro assays of their immune stimulation of spleen cells derived from naive BALB/c mice. Two of the tested six fractions (namely F2 and F4) were characterized as polysaccharide-rich fractions, and were able to induce high levels of IFN-γ, and low levels of IL-4 and IL-10 in the spleen cells. The efficacy of adjuvant action against L. infantum was evaluated in BALB/c mice, with these fractions being administered together with a recombinant antigen, LiHyp1, which was previously evaluated as a vaccine candidate, associated with saponin, against visceral leishmaniasis (VL). The associations between LiHyp1/F2 and LiHyp1/F4 were able to induce an in vivo Th1 response, which was primed by high levels of IFN-γ, IL-12, and GM-CSF, by low levels of IL-4 and IL-10; as well as by a predominance of IgG2a antibodies in the vaccinated animals. After infection, the immune profile was maintained, and the vaccines proved to be effective against L. infantum. The immune stimulatory effects in the BALB/c mice proved to be similar when comparing the F2 and F4 fractions with a known Th1 adjuvant (saponin), though animals vaccinated with saponin did present a slight to moderate inflammatory edema on their hind footpads. In conclusion, the F2 and F4 fractions appear to induce a Th1-type immune response and, in this context, they could be evaluated in association with other protective antigens against Leishmania, as well as in other disease models. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Micro/nanoparticle adjuvants for antileishmanial vaccines: present and future trends.

    PubMed

    Badiee, Ali; Heravi Shargh, Vahid; Khamesipour, Ali; Jaafari, Mahmoud Reza

    2013-01-21

    Leishmania infection continues to have a major impact on public health inducing significant morbidity and mortality mostly in the poorest populations. Drug resistance, toxicity and side effects associated with expensive chemotherapeutic treatments and difficult reservoir control emphasize the need for a safe and effective vaccine which is not available yet. Although, Leishmanization (LZ) was shown to be effective against cutaneous leishmaniasis, standardization and safety are the main problems of LZ. First generation killed parasites demonstrated limited efficacy in phase 3 trials and moreover well defined molecules have not reached to phase 3 yet. Limited efficacy in vaccines against leishmaniasis is partly due to lack of an appropriate adjuvant. Hence, the use of particulate delivery systems as carriers for antigen and/or immunostimulatory adjuvants for effective delivery to the antigen-presenting cells (APCs) is a valuable strategy to enhance vaccine efficacies. Particle-based delivery systems such as emulsions, liposomes, virosomes, and polymeric microspheres have the potential for successfully delivering antigens, which can then be further improved via incorporation of additional antigenic or immustimulatory adjuvant components in or onto the particle carrier system. In this review, we have attempted to provide a list of particulate vaccine delivery systems involved in the production of candidate leishmaniasis vaccines and introduced some potentially useful vaccine delivery systems for leishmaniasis in future experiments. In conclusion, combination vaccines (adjuvant systems) composed of candidate antigens and more importantly well-developed particulate delivery systems, such as lipid-based particles containing immunostimulatory adjuvants, have a chance to succeed as antileishmanial vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Evaluation of the adjuvant effect of agonists of toll-like receptor 4 and 7/8 in a vaccine against leishmaniasis in BALB/c mice.

    PubMed

    Rostamian, Mosayeb; Niknam, Hamid M

    2017-11-01

    There is no effective vaccine against human leishmaniasis. Achieving successful vaccines seems to need powerful adjuvants. Separate or combined use of toll like receptor (TLR) agonists as adjuvant is a promising approach in Leishmania vaccine research. In present study, we evaluated adjuvant effect of separate or combined use of a TLR7/8 agonist, R848 and a TLR4 agonist, monophosphoryl lipid A (MPL) beside soluble Leishmania antigen (SLA) in BALB/c mice. Mice were vaccinated three times by SLA with separate or combined TLR7/8 and TLR4 agonists and were then challenged by Leishmania major. Delay type hypersensitivity, lesion development, parasite load, and cytokines (interferon gamma, and interleukin-10) response were assessed. Results showed: 1) MPL can slightly assist SLA in parasite load reduction, but it is not able to increase SLA ability in evoking DTH and cytokine responses or decreasing lesion diameter. 2) R848 does not affect the DTH response and parasite load of mice vaccinated with SLA, but it decreases/inhibits cytokine responses induced by SLA, leading to increase lesion diameter. 3) MPL neutralized inhibitory effect of R848. In overall, these data emphasize that MPL slightly assists SLA to make a more potent vaccine, but R848 is not a good adjuvant to induce T cell-dependent immune response in BALB/c mice, and therefore combination of these TLR agonists in the current formulation, is not recommended for making a more powerful adjuvant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Alginate Particles with Ovalbumin (OVA) Peptide Can Serve as a Carrier and Adjuvant for Immune Therapy in B16-OVA Cancer Model.

    PubMed

    Zhu, Longbao; Ge, Fei; Yang, Liangjun; Li, Wanzhen; Wei, Shenghua; Tao, Yugui; Du, Guocheng

    2017-04-28

    BACKGROUND Alginate is a natural polysaccharide obtained from brown algae and has been shown to have numerous applications in biomedical science, such as wound healing, delivery of bioactive agents, and cell transplantation. Ovalbumin (OVA) peptide 323-339 has been reported to be involved in immune response.  MATERIAL AND METHODS This work investigated the use of alginate particles as a carrier and adjuvant for the immune therapy of cancer. Alginate particles loaded with OVA peptide were produced via emulsion. A tumor model was established in C57BL/6J mice via subcutaneous injection of 3×105 B16-OVA tumor cells. The effect of alginate/OVA peptide on cell viability was analyzed by use of the CCK-8 assay kit. Activation of macrophages was examined by checking cell surface makers CD40 and CD86 by FACs. RESULTS Alginate/OVA peptide inhibited tumor progression more effectively than using the peptide alone. The viability and uptake study illustrated that this particle is safe and non-toxic. The activation study demonstrated that alginate particles can promote the activation of surface markers on macrophages. ELISA assay showed that the particles with peptide can promote the secretion of inflammatory and effector cytokines from macrophages.  CONCLUSIONS This study demonstrated that alginate has dual functions in immune therapy of cancer, serving both as a carrier and an adjuvant.

  6. Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8+ TEM and TRM Cell Responses against Herpesvirus Infection and Disease.

    PubMed

    Lopes, Patricia P; Todorov, George; Pham, Thanh T; Nesburn, Anthony B; Bahraoui, Elmostafa; BenMohamed, Lbachir

    2018-04-15

    There is an urgent need for chemical-free and biological-free safe adjuvants to enhance the immunogenicity of vaccines against widespread viral pathogens, such as herpes simplex virus 2 (HSV-2), that infect a large proportion of the world human population. In the present study, we investigated the safety, immunogenicity, and protective efficacy of a laser adjuvant-assisted peptide (LAP) vaccine in the B6 mouse model of genital herpes. This LAP vaccine and its laser-free peptide (LFP) vaccine analog contain the immunodominant HSV-2 glycoprotein B CD8 + T cell epitope (HSV-gB 498-505 ) covalently linked with the promiscuous glycoprotein D CD4 + T helper cell epitope (HSV-gD 49-89 ). Prior to intradermal delivery of the LAP vaccine, the lower-flank shaved skin of B6 or CD11c/eYFP transgenic mice received a topical skin treatment with 5% imiquimod cream and then was exposed for 60 s to a laser, using the FDA-approved nonablative diode. Compared to the LFP vaccine, the LAP vaccine (i) triggered mobilization of dendritic cells (DCs) in the skin, which formed small spots along the laser-treated areas, (ii) induced phenotypic and functional maturation of DCs, (iii) stimulated long-lasting HSV-specific effector memory CD8 + T cells (T EM cells) and tissue-resident CD8 + T cells (T RM cells) locally in the vaginal mucocutaneous tissues (VM), and (iv) induced protective immunity against genital herpes infection and disease. As an alternative to currently used conventional adjuvants, the chemical- and biological-free laser adjuvant offers a well-tolerated, simple-to-produce method to enhance mass vaccination for widespread viral infections. IMPORTANCE Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world population. There is an urgent need for chemical-free and biological-free safe adjuvants that would advance mass vaccination against the widespread herpes infections. The present study demonstrates that immunization with a laser-assisted herpes peptide vaccine triggered skin mobilization of dendritic cells (DCs) that stimulated strong and long-lasting HSV-specific effector memory CD8 + T cells (T EM cells) and tissue-resident CD8 + T cells (T RM cells) locally in the vaginal mucocutaneous tissues. The induced local CD8 + T cell response was associated with protection against genital herpes infection and disease. These results draw attention to chemical- and biological-free laser adjuvants as alternatives to currently used conventional adjuvants to enhance mass vaccination for widespread viral infections, such as those caused by HSV-1 and HSV-2. Copyright © 2018 American Society for Microbiology.

  7. Low Antigen Dose in Adjuvant-Based Vaccination Selectively Induces CD4 T Cells with Enhanced Functional Avidity and Protective Efficacy

    PubMed Central

    Wang, Yichuan; Solaymani-Mohammadi, Shahram; Frey, Blake; Kulkarni, Shweta; Andersen, Peter; Agger, Else Marie; Sui, Yongjun

    2017-01-01

    T cells with high functional avidity can sense and respond to low levels of cognate Ag, a characteristic that is associated with more potent responses against tumors and many infections, including HIV. Although an important determinant of T cell efficacy, it has proven difficult to selectively induce T cells of high functional avidity through vaccination. Attempts to induce high-avidity T cells by low-dose in vivo vaccination failed because this strategy simply gave no response. Instead, selective induction of high-avidity T cells has required in vitro culturing of specific T cells with low Ag concentrations. In this study, we combined low vaccine Ag doses with a novel potent cationic liposomal adjuvant, cationic adjuvant formulation 09, consisting of dimethyldioctadecylammonium liposomes incorporating two immunomodulators (monomycolyl glycerol analog and polyinosinic-polycytidylic acid) that efficiently induces CD4 Th cells, as well as cross-primes CD8 CTL responses. We show that vaccination with low Ag dose selectively primes CD4 T cells of higher functional avidity, whereas CD8 T cell functional avidity was unrelated to vaccine dose in mice. Importantly, CD4 T cells of higher functional avidity induced by low-dose vaccinations showed higher cytokine release per cell and lower inhibitory receptor expression (PD-1, CTLA-4, and the apoptosis-inducing Fas death receptor) compared with their lower-avidity CD4 counterparts. Notably, increased functional CD4 T cell avidity improved antiviral efficacy of CD8 T cells. These data suggest that potent adjuvants, such as cationic adjuvant formulation 09, render low-dose vaccination a feasible and promising approach for generating high-avidity T cells through vaccination. PMID:28348274

  8. Carbohydrate fatty acid monosulphate esters are safe and effective adjuvants for humoral responses.

    PubMed

    Hilgers, Luuk A Th; Platenburg, Peter Paul L I; Bajramovic, Jeffrey; Veth, Jennifer; Sauerwein, Robert; Roeffen, Will; Pohl, Marie; van Amerongen, Geert; Stittelaar, Koert J; van den Bosch, Johannes F

    2017-05-31

    Carbohydrate fatty acid sulphate esters (CFASEs) formulated in a squalane-in-water emulsion are effective adjuvants for humoral responses to a wide range of antigens in various animal species but rise in body temperature and local reactions albeit mild or minimal hampers application in humans. In rabbits, body temperature increased 1°C one day after intramuscular (IM) injection, which returned to normal during the next day. The effect increased with increasing dose of CFASE but not with the number of injections (up to 5). Antigen enhanced the rise in body temperature after booster immunization (P<0.01) but not after priming. Synthetic CFASEs are mixtures of derivatives containing no sulphate, one or multiple sulphate groups and the monosulphate derivatives (CMS) were isolated, incorporated in a squalane in-water emulsion and investigated. In contrast to CFASE, CMS adjuvant did not generate rise in body temperature or local reactions in rabbits immunized with a purified, recombinant malaria chimeric antigen R0.10C. In comparison to alum, CMS adjuvant revealed approximately 30-fold higher antibody titres after the first and >100-fold after the second immunization. In ferrets immunized with 7.5μg of inactivated influenza virus A/H7N9, CMS adjuvant gave 100-fold increase in HAI antibody titres after the first and 25-fold after the second immunisation, which were 10-20-fold higher than with the MF59-like AddaVax adjuvant. In both models, a single immunisation with CMS adjuvant revealed similar or higher titres than two immunisations with either benchmark, without detectable systemic and local adverse effects. Despite striking chemical similarities with monophospholipid A (MPL), CMS adjuvant did not activate human TLR4 expressed on HEK cells. We concluded that the synthetic CMS adjuvant is a promising candidate for poor immunogens and single-shot vaccines and that rise in body temperature, local reactions or activation of TLR4 is not a pre-requisite for high adjuvanticity. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Specific Dioscorea Phytoextracts Enhance Potency of TCL-Loaded DC-Based Cancer Vaccines

    PubMed Central

    Chang, Wei-Ting; Chen, Hui-Ming; Yin, Shu-Yi; Chen, Yung-Hsiang; Wen, Chih-Chun; Wei, Wen-Chi; Lai, Phoency; Wang, Cheng-Hsin; Yang, Ning-Sun

    2013-01-01

    Dioscorea tuber phytoextracts can confer immunomodulatory activities ex vivo and improve regeneration of bone marrow cells in vivo. In present study, we evaluated specific Dioscorea phytoextracts for use ex vivo as a bone-marrow-derived dendritic cell- (DC-) based vaccine adjuvant for cancer immunotherapy. Fractionated Dioscorea extracts (DsII) were assayed for their effect on maturation and functions of DC ex vivo and antimelanoma activity of DC-based vaccine in vivo. The phytoextract from 50–75% ethanol-precipitated fraction of Dioscorea alata var. purpurea Tainung no. 5 tuber, designated as DsII-TN5, showed a strong augmentation of tumor cell lysate- (TCL-) loaded DC-mediated activation of T-cell proliferation. DsII-TN5 stimulated the expression of CD40, CD80, CD86, and IL-1β in TCL-loaded DCs and downregulated the expression of TGF-β1. DC vaccines prepared by a specific schema (TCL (2 h) + LPS (22 h)) showed the strongest antitumor activity. DsII-TN5 as a DC vaccine adjuvant showed strong antimelanoma activity and reduced myeloid-derived suppressor cell (MDSC) population in tested mice. DsII-TN5 can also activate DCs to enhance Th1- and Th17-related cytokine expressions. Biochemical analysis showed that DsII-TN5 consists mainly of polysaccharides containing a high level (53%) of mannose residues. We suggest that DsII-TN5 may have potential for future application as a potent, cost-effective adjuvant for DC-based cancer vaccines. PMID:23935688

  10. Survival After Neoadjuvant and Adjuvant Treatments Compared to Surgery Alone for Resectable Esophageal Carcinoma: A Network Meta-analysis.

    PubMed

    Pasquali, Sandro; Yim, Guang; Vohra, Ravinder S; Mocellin, Simone; Nyanhongo, Donald; Marriott, Paul; Geh, Ju Ian; Griffiths, Ewen A

    2017-03-01

    This network meta-analysis compared overall survival after neoadjuvant or adjuvant chemotherapy (CT), radiotherapy (RT), or combinations of both (chemoradiotherapy, CRT) or surgery alone to identify the most effective approach. The optimal treatment for resectable esophageal cancer is unknown. A search for randomized controlled trials reporting on neoadjuvant and adjuvant therapies was conducted. Using a network meta-analysis, treatments were ranked based on their effectiveness for improving survival. In 33 eligible randomized controlled trials, 6072 patients were randomized to receive either surgery alone (N = 2459) or neoadjuvant CT (N = 1332), RT (N = 58), and CRT (N = 1196) followed by surgery or surgery followed by adjuvant CT (N = 542), RT (N = 383), and CRT (N = 102). Twenty-one comparisons were generated. Neoadjuvant CRT followed by surgery compared with surgery alone was the only treatment to significantly improve survival [hazard ratio (HR) = 0.77, 95% confidence interval (CI): 0.68-0.87]. When trials were grouped considering neoadjuvant and adjuvant therapies and surgery alone, neoadjuvant therapies combined with surgery compared with surgery alone showed a survival advantage (HR = 0.83, 95% CI 0.76-0.90), whereas surgery along with adjuvant therapies showed no significant survival advantage (HR = 0.87, 95% CI 0.67-1.14). A subgroup analysis of neoadjuvant therapies showed a superior effectiveness of neoadjuvant CRT and surgery compared with surgery alone (HR = 0.77, 95% CI 0.68-0.87). This network meta-analysis showed neoadjuvant CRT followed by surgery to be the most effective strategy in improving survival of resectable esophageal cancer. Resources should be focused on developing the most effective neoadjuvant CRT regimens for both adenocarcinomas and squamous cell carcinomas of the esophagus.

  11. Adjuvant Activity of Poly-ε-caprolactone/Chitosan Nanoparticles Characterized by Mast Cell Activation and IFN-γ and IL-17 Production.

    PubMed

    Jesus, Sandra; Soares, Edna; Borchard, Gerrit; Borges, Olga

    2018-01-02

    Polymeric nanoparticles (NPs) are extremely attractive vaccine adjuvants, able to promote antigen delivery and in some instances, exert intrinsic immunostimulatory properties that enhance antigen specific humoral and cellular immune responses. The poly-ε-caprolactone (PCL)/chitosan NPs were designed with the aim of being able to combine the properties of the 2 polymers in the preparation of an adjuvant for the hepatitis B surface antigen (HBsAg). This article reports important results of an in vitro mechanistic study and immunization studies with HBsAg associated with different concentrations of the nanoparticles. The results revealed that PCL/chitosan NPs promoted mast cell (MC) activation (β-hexosaminidase release) and that its adjuvant effect is not mediated by the TNF-α secretion. Moreover, we demonstrated that HBsAg loaded PCL/chitosan NPs, administered through the subcutaneous (SC) route, were able to induce higher specific antibody titers without increasing IgE when compared to a commercial vaccine, and that the IgG titers are nanoparticle-dose dependent. The results also revealed the NPs' capability to promote a cellular immune response against HBsAg, characterized by the production of IFN-γ and IL-17. These results demonstrated that PCL/chitosan NPs are a good hepatitis B antigen adjuvant, with direct influence on the intensity and type of the immune response generated.

  12. Interventions to improve reproductive outcomes in women with elevated natural killer cells undergoing assisted reproduction techniques: a systematic review of literature.

    PubMed

    Polanski, L T; Barbosa, M A P; Martins, W P; Baumgarten, M N; Campbell, B; Brosens, J; Quenby, S; Raine-Fenning, N

    2014-01-01

    Is there any scientific evidence to support the routine use of adjuvant therapies for women with elevated natural killer (NK) cells undergoing assisted reproduction techniques (ARTs) in order to improve live birth rate? Due to the poor quality evidence, this review does not support the use of described adjuvant treatments in women found to have elevated absolute numbers or activity of NK cells undergoing ART. Deregulation in the numbers of NK cells and/or their activity, in the blood as well as in the endometrium, has been associated with various manifestations of reproductive failure. NK cell analysis is becoming increasingly popular as a test offered to investigate the causes of reproductive failure. Adjuvant therapies influencing the NK cells have been postulated as therapeutic options for couples where deregulation of this component of the maternal immune system is suspected as the cause of infertility or implantation failure. Systematic review. Embase, LILACS, MEDLINE, PsycINFO, CENTRAL and CINAHL databases from 1946 to present were searched with no language restrictions. Studies evaluating the use of adjuvant therapies in women undergoing ART where NK cell numbers and/or activity were assessed were considered eligible for inclusion. Only three studies (one in abstract form only) meeting the inclusion criteria were identified: two reported the use of intravenous immunoglobulins (IVIg) and one the use of oral prednisolone. All studies demonstrated a beneficial effect of the interventions on clinical pregnancy rates with a risk ratio (RR) of 1.63 [95% confidence interval (CI) 1.00-2.66] for prednisolone and 3.41 (95%CI 1.90-6.11) for IVIg. Studies assessing the efficacy of IVIg have also reported live birth rate with an RR of 3.94 (95% CI 2.01-7.69) favoring the intervention. Data heterogeneity was substantial however (I(2) = 66%) suggesting a cautious interpretation of the results. Differing study populations, lack of statistical power, method of data presentation (per couple or per cycle), the use of additional medications and differing dosage regimes contribute to data heterogeneity and suggest a cautious approach to data interpretation. This review identified some data showing that adjuvant therapies (mainly IVIg) in this selected population seem to confer some benefit on ART outcome. However, overall, the review does not support the use of prednisolone, IVIg or any other adjuvant treatment in women undergoing ART who are found to have elevated absolute numbers or activity of NK cells, purely due to the paucity of, or poor quality of, the evidence. Agreement as to the most reliable NK cell testing method must be made by the scientific community as well as 'normal' NK cell levels unequivocally defined. Well designed, sufficiently powered RCTs with an appropriate population selection and using the same NK cell testing methodology are required to ascertain the actual benefit of using adjuvant therapy treatment for elevated NK cell levels or activity in the context of pregnancy outcome following IVF. None.

  13. Cationic liposomes as vaccine adjuvants.

    PubMed

    Christensen, Dennis; Korsholm, Karen S; Rosenkrands, Ida; Lindenstrøm, Thomas; Andersen, Peter; Agger, Else Marie

    2007-10-01

    Cationic liposomes are lipid-bilayer vesicles with a positive surface charge that have re-emerged as a promising new adjuvant technology. Although there is some evidence that cationic liposomes themselves can improve the immune response against coadministered vaccine antigens, their main functions are to protect the antigens from clearance in the body and deliver the antigens to professional antigen-presenting cells. In addition, cationic liposomes can be used to introduce immunomodulators to enhance and modulate the immune response in a desirable direction and, thereby, represent an efficient tool when designing tailor-made adjuvants for specific disease targets. In this article we review the recent progress on cationic liposomes as vehicles, enhancing the effect of immunomodulators and the presentation of vaccine antigens.

  14. Vaccine Adjuvants: from 1920 to 2015 and Beyond

    PubMed Central

    Di Pasquale, Alberta; Preiss, Scott; Tavares Da Silva, Fernanda; Garçon, Nathalie

    2015-01-01

    The concept of stimulating the body’s immune response is the basis underlying vaccination. Vaccines act by initiating the innate immune response and activating antigen presenting cells (APCs), thereby inducing a protective adaptive immune response to a pathogen antigen. Adjuvants are substances added to vaccines to enhance the immunogenicity of highly purified antigens that have insufficient immunostimulatory capabilities, and have been used in human vaccines for more than 90 years. While early adjuvants (aluminum, oil-in-water emulsions) were used empirically, rapidly increasing knowledge on how the immune system interacts with pathogens means that there is increased understanding of the role of adjuvants and how the formulation of modern vaccines can be better tailored towards the desired clinical benefit. Continuing safety evaluation of licensed vaccines containing adjuvants/adjuvant systems suggests that their individual benefit-risk profile remains favorable. Adjuvants contribute to the initiation of the innate immune response induced by antigens; exemplified by inflammatory responses at the injection site, with mostly localized and short-lived effects. Activated effectors (such as APCs) then move to draining lymph nodes where they direct the type, magnitude and quality of the adaptive immune response. Thus, the right match of antigens and adjuvants can potentiate downstream adaptive immune responses, enabling the development of new efficacious vaccines. Many infectious diseases of worldwide significance are not currently preventable by vaccination. Adjuvants are the most advanced new technology in the search for new vaccines against challenging pathogens and for vulnerable populations that respond poorly to traditional vaccines. PMID:26343190

  15. Impact of Adjuvant External-Beam Radiation Therapy in Early-Stage Uterine Papillary Serous and Clear Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Anne, E-mail: akim2@health-quest.org; Schreiber, David; Rineer, Justin

    2011-11-15

    Purpose: Adjuvant radiation therapy (RT) in early-stage high- to intermediate-risk endometrioid adenocarcinoma is well established and has been shown to improve locoregional control. Its role in the management of early-stage clear cell carcinoma and uterine papillary serous carcinoma (UPSC) remains controversial. Methods and Materials: Using the Surveillance Epidemiology and End Results database, we identified women with American Joint Committee on Cancer Stage Sixth Edition. Stage IA-IIB clear cell carcinoma or UPSC who underwent hysterectomy with or without adjuvant RT between 1988 and 2003. We used Kaplan-Meier and Cox regression analysis to compare overall survival (OS) for all patients. Results: Wemore » identified 1,333 women of whom 451 had clear cell carcinoma and 882 had UPSC. Of those patients, 775 underwent surgery alone and 558 received adjuvant RT as well. For Stages I-IIB disease, the median OS with surgery alone was 106 months, vs. 151 months with adjuvant RT (p = 0.006). On subgroup analysis, we saw the benefit from adjuvant RT only in Stage IB-C patients. For Stage IB disease, patients undergoing surgery alone had a median OS of 117 months, vs. median survival not reached with the addition of RT (p = 0.006). For Stage IC disease, surgery alone had a median OS of 35 months vs. 120 months with RT (p = 0.001). Although the apparent benefit of RT diminished when measured via multivariate analysis, the impact of RT on survival did show a trend toward significance (hazard ration 0.808, confidence interval 95% 0.651-1.002, p = 0.052) Conclusion: In FIGO Stage IB-C papillary serous and clear cell uterine carcinoma, adjuvant RT seems to play an important role in improving survival.« less

  16. A redox-sensitive, oligopeptide-guided, self-assembling, and efficiency-enhanced (ROSE) system for functional delivery of microRNA therapeutics for treatment of hepatocellular carcinoma.

    PubMed

    Hu, Qida; Wang, Kai; Sun, Xu; Li, Yang; Fu, Qihan; Liang, Tingbo; Tang, Guping

    2016-10-01

    Lack of efficient adjuvant therapy contributes to a high incidence of recurrence and metastasis of hepatocellular carcinoma (HCC). A novel therapeutic is required for adjuvant treatment of HCC. We developed a polymer-based nanosystem (ROSE) for functional gene therapy by synthesizing a supramolecular complex self-assembled from polycations and functional adamantyl modules. The ROSE system condensing tumor suppressor microRNA-34a (miR-34a) therapeutics becomes ROSE/miR-34a nanoparticles that could facilitate gene transfection in HCC cells with satisfied stability and efficiency, possibly due to proton sponge effect by polycations, PEGlyation protection, and controlled release by breakdown of disulfide bonds. Meanwhile, modification with a targeting oligopeptide SP94 in ROSE/miR-34a enables approximately higher affinity for LM3 HCC cells than hepatocytes in vitro and greater HCC specificity in vivo. Furthermore, ROSE/miR-34a nanoparticles significantly inhibits HCC cell proliferation and in vivo tumor growth, representing a notable effect improvement over conventional gene delivery strategies. ROSE/miR-34a, featuring redox-responsiveness, oligopeptide-guided specificity, self-assembly, and enhanced transfection, is therefore a potential therapeutic agent in future adjuvant therapy for HCC treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Role of Adjuvant Therapy for Node-Negative Lung Cancer Invading the Chest Wall.

    PubMed

    Gao, Sarah J; Corso, Christopher D; Blasberg, Justin D; Detterbeck, Frank C; Boffa, Daniel J; Decker, Roy H; Kim, Anthony W

    2017-03-01

    The present study investigated the effect of adjuvant chemotherapy and radiation on survival among patients undergoing chest wall resection for T3N0 non-small cell lung cancer (NSCLC). Patients with T3N0 NSCLC who underwent chest wall resection were identified in the National Cancer Data Base in 2004 to 2012. The cohort was divided into patients who had received adjuvant chemotherapy, radiation therapy, chemoradiation therapy, or no adjuvant treatment. Kaplan-Meier and log-rank tests were used to compare overall survival, and a bootstrapped Cox proportional hazards model was used to determine the significant contributors to survival. A subset analysis was performed with stratification by margin status and tumor size. Of 759 patients identified, 42.0% underwent surgery alone, 23.3% underwent surgery followed by chemotherapy, 22.3% underwent surgery followed by chemoradiation therapy, and 12.3% underwent surgery followed by radiotherapy alone. Tumors > 4 cm benefited from adjuvant chemotherapy and radiation therapy in the multivariable analysis, and those ≤ 4 cm benefited only from adjuvant chemotherapy. The subgroup analysis by margin status identified that margin-positive patients with tumors > 4 cm benefited significantly from either adjuvant chemoradiation therapy or radiation therapy alone. T3N0 NSCLC with chest wall invasion requires unique management compared with other stage IIB tumors. An important determinant of management is tumor size, with tumors ≤ 4 cm benefiting from adjuvant chemotherapy and tumors > 4 cm benefiting from adjuvant chemotherapy if margin negative and adjuvant chemoradiation therapy or radiotherapy if margin positive. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Prognostic factors of pathologic stage IB non-small cell lung cancer.

    PubMed

    Yano, Motoki; Sasaki, Hidefumi; Moriyama, Satoru; Kawano, Osamu; Hikosaka, Yu; Fujii, Yoshitaka

    2011-01-01

    In pathologic IB (pIB) non-small cell lung cancer, especially in adenocarcinoma, adjuvant chemotherapy with uracil-tegafur is widely recognized as being effective. The aim of this study was to determine the prognostic factors of pIB disease. Sixty patients who were diagnosed with pIB disease between 2004 and 2007 were retrospectively analyzed. Of 60 patients, 22 (36.7%) opted for surgery plus adjuvant chemotherapy with uracil-tegafur, whereas 38 (63.3%) opted for surgery only. The oral administration dose of uracil-tegafur was 400 mg/body. Compliance of adjuvant chemotherapy with uracil-tegafur was 65.5% in 12 months, 57.3% in 24 months. Adjuvant chemotherapy was interrupted in 11 patients because of the recurrence of disease in 3 patients and adverse reaction in 8 patients. Anorexia was the most common adverse reaction. The larger tumor diameter (5 cm<) and p2 pleural invasion were the worse prognostic factors in disease free survival in a univariate analysis and a multivariate analysis (hazard ratio = 0.26 and 0.25; p = 0.028 and 0.032, respectively). The prognosis of the patients with pleural invasion and a tumor diameter >5 cm was poor, and these, partly support the forthcoming classification.

  19. Postoperative PET/CT and target delineation before adjuvant radiotherapy in patients with oral cavity squamous cell carcinoma.

    PubMed

    Dutta, Pinaki R; Riaz, Nadeem; McBride, Sean; Morris, Luc G; Patel, Snehal; Ganly, Ian; Wong, Richard J; Palmer, Frank; Schöder, Heiko; Lee, Nancy

    2016-04-01

    The purpose of this study was for us to present our evaluation of the effectiveness of positron emission tomography (PET)/CT imaging in postoperative patients with oral cavity squamous cell carcinoma (SCC) before initiating adjuvant radiation therapy. Treatment planning PET/CT scans were obtained in 44 patients with oral cavity SCC receiving adjuvant radiation. We identified target areas harboring macroscopic disease requiring higher radiation doses or additional surgery. Fourteen PET/CT scans were abnormal. Thirteen patients underwent surgery and/or biopsy, increased radiation dose, and/or addition of chemotherapy. Eleven patients received higher radiation doses. Patients undergoing imaging >8 weeks were more likely to have abnormal results (p = .01). One-year distant metastases-free survival was significantly worse in patients with positive PET/CT scans (61.5% vs 92.7%; p = .01). The estimated positive predictive value (PPV) was 38% for postoperative PET/CT scanning. We demonstrated that 32% of patients have abnormal PET/CT scans resulting in management changes. Patients may benefit from postoperative PET/CT imaging to optimize adjuvant radiation treatment planning. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1285-E1293, 2016. © 2015 Wiley Periodicals, Inc.

  20. Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity.

    PubMed

    Lugade, Amit A; Bharali, Dhruba J; Pradhan, Vandana; Elkin, Galina; Mousa, Shaker A; Thanavala, Yasmin

    2013-10-01

    Chitosan nanoparticles were evaluated as a vaccine delivery system for hepatitis B surface antigen (HBsAg) in the absence of adjuvant. Nano-encapsulated HBsAg (HBsAg chitosan-NP) was endocytosed more rapidly and efficiently by dendritic cells compared to soluble HBsAg. FRET analysis demonstrated that intact nanoparticles were taken up by DCs. To determine the immunogenicity of adjuvant-free nano-encapsulated HBsAg, mice were immunized with a single dose of non-encapsulated HBsAg, HBsAg chitosan-NP, or HBsAg alum. Mice immunized with adjuvant-free nanoparticle elicited anti-HBs antibodies at significantly higher titers compared to mice immunized with HBsAg alum. Elevated numbers of BAFF-R(+) B cells and CD138+ plasma cells account for the heightened anti-HBs response in nanoparticle immunized mice. Increases in Tfh cells provide a mechanism for the accumulation of anti-HBs secreting cells. Thus, chitosan nanoparticle vaccines represent a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration. In this study, chitosan nanoparticle vaccines are demonstrated as a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration in a murine model. The authors also demonstrated superior antibody response induction compared with non-encapsulated HBs antigen and HBsAg aluminum. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Adjuvant Chemotherapy Improves the Probability of Freedom From Recurrence in Patients With Resected Stage IB Lung Adenocarcinoma.

    PubMed

    Hung, Jung-Jyh; Wu, Yu-Chung; Chou, Teh-Ying; Jeng, Wen-Juei; Yeh, Yi-Chen; Hsu, Wen-Hu

    2016-04-01

    The benefit of adjuvant chemotherapy remains controversial for patients with stage IB non-small-cell lung cancer (NSCLC). This study investigated the effect of adjuvant chemotherapy and the predictors of benefit from adjuvant chemotherapy in patients with stage IB lung adenocarcinoma. A total of 243 patients with completely resected pathologic stage IB lung adenocarcinoma were included in the study. Predictors of the benefits of improved overall survival (OS) or probability of freedom from recurrence (FFR) from platinum-based adjuvant chemotherapy in patients with resected stage IB lung adenocarcinoma were investigated. Among the 243 patients, 70 (28.8%) had received platinum-based doublet adjuvant chemotherapy. A micropapillary/solid-predominant pattern (versus an acinar/papillary-predominant pattern) was a significantly worse prognostic factor for probability of FFR (p = 0.033). Although adjuvant chemotherapy (versus surgical intervention alone) was not a significant prognostic factor for OS (p = 0.303), it was a significant prognostic factor for a better probability of FFR (p = 0.029) on multivariate analysis. In propensity-score-matched pairs, there was no significant difference in OS between patients who received adjuvant chemotherapy and those who did not (p = 0.386). Patients who received adjuvant chemotherapy had a significantly better probability of FFR than those who did not (p = 0.043). For patients with a predominantly micropapillary/solid pattern, adjuvant chemotherapy (p = 0.033) was a significant prognostic factor for a better probability of FFR on multivariate analysis. Adjuvant chemotherapy is a favorable prognostic factor for the probability of FFR in patients with stage IB lung adenocarcinoma, particularly in those with a micropapillary/solid-predominant pattern. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  2. In vitro studies of cellular and molecular developmental toxicity of adjuvants, herbicides, and fungicides commonly used in Red River Valley, Minnesota.

    PubMed

    Lin, N; Garry, V F

    2000-07-28

    Recent epidemiologic studies showed increased frequency of birth defects in pesticide applicators and general population of the Red River Valley, Minnesota. These studies further indicated that this crop growing area used more chlorophenoxy herbicides and fungicides than elsewhere in Minnesota. Based on frequency of use and known biology, certain herbicides, pesticide additives, fungicides, and mycotoxins are suspect agents. To define whether these agents affect developmental endpoints in vitro, 16 selected agrochemicals were examined using the MCF-7 breast cancer cell line. In the flow cytometric assay, cell proliferation in this estrogen-responsive cell line indicates xenobiotic-mediated estrogenic effects. Cell viability, morphology, ploidy, and apoptosis were incorporated in this assay. Data showed that the adjuvants X-77 and Activate Plus induced significant cell proliferation at 0.1 and 1 microg/ml. The commercial-grade herbicides 2,4-D LV4 and 2,4-D amine induced cell proliferation at 1 and 10 microg/ml. The reagent-grade 2,4-D products failed to induce proliferation over the same concentration range, suggesting that other ingredients in the commercial products, presumably adjuvants, could be a factor in these results. The fungicides triphenyltin and mancozeb induced apoptosis at concentrations of 4.1 microg/ml (10(-5) M) and 50 microg/ml, respectively. Triphenyltin also induced aneuploidy (C2/M arrest) at 0.41 microg/ml (10(-6) M). Data provide a mechanistic step to understanding human reproductive and developmental effects in populations exposed to these agrochemicals, and initiative to focusing limited resources for future in vivo animal developmental toxicity studies.

  3. Influence of particle size, an elongated particle geometry, and adjuvants on dendritic cell activation.

    PubMed

    Mathaes, Roman; Winter, Gerhard; Siahaan, Teruna J; Besheer, Ahmed; Engert, Julia

    2015-08-01

    Modern subunit vaccines have many benefits compared to live vaccines such as convenient and competitive large scale production, better reproducibility and safety. However, the poor immunogenicity of subunit vaccines usually requires the addition of potent adjuvants or drug delivery vehicles. Accordingly, researchers are investigating different adjuvants and particulate vaccine delivery vehicles to boost the immunogenicity of subunit vaccines. Despite the rapidly growing knowledge in this field, a comparison of different adjuvants is sparsely found. Until today, little is known about efficient combinations of the different adjuvants and particulate vaccine delivery vehicles. In this study we compared three adjuvants with respect to their immune stimulatory potential and combined them with different particulate vaccine delivery vehicles. For this reason, we investigated two types of polyI:C and a CL264 base analogue and combined these adjuvants with differently sized and shaped particulate vaccine delivery vehicles. A high molecular weight polyI:C combined with a spherical nano-sized particulate vaccine delivery vehicle promoted the strongest dendritic cells activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Adjuvant Effect of Killed Propionibacterium acnes on Mouse Peritoneal B-1 Lymphocytes and Their Early Phagocyte Differentiation

    PubMed Central

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses. PMID:22448280

  5. Adjuvant effect of killed Propionibacterium acnes on mouse peritoneal B-1 lymphocytes and their early phagocyte differentiation.

    PubMed

    Mussalem, Juliana Sekeres; Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Yendo, Tatiana Mina; Thies, Felipe Garutti; Popi, Ana Flavia; Mariano, Mario; Longo-Maugéri, Ieda

    2012-01-01

    B-1 lymphocytes are the predominant cells in mouse peritoneal cavity. They express macrophage and lymphocyte markers and are divided into B-1a, B-1b and B-1c subtypes. The role of B-1 cells is not completely clear, but they are responsible for natural IgM production and seem to play a regulatory role. An enriched B-1b cell population can be obtained from non-adherent peritoneal cell cultures, and we have previously demonstrated that these cells undergo differentiation to acquire a mononuclear phagocyte phenotype upon attachment to the substrate in vitro. Nevertheless, the B-1 cell response to antigens or adjuvants has been poorly investigated. Because killed Propionibacterium acnes exhibits immunomodulatory effects on both macrophages and B-2 lymphocytes, we analyzed whether a killed bacterial suspension or its soluble polysaccharide (PS) could modulate the absolute number of peritoneal B-1 cells in BALB/c mice, the activation status of these cells and their ability to differentiate into phagocytes in vitro. In vivo, P. acnes treatment elevated the absolute number of all B-1 subsets, whereas PS only increased B-1c. Moreover, the bacterium increased the number of B-1b cells that were positive for MHC II, TLR2, TLR4, TLR9, IL-4, IL-5 and IL-12, in addition to up-regulating TLR9, CD80 and CD86 expression. PS increased B-1b cell expression of TLR4, TLR9, CD40 and CD86, as well as IL-10 and IL-12 synthesis. Both of the treatments decreased the absolute number of B-1b cells in vitro, suggesting their early differentiation into B-1 cell-derived phagocytes (B-1CDP). We also observed a higher phagocytic activity from the phagocytes that were derived from B-1b cells after P. acnes and PS treatment. The adjuvant effect that P. acnes has on B-1 cells, mainly the B-1b subtype, reinforces the importance of B-1 cells in the innate and adaptive immune responses.

  6. Investigation of phosphorylated adjuvants co-encapsulated with a model cancer peptide antigen for the treatment of colorectal cancer and liver metastasis.

    PubMed

    Goodwin, Tyler J; Huang, Leaf

    2017-05-02

    The lipid calcium phosphate nanoparticle is a versatile platform capable of encapsulating a wide range of phosphorylated molecules from single nucleotides to pDNA. The use of this platform has shown great success as an immunotherapeutic vaccine carrier, capable of delivering co-encapsulated phosphorylated adjuvants and peptides. Three potent vaccine formulations were investigated for anti-cancer efficacy. The phosphorylated adjuvants, CpG, 2'3'cGAMP, and 5'pppdsRNA were co-encapsulated with a model phosphorylated tumor specific peptide antigen (p-AH1-A5). The anti-cancer efficacy of these adjuvants was assessed using an orthotopic colorectal liver metastasis model based on highly aggressive and metastatic CT-26 FL3 cells implanted into the cecum wall. The results clearly indicate that the RIG-1 ligand, 5'pppdsRNA, co-encapsulated with the p-AH1-A5 peptide antigen greatly reduced the growth rate of the primary colon cancer as well as arrested the establishment of liver metastasis in comparison to the other adjuvant formulations and unvaccinated controls. Further evaluation of the immune cell populations within the primary tumor confirms the ability of the 5'pppdsRNA adjuvant to boost the adaptive CD8+ T-cell population, while not inciting increased populations of immune suppressive cell types such as T-regulatory cells or myeloid derived suppressor cells. Furthermore, to our knowledge this is the first study to investigate the anti-cancer efficacy of a specific RIG-1 receptor ligand, 5'pppdsRNA, alongside more established TLR 9 (CpG) and STING (2'3'cGAMP) adjuvants in a cancer vaccine. The 5'pppdsRNA vaccine formulation can be a potent immunotherapy, especially when combined with agents that remodel the immune suppressive microenvironment of the tumor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Adjuvant chemotherapy in patients with stage I endometrioid or clear cell ovarian cancer in the platinum era: a Surveillance, Epidemiology, and End Results Cohort Study, 2000-2013.

    PubMed

    Oseledchyk, A; Leitao, M M; Konner, J; O'Cearbhaill, R E; Zamarin, D; Sonoda, Y; Gardner, G J; Long Roche, K; Aghajanian, C A; Grisham, R N; Brown, C L; Snyder, A; Chi, D S; Soslow, R A; Abu-Rustum, N R; Zivanovic, O

    2017-12-01

    We sought to evaluate the impact of adjuvant chemotherapy on overall survival (OS) in patients with stage I endometrioid epithelial ovarian cancer (EEOC) or ovarian clear cell cancer (OCCC) using a national database. The Surveillance, Epidemiology, and End Results database was used to identify patients diagnosed with International Federation of Gynecology and Obstetrics (FIGO) stage I EEOC or OCCC from 2000 to 2013. We sought to identify predictors of chemotherapy use and to assess the impact of chemotherapy on OS in these patients. OS was compared using the log-rank test and the Cox proportional hazards model. In all, 3552 patients with FIGO stage I EEOC and 1995 patients with stage I OCCC were identified. Of the 1600 patients (45%) with EEOC who underwent adjuvant chemotherapy, the 5-year OS rate was 90%, compared with 89% for those who did not undergo adjuvant chemotherapy (P = 0.807). Of the 1374 (69%) patients with OCCC who underwent adjuvant chemotherapy, the 5-year OS rate was 85%, compared with 83% (P = 0.439) for those who did not undergo adjuvant chemotherapy. Chemotherapy use was associated with younger age, higher substage, and more recent year of diagnosis for both the EEOC and OCCC groups. Only in the subgroup of patients with FIGO substage IC, grade 3 EEOC (n = 282) was chemotherapy associated with an improved 5-year OS-81% compared with 62% (P = 0.003) in untreated patients (HR: 0.583; 95% CI: 0.359-0.949; P = 0.030). In patients with OCCC, there was no significant effect of adjuvant chemotherapy on OS in any substage. Adjuvant chemotherapy was associated with improved OS only in patients with substage IC, grade 3 EEOC. In stage I OCCC, adjuvant chemotherapy was not associated with improved OS. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Use of early passage fetal intestinal epithelial cells in semi-high-throughput screening assays: an approach to identify new innate immune system adjuvants.

    PubMed

    Buckner, Diana; Wilson, Suzanne; Kurk, Sandra; Hardy, Michele; Miessner, Nicole; Jutila, Mark A

    2006-09-01

    Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.

  9. Membrane Localization of Human Equilibrative Nucleoside Transporter 1 in Tumor Cells May Predict Response to Adjuvant Gemcitabine in Resected Cholangiocarcinoma Patients.

    PubMed

    Brandi, Giovanni; Deserti, Marzia; Vasuri, Francesco; Farioli, Andrea; Degiovanni, Alessio; Palloni, Andrea; Frega, Giorgio; Barbera, Maria A; de Lorenzo, Stefania; Garajova, Ingrid; Di Marco, Mariacristina; Pinna, Antonio D; Cescon, Matteo; Cucchetti, Alessandro; Ercolani, Giorgio; D'Errico-Grigioni, Antonietta; Pantaleo, Maria A; Biasco, Guido; Tavolari, Simona

    2016-05-01

    The use of gemcitabine as an adjuvant modality for cholangiocarcinoma (CC) is increasing, but limited data are available on predictive biomarkers of response. Human equilibrative nucleoside transporter 1 (hENT-1) is the major transporter involved in gemcitabine intracellular uptake. This study investigated the putative predictive role of hENT-1 localization in tumor cells of CC patients undergoing treatment with adjuvant gemcitabine. Seventy-one consecutive patients with resected CC receiving adjuvant gemcitabine at our center were retrospectively analyzed by immunohistochemistry for hENT-1 localization in tumor cells. The main outcome measure was disease-free survival (DFS). Hazard ratios (HRs) of relapse and associated 95% confidence intervals (CIs) were obtained from proportional hazards regression models stratified on quintiles of propensity score. Twenty-three (32.4%) cases were negative for hENT-1, 22 (31.0%) were positive in the cytoplasm only, and 26 (36.6%) showed concomitant cytoplasm/membrane staining. Patients with membrane hENT-1 had a longer DFS (HR 0.49, 95% CI 0.24-0.99, p = .046) than those who were negative or positive only in the cytoplasm of tumor cells. Notably, the association between DFS and membrane hENT-1 was dependent on the number of gemcitabine cycles (one to two cycles: HR 0.96, 95% CI 0.34-2.68; three to four cycles: HR 0.99, 95% CI 0.34-2.90; five to six cycles: HR 0.27, 95% CI 0.10-0.77). hENT-1 localization on tumor cell membrane may predict response to adjuvant gemcitabine in CC patients receiving more than four cycles of chemotherapy. Further prospective randomized trials on larger populations are required to confirm these preliminary results, so that optimal gemcitabine-based chemotherapy may be tailored for CC patients in the adjuvant setting. Gemcitabine is becoming an increasingly used adjuvant modality in cholangiocarcinoma (CC), but limited data are available on predictive biomarkers of response. In this study, patients receiving more than four cycles of adjuvant gemcitabine and harboring Human equilibrative nucleoside transporter 1 (hENT-1, the major transporter involved in gemcitabine intracellular uptake) on tumor cell membrane had a longer disease-free survival compared with patients negative or positive for hENT-1 only in the cytoplasm of tumor cells. Overall these results may lay the basis for further prospective randomized trials based on a larger population of patients and may prove useful for tailoring appropriate gemcitabine-based chemotherapy for CC patients in the adjuvant setting. ©AlphaMed Press.

  10. The Role of Th1/Th2 Cytokine Balance in Gulf War-Related Illness

    DTIC Science & Technology

    2001-02-01

    Ramirez et al, 1996). Finally, although natural infection with Bordetella pertussis and its whole cell-derived vaccine promote a strong Thl response...the stress of deployment with additional effects of the T helper 2 (Th2) adjuvant pertussis could skew the immune response towards a Th2 profile. The...paradoxically the acellular vaccine component pertussis toxin used as adjuvant in GW vaccinations causes Th2 deviation (Munoz et al, 1990; Mu et al, 1993

  11. Vitamin E Succinate as an Adjuvant for Dendritic Cell Based Vaccines

    DTIC Science & Technology

    2006-07-01

    which is soluble only in organic solvents like sesame oil, dimethylsulfoxide ( DMSO ) or ethanol (1-4), vesiculated α-TOS (Vα-TOS) is hydrophilic and is...mammary tumors, acts as an effective adjuvant. One of the major limitations of using α-TOS is its insolubility in aqueous solvents . Unlike α-TOS...with the long-term use of DMSO or ethanol that are commonly used to solubilize α-TOS for parenteral administration making Vα- TOS better suited for long

  12. Dendritic cell targeted vaccines: Recent progresses and challenges

    PubMed Central

    Chen, Pengfei; Liu, Xinsheng; Sun, Yuefeng; Zhou, Peng; Wang, Yonglu; Zhang, Yongguang

    2016-01-01

    ABSTRACT Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches. PMID:26513200

  13. Ginsenoside Re and notoginsenoside R1: Immunologic adjuvants with low haemolytic effect.

    PubMed

    Sun, Hong-Xiang; Chen, Yuehua; Ye, Yiping

    2006-07-01

    The further purification of the total saponins from the roots of Panax notoginseng (Burk.) F. H. Chen by ordinary and reversed-phase silica-gel, as well as Sephadex LH-20 chromatography afforded two adjuvant active dammarane-type saponins, ginsenoside Re (1) and notoginsenoside R1 (2). These two saponins were evaluated for haemolytic activities and adjuvant potentials on the cellular and humoral immune responses of ICR mice against ovalbumin (OVA). The concentrations inducing 50% of the maximum haemolysis (HD50), using 0.5% red blood cell suspensions, were 469.6+/-16.9 and 420.4+/-22.9 microg/ml for 1 and 2, respectively. Compounds 1 and 2 significantly increased the concanavalin A (Con A)-, lipopolysaccharide (LPS)-, and OVA-induced splenocyte proliferation in the OVA-immunized mice (P<0.05, P<0.01, or P<0.001). The OVA-specific IgG, IgG1, and IgG2b antibody titres in serum were also significantly enhanced by 1 and 2 compared with OVA control group (P<0.05, P<0.01, or P<0.001). The results indicate that 1 and 2 showed a slight haemolytic activity and significant adjuvant effect on specific antibody and cellular immune response against OVA in mice, and that the type of the terminal sugar of the sugar chain at C(6) of protopanaxatriol could not only affect their haemolytic activities and adjuvant potentials, but have significant effects on the nature of the immune responses. The information about this structure-function relationship might be useful for developing semisynthetic dammarane-type saponin derivatives with immunological adjuvant activity.

  14. Dexamethasone reduces side population fraction through downregulation of ABCG2 transporter in MCF-7 breast cancer cells.

    PubMed

    Kim, Jong Bin; Hwang, Sung Eun; Yoon, Sang-Pil

    2017-07-01

    Side population (SP) cells represent a rare population among breast cancer cells. SP cells have been reported to act as cancer stem‑like cells, and to participate in the development of multidrug resistance via modulating the expression of ATP-binding cassette subfamily G member 2 (ABCG2). Dexamethasone is a corticosteroid drug that has been used as an adjuvant treatment to enhance the efficacy of chemotherapeutic agents; however, its effects in breast cancer have yet to be thoroughly investigated. In the present study, the effects of dexamethasone were investigated using the human MCF‑7 breast cancer cell line, and SPs were examined in detail. Cellular proliferation, SP fractions and ABCG2 expression were examined following treatment of MCF‑7 cells with dexamethasone. Dexamethasone was revealed to cause a dose‑ and time‑dependent decrease in cancer cell proliferation, and it also decreased the size of the SP fraction of MCF‑7 cells and the expression of the ABCG2 transporter. The effects of dexamethasone on cellular proliferation, SP fraction and ABCG2 expression were abolished following the administration of the glucocorticoid antagonist RU486. These results suggested that dexamethasone may target breast cancer cell SPs and thus increase the sensitivity of tumor cells to chemotherapy. Therefore, it may be hypothesized that dexamethasone can be used as a chemosensitizer in the adjuvant treatment of patients with breast cancer.

  15. Liposomal adjuvant development for leishmaniasis vaccines.

    PubMed

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-08-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis.

  16. Liposomal adjuvant development for leishmaniasis vaccines

    PubMed Central

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-01-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis. PMID:29201374

  17. [Indication of chemotherapy according to histological type of musculoskeletal sarcomas].

    PubMed

    Goto, Takahiro; Okuma, Tomotake; Ogura, Koichi; Imanishi, Jungo; Hozumi, Takahiro; Kondo, Taiji

    2009-02-01

    In high-grade musculoskeletal sarcomas, adjuvant chemotherapy is often performed to prevent distant metastases. As the efficacy of chemotherapy varies according to the histological type of sarcoma, its indication is determined according to the histological type and the stage. Prognoses are poor in patients with osteosarcoma, Ewing's sarcoma, or rhabdomyosarcoma, when surgery alone is performed. However, because these sarcomas are chemosensitive, their prognoses are improved with adjuvant chemotherapy, so it is absolutely necessary. Drugs commonly used for osteosarcoma include adriamycin, cisplatin, methotrexate, vincristine, and ifosfamide. For Ewing's sarcoma and rhabdomyosarcoma, vincristine, actinomycin-D, cyclophosphamide, etoposide, and ifosfamide are commonly used. On the other hand, the efficacy of chemotherapy is unclear in most of the non-round cell sarcomas, e. g., malignant fibrous histiocytoma, pleomorphic liposarcoma, and leiomyosarcoma, so adjuvant chemotherapy is relatively indicated and often performed preoperatively. The efficacy is evaluated by reduction of the tumor volume as a surrogate marker. Postoperative chemotherapy is performed when the preoperative chemotherapy is effective. Nowadays, several kinds of antitumor agents are usually used for non-round cell sarcomas, and many authors have reported various kinds of regimens and their clinical results. Among them, the key drugs are adriamycin and ifosfamide. Recently, taxanes and gemcitabine are sometimes used. For chemoresistant sarcomas, e. g., chondrosarcoma, chordoma, alveolar soft part sarcoma, chemotherapy is rarely indicated, even if the tumor is histologically high grade and large. Low-grade musculoskeletal sarcomas, e. g., low-grade chondrosarcoma, central low-grade osteosarcoma, parosteal osteosarcoma, well-differentiated liposarcoma, and dermatofibrosarcoma protuberans, are well cured only by surgical excision, and adjuvant chemotherapy is therefore not indicated. Superficially-located, small-size non-round cell sarcomas, even though histologically high grade, are well healed only by surgical excision, and adjuvant chemotherapy is rarely indicated.

  18. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice.

    PubMed

    Magnusson, Sofia E; Altenburg, Arwen F; Bengtsson, Karin Lövgren; Bosman, Fons; de Vries, Rory D; Rimmelzwaan, Guus F; Stertman, Linda

    2018-04-01

    Influenza viruses continuously circulate in the human population and escape recognition by virus neutralizing antibodies induced by prior infection or vaccination through accumulation of mutations in the surface proteins hemagglutinin (HA) and neuraminidase (NA). Various strategies to develop a vaccine that provides broad protection against different influenza A viruses are under investigation, including use of recombinant (r) viral vectors and adjuvants. The replication-deficient modified vaccinia virus Ankara (MVA) is a promising vaccine vector that efficiently induces B and T cell responses specific for the antigen of interest. It is assumed that live vaccine vectors do not require an adjuvant to be immunogenic as the vector already mediates recruitment and activation of immune cells. To address this topic, BALB/c mice were vaccinated with either protein- or rMVA-based HA influenza vaccines, formulated with or without the saponin-based Matrix-M™ adjuvant. Co-formulation with Matrix-M significantly increased HA vaccine immunogenicity, resulting in antigen-specific humoral and cellular immune responses comparable to those induced by unadjuvanted rMVA-HA. Of special interest, rMVA-HA immunogenicity was also enhanced by addition of Matrix-M, demonstrated by enhanced HA inhibition antibody titres and cellular immune responses. Matrix-M added to either protein- or rMVA-based HA vaccines mediated recruitment and activation of antigen-presenting cells and lymphocytes to the draining lymph node 24 and 48 h post-vaccination. Taken together, these results suggest that adjuvants can be used not only with protein-based vaccines but also in combination with rMVA to increase vaccine immunogenicity, which may be a step forward to generate new and more effective influenza vaccines.

  19. Immunological response induced by cryoablation against murine H22 hepatoma cell line in vivo.

    PubMed

    Yang, Xueling; Li, Xiaoli; Guo, Zhi; Si, Tongguo; Yu, Haipeng; Xing, Wenge

    2018-02-01

    To describe immunological consequences induced by cryoablation against H22 cells in vivo. Adult BALB/c mice underwent subcutaneous implantation of H22 cells. All of them were assigned into three groups randomly: group A (false surgery), group B (cryoablation) and group C (cryoablation plus Freund's adjuvant). Animals were sacrificed 1, 2 and 3 weeks after treatment. Serum IFN-γ and IL-4, Th1/Th2 in spleens and cytotoxicity were detected. Compared with that of group A, (1) INF-γ of group B was higher, but IL-4 was lower; cryoablation plus Freund's adjuvant enhanced these effects. (2) Th1/Th2 rose significantly in both group B and group C. (3) Strong cytolytic activity against H22 cells of group B and group C was found on day 7, 14 and 21. Our study showed a marked shift toward Th1 and IFN-γ expression after cryoablation, with an immuno-stimulatory effect against murine H22 hepatoma Cell. Copyright © 2017. Published by Elsevier Inc.

  20. Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants

    PubMed Central

    Smith, Alyson J.; Li, Yufeng; Bazin, Hélène G.; St-Jean, Julien R.; Larocque, Daniel; Evans, Jay T.; Baldridge, Jory R.

