Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi
2017-01-01
Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH aggregation specifically induces mitochondrial dysfunction via PTP opening, leading to cell death. PMID:28167533
Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells.
Zarà, Marta; Canobbio, Ilaria; Visconte, Caterina; Canino, Jessica; Torti, Mauro; Guidetti, Gianni Francesco
2018-08-01
Tumor cell-induced platelet aggregation represents a critical process both for successful metastatic spread of the tumor and for the development of thrombotic complications in cancer patients. To get further insights into this process, we investigated and compared the molecular mechanisms of platelet aggregation induced by two different breast cancer cell lines (MDA-MB-231 and MCF7) and a colorectal cancer cell line (Caco-2). All the three types of cancer cells were able to induce comparable platelet aggregation, which, however, was observed exclusively in the presence of CaCl 2 and autologous plasma. Aggregation was supported both by fibrinogen binding to integrin αIIbβ3 as well as by fibrin formation, and was completely prevented by the serine protease inhibitor PPACK. Platelet aggregation was preceded by generation of low amounts of thrombin, possibly through tumor cells-expressed tissue factor, and was supported by platelet activation, as revealed by stimulation of phospholipase C, intracellular Ca 2+ increase and activation of Rap1b GTPase. Pharmacological inhibition of phospholipase C, but not of phosphatidylinositol 3-kinase or Src family kinases prevented tumor cell-induced platelet aggregation. Tumor cells also induced dense granule secretion, and the stimulation of the P2Y12 receptor by released ADP was found to be necessary for complete platelet aggregation. By contrast, prevention of thromboxane A 2 synthesis by aspirin did not alter the ability of all the cancer cell lines analyzed to induce platelet aggregation. These results indicate that tumor cell-induced platelet aggregation is not related to the type of the cancer cells or to their metastatic potential, and is triggered by platelet activation and secretion driven by the generation of small amount of thrombin from plasma and supported by the positive feedback signaling through secreted ADP. Copyright © 2018 Elsevier Inc. All rights reserved.
Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram
2008-09-01
PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.
Itakura, Masanori; Nakajima, Hidemitsu; Semi, Yuko; Higashida, Shusaku; Azuma, Yasu-Taka; Takeuchi, Tadayoshi
2015-11-13
The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death. Copyright © 2015 Elsevier Inc. All rights reserved.
Guo, Na; Zhang, Kui; Lv, Minghua; Miao, Jinlin; Chen, Zhinan; Zhu, Ping
2015-02-01
Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data indicate that CD147 and CD98 might play important roles in cyclophilin-induced cell migration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cho, Jae Youl; Katz, David R; Chain, Benjamin M
2003-01-01
Staurosporine is a broad-specificity kinase inhibitor, which has acted as lead compound for the development of some novel cytotoxic compounds for treatment of cancer. This study investigates the unexpected observation that staurosporine can also induce homotypic cellular aggregation. In this study, staurosporine is shown to activate rapid homotypic aggregation of U937 cells, at concentrations below those required to induce cell death. This activity is a particular feature of staurosporine, and is not shared by a number of other kinase inhibitors. The proaggregating activity of staurosporine is inhibited by deoxyglucose, cytochalasin B and colchicine. Staurosporine-induced aggregation can be distinguished from that induced by the phorbol 12-myristate 13-acetate by faster kinetics and insensitivity to cycloheximide. Staurosporine induces translocation of conventional and novel, but not atypical isoforms of protein kinase C (PKC). Aggregation induced by staurosporine is inhibited by a number of inhibitors of PKC isoforms, and by inhibitors of protein tyrosine kinases. Staurosporine also induces rapid phosphorylation of ERK and p38, and inhibitors of both these enzymes block aggregation. Staurosporine induces dysregulated activation of multiple kinase signaling pathways in U937 cells, and the combined activity of several of these pathways is essential for the induction of aggregation. PMID:12970105
Long-term Culture of Human iPS Cell-derived Telencephalic Neuron Aggregates on Collagen Gel.
Oyama, Hiroshi; Takahashi, Koji; Tanaka, Yoshikazu; Takemoto, Hiroshi; Haga, Hisashi
2018-01-01
It takes several months to form the 3-dimensional morphology of the human embryonic brain. Therefore, establishing a long-term culture method for neuronal tissues derived from human induced pluripotent stem (iPS) cells is very important for studying human brain development. However, it is difficult to keep primary neurons alive for more than 3 weeks in culture. Moreover, long-term adherent culture to maintain the morphology of telencephalic neuron aggregates induced from human iPS cells is also difficult. Although collagen gel has been widely used to support long-term culture of cells, it is not clear whether human iPS cell-derived neuron aggregates can be cultured for long periods on this substrate. In the present study, we differentiated human iPS cells to telencephalic neuron aggregates and examined long-term culture of these aggregates on collagen gel. The results indicated that these aggregates could be cultured for over 3 months by adhering tightly onto collagen gel. Furthermore, telencephalic neuronal precursors within these aggregates matured over time and formed layered structures. Thus, long-term culture of telencephalic neuron aggregates derived from human iPS cells on collagen gel would be useful for studying human cerebral cortex development.Key words: Induced pluripotent stem cell, forebrain neuron, collagen gel, long-term culture.