    2016-01-01

    Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3+/CD8+ T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants. PMID:27402566

  1. Potential of glucans as vaccine adjuvants: A review of the α-glucans case.

    PubMed

    Moreno-Mendieta, Silvia; Guillén, Daniel; Hernández-Pando, Rogelio; Sánchez, Sergio; Rodríguez-Sanoja, Romina

    2017-06-01

    α-Glucans are present in virtually all domains of life, and these glucose chains linked by α-1,4- and α-1,6-linked branches form the most important storage carbohydrates in cells. It is likely for this reason that α-glucans are not generally considered as bioactive molecules as β-glucans are. Nevertheless, it is known that depending on their source, many α-glucans play important roles as modulators of immune response. Recent efforts have attempted to elucidate the mechanisms through which α-glucans exert their immunostimulant effects; however, the main challenge is the accurate identification of the receptors of immune cells involved in their recognition. Here, we review the adjuvant properties reported for some polysaccharides and ultimately focus on α-glucans and how their structural characteristics, such as molecular weight, solubility and derivatization, influence their immunostimulatory properties. As a final point, we discuss the potential and associated challenges of using these polysaccharides as adjuvants, particularly in mucosal vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of interleukin 12 on p53 peptide vaccination against established Meth A sarcoma.

    PubMed Central

    Noguchi, Y; Richards, E C; Chen, Y T; Old, L J

    1995-01-01

    BALB/c murine sarcoma Meth A is known to have three missense point mutations in p53. We previously reported that a nonamer peptide containing the codon 234 mutational product (designated 234CM) elicited 234CM-specific cytotoxic T cells and that immunization with 234CM in adjuvant before tumor challenge inhibited Meth A growth. Because interleukin 12 (IL-12) has been shown to have antitumor activity against established tumors and immuno-modulatory activities, we analyzed its effect on p53 peptide immunization and Meth A growth. Multiple injections of IL-12 alone (4 times a week for 2 weeks) caused regression of established Meth A sarcoma, and this effect was dose dependent. IL-12 treatment prior to Meth A challenge had little or no antitumor activity. To evaluate the effect of IL-12 on the generation of 234CM-specific cytotoxic T lymphocytes, spleen cells from BALB/c mice immunized with 234CM in adjuvant and injected with various doses of IL-12 were sensitized with 234CM in vitro. Multiple injections of 1 ng of IL-12 induced the highest cytotoxicity against target cells pulsed with 234CM. Higher doses of IL-12 suppressed 234CM-specific cytotoxic T-cell generation. Mice immunized with 234CM in QS-21 adjuvant and treated with 1 ng of IL-12 rejected established Meth A sarcoma. Mice comparably treated with 1 ng of IL-12 but immunized with 234CW peptide (the wild-type counterpart to 234CM) in QS-21 or with QS-21 alone showed progressive tumor growth. PMID:7892250

  3. Autocrine hemokinin-1 functions as endogenous adjuvant for IgE-mediated mast cell inflammatory responses

    PubMed Central

    Sumpter, Tina L.; Ho, Chin H.; Pleet, Anna R.; Tkacheva, Olga A.; Shufesky, William J.; Rojas-Canales, Darling M.; Morelli, Adrian E.; Larregina, Adriana T.

    2014-01-01

    Background Efficient development of atopic diseases requires interaction between allergen and adjuvant to initiate and amplify underlying inflammatory responses. Substance P (SP) and hemokinin-1 (HK-1) are neuropeptides that signal via the neurokinin-1 receptor (NK1R) to promote inflammation. Mast cells initiate the symptoms and tissue effects of atopic disorders, secreting TNF and IL-6 following FcεRI crosslinking by Ag-IgE complexes, (FcεRI-MCs). Additionally, MCs express the NK1R suggesting an adjuvant role of NK1R agonists for FcεRI-MC mediated pathologies, however in depth research addressing this relevant aspect of MC biology is lacking. Objective To investigate the effect of NK1R-signaling and the individual roles of SP and HK-1 as potential adjuvants for FcεRI-MC mediated allergic disorders. Methods Bone marrow (BM) MCs derived from C57BL/6-wild type (WT) or NK1R−/− mice were used to investigate the effects of NK1R signaling of FcεRI-activated MCs. BMMCs generated from Tac1−/− mice or following culture with Tac4 siRNA were used to address the adjuvancy of SP and HK-1. WT, NK1R−/− and c-KitW-sh/W-sh mice reconstituted with WT or NK1R−/− BMMCs were utilized to evaluate NK1R signaling on FcεRI-MC-mediated passive local and systemic anaphylaxis and airway inflammation. Results FcεRI-activated MCs up-regulated NK1R and HK-1 transcripts and protein synthesis, without modifying SP. In a positive signaling loop, HK-1 promoted TNF and IL6 secretion by MC degranulation and protein synthesis the later via the PI3K/Akt/NFκB pathways. In vivo, NK1R signaling was necessary for development of passive local and systemic anaphylaxis and chronic airway inflammation. Conclusions FcεRI-stimulation of MCs promotes autocrine secretion of HK-1 which signals via NK1R to provide adjuvancy for efficient development of FcεRI-MC-mediated disorders. PMID:25201259

  4. The effect of pertussis vaccine on the immune response of mice to sheep red blood cells

    PubMed Central

    Dresser, D. W.; Wortis, H. H.; Anderson, Hilary R.

    1970-01-01

    Bordetella pertussis is an adjuvant when given to mice immunized with sheep RBC. The adjuvant activity of pertussis is reflected in an increase in the number of cells producing antibody as measured by the localized haemolysis in gel technique. γG-PFC have a more marked response to pertussis than do γM-PFC, and in general γG-PFC are more sensitive than γM to variations in dose or injection schedule of pertussis organisms. Pertussis increases the response to doses of antigen which previously were considered to be maximal. The distribution of PFC between spleen, blood and lymph nodes is altered by pertussis injections. PMID:4924108

  5. Effects of Chinese Medicine as Adjunct Medication for Adjuvant Chemotherapy Treatments of Non-Small Cell Lung Cancer Patients

    PubMed Central

    Jiao, Lijing; Dong, Changsheng; Liu, Jiaxiang; Chen, Zhiwei; Zhang, Lei; Xu, Jianfang; Shen, Xiaoyong; Che, Jiaming; Yang, Yi; Huang, Hai; Li, Hegen; Sun, Jianli; Jiang, Yi; Mao, Zhujun; Chen, Peiqi; Gong, Yabin; Jin, Xiaolin; Xu, Ling

    2017-01-01

    The aim was to evaluate the effects of traditional Chinese medicine (TCM) as a combination medication with adjuvant chemotherapy on postoperative early stage non-small cell lung cancer (NSCLC) patients. The 314 patients with completely resected stage IB, II or IIIA cancers were assigned into vinorelbine plus cisplatin/carboplatin (NP/NC) (control, n = 158) and NP/NC with additional TCM (intervention, n = 156) groups. The primary endpoint was QOL scores; secondary endpoints were the toxicity and safety of the regimens. The NP/NC regimen caused mild (grade 1 or 2) non-hematologic toxic effects in the patients comprising vomiting (43.6%), fatigue (36.9%), pain (23%), dry mouth (27.6%) and diarrhea (7.9%). The incidence of adverse events was significantly lower in the intervention group than in the control group (0.57% vs 4.02%, P = 0.037). Transient severe (grade 3 or 4) hematological toxic effects occurred less often (hemoglobin reduction (11.9 vs 22.5 percent) and total bilirubin increased (to 42.1 vs 46.2%) in the intervention compared to the control group during the 2nd chemotherapy cycle. When combined with adjuvant chemotherapy, TCM led to partial relief of symptoms in addition to a reduction of side-effects and adverse events caused by the NP/NC regimens. PMID:28436479

  6. GapA, a potential vaccine candidate antigen against Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus).

    PubMed

    Zhang, Ze; Yu, Angen; Lan, Jiangfeng; Zhang, Hua; Hu, Minqiang; Cheng, Jiewei; Zhao, Lijuan; Lin, Li; Wei, Shun

    2017-04-01

    Streptococcosis due to the bacterium Streptococcus agalactiae (S. agalactiae) has resulted in enormous economic losses in aquaculture worldwide, especially in the tilapia culture industry. Previously, there were limited vaccines that could be employed against streptococcosis in tilapia. This study aimed to develop a vaccine candidate using the glyceraldehyde-phosphate dehydrogenase protein (GapA) of S. agalactiae encoded by the gapA gene. Tilapia were intraperitoneally injected with PBS, PBS + Freund's adjuvant, PBS + Montanide's adjuvant, GapA + Freund's adjuvant, GapA + Montanide's adjuvant, killed S. agalactiae whole cells (WC)+Freund's adjuvant, or killed S. agalactiae whole cells (WC)+ Montanide's adjuvant. They were then challenged with S. agalactiae, and the relative percentage survival (RPS) was monitored 14 days after the challenge. The highest RPSs were observed in the WC groups, with 76.7% in WC + Freund's adjuvant and 74.4% in WC + Montanide's adjuvant groups; these were followed by the GapA groups, with 63.3% in GapA + Freund's adjuvant and 45.6% in GapA + Montanide's adjuvant groups. The RPS of the PBS group was 0%, and those of PBS + Freund's adjuvant and PBS + Montanide's adjuvant groups were 6.7% and 3.3%, respectively. Additionally, the IgM antibody responses elicited in GapA groups and WC groups were significantly higher than those in PBS groups. Furthermore, the expressions of cytokine (IL-1β and TNF-α) mRNAs in the GapA groups and WC groups were significantly higher than those in the PBS groups. Taken together, these results reveal that the GapA protein is a promising vaccine candidate that could be used to prevent streptococcosis in tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas

    PubMed Central

    Ramayanti, Octavia; Brinkkemper, Mitch; Verkuijlen, Sandra A. W. M.; Ritmaleni, Leni; Go, Mei Lin

    2018-01-01

    Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC. However, a major challenge is to maximize EBV lytic reactivation by CLVA. Curcumin, a dietary spice used in Asian countries, is known for its antitumor property and therapeutic potential. Novel curcuminoids that were developed to increase efficacy and bioavailability may serve as oral CLVA adjuvants. We investigated the potential of curcumin and its analogs (curcuminoids) to trigger the EBV lytic cycle in EBVaGC and NPC cells. EBV-reactivating effects were measured by immunoblot and immunofluorescence using monoclonal antibodies specific for EBV lytic proteins. Two of the hit compounds (41, EF24) with high lytic inducing activity were further studied for their synergistic or antagonistic effects when combined with GCb+VPA and analyzed by cytotoxicity and mRNA profiling assays to measure the EBV reactivation. Curcuminoid as a single agent significantly induced EBV reactivation in recombinant GC and NPC lines. The drug effects were dose- and time-dependent. Micromolar concentration of curcuminoid EF24 enhanced the CLVA effect in all cell systems except SNU719, a naturally infected EBVaGC cell that carries a more tightly latent viral genome. These findings indicated that EF24 has potential as EBV lytic activator and may serve as an adjuvant in CLVA treatment. PMID:29565326

  8. Curcuminoids as EBV Lytic Activators for Adjuvant Treatment in EBV-Positive Carcinomas.

    PubMed

    Ramayanti, Octavia; Brinkkemper, Mitch; Verkuijlen, Sandra A W M; Ritmaleni, Leni; Go, Mei Lin; Middeldorp, Jaap M

    2018-03-22

    Epstein-Barr virus (EBV) persists in nasopharyngeal (NPC) and gastric carcinomas (EBVaGC) in a tightly latent form. Cytolytic virus activation (CLVA) therapy employs gemcitabine and valproic acid (GCb+VPA) to reactivate latent EBV into the lytic phase and antiviral valganciclovir to enhance cell death and prevent virus production. CLVA treatment has proven safe in phase-I/II trials with promising clinical responses in patients with recurrent NPC. However, a major challenge is to maximize EBV lytic reactivation by CLVA. Curcumin, a dietary spice used in Asian countries, is known for its antitumor property and therapeutic potential. Novel curcuminoids that were developed to increase efficacy and bioavailability may serve as oral CLVA adjuvants. We investigated the potential of curcumin and its analogs (curcuminoids) to trigger the EBV lytic cycle in EBVaGC and NPC cells. EBV-reactivating effects were measured by immunoblot and immunofluorescence using monoclonal antibodies specific for EBV lytic proteins. Two of the hit compounds ( 41 , EF24 ) with high lytic inducing activity were further studied for their synergistic or antagonistic effects when combined with GCb+VPA and analyzed by cytotoxicity and mRNA profiling assays to measure the EBV reactivation. Curcuminoid as a single agent significantly induced EBV reactivation in recombinant GC and NPC lines. The drug effects were dose- and time-dependent. Micromolar concentration of curcuminoid EF24 enhanced the CLVA effect in all cell systems except SNU719, a naturally infected EBVaGC cell that carries a more tightly latent viral genome. These findings indicated that EF24 has potential as EBV lytic activator and may serve as an adjuvant in CLVA treatment.

  9. Immune modulation using transdermal photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Levy, Julia G.; Chowdhary, R. K.; Ratkay, Leslie G.; Waterfield, Douglas; Obochi, Modestus; Leong, Simon; Hunt, David W. C.; Chan, Agnes H.

    1995-01-01

    The photosensitizer benzoporphyrin derivative monoacid ring A (VerteporfinR or BPD) has maximum absorption characteristics (690 nm) and biodistribution characteristics which permit activation of the drug in capillaries of the skin without causing skin photosensitivity (transdermal PDT). This permits targeting of cells in the circulation for selective ablation. Since BPD has been shown to accumulate preferentially in activated lymphocytes and monocytes, studies have been undertaken to determine the effect of transdermal PDT on murine models for rheumatoid arthritis (the MRL/lpr adjuvant enhanced model) and multiple sclerosis (the experimental allergic encephalomyelitis (EAE) model in PL mice). Localized transdermal PDT with BPD was found to be completely successful in preventing the development of adjuvant enhanced arthritis in the MRL/lpr mouse as well as improving the underlying arthritic condition of these animals. In the EAE model, in which an adoptive transfer system was used, it was found that transdermal PDT of recipients was effective in preventing EAE if treatments were implemented up to 24 hours after cell transfer but was not effective if given later, indicating the requirement for circulating T cells for effective treatment.

  10. MONITORING OF SYNERGISTIC ENHANCEMENT OF CAFFEIC ACID ON ESCHERICHIA COLI K-12 RECA::GFP STRAIN TREATED WITH DACARBAZINE.

    PubMed

    Matejczyk, Marzena; Swislocka, Renata; Kalinowska, Monika; Swidersk, Grzegorz; Lewandowsk, Wlodzimierz; Jablonska-Trypuo, Agata

    2017-05-01

    Caffeic acid and its derivatives because of its biological activities, including antioxidants, antithrombosis, antihypertensive, antifibrosis, antiviral, and anti-tumor properties are good candidates as adjuvants in anticancer therapy. The aim of this study was the examination of cyto- and genotoxic effect of caffeic acid on Escherichia coli K-12 recA::gfp strain treated with dacarbazine. Obtained results indicate that dacarbazine and caffeic acid influenced the reactivity of recA promoter and modulate the level of gfp expression in genetic construct rrcA::gfpmut2 in E. coli K-12. Simultaneuos administration of dacarbazine with caffeic acid caused the stronger inhibition of the bacteria growth than the dacarbazine and caffeic acid separated administration to bacteria cells. The simultaneous effect of the both tested chemicals - dacarbazine and caffeic acid indicated (cytostatic effect) anticancer activity in relation to bacteria cells. It suggests, that combination of known anticancer drug - dacarbazine w ith caffeic acid exerted synergistic cytotoxic and genotoxic effects toward E. coli K- 12 cells and indicated the possibility of usefulness of caffeic acid as a natural adjuvant in anticancer therapy.

  11. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(γ-glutamic acid) nanoparticles.

    PubMed

    Shima, Fumiaki; Akagi, Takami; Uto, Tomofumi; Akashi, Mitsuru

    2013-12-01

    The new generation vaccines are safe but poorly immunogenic, and thus they require the use of adjuvants. However, conventional vaccine adjuvants fail to induce potent cellular immunity, and their toxicity and side-effects hinder the clinical use. Therefore, a vaccine adjuvant which is safe and can induce an antigen-specific cellular immunity-biased immune response is urgently required. In the development of nanoparticle-based vaccine adjuvants, the hydrophobicity is one of the most important factors. It could control the interaction between the encapsulated antigens and/or nanoparticles with immune cells. In this study, nanoparticles (NPs) composed of amphiphilic poly(γ-glutamic acid)-graft-L-phenylalanine ethyl ester (γ-PGA-Phe) with various grafting degrees of hydrophobic side chains were prepared to evaluate the effect of hydrophobicity of vaccine carriers on the antigen encapsulation behavior, cellular uptake, activation of dendritic cells (DCs), and induction of antigen-specific cellular immunity-biased immune responses. These NPs could efficiently encapsulate antigens, and the uptake amount of the encapsulated antigen by DCs was dependent on the hydrophobicity of γ-PGA-Phe NPs. Moreover, the activation potential of the DCs and the induction of antigen-specific cellular immunity were correlated with the hydrophobicity of γ-PGA-Phe NPs. By controlling the hydrophobicity of antigen-encapsulated γ-PGA-Phe NPs, the activation potential of DCs was able to manipulate about 5 to 30-hold than the conventional vaccine, and the cellular immunity was about 10 to 40-hold. These results suggest that the hydrophobicity of NPs is a key factor for changing the interaction between NPs and immune cells, and thus the induction of cellular immunity-biased immune response could be achieved by controlling the hydrophobicity of them. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Vitamin A or E and a catechin synergize as vaccine adjuvant to enhance immune responses in mice by induction of early interleukin-15 but not interleukin-1β responses.

    PubMed

    Patel, Sapna; Akalkotkar, Archana; Bivona, Joseph J; Lee, Ji-Young; Park, Young-Ki; Yu, Mingke; Colpitts, Sara L; Vajdy, Michael

    2016-08-01

    Vitamins A and E and select flavonoids in the family of catechins are well-defined small molecules that, if proven to possess immunomodulatory properties, hold promise as vaccine adjuvants and various therapies. In an effort to determine the in vivo immunomodulatory properties of these molecules, we found that although mucosal and systemic vaccinations with a recombinant HIV-1BaL gp120 with either a catechin, epigallo catechin gallate (EGCG) or pro-vitamin A (retinyl palmitate) alone in a vegetable-oil-in-water emulsion (OWE) suppressed antigen-specific responses, the combination of EGCG and vitamin A or E in OWE (Nutritive Immune-enhancing Delivery System, NIDS) synergistically enhanced adaptive B-cell, and CD4(+) and CD8(+) T-cell responses, following induction of relatively low local and systemic innate tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-17, but relatively high levels of early systemic IL-15 responses. For induction of adaptive interferon-γ and TNF-α responses by CD4(+) and CD8(+) T cells, the adjuvant effect of NIDS was dependent on both IL-15 and its receptor. In addition, the anti-oxidant activity of NIDS correlated positively with higher expression of the superoxide dismutase 1, an enzyme involved in reactive oxygen species elimination but negatively with secretion of IL-1β. This suggests that the mechanism of action of NIDS is dependent on anti-oxidant activity and IL-15, but independent of IL-1β and inflammasome formation. These data show that this approach in nutritive vaccine adjuvant design holds promise for the development of potentially safer effective vaccines. © 2016 John Wiley & Sons Ltd.

  13. Serum Cytokine Profiles Associated with Specific Adjuvants Used in a DNA Prime-Protein Boost Vaccination Strategy

    PubMed Central

    Buglione-Corbett, Rachel; Pouliot, Kimberly; Marty-Roix, Robyn; West, Kim; Wang, Shixia; Lien, Egil; Lu, Shan

    2013-01-01

    In recent years, heterologous prime-boost vaccines have been demonstrated to be an effective strategy for generating protective immunity, consisting of both humoral and cell-mediated immune responses against a variety of pathogens including HIV-1. Previous reports of preclinical and clinical studies have shown the enhanced immunogenicity of viral vector or DNA vaccination followed by heterologous protein boost, compared to using either prime or boost components alone. With such approaches, the selection of an adjuvant for inclusion in the protein boost component is expected to impact the immunogenicity and safety of a vaccine. In this study, we examined in a mouse model the serum cytokine and chemokine profiles for several candidate adjuvants: QS-21, Al(OH)3, monophosphoryl lipid A (MPLA) and ISCOMATRIX™ adjuvant, in the context of a previously tested pentavalent HIV-1 Env DNA prime-protein boost formulation, DP6-001. Our data revealed that the candidate adjuvants in the context of the DP6-001 formulation are characterized by unique serum cytokine and chemokine profiles. Such information will provide valuable guidance in the selection of an adjuvant for future AIDS vaccine development, with the ultimate goal of enhancing immunogenicity while minimizing reactogenicity associated with the use of an adjuvant. More significantly, results reported here will add to the knowledge on how to include an adjuvant in the context of a heterologous prime-protein boost vaccination strategy in general. PMID:24019983

  14. Role of chemotherapy and targeted therapy in early-stage non-small cell lung cancer.

    PubMed

    Nagasaka, Misako; Gadgeel, Shirish M

    2018-01-01

    Adjuvant platinum based chemotherapy is accepted as standard of care in stage II and III non-small cell lung cancer (NSCLC) patients and is often considered in patients with stage IB disease who have tumors ≥ 4 cm. The survival advantage is modest with approximately 5% at 5 years. Areas covered: This review article presents relevant data regarding chemotherapy use in the perioperative setting for early stage NSCLC. A literature search was performed utilizing PubMed as well as clinical trial.gov. Randomized phase III studies in this setting including adjuvant and neoadjuvant use of chemotherapy as well as ongoing trials on targeted therapy and immunotherapy are also discussed. Expert commentary: With increasing utilization of screening computed tomography scans, it is possible that the percentage of early stage NSCLC patients will increase in the coming years. Benefits of adjuvant chemotherapy in early stage NSCLC patients remain modest. There is a need to better define patients most likely to derive survival benefit from adjuvant therapy and spare patients who do not need adjuvant chemotherapy due to the toxicity of such therapy. Trials for adjuvant targeted therapy, including adjuvant EGFR-TKI trials and trials of immunotherapy drugs are ongoing and will define the role of these agents as adjuvant therapy.

  15. Discovery of NKT cells and development of NKT cell-targeted anti-tumor immunotherapy

    PubMed Central

    TANIGUCHI, Masaru; HARADA, Michishige; DASHTSOODOL, Nyambayar; KOJO, Satoshi

    2015-01-01

    Natural Killer T (NKT) cells are unique lymphocytes characterized by their expression of a single invariant antigen receptor encoded by Vα14Jα18 in mice and Vα24Jα18 in humans, which recognizes glycolipid antigens in association with the monomorphic CD1d molecule. NKT cells mediate adjuvant activity to activate both CD8T cells to kill MHC-positive tumor cells and NK cells to eliminate MHC-negative tumor at the same time in patients, resulting in the complete eradication of tumors without relapse. Therefore, the NKT cell-targeted therapy can be applied to any type of tumor and also to anyone individual, regardless of HLA type. Phase IIa clinical trials on advanced lung cancers and head and neck tumors have been completed and showed significantly prolonged median survival times with only the primary treatment. Another potential treatment option for the future is to use induced pluripotent stem cell (iPS)-derived NKT cells, which induced adjuvant effects on anti-tumor responses, inhibiting in vivo tumor growth in a mouse model. PMID:26194854

  16. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    PubMed

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  17. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma

    PubMed Central

    Tsen, Andrew R.; Long, Patrick M.; Driscoll, Heather E.; Davies, Matthew T.; Teasdale, Benjamin A.; Penar, Paul L.; Pendlebury, William W.; Spees, Jeffrey L.; Lawler, Sean E.; Viapiano, Mariano S.; Jaworski, Diane M.

    2013-01-01

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic, and hypoacetylated mesenchymal glioma tumors. PMID:23996800

  18. Immunogenicity of peptides of measles virus origin and influence of adjuvants.

    PubMed

    Halassy, Beata; Mateljak, Sanja; Bouche, Fabienne B; Pütz, Mike M; Muller, Claude P; Frkanec, Ruza; Habjanec, Lidija; Tomasić, Jelka

    2006-01-12

    Epitope-based peptide antigens have been under development for protection against measles virus. The immunogenicity of five peptides composed of the same B cell epitope (BCE) (H236-250 of the measles virus hemagglutinin), and different T cell epitopes of measles virus fusion protein (F421-435, F256-270, F288-302) and nucleoprotein (NP335-345) was studied in mice (subcutaneous immunisation). The adjuvant effects of peptidoglycan monomer (PGM), Montanide ISA 720 and 206 were also investigated. Results showed basic differences in peptide immunogenicity that were consistent with already described structural differences. PGM elevated peptide-specific IgG when applied together with four of five tested peptides. A strong synergistic effect was observed after co-immunisation of mice with a mixture containing all five chimeric peptides in small and equal amounts. Results revealed for the first time that immunisation with several peptides having the common BCE generated significantly higher levels of both anti-peptide and anti-BCE IgG in comparison to those obtained after immunisation with a single peptide in much higher quantity. Further improvement of immune response was obtained after incorporation of such a peptide mixture into oil-based adjuvants.

  19. Flagellin is a Th1 polarizing factor for human CD4+ T cells and induces protection in a murine neonatal vaccination model of rotavirus infection.

    PubMed

    Labastida-Conde, Rosario Guadalupe; Ramírez-Pliego, Oscar; Peleteiro-Olmedo, Mercedes; Lopez-Guerrero, Delia Vanessa; Badillo-Godinez, Oscar Daniel; Gutiérrez-Xicoténcatl, María de Lourdes; Rosas-Salgado, Gabriela; González-Fernández, África; Esquivel-Guadarrama, Fernando R; Santana, M Angélica

    2018-07-05

    Neonates have an increased susceptibility to infections, particularly those caused by intracellular pathogens, leading to high morbidity and mortality rates. This is partly because of a poor response of neonatal CD4 + T cells, leading to deficient antibody production and a low production of IFN-γ, resulting in deficient elimination of intracellular pathogens. The poor memory response of human neonates has underpinned the need for improving vaccine formulations. Molecular adjuvants that improve the response of neonatal lymphocytes, such as the ligands of toll-like receptors (TLRs), are attractive candidates. Among them, flagellin, the TLR5 ligand, is effective at very low doses; prior immunity to flagellin does not impair its adjuvant activity. Human CD4 + and CD8 + T cells express TLR5. We found that flagellin induces the expression of IFN-γ, IL-1β and IL-12 in mononuclear cells from human neonate and adult donors. When human naïve CD4 + T cells were activated in the presence of flagellin, there was high level of expression of IFN-γ in both neonates and adults. Furthermore, flagellin induced IFN-γ production in Th1 cells obtained from adult donors; in the Th2 population, it inhibited IL-4 cytokine production. Flagellin also promoted expression of the IFN-γ receptor in naive CD4 + T cells from neonates and adults. To test the adjuvant capacity of flagellin in vivo, we used a murine neonate vaccination model for infection with rotavirus, a pathogen responsible for severe diarrhea in young infants. Using the conserved VP6 antigen, we observed an 80% protection against rotavirus infection in the presence of flagellin, but only in those mice previously primed in the neonatal period. Our data suggest that flagellin could be an attractive adjuvant for achieving a Th1 response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Distinct pathways of humoral and cellular immunity induced with the mucosal administration of a nanoemulsion adjuvant.

    PubMed

    Bielinska, Anna U; Makidon, Paul E; Janczak, Katarzyna W; Blanco, Luz P; Swanson, Benjamin; Smith, Douglas M; Pham, Tiffany; Szabo, Zsuzsanna; Kukowska-Latallo, Jolanta F; Baker, James R

    2014-03-15

    Nasal administration of an oil-in-water nanoemulsion (NE) adjuvant W805EC produces potent systemic and mucosal, Th-1- and Th-17-balanced cellular responses. However, its molecular mechanism of action has not been fully characterized and is of particular interest because NE does not contain specific ligands for innate immune receptors. In these studies, we demonstrate that W805EC NE adjuvant activates innate immunity, induces specific gene transcription, and modulates NF-κB activity via TLR2 and TLR4 by a mechanism that appears to be distinct from typical TLR agonists. Nasal immunization with NE-based vaccine showed that the TLR2, TLR4, and MyD88 pathways and IL-12 and IL-12Rβ1 expression are not required for an Ab response, but they are essential for the induction of balanced Th-1 polarization and Th-17 cellular immunity. NE adjuvant induces MHC class II, CD80, and CD86 costimulatory molecule expression and dendritic cell maturation. Further, upon immunization with NE, adjuvant mice deficient in the CD86 receptor had normal Ab responses but significantly reduced Th-1 cellular responses, whereas animals deficient in both CD80 and CD86 or lacking CD40 failed to produce either humoral or cellular immunity. Overall, our data show that intranasal administration of Ag with NE induces TLR2 and TLR4 activation along with a MyD88-independent Ab response and a MyD88-dependent Th-1 and Th-17 cell-mediated immune response. These findings suggest that the unique properties of NE adjuvant may offer novel opportunities for understanding previously unrecognized mechanisms of immune activation important for generating effective mucosal and systemic immune responses.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lien, Shu-Pei; Shih, Yi-Ping; Chen, Hsin-Wei

    Three peptides, D1 (amino acid residues 175-201), D2 (a.a. 434-467), and TM (a.a. 1128-1159), corresponding to the spike protein (S) of severe acute respiratory syndrome corona virus (SARS CoV) were synthesized and their immunological functions were investigated in three different animals models (mice, guinea pigs, and rabbits). The peptides mixture formulated either with Freund's adjuvant or synthetic adjuvant Montanide ISA-51/oligodeoxy nucleotide CpG (ISA/CpG) could elicit antisera in immunized animals which were capable of inhibiting SARS/HIV pseudovirus entry into HepG2 cells. The neutralizing epitopes were identified using peptides to block the neutralizing effect of guinea pig antisera. The major neutralizing epitopemore » was located on the D2 peptide, and the amino acid residue was fine mapped to 434-453. In BALB/c mice T-cell proliferation assay revealed that only D2 peptide contained T-cell epitope, the sequence of which corresponded to amino acid residue 434-448. The ISA/CpG formulation generated anti-D2 IgG titer comparable to those obtained from Freund's adjuvant formulation, but generated fewer antibodies against D1 or TM peptides. The highly immunogenic D2 peptide contains both neutralizing and Th cell epitopes. These results suggest that synthetic peptide D2 would be useful as a component of SARS vaccine candidates.« less

  2. Mitogenic activity of a water-soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii. IV. Synergistic effects of Bu-WSA on Concanavalin A-induced proliferative response of human peripheral blood lymphocytes.

    PubMed

    Nitta, T; Okumura, S; Tsushi, M; Nakano, M

    1982-01-01

    Butanol-extracted water-soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii was cultured with peripheral blood mononuclear cells (PBM) in the presence of sub- and/or supra-optimal mitogenic concentrations of concanavalin A (Con A). The addition of Bu-WSA resulted in increased tritiated thymidine incorporation above that produced by Con A alone. Bu-WSA by itself is not mitogenic for PBM and in fact produced a decrease in thymidine uptake compared to the control. We investigated the response of subpopulation(s) of PBM to Bu-WSA, Con A and a mixture of Bu-WSA and Con A. Separation of PBM into purified T cells, B cells and macrophages showed that cell-cell cooperation of T cells with B cells or macrophages is necessary for the observed synergistic effect of Bu-WSA with Con A. A marked increase in thymidine incorporation by the mixture of T and B cell populations occurred, while only a small amount of thymidine was incorporated when the B cell population was absent. Mitomycin treatment revealed that the response could be ascribed to the T-cell response with a B-cell helper effect. Moreover, Con A and Bu-WSA appeared to act on the same T cell population. This model may provide unique information about the activation of human peripheral blood T cells compared with the activation of these cells by other mitogens.

  3. Induction of pneumococcal polysaccharide-specific mucosal immune responses by oral immunization.

    PubMed

    VanCott, J L; Kobayashi, T; Yamamoto, M; Pillai, S; McGhee, J R; Kiyono, H

    1996-04-01

    Liposome and cholera toxin (CT) are considered to be effective antigen delivery vehicles and adjuvants for mucosal vaccines. The effect of these antigen delivery systems on adjuvant responses to mucosally administered pneumococcal polysaccharide (Pnup) was investigated in this study. Both mucosal (e.g. oral) and systemic (i.p.) immunization of mice with purified preparations of Pnup type 23F induced antigen-specific IgM responses in sera. Interestingly, oral immunization of as little as 10 micrograms of Pnup type 23F was sufficient to induce systemic IgM responses. Pnup-specific IgM antibodies peaked by day 7 and no booster responses were evident after a second dose on day 14. In order to examine whether IgG and IgA Pnup-specific immune responses are induced by mucosal immunization, the mucosal adjuvant CT was mixed with Pnup type 23 as an oral vaccine. Co-oral administration of CT and Pnup type 23F resulted in the induction of Pnup-specific faecal IgA antibodies. These results were confirmed by detecting antigen-specific IgA-spot-forming cells in mononuclear cell suspensions prepared from the intestine of immunized mice. These findings suggest that oral immunization with Pnup in the presence of mucosal adjuvants, such as CT, could induce Pnup-specific IgA responses whereas Pnup alone did not. In an attempt to further enhance antigen-specific antibody responses, Pnup type 23F was encapsulated in liposomes and used as mucosal vaccine. However, immunogenicity of Pnup was not improved.

  4. Allergoid-specific T-cell reaction as a measure of the immunological response to specific immunotherapy (SIT) with a Th1-adjuvanted allergy vaccine.

    PubMed

    von Baehr, V; Hermes, A; von Baehr, R; Scherf, H P; Volk, H D; Fischer von Weikersthal-Drachenberg, K J; Woroniecki, S

    2005-01-01

    Specific immunotherapy (SIT) is believed to modulate CD4+ T-helper cells. In order to improve safety, SIT vaccines are often formulated with allergoids (chemically modified allergens). Interaction between T-cells and allergoids is necessary to influence cellular cytokine expression. There have been few reports on identification the early cellular effects of SIT. Patients allergic to grass and/or mugwort pollen (n= 21) were treated with a 4-shot allergy vaccine (Pollinex Quattro) containing appropriate allergoids (grass/rye and/or mugwort) adsorbed to L-tyrosine plus a Th1 adjuvant, monophosphoryl lipid A (MPL). Fourteen grass-allergic patients served as untreated controls. Using the peripheral blood mononuclear cells of these patients, an optimized lymphocyte transformation test (LTT) was employed to monitor the in vitro proliferative response of T-cells to an allergoid challenge (solubilised Pollinex Quattro) before the first and last injection and then 2 and 20 weeks after the final injection. Control challenges utilised preparations of a similar pollen vaccine without the adjuvant MPL and a tree pollen vaccine with and without MPL. The LTT showed increased LTT stimulation indices (SI) in 17/20 SIT patients when the solublised vaccine preparation was used as a challenge before the last injection and 2 weeks after, in comparison to pre-treatment levels. Twenty weeks after therapy, the SI decreased to baseline level. A vaccine challenge without MPL gave lower SI levels. A challenge of a clinically inappropriate tree allergoid vaccine gave no response, and a nontreated group also showed no response. Following a short-course SIT adjuvated with MPL, challenges of allergoids were shown to activate allergen-specific T cells in vitro. There was an additional stimulating effect when the challenge was in combination with MPL. There were no non-specific effects of MPL, shown by the tree allergoid/MPL control. The timing of the response was closely correlated to the treatment course; reactivity fell two weeks after the final injection and 20 weeks later it was at baseline level. Thus an immunological response to SIT was detected after very few injections. This methodology could provide a basis for monitoring the immediate progress of allergy vaccinations.

  5. Efficient mucosal delivery of the HIV-1 Tat protein using the synthetic lipopeptide MALP-2 as adjuvant.

    PubMed

    Borsutzky, Stefan; Fiorelli, Valeria; Ebensen, Thomas; Tripiciano, Antonella; Rharbaoui, Faiza; Scoglio, Arianna; Link, Claudia; Nappi, Filomena; Morr, Michael; Buttó, Stefano; Cafaro, Aurelio; Mühlradt, Peter F; Ensoli, Barbara; Guzmán, Carlos A

    2003-06-01

    A major requirement for HIV/AIDS research is the development of a mucosal vaccine that stimulates humoral and cell-mediated immune responses at systemic and mucosal levels, thereby blocking virus replication at the entry port. Thus, a vaccine prototype based on biologically active HIV-1 Tat protein as antigen and the synthetic lipopeptide, macrophage-activating lipopeptide-2 (MALP-2), asa mucosal adjuvant was developed. Intranasal administration to mice stimulated systemic and mucosal anti-Tat antibody responses, and Tat-specific T cell responses, that were more efficient than those observed after i.p. immunization with Tat plus incomplete Freund's adjuvant. Major linear B cell epitopes mapped within aa 1-20 and 46-60, whereas T cell epitopes were identified within aa 36-50 and 56-70. These epitopes have also been described in vaccinated primates and in HIV-1-infected individuals with better prognosis. Analysis of the anti-Tat IgG isotypes in serum, and the cytokine profile of spleen cells indicated that a dominant Th1 helper response was stimulated by Tat plus MALP-2, as opposed to the Th2 response observed with Tat plus incomplete Freund's adjuvant. Tat-specific IFN-gamma-producing cells were significantly increased only in response to Tat plus MALP-2. These data suggest that Malp-2 may represent an optimal mucosal adjuvant for candidate HIV vaccines based on Tat alone or in combination with other HIV antigens.

  6. Modern Vaccines/Adjuvants Formulation Session 6: Vaccine &Adjuvant Formulation & Production 15-17 May 2013, Lausanne, Switzerland.

    PubMed

    Fox, Christopher B

    2013-09-01

    The Modern Vaccines/Adjuvants Formulation meeting aims to fill a critical gap in current vaccine development efforts by bringing together formulation scientists and immunologists to emphasize the importance of rational formulation design in order to optimize vaccine and adjuvant bioactivity, safety, and manufacturability. Session 6 on Vaccine and Adjuvant Formulation and Production provided three examples of this theme, with speakers emphasizing the need for extensive physicochemical characterization of adjuvant-antigen interactions, the rational formulation design of a CD8+ T cell-inducing adjuvant based on immunological principles, and the development and production of a rabies vaccine by a developing country manufacturer. Throughout the session, the practical importance of sound formulation and manufacturing design accompanied by analytical characterization was highlighted.

  7. A Novel Prime and Boost Regimen of HIV Virus-Like Particles with TLR4 Adjuvant MPLA Induces Th1 Oriented Immune Responses against HIV

    PubMed Central

    Poteet, Ethan; Lewis, Phoebe; Li, Feng; Zhang, Sheng; Gu, Jianhua; Chen, Changyi; Ho, Sam On; Do, Thai; Chiang, SuMing; Fujii, Gary; Yao, Qizhi

    2015-01-01

    HIV virus-like particles (VLPs) present the HIV envelope protein in its native conformation, providing an ideal vaccine antigen. To enhance the immunogenicity of the VLP vaccine, we sought to improve upon two components; the route of administration and the additional adjuvant. Using HIV VLPs, we evaluated sub-cheek as a novel route of vaccine administration when combined with other conventional routes of immunization. Of five combinations of distinct prime and boost sequences, which included sub-cheek, intranasal, and intradermal routes of administration, intranasal prime and sub-cheek boost (IN+SC) resulted in the highest HIV-specific IgG titers among the groups tested. Using the IN+SC regimen we tested the adjuvant VesiVax Conjugatable Adjuvant Lipid Vesicles (CALV) + monophosphoryl lipid A (MPLA) at MPLA concentrations of 0, 7.5, 12.5, and 25 μg/dose in combination with our VLPs. Mice that received 12.5 or 25 μg/dose MPLA had the highest concentrations of Env-specific IgG2c (20.7 and 18.4 μg/ml respectively), which represents a Th1 type of immune response in C57BL/6 mice. This was in sharp contrast to mice which received 0 or 7.5 μg MPLA adjuvant (6.05 and 5.68 μg/ml of IgG2c respectively). In contrast to IgG2c, MPLA had minor effects on Env-specific IgG1; therefore, 12.5 and 25 μg/dose of MPLA induced the optimal IgG1/IgG2c ratio of 1.3. Additionally, the percentage of germinal center B cells increased significantly from 15.4% in the control group to 31.9% in the CALV + 25 μg MPLA group. These mice also had significantly more IL-2 and less IL-4 Env-specific CD8+ T cells than controls, correlating with an increased percentage of Env-specific central memory CD4+ and CD8+ T cells. Our study shows the strong potential of IN+SC as an efficacious route of administration and the effectiveness of VLPs combined with MPLA adjuvant to induce Env specific Th1-oriented HIV-specific immune responses. PMID:26312747

  8. Adjuvant radiation therapy for malignant Abrikossoff's tumor: a case report about a femoral triangle localisation.

    PubMed

    Marchand Crety, C; Garbar, C; Madelis, G; Guillemin, F; Soibinet Oudot, P; Eymard, J C; Servagi Vernat, S

    2018-06-20

    Granular cell or Abrikossoff's tumors are usually benign however rare malignant forms concern 1 to 3% of cases reported. Pelvic locations are exceptional. We report a case of a 43-years-old patient who had a benign Abrikossoff's tumor localized in the right femoral triangle diagnosed at the biopsy. The patient underwent a surgical tumorectomy and inguinal lymph nodes resection. Histologically, the tumor showed enough criteria to give diagnosis of malignancy: nuclear pleomorphism, tumor cell spindling, vesicular nuclei with large nucleoli. Moreover, five lymph nodes were metastatic. Immunohistochemistry findings confirmed the diagnosis of granular cell tumor which is positive for S100 protein and CD68 antibodies. The mitotic index was nevertheless low with a Ki67 labeling index of 1-2%. A large surgical revision with an inguinal curage following radiotherapy were decided on oncology committee. Adjuvant radiotherapy on the tumor bed and right inguinal area of ​​50 Gy in conventional fractionation was delivered with the aim of reducing local recurrence risk. There was no recurrence on longer follow-up (10 months post radiotherapy). Adjuvant radiotherapy seems an appropriate therapeutic approach, even if controversial, given that some authors report effectiveness on local disease progression.

  9. An endogenous immune adjuvant released by necrotic cells for enhancement of DNA vaccine potency.

    PubMed

    Dorostkar, Rohollah; Bamdad, Taravat; Parsania, Masoud; Pouriayevali, Hassan

    2012-12-01

    Improving vaccine potency in the induction of a strong cell-mediated cytotoxicity can enhance the efficacy of vaccines. Necrotic cells and the supernatant of necrotic tumor cells are attractive adjuvants, on account of their ability to recruit antigen-presenting cells to the site of antigen synthesis as well as its ability to stimulate the maturation of dendritic cells. To evaluate the utility of supernatant of necrotic tumor cells as a DNA vaccine adjuvant in a murine model. The supernatant of EL4 necrotic cells was co-administered with a DNA vaccine expressing the glycoprotein B of Herpes simplex virus-1 as an antigen model under the control of Cytomegalovirus promoter. C57BL/6 mice were vaccinated three times at two weeks intervals with glycoprotein B DNA vaccine and supernatant of necrotic EL4 cells. Five days after the last immunization, cell cytotoxicity, IFN-γ and IL-4 were evaluated. The obtained data showed that the production of IFN-γ from the splenocytes after antigenic stimulation in the presence of the supernatant of necrotic EL4 cells was significantly higher than the other groups (p<0.002). The flow cytometry results showed a significant increase in the apoptosis/necrosis of EL4 cells in the mice immunized with DNA vaccine and supernatant of necrotic EL4 cells comparing to the other groups (p<0.001). The supernatant of necrotic cells contains adjuvant properties that can be considered as a candidate for tumor vaccination.

  10. CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization.

    PubMed

    Sundling, Christopher; Schön, Karin; Mörner, Andreas; Forsell, Mattias N E; Wyatt, Richard T; Thorstensson, Rigmor; Karlsson Hedestam, Gunilla B; Lycke, Nils Y

    2008-12-01

    Strategies to induce potent and broad antibody responses against the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) at both systemic and mucosal sites represent a central goal for HIV-1 vaccine development. Here, we show that the non-toxic CTA1-DD adjuvant promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal (i.n.) immunizations with trimeric or monomeric forms of HIV-1 Env in mice and in non-human primates. Env-specific IgG subclasses in the serum of immunized mice reflected a balanced Th1/Th2 type of response. Strikingly, i.n. immunizations with Env and the CTA1-DD adjuvant induced substantial levels of mucosal anti-Env IgA in bronchial alveolar lavage and also detectable levels in vaginal secretions. By contrast, parenteral immunizations of Env formulated in Ribi did not stimulate mucosal IgA responses, while the two adjuvants induced a similar distribution of Env-specific IgG-subclasses in serum. A single parenteral boost with Env in Ribi adjuvant into mice previously primed i.n. with Env and CTA1-DD, augmented the serum anti-Env IgG levels to similar magnitudes as those observed after three intraperitoneal immunizations with Env in Ribi. The augmenting potency of CTA1-DD was similar to that of LTK63 or CpG oligodeoxynucleotides (ODN). However, in contrast to CpG ODN, the effect of CTA1-DD and LTK63 appeared to be independent of MyD88 and toll-like receptor signalling. This is the first demonstration that CTA1-DD augments specific immune responses also in non-human primates, suggesting that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for humoral and cell-mediated immunity against HIV-1 Env.

  11. Adjuvant-Loaded Spiky Gold Nanoparticles for Activation of Innate Immune Cells.

    PubMed

    Nam, Jutaek; Son, Sejin; Moon, James J

    2017-10-01

    Gold nanoparticles are versatile carriers for delivery of biomacromolecules. Here, we have developed spiky gold nanoparticles (SGNPs) that can efficiently deliver immunostimulatory agents. Our goal was to develop a platform technology for co-delivery of multiple adjuvant molecules for synergistic stimulation and maturation of innate immune cells. SGNPs were synthesized by a seed-mediated, surfactant-free synthesis method and incorporated with polyinosinic-polycytidylic acid (pIC) and DNA oligonucleotide containing unmethylated CpG motif (CpG) by an electrostatic layer-by-layer approach. Adjuvant-loaded SGNP nano-complexes were examined for their biophysical and biochemical properties and studied for immune activation using bone marrow-derived dendritic cells (BMDCs). We have synthesized SGNPs with branched nano-spikes layered with pIC and/or CpG. Adjuvant-loaded SGNP nano-complexes promoted cellular uptake of the adjuvants. Importantly, we achieved spatio-temporal control over co-delivery of pIC and CpG via SGNPs, which produced synergistic enhancement in cytokine release (IL-6, TNF-α) and upregulation of co-stimulatory markers (CD40, CD80, CD86) in BMDCs, compared with pIC, CpG, or their admixtures. SGNPs serve as a versatile delivery platform that allows flexible and on-demand cargo fabrication for strong activation of innate immune cells.

  12. A Case of Therapy-Related Acute Myeloid Leukemia Associated with Adjuvant Temozolomide Chemotherapy for Anaplastic Astrocytoma.

    PubMed

    Kosugi, Kenzo; Saito, Katsuya; Takahashi, Wataru; Tokuda, Yukina; Tomita, Hideyuki

    2017-05-01

    Temozolomide (TMZ) is now standard adjuvant therapy in combination with radiotherapy for patients with newly diagnosed malignant glioma. Treatment-related myelodysplastic syndrome and acute treatment-related leukemia (t-AML) associated with TMZ chemotherapy for patients with glioma is quite a rare complication. A 43-year-old man with an anaplastic astrocytoma received radiation therapy synchronized with ranimustine and adjuvant TMZ chemotherapy for 15 cycles. Close follow-up magnetic resonance imaging of the head during TMZ chemotherapy showed no evidence of tumor progression. One year after the completion of TMZ chemotherapy, a bone-marrow aspiration was performed because the patient's white blood cell count decreased. He was diagnosed with t-AML based on the bone marrow examination, and then he was referred to the cancer center for the treatment of t-AML. In this case study, we continued adjuvant TMZ therapy beyond the recommended 6 cycles. Currently, there is no consensus as to how long the adjuvant TMZ therapy should be continued for the treatment of residual tumor showing no apparent interval change. A new decision-making tool to assess the clinical benefits against the side effects for long-term adjuvant TMZ therapy is needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire.

    PubMed

    Dashtsoodol, Nyambayar; Shigeura, Tomokuni; Ozawa, Ritsuko; Harada, Michishige; Kojo, Satoshi; Watanabe, Takashi; Koseki, Haruhiko; Nakayama, Manabu; Ohara, Osamu; Taniguchi, Masaru

    2016-01-01

    Invariant Vα14 natural killer T (NKT) cells, characterized by the expression of a single invariant T cell receptor (TCR) α chain encoded by rearranged Trav11 (Vα14)-Traj18 (Jα18) gene segments in mice, and TRAV10 (Vα24)-TRAJ18 (Jα18) in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.

  14. Subcomponent vaccine based on CTA1-DD adjuvant with incorporated UreB class II peptides stimulates protective Helicobacter pylori immunity.

    PubMed

    Nedrud, John G; Bagheri, Nayer; Schön, Karin; Xin, Wei; Bergroth, Hilda; Eliasson, Dubravka Grdic; Lycke, Nils Y

    2013-01-01

    A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform.

  15. Subcomponent Vaccine Based on CTA1-DD Adjuvant with Incorporated UreB Class II Peptides Stimulates Protective Helicobacter pylori Immunity

    PubMed Central

    Nedrud, John G.; Bagheri, Nayer; Schön, Karin; Xin, Wei; Bergroth, Hilda; Eliasson, Dubravka Grdic; Lycke, Nils Y.

    2013-01-01

    A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform. PMID:24391754

  16. Membrane Localization of Human Equilibrative Nucleoside Transporter 1 in Tumor Cells May Predict Response to Adjuvant Gemcitabine in Resected Cholangiocarcinoma Patients

    PubMed Central

    Deserti, Marzia; Vasuri, Francesco; Farioli, Andrea; Degiovanni, Alessio; Palloni, Andrea; Frega, Giorgio; Barbera, Maria A.; de Lorenzo, Stefania; Garajova, Ingrid; Di Marco, Mariacristina; Pinna, Antonio D.; Cescon, Matteo; Cucchetti, Alessandro; Ercolani, Giorgio; D’Errico-Grigioni, Antonietta; Pantaleo, Maria A.; Biasco, Guido; Tavolari, Simona

    2016-01-01

    Background. The use of gemcitabine as an adjuvant modality for cholangiocarcinoma (CC) is increasing, but limited data are available on predictive biomarkers of response. Human equilibrative nucleoside transporter 1 (hENT-1) is the major transporter involved in gemcitabine intracellular uptake. This study investigated the putative predictive role of hENT-1 localization in tumor cells of CC patients undergoing treatment with adjuvant gemcitabine. Methods. Seventy-one consecutive patients with resected CC receiving adjuvant gemcitabine at our center were retrospectively analyzed by immunohistochemistry for hENT-1 localization in tumor cells. The main outcome measure was disease-free survival (DFS). Hazard ratios (HRs) of relapse and associated 95% confidence intervals (CIs) were obtained from proportional hazards regression models stratified on quintiles of propensity score. Results. Twenty-three (32.4%) cases were negative for hENT-1, 22 (31.0%) were positive in the cytoplasm only, and 26 (36.6%) showed concomitant cytoplasm/membrane staining. Patients with membrane hENT-1 had a longer DFS (HR 0.49, 95% CI 0.24–0.99, p = .046) than those who were negative or positive only in the cytoplasm of tumor cells. Notably, the association between DFS and membrane hENT-1 was dependent on the number of gemcitabine cycles (one to two cycles: HR 0.96, 95% CI 0.34–2.68; three to four cycles: HR 0.99, 95% CI 0.34–2.90; five to six cycles: HR 0.27, 95% CI 0.10–0.77). Conclusion. hENT-1 localization on tumor cell membrane may predict response to adjuvant gemcitabine in CC patients receiving more than four cycles of chemotherapy. Further prospective randomized trials on larger populations are required to confirm these preliminary results, so that optimal gemcitabine-based chemotherapy may be tailored for CC patients in the adjuvant setting. Implications for Practice: Gemcitabine is becoming an increasingly used adjuvant modality in cholangiocarcinoma (CC), but limited data are available on predictive biomarkers of response. In this study, patients receiving more than four cycles of adjuvant gemcitabine and harboring Human equilibrative nucleoside transporter 1 (hENT-1, the major transporter involved in gemcitabine intracellular uptake) on tumor cell membrane had a longer disease-free survival compared with patients negative or positive for hENT-1 only in the cytoplasm of tumor cells. Overall these results may lay the basis for further prospective randomized trials based on a larger population of patients and may prove useful for tailoring appropriate gemcitabine-based chemotherapy for CC patients in the adjuvant setting. PMID:27032872

  17. Severe Acute Respiratory Syndrome-Associated Coronavirus Vaccines Formulated with Delta Inulin Adjuvants Provide Enhanced Protection while Ameliorating Lung Eosinophilic Immunopathology

    PubMed Central

    Honda-Okubo, Yoshikazu; Barnard, Dale; Ong, Chun Hao; Peng, Bi-Hung; Tseng, Chien-Te Kent

    2014-01-01

    ABSTRACT Although the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) epidemic was controlled by nonvaccine measures, coronaviruses remain a major threat to human health. The design of optimal coronavirus vaccines therefore remains a priority. Such vaccines present major challenges: coronavirus immunity often wanes rapidly, individuals needing to be protected include the elderly, and vaccines may exacerbate rather than prevent coronavirus lung immunopathology. To address these issues, we compared in a murine model a range of recombinant spike protein or inactivated whole-virus vaccine candidates alone or adjuvanted with either alum, CpG, or Advax, a new delta inulin-based polysaccharide adjuvant. While all vaccines protected against lethal infection, addition of adjuvant significantly increased serum neutralizing-antibody titers and reduced lung virus titers on day 3 postchallenge. Whereas unadjuvanted or alum-formulated vaccines were associated with significantly increased lung eosinophilic immunopathology on day 6 postchallenge, this was not seen in mice immunized with vaccines formulated with delta inulin adjuvant. Protection against eosinophilic immunopathology by vaccines containing delta inulin adjuvants correlated better with enhanced T-cell gamma interferon (IFN-γ) recall responses rather than reduced interleukin-4 (IL-4) responses, suggesting that immunopathology predominantly reflects an inadequate vaccine-induced Th1 response. This study highlights the critical importance for development of effective and safe coronavirus vaccines of selection of adjuvants based on the ability to induce durable IFN-γ responses. IMPORTANCE Coronaviruses such as SARS-CoV and Middle East respiratory syndrome-associated coronavirus (MERS-CoV) cause high case fatality rates and remain major human public health threats, creating a need for effective vaccines. While coronavirus antigens that induce protective neutralizing antibodies have been identified, coronavirus vaccines present a unique problem in that immunized individuals when infected by virus can develop lung eosinophilic pathology, a problem that is further exacerbated by the formulation of SARS-CoV vaccines with alum adjuvants. This study shows that formulation of SARS-CoV spike protein or inactivated whole-virus vaccines with novel delta inulin-based polysaccharide adjuvants enhances neutralizing-antibody titers and protection against clinical disease but at the same time also protects against development of lung eosinophilic immunopathology. It also shows that immunity achieved with delta inulin adjuvants is long-lived, thereby overcoming the natural tendency for rapidly waning coronavirus immunity. Thus, delta inulin adjuvants may offer a unique ability to develop safer and more effective coronavirus vaccines. PMID:25520500

  18. Synergistic killing effect of chloroquine and androgen deprivation in LNCaP cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaini, Ramesh R.; Hu, Chien-An A., E-mail: AHu@salud.unm.edu

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Chloroquine synergistically killed LNCaP cells during androgen deprivation treatment. Black-Right-Pointing-Pointer Chloroquine inhibited the function of autolysosomes and decreases the cytosolic ATP. Black-Right-Pointing-Pointer Chloroquine induced nuclear and DNA fragmentation in androgen deprived LNCaP. Black-Right-Pointing-Pointer Chloroquine may be an useful adjuvant in hormone ablation therapy in PCa patients. -- Abstract: Modulation of autophagy is a new paradigm in cancer therapeutics. Recently a novel function of chloroquine (CLQ) in inhibiting degradation of autophagic vesicles has been revealed, which raises the question whether CLQ can be used as an adjuvant in targeting autophagic pro-survival mechanism in prostate cancer (PCa). We previously showedmore » that autophagy played a protective role during hormone ablation therapy, in part, by consuming lipid droplets in PCa cells. In addition, blocking autophagy by genetic and pharmacological means in the presence of androgen deprivation caused cell death in PCa cells. To further investigate the importance of autophagy in PCa survival and dissect the role of CLQ in PCa death, we treated hormone responsive LNCaP cells with CLQ in combination with androgen deprivation. We observed that CLQ synergistically killed LNCaP cells during androgen deprivation in a dose- and time-dependent manner. We further confirmed that CLQ inhibited the maturation of autophagic vesicles and decreased the cytosolic ATP. Moreover, CLQ induced nuclear condensation and DNA fragmentation, a hallmark of apoptosis, in androgen deprived LNCaP cells. Taken together, our finding suggests that CLQ may be an useful adjuvant in hormone ablation therapy to improve the therapeutic efficacy.« less

  19. Synthesis and Evaluation of GM2-Monophosphoryl Lipid A Conjugate as a Fully Synthetic Self-Adjuvant Cancer Vaccine.

    PubMed

    Zhou, Zhifang; Mandal, Satadru S; Liao, Guochao; Guo, Jiatong; Guo, Zhongwu

    2017-09-12

    An efficient method was developed for the synthesis of a GM2 derivative suitable for the conjugation with various biomolecules. This GM2 derivative was covalently linked to keyhole limpet hemocyanin (KLH) and monophosphoryl lipid A (MPLA) to form novel therapeutic cancer vaccines. Immunological evaluations of the resultant conjugates in mice revealed that they elicited robust GM2-specific overall and IgG antibody responses. Moreover, the GM2-MPLA conjugate was disclosed to elicit strong immune responses without the use of an adjuvant, proving its self-adjuvant property. The antisera of both conjugates showed strong binding and mediated similarly effective complement-dependent cytotoxicity to GM2-expressing cancer cell line MCF-7. Based on these results, it was concluded that both GM2-MPLA and GM2-KLH are promising candidates as therapeutic cancer vaccines, whereas fully synthetic GM2-MPLA, which has homogeneous and well-defined structure and self-adjuvant property, deserves more attention and studies.

  20. Guanosine promotes cytotoxicity via adenosine receptors and induces apoptosis in temozolomide-treated A172 glioma cells.

    PubMed

    Oliveira, Karen A; Dal-Cim, Tharine A; Lopes, Flávia G; Nedel, Cláudia B; Tasca, Carla Inês

    2017-09-01

    Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 μM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A 1 R and A 2A R) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.

  1. Diethylaminoethanol action in the arthritis with Freund adjuvant, in rats.

    PubMed

    Vrăbiescu, A; Poli, T; Coman, G; Dolcoş, F; Găinaru, C; Carazanu, C; Ciobanu, G

    1998-01-01

    The authors have studied the action of diethylaminoethanol on Freund adjuvant arthritis, induced in female Lewis rats. They worked on 3 groups, each one including 14 rats, weighing 110-130 g: group I = control; group II = rats injected intracutaneous with 0.1 ml Freund adjuvant; group III = rats injected with Freund adjuvant and treated with diethylaminoethanol i.m. (10 mg/kg body weight), and gel application (2.5%) on paws and tail, daily. During the experiment clinical observations and measurements were made and when the animals were killed, blood was sampled for haematological and immunological assays (CD4, CD8, CD25 T cells and NK cells, antinuclear autoantibody and immune complexes). While in all the rats from group II (without treatment) inflammatory processes developed at the level of the peripheral joints, in group III (diethylaminoethanol treated), these ones were present in only 64% of the rats and by much more reduced forms, followed by a short period of involution. The paw volume, measured with an electronic plethysmometer, was more reduced in the treated rats (7.1-14.2%) than in the non treated ones (27.7-29.3%). The haematologic examination showed an increased number of neutrophiles in both groups with FA injecting. The immunological investigations revealed: a decrease of CD4 cells and an increase of CD8 T cells and NK cells in both groups, a much more decreased level (13.2%) of circulatory immune complexes in treated rats, as compared to the non-treated ones (71.7%). No differences were found regarding the CD25 cells and antinuclear antibodies. The histo-pathological examination showed that the intensity and the extension area of the joint lesions (granulation tissue with fibrous change, cartilage invasion and dilaceration, bone atrophy) were much more reduced in the treated rats. The authors put forward the hypothesis that these effects might be due to diethylaminoethanol antiinflammatory properties.

  2. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer

    PubMed Central

    Scheiermann, Julia; Klinman, Dennis M.

    2014-01-01

    Synthetic oligonucleotides (ODN) that express unmethylated “CpG motifs” trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer. PMID:24975812

  3. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation.

    PubMed

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J; Hu, Qingang; Hu, Hongming

    2017-12-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe 2 O 3 /APTS (3-aminopropyltrimethoxysilane) NPs and γFe 2 O 3 /DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe 2 O 3 /APTS NPs, but not negative charged γFe 2 O 3 /DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe 2 O 3 /APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe 2 O 3 /DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  4. The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation

    NASA Astrophysics Data System (ADS)

    Mou, Yongbin; Xing, Yun; Ren, Hongyan; Cui, Zhihua; Zhang, Yu; Yu, Guangjie; Urba, Walter J.; Hu, Qingang; Hu, Hongming

    2017-01-01

    Magnetic nanoparticles (NPs) of superparamagnetic iron oxide (SPIO) have been explored for different kinds of applications in biomedicine, mechanics, and information. Here, we explored the synthetic SPIO NPs as an adjuvant on antigen cross-presentation ability by enhancing the intracellular delivery of antigens into antigen presenting cells (APCs). Particles with different chemical modifications and surface charges were used to study the mechanism of action of antigen delivery. Specifically, two types of magnetic NPs, γFe2O3/APTS (3-aminopropyltrimethoxysilane) NPs and γFe2O3/DMSA (meso-2, 3-Dimercaptosuccinic acid) NPs, with the same crystal structure, magnetic properties, and size distribution were prepared. Then, the promotion of T-cell activation via dendritic cells (DCs) was compared among different charged antigen coated NPs. Moreover, the activation of the autophagy, cytosolic delivery of the antigens, and antigen degradation mediated by the proteasome and lysosome were measured. Our results indicated that positive charged γFe2O3/APTS NPs, but not negative charged γFe2O3/DMSA NPs, enhanced the cross-presentation ability of DCs. Increased cross-presentation ability induced by γFe2O3/APTS NPs was associated with increased cytosolic antigen delivery. On the contrary, γFe2O3/DMSA NPs was associated with rapid autophagy. Overall, our results suggest that antigen delivered in cytoplasm induced by positive charged particles is beneficial for antigen cross-presentation and T-cell activation. NPs modified with different chemistries exhibit diverse biological properties and differ greatly in their adjuvant potentials. Thus, it should be carefully considered many different effects of NPs to design effective and safe adjuvants.

  5. T Cell Responses Induced by Adenoviral Vectored Vaccines Can Be Adjuvanted by Fusion of Antigen to the Oligomerization Domain of C4b-Binding Protein

    PubMed Central

    Forbes, Emily K.; de Cassan, Simone C.; Llewellyn, David; Biswas, Sumi; Goodman, Anna L.; Cottingham, Matthew G.; Long, Carole A.; Pleass, Richard J.; Hill, Adrian V. S.; Hill, Fergal; Draper, Simon J.

    2012-01-01

    Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp) as a candidate T cell “molecular adjuvant” when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5) vectored vaccines in BALB/c mice. We demonstrate that i) C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4+ and CD8+ T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii) an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP142) or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1), but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii) following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv) that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa) antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation. PMID:22984589

  6. Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants.

    PubMed

    Smith, Alyson J; Li, Yufeng; Bazin, Hélène G; St-Jean, Julien R; Larocque, Daniel; Evans, Jay T; Baldridge, Jory R

    2016-08-05

    Small-molecule adjuvants that boost and direct adaptive immunity provide a powerful means to increase the effectiveness of vaccines. Through rational design several novel imidazoquinoline and oxoadenine TLR7/8 agonists, each with unique molecular modifications, were synthesized and assessed for their ability to augment adaptive immunity. All agonists bound human TLR7 and TLR8 and induced maturation of both human mDCs and pDCs. All agonists prompted production of type I interferon and/or proinflammatory cytokines, albeit with varying potencies. In most in vitro assays, the oxoadenine class of agonists proved more potent than the imidazoquinolines. Therefore, an optimized oxoadenine TLR7/8 agonist that demonstrated maximal activity in the in vitro assays was further assessed in a vaccine study with the CRM197 antigen in a porcine model. Antigen-specific antibody production was greatly enhanced in a dose dependent manner, with antibody titers increased 800-fold compared to titers from pigs vaccinated with the non-adjuvanted vaccine. Moreover, pigs vaccinated with antigen containing the highest dose of adjuvant promoted a 13-fold increase in the percentage of antigen-specific CD3(+)/CD8(+) T cells over pigs vaccinated with antigen alone. Together this work demonstrates the promise of these novel TLR7/8 agonists as effective human vaccine adjuvants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Efficacy and safety of a non-mineral oil adjuvanted injectable vaccine for the protection of Atlantic salmon (Salmo salar L.) against Flavobacterium psychrophilum.

    PubMed

    Hoare, R; Jung, S-J; Ngo, T P H; Bartie, K; Bailey, J; Thompson, K D; Adams, A

    2017-10-07

    Flavobacterium psychrophilum is the causative agent of Rainbow Trout Fry Syndrome which has had a major impact on global salmonid aquaculture. Recent outbreaks in Atlantic salmon in Scotland and Chile have added to the need for a vaccine to protect both salmon and trout. At present no licensed vaccines are available in Europe, leaving antibiotics as the only course of action to contain disease outbreaks. Outbreaks generally occur in fry at temperatures between 10 and 15 °C. Recently outbreaks in larger fish have given added impetus to the development of a vaccine which can provide long term protection from this highly heterogeneous pathogen. Most fish injectable vaccines are formulated with oil emulsion adjuvants to induce strong and long lasting immunity, but which are known to cause side effects. Alternative adjuvants are currently sought to minimise these adverse effects. The current study was performed to assess the efficacy of a polyvalent, whole cell vaccine containing formalin-inactivated F. psychrophilum to induce protective immunity in Atlantic salmon. The vaccine was formulated with an adjuvant containing squalene and aluminium hydroxide, and was compared to a vaccine formulated with a traditional oil adjuvant, Montanide ISA 760VG, and a non-adjuvanted vaccine. Duplicate groups of salmon (23.5 ± 6.8 g) were vaccinated with each of the vaccine formulations or phosphate buffered saline by intraperitoneal injection. Fish were challenged by intramuscular injection with F. psychrophilum six weeks post-vaccination to test the efficacy of the vaccines. Cumulative mortality reached 70% in the control salmon, while the groups of salmon that received vaccine had significantly lower mortality than the controls (p = 0.0001), with no significant difference in survival between vaccinated groups. The squalene/alum adjuvant was safe, more readily metabolised by the fish and induced less histopathological changes than the traditional oil adjuvant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Liposomes containing NY‑ESO‑1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines.

    PubMed

    Cruz, Luis J; Rueda, Felix; Simón, Lorena; Cordobilla, Begoña; Albericio, Fernando; Domingo, Joan C

    2014-04-01

    To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcg-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-g were coadministered as adjuvants to enhance the immunological response. Coadministration of Palm-IL-1 or MAP-IFN-g peptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.

  9. Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice.

    PubMed

    Cao, Weiping; Kim, Jin Hyang; Reber, Adrian J; Hoelscher, Mary; Belser, Jessica A; Lu, Xiuhua; Katz, Jacqueline M; Gangappa, Shivaprakash; Plante, Martin; Burt, David S; Sambhara, Suryaprakash

    2017-06-05

    Sporadic, yet frequent human infections with avian H5N1 influenza A viruses continue to pose a potential pandemic threat. Poor immunogenicity of unadjuvanted H5N1 vaccines warrants developing novel adjuvants and formulations as well as alternate delivery systems to improve their immunogenicity and efficacy. Here, we show that Protollin, a nasal adjuvant composed of Neisseria meningitides outer membrane proteins non-covalently linked to Shigella flexneri 2a lipopolysaccharide, is a potent nasal adjuvant for an inactivated split virion H5N1 clade 1 A/Viet Nam1203/2004 (A/VN/1203/04) vaccine in a mouse model. Protollin-adjuvanted vaccines elicited enhanced serum protective hemagglutination inhibition titers, mucosal IgA responses, and H5N1-specific cell-mediated immunity that resulted in complete protection against a lethal challenge with a homologous virus as well as a heterologous clade 2 virus A/Indonesia/05/2005 (A/IN/05/05). Detailed analysis of adaptive immunity revealed that Protollin increased the frequency of lymphoid- as well as local tissue-resident antibody-secreting cells, local germinal center reaction of B cells, broad-spectrum of CD4 T cell response. Our findings suggest that nasal delivery of H5N1 vaccine with Protollin adjuvant can overcome the poor immunogenicity of H5N1 vaccines, induce both cellular and humoral immune responses, enhance protection against challenge with clade 1 and clade 2 H5N1 viruses and achieve significant antigen dose-sparing. Copyright © 2017. Published by Elsevier Ltd.

  10. Proteomics show antigen presentation processes in human immune cells after AS03-H5N1 vaccination.

    PubMed

    Galassie, Allison C; Goll, Johannes B; Samir, Parimal; Jensen, Travis L; Hoek, Kristen L; Howard, Leigh M; Allos, Tara M; Niu, Xinnan; Gordy, Laura E; Creech, C Buddy; Hill, Heather; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2017-06-01

    Adjuvants enhance immunity elicited by vaccines through mechanisms that are poorly understood. Using a systems biology approach, we investigated temporal protein expression changes in five primary human immune cell populations: neutrophils, monocytes, natural killer cells, T cells, and B cells after administration of either an Adjuvant System 03 adjuvanted or unadjuvanted split-virus H5N1 influenza vaccine. Monocytes demonstrated the strongest differential signal between vaccine groups. On day 3 post-vaccination, several antigen presentation-related pathways, including MHC class I-mediated antigen processing and presentation, were enriched in monocytes and neutrophils and expression of HLA class I proteins was increased in the Adjuvant System 03 group. We identified several protein families whose proteomic responses predicted seroprotective antibody responses (>1:40 hemagglutination inhibition titer), including inflammation and oxidative stress proteins at day 1 as well as immunoproteasome subunit (PSME1 and PSME2) and HLA class I proteins at day 3 in monocytes. While comparison between temporal proteomic and transcriptomic results showed little overlap overall, enrichment of the MHC class I antigen processing and presentation pathway in monocytes and neutrophils was confirmed by both approaches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Immunization Route Dictates Cross-Priming Efficiency and Impacts the Optimal Timing of Adjuvant Delivery

    PubMed Central

    Bouvier, Isabelle; Jusforgues-Saklani, Hélène; Lim, Annick; Lemaître, Fabrice; Lemercier, Brigitte; Auriau, Charlotte; Nicola, Marie-Anne; Leroy, Sandrine; Law, Helen K.; Bandeira, Antonio; Moon, James J.; Bousso, Philippe; Albert, Matthew L.

    2011-01-01

    Delivery of cell-associated antigen represents an important strategy for vaccination. While many experimental models have been developed in order to define the critical parameters for efficient cross-priming, few have utilized quantitative methods that permit the study of the endogenous repertoire. Comparing different strategies of immunization, we report that local delivery of cell-associated antigen results in delayed T cell cross-priming due to the increased time required for antigen capture and presentation. In comparison, delivery of disseminated antigen resulted in rapid T cell priming. Surprisingly, local injection of cell-associated antigen, while slower, resulted in the differentiation of a more robust, polyfunctional, effector response. We also evaluated the combination of cell-associated antigen with poly I:C delivery and observed an immunization route-specific effect regarding the optimal timing of innate immune stimulation. These studies highlight the importance of considering the timing and persistence of antigen presentation, and suggest that intradermal injection with delayed adjuvant delivery is the optimal strategy for achieving CD8+ T cell cross-priming. PMID:22566860

  12. Immunostimulatory Properties of Lipid Modified CpG Oligonucleotides.

    PubMed

    Yu, Chunsong; An, Myunggi; Li, Meng; Liu, Haipeng

    2017-08-07

    Innate immune responses recognizing pathogen associated molecular patterns play important roles in adaptive immunity. As such, ligands which mimic the conserved products of microbial and activate innate immunity are widely used as adjuvants for vaccines. Synthetic single strand oligodeoxynucleotides (ODNs) containing unmethylated cytosine-guanine (CpG) motifs which bind Toll-like receptor 9 (TLR9) are powerful molecular adjuvants, potentiating both humoral and cellular responses. However, CpG ODN's in vitro potency has not been translated to in vivo settings primarily due to issues associated with delivery and toxicity. A major challenge in clinical application of CpG ODN is the efficient delivery to lymph nodes, the anatomic sites where all the immune responses are initiated. Targeting CpG to the key antigen presenting cells (APC) is essential for its application as a vaccine adjuvant, as it not only enhances CpG's efficacy, but also greatly reduces the systemic toxicity. We recently discovered an "albumin-hitchhiking" approach by which CpG ODNs were conjugated to a lipophilic lipid tail and follow subcutaneous injection, accumulated in lymph nodes by binding and transporting with endogenous albumin. This molecular approach targets CpG to antigen presenting cells in the draining lymph nodes via an endogenous albumin-mediated mechanism and simultaneously improves both the efficacy and safety of CpG as a vaccine adjuvant. Since CpG ODNs can be divided into structurally distinct classes, and each class of CpG ODN activates different types of immune cells and triggers different types of immunostimulatory activities, it is important to thoroughly evaluate the efficacy of this "albumin-hitchhiking" strategy in each class of CpG. Here we compare the immunostimulatory activities of three classes of lipid conjugated CpG ODNs in vitro and in vivo. Three representative sequences of lipid modified CpG ODNs were synthesized and their stimulatory effects as a vaccine adjuvant were evaluated. Our results showed that in vitro, lipid modified class A CpG exhibited enhanced stimulatory activities toward TLR transfected reporter cells or bone-marrow derived dendritic cells, whereas lipid-modification of class B or C CpG reduces the activation of TLR9 by 2-3 fold, as compared with unmodified class B and class C CpG, respectively. However, in vivo coadministration of ovalbumin (OVA) protein antigen mixed with lipid-conjugated class B or C CpG ODNs, but not class A CpGs induced dramatically increased OVA-specific humoral and cytotoxic CD8 + T cells responses compared with OVA mixed with unmodified CpGs. Further, lipid-modification greatly reduces the toxicity associated with CpG by minimizing the systemic dissemination. Taken together, these results demonstrated that amphiphilic modification of three classes of CpG motifs differentially affected and modulated the immunostimulatory activities in vitro and in vivo. Our study highlights the importance of in vivo lymph node targeting of CpG ODNs in fulfilling their use as vaccine adjuvants, providing implications for the rational design of molecular adjuvant for subunit vaccines.

  13. Multiple gastrointestinal metastases of Merkel cell carcinoma.

    PubMed

    Poškus, Eligijus; Platkevičius, Gediminas; Simanskaitė, Vilma; Rimkevičiūtė, Ernesta; Petrulionis, Marius; Strupas, Kestutis

    2016-01-01

    Merkel cell carcinoma is an aggressive skin malignancy. Primary Merkel cell carcinomas are treated by wide radical excision with or without adjuvant radiotherapy, while benefits of adjuvant chemotherapy remain doubtful. There are only several cases of gastrointestinal metastases of Merkel cell carcinoma reported so far. We report a case of recurrent Merkel cell carcinoma with metastases to the stomach and the small intestines after wide excision of primary Merkel cell carcinoma. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  14. NO-naproxen modulates inflammation, nociception and downregulates T cell response in rat Freund's adjuvant arthritis

    PubMed Central

    Cicala, Carla; Ianaro, Angela; Fiorucci, Stefano; Calignano, Antonio; Bucci, Mariarosaria; Gerli, Roberto; Santucci, Luca; Wallace, John L; Cirino, Giuseppe

    2000-01-01

    Anti-inflammatory non steroidal drugs releasing NO (NO-NSAIDs) are a new class of anti-inflammatory drugs to which has been added an NO-releasing moiety. These compounds have been shown to retain the anti-inflammatory, analgesic and antipyretic activity of the parent compound but to be devoid of gastrointestinal (GI) toxicity.Freund's adjuvant (FA) arthritis was induced in rats by a single intraplantar injection into the right hindpaw of 100 μl of mycobacterium butirricum (6 mg ml−1). The effect of equimolar doses of naproxen (1, 3 and 10 mg kg−1) and NO-naproxen (1.5, 4.5 and 16 mg kg−1) was evaluated using two dosage regimen protocols: (i) preventive, starting oral administration of the drugs at the time of induction of arthritis and for the following 21 days (day 1–21); (ii) therapeutic, starting oral administration of the drugs 7 days after adjuvant injection and for the following 14 days (day 7–21).Hindpaw swelling (days 3, 7, 11, 14, 17, 21) and nociception (days 15 and 21) were measured. On day 22 rats were sacrificed, draining lymph nodes were removed and T cells isolated. In vitro proliferation of T cells following stimulation with concanavalin A (0.5–5 μg ml−1) was measured using a tritiated thymidine incorporation assay. IL-2 receptor expression on T cells was measured by FACS analysis.Naproxen and NO-naproxen showed similar activity in reducing oedema formation in the non-injected (controlateral) hindpaw. Both drugs showed anti-nociceptive effect. NO-naproxen was anti-nociceptive at a dose of 4.5 mg kg−1 while naproxen showed the same extent of inhibition only at a dose of 10 mg kg−1.T cells were isolated and characterized by FACS analysis. Stimulation of isolated T cells with concanavallin A in vitro caused a significant increase in thymidine uptake. NO-naproxen at a dose of 4.5 mg kg−1 inhibited T cell proliferation to the same extent as 10 mg kg−1 of naproxen.Inhibition of T cell proliferation was well correlated with reduced IL-2 receptor expression on T cells. In addition, NO-naproxen reduced both IL-1β and TNFα plasma levels whilst naproxen reduced IL-1β levels only.In conclusion, both naproxen and NO-naproxen reduce inflammation and nociception associated with arthritis. In addition NO-naproxen interferes to a larger extent with cellular mechanism involved in T cell activation in rat adjuvant arthritis indicating that introduction of the NO moiety in the naproxen structure increases the effect at the level of the immune system. PMID:10903982

  15. Indirect effects of immunological tolerance to a regular dietary protein reduce cutaneous scar formation.

    PubMed

    Cantaruti, Thiago Anselmo; Costa, Raquel Alves; de Souza, Kênia Soares; Vaz, Nelson Monteiro; Carvalho, Cláudia Rocha

    2017-07-01

    Oral tolerance refers to the specific inhibition of immune responsiveness to T-cell-dependent antigens contacted through the oral route before parenteral immunization. Oral tolerance to one protein does not inhibit immune responses to other unrelated proteins, but parenteral injection of tolerated antigens plus adjuvant into tolerant, but not normal, mice inhibits immune responses to antigens injected concomitantly or soon thereafter. The inhibitory effect triggered by parenteral injection of tolerated proteins is known as bystander suppression or indirect effects of oral tolerance. Intraperitoneal injection of ovalbumin (OVA) plus alum adjuvant in OVA-tolerant mice soon before skin injury inhibits inflammation and improves cutaneous wound healing. However, as OVA is not a regular component of mouse chow, we tested whether indirect effects could be triggered by zein, the main protein of corn that is regularly present in mouse chow. We show that intraperitoneal injection of a single dose (10 μg) of zein plus alum adjuvant soon before skin injury in mice reduces leucocyte infiltration but increase the number of T cells and the expression of resistin-like molecule-α (a marker of alternatively activated macrophages) in the wound bed, increases the expression of transforming growth factor-β 3 in the newly formed epidermis and reduces cutaneous scar formation. These results suggest that indirect effects of oral tolerance triggered by parenteral injection of regular dietary components may be further explored as one alternative way to promote scarless wound healing. © 2017 John Wiley & Sons Ltd.

  16. Intradermal immunization with inactivated swine influenza virus and adjuvant polydi(sodium carboxylatoethylphenoxy)phosphazene (PCEP) induced humoral and cell-mediated immunity and reduced lung viral titres in pigs.

    PubMed

    Magiri, Royford; Lai, Ken; Chaffey, Alyssa; Zhou, Yan; Pyo, Hyun-Mi; Gerdts, Volker; Wilson, Heather L; Mutwiri, George

    2018-03-14

    Swine influenza virus is endemic worldwide and it is responsible for significant economic losses to the swine industry. A vaccine that stimulates a rapid and long-lasting protective immune response to prevent this infection is highly sought. Poly[di(sodium carboxylatoethylphenoxy)-phosphazene (PCEP) has demonstrated adjuvant activity when formulated as part of multiple vaccines in mice and pigs. In this study we examined the magnitude and type of immune response induced in pigs vaccinated via the intramuscular or intradermal routes with inactivated swine influenza virus (SIV) H1N1 vaccine formulated with PCEP. Intradermal administration of PCEP-adjuvanted inactivated SIV vaccine stimulated significant anti-SIV antibody titres, increased neutralizing antibodies, and significantly reduced lung virus load with limited reduction of gross lung lesions after challenge with virulent H1N1 relative to control animals. These results indicate that PCEP may be effective as a vaccine adjuvant against swine influenza viruses in pigs and should be considered a potential candidate adjuvant for future swine intradermal influenza vaccines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The type of adjuvant strongly influences the T-cell response during nanoparticle-based immunization

    PubMed Central

    Knuschke, Torben; Epple, Matthias; Westendorf, Astrid M

    2014-01-01

    Potent vaccines require the ability to effectively induce immune responses. Especially for the control of infectious diseases with intracellular pathogens, like viruses or bacteria, potent T-cell responses are indispensable. Several delivery systems such as nanoparticles have been considered to boost the immunogenicity of pathogen derived peptides or subunits for the induction of potent T-cell responses. Since they can be further functionalized with immunostimulants, like Toll-like receptor (TLR) agonists, they improve the response by enhanced activation of the innate immune system. Currently, TLR agonists like unmethylated CpG oligonucleotides and the synthetic dsRNA derivate polyriboinosinic acid-polyribocytidylic acid (poly[I:C]) are widely used as vaccine adjuvants. CpG and poly(I:C) trigger different TLRs and therefore show differential signal transduction. Recently, we established biodegradable calcium phosphate (CaP) nanoparticles as potent T cell inducing vaccination vehicles. In this commentary we discuss the role of CpG and poly(I:C) for the effective induction of virus-specific T cells during immunization with CaP nanoparticles. The presented results underline the importance of the right formulation of vaccines for specific immunization purpose. PMID:23982325

  18. Bisphosphonates as adjuvant therapy for breast cancer.

    PubMed

    Burkinshaw, Roger; Coleman, Robert

    2006-01-01

    Great strides have been made over the last 20 years in the treatment of breast cancer and despite an increasing incidence, the number of deaths has fallen sharply since the late 1980s. The advent of new therapies, including taxanes and aromatase inhibitors, and exciting results announced recently using trastuzumab in the adjuvant treatment of HER2-positive patients should decrease this even further. However, although most patients present with disease that appears to be localized to the breast, a significant proportion of women will eventually develop metastatic breast cancer. Therefore, the detection and treatment of micrometastatic disease represents perhaps the most important remaining challenge in breast cancer management, and is the focus of extensive ongoing research. Bone is the most frequent site of distant relapse, accounting for approximately 40% of all first recurrences. In addition to the well recognized release of bone cell-activating factors from the tumor, it is now appreciated that the release of bone-derived growth factors and cytokines from resorbing bone can attract cancer cells to the bone surface and facilitate their growth and proliferation. Bisphosphonates are potent inhibitors of bone osteolysis and the inhibition of bone resorption could therefore have an effect on the development and progression of metastatic bone disease. They could represent an adjuvant therapeutic strategy of potential importance. Clinical trial results with the early bisphosphonate, clodronate, have proved inconclusive. A large, randomized, controlled trial has recently completed accrual and should provide the definitive answer to the question of the role of clodronate in this setting. More potent second- and third-generation bisphosphonates have also shown enhanced antitumor effects in preclinical evaluation and further studies are required to determine whether this antitumor potential of bisphosphonates translates to the clinical setting. Adjuvant bisphosphonates are, therefore, currently only recommended in the research setting and clinical trials evaluating the adjuvant use of these newer compounds are currently recruiting or being established. This article will review in more detail the rationale for the adjuvant use of bisphosphonates, the results of early trials, the progress of the later trials and the potential future role of bisphosphonates in the adjuvant treatment of breast cancer. In addition, it is increasingly acknowledged that many cancer treatments have detrimental effects on bone and can increase the risk of fracture. The increasing use of aromatase inhibitors, in particular, will become a major cause of treatment-induced bone loss. This bone loss can be prevented with bisphosphonate treatment and this will also be discussed.

  19. Induction of protective and therapeutic antitumor immunity by a DNA vaccine with C3d as a molecular adjuvant.

    PubMed

    Xu, Gui-lian; Zhang, Ke-qin; Guo, Bo; Zhao, Ting-ting; Yang, Fei; Jiang, Man; Wang, Qing-hong; Shang, Yu-hang; Wu, Yu-zhang

    2010-10-18

    Although the critical role of complement component C3d as a molecular adjuvant in preventing virus infection is well established, its role in cancer therapies is unclear. In this study, we have engineered a DNA vaccine that expresses extracellular region of murine VEGFR-2 (FLK1(265-2493)) and 3 copies of C3d (C3d3), a component of complement as a molecular adjuvant, designed to increase antitumor immunity. VEGFR-2 has a more restricted expression on endothelial cells and is upregulated once these cells proliferate during angiogenesis in the tumor vasculature. Immunization of mice with vector encoding FLK1(265-2493) alone generated only background levels of anti-VEGFR-2 antibodies and slight inhibitory effect on tumor growth. However, the addition of C3d3 to the vaccine construct significantly augmented the anti-VEGFR-2 humoral immune response and inhibited the tumor growth. The antitumor activity induced by vaccination with vector encoding FLK1(265-2493)-C3d3 fusion protein was also demonstrated via growth inhibition of established tumors following passive transfer of immune serum from vaccinated mice. Our results suggest that vaccination with vector encoding FLK1(265-2493) with C3d3 as a molecular adjuvant induces adaptive humoral activity, which is directed against the murine VEGFR-2 and can significantly inhibit tumor growth, and that administration of C3d as a molecular adjuvant to increase antibodies levels to VEGFR-2 may provide an alternative treatment modality for cancer therapies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Adjuvant chemotherapy for resected early-stage non-small cell lung cancer.

    PubMed

    Burdett, Sarah; Pignon, Jean Pierre; Tierney, Jayne; Tribodet, Helene; Stewart, Lesley; Le Pechoux, Cecile; Aupérin, Anne; Le Chevalier, Thierry; Stephens, Richard J; Arriagada, Rodrigo; Higgins, Julian P T; Johnson, David H; Van Meerbeeck, Jan; Parmar, Mahesh K B; Souhami, Robert L; Bergman, Bengt; Douillard, Jean-Yves; Dunant, Ariane; Endo, Chiaki; Girling, David; Kato, Harubumi; Keller, Steven M; Kimura, Hideki; Knuuttila, Aija; Kodama, Ken; Komaki, Ritsuko; Kris, Mark G; Lad, Thomas; Mineo, Tommaso; Piantadosi, Steven; Rosell, Rafael; Scagliotti, Giorgio; Seymour, Lesley K; Shepherd, Frances A; Sylvester, Richard; Tada, Hirohito; Tanaka, Fumihiro; Torri, Valter; Waller, David; Liang, Ying

    2015-03-02

    To evaluate the effects of administering chemotherapy following surgery, or following surgery plus radiotherapy (known as adjuvant chemotherapy) in patients with early stage non-small cell lung cancer (NSCLC),we performed two systematic reviews and meta-analyses of all randomised controlled trials using individual participant data. Results were first published in The Lancet in 2010. To compare, in terms of overall survival, time to locoregional recurrence, time to distant recurrence and recurrence-free survival:A. Surgery versus surgery plus adjuvant chemotherapyB. Surgery plus radiotherapy versus surgery plus radiotherapy plus adjuvant chemotherapyin patients with histologically diagnosed early stage NSCLC.(2)To investigate whether or not predefined patient subgroups benefit more or less from cisplatin-based chemotherapy in terms of survival. We supplemented MEDLINE and CANCERLIT searches (1995 to December 2013) with information from trial registers, handsearching relevant meeting proceedings and by discussion with trialists and organisations. We included trials of a) surgery versus surgery plus adjuvant chemotherapy; and b) surgery plus radiotherapy versus surgery plus radiotherapy plus adjuvant chemotherapy, provided that they randomised NSCLC patients using a method which precluded prior knowledge of treatment assignment. We carried out a quantitative meta-analysis using updated information from individual participants from all randomised trials. Data from all patients were sought from those responsible for the trial. We obtained updated individual participant data (IPD) on survival, and date of last follow-up, as well as details of treatment allocated, date of randomisation, age, sex, histological cell type, stage, and performance status. To avoid potential bias, we requested information for all randomised patients, including those excluded from the investigators' original analyses. We conducted all analyses on intention-to-treat on the endpoint of survival. For trials using cisplatin-based regimens, we carried out subgroup analyses by age, sex, histological cell type, tumour stage, and performance status. We identified 35 trials evaluating surgery plus adjuvant chemotherapy versus surgery alone. IPD were available for 26 of these trials and our analyses are based on 8447 participants (3323 deaths) in 34 trial comparisons. There was clear evidence of a benefit of adding chemotherapy after surgery (hazard ratio (HR)= 0.86, 95% confidence interval (CI)= 0.81 to 0.92, p< 0.0001), with an absolute increase in survival of 4% at five years.We identified 15 trials evaluating surgery plus radiotherapy plus chemotherapy versus surgery plus radiotherapy alone. IPD were available for 12 of these trials and our analyses are based on 2660 participants (1909 deaths) in 13 trial comparisons. There was also evidence of a benefit of adding chemotherapy to surgery plus radiotherapy (HR= 0.88, 95% CI= 0.81 to 0.97, p= 0.009). This represents an absolute improvement in survival of 4% at five years.For both meta-analyses, we found similar benefits for recurrence outcomes and there was little variation in effect according to the type of chemotherapy, other trial characteristics or patient subgroup.We did not undertake analysis of the effects of adjuvant chemotherapy on quality of life and adverse events. Quality of life information was not routinely collected during the trials, but where toxicity was assessed and mentioned in the publications, it was thought to be manageable. We considered the risk of bias in the included trials to be low. Results from 47 trial comparisons and 11,107 patients demonstrate the clear benefit of adjuvant chemotherapy for these patients, irrespective of whether chemotherapy was given in addition to surgery or surgery plus radiotherapy. This is the most up-to-date and complete systematic review and individual participant data (IPD) meta-analysis that has been carried out.

  1. Encryption of agonistic motifs for TLR4 into artificial antigens augmented the maturation of antigen-presenting cells.

    PubMed

    Ito, Masaki; Hayashi, Kazumi; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2017-01-01

    Adjuvants are indispensable for achieving a sufficient immune response from vaccinations. From a functional viewpoint, adjuvants are classified into two categories: "physical adjuvants" increase the efficacy of antigen presentation by antigen-presenting cells (APC) and "signal adjuvants" induce the maturation of APC. Our previous study has demonstrated that a physical adjuvant can be encrypted into proteinous antigens by creating artificial proteins from combinatorial assemblages of epitope peptides and those peptide sequences having propensities to form certain protein structures (motif programming). However, the artificial antigens still require a signal adjuvant to maturate the APC; for example, co-administration of the Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) was required to induce an in vivo immunoreaction. In this study, we further modified the previous artificial antigens by appending the peptide motifs, which have been reported to have agonistic activity for TLR4, to create "adjuvant-free" antigens. The created antigens with triple TLR4 agonistic motifs in their C-terminus have activated NF-κB signaling pathways through TLR4. These proteins also induced the production of the inflammatory cytokine TNF-α, and the expression of the co-stimulatory molecule CD40 in APC, supporting the maturation of APC in vitro. Unexpectedly, these signal adjuvant-encrypted proteins have lost their ability to be physical adjuvants because they did not induce cytotoxic T lymphocytes (CTL) in vivo, while the parental proteins induced CTL. These results confirmed that the manifestation of a motif's function is context-dependent and simple addition does not always work for motif-programing. Further optimization of the molecular context of the TLR4 agonistic motifs in antigens should be required to create adjuvant-free antigens.

  2. Mitogenic Activity of a Water-Soluble Adjuvant (Bu-WSA) Obtained from Bacterionema matruchotii: IV. Synergistic Effects of Bu-WSA on Concanavalin A-Induced Proliferative Response of Human Peripheral Blood Lymphocytes.

    PubMed

    Nitta, Toshimasa; Okumura, Seiichi; Tsushi, Masao; Nakano, Masayasu

    1982-07-01

    Butanol-extracted water-soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii was cultured with peripheral blood mononuclear cells (PBM) in the presence of sub- and/or supra-optimal mitogenic concentrations of concanavalin A (Con A). The addition of Bu-WSA resulted in increased tritiated thymidine incorporation above that produced by Con A alone. Bu-WSA by itself is not mitogenic for PBM and in fact produced a decrease in thymidine uptake compared to the control. We investigated the response of subpopulation(s) of PBM to Bu-WSA, Con A and a mixture of Bu-WSA and Con A. Separation of PBM into purified T cells, B cells and macrophages showed that cell-cell cooperation of T cells with B cells or macrophages is necessary for the observed synergistic effect of Bu-WSA with Con A. A marked increase in thymidine incorporation by the mixture of T and B cell populations occurred, while only a small amount of thymidine was incorporated when the B cell population was absent. Mitomycin treatment revealed that the response could be ascribed to the T-cell response with a B-cell helper effect. Moreover, Con A and Bu-WSA appeared to act on the same T cell population. This model may provide unique information about the activation of human peripheral blood T cells compared with the activation of these cells by other mitogens. © owned by Center for Academic Publications Japan (Publisher).

  3. Effect of TLR ligands co-encapsulated with multiepitopic antigen in nanoliposomes targeted to human DCs via Fc receptor for cancer vaccines.

    PubMed

    Rueda, Felix; Eich, Christina; Cordobilla, Begoña; Domingo, Pere; Acosta, Gerardo; Albericio, Fernando; Cruz, Luis J; Domingo, Joan C

    2017-11-01

    Nanoliposomes (NLs) hold promise as new highly specific nanomedicine for anti-tumor vaccines, since they could be targeted to specific receptors on dendritic cell (DC) to induce maturation and activation and increase the anti-tumor immune response. Here we studied a NLs formulation targeted or not to FcR (the receptor for the IgG Fc fragment) for the treatment of androgen-responsive prostate cancer. Luteinizing-hormone-releasing hormone (LHRH) peptide (B- and T-cell epitopes), in tandem with a tetanus toxoid T-helper epitope (830-844 region) and several TLR (Toll-Like Receptor) ligands as adjuvants were co-encapsulated. Specific uptake in vitro of LHRH-TT liposomes targeted to the FcRs of human DCs was enhanced. DC maturation/activation, cytokine production and lymphocyte activation were consistently higher in targeted than non-targeted liposomes. Similar increase was observed as more adjuvants were administrated. Targeting to specific receptor and co-encapsulation of several TLR adjuvants are essential factors for the immune response in peptide based liposome vaccine. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Adjuvant Vascular Endothelial Growth Factor-targeted Therapy in Renal Cell Carcinoma: A Systematic Review and Pooled Analysis.

    PubMed

    Sun, Maxine; Marconi, Lorenzo; Eisen, Tim; Escudier, Bernard; Giles, Rachel H; Haas, Naomi B; Harshman, Lauren C; Quinn, David I; Larkin, James; Pal, Sumanta K; Powles, Thomas; Ryan, Christopher W; Sternberg, Cora N; Uzzo, Robert; Choueiri, Toni K; Bex, Axel

    2018-05-18

    Contradictory data exist with regard to adjuvant vascular endothelial growth factor receptor (VEGFR)-targeted therapy in surgically managed patients for localized renal cell carcinoma (RCC). To systematically evaluate the current evidence regarding the therapeutic benefit (disease-free survival [DFS] and overall survival [OS]) and grade 3-4 adverse events (AEs) for adjuvant VEGFR-targeted therapy for resected localized RCC. A critical review of PubMed/Medline, Embase, and the Cochrane Library in January 2018 according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement was performed. We identified reports and reviewed them according to the Consolidated Standards of Reporting Trials and Standards for the Reporting of Diagnostic Accuracy Studies criteria. Of eight full-text articles that were eligible for inclusion, five studies (two of five were updated analyses) were retained in the final synthesis. Study characteristics were abstracted and the number needed to treat (NNT) per trial was estimated. The three randomized controlled phase III trials included the following comparisons: sunitinib versus placebo or sorafenib versus placebo (Adjuvant Sorafenib or Sunitinib for Unfavorable Renal Carcinoma [ASSURE] study, n=1943), sunitinib versus placebo (S-TRAC, n=615), and pazopanib versus placebo (Pazopanib As Adjuvant Therapy in Localized/Locally Advanced RCC After Nephrectomy study, n=1135). The NNT ranged from 10 (S-TRAC) to 137 (ASSURE study). The pooled analysis showed that VEGFR-targeted therapy was not statistically significantly associated with improved DFS (hazard ratio [HR random ]: 0.92, 95% confidence interval [CI]: 0.82-1.03, p=0.16) or OS (HR random : 0.98, 95% CI: 0.84-1.15, p=0.84) compared with the control group. The adjuvant therapy group experienced significantly higher odds of grade 3-4 AEs (OR random : 5.89, 95% CI: 4.85-7.15, p<0.001). In exploratory analyses focusing on patients who started on the full-dose regimen, DFS was improved in patients who received adjuvant therapy (HR random : 0.83, 95% CI: 0.73-0.95, p=0.005). This pooled analysis of reported randomized trials did not reveal a statistically significant effect between adjuvant VEGFR-targeted therapy and improved DFS or OS in patients with intermediate/high-risk local or regional fully resected RCC. Improvement in DFS may be more likely with the use of full-dose regimens, pending further results. However, adjuvant treatment was associated with high-grade AEs. Vascular endothelial growth factor receptor-targeted therapy after nephrectomy for localized kidney cancer is not associated with consistent improvements in delaying cancer recurrence or prolonging life and comes at the expense of potentially significant side effects. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  5. Structurally well-defined macrophage activating factor derived from vitamin D3-binding protein has a potent adjuvant activity for immunization.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1998-06-01

    Freund's adjuvant produced severe inflammation that augments development of antibodies. Thus, mixed administration of antigens with adjuvant was not required as long as inflammation was induced in the hosts. Since macrophage activation for phagocytosis and antigen processing is the first step of antibody development, inflammation-primed macrophage activation plays a major role in immune development. Therefore, macrophage activating factor should act as an adjuvant for immunization. The inflammation-primed macrophage activation process is the major macrophage activating cascade that requires participation of serum vitamin D3-binding protein (DBP; human DBP is known as Gc protein) and glycosidases of B and T lymphocytes. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase efficiently generated the most potent macrophage activating factor (designated GcMAF) we have ever encountered. Administration of GcMAF (20 or 100 pg/mouse) resulted in stimulation of the progenitor cells for extensive mitogenesis and activation of macrophages. Administration of GcMAF (100 pg/mouse) along with immunization of mice with sheep red blood cells (SRBC) produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days. Thus, GcMAF has a potent adjuvant activity for immunization. Although malignant tumours are poorly immunogenic, 4 days after GcMAF-primed immunization of mice with heat-killed Ehrlich ascites tumour cells, the ascites tumour was no longer transplantable in these mice.

  6. [Environmental pollutants as adjuvant factors of immune system derived diseases].

    PubMed

    Lehmann, Irina

    2017-06-01

    The main task of the immune system is to protect the body against invading pathogens. To be able to do so, immune cells must be able to recognize and combat exogenous challenges and at the same time tolerate body-borne structures. A complex regulatory network controls the sensitive balance between defense and tolerance. Perturbation of this network ultimately leads to the development of chronic inflammation, such as allergies, autoimmune reactions, and infections, because the immune system is no longer able to efficiently eliminate invading pathogens. Environmental pollutants can cause such perturbations by affecting the function of immune cells in such a way that they would react hypersensitively against allergens and the body's own structures, respectively, or that they would be no longer able to adequately combat pathogens. This indirect effect is also known as adjuvant effect. For pesticides, heavy metals, wood preservatives, or volatile organic compounds such adjuvant effects are well known. Examples of the mechanism by which environmental toxins contribute to chronic inflammatory diseases are manifold and will be discussed along asthma and allergies.While the immune system of healthy adults is typically well able to distinguish between foreign and endogenous substances even under adverse environmental conditions, that of children would react much more sensible upon comparable environmental challenges. To prevent priming for diseases by environmental cues during that highly sensitive period of early childhood children are to be particularly protected.

  7. Cost-Utility of a Prognostic Test Guiding Adjuvant Chemotherapy Decisions in Early-Stage Non-Small Cell Lung Cancer.

    PubMed

    Stenehjem, David D; Bellows, Brandon K; Yager, Kraig M; Jones, Joshua; Kaldate, Rajesh; Siebert, Uwe; Brixner, Diana I

    2016-02-01

    A prognostic test was developed to guide adjuvant chemotherapy (ACT) decisions in early-stage non-small cell lung cancer (NSCLC) adenocarcinomas. The objective of this study was to compare the cost-utility of the prognostic test to the current standard of care (SoC) in patients with early-stage NSCLC. Lifetime costs (2014 U.S. dollars) and effectiveness (quality-adjusted life-years [QALYs]) of ACT treatment decisions were examined using a Markov microsimulation model from a U.S. third-party payer perspective. Cancer stage distribution and probability of receiving ACT with the SoC were based on data from an academic cancer center. The probability of receiving ACT with the prognostic test was estimated from a physician survey. Risk classification was based on the 5-year predicted NSCLC-related mortality. Treatment benefit with ACT was based on the prognostic score. Discounting at a 3% annual rate was applied to costs and QALYs. Deterministic one-way and probabilistic sensitivity analyses examined parameter uncertainty. Lifetime costs and effectiveness were $137,403 and 5.45 QALYs with the prognostic test and $127,359 and 5.17 QALYs with the SoC. The resulting incremental cost-effectiveness ratio for the prognostic test versus the SoC was $35,867/QALY gained. One-way sensitivity analyses indicated the model was most sensitive to the utility of patients without recurrence after ACT and the ACT treatment benefit. Probabilistic sensitivity analysis indicated the prognostic test was cost-effective in 65.5% of simulations at a willingness to pay of $50,000/QALY. The study suggests using a prognostic test to guide ACT decisions in early-stage NSCLC is potentially cost-effective compared with using the SoC based on globally accepted willingness-to-pay thresholds. Providing prognostic information to decision makers may help some patients with high-risk early stage non-small cell lung cancer receive appropriate adjuvant chemotherapy while avoiding the associated toxicities and costs in patients with low-risk disease. This study used an economic model to assess the effectiveness and costs associated with using a prognostic test to guide adjuvant chemotherapy decisions compared with the current standard of care in patients with non-small cell lung cancer. When compared with current standard care, the prognostic test was potentially cost effective at commonly accepted thresholds in the U.S. This study can be used to help inform decision makers who are considering using prognostic tests. ©AlphaMed Press.

  8. Stimulation of immune systems by conjugated polymers and their potential as an alternative vaccine adjuvant.

    PubMed

    Gong, Hua; Xiang, Jian; Xu, Ligeng; Song, Xuejiao; Dong, Ziliang; Peng, Rui; Liu, Zhuang

    2015-12-07

    Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ( PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems.

  9. Stimulation of immune systems by conjugated polymers and their potential as an alternative vaccine adjuvant

    NASA Astrophysics Data System (ADS)

    Gong, Hua; Xiang, Jian; Xu, Ligeng; Song, Xuejiao; Dong, Ziliang; Peng, Rui; Liu, Zhuang

    2015-11-01

    Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PEDOT:PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PEDOT:PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PEDOT:PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems.Recently, conjugated polymers have been widely explored in the field of nanomedicine. Careful evaluations of their biological effects are thus urgently needed. Hereby, we systematically evaluated the biological effects of different types of conjugated polymers on macrophages and dendritic cells (DCs), which play critical roles in the innate and adaptive immune systems, respectively. While naked poly-(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exhibits a high level of cytotoxicity, polyethylene glycol (PEG) modified PEDOT:PSS (PEDOT:PSS-PEG) shows greatly reduced toxicity to various types of cells. To our surprise, PEGylation of PEDOT:PSS could obviously enhance the cellular uptake of these nanoparticles, leading to subsequent immune stimulations of both macrophages and DCs. In contrast, another type of conjugated polymer, polypyrrole (PPy), is found to be an inert material with neither significant cytotoxicity nor noticeable immune-stimulation activity. Interestingly, utilizing ovalbumin (OVA) as a model antigen, it is further uncovered in our ex vivo experiment that PEDOT:PSS-PEG may serve as an adjuvant to greatly enhance the immunogenicity of OVA upon simple mixing. Our study on the one hand suggests the promise of developing novel nano-adjuvants based on conjugated polymers, and on the other hand highlights the importance of careful evaluations of the impacts of any new nanomaterials developed for nanomedicine on the immune systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06081h

  10. Retinaldehyde dehydrogenase 2 as a molecular adjuvant for enhancement of mucosal immunity during DNA vaccination.

    PubMed

    Holechek, Susan A; McAfee, Megan S; Nieves, Lizbeth M; Guzman, Vanessa P; Manhas, Kavita; Fouts, Timothy; Bagley, Kenneth; Blattman, Joseph N

    2016-11-04

    In order for vaccines to induce efficacious immune responses against mucosally transmitted pathogens, such as HIV-1, activated lymphocytes must efficiently migrate to and enter targeted mucosal sites. We have previously shown that all-trans retinoic acid (ATRA) can be used as a vaccine adjuvant to enhance mucosal CD8 + T cell responses during vaccination and improve protection against mucosal viral challenge. However, the ATRA formulation is incompatible with most recombinant vaccines, and the teratogenic potential of ATRA at high doses limits its usage in many clinical settings. We hypothesized that increasing in vivo production of retinoic acid (RA) during vaccination with a DNA vector expressing retinaldehyde dehydrogenase 2 (RALDH2), the rate-limiting enzyme in RA biosynthesis, could similarly provide enhanced programming of mucosal homing to T cell responses while avoiding teratogenic effects. Administration of a RALDH2- expressing plasmid during immunization with a HIVgag DNA vaccine resulted in increased systemic and mucosal CD8 + T cell numbers with an increase in both effector and central memory T cells. Moreover, mice that received RALDH2 plasmid during DNA vaccination were more resistant to intravaginal challenge with a recombinant vaccinia virus expressing the same HIVgag antigen (VACVgag). Thus, RALDH2 can be used as an alternative adjuvant to ATRA during DNA vaccination leading to an increase in both systemic and mucosal T cell immunity and better protection from viral infection at mucosal sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Mucosal Adjuvant Cholera Toxin B Instructs Non-Mucosal Dendritic Cells to Promote IgA Production Via Retinoic Acid and TGF-β

    PubMed Central

    Gloudemans, Anouk K.; Plantinga, Maud; Guilliams, Martin; Willart, Monique A.; Ozir-Fazalalikhan, Arifa; van der Ham, Alwin; Boon, Louis; Harris, Nicola L.; Hammad, Hamida; Hoogsteden, Henk C.; Yazdanbakhsh, Maria; Hendriks, Rudi W.

    2013-01-01

    It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant. PMID:23527272

  12. The mucosal adjuvant cholera toxin B instructs non-mucosal dendritic cells to promote IgA production via retinoic acid and TGF-β.

    PubMed

    Gloudemans, Anouk K; Plantinga, Maud; Guilliams, Martin; Willart, Monique A; Ozir-Fazalalikhan, Arifa; van der Ham, Alwin; Boon, Louis; Harris, Nicola L; Hammad, Hamida; Hoogsteden, Henk C; Yazdanbakhsh, Maria; Hendriks, Rudi W; Lambrecht, Bart N; Smits, Hermelijn H

    2013-01-01

    It is currently unknown how mucosal adjuvants cause induction of secretory immunoglobulin A (IgA), and how T cell-dependent (TD) or -independent (TI) pathways might be involved. Mucosal dendritic cells (DCs) are the primary antigen presenting cells driving TI IgA synthesis, by producing a proliferation-inducing ligand (APRIL), B cell activating factor (BAFF), Retinoic Acid (RA), TGF-β or nitric oxide (NO). We hypothesized that the mucosal adjuvant Cholera Toxin subunit B (CTB) could imprint non-mucosal DCs to induce IgA synthesis, and studied the mechanism of its induction. In vitro, CTB-treated bone marrow derived DCs primed for IgA production by B cells without the help of T cells, yet required co-signaling by different Toll-like receptor (TLR) ligands acting via the MyD88 pathway. CTB-DC induced IgA production was blocked in vitro or in vivo when RA receptor antagonist, TGF-β signaling inhibitor or neutralizing anti-TGF-β was added, demonstrating the involvement of RA and TGF-β in promoting IgA responses. There was no major involvement for BAFF, APRIL or NO. This study highlights that synergism between CTB and MyD88-dependent TLR signals selectively imprints a TI IgA-inducing capacity in non-mucosal DCs, explaining how CTB acts as an IgA promoting adjuvant.

  13. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12.

    PubMed

    Bozeman, Erica N; He, Sara; Shafizadeh, Yalda; Selvaraj, Periasamy

    2016-01-01

    Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10-20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer.

  14. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12

    PubMed Central

    Bozeman, Erica N; He, Sara; Shafizadeh, Yalda; Selvaraj, Periasamy

    2016-01-01

    Immunotherapeutic approaches have emerged as promising strategies to treat various cancers, including breast cancer. A single approach, however, is unlikely to effectively combat the complex, immune evasive strategies found within the tumor microenvironment, thus novel, effective combination treatments must be explored. In this study, we investigated the efficacy of a combination therapy consisting of PD-L1 immune checkpoint blockade and whole cell vaccination in a HER-2 positive mouse model of breast cancer. We demonstrate that tumorigenicity is completely abrogated when adjuvanted with immune stimulatory molecules (ISMs) B7-1 and a cell-surface anchored (GPI) form of IL-12 or GM-CSF. Irradiated cellular vaccines expressing the combination of adjuvants B7-1 and GPI-IL-12 completely inhibited tumor formation which was correlative with robust HER-2 specific CTL activity. However, in a therapeutic setting, both cellular vaccination and PD-L1 blockade induced only 10–20% tumor regression when administered alone but resulted in 50% tumor regression as a combination therapy. This protection was significantly hindered following CD4 or CD8 depletion indicating the essential role played by cellular immunity. Collectively, these pre-clinical studies provide a strong rationale for further investigation into the efficacy of combination therapy with tumor cell vaccines adjuvanted with membrane-anchored ISMs along with PD-L1 blockade for the treatment of breast cancer. PMID:26308597

  15. Efficacy and safety of platinum combination chemotherapy re-challenge for relapsed patients with non-small-cell lung cancer after postoperative adjuvant chemotherapy of cisplatin plus vinorelbine.

    PubMed

    Imai, Hisao; Shukuya, Takehito; Yoshino, Reiko; Muraki, Keiko; Mori, Keita; Ono, Akira; Akamatsu, Hiroaki; Taira, Tetsuhiko; Kenmotsu, Hirotsugu; Naito, Tateaki; Murakami, Haruyasu; Tomizawa, Yoshio; Takahashi, Toshiaki; Takahashi, Kazuhisa; Saito, Ryusei; Yamamoto, Nobuyuki

    2013-01-01

    There is no standard therapy for relapsed patients who have received postoperative platinum-based adjuvant chemotherapy for resected non-small-cell lung cancer (NSCLC). We investigated the efficacy and safety of platinum combination chemotherapy re-challenge for such patients. Medical records from 3 institutes from April 2005 to July 2012 were retrospectively reviewed. Patients who underwent complete surgical resection were eligible if they received postoperative adjuvant chemotherapy consisting of cisplatin plus vinorelbine once and then re-challenge with platinum combination chemotherapy. Sixteen patients were enrolled in this study. After re-challenge with platinum combination chemotherapy, we observed an overall response rate of 31.2% (5/16) and a disease control rate of 81.2% (13/16). Median progression-free survival and overall survival from the start of the re-administration of platinum combination chemotherapy were 6.5 and 28.0 months, respectively. Frequently observed severe adverse events (≥grade 3) included neutropenia (31.2%), thrombocytopenia (31.2%), leukopenia (12.5%) and hyponatremia (12.5%). Frequently observed non-hematological toxicities (≥grade 2) were anorexia (37.5%) and nausea (37.5%). Re-challenge with platinum combination chemotherapy was effective and safe; therefore, this therapy should be considered as a treatment option for relapsed patients after postoperative cisplatin-based adjuvant chemotherapy for resected NSCLC. © 2014 S. Karger AG, Basel.

  16. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Xu, Ligeng; Liang, Chao; Wang, Chao; Peng, Rui; Liu, Zhuang

    2016-10-01

    A therapeutic strategy that can eliminate primary tumours, inhibit metastases, and prevent tumour relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clinically approved components can be used for near-infrared laser-triggered photothermal ablation of primary tumours, generating tumour-associated antigens, which in the presence of R837-containing nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunological responses will be able to attack remaining tumour cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumour models. Furthermore, such strategy offers a strong immunological memory effect, which can provide protection against tumour rechallenging post elimination of their initial tumours.

  17. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    NASA Astrophysics Data System (ADS)

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  18. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses.

    PubMed

    Liu, Hui; Jia, Zhenghu; Yang, Chengmao; Song, Mei; Jing, Zhe; Zhao, Yapu; Wu, Zhenzhou; Zhao, Liqing; Wei, Dongsheng; Yin, Zhinan; Hong, Zhangyong

    2018-06-01

    Aluminum salt (Alum) is one of the most important immune adjuvants approved for use in humans, however it is not suitable for vaccination against various chronic infectious diseases and cancers for not being able to induce cell-mediated (Th1) immunity. Here, we encapsulated an Alum colloid inside β-glucan particles (GPs), which are a type of natural particles derived from the yeast glucan shells, to prepare hybrid GP-Alum (GP-Al) adjuvant particles with a very uniform size of 2-4 μm. These hybrid particles can be used to load antigen proteins through a simple mixing procedure, and can be highly specifically targeted to antigen-presenting cells (APCs) and strongly activate dendritic cells (DCs) maturation and cytokine secretion. In an animal model, they elicit a strong Th1-biased immune response and extremely high antibody titer, and cause marked prophylactic and therapeutic effects against tumors. As Alum has been proven to be a safe adjuvant to induce strong humoral responses and β-glucans are safe for human use, this very uniform hybrid Alum particulate system could have important application as a vaccine carrier to stimulate humoral and cellular immune responses at the same time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Increased long-term immunity to Bacillus anthracis protective antigen in mice immunized with a CIA06B-adjuvanted anthrax vaccine.

    PubMed

    Wui, Seo Ri; Han, Ji Eun; Kim, Yeon Hee; Rhie, Gi-eun; Lee, Na Gyong

    2013-04-01

    Anthrax is an acute infectious disease caused by Bacillus anthracis. We previously reported that the adjuvant CIA06B, which consists of TLR4 agonist CIA05 and aluminum hydroxide (alum), enhanced the immune response to anthrax protective antigen (PA) in mice. This study was carried out to determine whether CIA06B can enhance long-term immune responses to PA in mice. BALB/c mice were immunized intramuscularly three times at 2-week intervals with recombinant PA alone or PA combined with alum or CIA06B. At 8 and 24 weeks post-immunization, the immunological responses including serum anti-PA IgG antibody titer, toxin-neutralizing antibody titer, splenic cytokine secretion and the frequency of PA-specific memory B cells were assessed. Compared with mice injected with PA alone or PA plus alum, mice injected with PA plus CIA06B had higher titers of serum anti-PA IgG antibodies, and higher frequencies of PA-specific memory B cells and interferon-γ secreting cells. Furthermore, anti-PA antibodies induced by CIA06B were more effective in neutralizing anthrax toxin. These results demonstrated that CIA06B is capable of providing long-term immunity when used as an adjuvant in a PA-based anthrax vaccine.

  20. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice

    PubMed Central

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8+ T cells from immunized animals, antigen-specific CD8+ T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients. PMID:26166767

  1. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice.

    PubMed

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-11-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8 + T cells from immunized animals, antigen-specific CD8 + T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients.

  2. Montanide, Poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope.

    PubMed

    Wilson, Kirsty L; Xiang, Sue D; Plebanski, Magdalena

    2015-01-01

    The development of practical and flexible vaccines to target liver stage malaria parasites would benefit from an ability to induce high levels of CD8 T cells to minimal peptide epitopes. Herein we compare different adjuvant and carrier systems in a murine model for induction of interferon gamma (IFN-γ) producing CD8 T cells to the minimal immuno-dominant peptide epitope from the circumsporozoite protein (CSP) of Plasmodium berghei, pb9 (SYIPSAEKI, referred to as KI). Two pro-inflammatory adjuvants, Montanide and Poly I:C, and a non-classical, non-inflammatory nanoparticle based carrier (polystyrene nanoparticles, PSNPs), were compared side-by-side for their ability to induce potentially protective CD8 T cell responses after two immunizations. KI in Montanide (Montanide + KI) or covalently conjugated to PSNPs (PSNPs-KI) induced such high responses, whereas adjuvanting with Poly I:C or PSNPs without conjugation was ineffective. This result was consistent with an observed induction of an immunosuppressed environment by Poly I:C in the draining lymph node (dLN) 48 h post injection, which was reflected by increased frequencies of myeloid derived suppressor cells (MDSCs) and a proportion of inflammation reactive regulatory T cells (Treg) expressing the tumor necrosis factor receptor 2 (TNFR2), as well as decreased dendritic cell (DC) maturation. The other inflammatory adjuvant, Montanide, also promoted proportional increases in the TNFR2(+) Treg subpopulation, but not MDSCs, in the dLN. By contrast, injection with non-inflammatory PSNPs did not cause these changes. Induction of high CD8 T cell responses, using minimal peptide epitopes, can be achieved by non-inflammatory carrier nanoparticles, which in contrast to some conventional inflammatory adjuvants, do not expand either MDSCs or inflammation reactive Tregs at the site of priming.

  3. Preparation of the Secretory Recombinant ALV-J gp85 Protein Using Pichia pastoris and Its Immunoprotection as Vaccine Antigen Combining with CpG-ODN Adjuvant.

    PubMed

    Jing, Weifang; Zhou, Jinrun; Wang, Chunyang; Qiu, Jianhua; Guo, Huijun; Li, Hongmei

    2018-04-26

    This study focuses on preparing the secretory recombinant J subgroup of avian leukosis virus (ALV-J) gp85 protein using Pichia pastoris and evaluating its immunoprotection as vaccine antigen combining with CpG-ODN adjuvant. The secretory recombinant plasmid pPIC9-gp85 containing ALV-J gp85 gene was designed and was transfected into the genome of P. pastoris (GS115) cells. The recombinant plasmid was expressed under the induction of methanol. The expressed products in the medium of the cells were purified and identified with endoglycosidase digestion assay and western blot mediated with monoclonal antibody (MAb) JE9. The purified product combining with CpG-ODN adjuvant was inoculated intramuscularly into 7-day-old chickens and three booster inoculations were performed on 21 days post first inoculation (dpfi), 42, and 56 dpfi. The antibody responses and cellular immune responses were detected, and the protective effects were analyzed after challenge with ALV-J. The results showed that the secretory pPIC9-gp85 plasmid was successfully constructed and could be stably expressed in GS115 cells. The expressed products were N-acetylglucosylated and could specifically combine with MAb (JE9). The secreted gp85 protein combining with CpG-ODN adjuvant could induce higher antibody response and spleen lymphocyte proliferation response and IFN-γ-inducing response, and could protect all the inoculated chickens against the viremia and the immunosuppressive lesions caused by ALV-J challenge. The results of neutralizing test in vitro suggested that the antisera with some ALV-J antibody titers could neutralize ALV-J strain and inhibit the growth of virus in vitro. The result of IFA showed that IgG antibody in the antisera could specifically combine with ALV-J strain in cells. It can be concluded that the secretory recombinant gp85 protein, as a new acetylglucosylated gp85 protein, was successfully prepared and combining with CpG-ODN adjuvant could protect the inoculated chickens against ALV-J infection. This study first reported the methods on preparing the secretory recombinant ALV-J gp85 protein using P. pastoris and evaluated its immunoprotection.

  4. Coupling of Peripheral Tolerance to Endogenous Interleukin 10 Promotes Effective Modulation of Myelin-Activated T Cells and Ameliorates Experimental Allergic Encephalomyelitis

    PubMed Central

    Legge, Kevin L.; Min, Booki; Bell, J. Jeremiah; Caprio, Jacque C.; Li, Lequn; Gregg, Randal K.; Zaghouani, Habib

    2000-01-01

    Several immune-based approaches are being considered for modulation of inflammatory T cells and amelioration of autoimmune diseases. The most recent strategies include simulation of peripheral self-tolerance by injection of adjuvant free antigen, local delivery of cytokines by genetically altered T cells, and interference with the function of costimulatory molecules. Although promising results have been obtained from these studies that define mechanisms of T cell modulation, efficacy, practicality, and toxicity, concerns remain unsolved, thereby justifying further investigations to define alternatives for effective downregulation of aggressive T cells. In prior studies, we demonstrated that an immunoglobulin (Ig) chimera carrying the encephalitogenic proteolipid protein (PLP)1 peptide corresponding to amino acid sequence 139–151 of PLP, Ig-PLP1, is presented to T cells ∼100-fold better than free PLP1. Here, we demonstrate that aggregation endows Ig-PLP1 with an additional feature, namely, induction of interleukin (IL)-10 production by macrophages and dendritic cells, both of which are antigen-presenting cells (APCs). These functions synergize in vivo and drive effective modulation of autoimmunity. Indeed, it is shown that animals with ongoing active experimental allergic encephalomyelitis dramatically reduce the severity of their paralysis when treated with adjuvant free aggregated Ig-PLP1. Moreover, IL-10 displays bystander antagonism on unrelated autoreactive T cells, allowing for reversal of disease involving multiple epitopes. Therefore, aggregated Ig-PLP1 likely brings together a peripheral T cell tolerance mechanism emanating from peptide presentation by APCs expressing suboptimal costimulatory molecules and IL-10 bystander suppression to drive a dual-modal T cell modulation system effective for reversal of autoimmunity involving several epitopes and diverse T cell specificities. PMID:10859329

  5. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer.

    PubMed

    Korbelik, M; Naraparaju, V R; Yamamoto, N

    1997-01-01

    The effect of Photofrin-based photodynamic therapy (PDT) and adjuvant treatment with serum vitamin D3-binding protein-derived macrophage-activating factor (DBPMAF) was examined using a mouse SCCVII tumour model (squamous cell carcinoma). The results show that DBPMAF can markedly enhance the curative effect of PDT. The most effective DBPMAF therapy consisted of a combination of intraperitoneal and peritumoral injections (50 and 0.5 ng kg-1 respectively) administered on days 0, 4, 8 and 12 after PDT. Used with a PDT treatment curative to 25% of the treated tumours, this DBPMAF regimen boosted the cures to 100%. The DBPMAF therapy alone showed no notable effect on the growth of SCCVII tumour. The PDT-induced immunosuppression, assessed by the evaluation of delayed-type contact hypersensitivity response in treated mice, was greatly reduced with the combined DBPMAF treatment. These observations suggest that the activation of macrophages in PDT-treated mice by adjuvant immunotherapy has a synergistic effect on tumour cures. As PDT not only reduces tumour burden but also induces inflammation, it is proposed that recruitment of the activated macrophages to the inflamed tumour lesions is the major factor for the complete eradication of tumours.

  6. Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer.

    PubMed Central

    Korbelik, M.; Naraparaju, V. R.; Yamamoto, N.

    1997-01-01

    The effect of Photofrin-based photodynamic therapy (PDT) and adjuvant treatment with serum vitamin D3-binding protein-derived macrophage-activating factor (DBPMAF) was examined using a mouse SCCVII tumour model (squamous cell carcinoma). The results show that DBPMAF can markedly enhance the curative effect of PDT. The most effective DBPMAF therapy consisted of a combination of intraperitoneal and peritumoral injections (50 and 0.5 ng kg-1 respectively) administered on days 0, 4, 8 and 12 after PDT. Used with a PDT treatment curative to 25% of the treated tumours, this DBPMAF regimen boosted the cures to 100%. The DBPMAF therapy alone showed no notable effect on the growth of SCCVII tumour. The PDT-induced immunosuppression, assessed by the evaluation of delayed-type contact hypersensitivity response in treated mice, was greatly reduced with the combined DBPMAF treatment. These observations suggest that the activation of macrophages in PDT-treated mice by adjuvant immunotherapy has a synergistic effect on tumour cures. As PDT not only reduces tumour burden but also induces inflammation, it is proposed that recruitment of the activated macrophages to the inflamed tumour lesions is the major factor for the complete eradication of tumours. PMID:9010027

  7. Biochemical effects of nonylphenol polyethoxylate adjuvant, Diquat herbicide and their mixture on the three-spined stickleback (Gasterosteus aculeatus L.).

    PubMed

    Sanchez, W; Palluel, O; Lagadic, L; Aït-Aïssa, S; Porcher, J-M

    2006-07-01

    This study examined the response of 7-ethoxyresorufine-O-deethylase, glutathione-S-transferase, glutathione peroxidase, glutathione content, level of thiobarbituric acid reactive compounds and circulating vitellogenin, in three-spined sticklebacks after 21 days of exposure to Diquat herbicide, commercial nonylphenol polyethoxylate adjuvant and mixture between Diquat and adjuvant. The results showed that adjuvant exerted more important oxidative effects than Diquat and that mixture effects were unlike to single additivity. This study argues for ecotoxicological risk assessment of adjuvants and mixtures of adjuvants and pesticides.

  8. The NF-κB regulator Bcl-3 and the BH3-only proteins Bim and Puma control the death of activated T cells

    PubMed Central

    Bauer, Anette; Villunger, Andreas; Labi, Verena; Fischer, Silke F.; Strasser, Andreas; Wagner, Hermann; Schmid, Roland M.; Häcker, Georg

    2006-01-01

    Apoptosis of activated T cells is critical for the termination of immune responses. Here we show that adjuvant-stimulated dendritic cells secrete cytokines that prime activated T cells for survival and analyze the roles of the NF-κB regulator Bcl-3 and the proapoptotic Bcl-2 family members Bim and Puma. Bcl-3 overexpression increased survival, and activated bcl-3−/− T cells died abnormally rapidly. Cytokines from adjuvant-stimulated dendritic cells induced Bcl-3, but survival through cytokine priming was Bcl-3-independent. Apoptosis inhibition by Bcl-3 involved blockade of Bim activation, because Bim was overactivated in Bcl-3-deficient cells, and Bcl-3 failed to increase survival of bim−/− T cells. However, adjuvants increased survival also in Bim-deficient T cells. This Bim-independent death pathway is at least in part regulated by Puma, as shown by analysis of puma−/− and noxa−/− T cells. IL-1, IL-7, and IL-15 primed T cells for survival even in the absence of Bim or Puma. Our data define interrelations and a Bim-independent pathway to activated T cell death. PMID:16832056

  9. Clinical Practice of Adjuvant Chemotherapy in Patients with Early-Stage Epithelial Ovarian Cancer.

    PubMed

    Frielink, Lindy M J; Pijlman, Brenda M; Ezendam, Nicole P M; Pijnenborg, Johanna M A

    2016-01-01

    Adjuvant platinum-based chemotherapy improves survival in women with early-stage epithelial ovarian cancer (EOC). Yet, there is a wide variety in clinical practice. All patients diagnosed with FIGO I and IIa EOC (2006-2010) in the south of the Netherlands were analyzed. The percentage of patients that received adjuvant chemotherapy was determined as well as the comprehensiveness of staging and outcome. Forty percent (54/135) of the patients with early-stage EOC received adjuvant chemotherapy. Treatment with adjuvant chemotherapy was associated with FIGO stage, clear-cell histology and nonoptimal staging. Optimal staging was achieved in 50%, and nonoptimal staging was associated with advanced age, comorbidity and treatment in a non-referral hospital. Overall, there was no difference in outcome between patients with and without adjuvant chemotherapy. Yet, in grade 3 tumors, adjuvant chemotherapy seems beneficial. Selective treatment of patients with early-stage EOC might reduce adjuvant chemotherapy without compromising outcome. © 2016 S. Karger AG, Basel.

  10. The Syk-NFAT-IL-2 Pathway in Dendritic Cells Is Required for Optimal Sterile Immunity Elicited by Alum Adjuvants.

    PubMed

    Khameneh, Hanif Javanmard; Ho, Adrian W S; Spreafico, Roberto; Derks, Heidi; Quek, Hazel Q Y; Mortellaro, Alessandra

    2017-01-01

    Despite a long history and extensive usage of insoluble aluminum salts (alum) as vaccine adjuvants, the molecular mechanisms underpinning Ag-specific immunity upon vaccination remain unclear. Dendritic cells (DCs) are crucial initiators of immune responses, but little is known about the molecular pathways used by DCs to sense alum and, in turn, activate T and B cells. In this article, we show that alum adjuvanticity requires IL-2 specifically released by DCs, even when T cell secretion of IL-2 is intact. We demonstrate that alum, as well as other sterile particulates, such as uric acid crystals, induces DCs to produce IL-2 following initiation of actin-mediated phagocytosis that leads to Src and Syk kinase activation, Ca 2+ mobilization, and calcineurin-dependent activation of NFAT, the master transcription factor regulating IL-2 expression. Using chimeric mice, we show that DC-derived IL-2 is required for maximal Ag-specific proliferation of CD4 + T cells and optimal humoral responses following alum-adjuvanted immunization. These data identify DC-derived IL-2 as a key mediator of alum adjuvanticity in vivo and the Src-Syk pathway as a potential leverage point in the rational design of novel adjuvants. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Role of Adjuvant Radiotherapy in Granulosa Cell Tumors of the Ovary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauspy, Jan; Beiner, Mario E.; Harley, Ian

    2011-03-01

    Purpose: To review the role of adjuvant radiotherapy (RT) in the outcome and recurrence patterns of granulosa cell tumors (GCTs) of the ovary. Methods and Materials: The records of all patients with GCTs referred to the Princess Margaret Hospital University Health Network between 1961 and 2006 were retrospectively reviewed. The patient, tumor, and treatment factors were assessed by univariate and multivariate analyses using disease-free survival (DFS) as the endpoint. Results: A total of 103 patients with histologically confirmed GCTs were included in the present study. The mean duration of follow-up was 100 months (range, 1-399). Of the 103 patients, 31more » received adjuvant RT. A total of 39 patients developed tumor recurrence. The tumor size, incidence of intraoperative rupture, and presence of concurrent endometrial cancer were not significant risk factors for DFS. The median DFS was 251 months for patients who underwent adjuvant RT compared with 112 months for patients who did not (p = .02). On multivariate analysis, adjuvant RT remained a significant prognostic factor for DFS (p = .004). Of the 103 patients, 12 had died and 44 were lost to follow-up. Conclusion: Ovarian GCTs can be indolent, with patients achieving long-term survival. In our series, adjuvant RT resulted in a significantly longer DFS. Ideally, randomized trials with long-term follow-up are needed to define the role of adjuvant RT for ovarian GCTs.« less

  12. Role of adjuvant radiotherapy in granulosa cell tumors of the ovary.

    PubMed

    Hauspy, Jan; Beiner, Mario E; Harley, Ian; Rosen, Barry; Murphy, Joan; Chapman, William; Le, Lisa W; Fyles, Anthony; Levin, Wilfred

    2011-03-01

    To review the role of adjuvant radiotherapy (RT) in the outcome and recurrence patterns of granulosa cell tumors (GCTs) of the ovary. The records of all patients with GCTs referred to the Princess Margaret Hospital University Health Network between 1961 and 2006 were retrospectively reviewed. The patient, tumor, and treatment factors were assessed by univariate and multivariate analyses using disease-free survival (DFS) as the endpoint. A total of 103 patients with histologically confirmed GCTs were included in the present study. The mean duration of follow-up was 100 months (range, 1-399). Of the 103 patients, 31 received adjuvant RT. A total of 39 patients developed tumor recurrence. The tumor size, incidence of intraoperative rupture, and presence of concurrent endometrial cancer were not significant risk factors for DFS. The median DFS was 251 months for patients who underwent adjuvant RT compared with 112 months for patients who did not (p=.02). On multivariate analysis, adjuvant RT remained a significant prognostic factor for DFS (p=.004). Of the 103 patients, 12 had died and 44 were lost to follow-up. Ovarian GCTs can be indolent, with patients achieving long-term survival. In our series, adjuvant RT resulted in a significantly longer DFS. Ideally, randomized trials with long-term follow-up are needed to define the role of adjuvant RT for ovarian GCTs. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  13. Adjuvant therapy in early-stage non-small cell lung cancer.

    PubMed

    Serke, Monika

    2010-01-01

    Evidence clearly supports adjuvant chemotherapy following resection in patients with stage II or III non-small cell lung cancer (NSCLC). Based on 3 landmark studies, adjuvant chemotherapy has become standard in completely resected NSCLC stage II and IIIA. Survival benefit from adjuvant chemotherapy is estimated to be between 3% and 15%, depending on stage. Treatment should include 4 cycles of platinum-based combination chemotherapy. There is uncertainty about chemotherapy prescription in those patients with resected stage IB NSCLC, as the risk of recurrence is lower in early NSCLC and the magnitude of benefit of adjuvant therapy is proportional to the risk of relapse according to stage. Postoperative radiotherapy (PORT) should not be used for stage I or II NSCLC, and remains controversial in resected stage IIIA (N2) disease. All positive adjuvant trials have utilized a cisplatin-based regimen, usually in combination with vinorelbine, and this should be considered the standard approach. Prognostic factors to select patients who will benefit from adjuvant therapy in general or from platinum-based chemotherapy are under discussion, but not yet established. In future we hope to optimize treatment convenience for the patients by using other combinations with the hope of better efficacy results. Work is currently under way to identify prognostic factors which in future may help to identify patients who are most likely to benefit from chemotherapy. Copyright 2010 S. Karger AG, Basel.

  14. Retrospective study of adjuvant icotinib in postoperative lung cancer patients harboring epidermal growth factor receptor mutations

    PubMed Central

    Yao, Shuyang; Zhi, Xiuyi; Wang, Ruotian; Qian, Kun; Hu, Mu

    2016-01-01

    Background Epidermal growth factor receptor (EGFR) mutations occur in about 50% of Asian patients with non‐small cell lung cancer (NSCLC). Patients with advanced NSCLC and EGFR mutations derive clinical benefit from treatment with EGFR‐tyrosine kinase inhibitors (TKIs). This study assessed the efficacy and safety of adjuvant icotinib without chemotherapy in EGFR‐mutated NSCLC patients undergoing resection of stage IB–IIIA. Methods Our retrospective study enrolled 20 patients treated with icotinib as adjuvant therapy. Survival factors were evaluated by univariate and Cox regression analysis. Results The median follow‐up time was 30 months (range 24–41). At the data cut‐off, five patients (25%) had recurrence or metastasis and one patient had died of the disease. The two‐year disease‐free survival (DFS) rate was 85%. No recurrence occurred in the high‐risk stage IB subgroup during the follow‐up period. In univariate analysis, the micropapillary pattern had a statistically significant effect on DFS (P = 0.040). Multivariate logistic regression analysis showed that there was no independent predictor. Drug related adverse events (AEs) occurred in nine patients (45.0%). The most common AEs were skin‐related events and diarrhea, but were relatively mild. No grade 3 AEs or occurrences of intolerable toxicity were observed. Conclusions Icotinib as adjuvant therapy is effective in patients harboring EGFR mutations after complete resection, with an acceptable AE profile. Further trials with larger sample sizes might confirm the efficiency of adjuvant TKI in selected patients. PMID:27766784

  15. Leaf saponins of Quillaja brasiliensis enhance long-term specific immune responses and promote dose-sparing effect in BVDV experimental vaccines.

    PubMed

    Cibulski, Samuel; Rivera-Patron, Mariana; Suárez, Norma; Pirez, Macarena; Rossi, Silvina; Yendo, Anna Carolina; de Costa, Fernanda; Gosmann, Grace; Fett-Neto, Arthur; Roehe, Paulo Michel; Silveira, Fernando

    2018-01-02

    Saponin-based adjuvants are promising adjuvants that enhance both humoral and T-cell-mediated immunity. One of the most used natural products as vaccine adjuvants are Quillaja saponaria bark saponins and its fraction named Quil A®. Despite that, its use has been restricted for human use due to safety issues. As an alternative, our group has been studying the congener species Quillaja brasiliensis saponins and its performance as vaccine adjuvants, which have shown to trigger humoral and cellular immune responses comparable to Quil A® but with milder side effects. Here, we studied a semi purified aqueous extract (AE) and a previously little characterized saponin-enriched fraction (QB-80) from Q. brasiliensis as vaccine adjuvants and an inactivated virus (bovine viral diarrhea virus, BVDV) antigen co-formulated in experimental vaccines in mice model. For the first time, we show the spectra pattern of the Q. brasiliensis saponins by MALDI-TOF, a novel and cost-effective method that could be used to characterize different batches during saponins production. Both AE and QB-80 exhibited noteworthy chemical similarities to Quil A®. In addition, the haemolytic activity and toxicity were assessed, showing that both AE and QB-80 were less toxic than Quil A®. When subcutaneously inoculated in mice, both fractions promoted long-term strong antibody responses encompassing specific IgG1 and IgG2a, enhanced the avidity of IgG antibodies, induced a robust DTH reaction and significantly increased IFN-ɣ production in T CD4 + and T CD8 + cells. Furthermore, we have proven herein that AE has the potential to promote dose-sparing, substantially reducing the dose of antigen required for the BVDV vaccines and still eliciting a mixed Th1/Th2 strong immune response. Based on these results, and considering that AE is a raw extract, easier and cheaper to produce than commercially available saponins, this product can be considered as candidate to be escalated from experimental to industrial uses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A Caprine Herpesvirus 1 Vaccine Adjuvanted with MF59™ Protects against Vaginal Infection and Interferes with the Establishment of Latency in Goats

    PubMed Central

    Marinaro, Mariarosaria; Rezza, Giovanni; Del Giudice, Giuseppe; Colao, Valeriana; Tarsitano, Elvira; Camero, Michele; Losurdo, Michele; Buonavoglia, Canio; Tempesta, Maria

    2012-01-01

    The immunogenicity and the efficacy of a beta-propiolactone-inactivated caprine herpesvirus 1 (CpHV-1) vaccine adjuvanted with MF59™ were tested in goats. Following two subcutaneous immunizations, goats developed high titers of CpHV-1-specific serum and vaginal IgG and high serum virus neutralization (VN) titers. Peripheral blood mononuclear cells (PBMC) stimulated in vitro with inactivated CpHV-1 produced high levels of soluble IFN-gamma and exhibited high frequencies of IFN-gamma producing cells while soluble IL-4 was undetectable. On the other hand, control goats receiving the inactivated CpHV-1 vaccine without adjuvant produced only low serum antibody responses. A vaginal challenge with virulent CpHV-1 was performed in all vaccinated goats and in naïve goats to assess the efficacy of the two vaccines. Vaginal disease was not detected in goats vaccinated with inactivated CpHV-1 plus MF59™ and these animals had undetectable levels of infectious challenge virus in their vaginal washes. Goats vaccinated with inactivated CpHV-1 in the absence of adjuvant exhibited a less severe disease when compared to naïve goats but shed titers of challenge virus that were similar to those of naïve goats. Detection and quantitation of latent CpHV-1 DNA in sacral ganglia in challenged goats revealed that the inactivated CpHV-1 plus MF59™ vaccine was able to significantly reduce the latent viral load when compared either to the naïve goats or to the goats vaccinated with inactivated CpHV-1 in the absence of adjuvant. Thus, a vaccine composed of inactivated CpHV-1 plus MF59™ as adjuvant was strongly immunogenic and induced effective immunity against vaginal CpHV-1 infection in goats. PMID:22511971

  17. CpG-ODN Shapes Alum Adjuvant Activity Signaling via MyD88 and IL-10

    PubMed Central

    Mirotti, Luciana; Alberca Custódio, Ricardo Wesley; Gomes, Eliane; Rammauro, Florencia; de Araujo, Eliseu Frank; Garcia Calich, Vera Lucia; Russo, Momtchilo

    2017-01-01

    Aluminum-containing adjuvants usually referred as Alum are considered as T helper type-2 (Th2) adjuvants, while agonists of toll-like receptors (TLRs) are viewed as adjuvants that favor Th1/Th17 immunity. Alum has been used in numerous vaccine formulations; however, its undesired pro-Th2 adjuvant activity constitutes a caveat for Alum-based vaccines. Combining Alum with TLR-dependent, pro-Th1/Th17 adjuvants might dampen the pro-Th2 activity and improve the effectiveness of vaccine formulations. Here, using the ovalbumin (OVA) model of allergic lung inflammation, we found that sensitization with the synthetic TLR9 agonist, which is composed of oligodeoxynucleotides containing CpG motifs adsorbed to Alum, inhibited the development of OVA-induced lung allergic Th2 responses without shifting toward a Th1 pattern. The conversion of T cell immunity from the polarized allergic Th2 response to a non-polarized form by sensitization with OVA/Alum/CpG was dependent on MyD88 signaling in myeloid cells. Notably, sensitization of IL-10-deficient mice with OVA/Alum/CpG resulted in the development of neutrophilic lung inflammation associated with IFNγ production. However, in IL-10/IL-12-deficient mice, it resulted in neutrophilic inflammation dominated by IL-17 production. We conclude that OVA/Alum/CpG sensitization signaling via MyD88 and IL-10 molecules results in non-polarized immunity. Conversely, OVA/Alum/CpG sensitization in presence of MyD88 but absence of IL-10 or IL-10/IL-12 molecules results, respectively, in neutrophilic inflammation associated with IFNγ or IL-17 production. Our work provides novel OVA models of lung inflammation and suggests that Alum/CpG-based formulations might be of potential use in anti-allergic or anti-infectious processes. PMID:28220116

  18. Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies.

    PubMed Central

    Eldridge, J H; Staas, J K; Meulbroek, J A; Tice, T R; Gilley, R M

    1991-01-01

    Microspheres composed of biocompatible, biodegradable poly(DL-lactide-co-glycolide) (DL-PLG) and staphylococcal enterotoxin B (SEB) toxoid were evaluated as a vaccine delivery system when subcutaneously injected into mice. As measured by circulating immunoglobulin G (IgG) antitoxin titers, the delivery of SEB toxoid via DL-PLG microspheres, 1 to 10 microns in diameter, induced an immune response which was approximately 500 times that seen with nonencapsulated toxoid. The kinetics, magnitude, and duration of the antitoxin response induced with microencapsulated toxoid were similar to those obtained when an equal toxoid dose was administered as an emulsion with complete Freund adjuvant. However, the microspheres did not induce the inflammation and granulomata formation seen with complete Freund adjuvant. The adjuvant activity of the microspheres was not dependent on the superantigenicity of SEB toxin and was equally effective at potentiating circulating IgG antitrinitrophenyl levels in response to microencapsulated trinitrophenyl-keyhole limpet hemocyanin. Empty DL-PLG microspheres were not mitogenic, and SEB toxoid injected as a mixture with empty DL-PLG microspheres was no more effective as an immunogen than toxoid alone. Antigen-containing microspheres 1 to 10 microns in diameter exhibited stronger adjuvant activity than those greater than 10 microns, which correlated with the delivery of the 1- to 10-microns, but not the greater than 10-microns, microspheres into the draining lymph nodes within macrophages. The antibody response induced through immunization with microencapsulated SEB toxoid was protective against the weight loss and splenic V beta 8+ T-cell expansion induced by intravenous toxin administration. These results show that DL-PLG microsphere vaccine delivery systems, which are composed of pharmaceutically acceptable components, possess a strong adjuvant activity for their encapsulated antigens. PMID:1879922

  19. Effects of Fungicide and Adjuvant Sprays on Nesting Behavior in Two Managed Solitary Bees, Osmia lignaria and Megachile rotundata

    PubMed Central

    2015-01-01

    There is a growing body of empirical evidence showing that wild and managed bees are negatively impacted by various pesticides that are applied in agroecosystems around the world. The lethal and sublethal effects of two widely used fungicides and one adjuvant were assessed in cage studies in California on blue orchard bees, Osmia lignaria, and in cage studies in Utah on alfalfa leafcutting bees, Megachile rotundata. The fungicides tested were Rovral 4F (iprodione) and Pristine (mixture of pyraclostrobin + boscalid), and the adjuvant tested was N-90, a non-ionic wetting agent (90% polyethoxylated nonylphenol) added to certain tank mixtures of fungicides to improve the distribution and contact of sprays to plants. In separate trials, we erected screened cages and released 20 paint-marked females plus 30–50 males per cage to document the behavior of nesting bees under treated and control conditions. For all females in each cage, we recorded pollen-collecting trip times, nest substrate-collecting trip times (i.e., mud for O. lignaria and cut leaf pieces for M. rotundata), cell production rate, and the number of attempts each female made to enter her own or to enter other nest entrances upon returning from a foraging trip. No lethal effects of treatments were observed on adults, nor were there effects on time spent foraging for pollen and nest substrates and on cell production rate. However, Rovral 4F, Pristine, and N-90 disrupted the nest recognition abilities of O. lignaria females. Pristine, N-90, and Pristine + N-90 disrupted nest recognition ability of M. rotundata females. Electroantennogram responses of antennae of O. lignaria females maintained in the laboratory did not differ significantly between the fungicide-exposed and control bees. Our results provide the first empirical evidence that two commonly used fungicides and a non-ionic adjuvant can disrupt nest recognition in two managed solitary bee species. PMID:26274401

  20. Development of a Vaccine Incorporating Killed Virus of Canine Origin for the Prevention of Canine Parvovirus Infection

    PubMed Central

    Povey, C.

    1982-01-01

    A parvovirus of canine origin, cultured in a feline kidney cell line, was inactivated with formalin. Three pilot serials were produced and three forms of finished vaccine (nonadjuvanted, single adjuvanted and double adjuvanted) were tested in vaccination and challenge trials. A comparison was also made with two inactivated feline panleukopenia virus vaccines, one of which has official approval for use in dogs. The inactivated canine vaccine in nonadjuvanted, adjuvanted or double adjuvanted form was immunogenic in 20 of 20 vaccinated dogs. The double adjuvanted vaccine is selected as the one of choice on the basis of best and most persistent seriological response. PMID:7039811

  1. Nrf2 Deficiency in Dendritic Cells Enhances the Adjuvant Effect of Ambient Ultrafine Particles on Allergic Sensitization

    EPA Science Inventory

    Airborne particulate matter (PM) is an important risk factor for asthma. Generation of oxidative stress by PM-associated chemicals is a major mechanism of its health effects. Transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mediates antioxidant and phase II...

  2. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma.

    PubMed

    Nakamura, Takashi; Miyabe, Hiroko; Hyodo, Mamoru; Sato, Yusuke; Hayakawa, Yoshihiro; Harashima, Hideyoshi

    2015-10-28

    Malignant melanomas escape immunosurveillance via the loss/down-regulation of MHC-I expression. Natural killer (NK) cells have the potential to function as essential effector cells for eliminating melanomas. Cyclic di-GMP (c-di-GMP), a ligand of the stimulator of interferon genes (STING) signal pathway, can be thought of as a new class of adjuvant against cancer. However, it is yet to be tested, because technologies for delivering c-di-GMP to the cytosol are required. Herein, we report that c-di-GMP efficiently activates NK cells and induces antitumor effects against malignant melanomas when loaded in YSK05 lipid containing liposomes, by assisting in the efficient delivery of c-di-GMP to the cytosol. The intravenous administration of c-di-GMP encapsulated within YSK05-liposomes (c-di-GMP/YSK05-Lip) into mice efficiently induced the production of type I interferon (IFN) as well as the activation of NK cells, resulting in a significant antitumor effect in a lung metastasis mouse model using B16-F10. This antitumor effect was dominated by NK cells. The infiltration of NK cells was observed in the lungs with B16-F10 melanomas. These findings indicate that the c-di-GMP/YSK05-Lip induces MHC-I non-restricted antitumor immunity mediated by NK cells. Consequently, c-di-GMP/YSK05-Lip represents a potentially new adjuvant system for use in immunotherapy against malignant melanomas. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Lentinula edodes mycelia extract plus adjuvant chemotherapy for breast cancer patients: Results of a randomized study on host quality of life and immune function improvement.

    PubMed

    Nagashima, Yukiko; Yoshino, Shigehumi; Yamamoto, Shigeru; Maeda, Noriko; Azumi, Tatsuya; Komoike, Yoshifumi; Okuno, Kiyotaka; Iwasa, Tsutomu; Tsurutani, Junji; Nakagawa, Kazuhiko; Masaaki, Oka; Hiroaki, Nagano

    2017-09-01

    Anthracycline-based chemotherapies for breast cancer are known to adversely affect patients' quality of life (QOL) and immune function. For that reason, adjuvants that improve those impairments are required. A randomized double-blind study was conducted to evaluate the effectiveness of Lentinula edodes mycelia extract (LEM), which is an oral biological response modifier (BRM) medicine for cancer patients as such an adjuvant. A total of 47 breast cancer patients who were scheduled to receive postoperative adjuvant anthracycline-based chemotherapy, i.e., 5-fluorouracil (5-FU) + cyclophosphamide + epirubicin (FEC regimen), 5-FU + cyclophosphamide + doxorubicin/pirarubicin (FAC regimen), cyclophosphamide + doxorubicin/pirarubicin (AC regimen) and cyclophosphamide + epirubicin (EC regimen), were entered in the study. The patients were randomly divided into either an LEM or a placebo tablet group; the tablets were orally ingested daily over 2 courses of each therapy. In the placebo group, the total scores for QOL were lower on day 8 of the second course of chemotherapy compared with the baseline scores, whereas in the LEM group the scores had not decreased. In the placebo group, the QOL functional well-being score was lower on day 8 after both the first and second courses of chemotherapy compared with the baseline score, but it had not decreased in the LEM group. Evaluation of immunological parameters indicated that an increase in the proportion of regulatory T cells to peripheral blood CD4 + cells tended to be inhibited in the LEM group compared with the placebo group. Oral LEM that was coadministered with anthracycline-based chemotherapies was useful for maintaining patients' QOL and immune function. Thus, LEM appears to be a useful oral adjuvant for patients receiving anthracycline-based chemotherapy.

  4. The Role of Vaginal Brachytherapy in the Treatment of Surgical Stage I Papillary Serous or Clear Cell Endometrial Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barney, Brandon M., E-mail: barney.brandon@mayo.edu; Petersen, Ivy A.; Mariani, Andrea

    2013-01-01

    Objectives: The optimal adjuvant therapy for International Federation of Gynecology and Obstetrics (FIGO) stage I papillary serous (UPSC) or clear cell (CC) endometrial cancer is unknown. We report on the largest single-institution experience using adjuvant high-dose-rate vaginal brachytherapy (VBT) for surgically staged women with FIGO stage I UPSC or CC endometrial cancer. Methods and Materials: From 1998-2011, 103 women with FIGO 2009 stage I UPSC (n=74), CC (n=21), or mixed UPSC/CC (n=8) endometrial cancer underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy followed by adjuvant high-dose-rate VBT. Nearly all patients (n=98, 95%) also underwent extended lymph node dissection of pelvic andmore » paraortic lymph nodes. All VBT was performed with a vaginal cylinder, treating to a dose of 2100 cGy in 3 fractions. Thirty-five patients (34%) also received adjuvant chemotherapy. Results: At a median follow-up time of 36 months (range, 1-146 months), 2 patients had experienced vaginal recurrence, and the 5-year Kaplan Meier estimate of vaginal recurrence was 3%. The rates of isolated pelvic recurrence, locoregional recurrence (vaginal + pelvic), and extrapelvic recurrence (including intraabdominal) were similarly low, with 5-year Kaplan-Meier estimates of 4%, 7%, and 10%, respectively. The estimated 5-year overall survival was 84%. On univariate analysis, delivery of chemotherapy did not affect recurrence or survival. Conclusions: VBT is effective at preventing vaginal relapse in women with surgical stage I UPSC or CC endometrial cancer. In this cohort of patients who underwent comprehensive surgical staging, the risk of isolated pelvic or extrapelvic relapse was low, implying that more extensive adjuvant radiation therapy is likely unnecessary.« less

  5. Alternative Inactivated Poliovirus Vaccines Adjuvanted with Quillaja brasiliensis or Quil-A Saponins Are Equally Effective in Inducing Specific Immune Responses

    PubMed Central

    de Costa, Fernanda; Yendo, Anna Carolina A.; Cibulski, Samuel P.; Fleck, Juliane D.; Roehe, Paulo M.; Spilki, Fernando R.; Gosmann, Grace; Fett-Neto, Arthur G.

    2014-01-01

    Inactivated polio vaccines (IPV) have an important role at the final stages of poliomyelitis eradication programs, reducing the risks associated with the use of attenuated polio vaccine (OPV). An affordable option to enhance vaccine immunogenicity and reduce costs of IPV may be the use of an effective and renewable adjuvant. In the present study, the adjuvant activity of aqueous extract (AE) and saponin fraction QB-90 from Quillaja brasiliensis using poliovirus antigen as model were analyzed and compared to a preparation adjuvanted with Quil-A, a well-known saponin-based commercial adjuvant. Experimental vaccines were prepared with viral antigen plus saline (control), Quil-A (50 µg), AE (400 µg) or QB-90 (50 µg). Sera from inoculated mice were collected at days 0, 28, 42 and 56 post-inoculation of the first dose of vaccine. Serum levels of specific IgG, IgG1 and IgG2a were significantly enhanced by AE, QB-90 and Quil-A compared to control group on day 56. The magnitude of enhancement was statistically equivalent for QB-90 and Quil-A. The cellular response was evaluated through DTH and analysis of IFN-γ and IL-2 mRNA levels using in vitro reestimulated splenocytes. Results indicated that AE and QB-90 were capable of stimulating the generation of Th1 cells against the administered antigen to the same extent as Quil-A. Mucosal immune response was enhanced by the vaccine adjuvanted with QB-90 as demonstrated by increases of specific IgA titers in bile, feces and vaginal washings, yielding comparable or higher titers than Quil-A. The results obtained indicate that saponins from Q. brasiliensis are potent adjuvants of specific cellular and humoral immune responses and represent a viable option to Quil-A. PMID:25148077

  6. Just-in-time vaccines: Biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8+ T cell responses in mice

    PubMed Central

    Zhou, Weibin; Moguche, Albanus; Chiu, David; Murali-Krishna, Kaja; Baneyx, François

    2014-01-01

    Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration “cold chain”. Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8+ T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8+ T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. PMID:24275478

  7. Effect of adjuvants on the humoral immune response to congopain in mice and cattle.

    PubMed

    Kateregga, John; Lubega, George W; Lindblad, Erik B; Authié, Edith; Coetzer, Theresa Helen Taillefer; Boulangé, Alain François Vincent

    2012-05-23

    We investigated several adjuvants for their effects on the humoral immune response in both mice and cattle using the central domain of congopain (C2), the major cysteine protease of Trypanosoma congolense, as a model for developing a vaccine against animal trypanosomosis. The magnitude and sustainability of the immune response against C2 and the occurrence of a booster effect of infection, an indirect measure of the presence of memory cells, were determined by ELISA, while spectrofluorometry was used to determine and measure the presence of enzyme-inhibiting antibodies. Mice immunized with recombinant C2 in TiterMax™, Adjuphos™, purified saponin Quil A™ or Gerbu™ showed the best response according to the evaluation criteria and the latter three were chosen for the cattle vaccination study. The cattle were challenged with T. congolense four and a half months after the last booster. Cattle immunized with recombinant C2 in purified saponin Quil A™ showed the best antibody response according to the measured parameters. We identified purified saponin Quil A™ as a good adjuvant for immunizations with C2. The results from this study will be useful in future attempts to develop an effective anti-disease vaccine against African trypanosomosis.

  8. Effective Combination Adjuvants Engage Both TLR and Inflammasome Pathways To Promote Potent Adaptive Immune Responses.

    PubMed

    Seydoux, Emilie; Liang, Hong; Dubois Cauwelaert, Natasha; Archer, Michelle; Rintala, Nicholas D; Kramer, Ryan; Carter, Darrick; Fox, Christopher B; Orr, Mark T

    2018-05-16

    The involvement of innate receptors that recognize pathogen- and danger-associated molecular patterns is critical to programming an effective adaptive immune response to vaccination. The synthetic TLR4 agonist glucopyranosyl lipid adjuvant (GLA) synergizes with the squalene oil-in-water emulsion (SE) formulation to induce strong adaptive responses. Although TLR4 signaling through MyD88 and TIR domain-containing adapter inducing IFN-β are essential for GLA-SE activity, the mechanisms underlying the synergistic activity of GLA and SE are not fully understood. In this article, we demonstrate that the inflammasome activation and the subsequent release of IL-1β are central effectors of the action of GLA-SE, as infiltration of innate cells into the draining lymph nodes and production of IFN-γ are reduced in ASC -/- animals. Importantly, the early proliferation of Ag-specific CD4 + T cells was completely ablated after immunization in ASC -/- animals. Moreover, numbers of Ag-specific CD4 + T and B cells as well as production of IFN-γ, TNF-α, and IL-2 and Ab titers were considerably reduced in ASC -/- , NLRP3 -/- , and IL-1R -/- mice compared with wild-type mice and were completely ablated in TLR4 -/- animals. Also, extracellular ATP, a known trigger of the inflammasome, augments Ag-specific CD4 + T cell responses, as hydrolyzing it with apyrase diminished adaptive responses induced by GLA-SE. These data thus demonstrate that GLA-SE adjuvanticity acts through TLR4 signaling and NLRP3 inflammasome activation to promote robust Th1 and B cell responses to vaccine Ags. The findings suggest that engagement of both TLR and inflammasome activators may be a general paradigm for induction of robust CD4 T cell immunity with combination adjuvants such as GLA-SE. Copyright © 2018 by The American Association of Immunologists, Inc.

  9. Bone marrow mesenchymal stem cells suppress IL-9 in adjuvant-induced arthritis.

    PubMed

    Abd Elhalem, Sahar Sobhy; Haggag, Nawal Zakaria; El-Shinnawy, Nashwa Ahmed

    2018-02-01

    Interleukin-9 (IL-9) has been shown to be upregulated in rheumatoid arthritis (RA). The exact role of IL-9 has not yet been effectively studied. Mesenchymal stem cells (MSCs) have shown a promising immunomodulatory role towards repairing cartilage and restoring joint function. One of the key problems influencing the therapeutic efficacy of stem cell therapy is the poor cell survival following transplantation. This is attributed to oxidative and inflammatory stresses at the injured sites. Hesperidin (Hsd), a flavanone present in citrus fruits, has been studied as potential therapeutic agents that have anti-oxidant and anti-inflammatory activities. The objective of this study is to evaluate the therapeutic paracrine action of bone marrow MSCs on the IL-9 level in adjuvant-induced arthritis (AIA) and the enhancement effect of Hsd on transplanted MSCs. Articular tissue inflammation and cartilage damage were assessed by histological scoring. Antinuclear autoantibodies, tumour necrosis factor-alpha (TNF-α), IL-9, IL-4, interferon gamma (IFN-δ), and transforming growth factor-beta1 (TGF-β1), as well as malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) levels, were assessed in spleen tissue homogenates after treatment with MSCs either alone or combined with Hsd for 4 weeks in an AIA rat model. Results of this study confirmed that MSCs decreased IL-9 levels in AIA and provide novel insights into the application of Hsd on MSC-based treatments. Highlights Adjuvant-induced arthritis (AIA) is one of the most widely used models that has a great similarity to rheumatoid arthritis (RA). Few studies in recent years have estimated IL-9 in rheumatic diseases and it remains an understudied cytokine. For the first time, bone marrow mesenchymal stem cells (MSCs) therapy has a vital role in splenocytes IL-9 level and further studies are required. Combined therapy of MSCs with antioxidants as hesperidin (Hsd) can alleviate oxidative stress and enhance stem cells immunomodulatory action.

  10. Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes

    NASA Astrophysics Data System (ADS)

    St. John, Ashley L.; Chan, Cheryl Y.; Staats, Herman F.; Leong, Kam W.; Abraham, Soman N.

    2012-03-01

    Granules of mast cells (MCs) enhance adaptive immunity when, on activation, they are released as stable particles. Here we show that submicrometre particles modelled after MC granules augment immunity when used as adjuvants in vaccines. The synthetic particles, which consist of a carbohydrate backbone with encapsulated inflammatory mediators such as tumour necrosis factor, replicate attributes of MCs in vivo including the targeting of draining lymph nodes and the timed release of the encapsulated mediators. When used as an adjuvant during vaccination of mice with haemagglutinin from the influenza virus, the particles enhanced adaptive immune responses and increased survival of mice on lethal challenge. Furthermore, differential loading of the particles with the cytokine IL-12 directed the character of the response towards Th1 lymphocytes. The synthetic MC adjuvants replicate and enhance the functions of MCs during vaccination, and can be extended to polarize the resulting immunity.

  11. Inactivated Eyedrop Influenza Vaccine Adjuvanted with Poly(I:C) Is Safe and Effective for Inducing Protective Systemic and Mucosal Immunity

    PubMed Central

    Kim, Eun-Do; Han, Soo Jung; Byun, Young-Ho; Yoon, Sang Chul; Choi, Kyoung Sub; Seong, Baik Lin; Seo, Kyoung Yul

    2015-01-01

    The eye route has been evaluated as an efficient vaccine delivery routes. However, in order to induce sufficient antibody production with inactivated vaccine, testing of the safety and efficacy of the use of inactivated antigen plus adjuvant is needed. Here, we assessed various types of adjuvants in eyedrop as an anti-influenza serum and mucosal Ab production-enhancer in BALB/c mice. Among the adjuvants, poly (I:C) showed as much enhancement in antigen-specific serum IgG and mucosal IgA antibody production as cholera toxin (CT) after vaccinations with trivalent hemagglutinin-subunits or split H1N1 vaccine antigen in mice. Vaccination with split H1N1 eyedrop vaccine antigen plus poly(I:C) showed a similar or slightly lower efficacy in inducing antibody production than intranasal vaccination; the eyedrop vaccine-induced immunity was enough to protect mice from lethal homologous influenza A/California/04/09 (H1N1) virus challenge. Additionally, ocular inoculation with poly(I:C) plus vaccine antigen generated no signs of inflammation within 24 hours: no increases in the mRNA expression levels of inflammatory cytokines nor in the infiltration of mononuclear cells to administration sites. In contrast, CT administration induced increased expression of IL-6 cytokine mRNA and mononuclear cell infiltration in the conjunctiva within 24 hours of vaccination. Moreover, inoculated visualizing materials by eyedrop did not contaminate the surface of the olfactory bulb in mice; meanwhile, intranasally administered materials defiled the surface of the brain. On the basis of these findings, we propose that the use of eyedrop inactivated influenza vaccine plus poly(I:C) is a safe and effective mucosal vaccine strategy for inducing protective anti-influenza immunity. PMID:26355295

  12. Monophosphoryl lipid A enhances both humoral and cell-mediated immune responses to DNA vaccination against human immunodeficiency virus type 1.

    PubMed Central

    Sasaki, S; Tsuji, T; Hamajima, K; Fukushima, J; Ishii, N; Kaneko, T; Xin, K Q; Mohri, H; Aoki, I; Okubo, T; Nishioka, K; Okuda, K

    1997-01-01

    To enhance immunity induced by DNA vaccination against human immunodeficiency virus type 1 (HIV-1), we evaluated the efficacy of monophosphoryl lipid A (MPL), an adjuvant of bacterial origin. BALB/c mice were intramuscularly injected with immunogenic DNA, encoding the env and rev genes of the HIV-1(IIIB) strain, formulated with MPL dissolved in different vehicles (MPL in stable emulsion and MPL in aqueous formulation). The sera from mice immunized with the two preparations of MPL revealed 2(6) to 2(9) times higher HIV-1-specific immunoglobulin G (IgG) titers than the sera from mice immunized without MPL. In virus neutralization tests for HIV-1(IIIB), by p24 assay and antifusion assay of infected MOLT-4 cells, MPL tends to elicit antibody more protective than antibody elicited without adjuvant. MPL also elicited stronger delayed-type hypersensitivity and cytotoxic-T-lymphocyte activity against HIV-1(IIIB) compared to DNA alone. HIV-1-specific IgG subclass analysis showed that MPL tends to facilitate IgG2a production, suggesting enhancement of a predominant T-helper-type-1 response, and this enhancement may help to facilitate protective-antibody induction. Furthermore, a chloramphenicol acetyltransferase (CAT) assay was employed to determine whether MPL affected the gene expression process. Interestingly, both MPL preparations reduced CAT activity in the muscle injected with CAT expression vector but increased anti-CAT antibody production. These results indicate that MPL acts as an effective adjuvant for immunogenic DNA injection despite reduced expression of encoding protein in muscle. We conclude that MPL has a strong adjuvant effect on DNA vaccination against HIV-1. PMID:9284115

  13. Chlamydia vaccines: recent developments and the role of adjuvants in future formulations.

    PubMed

    Igietseme, Joseph U; Eko, Francis O; Black, Carolyn M

    2011-11-01

    Bacteria of the genus Chlamydia cause a plethora of ocular, genital and respiratory diseases that continue to pose a considerable public health challenge worldwide. The major diseases are conjunctivitis and blinding trachoma, non-gonococcal urethritis, cervicitis, pelvic inflammatory disease, ectopic pregnancy, tubal factor infertility and interstitial pneumonia. The rampart asymptomatic infections prevent timely and effective antibiotic treatments, and quite often clinical presentation of sequelae is the first evidence of an infection. Besides, significant broad coverage in population screening and treatment is economically and logistically impractical, and mass education for public awareness has been ineffective. The current medical opinion is that an efficacious prophylactic vaccine is the best approach to protect humans from chlamydial infections. Unfortunately, a human vaccine has yet to be realized despite successful veterinary vaccines. Fortunately, recent advances in chlamydial immunobiology, cell biology, molecular pathogenesis, genomics, antigen discovery and animal models of infections are hastening progress toward an efficacious vaccine. Thus, it is established that Chlamydia immunity is mediated by T cells and a complementary antibody response, and several potential vaccine candidates have been identified. However, further advances are needed in effective vaccine delivery systems and safe potent adjuvants to boost and sustain immune responses for long-lasting protective immunity. This article focuses on the current status of human chlamydial vaccine research, specifically how application of new delivery systems and human compatible adjuvants could lead to a timely achievement of efficacious Chlamydia vaccines. The ranking of the candidate vaccine antigens for human vaccine development will await the availability of results from studies in which the antigens are tested by comparable experimental standards, such as antigen-adjuvant combination, route of delivery and possible toxicity.

  14. Adjuvant chemotherapy for elderly patients with stage I non-small-cell lung cancer ≥4 cm in size: an SEER-Medicare analysis.

    PubMed

    Malhotra, J; Mhango, G; Gomez, J E; Smith, C; Galsky, M D; Strauss, G M; Wisnivesky, J P

    2015-04-01

    The role of adjuvant chemotherapy for non-small-cell lung cancer (NSCLC) stage I patients with tumors size ≥4 cm is not well established in the elderly. We identified 3289 patients with stage I NSCLC (T2N0M0 and tumor size ≥4 cm) who underwent lobectomy from the Surveillance, Epidemiology and End Results (SEER)-Medicare linked database diagnosed from 1992 to 2009. Overall survival and rates of serious adverse events (defined as those requiring admission to hospital) were compared between patients treated with resection alone, platinum-based adjuvant chemotherapy, or postoperative radiation (PORT) with or without adjuvant chemotherapy. Propensity scores for receiving each treatment were calculated and survival analyses were conducted using inverse probability weights based on the propensity score. Overall, 84% patients were treated with resection alone, 9% received platinum-based adjuvant chemotherapy, and 7% underwent PORT with or without adjuvant chemotherapy. Adjusted analysis showed that adjuvant chemotherapy [hazard ratio (HR), 0.82; 95% confidence interval (CI) 0.68-0.98] was associated with improved survival compared with resection alone. Conversely, the use of PORT with or without adjuvant chemotherapy (HR 1.91; 95% CI 1.64-2.23) was associated with worse outcomes. Patients receiving adjuvant chemotherapy had more serious adverse events compared with those treated with resection alone, with neutropenia (odds ratio, 21.2; 95% CI 5.8-76.6) being most significant. No significant difference was observed in rates of fever, cytopenias, nausea, and renal dysfunction. Platinum-based adjuvant chemotherapy is associated with reduced mortality and increased serious adverse events in elderly patients with stage I NSCLC and tumor size ≥4 cm. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Geographic Variation in the Use of Adjuvant Therapy among Elderly Patients with Resected Non-Small Cell Lung Cancer

    PubMed Central

    Tien, Yu-Yu; Wright, Kara; Halfdanarson, Thorvardur R.; Abu-Hejleh, Taher; Brooks, John M.

    2016-01-01

    Objectives The purpose of this study was to assess to what extent geographic variation in adjuvant treatment for non-small cell lung cancer (NSCLC) patients would remain, after controlling for patient and area-level characteristics. Materials and Methods A retrospective cohort of 18,410 Medicare beneficiaries with resected, stage I-IIIA NSCLC was identified from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Adjuvant therapies were classified as adjuvant chemotherapy (ACT), postoperative radiation therapy (PORT), or no adjuvant therapy. Predicted treatment probabilities were estimated for each patient given their clinical, demographic, and area-level characteristics with multivariate logistic regression. Area Treatment Ratios were used to estimate the propensity of patients in a local area to receive an adjuvant treatment, controlling for characteristics of patients in the area. Areas were categorized as low-, mid- and high-use and mapped for two representative SEER registries. Results Overall, 10%, 12%, and 78% of patients received ACT, PORT and no adjuvant therapy, respectively. Age, sex, stage, type and year of surgery, and comorbidity were associated with adjuvant treatment use. Even after adjusting for patient characteristics, substantial geographic treatment variation remained. High- and low-use areas were tightly juxtaposed within and across SEER registries, often within the same county. In some local areas, patients were up to eight times more likely to receive adjuvant therapy than expected, given their characteristics. On the other hand, almost a quarter of patients lived in local areas in which patients were more than three times less likely to receive ACT than would be predicted. Conclusion Controlling for patient and area-level covariates did not remove geographic variation in adjuvant therapies for resected NSCLC patients. A greater proportion of patients were treated less than expected, rather than more than expected. Further research is needed to better understand its causes and potential impact on outcomes. PMID:27040848

  16. World Conference on Pre-Erythrocytic Stage Malaria Vaccine Development: Current Status and Future Prospects Held in Bethesda, Maryland on April 12-15, 1989

    DTIC Science & Technology

    1989-12-01

    for improving immunogenicity and efficacy using alternative delivery systems including proteosomes, liposomes, and synthetic adjuvants such as SAF...were to Identify responder T cells, clone these cells to map the T-cell epitopes, and acquire sera and lymphocytes for use as positive controls during...efficacy In Saimirl sciureus boliviensis monkeys. Monkeys were Immunized three times using either alum or muramyl tripeptide as adjuvants. Monkeys were

  17. Evaluation of Widely Consumed Botanicals as Immunological Adjuvants

    PubMed Central

    Ragupathi, Govind; Hood, Chandra; Yeung, K. Simon; Vickers, Andrew; Hood, Chandra; Deng, Gary; Cheung, Nai-Kong; Vickers, Andrew; Cassileth, Barrie; Livingston, Philip

    2008-01-01

    Background Many widely used botanical medicines are claimed to be immune enhancers. Clear evidence of augmentation of immune responses in vivo is lacking in most cases. To select botanicals for further study based on immune enhancing activity, we study them here mixed with antigen and injected subcutaneously (s.c.). Globo H and GD3 are cell surface carbohydrates expressed on glycolipids or glycoproteins on the cell surface of many cancers. When conjugated to keyhole limpet hemocyanin (KLH), mixed with an immunological adjuvant and administered s.c. the magnitude of the antibody responses against globo H, GD3 and KLH depend largely on the potency of the adjuvant. We describe here the results obtained using this s.c. immunization model with 7 botanicals purported to have immune stimulant effects. Methods Groups of 5–10 mice were immunized with globo H–KLH or GD3-KLH mixed with botanical, saline or positive control immunological adjuvant, s.c. 3 times at 1 week intervals. Antibody responses were measured 1 and 2 weeks after the 3rd immunization. The following seven botanicals and fractions were tested: (1) H-48 (Honso USA Co.), (2) Coriolus vesicolor raw water extract, purified polysaccharide-K (PSK) or purified polysaccharide-peptide (PSP) (Institute of Chinese Medicine (ICM)), (3) Maitake extract (Yukiguni Maitake Co Ltd. and Tradeworks Group), (4) Echinacea lipophilic, neutral and acidic extracts (Gaia Herbs), (5) Astragalus water, 50% or 95% ethanol extracts (ICM), (6) Turmeric supercritical (SC) or hydro-ethanolic (HE) extracts (New Chapter) or 60% ethanol extract (ICM) and (7) yeast β-glucan (Biotec Pharmacon). Purified saponin extract QS-21 (Antigenics) and semi-synthetic saponin GPI-0100 (Advanced BioTherapies) were used as positive control adjuvants. Sera were analyzed by ELISA against synthetic globo H ceramide or GD3 and KLH. Results Consistent significant adjuvant activity was observed after s.c vaccination with the Coriolus extracts (especially PSK), a 95% ethanol extract of astragalus and yeast β-glucan, and (to a lesser extent) Maitake. Antibodies against KLH in all cases and against globo H in most cases were induced by these botanicals. Little or no adjuvant activity was demonstrated with H48 or Echinacea extracts or the astragalus water extract. Experiments with GD3-KLH as immunogen confirmed the adjuvant activity of the Coriolus, yeast β-glucan and Astragalus extracts. While extraction with ethanol concentrated the active ingredients in astragalus, it had no impact on coriolus where the 90% ethanol precipitate and solute were equally active. Conclusions Some, but not all, botanicals purported to be immune stimulants had adjuvant activity in our model. PSK and astragalus were surprisingly active and are being further fractionated to identify the most active adjuvant components. PMID:18640165

  18. Reversing glioma malignancy: a new look at the role of antidepressant drugs as adjuvant therapy for glioblastoma multiforme.

    PubMed

    Bielecka-Wajdman, Anna M; Lesiak, Marta; Ludyga, Tomasz; Sieroń, Aleksander; Obuchowicz, Ewa

    2017-06-01

    The role of glioma stem cells (GSCs) in cancer progression is currently debated; however, it is hypothesised that this subpopulation is partially responsible for therapeutic resistance observed in glioblastoma multiforme (GBM). Recent studies have shown that the current treatments not only fail to eliminate the GSC population but even promote GSCs through reprogramming of glioma non-stem cells to stem cells. Since the standard GBM treatment often requires supplementation with adjuvant drugs such as antidepressants, their role in the regulation of the heterogeneous nature of GSCs needs evaluation. We examined the effects of imipramine, amitriptyline, fluoxetine, mirtazapine, agomelatine, escitalopram, and temozolomide on the phenotypic signature (CD44, Ki67, Nestin, Sox1, and Sox2 expression) of GSCs isolated from a human T98G cell line. These drugs were examined in several models of hypoxia (1% oxygen, 2.5% oxygen, and a hypoxia-reoxygenation model) as compared to the standard laboratory conditions (20% oxygen). We report that antidepressant drugs, particularly imipramine and amitriptyline, modulate plasticity, silence the GSC profile, and partially reverse the malignant phenotype of GBM. Moreover, we observed that, in contrast to temozolomide, these tricyclic antidepressants stimulated viability and mitochondrial activity in normal human astrocytes. The ability of phenotype switching from GSC to non-GSC as stimulated by antidepressants (primarily imipramine and amitriptyline) sheds new light on the heterogeneous nature of GSC, as well as the role of antidepressants in adjuvant GBM therapy.

  19. High dose of plasmid IL-15 inhibits immune responses in an influenza non-human primates immunogenicity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Jiangmei; Dai Anlan; Laddy, Dominick J.

    2009-10-10

    Interleukin (IL)-15, is a cytokine that is important for the maintenance of long-lasting, high-avidity T cell response to invading pathogens and has, therefore, been used in vaccine and therapeutic platforms as an adjuvant. In addition to pure protein delivery, plasmids encoding the IL-15 gene have been utilized. However, it is critical to determine the appropriate dose to maximize the adjuvanting effects. We immunized rhesus macaques with different doses of IL-15 expressing plasmid in an influenza non-human primate immunogenicity model. We found that co-immunization of rhesus macaques with a Flu DNA-based vaccine and low doses of plasmid encoding macaque IL-15 enhancedmore » the production of IFN-gamma (0.5 mg) and the proliferation of CD4{sup +} and CD8{sup +} T cells, as well as T{sub CM} levels in proliferating CD8{sup +} T cells (0.25 mg). Whereas, high doses of IL-15 (4 mg) decrease the production of IFN-gamma and the proliferation of CD4{sup +} and CD8{sup +} T cells and T{sub CM} levels in the proliferating CD4{sup +} and CD8{sup +} T cells. In addition, the data of hemagglutination inhibition (HI) antibody titer suggest that although not significantly different, there appears to be a slight increase in antibodies at lower doses of IL-15. Importantly, however, the higher doses of IL-15 decrease the antibody levels significantly. This study demonstrates the importance of optimizing DNA-based cytokine adjuvants.« less

  20. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants*

    PubMed Central

    Marty-Roix, Robyn; Vladimer, Gregory I.; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D.; Chee, Jonathan D.; Wang, Shixia; Lu, Shan; Lien, Egil

    2016-01-01

    Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. PMID:26555265

  1. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants.

    PubMed

    Marty-Roix, Robyn; Vladimer, Gregory I; Pouliot, Kimberly; Weng, Dan; Buglione-Corbett, Rachel; West, Kim; MacMicking, John D; Chee, Jonathan D; Wang, Shixia; Lu, Shan; Lien, Egil

    2016-01-15

    Many immunostimulants act as vaccine adjuvants via activation of the innate immune system, although in many cases it is unclear which specific molecules contribute to the stimulatory activity. QS-21 is a defined, highly purified, and soluble saponin adjuvant currently used in licensed and exploratory vaccines, including vaccines against malaria, cancer, and HIV-1. However, little is known about the mechanisms of cellular activation induced by QS-21. We observed QS-21 to elicit caspase-1-dependent IL-1β and IL-18 release in antigen-presenting cells such as macrophages and dendritic cells when co-stimulated with the TLR4-agonist adjuvant monophosphoryl lipid A. Furthermore, our data suggest that the ASC-NLRP3 inflammasome is responsible for QS-21-induced IL-1β/IL-18 release. At higher concentrations, QS-21 induced macrophage and dendritic cell death in a caspase-1-, ASC-, and NLRP3-independent manner, whereas the presence of cholesterol rescued cell viability. A nanoparticulate adjuvant that contains QS-21 as part of a heterogeneous mixture of saponins also induced IL-1β in an NLRP3-dependent manner. Interestingly, despite the role NLRP3 plays for cellular activation in vitro, NLRP3-deficient mice immunized with HIV-1 gp120 and QS-21 showed significantly higher levels of Th1 and Th2 antigen-specific T cell responses and increased IgG1 and IgG2c compared with wild type controls. Thus, we have identified QS-21 as a nonparticulate single molecular saponin that activates the NLRP3 inflammasome, but this signaling pathway may contribute to decreased antigen-specific responses in vivo. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Treatment of laser-induced retinal injuries by neuroprotection

    NASA Astrophysics Data System (ADS)

    Solberg, Yoram; Rosner, Mordechai; Belkin, Michael

    1997-05-01

    Retinal laser photocoagulation treatments are often complicated with immediate side-effect of visual impairment. To determine whether glutamate-receptor blockers can serve as adjuvant neuroprotective therapy, we examined the effect of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury in a rat model. Argon laser retinal lesions were created in the retina of 36 DA rats. Treatment with intraperitoneal injections of MK-801 or saline was started immediately after the laser photocoagulation. The animals were sacrificed after 3, 20 or 60 days and the retinal lesions were evaluated histologically and morphometrically. Photoreceptor-cell loss was significantly smaller in MK-801-treated rats than controls. The proliferative membrane composed of retinal pigment epithelial cells which was seen at the base of the lesion in control retinas, was smaller in the MK-801-treated retinas. MK-801 exhibited neuroprotective and anti-proliferative properties in the retina. Glutamate-receptor blockers should be further investigated for serving as adjuvant therapy to retinal photocoagulation treatments.

  3. Pilot study of sodium phenylbutyrate as adjuvant in cyclophosphamide-resistant endemic Burkitt's lymphoma.

    PubMed

    Phillips, John A; Griffin, Beverly E

    2007-12-01

    Burkitt's lymphoma (BL) accounts for the majority of childhood malignancies seen in sub-Saharan Africa. In Malawi, cyclophosphamide (CPM), the mainstay of treatment for endemic BL, is effective in around 50% of cases. Evidence exists in support of an association between activation of replication of Epstein-Barr virus (EBV) in the tumour and response to this chemotheraupeutic agent. Phenylbutyrate (PB), approved for treatment of inborn errors of the urea cycle with minimal toxicity in children, induces EBV replication and cell lysis in BL-derived cell cultures. It has also shown some success as adjuvant in treatment of chronic leukaemia and lymphoma. We tested in African BL patients with CPM-resistant tumours, and thus unlikely to survive, the hypothesis that PB can reverse this resistance. A study of five patients showed PB before CPM to induce shrinkage of CPM-resistant tumours in two of them. Findings suggested that for this effect PB pre-treatment should be given for a week before CPM treatment. A larger study is indicated.

  4. Streptococcus pneumoniae fructose-1,6-bisphosphate aldolase, a protein vaccine candidate, elicits Th1/Th2/Th17-type cytokine responses in mice.

    PubMed

    Elhaik Goldman, Shirin; Dotan, Shahar; Talias, Amir; Lilo, Amit; Azriel, Shalhevet; Malka, Itay; Portnoi, Maxim; Ohayon, Ariel; Kafka, Daniel; Ellis, Ronald; Elkabets, Moshe; Porgador, Angel; Levin, Ditza; Azhari, Rosa; Swiatlo, Edwin; Ling, Eduard; Feldman, Galia; Tal, Michael; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2016-04-01

    Streptococcus pneumoniae (S. pneumoniae) is a major pathogen worldwide. The currently available polysaccharide-based vaccines significantly reduce morbidity and mortality. However, the inherent disadvantages of the currently available polysaccharide-based vaccines have motivated the search for other bacterial immunogens capable of eliciting a protective immune response against S. pneumoniae. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic enzyme, which was found to localize to the bacterial surface, where it functions as an adhesin. Previously, immunizing mice with recombinant FBA (rFBA) in the presence of alum elicited a protective immune response against a lethal challenge with S. pneumoniae. Thus, the aim of the present study was to determine the cytokine responses that are indicative of protective immunity following immunization with rFBA. The protective effects against pneumococcal challenge in mice immunized with rFBA with complete Freund's adjuvant (CFA) in the initial immunization and with incomplete Freund's adjuvant (IFA) in booster immunizations surpassed the protective effects observed following immunization with either rFBA + alum or pVACfba. CD4+ T-cells obtained from the rFBA/CFA/IFA/IFA-immunized mice co-cultured with rFBA-pulsed antigen-presenting cells (APCs), exhibited a significantly greater proliferative ability than CD4+ T-cells obtained from the adjuvant-immunized mice co-cultured with rFBA‑pulsed APCs. The levels of the Th1-type cytokines, interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α and IL-12, the Th2-type cytokines, IL-4, IL-5 and IL-10, and the Th17-type cytokine, IL-17A, significantly increased within 72 h of the initiation of co-culture with CD4+ T-cells obtained from the rFBA‑immunized mice, in comparison with the co-cultures with CD4+ T-cells obtained from the adjuvant-immunized mice. Immunizing mice with rFBA resulted in an IgG1/IgG2 ratio of 41, indicating a Th2 response with substantial Th1 involvement. In addition, rabbit and mouse anti-rFBA antisera significantly protected the mice against a lethal S. pneumoniae challenge in comparison with preimmune sera. Our results emphasize the mixed involvement of the Th1, Th2 and Th17 arms of the immune system in response to immunization with pneumococcal rFBA, a potential vaccine candidate.

  5. Tolerance induction after specific immunotherapy with pollen allergoids adjuvanted by monophosphoryl lipid A in children

    PubMed Central

    Rosewich, M; Schulze, J; Eickmeier, O; Telles, T; Rose, M A; Schubert, R; Zielen, S

    2010-01-01

    Specific immunotherapy (SIT) is a well-established and clinically effective treatment for allergic diseases. A pollen allergoid formulated with the T helper type 1 (Th1)-inducing adjuvant monophosphoryl lipid A (MPL) facilitates short-term SIT. Little is known about mechanisms of tolerance induction in this setting. In a prospective study, 34 patients allergic to grass pollen (25 male, nine female, median age 10·2 years) received a total of 44 SIT courses (20 in the first, 24 in the second) with MPL-adjuvanted pollen allergoids. Immunogenicity was measured by levels of specific immunoglobulin G (IgGgrass) and IgG4grass by antibody blocking properties on basophil activation, and by induction of CD4+, CD25+ and forkhead box P3 (FoxP3+) regulatory T cells (Treg). Specific IgG and IgG4 levels increased only slightly in the first year of SIT. In the second year these changes reached significance (P < 0·0001). In keeping with these findings, we were able to show an increase of Treg cells and a decreased release of leukotrienes after the second year of treatment. In the first year of treatment we found little evidence for immunological changes. A significant antibody induction was seen only after the second course of SIT. Short-course immunotherapy with pollen allergoids formulated with the Th1-inducing adjuvant MPL needs at least two courses to establish tolerance. PMID:20345983

  6. Tolerance induction after specific immunotherapy with pollen allergoids adjuvanted by monophosphoryl lipid A in children.

    PubMed

    Rosewich, M; Schulze, J; Eickmeier, O; Telles, T; Rose, M A; Schubert, R; Zielen, S

    2010-06-01

    Specific immunotherapy (SIT) is a well-established and clinically effective treatment for allergic diseases. A pollen allergoid formulated with the T helper type 1 (Th1)-inducing adjuvant monophosphoryl lipid A (MPL) facilitates short-term SIT. Little is known about mechanisms of tolerance induction in this setting. In a prospective study, 34 patients allergic to grass pollen (25 male, nine female, median age 10.2 years) received a total of 44 SIT courses (20 in the first, 24 in the second) with MPL-adjuvanted pollen allergoids. Immunogenicity was measured by levels of specific immunoglobulin G (IgG(grass)) and IgG4(grass) by antibody blocking properties on basophil activation, and by induction of CD4(+), CD25(+) and forkhead box P3 (FoxP3(+)) regulatory T cells (T(reg)). Specific IgG and IgG4 levels increased only slightly in the first year of SIT. In the second year these changes reached significance (P < 0.0001). In keeping with these findings, we were able to show an increase of T(reg) cells and a decreased release of leukotrienes after the second year of treatment. In the first year of treatment we found little evidence for immunological changes. A significant antibody induction was seen only after the second course of SIT. Short-course immunotherapy with pollen allergoids formulated with the Th1-inducing adjuvant MPL needs at least two courses to establish tolerance.

  7. HIV-I Nef inhibitors: a novel class of HIV-specific immune adjuvants in support of a cure.

    PubMed

    Dekaban, Gregory A; Dikeakos, Jimmy D

    2017-09-12

    The success of many current vaccines relies on a formulation that incorporates an immune activating adjuvant. This will hold true for the design of a successful therapeutic HIV vaccine targeted at controlling reactivated virus following cessation of combined antiretroviral therapy (cART). The HIV accessory protein Nef functions by interfering with HIV antigen presentation through the major histocompatibility complex I (MHC-I) pathway thereby suppressing CD8 + cytotoxic T cell (CTL)-mediated killing of HIV infected cells. Thus, this important impediment to HIV vaccine success must be circumvented. This review covers our current knowledge of Nef inhibitors that may serve as immune adjuvants that will specifically restore and enhance CTL-mediated killing of reactivated HIV infected cells as part of an overall vaccine strategy to affect a cure for HIV infection.

  8. The adjuvant PCEP induces recruitment of myeloid and lymphoid cells at the injection site and draining lymph node.

    PubMed

    Awate, Sunita; Wilson, Heather L; Singh, Baljit; Babiuk, Lorne A; Mutwiri, George

    2014-05-01

    Poly[di(sodiumcarboxylatoethylphenoxy)phosphazene] (PCEP) has shown great potential as a vaccine adjuvant, but the mechanisms that mediate its adjuvant activity have not been investigated. Previously, we had reported the potential of PCEP to induce cytokines and chemokines at the site of injection. Hence, we hypothesized that PCEP creates strong immuno-competent environment leading to recruitment of immune cells at the injection site. Intramuscular injection of mice with PCEP induced significant recruitment of neutrophils, macrophages, monocytes, dendritic cells (DCs), and lymphocytes at the site of injection as well as in the draining lymph nodes. Flow cytometric analysis showed that the majority of the recruited immune cells took up and/or were associated with PCEP at the injection site, with lymphocytes taking up PCEP in lesser quantity. Further, confocal analysis revealed intracytoplasmic lysosomal localization of PCEP in recruited immune cells. These observations suggest that recruitment of distinct immune cells to the site of injection site may be an important mechanism by which PCEP potentiates immune responses to antigens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir

    PubMed Central

    Marshall, Jason D.; Dorwart, Michael R.; Heeke, Darren S.; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H.; Eisenberg, Roselyn J.

    2017-01-01

    ABSTRACT Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo. In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses. IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection. PMID:28228587

  10. Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir.

    PubMed

    Hensel, Michael T; Marshall, Jason D; Dorwart, Michael R; Heeke, Darren S; Rao, Eileen; Tummala, Padmaja; Yu, Li; Cohen, Gary H; Eisenberg, Roselyn J; Sloan, Derek D

    2017-05-01

    Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses. IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection. Copyright © 2017 American Society for Microbiology.

  11. Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins.

    PubMed

    Lycke, N; Bemark, M

    2010-11-01

    The ultimate goal for vaccination is to stimulate protective immunological memory. Protection against infectious diseases not only relies on the magnitude of the humoral immune response, but more importantly on the quality and longevity of it. Adjuvants are critical components of most non-living vaccines. Although little attention has been given to qualitative aspects of the choice of vaccine adjuvant, emerging data demonstrate that this function may be central to vaccine efficacy. In this review we describe efforts to understand more about how adjuvants influence qualitative aspects of memory development. We describe recent advances in understanding how vaccines induce long-lived plasma and memory B cells, and focus our presentation on the germinal center reaction. As mucosal vaccination requires powerful adjuvants, we have devoted much attention to the adenosine diphosphate (ADP)-ribosylating cholera toxin and the CTA1-DD adjuvants as examples of how mucosal adjuvants can influence induction of long-term memory.

  12. Comparative Systems Analyses Reveal Molecular Signatures of Clinically tested Vaccine Adjuvants

    NASA Astrophysics Data System (ADS)

    Olafsdottir, Thorunn A.; Lindqvist, Madelene; Nookaew, Intawat; Andersen, Peter; Maertzdorf, Jeroen; Persson, Josefine; Christensen, Dennis; Zhang, Yuan; Anderson, Jenna; Khoomrung, Sakda; Sen, Partho; Agger, Else Marie; Coler, Rhea; Carter, Darrick; Meinke, Andreas; Rappuoli, Rino; Kaufmann, Stefan H. E.; Reed, Steven G.; Harandi, Ali M.

    2016-12-01

    A better understanding of the mechanisms of action of human adjuvants could inform a rational development of next generation vaccines for human use. Here, we exploited a genome wide transcriptomics analysis combined with a systems biology approach to determine the molecular signatures induced by four clinically tested vaccine adjuvants, namely CAF01, IC31, GLA-SE and Alum in mice. We report signature molecules, pathways, gene modules and networks, which are shared by or otherwise exclusive to these clinical-grade adjuvants in whole blood and draining lymph nodes of mice. Intriguingly, co-expression analysis revealed blood gene modules highly enriched for molecules with documented roles in T follicular helper (TFH) and germinal center (GC) responses. We could show that all adjuvants enhanced, although with different magnitude and kinetics, TFH and GC B cell responses in draining lymph nodes. These results represent, to our knowledge, the first comparative systems analysis of clinically tested vaccine adjuvants that may provide new insights into the mechanisms of action of human adjuvants.

  13. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus.

    PubMed

    Friedrich, Brian M; Beasley, David W C; Rudra, Jai S

    2016-11-04

    A crucial issue in vaccine development is to balance safety with immunogenicity. The low immunogenicity of most subunit antigens warrants a search for adjuvants able to stimulate both cell-mediated and humoral immunity. In recent years, successful applications of nanotechnology and bioengineering in the field of vaccine development have enabled the production of novel adjuvant technologies. In this work, we investigated totally synthetic and supramolecular peptide hydrogels as novel vaccine adjuvants in conjunction with the immunoprotective envelope protein domain III (EIII) of West Nile virus as an immunogen in a mouse model. Our results indicate that, compared to the clinically approved adjuvant alum, peptide hydrogel adjuvanted antigen elicited stronger antibody responses and conferred significant protection against mortality after virus challenge. The high chemical definition and biocompatibility of self-assembling peptide hydrogels makes them attractive as immune adjuvants for the production of subunit vaccines against viral and bacterial infections where antibody-mediated protection is desirable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Identification of immune factors regulating anti-tumor immunity using polymeric vaccines with multiple adjuvants

    PubMed Central

    Ali, Omar A.; Verbeke, Catia; Johnson, Chris; Sands, Warren; Lewin, Sarah A.; White, Des; Doherty, Edward; Dranoff, Glenn; Mooney, David J.

    2014-01-01

    The innate cellular and molecular components required to mediate effective vaccination against weak tumor-associated antigens remain unclear. In this study we utilized polymeric cancer vaccines incorporating different classes of adjuvants to induce tumor protection, in order to identify dendritic cell subsets and cytokines critical to this efficacy. Three-dimensional, porous polymer matrices loaded with tumor lysates and presenting distinct combinations of GM-CSF and various TLR agonists effected 70–90% prophylactic tumor protection in B16-F10 melanoma models. In aggressive, therapeutic B16 models, the vaccine systems incorporating GM-CSF in combination with P(I:C) or CpG-ODN induced the complete regression of solid tumors (≤40mm2) resulting in 33% long-term survival. Regression analysis revealed that the numbers of vaccine-resident CD8(+) DCs and plasmacytoid DCs, along with local IL-12, and G-CSF concentrations correlated strongly to vaccine efficacy regardless of adjuvant type. Further, vaccine studies in Batf3−/− mice revealed that CD8(+) DCs are required to effect tumor protection, as vaccines in these mice were deficient in cytotoxic T cell priming, and IL-12 induction in comparison to wild-type. These studies broadly demonstrate that three-dimensional polymeric vaccines provide a potent platform for prophylactic and therapeutic protection, and can be used as a tool to identify critical components of a desired immune response. Specifically, these results suggest that CD8(+) DCs, plasmacytoid DCs, IL-12, and G-CSF play important roles in priming effective anti-tumor responses with these vaccines. PMID:24480625

  15. Dual-linker gold nanoparticles as adjuvanting carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro

    PubMed Central

    Wang, Chao; Zhu, Wandi; Wang, Bao-Zhong

    2017-01-01

    Vaccination is the most cost-effective means of infectious disease control. Although current influenza vaccines are effective in battling closely matched strains, such vaccines have major limitations such as the requirement to produce new vaccines every season, an egg-dependent production system, long production periods, uncertainty in matching the vaccine to circulating strains, and the inability to react to new influenza pandemics resulting from genetic drift or shift. To overcome the intrinsic limitations of the conventional influenza vaccine, we have designed dual-linker gold nanoparticles (AuNPs) conjugated with both recombinant trimetric A/Aichi/2/68 (H3N2), hemagglutinin (HA) and TLR5 agonist flagellin (FliC) as a novel vaccine approach. Click chemistry and metal-chelating reactions were used to couple the two proteins. The conjugated proteins were found to possess high coupling specificity, high stability in harsh environments, high conjugation efficiency, and the ability to keep the appropriate protein conformations for immunogenicity and immunostimulation. Both AuNPs-HA/FliC and AuNPs-HA formulations induced higher levels of antibody responses than a mixture of soluble HA and FliC proteins when administered via a single intranasal immunization in mice. To further investigate the adjuvancy of these nanoparticles, in vitro experiments were conducted in both the JAWS II dendritic cell (DC) line and bone marrow-derived DC (BMDC) models. The results showed that dual-conjugated AuNPs were rapidly targeted and taken up by DCs. Consequently, DCs were induced toward maturation, as demonstrated by high levels of cytokine secretions and membrane costimulatory molecule expression. T cell proliferation was observed when splenic T cells were cocultured with AuNPs-HA/FliC-primed BMDCs. These results suggest that dual-conjugated AuNPs are effective at simultaneously displaying antigens and adjuvants in an oriented, multivalent format and can promote a strong immune response by activating DCs and T cells. PMID:28740382

  16. The fluence effects of low-level laser therapy on inflammation, fibroblast-like synoviocytes, and synovial apoptosis in rats with adjuvant-induced arthritis.

    PubMed

    Hsieh, Yueh-Ling; Cheng, Yu-Jung; Huang, Fang-Chuen; Yang, Chen-Chia

    2014-12-01

    The aim of this study was to evaluate the effect of low-level laser therapy (LLLT) operating at low and high fluences on joint inflammation, fibroblast-like synoviocytes (FLS), and synovial apoptosis in rats with adjuvant-induced arthritis. Rheumatoid arthritis (RA) is characterized by pronounced inflammation and FLS proliferation within affected joints. Certain data indicate that LLLT is effective in patients with inflammation caused by RA; however, the fluence effects of LLLT on synovium are unclear. Monoarthritis was induced in adult male Sprague-Dawley rats (250-300 g) via intraarticular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. Animals were irradiated 72 h after CFA administration with a 780 nm GaAlAs laser at 4.5 J/cm2 (30 mW, 30 sec/spot) and 72 J/cm2 (80 mW, 180 sec/spot) daily for 10 days. After LLLT, the animals were euthanized and their arthritic ankles were collected for histopathological analysis, immunoassays of tumor necrosis factor (TNF)-α, matrix metallopeptidase (MMP)3 and 5B5, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. LLLT at a fluence of 4.5 J/cm2 significantly reduced infiltration of inflammatory cells and expressions of TNF-α-, MMP3- and 5B5-like immunoreactivities, as well as resulting in more TUNEL-positive apoptotic cells in the synovium. No significant changes were observed in these biochemicals and inflammation in arthritic animals treated with 72 J/cm2. LLLT with low fluence is highly effective in reducing inflammation to sites of injury by decreasing the numbers of FLS, inflammatory cells, and mediators in the CFA-induced arthritic model. These data will be of value in designing clinical trials of LLLT for RA.

  17. The Fluence Effects of Low-Level Laser Therapy on Inflammation, Fibroblast-Like Synoviocytes, and Synovial Apoptosis in Rats with Adjuvant-Induced Arthritis

    PubMed Central

    Hsieh, Yueh-Ling; Cheng, Yu-Jung; Huang, Fang-Chuen

    2014-01-01

    Abstract Objective: The aim of this study was to evaluate the effect of low-level laser therapy (LLLT) operating at low and high fluences on joint inflammation, fibroblast-like synoviocytes (FLS), and synovial apoptosis in rats with adjuvant-induced arthritis. Background data: Rheumatoid arthritis (RA) is characterized by pronounced inflammation and FLS proliferation within affected joints. Certain data indicate that LLLT is effective in patients with inflammation caused by RA; however, the fluence effects of LLLT on synovium are unclear. Methods: Monoarthritis was induced in adult male Sprague–Dawley rats (250–300 g) via intraarticular injection of complete Freund's adjuvant (CFA) into the tibiotarsal joint. Animals were irradiated 72 h after CFA administration with a 780 nm GaAlAs laser at 4.5 J/cm2 (30 mW, 30 sec/spot) and 72 J/cm2 (80 mW, 180 sec/spot) daily for 10 days. After LLLT, the animals were euthanized and their arthritic ankles were collected for histopathological analysis, immunoassays of tumor necrosis factor (TNF)-α, matrix metallopeptidase (MMP)3 and 5B5, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. Results: LLLT at a fluence of 4.5 J/cm2 significantly reduced infiltration of inflammatory cells and expressions of TNF-α-, MMP3- and 5B5-like immunoreactivities, as well as resulting in more TUNEL-positive apoptotic cells in the synovium. No significant changes were observed in these biochemicals and inflammation in arthritic animals treated with 72 J/cm2. Conclusions: LLLT with low fluence is highly effective in reducing inflammation to sites of injury by decreasing the numbers of FLS, inflammatory cells, and mediators in the CFA-induced arthritic model. These data will be of value in designing clinical trials of LLLT for RA. PMID:25394331

  18. IgE-mediated sensitisation, rhinitis and asthma from occupational exposures. Smoking as a model for airborne adjuvants?

    PubMed

    Nielsen, Gunnar D; Olsen, Ole; Larsen, Søren T; Løvik, Martinus; Poulsen, Lars K; Glue, Christian; Brandorff, Nanna P; Nielsen, Pia J

    2005-12-15

    Airborne pollutants with adjuvant effect, called airborne adjuvants, may promote IgE-sensitisation and development of allergic airway diseases. Smoking and occupational allergen exposures were reviewed to establish a general and verified framework for hazard identification and risk assessment of adjuvant effects of airborne pollutions. The relative risks and the attributable risks of adjuvant effect of smoking were determined for co-exposures with green coffee and castor beans, ispaghula, senna, psyllium, flour and grain dust, latex, laboratory animals, seafood, enzymes, platinum salts, organic anhydrides, or reactive dyes. Adjuvant effects of smoking depended on the types of allergen, but not on whether sensitisation or allergy was promoted by atopy-the hereditarily increased ability to increase IgE formation. Promotion of IgE sensitisation in humans and in animals may serve for hazard identification of adjuvant effects. Risk assessment has been based mainly on epidemiological studies, which are sensitive to confounding factors. This highlights the need to develop appropriate animal models for risk assessment.

  19. Improved Formulation of a Recombinant Ricin A-chain Vaccine Increases its Stability and Effective Antigenicity

    DTIC Science & Technology

    2007-03-26

    Adjuvant adsorption; Toxin . Introduction Ricin, a highly potent toxin derived from the castor bean, ills human cells by depurinating a specific...moieties n the cell surface. Antibodies elicited against either the ricin (RTA) or B-chain can neutralize the toxin, although anti- Abbreviations: RTA...human B- cell epitope for RTA has been identified by astelletti et al. [6] from cancer patients treated with a ricin- onjugate immunotoxin, and lies

  20. Carbohydrate-based vaccine adjuvants - discovery and development.

    PubMed

    Hu, Jing; Qiu, Liying; Wang, Xiaoli; Zou, Xiaopeng; Lu, Mengji; Yin, Jian

    2015-10-01

    The addition of a suitable adjuvant to a vaccine can generate significant effective adaptive immune responses. There is an urgent need for the development of novel po7tent and safe adjuvants for human vaccines. Carbohydrate molecules are promising adjuvants for human vaccines due to their high biocompatibility and good tolerability in vivo. The present review covers a few promising carbohydrate-based adjuvants, lipopolysaccharide, trehalose-6,6'-dibehenate, QS-21 and inulin as examples, which have been extensively studied in human vaccines in a number of preclinical and clinical studies. The authors discuss the current status, applications and strategies of development of each adjuvant and different adjuvant formulation systems. This information gives insight regarding the exciting prospect in the field of carbohydrate-based adjuvant research. Carbohydrate-based adjuvants are promising candidates as an alternative to the Alum salts for human vaccines development. Furthermore, combining two or more adjuvants in one formulation is one of the effective strategies in adjuvant development. However, further research efforts are needed to study and develop novel adjuvants systems, which can be more stable, potent and safe. The development of synthetic carbohydrate chemistry can improve the study of carbohydrate-based adjuvants.

  1. A gallotannin-rich fraction from Caesalpinia spinosa (Molina) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line

    PubMed Central

    2012-01-01

    Background Enhancement of tumor cell sensitivity may help facilitate a reduction in drug dosage using conventional chemotherapies. Consequently, it is worthwhile to search for adjuvants with the potential of increasing chemotherapeutic drug effectiveness and improving patient quality of life. Natural products are a very good source of such adjuvants. Methods The biological activity of a fraction enriched in hydrolysable polyphenols (P2Et) obtained from Caesalpinia spinosa was evaluated using the hematopoietic cell line K562. This fraction was tested alone or in combination with the conventional chemotherapeutic drugs doxorubicin, vincristine, etoposide, camptothecin and taxol. The parameters evaluated were mitochondrial depolarization, caspase 3 activation, chromatin condensation and clonogenic activity. Results We found that the P2Et fraction induced mitochondrial depolarization, activated caspase 3, induced chromatin condensation and decreased the clonogenic capacity of the K562 cell line. When the P2Et fraction was used in combination with chemotherapeutic drugs at sub-lethal concentrations, a fourfold reduction in doxorubicin inhibitory concentration 50 (IC50) was seen in the K562 cell line. This finding suggested that P2Et fraction activity is specific for the molecular target of doxorubicin. Conclusions Our results suggest that a natural fraction extracted from Caesalpinia spinosa in combination with conventional chemotherapy in combination with natural products on leukemia cells may increase therapeutic effectiveness in relation to leukemia. PMID:22490328

  2. Enhanced Anti-Tumor Effect of Zoledronic Acid Combined with Temozolomide against Human Malignant Glioma Cell Expressing O6-Methylguanine DNA Methyltransferase

    PubMed Central

    Fukai, Junya; Koizumi, Fumiaki; Nakao, Naoyuki

    2014-01-01

    Temozolomide (TMZ), a DNA methylating agent, is widely used in the adjuvant treatment of malignant gliomas. O6-methylguanine-DNA methyltranferase (MGMT), a DNA repair enzyme, is frequently discussed as the main factor that limits the efficacy of TMZ. Zoledronic acid (ZOL), which is clinically applied to treat cancer-induced bone diseases, appears to possess direct anti-tumor activity through apoptosis induction by inhibiting mevalonate pathway and prenylation of intracellular small G proteins. In this study, we evaluated whether ZOL can be effectively used as an adjuvant to TMZ in human malignant glioma cells that express MGMT. Malignant glioma cell lines, in which the expression of MGMT was detected, did not exhibit growth inhibition by TMZ even at a longer exposure. However, combination experiment of TMZ plus ZOL revealed that a supra-additive effect resulted in a significant decrease in cell growth. In combined TMZ/ZOL treatment, an increased apoptotic rate was apparent and significant activation of caspase-3 and cleavage of poly-(ADP-ribose) polymerase were observed compared with each single drug exposure. There were decreased amounts of Ras-GTP, MAPK and Akt phosphorylation and MGMT expression in the ZOL-treated cells. Subcutanous xenograft models showed significant decrease of tumor growth with combined TMZ/ZOL treatment. These results suggest that ZOL efficaciously inhibits activity of Ras in malignant glioma cells and potentiates TMZ-mediated cytotoxicity, inducing growth inhibition and apoptosis of malignant glioma cells that express MGMT and resistant to TMZ. Based on this work, combination of TMZ with ZOL might be a potential therapy in malignant gliomas that receive less therapeutic effects of TMZ due to cell resistance. PMID:25111384

  3. Predictive and prognostic effect of CD133 and cancer-testis antigens in stage Ib-IIIA non-small cell lung cancer.

    PubMed

    Su, Chunxia; Xu, Ying; Li, Xuefei; Ren, Shengxiang; Zhao, Chao; Hou, Likun; Ye, Zhiwei; Zhou, Caicun

    2015-01-01

    CD133 and cancer-testis antigens (CTAs) may be potential predicted markers of adjuvant chemotherapy or immune therapy, and they may be the independent prognostic factor of NSCLC. Nowadays, there is still no predictive biomarker identified for the use of adjuvant chemotherapy in non-small cell lung cancer (NSCLC) patients. To clarify the role of CD133 and CTAs as a predictive marker for adjuvant chemotherapy or prognostic factors of overall survival, we performed a retrospective study in 159 stage Ib-IIIA NSCLC patients receiving adjuvant chemotherapy or observe from April 2003 to March 2004 in our institute. Clinical data and gene anaylisis results were collected, while CD133 and three CTAs (MAGE-A4, NY-ESO-1, MAGE-A10) were determined according to their monoclonal antibodies such as CD133, 57B, D8.38 and 3GA11 by immunohistochemistry. All CTAs were more frequently expressed in squamous cell carcinoma (SCC) (50.0%, 26.9%, 34.6%) than in adenocarcinoma (16.2%, 16.2%, 16.2%). CD133 was more frequently found in patients with adenocarcinoma (P=0.044). Negative expression of CD133 was associated with a significantly longer overall survival compared to positive expression of CD133 (62.5 vs. 48.5 months, P=0.035). When combined with MAGEA4, NY-ESO-1or MAGE-A10, patients' OS showed significantly difference among different combination. (CD133-MAGEA4-/CD133-MAGEA4+/CD133+MAGEA4-/CD133+MAGEA4+: 65.6 months vs.51.5 months vs.32.2 months vs.19.8 months, P=0.000, CD133-NY-ESO-1-/ CD133+NY-ESO-1-/CD133-NY-ESO-1+/ CD133+NY-ESO-1+: 57.8 months vs. 55.7 months vs. 44.6 months vs. 28.5 months, P=0.000, CD133-MAGEA10-/CD133+ MAGEA10-/CD133-MAGEA10-/CD133+MAGEA10+: 66.2 months vs. 57.2 months vs. 48.8 months vs. 41.4 months, P=0.001). There is no difference between patients received adjuvant chemotherapy or not, but subgroup analysis showed that the patients with CD133+NY-ESO-1+ expression who received chemotherapy will survive longer than not receive adjuvant chemotherapy (received vs. not received, 52.1 vs. 27.1 months, P=0.020). In the subgroup with EGFR mutation/ALK translocation/Ros1 translocation/Ret fusion, the trend remained but without a statistically significant difference. Multivariate COX regression analysis showed that stage, CD133, CD133-MAGEA4- and CD133-NY-ESO-1- are independent prognostic factors. In conclusion, CTAs (MAGE-A4, NY-ESO-1, MAGE-A10) were more likely expressed in patients with squamous cell carcinoma and when CTAs combined with CD133, they can be better prognostic factors. Patients with CD133+NY-ESO-1+ expression may survive longer when treated with adjuvant chemotherapy, which indicates that the CD133 and CTAs might be a potential marker to guide adjuvant chemotherapy in this population.

  4. Retrospective study of adjuvant icotinib in postoperative lung cancer patients harboring epidermal growth factor receptor mutations.

    PubMed

    Yao, Shuyang; Zhi, Xiuyi; Wang, Ruotian; Qian, Kun; Hu, Mu; Zhang, Yi

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutations occur in about 50% of Asian patients with non-small cell lung cancer (NSCLC). Patients with advanced NSCLC and EGFR mutations derive clinical benefit from treatment with EGFR-tyrosine kinase inhibitors (TKIs). This study assessed the efficacy and safety of adjuvant icotinib without chemotherapy in EGFR-mutated NSCLC patients undergoing resection of stage IB-IIIA. Our retrospective study enrolled 20 patients treated with icotinib as adjuvant therapy. Survival factors were evaluated by univariate and Cox regression analysis. The median follow-up time was 30 months (range 24-41). At the data cut-off, five patients (25%) had recurrence or metastasis and one patient had died of the disease. The two-year disease-free survival (DFS) rate was 85%. No recurrence occurred in the high-risk stage IB subgroup during the follow-up period. In univariate analysis, the micropapillary pattern had a statistically significant effect on DFS ( P = 0.040). Multivariate logistic regression analysis showed that there was no independent predictor. Drug related adverse events (AEs) occurred in nine patients (45.0%). The most common AEs were skin-related events and diarrhea, but were relatively mild. No grade 3 AEs or occurrences of intolerable toxicity were observed. Icotinib as adjuvant therapy is effective in patients harboring EGFR mutations after complete resection, with an acceptable AE profile. Further trials with larger sample sizes might confirm the efficiency of adjuvant TKI in selected patients. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  5. Encryption of agonistic motifs for TLR4 into artificial antigens augmented the maturation of antigen-presenting cells

    PubMed Central

    Hayashi, Kazumi; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2017-01-01

    Adjuvants are indispensable for achieving a sufficient immune response from vaccinations. From a functional viewpoint, adjuvants are classified into two categories: “physical adjuvants” increase the efficacy of antigen presentation by antigen-presenting cells (APC) and “signal adjuvants” induce the maturation of APC. Our previous study has demonstrated that a physical adjuvant can be encrypted into proteinous antigens by creating artificial proteins from combinatorial assemblages of epitope peptides and those peptide sequences having propensities to form certain protein structures (motif programming). However, the artificial antigens still require a signal adjuvant to maturate the APC; for example, co-administration of the Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) was required to induce an in vivo immunoreaction. In this study, we further modified the previous artificial antigens by appending the peptide motifs, which have been reported to have agonistic activity for TLR4, to create “adjuvant-free” antigens. The created antigens with triple TLR4 agonistic motifs in their C-terminus have activated NF-κB signaling pathways through TLR4. These proteins also induced the production of the inflammatory cytokine TNF-α, and the expression of the co-stimulatory molecule CD40 in APC, supporting the maturation of APC in vitro. Unexpectedly, these signal adjuvant-encrypted proteins have lost their ability to be physical adjuvants because they did not induce cytotoxic T lymphocytes (CTL) in vivo, while the parental proteins induced CTL. These results confirmed that the manifestation of a motif’s function is context-dependent and simple addition does not always work for motif-programing. Further optimization of the molecular context of the TLR4 agonistic motifs in antigens should be required to create adjuvant-free antigens. PMID:29190754

  6. Pathologic Factors Associated with Prognosis after Adjuvant Chemotherapy in Stage II/III Microsatellite-Unstable Colorectal Cancers

    PubMed Central

    Kim, Jung Ho; Bae, Jeong Mo; Oh, Hyeon Jeong; Lee, Hye Seung; Kang, Gyeong Hoon

    2015-01-01

    Background: Although there are controversies regarding the benefit of fluoropyrimidine-based adjuvant chemotherapy in patients with microsatellite instability–high (MSI-H) colorectal cancer (CRC), the pathologic features affecting postchemotherapeutic prognosis in these patients have not been fully identified yet. Methods: A total of 26 histopathologic and immunohistochemical factors were comprehensively evaluated in 125 stage II or III MSI-H CRC patients who underwent curative resection followed by fluoropyrimidine-based adjuvant chemotherapy. We statistically analyzed the associations of these factors with disease-free survival (DFS). Results: Using a Kaplan- Meier analysis with log-rank test, we determined that ulceroinfiltrative gross type (p=.003), pT4 (p<.001), pN2 (p=.002), perineural invasion (p=.001), absence of peritumoral lymphoid reaction (p=.041), signet ring cell component (p=.006), and cribriform comedo component (p=.004) were significantly associated with worse DFS in patients receiving oxaliplatin-based adjuvant chemotherapy (n=45). By contrast, pT4 (p<.001) and tumor budding-positivity (p=.032) were significant predictors of poor survival in patients receiving non-oxaliplatin–based adjuvant chemotherapy (n=80). In Cox proportional hazards regression model-based univariate and multivariate analyses, pT category (pT1-3 vs pT4) was the only significant prognostic factor in patients receiving non-oxaliplatin–based adjuvant chemotherapy, whereas pT category, signet ring cell histology and cribriform comedo histology remained independent prognostic factors in patients receiving oxaliplatin-based adjuvant chemotherapy. Conclusions: pT4 status is the most significant pathologic determinant of poor outcome after fluoropyrimidine-based adjuvant chemotherapy in patients with stage II/III MSI-H CRC. PMID:26148739

  7. [Modified Cheng's Juanbi Decoction downregulates expression of prostaglandin E receptor 4 in synovial tissue in rats with adjuvant arthritis].

    PubMed

    Xu, Xia; Cheng, Hui; Cao, Jian; DU, Huan; Meng, Qingwei; Guo, Mengyuan

    2017-06-01

    Objective To investigate the effect of modified Cheng's Juanbi Decoction on the expression of prostaglandin E receptor 4 (PTGER4), the T cell receptor in the synovial tissues, in rats with adjuvant arthritis (AA). Methods A rat model of AA was established by subcutaneous injection of Freund's complete adjuvant at the vola pedis combined with ice-water bath and blowing. The degree of joint swelling and arthritis index were determined in each group. The quantitative real-time PCR was performed to assess the effect of modified Cheng's Juanbi Decoction on the mRNA expression of PTGER4in the synovial tissue. Results Cheng's Juanbi Decoction significantly alleviated the damage in the joints and synovial tissues in the AA rats. High-dose (the content of crude drug: 4 g/mL) Cheng's Juanbi Decoction significantly reduced the mRNA expression of PTGER4 in the synovial tissues. Conclusion Cheng's Juanbi Decoction can reduce the level of PTGER4 mRNA in the synovial tissue in AA rats.

  8. Advances in aluminum hydroxide-based adjuvant research and its mechanism.

    PubMed

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants.

  9. Advances in aluminum hydroxide-based adjuvant research and its mechanism

    PubMed Central

    He, Peng; Zou, Yening; Hu, Zhongyu

    2015-01-01

    In the past few decades, hundreds of materials have been tried as adjuvant; however, only aluminum-based adjuvants continue to be used widely in the world. Aluminum hydroxide, aluminum phosphate and alum constitute the main forms of aluminum used as adjuvants. Among these, aluminum hydroxide is the most commonly used chemical as adjuvant. In spite of its wide spread use, surprisingly, the mechanism of how aluminum hydroxide-based adjuvants exert their beneficial effects is still not fully understood. Current explanations for the mode of action of aluminum hydroxide-based adjuvants include, among others, the repository effect, pro-phagocytic effect, and activation of the pro-inflammatory NLRP3 pathway. These collectively galvanize innate as well as acquired immune responses and activate the complement system. Factors that have a profound influence on responses evoked by aluminum hydroxide-based adjuvant applications include adsorption rate, strength of the adsorption, size and uniformity of aluminum hydroxide particles, dosage of adjuvant, and the nature of antigens. Although vaccines containing aluminum hydroxide-based adjuvants are beneficial, sometimes they cause adverse reactions. Further, these vaccines cannot be stored frozen. Until recently, aluminum hydroxide-based adjuvants were known to preferentially prime Th2-type immune responses. However, results of more recent studies show that depending on the vaccination route, aluminum hydroxide-based adjuvants can enhance both Th1 as well as Th2 cellular responses. Advances in systems biology have opened up new avenues for studying mechanisms of aluminum hydroxide-based adjuvants. These will assist in scaling new frontiers in aluminum hydroxide-based adjuvant research that include improvement of formulations, use of nanoparticles of aluminum hydroxide and development of composite adjuvants. PMID:25692535

  10. Ashwagandha leaf derived withanone protects normal human cells against the toxicity of methoxyacetic acid, a major industrial metabolite.

    PubMed

    Priyandoko, Didik; Ishii, Tetsuro; Kaul, Sunil C; Wadhwa, Renu

    2011-05-04

    The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates.

  11. Effect of lipoarabinomannan from Mycobacterium avium subsp avium in Freund's incomplete adjuvant on the immune response of cattle.

    PubMed

    Colavecchia, S B; Jolly, A; Fernández, B; Fontanals, A M; Fernández, E; Mundo, S L

    2012-02-01

    The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.

  12. Effect of lipoarabinomannan from Mycobacterium avium subsp avium in Freund's incomplete adjuvant on the immune response of cattle

    PubMed Central

    Colavecchia, S.B.; Jolly, A.; Fernández, B.; Fontanals, A.M.; Fernández, E.; Mundo, S.L.

    2012-01-01

    The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis. PMID:22286534

  13. Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis

    PubMed Central

    Xin, Hong; Cartmell, Jonathan; Bailey, Justin J.; Dziadek, Sebastian; Bundle, David R.; Cutler, Jim E.

    2012-01-01

    Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a major step forward in vaccine design against disseminated candidiasis. PMID:22563378

  14. Co-delivery of Dual Toll-Like Receptor Agonists and Antigen in Poly(Lactic-Co-Glycolic) Acid/Polyethylenimine Cationic Hybrid Nanoparticles Promote Efficient In Vivo Immune Responses.

    PubMed

    Ebrahimian, Mahboubeh; Hashemi, Maryam; Maleki, Mohsen; Hashemitabar, Gholamreza; Abnous, Khalil; Ramezani, Mohammad; Haghparast, Alireza

    2017-01-01

    Strategies to design delivery vehicles are critical in modern vaccine-adjuvant development. Nanoparticles (NPs) encapsulating antigen(s) and adjuvant(s) are promising vehicles to deliver antigen(s) and adjuvant(s) to antigen-presenting cells (APCs), allowing optimal immune responses against a specific pathogen. In this study, we developed a novel adjuvant delivery approach for induction of efficient in vivo immune responses. Polyethylenimine (PEI) was physically conjugated to poly(lactic-co-glycolic) acid (PLGA) to form PLGA/PEI NPs. This complex was encapsulated with resiquimod (R848) as toll-like receptor (TLR) 7/8 agonist, or monophosphoryl lipid A (MPLA) as TLR4 agonist and co-assembled with cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG ODN) as TLR9 agonist to form a tripartite formulation [two TLR agonists (inside and outside NPs) and PLGA/PEI NPs as delivery system]. The physicochemical characteristics, cytotoxicity and cellular uptake of these synthesized delivery vehicles were investigated. Cellular viability test revealed no pronounced cytotoxicity as well as increased cellular uptake compared to control groups in murine macrophage cells (J774 cell line). In the next step, PLGA (MPLA or R848)/PEI (CpG ODN) were co-delivered with ovalbumin (OVA) encapsulated into PLGA NPs to enhance the induction of immune responses. The immunogenicity properties of these co-delivery formulations were examined in vivo by evaluating the cytokine (IFN-γ, IL-4, and IL-1β) secretion and antibody (IgG1, IgG2a) production. Robust and efficient immune responses were achieved after in vivo administration of PLGA (MPLA or R848)/PEI (CpG ODN) co-delivered with OVA encapsulated in PLGA NPs in BALB/c mice. Our results demonstrate a rational design of using dual TLR agonists in a context-dependent manner for efficient nanoparticulate adjuvant-vaccine development.

  15. Mast cell activators as novel immune regulators.

    PubMed

    Johnson-Weaver, Brandi; Choi, Hae Woong; Abraham, Soman N; Staats, Herman F

    2018-05-26

    Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. In Vitro Adenosine Triphosphate-Based Chemotherapy Response Assay as a Predictor of Clinical Response to Fluorouracil-Based Adjuvant Chemotherapy in Stage II Colorectal Cancer

    PubMed Central

    Kwon, Hye Youn; Kim, Im-kyung; Kang, Jeonghyun; Sohn, Seung-Kook; Lee, Kang Young

    2016-01-01

    Purpose We evaluated the usefulness of the in vitro adenosine triphosphate-based chemotherapy response assay (ATP-CRA) for prediction of clinical response to fluorouracil-based adjuvant chemotherapy in stage II colorectal cancer. Materials and Methods Tumor specimens of 86 patients with pathologically confirmed stage II colorectal adenocarcinoma were tested for chemosensitivity to fluorouracil. Chemosensitivity was determined by cell death rate (CDR) of drug-exposed cells, calculated by comparing the intracellular ATP level with that of untreated controls. Results Among the 86 enrolled patients who underwent radical surgery followed by fluorouracil-based adjuvant chemotherapy, recurrence was found in 11 patients (12.7%). The CDR ≥ 20% group was associated with better disease-free survival than the CDR < 20% group (89.4% vs. 70.1%, p=0.027). Multivariate analysis showed that CDR < 20% and T4 stage were poor prognostic factors for disease-free survival after fluorouracil-based adjuvant chemotherapy. Conclusion In stage II colorectal cancer, the in vitro ATP-CRA may be useful in identifying patients likely to benefit from fluorouracil-based adjuvant chemotherapy. PMID:26511802

  17. The role of adjuvant therapy in the management of head and neck merkel cell carcinoma: an analysis of 4815 patients.

    PubMed

    Chen, Michelle M; Roman, Sanziana A; Sosa, Julie A; Judson, Benjamin L

    2015-02-01

    Merkel cell carcinoma (MCC) is a rare neuroendocrine malignant neoplasm that most commonly occurs in the head and neck and is rapidly increasing in incidence. The role of adjuvant chemoradiotherapy (CRT) in the management of head and neck MCC remains controversial. To evaluate the association between different adjuvant therapies and survival in head and neck MCC. Retrospective review of adult patients with head and neck MCC who had surgery recorded in the National Cancer Data Base from 1998 to 2011. Surgical excision, adjuvant radiation therapy (RT), or adjuvant CRT. Our main outcome was overall survival (OS). Statistical analysis included χ2, t tests, Kaplan-Meier survival analysis, and Cox proportional hazards regression analysis. We identified 4815 patients; 92.0% underwent standard surgical excision, and 8.0% underwent Mohs surgery. On multivariate analysis, age at least 75 years (hazard ratio [HR], 2.83 [95% CI, 1.82-4.41]), larger tumor size, positive margins (HR, 1.52 [95% CI, 1.25-1.85]), and metastatic lymph nodes (HR, 2.29 [95% CI, 1.84-2.85]) were independently associated with decreased OS. Postoperative CRT (HR, 0.62 [95% CI, 0.47-0.81]) and RT (HR, 0.80 [95% CI, 0.70-0.92]) provided a survival benefit over surgery alone. Adjuvant CRT was associated with improved OS over adjuvant RT in patients with positive margins (HR, 0.48 [95% CI, 0.25-0.93]), tumor size at least 3 cm (HR, 0.52 [95% CI, 0.30-0.90]), and male sex (HR, 0.69 [95% CI, 0.50-0.94]). To our knowledge, this the first study examining the role of adjuvant CRT in head and neck MCC. Results suggest that adjuvant CRT may help improve survival in high-risk patients, such as males and those with positive margins and larger tumors.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douillard, Jean-Yves; Rosell, Rafael; De Lena, Mario

    Purpose: To study the impact of postoperative radiation therapy (PORT) on survival in the Adjuvant Navelbine International Trialist Association (ANITA) randomized study of adjuvant chemotherapy. Methods and Materials: ANITA is a randomized trial of adjuvant cisplatin and vinorelbine chemotherapy vs. observation in completely resected non-small-cell lung carcinoma (NSCLC) Stages IB to IIIA. Use of PORT was recommended for pN+ disease but was not randomized or mandatory. Each center decided whether to use PORT before initiation of the study. We describe here the survival of patients with and without PORT within each treatment group of ANITA. No statistical comparison of survivalmore » was performed because this was an unplanned subgroup analysis. Results: Overall, 232 of 840 patients received PORT (33.3% in the observation arm and 21.6% in the chemotherapy arm). In univariate analysis, PORT had a deleterious effect on the overall population survival. Patients with pN1 disease had an improved survival from PORT in the observation arm (median survival [MS] 25.9 vs. 50.2 months), whereas PORT had a detrimental effect in the chemotherapy group (MS 93.6 months and 46.6 months). In contrast, survival was improved in patients with pN2 disease who received PORT, both in the chemotherapy (MS 23.8 vs. 47.4 months) and observation arm (median 12.7 vs. 22.7 months). Conclusion: This retrospective evaluation suggests a positive effect of PORT in pN2 disease and a negative effect on pN1 disease when patients received adjuvant chemotherapy. The results support further evaluation of PORT in prospectively randomized studies in completely resected pN2 NSCLC.« less

  19. Singapore Cancer Network (SCAN) Guidelines for Adjuvant Chemotherapy in Resected Non-Small Cell Lung Cancer.

    PubMed

    2015-10-01

    The SCAN lung cancer workgroup aimed to develop Singapore Cancer Network (SCAN) clinical practice guidelines for the use of adjuvant systemic therapy for non-small cell lung cancer in Singapore. The workgroup utilised a modified ADAPTE process to calibrate high quality international evidence-based clinical practice guidelines to our local setting. Five international guidelines were evaluated- those developed by the National Comprehensive Cancer Network (2014), European Society of Medical Oncology (2014), National Institute of Clinical Excellence (2012), Scottish Intercollegiate Guidelines Network (2014), and the Cancer Care Council Australia (2012). Recommendations on the selection of patients, chemotherapy regimen, treatment for stage I disease, treatment for positive margins and treatment options for pN2 disease with negative margins were produced. These adapted guidelines form the SCAN Guidelines 2015 for adjuvant systemic therapy of non-small cell lung cancer.

  20. A review of clinical and histological parameters associated with contralateral neck metastases in oral squamous cell carcinoma

    PubMed Central

    Fan, Song; Tang, Qiong-lan; Lin, Ying-jin; Chen, Wei-liang; Li, Jin-song; Huang, Zhi-quan; Yang, Zhao-hui; Wang, You-yuan; Zhang, Da-ming; Wang, Hui-jing; Dias-Ribeiro, Eduardo; Cai, Qiang; Wang, Lei

    2011-01-01

    Oral squamous cell carcinoma (OSCC) has a high incidence of cervical micrometastases and sometimes metastasizes contralaterally because of the rich lymphatic intercommunications relative to submucosal plexus of oral cavity that freely communicate across the midline, and it can facilitate the spread of neoplastic cells to any area of the neck consequently. Clinical and histopathologic factors continue to provide predictive information to contralateral neck metastases (CLNM) in OSCC, which determine prophylactic and adjuvant treatments for an individual patient. This review describes the predictive value of clinical-histopathologic factors, which relate to primary tumor and cervical lymph nodes, and surgical dissection and adjuvant treatments. In addition, the indications for elective contralateral neck dissection and adjuvant radiotherapy (aRT) and strategies for follow-up are offered, which is strongly focused by clinicians to prevent later CLNM and poor prognosis subsequently. PMID:22010576

  1. Adjuvant action of melittin following intranasal immunisation with tetanus and diphtheria toxoids.

    PubMed

    Bramwell, V W; Somavarapu, S; Outschoorn, I; Alpar, H O

    2003-01-01

    Melittin, a 26-amino acid peptide and the major active component of the venom of the honey bee--Apis mellifera--has recently been shown to have absorption enhancing properties in Caco-2 cells at levels well below the level required for the generation of cytotoxicity. Given the potential of absorption enhancing agents to act as adjuvants when administered nasally [Alpar, H.O., Eyles, J.E., Williamson, E.D. and Somavarapu, S. (2001) "Intranasal vaccination against plague, tetanus and diphtheria", Adv. Drug Delivery Rev. 51, 173-201] we hypothesized that melittin may have potential as a mucosal adjuvant. Following our initial studies reported here, it was found that the co-administration of 4 microg of melittin in conjunction with tetanus toxoid in BALB/c mice was effective in eliciting markedly enhanced antibody titres in comparison to control groups and groups receiving free antigen administered intranasally. Lower concentrations of melittin were less effective and mice receiving 4 microg of melittin plus antigen exhibited antibody titres significantly higher (i.e. P<0.05) than any of the other groups tested. The observed IgG2a titres were shown to be dependent upon the dose of melittin co-administered with the immunising antigen in a similar fashion to the observed total IgG responses. In summary, melittin has been shown here to have potential as a novel mucosal adjuvant for antigens administered via the nasal route.

  2. DNA Vaccine Molecular Adjuvants SP-D-BAFF and SP-D-APRIL Enhance Anti-gp120 Immune Response and Increase HIV-1 Neutralizing Antibody Titers

    PubMed Central

    Gupta, Sachin; Clark, Emily S.; Termini, James M.; Boucher, Justin; Kanagavelu, Saravana; LeBranche, Celia C.; Abraham, Sakhi; Montefiori, David C.

    2015-01-01

    ABSTRACT Broadly neutralizing antibodies (bNAbs) specific for conserved epitopes on the HIV-1 envelope (Env) are believed to be essential for protection against multiple HIV-1 clades. However, vaccines capable of stimulating the production of bNAbs remain a major challenge. Given that polyreactivity and autoreactivity are considered important characteristics of anti-HIV bNAbs, we designed an HIV vaccine incorporating the molecular adjuvants BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand) with the potential to facilitate the maturation of polyreactive and autoreactive B cells as well as to enhance the affinity and/or avidity of Env-specific antibodies. We designed recombinant DNA plasmids encoding soluble multitrimers of BAFF and APRIL using surfactant protein D as a scaffold, and we vaccinated mice with these molecular adjuvants using DNA and DNA-protein vaccination strategies. We found that immunization of mice with a DNA vaccine encoding BAFF or APRIL multitrimers, together with interleukin 12 (IL-12) and membrane-bound HIV-1 Env gp140, induced neutralizing antibodies against tier 1 and tier 2 (vaccine strain) viruses. The APRIL-containing vaccine was particularly effective at generating tier 2 neutralizing antibodies following a protein boost. These BAFF and APRIL effects coincided with an enhanced germinal center (GC) reaction, increased anti-gp120 antibody-secreting cells, and increased anti-gp120 functional avidity. Notably, BAFF and APRIL did not cause indiscriminate B cell expansion or an increase in total IgG. We propose that BAFF and APRIL multitrimers are promising molecular adjuvants for vaccines designed to induce bNAbs against HIV-1. IMPORTANCE Recent identification of antibodies that neutralize most HIV-1 strains has revived hopes and efforts to create novel vaccines that can effectively stimulate HIV-1 neutralizing antibodies. However, the multiple immune evasion properties of HIV have hampered these efforts. These include the instability of the gp120 trimer, the inaccessibility of the conserved sequences, highly variable protein sequences, and the loss of HIV-1-specific antibody-producing cells during development. We have shown previously that tumor necrosis factor (TNF) superfamily ligands, including BAFF and APRIL, can be multitrimerized using the lung protein SP-D (surfactant protein D), enhancing immune responses. Here we show that DNA or DNA-protein vaccines encoding BAFF or APRIL multitrimers, IL-12p70, and membrane-bound HIV-1 Env gp140 induced tier 1 and tier 2 neutralizing antibodies in a mouse model. BAFF and APRIL enhanced the immune reaction, improved antibody binding, and increased the numbers of anti-HIV-1 antibody-secreting cells. Adaptation of this vaccine design may prove useful in designing preventive HIV-1 vaccines for humans. PMID:25631080

  3. Inhibition of autophagy by 3-MA enhances endoplasmic reticulum stress-induced apoptosis in human nasopharyngeal carcinoma cells.

    PubMed

    Song, Lele; Liu, Hao; Ma, Linyan; Zhang, Xudng; Jiang, Zhiwen; Jiang, Chenchen

    2013-10-01

    Radiotherapy and adjuvant cisplatin chemotherapy are the mainstream treatments for nasopharyngeal carcinoma (NPC), which effectively improve the outcome and reduce tumor recurrence. However, the resistance mechanism(s) involved in radiotherapy and chemotherapy, which is the main barrier in NPC treatment, remains undefined. Therefore, there is an urgent requirement for the identification of new therapeutic strategies or adjuvant drugs. In the present study, the effects of autophagy inhibitors on endoplasmic reticulum (ER) stress-induced autophagy was investigated. Combining 3-methyladenine (3-MA) with cisplatin (DDP), ionizing radiation (IR), 2-deoxy-D-glucose (2-DG) or tunicamycin (TM) resulted in enhanced cell death, as revealed by MTT and colony formation assays. Flow cytometry results demonstrated that the sensitivity of NPC cells to DDP- and IR-induced apoptosis was not significant. DDP, IR, 2-DG and TM induced ER stress and autophagy. Using fluorescence microscopy, 3-MA was identified to increase the apoptotic cell death induced by DDP, IR, 2-DG or TM. In addition, 3-MA inhibited the increased autophagy induced by DDP, IR, 2-DG or TM, as demonstrated by western blot analysis and immunocytochemistry results. Results of the present study indicate that autophagy acts as a protective mechanism response to the apoptosis induced by DDP, IR, 2-DG or TM.

  4. Intranasal Administration of a Therapeutic HIV Vaccine (Vacc-4x) Induces Dose-Dependent Systemic and Mucosal Immune Responses in a Randomized Controlled Trial

    PubMed Central

    Brekke, Kristin; Lind, Andreas; Holm-Hansen, Carol; Haugen, Inger Lise; Sørensen, Birger; Sommerfelt, Maja; Kvale, Dag

    2014-01-01

    Background Vacc-4x, a Gag p24-based therapeutic HIV vaccine, has been shown to reduce viral load set-points after intradermal administration. In this randomized controlled pilot study we investigate intranasal administration of Vacc-4x with Endocine as adjuvant. Methods Safety and immunogenicity were tested in patients on effective ART. They were randomized to low, medium or high dose Vacc-4x or adjuvant alone, administered four times at weekly intervals with no booster. Vacc-4x-specific T cell responses were measured in vitro by proliferation and in vivo by a single DTH skin test at the end of study. Nasal and rectal mucosal secretions were analyzed for Vacc-4x-specific antibodies by ELISA. Immune regulation induced by Vacc-4x was assessed by functional blockade of the regulatory cytokines IL-10 and TGF-β. Results Vacc-4x proliferative T cell responses increased only among the vaccinated (p≤0.031). The low dose group showed the greatest increase in Vacc-4x CD8+T cell responses (p = 0.037) and developed larger DTH (p = 0.005) than the adjuvant group. Rectal (distal) Vacc-4x IgA and IgG antibodies also increased (p = 0.043) in this group. In contrast, the high dose generated higher nasal (local) Vacc-4x IgA (p = 0.028) and serum IgG (p = 0.030) antibodies than the adjuvant. Irrespective of dose, increased Vacc-4x CD4+T cell responses were associated with low proliferation (r = −0.82, p<0.001) and high regulation (r = 0.61, p = 0.010) at baseline. Conclusion Intranasal administration of Vacc-4x with Endocine was safe and induced dose-dependent vaccine-specific T cell responses and both mucosal and systemic humoral responses. The clinical significance of dose, immune regulation and mucosal immunity warrants further investigation. Trial Registration ClinicalTrials.gov NCT01473810 PMID:25398137

  5. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy

    PubMed Central

    Filip, Gabriela Adriana; Olteanu, Diana; Cenariu, Mihai; Tabaran, Flaviu; Ion, Rodica Mariana; Gligor, Lucian; Baldea, Ioana

    2017-01-01

    Background Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine—Gallium phthalocyanine chloride (GaPc) and Metformin was used against melanoma. The study aimed to: (1) find the anti-melanoma efficacy of GaPc-PDT, (2) assess possible beneficial effects of Metformin addition to PDT, (3) uncover some of the mechanisms underlining cell killing and anti-angiogenic effects. Methods Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskeleton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry, confocal microscopy, spectrophotometry, ELISA, Western Blotting. Results GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mechanisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear transcription factor (NF)-κB activation and tumor necrosis factor (TNF)—related apoptosis-inducing ligand (TRAIL) sensitization, leading to TRAIL and TNF-α induced apoptosis. Metformin diminished the anti-angiogenic effect of PDT. Conclusions Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic effects. General significance Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy. PMID:28278159

  6. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy.

    PubMed

    Tudor, Diana; Nenu, Iuliana; Filip, Gabriela Adriana; Olteanu, Diana; Cenariu, Mihai; Tabaran, Flaviu; Ion, Rodica Mariana; Gligor, Lucian; Baldea, Ioana

    2017-01-01

    Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine-Gallium phthalocyanine chloride (GaPc) and Metformin was used against melanoma. The study aimed to: (1) find the anti-melanoma efficacy of GaPc-PDT, (2) assess possible beneficial effects of Metformin addition to PDT, (3) uncover some of the mechanisms underlining cell killing and anti-angiogenic effects. Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskeleton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry, confocal microscopy, spectrophotometry, ELISA, Western Blotting. GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mechanisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear transcription factor (NF)-κB activation and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) sensitization, leading to TRAIL and TNF-α induced apoptosis. Metformin diminished the anti-angiogenic effect of PDT. Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic effects. Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy.

  7. Hematopoietic cell transplantation and cellular therapeutics in the treatment of childhood malignancies.

    PubMed

    Mallhi, Kanwaldeep; Lum, Lawrence G; Schultz, Kirk R; Yankelevich, Maxim

    2015-02-01

    Hematopoietic cell transplantation (HCT) represents the most common and effective form of immunotherapy for childhood malignancies. The role of the graft-versus-leukemia effect in allogeneic HCT has been well established in childhood malignancies, but is also associated with short-term and long-term morbidity. HCT may be ineffective in some settings at obtaining control of the malignancy, and as such, cannot be used as a universal cancer immunotherapy. Novel therapies using dendritic cell vaccinations, tumor-infiltrating lymphocytes, and chimeric antigen receptor T cells are being evaluated as potential adjuvants to HCT. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Strategies to alleviate original antigenic sin responses to influenza viruses.

    PubMed

    Kim, Jin Hyang; Davis, William G; Sambhara, Suryaprakash; Jacob, Joshy

    2012-08-21

    Original antigenic sin is a phenomenon wherein sequential exposure to closely related influenza virus variants reduces antibody (Ab) response to novel antigenic determinants in the second strain and, consequently, impairs the development of immune memory. This could pose a risk to the development of immune memory in persons previously infected with or vaccinated against influenza. Here, we explored strategies to overcome original antigenic sin responses in mice sequentially exposed to two closely related hemagglutinin 1 neuraminidase 1 (H1N1) influenza strains A/PR/8/34 and A/FM/1/47. We found that dendritic cell-activating adjuvants [Bordetella pertussis toxin (PT) or CpG ODN or a squalene-based oil-in-water nanoemulsion (NE)], upon administration during the second viral exposure, completely protected mice from a lethal challenge and enhanced neutralizing-Ab titers against the second virus. Interestingly, PT and NE adjuvants when administered during the first immunization even prevented original antigenic sin in subsequent immunization without any adjuvants. As an alternative to using adjuvants, we also found that repeated immunization with the second viral strain relieved the effects of original antigenic sin. Taken together, our studies provide at least three ways of overcoming original antigenic sin.

  9. Postoperative radiation therapy of pT2-3N0M0 esophageal carcinoma-a review.

    PubMed

    Luo, Yijun; Wang, Xiaoli; Yu, Jinming; Zhang, Bin; Li, Minghuan

    2016-11-01

    Esophageal cancer is one of the most malignant gastrointestinal cancers worldwide. Despite advances in surgical technique, 5-year survival in pathologic stage T2-3N0M0 esophageal squamous cell carcinoma patients who are treated with surgery alone is still poor. The addition of adjuvant radiotherapy may confer a benefit for these patients. However, not all patients could get a benefit from radiotherapy and patients with esophageal squamous cell carcinoma receiving radiotherapy seem to have a disparity in treatment response. Thus, identifying effective prognostic indicator to complement current clinical staging approaches is extremely important. Those prognostic factors could give rise to a novel prognostic stratification system, which serve as criteria for selecting patients for adjuvant therapy. Consequently, it may help to define the subgroups who are more likely to benefit from postoperative radiation therapy.

  10. Cost-effectiveness of the 21-gene assay for guiding adjuvant chemotherapy decisions in early breast cancer.

    PubMed

    Paulden, Mike; Franek, Jacob; Pham, Ba'; Bedard, Philippe L; Trudeau, Maureen; Krahn, Murray

    2013-01-01

    Adjuvant chemotherapy decisions in early breast cancer are complex. The 21-gene assay can potentially aid such decisions, but costs US $4175 per patient. Adjuvant! Online is a freely available decision aid. We evaluate the cost-effectiveness of using the 21-gene assay in conjunction with Adjuvant! Online, and of providing adjuvant chemotherapy conditional upon risk classification. A probabilistic Markov decision model simulated risk classification, treatment, and the natural history of breast cancer in a hypothetical cohort of 50-year-old women with lymph node-negative, estrogen receptor- and/or progesterone receptor-positive, human epidermal growth factor receptor 2/neu-negative early breast cancer. Cost-effectiveness was considered from an Ontario public-payer perspective by deriving the lifetime incremental cost (2012 Canadian dollars) per quality-adjusted life-year (QALY) for each strategy, and the probability each strategy is cost-effective, assuming a willingness-to-pay of $50,000 per QALY. The 21-gene assay has an incremental cost per QALY in patients at low, intermediate, or high Adjuvant Online! risk of $22,440 (probability cost-effective 78.46%), $2,526 (99.40%), or $1,111 (99.82%), respectively. In patients at low (high) 21-gene assay risk, adjuvant chemotherapy increases (reduces) costs and worsens (improves) health outcomes. For patients at intermediate 21-gene assay risk and low, intermediate, or high Adjuvant! Online risk, chemotherapy has an incremental cost per QALY of $44,088 (50.59%), $1,776 (77.65%), or $1,778 (82.31%), respectively. The 21-gene assay appears cost-effective, regardless of Adjuvant! Online risk. Adjuvant chemotherapy appears cost-effective for patients at intermediate or high 21-gene assay risk, although this finding is uncertain in patients at intermediate 21-gene assay and low Adjuvant! Online risk. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  11. Regulation by muramyl dipeptide (MDP) of the lymphoproliferative responses and polyclonal activation of human peripheral blood mononuclear cells.

    PubMed Central

    Bahr, G M; Modabber, F Z; Morin, A; Terrier, M; Eyquem, A; Chedid, L

    1984-01-01

    The ability of muramyl dipeptide (MDP), its adjuvant inactive stereoisomer, MDP(D-D), and the non-pyrogenic, adjuvant active analogue, MDP-butyl ester (MDP-BE), to induce in vitro proliferation and/or polyclonal activation (PA) of peripheral blood mononuclear cells (PBMNC) from normal volunteers, was studied. MDP, as well as its two analogues, were incapable of inducing 3H-thymidine uptake or immunoglobulin synthesis in PBMNC cultures from the majority of the individuals tested. However, these muramyl peptides were capable of regulating the in vitro proliferative responses of some individuals to concanavalin A and to soluble antigens of Candida albicans. At the same time, enhancement of the pokeweed mitogen-induced IgA and IgM but not IgG PA was observed with MDP, its adjuvant active analogue MDP-BE, but not with the adjuvant inactive stereoisomer MDP(D-D). Results are discussed with relation to a possible genetic restriction of the responsiveness to MDP. PMID:6744667

  12. Adjuvant and induction chemotherapy in non-small cell lung cancer.

    PubMed

    Pirker, R; Malayeri, R; Huber, H

    1999-01-01

    About 25%-30% of patients with non-small cell lung cancer can be resected with curative intent. However, systemic relapses occur in up to 70% of these patients. Thus, postoperative adjuvant chemotherapy was evaluated in several randomised trials but the results of these trials were inconclusive with a survival benefit only in some trials. Shortcomings of these trials included low number of patients, poor patient compliance and inadequate chemotherapy protocols. A recent meta-analysis suggested an absolute survival benefit of 5% at five years for postoperative cisplatin-based chemotherapy as compared to surgery alone. Thus adjuvant chemotherapy with both improved chemotherapy protocols and improved anti-emetics is currently re-evaluated in several randomised trials on large patient populations.

  13. Enhanced Influenza Virus-Like Particle Vaccination with a Structurally Optimized RIG-I Agonist as Adjuvant.

    PubMed

    Beljanski, Vladimir; Chiang, Cindy; Kirchenbaum, Greg A; Olagnier, David; Bloom, Chalise E; Wong, Terianne; Haddad, Elias K; Trautmann, Lydie; Ross, Ted M; Hiscott, John

    2015-10-01

    The molecular interaction between viral RNA and the cytosolic sensor RIG-I represents the initial trigger in the development of an effective immune response against infection with RNA viruses, resulting in innate immune activation and subsequent induction of adaptive responses. In the present study, the adjuvant properties of a sequence-optimized 5'-triphosphate-containing RNA (5'pppRNA) RIG-I agonist (termed M8) were examined in combination with influenza virus-like particles (VLP) (M8-VLP) expressing H5N1 influenza virus hemagglutinin (HA) and neuraminidase (NA) as immunogens. In combination with VLP, M8 increased the antibody response to VLP immunization, provided VLP antigen sparing, and protected mice from a lethal challenge with H5N1 influenza virus. M8-VLP immunization also led to long-term protective responses against influenza virus infection in mice. M8 adjuvantation of VLP increased endpoint and antibody titers and inhibited influenza virus replication in lungs compared with approved or experimental adjuvants alum, AddaVax, and poly(I·C). Uniquely, immunization with M8-VLP stimulated a TH1-biased CD4 T cell response, as determined by increased TH1 cytokine levels in CD4 T cells and increased IgG2 levels in sera. Collectively, these data demonstrate that a sequence-optimized, RIG-I-specific agonist is a potent adjuvant that can be utilized to increase the efficacy of influenza VLP vaccination and dramatically improve humoral and cellular mediated protective responses against influenza virus challenge. The development of novel adjuvants to increase vaccine immunogenicity is an important goal that seeks to improve vaccine efficacy and ultimately prevent infections that endanger human health. This proof-of-principle study investigated the adjuvant properties of a sequence-optimized 5'pppRNA agonist (M8) with enhanced capacity to stimulate antiviral and inflammatory gene networks using influenza virus-like particles (VLP) expressing HA and NA as immunogens. Vaccination with VLP in combination with M8 increased anti-influenza virus antibody titers and protected animals from lethal influenza virus challenge, highlighting the potential clinical use of M8 as an adjuvant in vaccine development. Altogether, the results describe a novel immunostimulatory agonist targeted to the cytosolic RIG-I sensor as an attractive vaccine adjuvant candidate that can be used to increase vaccine efficacy, a pressing issue in children and the elderly population. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Effects of varying antigens and adjuvant systems on the immunogenicity and safety of investigational tetravalent human oncogenic papillomavirus vaccines: results from two randomized trials.

    PubMed

    Van Damme, Pierre; Leroux-Roels, Geert; Simon, Philippe; Foidart, Jean-Michel; Donders, Gilbert; Hoppenbrouwers, Karel; Levin, Myron; Tibaldi, Fabian; Poncelet, Sylviane; Moris, Philippe; Dessy, Francis; Giannini, Sandra L; Descamps, Dominique; Dubin, Gary

    2014-06-17

    A prophylactic human papillomavirus (HPV) vaccine targeting oncogenic HPV types in addition to HPV-16 and -18 may broaden protection against cervical cancer. Two Phase I/II, randomized, controlled studies were conducted to compare the immunogenicity and safety of investigational tetravalent HPV L1 virus-like particle (VLP) vaccines, containing VLPs from two additional oncogenic genotypes, with the licensed HPV-16/18 AS04-adjuvanted vaccine (control) in healthy 18-25 year-old women. In one trial (NCT00231413), subjects received control or one of 6 tetravalent HPV-16/18/31/45 AS04 vaccine formulations at months (M) 0,1,6. In a second trial (NCT00478621), subjects received control or one of 5 tetravalent HPV-16/18/33/58 vaccines formulated with different adjuvant systems (AS04, AS01 or AS02), administered on different schedules (M0,1,6 or M0,3 or M0,6). One month after the third injection (Month 7), there was a consistent trend for lower anti-HPV-16 and -18 geometric mean antibody titers (GMTs) for tetravalent AS04-adjuvanted vaccines compared with control. GMTs were statistically significantly lower for an HPV-16/18/31/45 AS04 vaccine containing 20/20/10/10 μg VLPs for both anti-HPV-16 and anti-HPV-18 antibodies, and for an HPV-16/18/33/58 AS04 vaccine containing 20/20/20/20 μg VLPs for anti-HPV-16 antibodies. There was also a trend for lower HPV-16 and -18-specific memory B-cell responses for tetravalent AS04 vaccines versus control. No such trends were observed for CD4(+) T-cell responses. Immune interference could not always be overcome by increasing the dose of HPV-16/18 L1 VLPs or by using a different adjuvant system. All formulations had acceptable reactogenicity and safety profiles. Reactogenicity in the 7-day post-vaccination period tended to increase with the introduction of additional VLPs, especially for formulations containing AS01. HPV-16 and -18 antibody responses were lower when additional HPV L1 VLPs were added to the HPV-16/18 AS04-adjuvanted vaccine. Immune interference is a complex phenomenon that cannot always be overcome by changing the antigen dose or adjuvant system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Efficacy of Vismodegib (Erivedge) for Basal Cell Carcinoma Involving the Orbit and Periocular Area.

    PubMed

    Demirci, Hakan; Worden, Francis; Nelson, Christine C; Elner, Victor M; Kahana, Alon

    2015-01-01

    Evaluate the effectiveness of vismodegib in the management of basal cell carcinoma with orbital extension and/or extensive periocular involvement. Retrospective chart review of 6 consecutive patients with biopsy-proven orbital basal cell carcinoma and 2 additional patients with extensive periocular basal cell carcinoma who were treated with oral vismodegib (150 mg/day) was performed. Basal cell carcinoma extended in the orbit in 6 of 8 patients (involving orbital bones in 1 patient), and 2 of 8 patients had extensive periocular involvement (1 with basal cell nevus syndrome). Vismodegib therapy was the only treatment in 6 patients, off-label neoadjuvant in 1 patient, and adjuvant treatment in 1 patient. Orbital tumors in all 4 patients who received vismodegib as sole treatment showed partial response with a mean 83% shrinkage in tumor size after a median of 7 months of therapy. In the 2 patients receiving vismodegib as neoadjuvant or adjuvant therapies, there was complete response after a median of 7 months of therapy and no evidence of clinical recurrence after discontinuing therapy for a median of 15 months. The 2 patients with extensive periocular involvement experienced complete clinical response after a median 14 months of treatment. During treatment, the most common side effects were muscle spasm (75%) followed by alopecia (50%), dysgeusia (25%), dysosmia, and episodes of diarrhea and constipation (13%). Basal cell carcinoma with orbital extension and extensive periocular involvement responds to vismodegib therapy. The long-term prognosis remains unknown, and additional prospective studies are indicated.

  16. Protective immunity against Naegleria fowleri infection on mice immunized with the rNfa1 protein using mucosal adjuvants.

    PubMed

    Lee, Jinyoung; Yoo, Jong-Kyun; Sohn, Hae-Jin; Kang, Hee-kyoung; Kim, Daesik; Shin, Ho-Joon; Kim, Jong-Hyun

    2015-04-01

    The free-living amoeba, Naegleria fowleri, causes a fatal disease called primary amoebic meningoencephalitis (PAM) in humans and experimental animals. Of the pathogenic mechanism of N. fowleri concerning host tissue invasion, the adherence of amoeba to hose cells is the most important. We previously cloned the nfa1 gene from N. fowleri. The protein displayed immunolocalization in the pseudopodia, especially the food-cups structure, and was related to the contact-dependent mechanism of the amoebic pathogenicity in N. fowleri infection. The cholera toxin B subunit (CTB) and Escherichia coli heat-labile enterotoxin B subunit (LTB) have been used as potent mucosal adjuvants via the parenteral route of immunization in most cases. In this study, to examine the effect of protective immunity of the Nfa1 protein for N. fowleri infection with enhancement by CTB or LTB adjuvants, intranasally immunized BALB/c mice were infected with N. fowleri trophozoites for the development of PAM. The mean time to death of mice immunized with the Nfa1 protein using LTB or CTB adjuvant was prolonged by 5 or 8 days in comparison with that of the control mice. In particular, the survival rate of mice immunized with Nfa1 plus CTB was 100% during the experimental period. The serum IgG levels were significantly increased in mice immunized with Nfa1 protein plus CTB or LTB adjuvants. These results suggest that the Nfa1 protein, with CTB or LTB adjuvants, induces strong protective immunity in mice with PAM due to N. fowleri infection.

  17. Dead cell phagocytosis and innate immune checkpoint

    PubMed Central

    Yoon, Kyoung Wan

    2017-01-01

    The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations. PMID:28768566

  18. [The Relevance of MicroRNAs in Glioblastoma Stem Cells].

    PubMed

    Kleinová, R; Slabý, O; Šána, J

    2015-01-01

    Glioblastoma multiforme is the most common intracranial malignity of astrocyte origin in adults. Despite complex therapy consisting of maximal surgical resection, adjuvant concomitant chemoradiotherapy with temozolomide followed by temozolomide in monotherapy, the median of survival ranges between 12 and 15 months from dia-gnosis. This infaust prognosis is very often caused by both impossibility of achieving of sufficient radical surgical resection and tumor resistance to adjuvant therapy, which relates to the presence of glioblastoma stem cells. Similarly to normal stem cells, glioblastoma stem cells are capable of self -renewal, differentiation, and unlimited slow proliferation. Their resistance to conventional therapy is also due to higher expressions of DNA repair enzymes, antiapoptotic factors and multidrug transporters. Therefore, targeting these unique properties could be a novel promising therapeutic approach leading to more effective therapy and better prognosis of glioblastoma multiforme patients. One of the approaches how to successfully regulate above -mentioned properties is targeted regulation of microRNAs (miRNAs). These small noncoding RNA molecules posttranscriptionally regulate expression of more than 2/ 3 of all human genes that are also involved in stem cell associated signaling pathways. Moreover, deregulated expression of some miRNAs has been observed in many cancers, including glioblastoma multiforme.

  19. Effect of adjuvants on the humoral immune response to congopain in mice and cattle

    PubMed Central

    2012-01-01

    Background We investigated several adjuvants for their effects on the humoral immune response in both mice and cattle using the central domain of congopain (C2), the major cysteine protease of Trypanosoma congolense, as a model for developing a vaccine against animal trypanosomosis. The magnitude and sustainability of the immune response against C2 and the occurrence of a booster effect of infection, an indirect measure of the presence of memory cells, were determined by ELISA, while spectrofluorometry was used to determine and measure the presence of enzyme-inhibiting antibodies. Results Mice immunized with recombinant C2 in TiterMax™, Adjuphos™, purified saponin Quil A™ or Gerbu™ showed the best response according to the evaluation criteria and the latter three were chosen for the cattle vaccination study. The cattle were challenged with T. congolense four and a half months after the last booster. Cattle immunized with recombinant C2 in purified saponin Quil A™ showed the best antibody response according to the measured parameters. Conclusions We identified purified saponin Quil A™ as a good adjuvant for immunizations with C2. The results from this study will be useful in future attempts to develop an effective anti-disease vaccine against African trypanosomosis. PMID:22621378

  20. Adjuvant effect of short chain triacylglycerol tributyrin on a mouse contact hypersensitivity model.

    PubMed

    Sekiguchi, Kota; Ogawa, Erina; Kurohane, Kohta; Konishi, Hideyuki; Mochizuki, Narumi; Manabe, Kei; Imai, Yasuyuki

    2018-03-01

    Little attention has been paid to chemicals that can enhance hypersensitivity caused by other chemicals. We have demonstrated that phthalate esters with short chain alcohols enhance fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) in a mouse model. Furthermore, phthalate esters with such an enhancing effect were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels, which are expressed on a part of sensory neurons, using a TRPA1-expressing cell line. In this study, we examined these activities of esters comprising glycerol and a short chain fatty acid, i.e. dibutyrin and tributyrin. We carried out chemical synthesis of dibutyrin isomers. Each dibutyrin isomer weakly activated TRPA1 and slightly enhanced skin sensitization to FITC. Unexpectedly, TRPA1 activation and enhancement of FITC-CHS were much more evident in the presence of tributyrin. Mechanistically, tributyrin induced increased dendritic cell trafficking from the skin to draining lymph nodes. Tributyrin enhanced interferon-γ (IFN-γ) production by draining lymph nodes, while its effect on interleukin-4 (IL-4) production was relatively less prominent. These results suggested that tributyrin concomitantly caused TRPA1 activation and an adjuvant effect on FITC-CHS. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adjuvant chemotherapy with sequential cytokine-induced killer (CIK) cells in stage IB non-small cell lung cancer.

    PubMed

    Li, Da-Peng; Li, Wei; Feng, Jun; Chen, Kai; Tao, Min

    2015-01-01

    For non-small cell lung cancer (NSCLC) patients at stage IB, adjuvant chemotherapy does not improve survival. Evidence suggests that dendritic cell (DC)-activated cytokine-induced killer (DC-CIK) cell therapy in addition to chemotherapy improves survival for stage I-IIIA NSCLC patients after surgery, but there are not enough data to confirm this benefit specifically for those at stage IB. Herein, we retrospectively evaluated the efficacy and safety of this therapy administered to stage IB NSCLC patients. Sixty-six patients were treated with four-cycle adjuvant chemotherapy initiated 3 weeks after surgical resection. In addition, 28 of these patients underwent DC-CIK therapy on a trimonthly basis (average 3.1 times, range 1-6) beginning 1 month after chemotherapy. The disease-free survival (DFS) rates of the two groups were statistically similar, although patients who received DC-CIK therapy showed slightly higher 1- and 2-year DFS rates (100.0% and 96.4%, respectively, compared with 81.6% and 76.3%). More importantly, patients in the DC-CIK therapy group had significantly longer overall survival (p=0.018). For patients who received treatment after recurrence, the DC-CIK therapy group had longer progression-free survival compared with the chemotherapy-only group. In addition, patients given DC-CIK therapy experienced less fatigue and appetite loss. The rate of adverse side effects was similar between the two groups. In conclusion, for these stage IB NSCLC patients, DC-CIK therapy significantly improved 2-year DFS rates compared with those who received chemotherapy only. DC-CIK therapy also benefited patients' quality of life, and adverse events were acceptable.

  2. New Natural Pigment Fraction Isolated from Saw Palmetto: Potential for Adjuvant Therapy of Hepatocellular Carcinoma.

    PubMed

    Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin

    2016-08-05

    For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC.

  3. TLR-adjuvanted nanoparticle vaccines differentially influence the quality and longevity of responses to malaria antigen Pfs25.

    PubMed

    Thompson, Elizabeth A; Ols, Sebastian; Miura, Kazutoyo; Rausch, Kelly; Narum, David L; Spångberg, Mats; Juraska, Michal; Wille-Reece, Ulrike; Weiner, Amy; Howard, Randall F; Long, Carole A; Duffy, Patrick E; Johnston, Lloyd; O'Neil, Conlin P; Loré, Karin

    2018-05-17

    Transmission-blocking vaccines (TBVs) are considered an integral element of malaria eradication efforts. Despite promising evaluations of Plasmodium falciparum Pfs25-based TBVs in mice, clinical trials have failed to induce robust and long-lived Ab titers, in part due to the poorly immunogenic nature of Pfs25. Using nonhuman primates, we demonstrate that multiple aspects of Pfs25 immunity were enhanced by antigen encapsulation in poly(lactic-co-glycolic acid)-based [(PLGA)-based] synthetic vaccine particles (SVP[Pfs25]) and potent TLR-based adjuvants. SVP[Pfs25] increased Ab titers, Pfs25-specific plasmablasts, circulating memory B cells, and plasma cells in the bone marrow when benchmarked against the clinically tested multimeric form Pfs25-EPA given with GLA-LSQ. SVP[Pfs25] also induced the first reported Pfs25-specific circulating Th1 and Tfh cells to our knowledge. Multivariate correlative analysis indicated several mechanisms for the improved Ab responses. While Pfs25-specific B cells were responsible for increasing Ab titers, T cell responses stimulated increased Ab avidity. The innate immune activation differentially stimulated by the adjuvants revealed a strong correlation between type I IFN polarization, induced by R848 and CpG, and increased Ab half-life and longevity. Collectively, the data identify ways to improve vaccine-induced immunity to poorly immunogenic proteins, both by the choice of antigen and adjuvant formulation, and highlight underlying immunological mechanisms.

  4. Expansion of CD11b+Ly6Ghigh and CD11b+CD49d+ myeloid cells with suppressive potential in mice with chronic inflammation and light-at-night-induced circadian disruption.

    PubMed

    Perfilyeva, Yuliya V; Abdolla, Nurshat; Ostapchuk, Yekaterina O; Tleulieva, Raikhan; Krasnoshtanov, Vladimir C; Belyaev, Nikolai N

    2017-08-01

    Myeloid-derived suppressor cells (MDSCs) are important negative regulators of immune processes in cancer and other pathological conditions. We suggested that MDSCs play a key role in pathogenesis of chronic inflammation, which precedes and, to a certain extent, induces carcinogenesis. The present study aimed at investigation of MDSCs arising during chronic inflammation and light-at-night (LN)-induced stress, which is shown to accelerate chronic diseases. 67 CD-1 mice and in vitro MDSC cultures. Adjuvant arthritis was induced by a subdermal injection of complete Freund's adjuvant. LN was induced by illumination of 750 lx at night. Flow cytometry for evaluation of cell phenotypes and MTT standard test for cell proliferation were used. Increased levels of splenic CD11b + Ly6G high and CD11b + CD49d + myeloid cells possessing suppressive potential in mice with adjuvant arthritis are shown. LN amplifies the process of CD11b + Ly6G high expansion in mice with adjuvant arthritis. Expression of CD62L and CD195 is elevated on the myeloid cells during exposure to LN. Our study raises the possibility that CD11b + Ly6G high and CD11b + CD49d + MDSCs play an important role in the induction of immunosuppressive environment typical for chronic inflammation. Also, LN can affect immune responses during chronic inflammation through recruitment of MDSCs from the bone marrow.

  5. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients

    PubMed Central

    Reyes, D; Salazar, L; Espinoza, E; Pereda, C; Castellón, E; Valdevenito, R; Huidobro, C; Inés Becker, M; Lladser, A; López, M N; Salazar-Onfray, F

    2013-01-01

    Background: Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. Methods: The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8+ memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. Results: The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH+ patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8+ Tm were detected. Conclusion: Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial. PMID:23989944

  6. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients.

    PubMed

    Reyes, D; Salazar, L; Espinoza, E; Pereda, C; Castellón, E; Valdevenito, R; Huidobro, C; Inés Becker, M; Lladser, A; López, M N; Salazar-Onfray, F

    2013-09-17

    Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8(+) memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH(+) patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8(+) Tm were detected. Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial.

  7. Rational design of small molecules as vaccine adjuvants.

    PubMed

    Wu, Tom Y-H; Singh, Manmohan; Miller, Andrew T; De Gregorio, Ennio; Doro, Francesco; D'Oro, Ugo; Skibinski, David A G; Mbow, M Lamine; Bufali, Simone; Herman, Ann E; Cortez, Alex; Li, Yongkai; Nayak, Bishnu P; Tritto, Elaine; Filippi, Christophe M; Otten, Gillis R; Brito, Luis A; Monaci, Elisabetta; Li, Chun; Aprea, Susanna; Valentini, Sara; Calabrό, Samuele; Laera, Donatello; Brunelli, Brunella; Caproni, Elena; Malyala, Padma; Panchal, Rekha G; Warren, Travis K; Bavari, Sina; O'Hagan, Derek T; Cooke, Michael P; Valiante, Nicholas M

    2014-11-19

    Adjuvants increase vaccine potency largely by activating innate immunity and promoting inflammation. Limiting the side effects of this inflammation is a major hurdle for adjuvant use in vaccines for humans. It has been difficult to improve on adjuvant safety because of a poor understanding of adjuvant mechanism and the empirical nature of adjuvant discovery and development historically. We describe new principles for the rational optimization of small-molecule immune potentiators (SMIPs) targeting Toll-like receptor 7 as adjuvants with a predicted increase in their therapeutic indices. Unlike traditional drugs, SMIP-based adjuvants need to have limited bioavailability and remain localized for optimal efficacy. These features also lead to temporally and spatially restricted inflammation that should decrease side effects. Through medicinal and formulation chemistry and extensive immunopharmacology, we show that in vivo potency can be increased with little to no systemic exposure, localized innate immune activation and short in vivo residence times of SMIP-based adjuvants. This work provides a systematic and generalizable approach to engineering small molecules for use as vaccine adjuvants. Copyright © 2014, American Association for the Advancement of Science.

  8. Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy

    PubMed Central

    Fox, Christopher B.; Barnes V, Lucien; Evers, Tara; Chesko, James D.; Vedvick, Thomas S.; Coler, Rhea N.; Reed, Steven G.; Baldwin, Susan L.

    2012-01-01

    Please cite this paper as: Fox et al. (2012) Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12031. Abstract Background  Adjuvant formulations are critical components of modern vaccines based on recombinant proteins, which are often poorly immunogenic without additional immune stimulants. Oil‐in‐water emulsions comprise an advanced class of vaccine adjuvants that are components of approved seasonal and pandemic influenza vaccines. However, few reports have been published that systematically evaluate the in vitro stability and in vivo adjuvant effects of different emulsion components. Objectives  To evaluate distinct classes of surfactants, oils, and excipients, for their effects on emulsion particle size stability, antigen structural interactions, and in vivo activity when formulated with a recombinant H5N1 antigen. Methods  Emulsions were manufactured by high pressure homogenization and characterized alone or in the presence of vaccine antigen by dynamic light scattering, zeta potential, viscosity, pH, hemolytic activity, electron microscopy, fluorescence spectroscopy, and SDS‐PAGE. In vivo vaccine activity in the murine model was characterized by measuring antibody titers, antibody‐secreting plasma cells, hemagglutination inhibition titers, and cytokine production. Results  We demonstrate that surfactant class and presence of additional excipients are not critical for biological activity, whereas oil structure is crucial. Moreover, we report that simplified two‐component emulsions appear more stable by particle size than more complex formulations.Finally, differences in antigen structural interactions with the various emulsions do not appear to correlate with in vivo activity. Conclusions  Oil‐in‐water emulsions can significantly enhance antibody and cellular immune responses to a pandemic influenza antigen. The dramatic differences in adjuvant activity between squalene‐based emulsion and medium chain triglyceride‐based emulsion are due principally to the biological activity of the oil composition rather than physical interactions of the antigen with the emulsion. PMID:23122325

  9. Allergy adjuvant effect of particles from wood smoke and road traffic.

    PubMed

    Samuelsen, Mari; Nygaard, Unni Cecilie; Løvik, Martinus

    2008-04-18

    There is growing evidence that in addition to augmenting the severity of asthma and allergic diseases, particulate air pollution also increases the incidence of allergy and asthma. We studied the adjuvant effect of particles from wood smoke and road traffic on the immune response to the allergen ovalbumin (OVA). OVA with and without particles was injected into one hind footpad of Balb/cA mice. All particles together with OVA significantly increased the level of OVA-specific immunoglobulin E (IgE) in serum, compared to groups given OVA or particles alone. Reference diesel exhaust particles (DEP) with OVA induced the highest levels of IgE, whereas no clear difference was observed between particles from road traffic and wood smoke. Road traffic particles collected in the autumn induced higher IgE values with OVA than corresponding particles collected during the winter season when studded tires are used, suggesting that studded tire-generated road pavement particles have less allergy adjuvant activity than exhaust particles. Compared to OVA or particles alone, all particles with OVA increased popliteal lymph node cell numbers, cell proliferation, ex vivo secretion of IL-4 and IL-10 after ConA stimulation, and the expression of several cell surface molecules (CD19, MHC class II, CD86 and CD23). Wood smoke particles with OVA induced somewhat higher cellular responses than road traffic particles, but less than DEP with OVA which seemed to be the most potent particle in inducing cellular as well as antibody responses. Thus, wood smoke particles had about the same capacity to enhance allergic sensitization as road traffic particles, but less than diesel exhaust particles.

  10. Adjuvant breast cancer therapy: current status and future strategies--growth kinetics and the improved drug therapy of breast cancer.

    PubMed

    Norton, L

    1999-02-01

    It is well-established that the adjuvant treatment of breast cancer is effective in prolonging both disease-free and overall survival. The pressing questions are how to improve on existing treatment, whether new agents should be incorporated into adjuvant regimens, and, if so, how they should best be utilized. The application of log-kill principles to the sigmoid growth curve characteristic of human cancers suggests that the chances of eradicating tumor will be increased by dose-dense schedules. If the tumor is composed of several cell lines with different sensitivities, the optimum therapy is likely to consist of several drugs given in sequence at a good dose and on a dense schedule. Such sequential chemotherapy, rather than the use of drugs given in combination at longer intervals, should maximize log-kill at the same time as minimizing tumor regrowth. There is now evidence that the actions of chemotherapy may involve Ras, tyrosine kinases (epidermal growth factor receptor, HER2), TC21, or similar molecules. This concept may provide important clues for optimizing the clinical applications of drug therapy and for designing new therapeutic approaches. It might also explain the reason why dose density may be more effective than other schedules of administration. New blood vessel formation is an obligatory step in the establishment of a tumor in its sigmoid growth course and there is evidence that taxanes adversely affect this process. Major practical advances in the curative drug therapy of cancer should follow the demonstration of better ways to maximize cell kill, the development of predictive in vitro methods of selecting active agents, the discovery of techniques to minimize both drug resistance and host-cell toxicity, and the improved understanding of cancer-stromal interactions and their therapeutic perturbation.

  11. Novel mucosal DNA-MVA HIV vaccination in which DNA-IL-12 plus cholera toxin B subunit (CTB) cooperates to enhance cellular systemic and mucosal genital tract immunity.

    PubMed

    Maeto, Cynthia; Rodríguez, Ana María; Holgado, María Pía; Falivene, Juliana; Gherardi, María Magdalena

    2014-01-01

    Induction of local antiviral immune responses at the mucosal portal surfaces where HIV-1 and other viral pathogens are usually first encountered remains a primary goal for most vaccines against mucosally acquired viral infections. Exploring mucosal immunization regimes in order to find optimal vector combinations and also appropriate mucosal adjuvants in the HIV vaccine development is decisive. In this study we analyzed the interaction of DNA-IL-12 and cholera toxin B subunit (CTB) after their mucosal administration in DNA prime/MVA boost intranasal regimes, defining the cooperation of both adjuvants to enhance immune responses against the HIV-1 Env antigen. Our results demonstrated that nasal mucosal DNA/MVA immunization schemes can be effectively improved by the co-delivery of DNA-IL-12 plus CTB inducing elevated HIV-specific CD8 responses in spleen and more importantly in genital tract and genito-rectal draining lymph nodes. Remarkably, these CTL responses were of superior quality showing higher avidity, polyfunctionality and a broader cytokine profile. After IL-12+CTB co-delivery, the cellular responses induced showed an enhanced breadth recognizing with higher efficiency Env peptides from different subtypes. Even more, an in vivo CTL cytolytic assay demonstrated the higher specific CD8 T-cell performance after the IL-12+CTB immunization showing in an indirect manner its potential protective capacity. Improvements observed were maintained during the memory phase where we found higher proportions of specific central memory and T memory stem-like cells T-cell subpopulations. Together, our data show that DNA-IL-12 plus CTB can be effectively employed acting as mucosal adjuvants during DNA prime/MVA boost intranasal vaccinations, enhancing magnitude and quality of HIV-specific systemic and mucosal immune responses.

  12. CpG Oligodeoxynucleotide and Montanide ISA 51 Adjuvant Combination Enhanced the Protective Efficacy of a Subunit Malaria Vaccine

    PubMed Central

    Kumar, Sanjai; Jones, Trevor R.; Oakley, Miranda S.; Zheng, Hong; Kuppusamy, Shanmuga P.; Taye, Alem; Krieg, Arthur M.; Stowers, Anthony W.; Kaslow, David C.; Hoffman, Stephen L.

    2004-01-01

    Unmethylated CpG dinucleotide motifs present in bacterial genomes or synthetic oligodeoxynucleotides (ODNs) serve as strong immunostimulatory agents in mice, monkeys and humans. We determined the adjuvant effect of murine CpG ODN 1826 on the immunogenicity and protective efficacy of the Saccharomyces cerevisiae-expressed 19-kDa C-terminal region of merozoite surface protein 1 (yMSP119) of the murine malaria parasite Plasmodium yoelii. We found that in C57BL/6 mice, following sporozoite challenge, the degree of protective immunity against malaria induced by yMSP119 in a formulation of Montanide ISA 51 (ISA) plus CpG ODN 1826 was similar or superior to that conferred by yMSP119 emulsified in complete Freund's adjuvant (CFA/incomplete Freund's adjuvant). In total, among mice immunized with yMSP119, 22 of 32 (68.7%) with ISA plus CpG 1826, 0 of 4 (0%) with CFA/incomplete Freund’s adjuvant, 0 of 4 (0%) with CpG 1826 mixed with ISA (no yMSP119), and 0 of 11 (0%) with CpG 1826 alone were completely protected against development of erythrocytic stage infection after sporozoite challenge. The adjuvant effect of CpG ODN 1826 was manifested as both significantly improved complete protection from malaria (defined as the absence of detectable erythrocytic form parasites) (P = 0.007, chi square) and reduced parasite burden in infected mice. In vivo depletions of interleukin-12 and gamma interferon cytokines and CD4+ and CD8+ T cells in vaccinated mice had no significant effect on immunity. On the other hand, immunoglobulin G (IgG) isotype levels appeared to correlate with protection. Inclusion of CpG ODN 1826 in the yMSP119 plus ISA vaccine contributed towards the induction of higher levels of IgG2a and IgG2b (Th1 type) antibodies, suggesting that CpG ODN 1826 caused a shift towards a Th1 type of immune response that could be responsible for the higher degree of protective immunity. Our results indicate that this potent adjuvant formulation should be further evaluated for use in clinical trials of recombinant malarial vaccine candidates. PMID:14742540

  13. T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis.

    PubMed

    Zheng, Hui; Zhang, Han; Liu, Feng; Qi, Yuanyuan; Jiang, Hong

    2014-01-01

    Mice immunized with neuroantigens in incomplete Freund's adjuvant (IFA) are resistant to subsequent induction of experimental autoimmune encephalomyelitis (EAE). The mechanisms involved in this protection are complex. Studies on relevant CD4(+) or CD8(+) T cells, including effective and regulatory T cells, have been performed by others. In this work, the effects of CD4(-)-, CD8(-)- splenocytes on protection from EAE in C57BL/6 mice which were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG)35-55 in IFA were evaluated. We observed that MOG-reactive CD4(+) T cells failed to be activated and proliferate when CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice were regarded as antigen-presenting cells (APC). It was shown that these APC expressed lower levels of major histocompatibility complex class II (MHC-II), CD80, and CD86 than naïve cells. In addition, CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice showed significantly higher levels of IL-10 mRNA expression. When the immunized-mice were induced to develop EAE, these cells secreted significantly higher levels of IL-10 and produced lower levels of IL-6, leading to decreased secretion of IL-17 and IFN-γ from MOG-specific CD4(+) T cells. The transfer of CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice was able to ameliorate the subsequent induction of EAE in recipient mice. Thus, MOG/IFA immunization can modulate CD4(-)-, CD8(-)- splenocytes by reducing the expression of antigen-presenting molecules and altering the levels of secreted cytokines. Our study reveals an additional mechanism involved in the protective effects of MOG/IFA pre-immunization in an EAE model. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Gene expression alterations associated with outcome in aromatase inhibitor-treated ER+ early-stage breast cancer patients.

    PubMed

    Thomsen, Karina G; Lyng, Maria B; Elias, Daniel; Vever, Henriette; Knoop, Ann S; Lykkesfeldt, Anne E; Lænkholm, Anne-Vibeke; Ditzel, Henrik J

    2015-12-01

    Aromatase inhibitors (AI), either alone or together with chemotherapy, have become the standard adjuvant treatment for postmenopausal, estrogen receptor-positive (ER+) breast cancer. Although AIs improve overall survival, resistance is still a major clinical problem, thus additional biomarkers predictive of outcome of ER+ breast cancer patients treated with AIs are needed. Global gene expression analysis was performed on ER+ primary breast cancers from patients treated with adjuvant AI monotherapy; half experienced recurrence (median follow-up 6.7 years). Gene expression alterations were validated by qRT-PCR, and functional studies evaluating the effect of siRNA-mediated gene knockdown on cell growth were performed. Twenty-six genes, including TFF3, DACH1, RGS5, and GHR, were shown to exhibit altered expression in tumors from patients with recurrence versus non-recurrent (fold change ≥1.5, p < 0.05), and the gene expression alterations were confirmed using qRT-PCR. Ten of these 26 genes could be linked in a network associated with cellular proliferation, growth, and development. TFF3, which encodes for trefoil factor 3 and is an estrogen-responsive oncogene shown to play a functional role in tamoxifen resistance and metastasis of ER+ breast cancer, was also shown to be upregulated in an AI-resistant cell line model, and reduction of TFF3 levels using TFF3-specific siRNAs decreased the growth of both the AI-resistant and -sensitive parental cell lines. Moreover, overexpression of TFF3 in parental AI-sensitive MCF-7/S0.5 cells resulted in reduced sensitivity to the AI exemestane, whereas TFF3 overexpression had no effect on growth in the absence of exemestane, indicating that TFF3 mediates growth and survival signals that abrogate the growth inhibitory effect of exemestane. We identified a panel of 26 genes exhibiting altered expression associated with disease recurrence in patients treated with adjuvant AI monotherapy, including TFF3, which was shown to exhibit a growth- and survival-promoting effect in the context of AI treatment.

  15. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  16. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  17. Assembly and Immunological Processing of Polyelectrolyte Multilayers Composed of Antigens and Adjuvants.

    PubMed

    Chiu, Yu-Chieh; Gammon, Joshua M; Andorko, James I; Tostanoski, Lisa H; Jewell, Christopher M

    2016-07-27

    While biomaterials provide a platform to control the delivery of vaccines, the recently discovered intrinsic inflammatory characteristics of many polymeric carriers can also complicate rational design because the carrier itself can alter the response to other vaccine components. To address this challenge, we recently developed immune-polyelectrolyte multilayer (iPEMs) capsules electrostatically assembled entirely from peptide antigen and molecular adjuvants. Here, we use iPEMs built from SIINFEKL model antigen and polyIC, a stimulatory toll-like receptor agonist, to investigate the impact of pH on iPEM assembly, the processing and interactions of each iPEM component with primary immune cells, and the role of these interactions during antigen-specific T cell responses in coculture and mice. We discovered that iPEM assembly is pH dependent with respect to both the antigen and adjuvant component. Controlling the pH also allows tuning of the relative loading of SIINFEKL and polyIC in iPEM capsules. During in vitro studies with primary dendritic cells (DCs), iPEM capsules ensure that greater than 95% of cells containing at least one signal (i.e., antigen, adjuvant) also contained the other signal. This codelivery leads to DC maturation and SIINFEKL presentation via the MHC-I antigen presentation pathway, resulting in antigen-specific T cell proliferation and pro-inflammatory cytokine secretion. In mice, iPEM capsules potently expand antigen-specific T cells compared with equivalent admixed formulations. Of note, these enhancements become more pronounced with successive booster injections, suggesting that iPEMs functionally improve memory recall response. Together our results reveal some of the features that can be tuned to modulate the properties of iPEM capsules, and how these modular vaccine structures can be used to enhance interactions with immune cells in vitro and in mice.

  18. [Caprine arthritis-encephalitis: trial of an adjuvant vaccine preparation. I. Clinical and virological study].

    PubMed

    Russo, P; Vitu, C; Fontaine, J J; Vignoni, M

    1993-04-01

    In purpose to protect goats against caprine arthritis encephalitis virus (CAEV), the first group of kids (I) was inoculated with purified, inactivated and adjuvant-treated virions, the second group (II) with adjuvant and the third one (III) with culture medium. 2-4 months later, the three groups were challenged with virulent CAEV by intraarticular route. On the clinical level, vaccinated and challenged kids show more early and severe arthritis than other groups. On the virological level, isolation of lentivirus from white blood cells and different organs is more important in group I than groups II and III. Therefore, vaccinations with inactivated and adjuvant-treated virions do not protect against a virulent challenge; there is an enhancement of lesions. We note that the adjuvant elicits a mild non-specific protection against virulent challenge.

  19. The Combination of Early and Rapid Type I IFN, IL-1α, and IL-1β Production Are Essential Mediators of RNA-Like Adjuvant Driven CD4+ Th1 Responses

    PubMed Central

    Madera, Rachel F.; Wang, Jennifer P.; Libraty, Daniel H.

    2011-01-01

    There is a growing need for novel vaccine adjuvants that can provide safe and potent T-helper type 1 (Th1) activity. RNA-like immune response modifiers (IRMs) are candidate T-cell adjuvants that skew acquired immune responses towards a Th1 phenotype. We set out to delineate the essential signaling pathways by which the RNA-like IRMs, resiquimod (R-848) and polyinosinic:polycytidylic acid (poly I:C), augment CD4+ T-helper 1 (Th1) responses. Highly purified murine conventional dendritic cells (cDCs) and conventional CD4+ T-cells were co-cultured in allogeneic and MHC congenic mixed leukocyte reactions. The activation of CD4+ Th1 cells was examined utilizing cells from mice deficient in specific RNA-sensing pattern recognition receptors and signaling mediators. R-848 and poly I:C stimulation of Type I interferon production and signaling in cDCs was essential but not sufficient for driving CD4+ Th1 responses. The early and rapid production of IL-1α and IL-1β was equally critical for the optimal activation of Th1 CD4+ T-cells. R-848 activation of Toll-like receptor 7/MyD88-dependent signaling in cDCs led to a rapid upregulation of pro-IL-1α and pro-IL-1β production compared to poly I:C activation of MyD88-independent signaling pathways. The in vitro data show that CD4+ T-cell adjuvant activity of RNA-like IRMs is mediated by a critical combination of early and rapid Type I interferon, IL-1α and IL-1β production. These results provide important insights into the key signaling pathways responsible for RNA-like IRM CD4+ Th1 activation. A better understanding of the critical signaling pathways by which RNA-like IRMs stimulate CD4+ Th1 responses is relevant to the rational design of improved vaccine adjuvants. PMID:22206014

  20. Cholera toxin B-subunit gene enhances mucosal immunoglobulin A, Th1-type, and CD8+ cytotoxic responses when coadministered intradermally with a DNA vaccine.

    PubMed

    Sanchez, Alba E; Aquino, Guillermo; Ostoa-Saloma, Pedro; Laclette, Juan P; Rocha-Zavaleta, Leticia

    2004-07-01

    A plasmid vector encoding the cholera toxin B subunit (pCtB) was evaluated as an intradermal genetic adjuvant for a model DNA vaccine expressing the human papillomavirus type 16 L1 capsid gene (p16L1) in mice. p16L1 was coadministered with plasmid pCtB or commercial polypeptide CtB as a positive control. Coadministration of pCtB induced a significant increment of specific anti-L1 immunoglobulin A (IgA) antibodies in cervical secretions (P < 0.05) and fecal extracts (P < 0.005). Additionally, coadministration of pCtB enhanced the production of interleukin-2 and gamma interferon by spleen cells but did not affect the production of interleukin-4, suggesting a Th1-type helper response. Furthermore, improved CD8+ T-cell-mediated cytotoxic activity was observed in mice vaccinated with the DNA vaccine with pCtB as an adjuvant. This adjuvant effect was comparable to that induced by the CtB polypeptide. These results indicate that intradermal coadministration of pCtB is an adequate means to enhance the mucosa-, Th1-, and CD8(+)-mediated cytotoxic responses induced by a DNA vaccine.

  1. Cytokine-enhanced vaccine and suicide gene therapy as surgery adjuvant treatments for spontaneous canine melanoma.

    PubMed

    Finocchiaro, L M E; Glikin, G C

    2008-02-01

    We evaluated the safety, efficacy and anti-tumor effects of a surgery adjuvant treatment on canine patients with malignant melanoma. This approach combined suicide gene therapy with a subcutaneous vaccine composed by formolized tumor cells and irradiated xenogeneic cells producing human interleukin-2 and granulocyte-macrophage colony-stimulating factor. The post-surgical margin of the cavity was infiltrated with lipid-complexed thymidine kinase suicide gene coadministrated with ganciclovir. Toxicity was minimal or absent in all patients. With respect to surgery-treated controls (SC), this combined treatment (CT) significantly increased the fraction of patients local disease-free from 6 to 58% and distant metastases-free from 43 to 78% (Fisher's Exact test). In addition, CT significantly improved both SC overall 78 (23-540) and metastasis-free survival 112 (0-467) days to more than 1312 days (respective ranges: 43-1312 and 0-1312) (Kaplan-Meier analysis). In those patients subjected to partial surgery or presenting local recurrence, the efficacy of CT was verified by a 49% of objective responses that averaged 85% of tumor mass loss, while 22% displayed tumor progression as 94% of SC did. Therefore, surgery adjuvant CT controlled tumor growth, delaying or preventing post-surgical recurrence and distant metastasis, significantly extending survival and recovering the quality of life.

  2. Therapeutic effect of melittin on a rat model of chronic prostatitis induced by Complete Freund's Adjuvant.

    PubMed

    Lin, Li; Zhu, Bao-Ping; Cai, Liang

    2017-06-01

    The present study was aimed to establish a model of chronic prostatitis in rat with the use of intraprostatic injection of Complete Freund's Adjuvant, and to examine the anti-inflammatory and analgesic effects of melittin on the newly-developed chronic prostatic pain model. Adult male Sprague-Dawley rats were injected with Complete Freund's Adjuvant (CFA) into the prostate. Twelve days after model rats of the treatment group were injected melittin into the prostate, while those of the control group received sterile saline injection. The nociceptive effects of CFA were evaluated by using a behavior approach (i.e. mechanical pain threshold measurement) on the day of CFA injection and 6, 12, and 18days after CFA injection. After the in-live study was done, the prostate was collected for histological examination of inflammatory cell infiltration. Levels of cyclooxygenase (COX)-2 in prostate and glial fibrillary acidic protein (GFAP) in spinal cord were determined using immunohistochemistry. Rats of the sham control group received intraprostatic injection of sterile saline and were studied using the same methods RESULTS: Intraprostatic CFA injection induced local allodynia that lasted over at least 2 weeks. The pain behavior of rat was associated with increases in inflammatory cell infiltration into the prostate. Levels of COX-2 in prostate and GFAP in spinal cord were also elevated. Treatment with melittin significantly raised pain threshold, decreased inflammatory infiltrates, and suppressed COX-2 and GFAP expression. Intraprostatic injection of CFA induced neurogenic prostatitis and prostatic pain. The established model will be useful to the study of CP/CPPS pathogenesis. Melittin demonstrated profound anti-inflammatory and analgesic effects on the chronic prostatic pain model, suggesting melittin may hold promise as a novel therapeutic for treatment of CP/CPPS. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Sensitization of Staphylococcus aureus to methicillin and other antibiotics in vitro and in vivo in the presence of HAMLET.

    PubMed

    Marks, Laura R; Clementi, Emily A; Hakansson, Anders P

    2013-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex from human milk with both tumoricidal and bactericidal activities. HAMLET exerts a rather specific bactericidal activity against some respiratory pathogens, with highest activity against Streptococcus pneumoniae, but lacks activity against most other bacterial pathogens, including Staphylococci. Still, ion transport associated with death in S. pneumoniae is also detected to a lower degree in insensitive organisms. In this study we demonstrate that HAMLET acts as an antimicrobial adjuvant that can increase the activity of a broad spectrum of antibiotics (methicillin, vancomycin, gentamicin and erythromycin) against multi-drug resistant Staphylococcus aureus, to a degree where they become sensitive to those same antibiotics, both in antimicrobial assays against planktonic and biofilm bacteria and in an in vivo model of nasopharyngeal colonization. We show that HAMLET exerts these effects specifically by dissipating the proton gradient and inducing a sodium-dependent calcium influx that partially depolarizes the plasma membrane, the same mechanism induced during pneumococcal death. These effects results in an increased cell associated binding and/or uptake of penicillin, gentamicin and vancomycin, especially in resistant stains. Finally, HAMLET inhibits the increased resistance of methicillin seen under antibiotic pressure and the bacteria do not become resistant to the adjuvant, which is a major advantageous feature of the molecule. These results highlight HAMLET as a novel antimicrobial adjuvant with the potential to increase the clinical usefulness of antibiotics against drug resistant strains of S. aureus.

  4. Synthesis and Preclinical Evaluation of QS-21 Variants Leading to Simplified Vaccine Adjuvants and Mechanistic Probes

    PubMed Central

    Chea, Eric K.; Fernández-Tejada, Alberto; Damani, Payal; Adams, Michelle M.; Gardner, Jeffrey R.; Livingston, Philip O.; Ragupathi, Govind; Gin, David Y.

    2012-01-01

    QS-21 is a potent immunostimulatory saponin that is currently under clinical investigation as an adjuvant in various vaccines to treat infectious diseases, cancers, and congnitive disorders. Herein we report the design, synthesis, and preclinical evaluation of simplified QS-21 congeners to define key structural features that are critical for adjuvant activity. Truncation of the linear tetrasaccharide domain revealed that a trisaccharide variant is equipotent to QS-21 while the corresponding disaccharide and monosaccharide congeners are more toxic or less potent, respectively. Modification of the acyl domain in the trisaccharide series revealed that a terminal carboxylic acid is well-tolerated while a terminal amine results in reduced adjuvant activity. Acylation of the terminal amine can restore adjuvant activity and enables the synthesis of fluorescently-labeled QS-21 variants. Cellular studies with these probes revealed that, contrary to conventional wisdom, the most highly adjuvant active of these fluorescently-labeled saponins does not simply associate with the plasma membrane, but rather is internalized by dendritic cells. PMID:22866694

  5. Thermostability of the coating, antigen and immunostimulator in an adjuvanted oral capsule vaccine formulation.

    PubMed

    Longet, Stephanie; Aversa, Vincenzo; O'Donnell, Daire; Tobias, Joshua; Rosa, Monica; Holmgren, Jan; Coulter, Ivan S; Lavelle, Ed C

    2017-12-20

    Oral vaccines present an attractive alternative to injectable vaccines for enteric diseases due to ease of delivery and the induction of intestinal immunity at the site of infection. However, susceptibility to gastrointestinal proteolysis, limited transepithelial uptake and a lack of clinically acceptable adjuvants present significant challenges. A further challenge to mass vaccination in developing countries is the very expensive requirement to maintain the cold chain. We recently described the effectiveness of a Single Multiple Pill ® (SmPill ® ) adjuvanted capsule approach to enhance the effectiveness of a candidate enterotoxigenic Escherichia coli (ETEC) oral vaccine. Here it was demonstrated that this delivery system maintains the antigenicity of ETEC colonisation factor antigen I (CFA/I) and the immunostimulatory activity of the orally active α-Galactosylceramide (α-GalCer) adjuvant after storage of SmPill ® minispheres under room temperature and extreme storage conditions for several months. In addition, the internal structure of the cores of SmPill ® minispheres and antigen release features at intestinal pH were found to be preserved under all these conditions. However, changes in the surface morphology of SmPill ® minispheres leading to the antigen release at gastric pH were observed after a few weeks of storage under extreme conditions. Those modifications were prevented by the introduction of an Opadry ® White film coating layer between the core of SmPill ® minispheres and the enteric coating. Under these conditions, protection against antigen release at gastric pH was maintained even under high temperature and humidity conditions. These results support the potential of the SmPill ® minisphere approach to maintain the stability of an adjuvanted whole cell killed oral vaccine formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling.

    PubMed

    Zanotto-Filho, Alfeu; Braganhol, Elizandra; Battastini, Ana Maria Oliveira; Moreira, José Cláudio Fonseca

    2012-12-01

    Proteasome inhibitors are emerging as a new class of anticancer agents. In this work, we examined the mechanisms underlying cytotoxicity, selectivity and adjuvant potential of the proteasome inhibitor MG132 in a panel of glioblastoma (GBM) cells (U138MG, C6, U87 and U373) and in normal astrocytes. MG132 markedly inhibited GBM cells growth irrespective of the p53 or PTEN mutational status of the cells whereas astrocytic viability was not affected, suggesting a selective toxicity of MG132 to cancerous glial cells. Mechanistically, MG132 arrested cells in G2/M phase of the cell cycle and increased p21(WAF1) protein immunocontent. Following cell arrest, cells become apoptotic as shown by annexin-V binding, caspase-3 activation, chromatin condensation and formation of sub-G1 apoptotic cells. MG132 promoted mitochondrial depolarization and decreased the mitochondrial antiapoptotic protein bcl-xL; it also induced activation of JNK and p38, and inhibition of NFkappaB and PI3K/Akt survival pathways. Pre-treatment of GBMs with the mitochondrial permeability transition pore inhibitor, bongkrekic acid, or pharmacological inhibitors of JNK1/2 and p38, SP600125 and SB203580, attenuated MG132-induced cell death. Besides its apoptotic effect alone, MG132 also enhanced the antiglioma effect of the chemotherapeutics cisplatin, taxol and doxorubicin in C6 and U138MG cells, indicating an adjuvant/chemosensitizer potential. In summary, MG132 exerted profound and selective toxicity in GBMs, being a potential agent for further testing in animal models of the disease.

  7. Adjuvant treatment of stage IB NSCLC: the problem of stage subset heterogeneity.

    PubMed

    Calhoun, Royce; Jablons, David; Lau, Derick; Gandara, David R

    2008-04-30

    While 5-year survival rates in patients with stage IB non-small-cell lung cancer (NSCLC) are historically modest (40% to 67%), adjuvant chemotherapy trials including this subgroup have shown little evidence of chemotherapeutic benefit. This article reviews the available data regarding adjuvant chemotherapy following surgically resected stage IB NSCLC, framed within the context of present and future proposed definitions of this diagnosis. The discussion addresses limitations of the current staging system and how this contributes to the mixed results seen with adjuvant treatment. In addition, the authors consider current treatment options for stage IB NSCLC and review planned clinical trials for stage I disease designed to exploit new pharmacogenomic findings.

  8. The influence of mineral trioxide aggregate on adaptive immune responses to endodontic pathogens in mice.

    PubMed

    Rezende, Taia Maria Berto; Vieira, Leda Quercia; Sobrinho, Antônio Paulino Ribeiro; Oliveira, Ricardo Reis; Taubman, Martin A; Kawai, Toshihisa

    2008-09-01

    This study assessed the influence of mineral trioxide aggregate (MTA) on adaptive immune responses. BALB/c mice were immunized with heat-killed Fusobacterium nucleatum (Fn) in MTA or other control adjuvants, and serum IgG responses to Fn were measured. Either Fn- or Peptostreptococcus anaerobius (Pa)-reactive memory T cells (Tm) were preincubated in vitro with/without MTA and restimulated with Fn or Pa. Tm proliferation and cytokine production were assessed. Compared with control groups, immunoglobulin G-antibody responses were upregulated in mice immunized with Fn in MTA in a similar manner to animals immunized with Fn in Freund's adjuvant or aluminum hydroxide adjuvant. Although MTA did not affect the upregulated expression of interleukin 10, tumor necrosis factor alpha, or RANKL by Tm, it suppressed the proliferation of Pa- or Fn-Tm and inhibited their production of Th1- or Th2-signature cytokines. MTA upregulated the adaptive humoral immune responses but had little or no effect on pro- or anti-inflammatory cytokine production by Tm.

  9. Supplementation of adjuvants for increasing the nutritive value and cell viability of probiotic fermented milk beverage.

    PubMed

    Shobharani, P; Agrawal, Renu

    2009-01-01

    Probiotic are microorganisms that, upon ingestion in adequate amounts, exert a beneficial effect on the host. In the present work, the potent probiotic Leuconostoc mesenteroides was used as a starter culture in the preparation of fermented milk beverage. The product was analyzed for protein, titrable acidity, fat, total sugar, fatty acids and minerals. The viability of culture and nutrition in the product was further enhanced with supplementation of adjuvants like tryptone, casein hydrolysate, cysteine hydrochloride and ascorbic acid. After 5 days, maximum viability was observed on supplementation of tryptone (100 mg/l). The protein content was enhanced by 1.1-fold in the presence of tryptone (100 mg/l) as compared with control after 5 days of storage. Fermented milk supplemented with tryptone (100 mg/l) showed maximum bioavailability of the minerals like iron (92.05%), zinc (95.02%) and magnesium (92.04%) as compared with control. The increase in the composition of beneficial fatty acids on supplementation of adjuvants supports the therapeutic value of the product.

  10. Impact of acetic acid concentration, application volume, and adjuvants on weed control efficacy

    USDA-ARS?s Scientific Manuscript database

    Vinegar has been identified as a potential organic herbicide, yet additional information is needed to determine the influence of acetic acid concentration, application volume, and adjuvants on weed control. Acetic acid is a contact herbicide, injuring and killing plants by first destroying the cell ...

  11. 18β-glycyrrhetinic acid induces immunological adjuvant activity of Th1 against Candida albicans surface mannan extract.

    PubMed

    Kim, Jeonghyeon; Joo, Inkyung; Kim, Hayan; Han, Yongmoon

    2013-08-15

    The aim of this study was to determine the immunological adjuvant effect of 18β-glycyrrhetinic acid (GA) isolated from Glycyrrhizae radix. In the experiments, BALB/c mice were immunized on days 1 and 22 intraperitoneally (i.p.) with an emulsion form of Candida albicans surface mannan extract (SM) mixed with either Incomplete Freund's Adjuvant [SM/IFA], or Complete Freund's Adjuvant [SM/CFA] or GA mixed with IFA [SM/GA/IFA]. One week after the second immunization, polyclonal sera were collected from these animals in order to determine IgG isotypes and cytokine profiles in the sera. After the collection, the spleen samples were collected to determine the degree of T cell proliferation. Additionally, the DTH (delayed type hypersensitivity) response was examined by measuring the footpad swelling of immunized mice. Data resulting from the T cell proliferation test showed that SM/GA/IFA enhanced the proliferation the most. The enhancement was about 85% more compared to SM/IFA (p<0.05). IgG isotypes and cytokine profiles displayed that SM/GA/IFA induced the most abundant production of total IgG with the highest IgG2a/IgG1 ratio (1.31) and greatest IFN-γ secretion. In contrast, SM/CFA resulted in an IgG2a/IgG1 ratio less than 1 and SM/IFA produced a dominant induction of IL-4, but almost no IFN-γ secretion. Together, these observations revealed that GA developed a greater Th1 immune response than Th2 response. The DTH determination confirmed that GA-addition induced dominant Th1 immunity - displaying the highest footpad-swelling followed by SM/CFA and BSA/IFA, respectively. All of this data indicates that GA has a Th1-immunological adjuvant activity, which would be beneficial in the treatment of Th1-disordered disease due to C. albicans. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. DIESEL EXHAUST PARTICLE COMPOSITION AND THE METHOD OF SONICATION INFLUENCE THE ADJUVANCY EFFECT AND TARC PRODUCTION

    EPA Science Inventory

    Numerous reports have shown diesel exhaust particles (DEP) can act as an immunological adjuvant in asthma. Recent interest has focused on thymus and activation-regulated chemokine (TARC) as an important modulator of this effect. This study evaluated the adjuvancy effects of thr...

  13. Active immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOX in patients with metastatic melanoma.

    PubMed

    Eton, O; Kharkevitch, D D; Gianan, M A; Ross, M I; Itoh, K; Pride, M W; Donawho, C; Buzaid, A C; Mansfield, P F; Lee, J E; Legha, S S; Plager, C; Papadopoulos, N E; Bedikian, A Y; Benjamin, R S; Balch, C M

    1998-03-01

    Our objective was to determine the clinical activity, toxicity, and immunological effects of active immunotherapy using UVB-irradiated (UVR) autologous tumor (AT) cells plus adjuvant DETOX in metastatic melanoma patients. Eligibility included nonanergic patients fully recovered after resection of 5 or more grams of metastatic melanoma. Treatment consisted of intradermal injections of 10(7) UVR-AT plus 0.25 ml of DETOX every 2 weeks x 6, then monthly. Peripheral blood mononuclear cells (PBMCs) were harvested for cytotoxicity assays, and skin testing was performed for delayed-type hypersensitivity (DTH) determinations before the first, fourth, seventh, and subsequent treatments. Forty-two patients were treated, 18 in the adjuvant setting and 24 with measurable disease. Among the latter group, there were two durable responses in soft-tissue sites and in a bone metastasis. Treatment was well tolerated. Thirty-five patients were assessable for immunological parameters; 10 of these patients, including the 2 responders, demonstrated early induction of PBMC cytotoxicity against AT cells that persisted up to 10 months on treatment before falling to background levels. In five of seven patients, the fall-off heralded progressive disease. Late induction of a weak DTH reaction to AT cells was observed in eight patients. Active immunotherapy with UVR-AT + DETOX had modest but definite clinical activity in advanced melanoma. The induction of both PBMC cytotoxicity and DTH reactivity to AT cells supported a specific systemic immune effect of treatment, although the former more closely followed disease course in this study.

  14. Dead cell phagocytosis and innate immune checkpoint.

    PubMed

    Yoon, Kyoung Wan

    2017-10-01

    The human body loses several billions of cells daily. When cells die in vivo, the corpse of each dead cell is immediately cleared. Specifically, dead cells are efficiently recognized and cleared by multiple types of neighboring phagocytes. Early research on cell death focused more on molecular mechanisms of cell death regulation while the cellular corpses were merely considered cellular debris. However, it has come to light that various biological stimuli following cell death are important for immune regulation. Clearance of normal dead cells occurs silently in immune tolerance. Exogenous or mutated antigens of malignant or infected cells can initiate adaptive immunity, thereby inducing immunogenicity by adjuvant signals. Several pathogens and cancer cells have strategies to limit the adjuvant signals and escape immune surveillance. In this review, we present an overview of the mechanisms of dead cell clearance and its immune regulations. [BMB Reports 2017; 50(10): 496-503].

  15. Inhalation of concentrated PM2.5 from Mexico City acts as an adjuvant in a guinea pig model of allergic asthma.

    PubMed

    Falcon-Rodriguez, Carlos Iván; De Vizcaya-Ruiz, Andrea; Rosas-Pérez, Irma Aurora; Osornio-Vargas, Álvaro Román; Segura-Medina, Patricia

    2017-09-01

    Exposure to Particulate Matter (PM) could function as an adjuvant depending on the city of origin in mice allergic asthma models. Therefore, our aim was to determine whether inhalation of fine particles (PM2.5) from Mexico City could act as an adjuvant inducing allergic sensitization and/or worsening the asthmatic response in guinea pig, as a suitable model of human asthma. Experimental groups were Non-Sensitized (NS group), sensitized with Ovalbumin (OVA) plus Aluminum hydroxide (Al(OH)3) as adjuvant (S + Adj group), and sensitized (OVA) without adjuvant (S group). All the animals were exposed to Filtered Air (FA) or concentrated PM2.5 (5 h/daily/3 days), employing an aerosol concentrator system, PM2.5 composition was characterized. Lung function was evaluated by barometric plethysmography (Penh index). Inflammatory cells present in bronchoalveolar lavage were counted as well as OVA-specific IgG1 and IgE were determined by ELISA assay. Our results showed in sensitized animals without Al(OH)3, that the PM2.5 exposure (609 ± 12.73 μg/m3) acted as an adjuvant, triggering OVA-specific IgG1 and IgE concentration. Penh index increased ∼9-fold after OVA challenge in adjuvant-sensitized animals as well as in S + PM2.5 group (∼6-fold), meanwhile NS + FA and S + FA lacked response. S + Adj + PM2.5 group showed an increase significantly of eosinophils and neutrophils in bronchoalveolar lavage. PM2.5 composition was made up of inorganic elements and Polycyclic Aromatic Hydrocarbons, as well as endotoxins and β-glucan, all these components could act as adjuvant. Our study demonstrated that acute inhalation of PM2.5 acted as an adjuvant, similar to the aluminum hydroxide effect, triggering allergic asthma in a guinea pig model. Furthermore, in sensitized animals with aluminum hydroxide an enhancing influence of PM2.5 exposure was observed as specific-hyperresponsiveness to OVA challenge (quickly response) and eosinophilic and neutrophilic airway inflammation. Fine particles from Mexico City is a complex mix, which play a significant role as adjuvant in allergic asthma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants.

    PubMed

    Fox, Christopher B; Haensler, Jean

    2013-07-01

    With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03. The authors also present a summary of other emulsion adjuvants in clinical development and indicate promising avenues for future emulsion-based adjuvant development. Overall, emulsion adjuvants have demonstrated potent adjuvant activity across a number of disease indications along with acceptable safety profiles.

  17. [Critical analysis of reference studies on aluminium-based adjuvants toxicokinetics].

    PubMed

    Masson, J-D; Crépeaux, G; Authier, F-J; Exley, C; Gherardi, R K

    2017-07-01

    We reviewed the three reference toxicokinetic studies commonly used to suggest innocuity of aluminum (Al)-based adjuvants. A single experimental study was carried out using isotopic 26 Al (Flarend et al., 1997). This study ignored adjuvant cell capture. It was conducted over a short period of time (28 days) and used only two rabbits per adjuvant. At the endpoint, Al retention was 78% for aluminum phosphate and 94% for aluminum hydroxide, both results being incompatible with quick elimination of vaccine-derived Al in urines. Tissue distribution analysis omitted three important retention sites: the injected muscle, the draining lymph node and bone. Two theoretical studies have evaluated the potential risk of vaccine Al in infants, by reference to the oral Minimal Risk Level (MRL) extrapolated from animal studies. Keith et al., 2002 used a too high MRL (2mg/kg/d), an erroneous model of 100% immediate absorption of vaccine Al, and did not consider renal and blood-brain barrier immaturity. Mitkus et al. (2011) only considered absorbed Al, with erroneous calculations of absorption duration. They ignored particulate Al captured by immune cells, which play a role in systemic diffusion and the neuro-inflammatory potential of the adjuvant. MRL they used was both inappropriate (oral Al vs injected adjuvant) and far too high (1mg/kg/d) with regard to experimental studies of Al-induced memory and behavioral changes. Both paucity and serious weaknesses of these studies strongly suggest that novel experimental studies of Al adjuvants toxicokinetics should be performed on the long-term, including post-natal and adult exposures, to ensure innocuity and restore population confidence in Al-containing vaccines. Copyright © 2017 Académie Nationale de Pharmacie. All rights reserved.

  18. [Current knowledge on perioperative treatments of non-small cell lung carcinomas].

    PubMed

    Brosseau, S; Naltet, C; Nguenang, M; Gounant, V; Mordant, P; Milleron, B; Castier, Y; Zalcman, G

    2017-06-01

    Surgery is still the main treatment in early-stage of non-small cell lung cancer with 5-year survival of stage IA patients exceeding 80%, but 5-year survival of stage II patients rapidly decreasing with tumor size, N status, and visceral pleura invasion. The major metastatic risk in such patients has supported clinical research assessing systemic or loco-regional perioperative treatments. Modern phase 3 trials clearly validated adjuvant or neo-adjuvant platinum-based chemotherapy in resected stage I-III patients as a standard treatment of which value has been reassessed several independent meta-analyses, showing a 5% benefit in 5y-survival, and a decrease of the relative risk for death around from 12 to 25%. Conversely perioperative treatments were not validated for stage IA and IB patients. In more advanced stage patients, neo-adjuvant radio-chemotherapy has not been validated either. Adjuvant radiotherapy for N2 patients is currently tested in the large international phase 3 trial Lung-ART/IFCT-0503. The development of video-assisted thoracic surgery (VATS) has helped adjuvant chemotherapies for elderly patients. Perioperative targeted treatments in NSCLC with EGFR or ALK molecular alterations is currently assessed in the U.S. ALCHEMIST prospective trial. Finally, the role of immune check-points inhibitors is currently evaluated in a large international phase 3 trial testing adjuvant anti-PD-L1 monoclonal antibody, the BR31/IFCT-1401 trial, while a proof-of principle neo-adjuvant trial IONESCO/IFCT-1601, has just begun by the end of the 2016 year, with survival results of both trials expected in 5 to 7 years. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  19. Platelet-to-lymphocyte ratio predicts the prognosis of patients with non-small cell lung cancer treated with surgery and postoperative adjuvant chemotherapy.

    PubMed

    Toda, Michihito; Tsukioka, Takuma; Izumi, Nobuhiro; Komatsu, Hiroaki; Okada, Satoshi; Hara, Kantaro; Miyamoto, Hikaru; Ito, Ryuichi; Shibata, Toshihiko; Nishiyama, Noritoshi

    2018-01-01

    Markers of preoperative tumor immunity, such as platelet-to-lymphocyte ratio (PLR), have been reported to be prognostic factors for patients with various cancers. However, the relationship between PLR and the prognosis of non-small cell lung cancer (NSCLC) patients treated with surgery and adjuvant chemotherapy as a multidisciplinary treatment is unknown. We enrolled 327 NSCLC patients treated surgically with or without adjuvant chemotherapy (78 and 249 patients, respectively) at our hospital from 2008 to 2012. Patients had no preoperative hematological disease or infection. Preoperative PLR and clinicopathologic characteristics were recorded and their potential associations and prognostic values were assessed by Kaplan-Meier and multivariate Cox regression. The optimal cut-off value for high and low PLR was calculated from receiver operating characteristic curves. The five-year overall survival rates for patients with low and high PLR were 78% and 57% (P < 0.01) for all patients, and 69% and 37% (P < 0.01) for patients who received adjuvant chemotherapy, respectively. Similarly, the five-year disease-free survival rates for patients with low and high PLR were 66% and 62% (P = 0.03) for all patients, and 47% and 14% (P < 0.01) for patients who received adjuvant chemotherapy, respectively. Cox proportional hazard regression indicated that high PLR was an independent prognostic factor for both overall and disease-free survival in the adjuvant chemotherapy group. Elevated PLR predicts poor prognosis in surgically treated NSCLC patients, especially those who receive adjuvant chemotherapy. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  20. Identification of Compounds That Prolong Type I Interferon Signaling as Potential Vaccine Adjuvants.

    PubMed

    Shukla, Nikunj M; Arimoto, Kei-Ichiro; Yao, Shiyin; Fan, Jun-Bao; Zhang, Yue; Sato-Kaneko, Fumi; Lao, Fitzgerald S; Hosoya, Tadashi; Messer, Karen; Pu, Minya; Cottam, Howard B; Carson, Dennis A; Hayashi, Tomoko; Zhang, Dong-Er; Corr, Maripat

    2018-05-01

    Vaccines are reliant on adjuvants to enhance the immune stimulus, and type I interferons (IFNs) have been shown to be beneficial in augmenting this response. We were interested in identifying compounds that would sustain activation of an endogenous type I IFN response as a co-adjuvant. We began with generation of a human monocytic THP-1 cell line with an IFN-stimulated response element (ISRE)-β-lactamase reporter construct for high-throughput screening. Pilot studies were performed to optimize the parameters and conditions for this cell-based Förster resonance energy transfer (FRET) reporter assay for sustaining an IFN-α-induced ISRE activation signal. These conditions were confirmed in an initial pilot screen, followed by the main screen for evaluating prolongation of an IFN-α-induced ISRE activation signal at 16 h. Hit compounds were identified using a structure enrichment strategy based on chemoinformatic clustering and a naïve "Top X" approach. A select list of confirmed hits was then evaluated for toxicity and the ability to sustain IFN activity by gene and protein expression. Finally, for proof of concept, a panel of compounds was used to immunize mice as co-adjuvant with a model antigen and an IFN-inducing Toll-like receptor 4 agonist, lipopolysaccharide, as an adjuvant. Selected compounds significantly augmented antigen-specific immunoglobulin responses.

  1. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  2. The citrus methoxyflavone tangeretin affects human cell-cell interactions.

    PubMed

    Brack, Marc E; Boterberg, Tom; Depypere, Herman T; Stove, Christophe; Leclercq, Georges; Mareel, Marc M

    2002-01-01

    Two effects of the citrus methoxyflavone tangeretin on cell-cell interactions are biologically relevant. Firstly, tangeretin upregulates the function of the E-cadherin/catenin complex in human MCF-7/6 breast carcinoma cells. This leads to firm cell-cell adhesion and inhibition of invasion in vitro. Secondly, tangeretin downregulates the interleukin-2 receptor on T-lymphocytes and natural killer cells. This leads to a decrease in the cytotoxic competence of these immunocytes against cancer cells. The second effect can become important when high doses of tangeretin are combined with adjuvant tamoxifen treatment for breast cancer. Experiments with nude mice bearing MCF-7/6 tumors showed that tangeretin given orally at high doses, abrogated the therapeutic suppression of tumor growth exerted by tamoxifen. No evidence for a tumor promoting effect of tangeretin by itself was found in these experiments. Tangeretin may be an interesting molecule for application in cases where immunosuppression could be clinically beneficial.

  3. Treatment Patterns and Health Resource Utilization Among Patients Diagnosed With Early Stage Resected Non-Small Cell Lung Cancer at US Community Oncology Practices.

    PubMed

    Buck, Philip O; Saverno, Kimberly R; Miller, Paul J E; Arondekar, Bhakti; Walker, Mark S

    2015-11-01

    Data on adjuvant therapy in resected non-small cell lung cancer (NSCLC) in routine practice are lacking in the United States. This retrospective observational database study included 609 community oncology patients with resected stage IB to IIIA NSCLC. Use of adjuvant therapy was 39.1% at disease stage IB and 64.9% to 68.2% at stage II to IIIA. The most common regimen at all stages was carboplatin and paclitaxel. Platin-based adjuvant chemotherapy has extended survival in clinical trials in patients with completely resected non-small cell lung cancer (NSCLC). There are few data on the use of adjuvant therapy in community-based clinical practice in the United States. This was a retrospective observational study using electronic medical record and billing data collected during routine care at US community oncology sites in the Vector Oncology Data Warehouse between January 2007 and January 2014. Patients aged ≥ 18 years with a primary diagnosis of stage IB to IIIA NSCLC were eligible if they had undergone surgical resection. Treatment patterns, health care resource use, and cost were recorded, stratified by stage at diagnosis. The study included 609 patients (mean age, 64.8 years, 52.9% male), of whom 215 had stage IB disease, 130 stage IIA/II, 110 stage IIB, and 154 stage IIIA. Adjuvant systemic therapy after resection was provided to 345 (56.7%) of 609 patients, with lower use in patients with stage IB disease (39.1%) than stage II to IIIA disease (64.9-68.2%) (P < .0001). The most common adjuvant regimen at all stages was the combination of carboplatin and paclitaxel. There were no statistically significant differences in office visits or incidence of hospitalization by disease stage. During adjuvant treatment, the total monthly median cost per patient was $17,389.75 (interquartile range, $8,815.61 to $23,360.85). Adjuvant systemic therapy was used in some patients with stage IB NSCLC and in the majority of patients with stage IIA to IIIA disease. There were few differences in regimen or health care resource use by disease stage. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Rational design of adjuvants targeting the C-type lectin Mincle.

    PubMed

    Decout, Alexiane; Silva-Gomes, Sandro; Drocourt, Daniel; Barbe, Sophie; André, Isabelle; Cueto, Francisco J; Lioux, Thierry; Sancho, David; Pérouzel, Eric; Vercellone, Alain; Prandi, Jacques; Gilleron, Martine; Tiraby, Gérard; Nigou, Jérôme

    2017-03-07

    The advances in subunit vaccines development have intensified the search for potent adjuvants, particularly adjuvants inducing cell-mediated immune responses. Identification of the C-type lectin Mincle as one of the receptors underlying the remarkable immunogenicity of the mycobacterial cell wall, via recognition of trehalose-6,6'-dimycolate (TDM), has opened avenues for the rational design of such molecules. Using a combination of chemical synthesis, biological evaluation, molecular dynamics simulations, and protein mutagenesis, we gained insight into the molecular bases of glycolipid recognition by Mincle. Unexpectedly, the fine structure of the fatty acids was found to play a key role in the binding of a glycolipid to the carbohydrate recognition domain of the lectin. Glucose and mannose esterified at O -6 by a synthetic α-ramified 32-carbon fatty acid showed agonist activity similar to that of TDM, despite their much simpler structure. Moreover, they were seen to stimulate proinflammatory cytokine production in primary human and murine cells in a Mincle-dependent fashion. Finally, they were found to induce strong Th1 and Th17 immune responses in vivo in immunization experiments in mice and conferred protection in a murine model of Mycobacterium tuberculosis infection. Here we describe the rational development of new molecules with powerful adjuvant properties.

  5. Anti-arthritic activity of cell wall content of Lactobacillus plantarum in freund's adjuvant-induced arthritic rats: involvement of cellular inflammatory mediators and other biomarkers.

    PubMed

    Gohil, Priyanshee; Patel, Vimal; Deshpande, Shrikalp; Chorawala, Mehul; Shah, Gaurang

    2018-02-01

    Alteration of microbiota is related with rheumatoid arthritis (RA) and administration of certain probiotics showed an improvement in RA. The present study was designed to find out the anti-arthritic activity of cell wall content of Lactobacillus plantarum in complete Freund's adjuvant (CFA)-induced arthritis in rats. Freund's adjuvant was injected into the left footpad in female rats on day 0 and dexamethasone (1 mg kg -1 , s.c.) & cell wall content of L. plantarum (10 5 , 10 7 , and 10 9  cfu/animal, s.c.) treatment were given from day 7 to 21. The change in body weight, paw volume and arthritic index, joint stiffness, gait test, mobility test, erythrocyte sedimentation rate (ESR), serum C-reactive protein (CRP) level, serum rheumatoid factor (RF), and serum TNF-α was measured on day 21. Cell wall content of L. plantarum treated animals showed improvement in all the parameters as compared to that in CFA-treated animals and exert anti-arthritic activity.

  6. Evaluation of the effect of losartan and methotrexate combined therapy in adjuvant-induced arthritis in rats.

    PubMed

    Refaat, Rowaida; Salama, Mona; Abdel Meguid, Elham; El Sarha, Ashgan; Gowayed, Mennatallah

    2013-01-05

    There is increasing body of evidence documenting the involvement of angiotensin II in inflammatory diseases. Moreover the up-regulation of angiotensin II AT(1) receptors in the synovium of rheumatoid arthritis patients has been previously described. This study aimed at investigating the anti-inflammatory effect of losartan, the selective angiotensin II AT(1) receptor blocker, and comparing the efficacy of methotrexate alone and in combination with losartan in adjuvant arthritis in rats. Twelve days post adjuvant injection, Sprague-Dawley rats were treated with methotrexate (1mg/kg/week), losartan (20mg/kg/day) and their combination for 15 days. Severity of arthritis was assessed by hind paw swelling, arthrogram scores. Serum was analyzed for measurement of albumin, C-reactive protein (CRP), nitrite/nitrate concentrations, interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), aspartate transaminase (AST) and alanine transaminase (ALT). Histopathological examination was done for hind paws and livers. Methotrexate and losartan monotherapies significantly reduced all parameters of inflammation and arthritis with better results in the methotrexate group except for the transaminases where losartan caused more significant reduction in their serum levels. The combined therapy showed better results than methotrexate and losartan alone. Hind paws showed better improvement of inflammatory cell infiltration and bone resorption in the combined therapy group. Disturbances in liver architecture and fibrosis caused by adjuvant arthritis were reverted to normal status in the combined therapy group in contrast to losartan and methotrexate monotherapies. In conclusion, methotrexate and losartan combined therapy provided more effective anti-inflammatory and hepatoprotective effects than either drug alone. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Cytosine-phosphate-guanine oligodeoxynucleotides containing GACGTT motifs enhance the immune responses elicited by keyhole limpet hemocyanin antigen in dairy cattle.

    PubMed

    Chu, Chun-Yen; Lee, Shang-Chun; Liu, Shyh-Shyan; Lin, Yu-Ming; Shen, Perng-Chi; Yu, Chi; Lee, Kuo-Hua; Zhao, Xin; Lee, Jai-Wei

    2011-10-01

    Adjuvants are important components of vaccine formulations. Effective adjuvants line innate and adaptive immunity by signaling through pathogen recognition receptors. Synthetic cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs) have been shown to have potentials as adjuvants for vaccines. However, the immunostimulatory effect of CpG is species-specific and depends on the sequence of CpG motifs. A CpG ODN (2135), containing 3 identical copies of GTCGTT motif, was previously reported to have the strongest effects on bovine peripheral blood mononuclear cells (PBMC). Based on the sequence of 2135, we replaced the GTCGTT motif with 11 other sequences containing CG and investigated their effects on bovine lymphocyte proliferation. Results showed that the CpG ODNs containing 3 copies of GACGTT motif had the highest lymphocyte stimulation index (7.91±1.18), which was significantly (P<0.05) higher than that of 2135 (4.25±0.56). The CpG ODNs containing 3 copies of GACGTT motif also significantly increased the mRNA expression of interferon (IFN)-α, interleukin (IL)-12, and IL-21 in bovine PBMC. When dairy cows were immunized with the keyhole limpet hemocyanin (KLH) antigen formulated with CpG ODNs containing 3 copies of GACGTT, production of KLH-specific antibodies in serum and in milk whey was significantly (P<0.05) enhanced. IFN-γ in whole blood stimulated by KLH was also significantly (P<0.05) increased in cows immunized with KLH plus CpG ODNs. Our results indicate that CpG ODNs containing 3 copies of the GACGTT motifs is a potential adjuvant for bovine vaccines.

  8. Enhanced Tumor Retention Effect by Click Chemistry for Improved Cancer Immunochemotherapy.

    PubMed

    Mei, Ling; Liu, Yayuan; Rao, Jingdong; Tang, Xian; Li, Man; Zhang, Zhirong; He, Qin

    2018-05-30

    Because of the limited drug concentration in tumor tissues and inappropriate treatment strategies, tumor recurrence and metastasis are critical challenges for effectively treating malignancies. A key challenge for effective delivery of nanoparticles is to reduce uptake by reticuloendothelial system and to enhance the permeability and retention effect. Herein, we demonstrated Cu(I)-catalyzed click chemistry triggered the aggregation of azide/alkyne-modified micelles, enhancing micelles accumulation in tumor tissues. In addition, combined doxorubicin with the adjuvant monophosphoryl lipid A, an agonist of toll-like receptor4, generated immunogenic cell death, which further promoted maturity of dendritic cells, antigen presentation and induced strong effector T cells in vivo. Following combined with anti-PD-L1 therapy, substantial antitumor and metastasis inhibitory effects were achieved because of the reduced PD-L1 expression and regulatory T cells. In addition, effective long-term immunity from memory T cell responses protected mice from tumor recurrence.

  9. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies.

    PubMed

    Hanagata, Nobutaka

    2017-01-01

    Unmethylated cytosine-guanine dinucleotide-containing oligodeoxynucleotides (CpG ODNs), which are synthetic agonists of Toll-like receptor 9 (TLR9), activate humoral and cellular immunity and are being developed as vaccine adjuvants to prevent or treat cancers, infectious diseases, and allergies. Free CpG ODNs have been used in many clinical trials implemented to verify their effects. However, recent research has reported that self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes demonstrate higher adjuvant effects than free CpG ODNs, owing to their improved uptake efficiency into cells expressing TLR9. Moreover, protein/peptide-CpG ODN conjugates and nanomaterial-CpG ODN complexes are able to deliver CpG ODNs and antigens (or allergens) to the same types of cells, which enables a higher degree of prophylaxis or therapeutic effect. In this review, the author describes recent trends in the research and development of CpG ODN nanomedicines containing self-assembled CpG ODNs, protein/peptide-CpG ODN conjugates, and nanomaterial-CpG ODN complexes, focusing mainly on the results of preclinical and clinical studies.

  10. Intra-vaginal Zinc Oxide Tetrapod Nanoparticles as Novel Immunoprotective Agents against Genital Herpes

    PubMed Central

    Antoine, Thessicar E.; Hadigal, Satvik R.; Yakoub, Abraam; Mishra, Yogendra K.; Bhattacharya, Palash; Haddad, Christine; Valyi-Nagy, Tibor; Adelung, Rainer; Prabhakar, Bellur S.; Shukla, Deepak

    2016-01-01

    Virtually all efforts to generate an effective protection against the life-long, recurrent genital infections caused by Herpes simplex virus-2 (HSV-2) have failed. Apart from sexual transmission, the virus can also be transmitted from mothers to neonates, and is a key facilitator of HIV co-acquisition. Here, we uncover a nanoimmunotherapy using specially designed Zinc Oxide Tetrapod Nanoparticles (ZOTEN) with engineered oxygen vacancies. We demonstrate that ZOTEN, when used intravaginally as a microbicide, is an effective suppressor of HSV-2 genital infection in female BALB/c mice. The strong HSV-2 trapping ability of ZOTEN significantly reduced the clinical signs of vaginal infection and effectively decreased animal mortality. In parallel, ZOTEN promoted the presentation of bound HSV-2 virions to mucosal antigen presenting cells, enhancing T cell- mediated and antibody-mediated responses to the infection, and thereby, suppressing a re-infection. We also found that ZOTEN exhibits strong adjuvant-like properties, which is highly comparable to alum, a commonly used adjuvant. Overall, our study provides very first evidence for the protective efficacy of an intravaginal microbicide/vaccine or microbivac platform against primary and secondary female genital herpes infections. PMID:27183601

  11. AUTOSENSITIZATION REACTION IN VITRO

    PubMed Central

    Koprowski, Hilary; Fernandes, Mario V.

    1962-01-01

    Lymph node cells were obtained from an inbred strain of Lewis rats injected with guinea pig cord tissue in Freund's adjuvant. These cells, when added to tissue culture monolayers of puppy brain, aggregated on or around the glial elements. This reaction, called contactual agglutination, was followed by the specific destruction of glial cells, leaving cultures consisting only of fibroblasts. No such reaction was noted when lymph node cells obtained either from normal rats or those injected with adjuvant alone were used. Absorption of serum obtained from rats injected with guinea pig cord tissue by non-sensitized lymph node cells made them reactive in brain tissue culture. The contactual agglutination test seems to provide an opportunity for investigation of sensitization reaction in tissue culture systems. PMID:14034719

  12. Effectiveness of Brucella abortus lipopolysaccharide as an adjuvant for tuberculin PPD.

    PubMed

    Jamalan, Mostafa; Ardestani, Susan Kaboudanian; Zeinali, Majid; Mosaveri, Nader; Mohammad Taheri, Mohammad

    2011-01-01

    Bacterial lipopolysaccharide (LPS) has T-helper 1 (Th1) immunostimulatory activities but because of toxicity and pyrogenicity cannot be used as an adjuvant. Brucella abortus LPS has less toxicity and no pyrogenic properties in comparison to other bacterial LPS. In the current study, the immunostimulatory properties of B. abortus LPS were evaluated for its adjuvant activity. Tuberculin purified protein derivative (PPD) from Mycobacterium tuberculosis was extracted and after anion-exchange chromatography on Q-sepharose column, two fractions (17 and 23), which dominantly contained 30- and 70-kDa antigens, were collected for immunological studies. BALB/c mice were immunized with four different antigen preparations (BCG, PPD, 17th and 23rd PPD fractions) along with complete Freund's adjuvant or B. abortus LPS. The T-cell immune response of mice was assessed by measurement of Th1-type cytokine (IFN-γ) and Th2-type cytokines (IL-5 and IL-10) levels. Also, the humoral immunity was evaluated by measuring the specific IgG levels. Our results showed that immunization of mice with 17th PPD fraction along with B. abortus LPS can induce a Th1-type cytokine response characterized with a high IFN-γ/IL-5 ratio, while immunization with PPD or 23rd PPD fraction along with the same adjuvant resulted to a mixed Th1/Th2-type cytokine response. Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

  13. The anti-proliferative and apoptotic effects of crocin on chemosensitive and chemoresistant cervical cancer cells.

    PubMed

    Mollaei, Homa; Safaralizadeh, Reza; Babaei, Esmaeil; Abedini, Mohamad Reza; Hoshyar, Reyhane

    2017-10-01

    Cervical cancer is the fourth cause of cancer-related mortality among females worldwide. Although current therapies reduce disease symptoms, resistance of tumor cells to chemotherapy agents after a while is a serious problem. Therefore, utilization of novel adjuvant agents to increase efficiency of chemotherapy is essential. In the last two decades, botanicals with effective anticancer activities have been studied. Among them, the anticancer properties of crocin have been more attended. In this study, the molecular mechanism of crocin action was investigated in sensitive human cervical cancer cell line (OV2008) in comparison with the resistant one (C13). A 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay showed that crocin inhibits proliferation of sensitive cells (OV2008) at a time- and dose-dependent manner at 48 and 72h. Also, this inhibitory effect has been shown on resistant cells (C13) at 72h. Hoechst staining and flow cytometry assay also confirmed these results and revealed that antiproliferative effect of crocin might be due to the induction of apoptosis. Moreover, the genetic mechanism of crocin-induced apoptosis was accomplished by studying the relative expressions of P53, Bax, Bcl2 and miR-365, an upstream regulator of the last two ones. Real-time PCR analysis indicated that 1.5 and 3mg/ml crocin led to up-regulation of Bax and P53 and down-regulation of Bcl2 and miR-365 at all time intervals in both two cell lines. However, OV2008 cell line was more sensitive to crocin, and alternation of gene expretion was more obvious in this cell line. In this regard, the present study demonstrated the anti-proliferative and apoptotic activities of crocin against both sensitive and resistant cervical cancer cells that may benefit cervical cancer treatment as an adjuvant agent to decrease chemoresistance and increase the efficiency of therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Coenzyme A contained in mothers' milk is associated with the potential to induce atopic dermatitis.

    PubMed

    Higashi, Takehiro; Shimojo, Naoki; Suzuki, Shuichi; Nakaya, Mayuko; Takagi, Rie; Hashimoto, Kumiko; Nakagome, Kazuyuki; Nakamura, Koichiro; Kohno, Yoichi; Matsushita, Sho

    2011-12-01

    T(h)2 adjuvant activity can be qualitatively and quantitatively evaluated using a mixed lymphocyte reaction and by changes in the intracellular cyclic adenosine 3',5'-monophosphate concentration, using human dendritic cells in vitro. The current study shows that mothers, whose children (n = 55) developed atopic dermatitis (AD) within 6 months after birth, often demonstrate a higher T(h)2 adjuvant activity in their milk, in comparison to those whose children did not develop such symptoms. Such an activity was recovered in a liquid phase of mothers' milk and was eluted as a single fraction by reversed-phase HPLC. Further analysis of this fraction by mass spectrometry showed that signals originating from a factor with a molecular weight of 767.53 are observed, exclusively in milk with a high T(h)2 adjuvant activity. The mass is exactly that of Coenzyme A (CoA), and indeed, a low concentration of CoA exhibited T(h)2 adjuvant activity both in vitro and in vivo. Moreover, mesenteric lymph node non-T cells obtained from mice that were orally treated with CoA led allogeneic naive CD4(+) T cells to differentiate into T(h)2. Furthermore, the oral administration of CoA induced rough skin, hyperplasia of the epidermis, hypergranulosis in the spinous layer and the thickening of the stratum in mice. These data collectively indicate that some of the patients with AD were exposed to mothers' milk carrying high T(h)2 adjuvant activity right after birth, which may be attributable to presence of CoA contained in the milk.

  15. Effects of Curcumin on Squamous Cell Carcinoma of Tongue: An In Vitro Study.

    PubMed

    Ardito, F; Perrone, D; Giuliani, M; Testa, N F; Muzio, L Lo

    2018-01-01

    The Squamous Cell Carcinoma of the Tongue (TSCC) is the most frequent cancer of oral cavity often characterized by poor prognosis. Conventional therapies are not very efficient and often may cause serious side effects. In this context, introduction of natural substances as possible adjuvant in the treatment and prevention of cancer is becoming a relevant topic. In fact, curcumin has been used for decades in Chinese traditional medicine for its beneficial effects. Curcumin has anticancer properties in many tumors however, its action on the tongue carcinoma is not entirely clear and many other investigations are necessary. Curcumin seems to be a good adjuvant in the treatment of head and neck tumors. However, these studies are generic and there are not many specific studies on TSCC, the most frequent and most aggressive cancer of the head-neck region. Our goal is to demonstrate its effectiveness also for TSCC. In this study, we evaluated the effects of curcumin on TSCC cells using different concentrations (1, 5, 10, 20 and 50 µM) and 3 different treatment times (24, 48 and 72 hours). The inhibition of adhesion, proliferation, viability, migration and apoptosis was studied. IC50 value of curcumin is about 10 µM and there have been inhibitory effects even for treatments at low concentrations. Curcumin reduces migration and progression of TSCC cells and it promotes apoptosis and inhibits tumorigenesis. These results suggest the possible use of curcumin as an anti-cancer agent in TSCC. However, in vivo studies are needed to confirm these effects and overcome its low bioavailability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. High-Dose Chemotherapy With Autologous Stem-Cell Support As Adjuvant Therapy in Breast Cancer: Overview of 15 Randomized Trials

    PubMed Central

    Berry, Donald A.; Ueno, Naoto T.; Johnson, Marcella M.; Lei, Xiudong; Caputo, Jean; Rodenhuis, Sjoerd; Peters, William P.; Leonard, Robert C.; Barlow, William E.; Tallman, Martin S.; Bergh, Jonas; Nitz, Ulrike A.; Gianni, Alessandro M.; Basser, Russell L.; Zander, Axel R.; Coombes, R. Charles; Roché, Henri; Tokuda, Yutaka; de Vries, Elisabeth G.E.; Hortobagyi, Gabriel N.; Crown, John P.; Pedrazzoli, Paolo; Bregni, Marco; Demirer, Taner

    2011-01-01

    Purpose Adjuvant high-dose chemotherapy (HDC) with autologous hematopoietic stem-cell transplantation (AHST) for high-risk primary breast cancer has not been shown to prolong survival. Individual trials have had limited power to show overall benefit or benefits within subsets. Methods We assembled individual patient data from 15 randomized trials that compared HDC versus control therapy without stem-cell support. Prospectively defined primary end points were relapse-free survival (RFS) and overall survival (OS). We compared the effect of HDC versus control by using log-rank tests and proportional hazards regression, and we adjusted for clinically relevant covariates. Subset analyses were by age, number of positive lymph nodes, tumor size, histology, hormone receptor (HmR) status, and human epidermal growth factor receptor 2 (HER2) status. Results Of 6,210 total patients (n = 3,118, HDC; n = 3,092 control), the median age was 46 years; 69% were premenopausal, 29% were postmenopausal, and 2% were unknown menopausal status; 49.5% were HmR positive; 33.5% were HmR negative, and 17% were unknown HmR status. The median follow-up was 6 years. After analysis was adjusted for covariates, HDC was found to prolong relapse-free survival (RFS; hazard ratio [HR], 0.87; 95% CI, 0.81 to 0.93; P < .001) but not overall survival (OS; HR, 0.94; 95% CI, 0.87 to 1.02; P = .13). For OS, no covariates had statistically significant interactions with treatment effect, and no subsets evinced a significant effect of HDC. Younger patients had a significantly better RFS on HDC than did older patients. Conclusion Adjuvant HDC with AHST prolonged RFS in high-risk primary breast cancer compared with control, but this did not translate into a significant OS benefit. Whether HDC benefits patients in the context of targeted therapies is unknown. PMID:21768471

  17. Advanced detection and measurement of cells on membrane from peripheral blood by laser scanning cytometry (LSC) in early stage breast cancer patients.

    PubMed

    Sanislo, L; Kuliffay, P; Sedlak, J; Kausitz, J; Galbavy, S

    2010-01-01

    The aim of our study was the potential detection of circulating tumour cells (CTCs) in early stage breast cancer patients. Our approach was cell microfiltration through polycarbonate membrane as a concentration method suitable for CTC selection in peripheral blood. The isolated cells on membrane were further analysed by laser scanning cytometry. Sixteen patients were enrolled in the study, of which 13 had early stage breast carcinoma and 3 patients had metastatic breast carcinoma. The analyses were performed from 9 ml of peripheral blood, in one patient blood was drawn twice. Blood samples were taken after adjuvant chemotherapy but prior to adjuvant radiotherapy. The control group consisted of 12 clinically healthy subjects. In the control group 3 subjects out of 12 had 1 CTC, the mean CTC numbers being 0.25 +/- 0.45. In the early stage breast cancer patients 0-36 CTCs were detected (mean 13.9 +/- 12.9 CTCs. 10 patients out of 13 had more than 2 CTCs (62%). The detection and measurement of cells on membrane is a simple and reproducible method of detection of CTCs in peripheral blood. Sensitivity of the method is 88.5%. Detection of CTCs seems to be a promising method for the monitoring of adjuvant therapy in early stage breast cancer patients and for the identification of high risk patients in whom elevated numbers of CTCs are persisting following the termination of adjuvant therapy (Tab. 1, Fig. 4, Ref. 35). Full Text (Free, PDF) www.bmj.sk.

  18. Ashwagandha Leaf Derived Withanone Protects Normal Human Cells Against the Toxicity of Methoxyacetic Acid, a Major Industrial Metabolite

    PubMed Central

    Priyandoko, Didik; Ishii, Tetsuro; Kaul, Sunil C.; Wadhwa, Renu

    2011-01-01

    The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity. MAA is a major metabolite of ester phthalates that are commonly used in industry as gelling, viscosity and stabilizer reagents. We report that the MAA cause premature senescence of normal human cells by mechanisms that involve ROS generation, DNA and mitochondrial damage. Withanone protects cells from MAA-induced toxicity by suppressing the ROS levels, DNA and mitochondrial damage, and induction of cell defense signaling pathways including Nrf2 and proteasomal degradation. These findings warrant further basic and clinical studies that may promote the use of withanone as a health adjuvant in a variety of consumer products where the toxicity has been a concern because of the use of ester phthalates. PMID:21573189

  19. Induction of Broad CD4+ and CD8+ T-Cell Responses and Cross- Neutralizing Antibodies against Hepatitis C Virus by Vaccination with Th1-Adjuvanted Polypeptides Followed by Defective Alphaviral Particles Expressing Envelope Glycoproteins gpE1 and gpE2 and Nonstructural Proteins 3, 4, and 5▿ †

    PubMed Central

    Lin, Yinling; Kwon, Taewoo; Polo, John; Zhu, Yi-Fei; Coates, Stephen; Crawford, Kevin; Dong, Christine; Wininger, Mark; Hall, John; Selby, Mark; Coit, Doris; Medina-Selby, Angelica; McCoin, Colin; Ng, Philip; Drane, Debbie; Chien, David; Han, Jang; Vajdy, Michael; Houghton, Michael

    2008-01-01

    Broad, multispecific CD4+ and CD8+ T-cell responses to the hepatitis C virus (HCV), as well as virus-cross-neutralizing antibodies, are associated with recovery from acute infection and may also be associated in chronic HCV patients with a favorable response to antiviral treatment. In order to recapitulate all of these responses in an ideal vaccine regimen, we have explored the use of recombinant HCV polypeptides combined with various Th1-type adjuvants and replication-defective alphaviral particles encoding HCV proteins in various prime/boost modalities in BALB/c mice. Defective chimeric alphaviral particles derived from the Sindbis and Venezuelan equine encephalitis viruses encoding either the HCV envelope glycoprotein gpE1/gpE2 heterodimer (E1E2) or nonstructural proteins 3, 4, and 5 (NS345) elicited strong CD8+ T-cell responses but low CD4+ T helper responses to these HCV gene products. In contrast, recombinant E1E2 glycoproteins adjuvanted with MF59 containing a CpG oligonucleotide elicited strong CD4+ T helper responses but no CD8+ T-cell responses. A recombinant NS345 polyprotein also stimulated strong CD4+ T helper responses but no CD8+ T-cell responses when adjuvanted with Iscomatrix containing CpG. Optimal elicitation of broad CD4+ and CD8+ T-cell responses to E1E2 and NS345 was obtained by first priming with Th1-adjuvanted proteins and then boosting with chimeric, defective alphaviruses expressing these HCV genes. In addition, this prime/boost regimen resulted in the induction of anti-E1E2 antibodies capable of cross-neutralizing heterologous HCV isolates in vitro. This vaccine formulation and regimen may therefore be optimal in humans for protection against this highly heterogeneous global pathogen. PMID:18508900

  20. Toxicity Ranking and Toxic Mode of Action Evaluation of Commonly Used Agricultural Adjuvants on the Basis of Bacterial Gene Expression Profiles

    PubMed Central

    Nobels, Ingrid; Spanoghe, Pieter; Haesaert, Geert; Robbens, Johan; Blust, Ronny

    2011-01-01

    The omnipresent group of pesticide adjuvants are often referred to as “inert” ingredients, a rather misleading term since consumers associate this term with “safe”. The upcoming new EU regulation concerning the introduction of plant protection products on the market (EC1107/2009) includes for the first time the demand for information on the possible negative effects of not only the active ingredients but also the used adjuvants. This new regulation requires basic toxicological information that allows decisions on the use/ban or preference of use of available adjuvants. In this study we obtained toxicological relevant information through a multiple endpoint reporter assay for a broad selection of commonly used adjuvants including several solvents (e.g. isophorone) and non-ionic surfactants (e.g. ethoxylated alcohols). The used assay allows the toxicity screening in a mechanistic way, with direct measurement of specific toxicological responses (e.g. oxidative stress, DNA damage, membrane damage and general cell lesions). The results show that the selected solvents are less toxic than the surfactants, suggesting that solvents may have a preference of use, but further research on more compounds is needed to confirm this observation. The gene expression profiles of the selected surfactants reveal that a phenol (ethoxylated tristyrylphenol) and an organosilicone surfactant (ethoxylated trisiloxane) show little or no inductions at EC20 concentrations, making them preferred surfactants for use in different applications. The organosilicone surfactant shows little or no toxicity and good adjuvant properties. However, this study also illustrates possible genotoxicity (induction of the bacterial SOS response) for several surfactants (POEA, AE, tri-EO, EO FA and EO NP) and one solvent (gamma-butyrolactone). Although the number of compounds that were evaluated is rather limited (13), the results show that the used reporter assay is a promising tool to rank commonly used agricultural adjuvants based on toxicity and toxic mode of action data. PMID:22125591

  1. Natural and synthetic saponin adjuvant QS-21 for vaccines against cancer

    PubMed Central

    Ragupathi, Govind; Gardner, Jeffrey R; Livingston, Philip O; Gin, David Y

    2013-01-01

    One of the most widely used and potent immunological adjuvants is a mixture of soluble triterpene glycosides purified from the soap bark tree (Quillaja saponaria). Despite challenges in production, quality control, stability and toxicity, the QS-21 fraction from this extract has exhibited exceptional adjuvant properties for a range of antigens. It possesses an ability to augment clinically significant antibody and T-cell responses to vaccine antigens against a variety of infectious diseases, degenerative disorders and cancers. The recent synthesis of active molecules of QS-21 has provided a robust method to produce this leading vaccine adjuvant in high purity as well as to produce novel synthetic QS-21 congeners designed to induce increased immune responsiveness and decreased toxicity. PMID:21506644

  2. Enhancement of Th1 immune responses to recombinant influenza nucleoprotein by Ribi adjuvant.

    PubMed

    Cargnelutti, Diego E; Sanchez, María A V; Alvarez, Paula; Boado, Lorena; Mattion, Nora; Scodeller, Eduardo A

    2013-04-01

    A broad coverage influenza vaccine against multiple viral strains based on the viral nucleoprotein (NP) is a goal pursued by many laboratories. If the goal is to formulate the vaccine with recombinant NP it is essential to count on adjuvants capable of inducing cellular immunity. This work have studied the effect of the monophosphoryl lipid A and trehalose dimycolate, known as the Ribi Adjuvant System (RAS), in the immune response induced in mice immunized with recombinant NP. The NP was formulated with RAS and used to immunize BALB/c mice. Immunizations with NP-RAS increased the humoral and cellular immune responses compared to unadjuvanted NP. The predominant antibody isotype was IgG2a, suggesting the development of a Th1 response. Analysis of the cytokines from mice immunized with NP-RAS showed a significant increase in the production of IFN-g and a decreased production of IL-10 and IL-4 compared to controls without RAS. These results are similar to those usually obtained using Freund’s adjuvant, known to induce Th1 and CTL responses when co-administered with purified proteins, and suggest that a similar approach may be possible to enhance the performance of a T-cell vaccine containing NP.

  3. Role of phyto-stabilised silver nanoparticles in suppressing adjuvant induced arthritis in rats.

    PubMed

    Mani, Aparna; Vasanthi, C; Gopal, V; Chellathai, Darling

    2016-12-01

    The present study was aimed to evaluate the anti-arthritic effects of silver nanoparticles synthesised using Piper nigrum extract and to further establish its mechanism of action in a rat model of adjuvant induced arthritis (AA). Adjuvant arthritis was induced by injecting complete Freund's adjuvant (0.1mL) into the left hind paw of 36 albino Wistar rats (n=6). Silver nanoparticles stabilised with Piper nigrum extract (25 and 50mg/kg). Commercial silver nanoparticles (50mg/kg) and methotrexate (0.1mg/kg) were administered by intraperitoneal route from day 11 to day 22 on alternate days. It was found that treatment with silver nanoparticles stabilised with Piper nigrum (S-AgNPs) significantly reduced the paw edema and alleviated the histopathological changes of cell infiltration, synovial hyperplasia, bone and cartilage destruction. Furthermore, the phytostabilised silver nanoparticles (S-AgNPs) inhibited the protein expression of NF-kβ p65 and TNF-α as evidenced by immunohistochemistry analysis. Our current findings suggest that silver nanoparticles stabilised with Piper nigrum extract (S-AgNPs) have potent anti-arthritic activity which is mediated by inhibition of TNF-α and suppression of pro-inflammatory cytokines that are secreted in response to activated transcription factors of NF-kβ. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. An Adjuvanted Herpes Simplex Virus 2 Subunit Vaccine Elicits a T Cell Response in Mice and Is an Effective Therapeutic Vaccine in Guinea Pigs

    PubMed Central

    Skoberne, Mojca; Cardin, Rhonda; Lee, Alexander; Kazimirova, Ana; Zielinski, Veronica; Garvie, Danielle; Lundberg, Amy; Larson, Shane; Bravo, Fernando J.; Bernstein, David I.; Flechtner, Jessica B.

    2013-01-01

    Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4+ and CD8+ T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease. PMID:23365421

  5. The effects of ALG on the murine immune response to sheep erythrocytes

    PubMed Central

    Anderson, Hilary R.; Dresser, D. W.; Iverson, G. M.; Lance, E. M.; Wortis, H. H.; Zebra, J.

    1972-01-01

    Antilymphocyte globulin (ALG), and to a lesser extent normal rabbit globulin (NRG), when given to mice prior to immunization with sheep-RBC suppress both the γM and γG2a responses. Globulin injected after the antigen suppresses the γG2a response, augments the γG1 response and has little effect on the γM response. These effects are also observed in mice partially paralysed to rabbit γ globulin. In another system—the response to hapten—protein conjugates precursors of antibody producing cells were found to be more resistant to ALS treatment in vivo than were helper cells. It is concluded that the suppressive effects of ALG treatment are largely due to the direct action of ALG on helper cells (T-cells). The mechanism of the adjuvant-like effect is unclear. PMID:4550853

  6. Immunomodulators as adjuvants for vaccines and antimicrobial therapy.

    PubMed

    Nicholls, Erin F; Madera, Laurence; Hancock, Robert E W

    2010-12-01

    A highly effective strategy for combating infectious diseases is to enhance host defenses using immunomodulators, either preventatively, through vaccination, or therapeutically. The effectiveness of many vaccines currently in use is due in part to adjuvants, molecules that have little immunogenicity by themselves but which help enhance and appropriately skew the immune response to an antigen. The development of new vaccines necessitates the development of new types of adjuvants to ensure an appropriate immune response. Herein, we review commonly used vaccine adjuvants and discuss promising adjuvant candidates. We also discuss various other immunomodulators (namely cytokines, Toll-like receptor agonists, and host defense peptides) that are, or have potential to be, useful for antimicrobial therapies that exert their effects by boosting host immune responses rather than targeting pathogens directly.

  7. Molecular targets for anticancer redox chemotherapy and cisplatin-induced ototoxicity: the role of curcumin on pSTAT3 and Nrf-2 signalling.

    PubMed

    Fetoni, A R; Paciello, F; Mezzogori, D; Rolesi, R; Eramo, S L M; Paludetti, G; Troiani, D

    2015-11-17

    In oncology, an emerging paradigm emphasises molecularly targeted approaches for cancer prevention and therapy and the use of adjuvant chemotherapeutics to overcome cisplatin limitations. Owing to their safe use, some polyphenols, such as curcumin, modulate important pathways or molecular targets in cancers. This paper focuses on curcumin as an adjuvant molecule to cisplatin by analysing its potential implications on the molecular targets, signal transducer and activator of transcription 3 (STAT3) and NF-E2 p45-related factor 2 (Nrf-2), in tumour progression and cisplatin resistance in vitro and the adverse effect ototoxicity in vivo. The effects of curcumin and/or cisplatin treatment have been evaluated in head and neck squamous cell carcinoma as well as in a rat model of cisplatin-induced ototoxicity by using immunofluorescence, western blot, and functional and morphological analysis. This study demonstrates that curcumin attenuates all stages of tumour progression (survival, proliferation) and, by targeting pSTAT3 and Nrf-2 signalling pathways, provides chemosensitisation to cisplatin in vitro and protection from its ototoxic adverse effects in vivo. These results indicate that curcumin can be used as an efficient adjuvant to cisplatin cancer therapy. This treatment strategy in head and neck cancer could mediate cisplatin chemoresistance by modulating therapeutic targets (STAT3 and Nrf2) and, at the same time, reduce cisplatin-related ototoxic adverse effects.

  8. Trial Watch: Anticancer radioimmunotherapy.

    PubMed

    Vacchelli, Erika; Vitale, Ilio; Tartour, Eric; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-09-01

    Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in cancer patients.

  9. Trial Watch

    PubMed Central

    Vacchelli, Erika; Vitale, Ilio; Tartour, Eric; Eggermont, Alexander; Sautès-Fridman, Catherine; Galon, Jérôme; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2013-01-01

    Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in cancer patients. PMID:24319634

  10. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants

    USDA-ARS?s Scientific Manuscript database

    Adjuvants can improve pesticide application efficiency and effectiveness. However, knowledge is lacking on quantitative behaviors of adjuvant-amended pesticide droplets on foliage. Evaporation rates and wetted areas of 500 µm diameter water droplets amended with four adjuvants applied to waxy and h...

  11. New Natural Pigment Fraction Isolated from Saw Palmetto: Potential for Adjuvant Therapy of Hepatocellular Carcinoma

    PubMed Central

    Tan, Hor-Yue; Wang, Ning; Takahashi, Masao; Feng, Yigang; Li, Hongyun; Feng, Yibin

    2016-01-01

    For the first time, we discovered a small proportion of aqueous fraction from Saw Palmetto apart from the fatty acid-rich fraction exhibited pharmacological activity. Therefore, this study aims to explore the anti-tumor potential of red pigmented aqueous fraction of Saw Palmetto, NYG on human hepatocellular carcinoma and its possible targets. Subcutaneous xenograft and orthotopic implantation models of HCC were used to evaluate the tumor inhibitory effect of NYG. Human hepatocellular carcinoma (HCC) cell lines and human umbilical vein endothelial cells (HUVEC) were used as in vitro model. The mRNA expression was conducted by qPCR. Protein expression was monitored by immunoblotting and immunohistochemistry. Cell migration and blood vessel formation were determined by chamber assay and tube formation assay, respectively. Significant tumor inhibition of NYG in dose-dependent manner was observed on subcutaneous xenograft and orthotopic HCC model. NYG has no direct action on cell viability or VEGF secretion of HCC cells. However, NYG reduced in vitro migration and vessel formation activities of HUVEC cells, as well as in vivo intratumoral neovascularization. NYG attenuated extracellular signal-regulated kinases (ERK) activation in endothelial cells, which may be associated with the suppression of migration and tube formation of HUVEC. NYG suppressed tumor expansion of HCC via inhibiting neovascularization, and may be potential adjuvant treatment for HCC. PMID:27527161

  12. Evaluation of immunogenicity and protective efficacy of adjuvanted Salmonella Typhimurium ghost vaccine against salmonellosis in chickens.

    PubMed

    Jawale, Chetan V; Lee, John Hwa

    2016-09-01

    Salmonella Typhimurium, a non-host-adapted Gram-negative intracellular pathogen, is capable of infecting a variety of animal hosts and humans. This study utilized the prime-booster immunization strategy using Salmonella Typhimurium-LTB (S. Typhimurium-LTB) ghost with the aim of inducing a robust immune response for the prevention of avian salmonellosis. In addition, the effect of Montanide(TM) ISA 70VG adjuvant on S. Typhimurium-LTB ghost vaccination was investigated. A total of 75 chickens were divided into three groups (n=25) for intramuscular immunization: group A (non-immunized control injected with sterile PBS), group B (immunized with S. Typhimurium-LTB ghost), and group C (immunized with S. Typhimurium-LTB ghost plus Montanide(TM) ISA70VG adjuvant). Compared with group A, the immunized chickens (groups B and C) exhibited increased titers of antigen specific plasma IgG and intestinal secretory IgA antibodies. In addition, group C showed enhanced induction of the humoral immune response compared to group B. The populations of splenic CD3+CD4+ and CD3+CD8+ T-cells increased significantly in both immunized groups. In addition, increased mRNA expression of the Th1 cytokines, IFN-γ, and IL-2 were observed in S. Typhimurium antigen-stimulated peripheral blood mononuclear cells from groups B and C chickens. Chickens from both vaccinated groups showed significant protection against virulent S. Typhimurium oral challenge compared to non-vaccinated chickens and a lower challenge strain count was recovered from the internal organs of group C. Injection of S. Typhimurium-LTB ghost with or without Montanide(TM) ISA70VG adjuvant is capable of inducing protective immunity against the virulent S. Typhimurium infection in chickens.

  13. Immunomodulatory Effects of CP-25 on Splenic T Cells of Rats with Adjuvant Arthritis.

    PubMed

    Wang, Yang; Han, Chen-Chen; Cui, Dongqian; Luo, Ting-Ting; Li, Yifan; Zhang, Yuwen; Ma, Yang; Wei, Wei

    2018-06-01

    Rheumatoid arthritis (RA) is an autoimmune disease in which T cells play an important role. Paeoniflorin-6-oxy-benzenesulfonate (CP-25) shows a strong anti-inflammatory and immunomodulatory effect in the joint of adjuvant arthritis (AA) rats, but the role of the spleen function is still unclear. The aim of this study was to research how CP-25 regulated spleen function of AA rats. Male Sprague-Dawley rats were administered with CP-25 (50 mg/kg) orally from day 17 to 29 after immunization. The spleen histopathological changes were analyzed by hematoxylin-eosin staining. G protein-coupled receptor kinases (GRKs) and prostaglandin receptor subtypes (EPs) were screened by Western blot and immunohistochemistry. The co-expression of GRK2 and EP2 as well as GRK2 and EP4 was measured by immunofluorescence and co-immunoprecipitation. The expression of GRK2 and EP4 in splenic T cells was further detected by immunofluorescence. CP-25 was found to relieve the secondary paw swelling, attenuate histopathologic changes, and downregulate GRK2, EP2 and EP4 expression in AA rats. Additionally, CP-25 not only downregulated the co-expression of GRK2 and EP4 but also downregulated GRK2, EP4 expression in splenic T cells of AA rats. From these results, we can infer that CP-25 play an anti-inflammatory and immune function by affecting the function of the splenic T cells.

  14. Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice.

    PubMed

    Cibulski, Samuel Paulo; Silveira, Fernando; Mourglia-Ettlin, Gustavo; Teixeira, Thais Fumaco; dos Santos, Helton Fernandes; Yendo, Anna Carolina; de Costa, Fernanda; Fett-Neto, Arthur Germano; Gosmann, Grace; Roehe, Paulo Michel

    2016-04-01

    A saponin fraction extracted from Quillaja brasiliensis leaves (QB-90) and a semi-purified aqueous extract (AE) were evaluated as adjuvants in a bovine viral diarrhea virus (BVDV) vaccine in mice. Animals were immunized on days 0 and 14 with antigen plus either QB-90 or AE or an oil-adjuvanted vaccine. Two-weeks after boosting, antibodies were measured by ELISA; cellular immunity was evaluated by DTH, lymphoproliferation, cytokine release and single cell IFN-γ production. Serum anti-BVDV IgG, IgG1 and IgG2b were significantly increased in QB-90- and AE-adjuvanted vaccines. A robust DTH response, increased splenocyte proliferation, Th1-type cytokines and enhanced production of IFN-γ by CD4(+) and CD8(+) T lymphocytes were detected in mice that received QB-90-adjuvanted vaccine. The AE-adjuvanted preparation stimulated humoral responses but not cellular immune responses. These findings reveal that QB-90 is capable of stimulating both cellular and humoral immune responses when used as adjuvant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Role of Chemotherapy and Targeted Therapy in Early-Stage Non-Small Cell Lung Cancer.

    PubMed

    Gadgeel, Shirish M

    2017-01-01

    On the basis of several randomized trials and meta-analyses, adjuvant chemotherapy is the accepted standard of care for certain patients with early-stage non-small cell lung cancer (NSCLC). Patients with stage II, IIIA, or large (≥ 4 cm) IB tumors are candidates for adjuvant chemotherapy. The survival improvement with adjuvant chemotherapy is approximately 5% at 5 years, though certain trials have suggested that it can be 8% to 10%. Neoadjuvant chemotherapy also has shown a survival advantage, though the volume of data with this approach is far less than that of adjuvant chemotherapy. The combination of cisplatin and vinorelbine is the most well-studied regimen, but current consensus is to use four cycles of any of the platinum-based chemotherapy regimens commonly used as front-line therapy for patients with advanced-stage NSCLC. Trials to define biomarkers that can predict benefit from adjuvant chemotherapy have not been successful, but results of other such trials are still awaited. On the basis of the benefit observed with targeted agents in patients with advanced-stage disease and driver genetic alterations in their tumors, ongoing trials are evaluating the utility of these targeted agents as adjuvant therapy. Similarly, clinical benefit observed with checkpoint inhibitors has prompted assessment of these drugs in patients with early-stage NSCLC. It is very likely, in the future, that factors other than the anatomy of the tumor will be used to select patients with early-stage NSCLC for systemic therapy and that the choice of systemic therapy will extend beyond platinum-based chemotherapy.

  16. AS03-Adjuvanted, Very-Low-Dose Influenza Vaccines Induce Distinctive Immune Responses Compared to Unadjuvanted High-Dose Vaccines in BALB/c Mice

    PubMed Central

    Yam, Karen K.; Gupta, Jyotsana; Winter, Kaitlin; Allen, Elizabeth; Brewer, Angela; Beaulieu, Édith; Mallett, Corey P.; Burt, David S.; Ward, Brian J.

    2015-01-01

    During the 2009–2010 influenza pandemic, an adjuvanted, dose-sparing vaccine was recommended for most Canadians. We hypothesize that differences exist in the responses to AS03-adjuvanted, low antigen (Ag) dose versus unadjuvanted, full-dose vaccines. We investigated the relationship between Ag dose and the oil-in-water emulsion Adjuvant System AS03. BALB/c mice received two IM doses of AS03A or AS03B with exaggerated dilutions of A/Uruguay/716/2007 H3N2 split virion vaccine Ag. Immune responses were assessed 3 weeks after the booster. Unadjuvanted “high” (3 μg) and low-dose (0.03–0.003 μg) vaccines generated similar serum antibody titers and cytokine secretion patterns in restimulated splenocytes. Compared to unadjuvanted “high-dose” vaccination, both AS03A and AS03B-adjuvanted low-dose vaccines tended to elicit higher serum antibody titers, broader induction of cytokine secretion and generated more influenza-specific antibody secreting cells and cytokine-secreting CD4 and CD8 T cells in splenocytes. We show that varying Ag and/or AS03 dose in this influenza vaccination mouse model can strongly influence both the magnitude and pattern of the immune response elicited. These findings are highly relevant given the likelihood of expanded use of adjuvanted, dose-sparing vaccines and raise questions about the use of “standard” doses of vaccines in pre-clinical vaccine studies. PMID:25972874

  17. Methotrexate, combined with cyclophosphamide attenuates murine collagen induced arthritis by modulating the expression level of Breg and DCs.

    PubMed

    Fan, Jinnan; Luo, Jing; Yan, Caiping; Hao, Runxi; Zhao, Xiangcong; Jia, Ruihuan; He, Jiaojiao; Xu, Dan; Miao, Miao; Li, Xiaofeng

    2017-10-01

    To explore the mechanism of methotrexate (MTX) and its combination with cyclophosphamide (CTX) in collagen-induced arthritis (CIA), we investigated the levels of several immune cells and cytokines in mice with different treatments. CIA was induced in DBA/1 mice at the age of 7 weeks by primary immunization with 100μl emulsion containing 2mg/ml bovine type II collagen which was mixed with complete Freund's adjuvant (CFA). The booster immunization was performed with 50-100μl emulsion containing 2mg/ml bovine type II collagen (CII) mixed with incomplete Freund's adjuvant (IFA). MTX, CTX or both were administrated after the booster immunization. Therapeutic effect was evaluated by arthritic scores, X-rays and assessment of histopathological joint destruction. The expression of TNF-α, IL-6, IL-23, IL-10 were also measured. The frequencies of different immune cell subsets in the lymph node, spleen and bone marrow were determined by flow cytometry analysis. Our results showed that CTX and MTX treatment attenuated the severity of arthritis of CIA mice and reduced the levels of several cytokines. CTX and MTX treated mice showed a lower frequency of B cells in bone marrow. Also, when treated the CIA mice with MTX, alone or together with CTX, the lymph nodes and spleen exhibited a decrease in regulatory B cells (Breg) and dendritic cells (DCs). Notably, the combination of MTX and CTX had a more pronounced effect. By measuring the levels of different immune cells those participated in the development of rheumatoid arthritis (RA), our experiment may help to evaluate the therapeutic effects and prognosis of arthritic diseases. Copyright © 2017. Published by Elsevier Ltd.

  18. Positive effects of an oil adjuvant on efficacy, dissipation and safety of pyrimethanil and boscalid on greenhouse strawberry.

    PubMed

    Wang, Zhiwei; Wang, Xinquan; Cang, Tao; Zhao, Xueping; Wu, Shenggan; Qi, Peipei; Wang, Xiangyun; Xu, Xiahong; Wang, Qiang

    2018-05-21

    Methylated vegetable oil adjuvants can enhance initial deposition and decrease the required dosages of pesticides sprayed on plants, so an oil adjuvant mixed with fungicides were used to prevent and control gray mold in greenhouse strawberry. As the persistence and dietary exposure risks from fungicides on strawberries after using adjuvants have not been assessed, the efficacy, dissipation and safety of pyrimethanil and boscalid in the presence and absence of a methylated vegetable oil adjuvant were evaluated. To better describe the actual use of fungicides in greenhouse strawberry, twice repeated application of fungicides were conducted follower by an optimized QuEChERS pre-treatment method. When applied at 60% of their recommended dosages with the adjuvant, the efficacy of pyrimethanil and boscalid for gray mold was similar to that shown by the treatment of 100% fungicides in absence of the adjuvant based on Duncan's Multiple-Range test, and their average residues increased to 89.0% and 89.3%, respectively. The adjuvant enhanced the accumulation effect of pyrimethanil residue by 31.7% after repeated applications, and the half-lives were similar (5.2 and 4.2 d). The adjuvant had comparable accumulation effects (1.75 and 1.83) and similar half-lives (5.4 and 5.5 d) for boscalid. In absence of adjuvant, the risk quotients (RQs) of pyrimethanil (0.41 and 0.33) and boscalid (0.49 and 0.63) after twice applications at pre-harvest interval were lower than 1. Adding the methylated vegetable oil adjuvant to fungicides would result in unprolonging half-life and acceptably low dietary exposure risk on strawberries, but lower dosage of fungicides were used. Copyright © 2018. Published by Elsevier Inc.

  19. Pandemic influenza A H1N1 vaccine in recipients of solid organ transplants: immunogenicity and tolerability outcomes after vero cell derived, non-adjuvanted, whole-virion vaccination.

    PubMed

    Lagler, Heimo; Wenisch, Judith M; Tobudic, Selma; Gualdoni, Guido A; Rödler, Susanne; Rasoul-Rockenschaub, Susanne; Jaksch, Peter; Redlberger-Fritz, Monika; Popow-Kraupp, Theresia; Burgmann, Heinz

    2011-09-16

    During the 2009/10 pandemic of influenza A (H1N1), the American Society of Transplantation and other health organizations recommended that immunocompromised patients should be vaccinated as the key preventive measure. Since there are no data available for the immunogenicity of the unadjuvanted pandemic influenza vaccine in immunocompromised patients - as opposed to the adjuvanted preparation - the objective of this study was to evaluate the immunogenicity of an adjuvant-free H1N1 vaccine in recipients of solid organ transplants. Patients were recruited at the Vienna General Hospital, Austria. The vaccination schedule consisted of 2 doses of a whole-virion, vero cell derived, inactivated, non-adjuvanted influenza A/California/07/2009 (H1N1) vaccine given with an interval of 3 weeks. A hemagglutination inhibition (HI) assay on blood samples obtained prior to the first and after each vaccination was used for serologic analysis. The primary immunologic endpoint was the seroconversion rate, defined as the proportion of subjects with an individual 4-fold increase in HI titer of at least 1:40. In addition, virus-specific IgG antibodies to the pandemic H1N1 strain were measured using a commercially available ELISA. Twenty-five organ transplant patients (16 males, 9 females) aged 25-79 years were vaccinated and provided blood samples for serologic analysis. The time elapsed since transplantation was 10 months to 25 years (mean: 9 years; 95% CI 6-13 years). The vaccine was well tolerated and no local adverse events were noticed. After two vaccinations 37% of the patients demonstrated seroconversion in the HI assay as defined above and 70% had virus-specific IgG antibodies. Among the HI vaccine responders were 6 of 14 heart transplant recipients and 1 of 4 liver transplant recipients. The number and type of immunosuppressive agents did not significantly differ in their effect on the immune response. Our results show that the novel vero cell derived and adjuvant-free pandemic A/California/07/2009 (H1N1) influenza vaccine induced limited but measurable immune responses in adult recipients of solid organ transplants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Ketamine, as adjuvant analgesics for patients with refractory cancer pain, does affect IL-2/IFN-γ expression of T cells in vitro?: A prospective, randomized, double-blind study.

    PubMed

    Zhou, Naibao; Fu, Zhijian; Li, Hao; Wang, Kaiguo

    2017-04-01

    Ketamine has been used as an analgesic adjuvant with morphine in the treatment of refractory cancer pain recently. But both morphine and ketamine have been reported to produce a number of immunomodulatory effects. The current study was performed to assess whether the concentration of ketamine, as adjuvant analgesics for patient with refractory cancer pain, was related to its effect on T cells interleukin-2 (IL-2)/interferon-γ (IFN-γ) expression in vitro. Peripheral blood mononuclear cells (PBMCs) were isolated from venous blood of patients with refractory cancer pain over a Ficoll-Hypaque density gradient. T cells were isolated from by positive selection using anti-CD3 beads. T cells were then treated with vehicle (C group), morphine (200 ng/mL, M group), morphine (200 ng/mL), and different dose of ketamine (100, 200, 1000 ng/mL; MK1, MK5, MK10 group) for 24 hours before stimulation with anti-CD3 and anti-CD28. Then supernatant IL-2 and IFN-γ protein analysis, quantitative reverse transcription polymerase chain reaction (RT-PCR) for IL-2 and IFN-γ were done. There were no significant difference of supernatant IL-2 and IFN-γ among C group, M group, and MK1 group, but the mRNA of M group and MK1 group were decreased compared with C group (P < .05). Compared with C group, both of the supernatant protein and the mRNA of MK5 group and MK10 group were all significantly decreased (P < .01). Compared with M group, both of the supernatant protein and the mRNA of MK5 group and MK10 group were all decreased (P < .05), while supernatant IL-2 and the mRNA of MK10 group were significantly decreased (P < .01). In conclusion, we confirmed that just as morphine, ketamine dose-dependently suppressed IL-2 and IFN-γ of activated T lymphocyte of patients with refractory cancer pain in vitro, but the inhibitory action of low dose ketamine could be neglected.

  1. Ketamine, as adjuvant analgesics for patients with refractory cancer pain, does affect IL-2/IFN-γ expression of T cells in vitro?

    PubMed Central

    Zhou, Naibao; Fu, Zhijian; Li, Hao; Wang, Kaiguo

    2017-01-01

    Abstract Background: Ketamine has been used as an analgesic adjuvant with morphine in the treatment of refractory cancer pain recently. But both morphine and ketamine have been reported to produce a number of immunomodulatory effects. The current study was performed to assess whether the concentration of ketamine, as adjuvant analgesics for patient with refractory cancer pain, was related to its effect on T cells interleukin-2 (IL-2)/interferon-γ (IFN-γ) expression in vitro. Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from venous blood of patients with refractory cancer pain over a Ficoll-Hypaque density gradient. T cells were isolated from by positive selection using anti-CD3 beads. T cells were then treated with vehicle (C group), morphine (200 ng/mL, M group), morphine (200 ng/mL), and different dose of ketamine (100, 200, 1000 ng/mL; MK1, MK5, MK10 group) for 24 hours before stimulation with anti-CD3 and anti-CD28. Then supernatant IL-2 and IFN-γ protein analysis, quantitative reverse transcription polymerase chain reaction (RT-PCR) for IL-2 and IFN-γ were done. Results: There were no significant difference of supernatant IL-2 and IFN-γ among C group, M group, and MK1 group, but the mRNA of M group and MK1 group were decreased compared with C group (P < .05). Compared with C group, both of the supernatant protein and the mRNA of MK5 group and MK10 group were all significantly decreased (P < .01). Compared with M group, both of the supernatant protein and the mRNA of MK5 group and MK10 group were all decreased (P < .05), while supernatant IL-2 and the mRNA of MK10 group were significantly decreased (P < .01). Conclusion: In conclusion, we confirmed that just as morphine, ketamine dose-dependently suppressed IL-2 and IFN-γ of activated T lymphocyte of patients with refractory cancer pain in vitro, but the inhibitory action of low dose ketamine could be neglected. PMID:28422864

  2. Cytokinetics of adult rat SVZ after EAE.

    PubMed

    Sajad, Mir; Chawla, Raman; Zargan, Jamil; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A

    2011-01-31

    Cytokinetics regulating cell cycle division can be modulated by several endogenous factors. EAE (experimental autoimmune encephalomyelitis) increases proliferation of progenitor cells in the subventricular zone (SVZ). Using cumulative and single S phase labeling with 5-bromo-2-deoxyuridine, we examined cell cycle kinetics of neural progenitor cells in the SVZ after EAE. 20% of the SVZ cell population was proliferating in adjuvant control rats. However, EAE significantly increased them up to 27% and these cells had a cell cycle length (TC) of 15.6h, significantly (P<0.05) shorter than the 19 h TC in non EAE SVZ cells. Few TUNEL (+) cells were detected in the SVZ cells of adjuvant controls. EAE increased (P<0.05) TUNEL (+) nuclei in SVZ suggesting early stage progenitor cell death. Cell cycle phase analysis revealed that EAE substantially shortened the length of the G1 phase (9.6h) compared with the G1 phase of 12.25 h in adjuvant control SVZ cells (P<0.05). This reduction in G1 contributes to EAE-induced reduction of TC because no significant changes were detected on the length of S, G2 and M phases between the two groups. Our results show a surge in proliferating progenitor cells in the SVZ with concomitant increase in apoptotic cell death after EAE. Furthermore, increase in the SVZ proliferation contributes to EAE-induced neurogenesis and this increase is regulated by shortening the G1 phase. Our investigation suggests the activation of quiescent cells in SVZ to generate actively proliferating progenitors. Moreover, the increase in the cell death in proliferating population may contribute towards negative regulation of proliferative cell number and hence diminished regenerative capacity of CNS following EAE. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Sensitization of Staphylococcus aureus to Methicillin and Other Antibiotics In Vitro and In Vivo in the Presence of HAMLET

    PubMed Central

    Marks, Laura R.; Clementi, Emily A.; Hakansson, Anders P.

    2013-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex from human milk with both tumoricidal and bactericidal activities. HAMLET exerts a rather specific bactericidal activity against some respiratory pathogens, with highest activity against Streptococcus pneumoniae, but lacks activity against most other bacterial pathogens, including Staphylococci. Still, ion transport associated with death in S. pneumoniae is also detected to a lower degree in insensitive organisms. In this study we demonstrate that HAMLET acts as an antimicrobial adjuvant that can increase the activity of a broad spectrum of antibiotics (methicillin, vancomycin, gentamicin and erythromycin) against multi-drug resistant Staphylococcus aureus, to a degree where they become sensitive to those same antibiotics, both in antimicrobial assays against planktonic and biofilm bacteria and in an in vivo model of nasopharyngeal colonization. We show that HAMLET exerts these effects specifically by dissipating the proton gradient and inducing a sodium-dependent calcium influx that partially depolarizes the plasma membrane, the same mechanism induced during pneumococcal death. These effects results in an increased cell associated binding and/or uptake of penicillin, gentamicin and vancomycin, especially in resistant stains. Finally, HAMLET inhibits the increased resistance of methicillin seen under antibiotic pressure and the bacteria do not become resistant to the adjuvant, which is a major advantageous feature of the molecule. These results highlight HAMLET as a novel antimicrobial adjuvant with the potential to increase the clinical usefulness of antibiotics against drug resistant strains of S. aureus. PMID:23650551

  4. Metastatic Spinal Cord Compression from Non-Small-Cell Lung Cancer Treated with Surgery and Adjuvant Therapies: A Retrospective Analysis of Outcomes and Prognostic Factors in 116 Patients.

    PubMed

    Tang, Yu; Qu, Jintao; Wu, Juan; Li, Song; Zhou, Yue; Xiao, Jianru

    2015-09-02

    Metastatic spinal cord compression is a disastrous consequence of non-small-cell lung cancer (NSCLC). There have been few studies of the outcomes or prognostic factors in patients with metastatic spinal cord compression from NSCLC treated with surgery and adjuvant therapies. From 2002 to 2013, 116 patients with metastatic spinal cord compression from NSCLC treated with surgery and adjuvant therapies were enrolled in this retrospective analysis. Kaplan-Meier methods and Cox regression analysis were used to estimate overall survival and identify prognostic factors for survival. Multivariate analysis suggested that the Eastern Cooperative Oncology Group performance status (ECOG-PS), preoperative and postoperative Frankel scores, postoperative adjuvant radiation therapy, and target therapy were independent prognostic factors. Ninety patients died at a median of twelve months (range, three to forty-seven months) postoperatively, and twenty-six patients were still alive at the time of final follow-up (at a median of fifteen months [range, five to fifty-four months]). The complete disappearance of deficits in spinal cord function after surgery was the most robust predictor of survival. Adjuvant radiation therapy and target therapy were also associated with a better prognosis. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  5. Long-term follow-up after transoral laser microsurgery and adjuvant radiotherapy for advanced recurrent squamous cell carcinoma of the head and neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christiansen, Hans; Hermann, Robert Michael; Martin, Alexios

    Purpose: The aim of this study was to evaluate the efficacy of adjuvant radiotherapy after transoral laser microsurgery for advanced recurrent head-and-neck squamous cell carcinoma (HNSCC). Patients and Methods: Between 1988 and 2000, 37 patients with advanced local recurrences (23 local and 14 locoregional recurrences) of HNSCC without distant metastases were treated in curative intent with organ-preserving transoral laser microsurgery and adjuvant radiotherapy (before 1994 split-course radiotherapy with carboplatinum, after 1994 conventional radiotherapy). Initial therapy of the primary (8.1% oral cavity, 35.1% oropharynx, 13.5% hypopharynx, and 43.3% larynx) before relapse was organ-preserving transoral laser microsurgery without any adjuvant therapy. Results:more » After a median follow-up of 124 months, the 5-year overall survival rate was 21.3%, the loco-regional control rate 48.3%, respectively. In multivariate analysis, stage of original primary tumor (Stage I/II vs. Stage III/IV), and patient age (<58 years vs. {>=}58 years) showed statistically significant impact on prognosis. In laryngeal cancer, larynx preservation rate after treatment for recurrent tumor was 50% during follow-up. Conclusion: Our data show that organ-preserving transoral laser microsurgery followed by adjuvant radiotherapy is a curative option for patients who have advanced recurrence after transoral laser surgery and is an alternative to radical treatment.« less

  6. Evaporation and Spread of Droplets with Various Types and Concentrations of Adjuvants on Waxy and Hairy Leaves

    USDA-ARS?s Scientific Manuscript database

    Adjuvants have been used to improve pesticide application efficiency and effectiveness for many years. However, knowledge on quantitative reactions of adjuvant-amended pesticide droplets on foliage is lacking. Evaporation rate and wetted area of 500 µm droplets with four different adjuvants on waxy ...

  7. Evaluation by enzyme-linked immunosorbent assay (ELISA) of Renibacterium salmoninarum bacterins affected by persistence of bacterial antigens

    USGS Publications Warehouse

    Pascho, R.J.; Goodrich, T.D.; McKibben, C.L.

    1997-01-01

    Rainbow trout Oncorhynchus mykiss were injected intraperitoneally with a bacterin containing killed Renibacterium salmoninarum cells delivered alone or in an oil-based adjuvant. We evaluated the relative abilities of the batterins to prevent the initiation or progression of infection in fish challenged by waterborne exposure to R. salmoninarum. Sixty-one days after vaccination, fish were held for 24 h in water containing either no bacteria or approximately 1.7 x 103, 1.7 x 105, or 5.3 x 106 live R. salmoninarum cells/mL. An enzyme-linked immunosorbent assay (ELISA) was used to monitor changes in the levels of R. salmoninarum antigen in live fish before and after the immersion challenges. High levels of R. salmoninarum antigens were detected by ELISA in kidney-spleen tissue homogenates from vaccinated fish immediately before the challenges. Levels of those antigens remained high in the tissues of unchallenged fish throughout the study. We found that the ELISA used in this study may be unsuitable for evaluating the efficacy of batterins because it did not distinguish antigens produced by the challenge bacteria during an infection from those of the bacterins. Groups of control and vaccinated fish also were injected with either 1.7 x 104 or 1.7 x 106 R. salmoninarum cells and served as R. salmoninarum virulence controls. Relative survival among the various subgroups in the injection challenge suggests that adverse effects might have been associated with the adjuvant used in this study. The lowest survival at both injection challenge levels was among fish vaccinated with bacteria in adjuvant.

  8. Intravenous Lidocaine as an Adjuvant for Pain Associated with Sickle Cell Disease.

    PubMed

    Nguyen, Natalie L; Kome, Anne M; Lowe, Denise K; Coyne, Patrick; Hawks, Kelly G

    2015-01-01

    The objectives of this study were to evaluate the efficacy and safety of adjuvant intravenous (IV) lidocaine in adults with sickle cell disease (SCD). This was a retrospective review. Adults with SCD receiving at least one IV lidocaine infusion from 2004 to 2014 were included. Patient demographics, lidocaine treatment parameters, pain scores, pain medications, and adverse effects were recorded. Eleven patients were identified, yielding 15 IV lidocaine trials. Clinical improvement in pain scores from pre-lidocaine challenge to 24 hours post-lidocaine challenge, defined by ≥ 20% reduction in pain scores, was achieved in 53.3% (8 of 15) of IV lidocaine challenges. Of the 8 clinically successful trials, the mean reduction in morphine dose equivalents (MDE) from 24 hours pre-lidocaine challenge to 24 hours post-lidocaine challenge was 32.2%. Additionally, clinically successful trials had a mean initial and a maximum dose of 1 mg/kg/h (range: 0.5-2.7 mg/kg/h) and 1.3 mg/kg/h (range: 0.5-1.9 mg/kg/h), respectively. On average, these patients underwent 3 dose titrations (range: 1-8) and received lidocaine infusions for 4.4 days (range: 2-8 days). Two patients experienced disorientation and dizziness. The authors conclude that adjuvant IV lidocaine provided pain relief and a mean reduction in MDE during sickle cell pain crisis. These results provide preliminary insight into the use of IV lidocaine for treating pain in patients with SCD, although prospective studies are needed to determine efficacy, dosing, and tolerability of IV lidocaine in this patient population.

  9. Novel HIV IL-4R antagonist vaccine strategy can induce both high avidity CD8 T and B cell immunity with greater protective efficacy.

    PubMed

    Jackson, Ronald J; Worley, Matthew; Trivedi, Shubhanshi; Ranasinghe, Charani

    2014-09-29

    We have established that the efficacy of a heterologous poxvirus vectored HIV vaccine, fowlpox virus (FPV)-HIV gag/pol prime followed by attenuated vaccinia virus (VV)-HIV gag/pol booster immunisation, is strongly influenced by the cytokine milieu at the priming vaccination site, with endogenous IL-13 detrimental to the quality of the HIV specific CD8+ T cell response induced. We have now developed a novel HIV vaccine that co-expresses a C-terminal deletion mutant of the mouse IL-4, deleted for the essential tyrosine (Y119) required for signalling. In our vaccine system, the mutant IL-4C118 can bind to IL-4 type I and II receptors with high affinity, and transiently prevent the signalling of both IL-4 and IL-13 at the vaccination site. When this IL-4C118 adjuvanted vaccine was used in an intranasal rFPV/intramuscular rVV prime-boost immunisation strategy, greatly enhanced mucosal/systemic HIV specific CD8+ T cells with higher functional avidity, expressing IFN-γ, TNF-α and IL-2 and greater protective efficacy were detected. Surprisingly, the IL-4C118 adjuvanted vaccines also induced robust long-lived HIV gag-specific serum antibody responses, specifically IgG1 and IgG2a. The p55-gag IgG2a responses induced were of a higher magnitude relative to the IL-13Rα2 adjuvant vaccine. More interestingly, our recently tested IL-13Rα2 adjuvanted vaccine which only inhibited IL-13 activity, even though induced excellent high avidity HIV-specific CD8+ T cells, had a detrimental impact on the induction of gag-specific IgG2a antibody immunity. Our observations suggest that (i) IL-4 cell-signalling in the absence of IL-13 retarded gag-specific antibody isotype class switching, or (ii) IL-13Rα2 signalling was involved in inducing good gag-specific B cell immunity. Thus, we believe our novel IL-4R antagonist adjuvant strategy offers great promise not only for HIV-1 vaccines, but also against a range of chronic infections where sustained high quality mucosal and systemic T and B cell immunity are required for protection. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The effects of combined selenium nanoparticles and radiation therapy on breast cancer cells in vitro.

    PubMed

    Chen, Feng; Zhang, Xiao Hong; Hu, Xiao Dan; Liu, Pei Dang; Zhang, Hai Qian

    2018-08-01

    Radiosensitizers that increase cancer cell radio-sensitivity can enhance the effectiveness of irradiation and minimize collateral damage. Nanomaterial has been employed in conjunction with radiotherapy as radiosensitizers, due to its unique physicochemical properties. In this article, we evaluated selenium nanoparticles (Nano-Se) as a new radiosensitizer. Nano-Se was used in conjunction with irradiation on MCF-7 breast cancer cells, and efficacy and mechanisms of this combined treatment approach were evaluated. Nano-Se reinforced the toxic effects of irradiation, leading to a higher mortality rate than either treatment used alone, inducing cell cycle arrest at the G2/M phase and the activation of autophagy, and increasing both endogenous and irradiation-induced reactive oxygen species formation. These results suggest that Nano-Se can be used as an adjuvant drug to improve cancer cell sensitivity to the toxic effects of irradiation and thereby reduce damage to normal tissue nearby.

  11. Neratinib in HER-2-positive breast cancer: results to date and clinical usefulness.

    PubMed

    Chan, Arlene

    2016-09-01

    The management of HER-2-positive breast cancer has improved significantly with the use of targeted agents to the HER-2 signaling pathway. Despite the improved survival achieved with the use of trastuzumab and chemotherapy in both the adjuvant and metastatic setting, patients may still recur or progress; whilst preclinical data demonstrate that these cancer cells remain addicted to the HER-2 oncogene. Neratinib, an oral small molecule tyrosine-kinase inhibitor has efficacy in the metastatic and adjuvant setting of patients who have previously received trastuzumab-based treatment. Diarrhea, being a class effect of tyrosine-kinase inhibitor, is the most common side effect seen following neratinib administration, but recent data suggests that a prophylactic loperamide regimen can reduce the incidence of grade 3 diarrhea. Phase I through to III clinical trials of neratinib will be reviewed, with discussion of the postulated mechanism underlying diarrheal events and its management.

  12. Neratinib in HER-2-positive breast cancer: results to date and clinical usefulness

    PubMed Central

    Chan, Arlene

    2016-01-01

    The management of HER-2-positive breast cancer has improved significantly with the use of targeted agents to the HER-2 signaling pathway. Despite the improved survival achieved with the use of trastuzumab and chemotherapy in both the adjuvant and metastatic setting, patients may still recur or progress; whilst preclinical data demonstrate that these cancer cells remain addicted to the HER-2 oncogene. Neratinib, an oral small molecule tyrosine-kinase inhibitor has efficacy in the metastatic and adjuvant setting of patients who have previously received trastuzumab-based treatment. Diarrhea, being a class effect of tyrosine-kinase inhibitor, is the most common side effect seen following neratinib administration, but recent data suggests that a prophylactic loperamide regimen can reduce the incidence of grade 3 diarrhea. Phase I through to III clinical trials of neratinib will be reviewed, with discussion of the postulated mechanism underlying diarrheal events and its management. PMID:27583026

  13. Active Immunization with Pneumolysin versus 23-Valent Polysaccharide Vaccine for Streptococcus pneumoniae Keratitis

    PubMed Central

    Norcross, Erin W.; Sanders, Melissa E.; Moore, Quincy C.; Taylor, Sidney D.; Tullos, Nathan A.; Caston, Rhonda R.; Dixon, Sherrina N.; Nahm, Moon H.; Burton, Robert L.; Thompson, Hilary; McDaniel, Larry S.

    2011-01-01

    Purpose. The purpose of this study was to determine whether active immunization against pneumolysin (PLY), or polysaccharide capsule, protects against the corneal damage associated with Streptococcus pneumoniae keratitis. Methods. New Zealand White rabbits were actively immunized with Freund's adjuvant mixed with pneumolysin toxoid (ψPLY), Pneumovax 23 (PPSV23; Merck, Whitehouse Station, NJ), or phosphate-buffered saline (PBS), before corneal infection with 105 colony-forming units (CFU) of S. pneumoniae. Serotype-specific rabbit polyclonal antisera or mock antisera were passively administered to rabbits before either intravenous infection with 1011 CFU S. pneumoniae or corneal infection with 105 CFU of S. pneumoniae. Results. After active immunization, clinical scores of corneas of the rabbits immunized with ψPLY and Freund's adjuvant were significantly lower than scores of the rabbits that were mock immunized with PBS and Freund's adjuvant or with PPSV23 and Freund's adjuvant at 48 hours after infection (P ≤ 0.0010), whereas rabbits immunized with PPSV23 and Freund's adjuvant failed to show differences in clinical scores compared with those in mock-immunized rabbits (P = 1.00) at 24 and 48 hours after infection. Antisera from rabbits actively immunized with PPSV23 and Freund's adjuvant were nonopsonizing. Bacterial loads recovered from infected corneas were higher for the ψPLY- and PPSV23-immunized rabbits after infection with WU2, when compared with the mock-immunized rabbits (P ≤ 0.007). Conversely, after infection with K1443, the ψPLY-immunized rabbits had lower bacterial loads than the control rabbits (P = 0.0008). Quantitation of IgG, IgA, and IgM in the sera of ψPLY-immunized rabbits showed high concentrations of PLY-specific IgG. Furthermore, anti-PLY IgG purified from ψPLY-immunized rabbits neutralized the cytolytic effects of PLY on human corneal epithelial cells. Passive administration of serotype-specific antisera capable of opsonizing and killing S. pneumoniae protected against pneumococcal bacteremia (P ≤ 0.05), but not against keratitis (P ≥ 0.476). Conclusions. Active immunization with pneumococcal capsular polysaccharide and Freund's adjuvant fails to produce opsonizing antibodies, and passive administration of serotype specific opsonizing antibodies offers no protection against pneumococcal keratitis in the rabbit, whereas active immunization with the conserved protein virulence factor PLY and Freund's adjuvant is able to reduce corneal inflammation associated with pneumococcal keratitis, but has variable effects on bacterial loads in the cornea. PMID:22039231

  14. [Treatment of non-small cell lung carcinoma in early stages].

    PubMed

    Meneses, José Carlos; Avila Martínez, Régulo J; Ponce, Santiago; Zuluaga, Mauricio; Bartolomé, Adela; Gámez, Pablo

    2013-12-01

    Treatment of lung carcinoma is multidisciplinary. There are different therapeutic strategies available, although surgery shows the best results in those patients with lung carcinoma in early stages. Other options such as stereotactic radiation therapy are relegated to patients with small tumors and poor cardiopulmonary reserve or to those who reject surgery. Adjuvant chemotherapy is not justified in patients with stage i of the disease and so double adjuvant chemotherapy should be considered. This adjuvant chemotherapy should be based on cisplatin after surgery in those patients with stages ii and IIIA. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  15. The adjuvant activity of aliphatic nitrogenous bases

    PubMed Central

    Gall, D.

    1966-01-01

    By the use of diphtheria toxoid in guinea-pigs, high adjuvant activity has been found in a number of aliphatic nitrogenous bases including amines, quaternary ammonium compounds, guanidines, benzamidines and thiouroniums. Activity appears to depend on a combination of basicity and a long aliphatic chain of twelve or more carbon atoms. Such adjuvants tend to be haemolytic, and cause damage to tissue culture monolayers. It is suggested that their activity is connected with their surface activity and hence their ability to alter cell membranes, but that the basicity plays a further as yet undetermined role. ImagesFIG. 1-2FIG. 3-4 PMID:5924622

  16. Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2-3: an adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells.

    PubMed

    Juang, Vivian; Lee, Hsin-Pin; Lin, Anya Maan-Yuh; Lo, Yu-Li

    Antimicrobial peptides (AMPs) have been recently evaluated as a new generation of adjuvants in cancer chemotherapy. In this study, we designed PEGylated liposomes encapsulating epirubicin as an antineoplastic agent and tilapia hepcidin 2-3, an AMP, as a multidrug resistance (MDR) transporter suppressor and an apoptosis/autophagy modulator in human cervical cancer HeLa cells. Cotreatment of HeLa cells with PEGylated liposomal formulation of epirubicin and hepcidin 2-3 significantly increased the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or hepcidin 2-3 were found to noticeably escalate the intracellular H 2 O 2 and O 2 - levels of cancer cells. Furthermore, these treatments considerably reduced the mRNA expressions of MDR protein 1, MDR-associated protein (MRP) 1, and MRP2. The addition of hepcidin 2-3 in liposomes was shown to markedly enhance the intracellular epirubicin uptake and mainly localized into the nucleus. Moreover, this formulation was also found to trigger apoptosis and autophagy in HeLa cells, as validated by significant increases in the expressions of cleaved poly ADP ribose polymerase, caspase-3, caspase-9, and light chain 3 (LC3)-II, as well as a decrease in mitochondrial membrane potential. The apoptosis induction was also confirmed by the rise in sub-G1 phase of cell cycle assay and apoptosis percentage of annexin V/propidium iodide assay. We found that liposomal epirubicin and hepcidin 2-3 augmented the accumulation of GFP-LC3 puncta as amplified by chloroquine, implying the involvement of autophagy. Interestingly, the partial inhibition of necroptosis and the epithelial-mesenchymal transition by this combination was also verified. Altogether, our results provide evidence that coincubation with PEGylated liposomes of hepcidin 2-3 and epirubicin caused programmed cell death in cervical cancer cells through modulation of multiple signaling pathways, including MDR transporters, apoptosis, autophagy, and/or necroptosis. Thus, this formulation may provide a new platform for the combined treatment of traditional chemotherapy and hepcidin 2-3 as a new adjuvant for effective MDR reversal.

  17. Cationic PEGylated liposomes incorporating an antimicrobial peptide tilapia hepcidin 2–3: an adjuvant of epirubicin to overcome multidrug resistance in cervical cancer cells

    PubMed Central

    Juang, Vivian; Lee, Hsin-Pin; Lin, Anya Maan-Yuh; Lo, Yu-Li

    2016-01-01

    Antimicrobial peptides (AMPs) have been recently evaluated as a new generation of adjuvants in cancer chemotherapy. In this study, we designed PEGylated liposomes encapsulating epirubicin as an antineoplastic agent and tilapia hepcidin 2–3, an AMP, as a multidrug resistance (MDR) transporter suppressor and an apoptosis/autophagy modulator in human cervical cancer HeLa cells. Cotreatment of HeLa cells with PEGylated liposomal formulation of epirubicin and hepcidin 2–3 significantly increased the cytotoxicity of epirubicin. The liposomal formulations of epirubicin and/or hepcidin 2–3 were found to noticeably escalate the intracellular H2O2 and O2− levels of cancer cells. Furthermore, these treatments considerably reduced the mRNA expressions of MDR protein 1, MDR-associated protein (MRP) 1, and MRP2. The addition of hepcidin 2–3 in liposomes was shown to markedly enhance the intracellular epirubicin uptake and mainly localized into the nucleus. Moreover, this formulation was also found to trigger apoptosis and autophagy in HeLa cells, as validated by significant increases in the expressions of cleaved poly ADP ribose polymerase, caspase-3, caspase-9, and light chain 3 (LC3)-II, as well as a decrease in mitochondrial membrane potential. The apoptosis induction was also confirmed by the rise in sub-G1 phase of cell cycle assay and apoptosis percentage of annexin V/propidium iodide assay. We found that liposomal epirubicin and hepcidin 2–3 augmented the accumulation of GFP-LC3 puncta as amplified by chloroquine, implying the involvement of autophagy. Interestingly, the partial inhibition of necroptosis and the epithelial–mesenchymal transition by this combination was also verified. Altogether, our results provide evidence that coincubation with PEGylated liposomes of hepcidin 2–3 and epirubicin caused programmed cell death in cervical cancer cells through modulation of multiple signaling pathways, including MDR transporters, apoptosis, autophagy, and/or necroptosis. Thus, this formulation may provide a new platform for the combined treatment of traditional chemotherapy and hepcidin 2–3 as a new adjuvant for effective MDR reversal. PMID:27895479

  18. GLA-SE, a synthetic toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults.

    PubMed

    Behzad, Hayedeh; Huckriede, Anke L W; Haynes, Laura; Gentleman, Beth; Coyle, Krysta; Wilschut, Jan C; Kollmann, Tobias R; Reed, Steven G; McElhaney, Janet E

    2012-02-01

    The decline in influenza vaccine efficacy in older adults is associated with a limited ability of current split-virus vaccines (SVVs) to stimulate cytotoxic T lymphocyte (CTL) responses required for clinical protection against influenza. The Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) was combined with SVV to stimulate peripheral blood mononuclear cells (PBMCs) in vitro to determine the cytokine response in dendritic cell subsets. Stimulated PBMCs were then challenged with live influenza virus to mimic the response to natural infection following vaccination, using previously identified T-cell correlates of protection. GLA-SE significantly increased the proportion of myeloid dendritic cells that produced tumor necrosis factor α, interleukin 6, and interleukin 12. When combined with SVV to stimulate PBMCs in vitro, this effect of GLA-SE was shown to regulate a T-helper 1 cell response upon challenge with live influenza virus; interleukin 10 production was suppressed, thus significantly increasing the interferon γ to interleukin 10 ratio and the cytolytic (granzyme B) response to influenza virus challenge, both of which have been shown to correlate with protection against influenza in older adults. Our findings suggest that a novel adjuvant, GLA-SE, combined with standard SVV has the potential to significantly improve vaccine-mediated protection against influenza in older adults.

  19. Synthetic Studies of Complex Immunostimulants from Quillaja saponaria: Synthesis of the Potent Clinical Immunoadjuvant QS-21Aapi

    PubMed Central

    Kim, Yong-Jae; Wang, Pengfei; Navarro-Villalobos, Mauricio; Rohde, Bridget D.; Derryberry, JohnMark; Gin, David Y.

    2008-01-01

    QS-21 is one of the most promising new adjuvants for immune response potentiation and dose-sparing in vaccine therapy given its exceedingly high level of potency and its favorable toxicity profile. Melanoma, breast cancer, small cell lung cancer, prostate cancer, HIV-1, and malaria are among the numerous maladies targeted in more than 80 recent and ongoing vaccine therapy clinical trials involving QS-21 as a critical adjuvant component for immune response augmentation. QS-21 is a natural product immunostimulatory adjuvant, eliciting both T-cell- and antibody-mediated immune responses with microgram doses. Herein is reported the synthesis of QS-21Aapi in a highly modular strategy, applying novel glycosylation methodologies to a convergent construction of the potent saponin immunostimulant. The chemical synthesis of QS-21 offers unique opportunities to probe its mode of biological action through the preparation of otherwise unattainable nonnatural saponin analogues. PMID:16953631

  20. TGFBI expression is an independent predictor of survival in adjuvant-treated lung squamous cell carcinoma patients.

    PubMed

    Pajares, M J; Agorreta, J; Salvo, E; Behrens, C; Wistuba, I I; Montuenga, L M; Pio, R; Rouzaut, A

    2014-03-18

    Transforming growth factor β-induced protein (TGFBI) is a secreted protein that mediates cell anchoring to the extracellular matrix. This protein is downregulated in lung cancer, and when overexpressed, contributes to apoptotic cell death. Using a small series of stage IV non-small cell lung cancer (NSCLC) patients, we previously suggested the usefulness of TGFBI as a prognostic and predictive factor in chemotherapy-treated late-stage NSCLC. In order to validate and extend these results, we broaden the analysis and studied TGFBI expression in a large series of samples obtained from stage I-IV NSCLC patients. TGFBI expression was assessed by immunohistochemistry in 364 completely resected primary NSCLC samples: 242 adenocarcinomas (ADCs) and 122 squamous cell carcinomas (SCCs). Kaplan-Meier curves, log-rank tests and the Cox proportional hazards model were used to analyse the association between TGFBI expression and survival. High TGFBI levels were associated with longer overall survival (OS, P<0.001) and progression-free survival (PFS, P<0.001) in SCC patients who received adjuvant platinium-based chemotherapy. Moreover, multivariate analysis demonstrated that high TGFBI expression is an independent predictor of better survival in patients (OS: P=0.030 and PFS: P=0.026). TGFBI may be useful for the identification of a subset of NSCLC who may benefit from adjuvant therapy.

Top