Cell Aggregation-induced FGF8 Elevation Is Essential for P19 Cell Neural Differentiation
Wang, Chen; Xia, Caihong; Bian, Wei; Liu, Li; Lin, Wei; Chen, Ye-Guang; Ang, Siew-Lan
2006-01-01
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition–independent role in P19 cell neural differentiation. PMID:16641368
Effects of recombinant protein misfolding and aggregation on bacterial membranes.
Ami, D; Natalello, A; Schultz, T; Gatti-Lafranconi, P; Lotti, M; Doglia, S M; de Marco, A
2009-02-01
The expression of recombinant proteins is known to induce a metabolic rearrangement in the host cell. We used aggregation-sensitive model systems to study the effects elicited in Escherichia coli cells by the aggregation of recombinant glutathione-S-transferase and its fusion with the green fluorescent protein that, according to the expression conditions, accumulate intracellularly as soluble protein, or soluble and insoluble aggregates. We show that the folding state of the recombinant protein and the complexity of the intracellular aggregates critically affect the cell response. Specifically, protein misfolding and aggregation induce changes in specific host proteins involved in lipid metabolism and oxidative stress, a reduction in the membrane permeability, as well as a rearrangement of its lipid composition. The temporal evolution of the host cell response and that of the aggregation process pointed out that the misfolded protein and soluble aggregates are responsible for the membrane modifications and the changes in the host protein levels. Interestingly, native recombinant protein and large insoluble aggregates do not seem to activate stress markers and membrane rearrangements.
[A study of the aggregation of human red blood cells induced by picric acid].
Sheremet'ev, Iu A; Sheremet'eva, A V; Lednev, A V
2005-01-01
The effect of picric acid on the aggregation of human erythrocytes was studied. It was shown that the addition of picric acid to a suspension of washed erythrocytes leads to a decrease in pH of medium to 1.5-2 and the formation of echinocytes. Stirring the suspension of echinocytes at low pH values results in a strong aggregation of cells. Increasing the pH value to 7.4 leads to a desaggregation of echinocytes. It was found that picric acid does not induce the aggregation of cells fixed by glutaraldehyde. A substantial decrease in the aggegation of spheric erythrocytes obtained after heating the cells at 50 degrees C was observed.
AgHalo: A Facile Fluorogenic Sensor to Detect Drug-Induced Proteome Stress.
Liu, Yu; Fares, Matthew; Dunham, Noah P; Gao, Zi; Miao, Kun; Jiang, Xueyuan; Bollinger, Samuel S; Boal, Amie K; Zhang, Xin
2017-07-17
Drug-induced proteome stress that involves protein aggregation may cause adverse effects and undermine the safety profile of a drug. Safety of drugs is regularly evaluated using cytotoxicity assays that measure cell death. However, these assays provide limited insights into the presence of proteome stress in live cells. A fluorogenic protein sensor is reported to detect drug-induced proteome stress prior to cell death. An aggregation prone Halo-tag mutant (AgHalo) was evolved to sense proteome stress through its aggregation. Detection of such conformational changes was enabled by a fluorogenic ligand that fluoresces upon AgHalo forming soluble aggregates. Using 5 common anticancer drugs, we exemplified detection of differential proteome stress before any cell death was observed. Thus, this sensor can be used to evaluate drug safety in a regime that the current cytotoxicity assays cannot cover and be generally applied to detect proteome stress induced by other toxins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiao, Peng; Li, Qingyun; Joo, Yongjoon; Nam, Jutaek; Hwang, Sekyu; Song, Jaejung; Kim, Sungjee; Joo, Chulmin; Kim, Ki Hean
2013-11-01
We report the feasibility of a novel contrast agent, namely "smart" gold nanoparticles (AuNPs), in the detection of cancer cells with photothermal optical coherence tomography (PT-OCT). "Smart" AuNPs form aggregation in low pH condition, which is typical for cancer cells, and this aggregation results in a shift of their absorption spectrum. A PT-OCT system was developed to detect this pH-induced aggregation by combining an OCT light source and a laser with 660 nm in wavelength for photothermal excitation. Optical detection of pH-induced aggregation was tested with solution samples at two different pH conditions. An increase in optical path length (OPL) variation was measured at mild acidic condition, while there was not much change at neutral condition. Detection of cancer cells was tested with cultured cell samples. HeLa and fibroblast cells, as cancer and normal cells respectively, were incubated with "smart" gold nanoparticles and measured with PT-OCT. An elevated OPL variation signal was detected with the HeLa cells while not much of a signal was detected with the fibroblast cells. With the novel optical property of "smart" AuNPs and high sensitivity of PT-OCT, this technique is promising for cancer cell detection.
A 31-residue peptide induces aggregation of tau's microtubule-binding region in cells
NASA Astrophysics Data System (ADS)
Stöhr, Jan; Wu, Haifan; Nick, Mimi; Wu, Yibing; Bhate, Manasi; Condello, Carlo; Johnson, Noah; Rodgers, Jeffrey; Lemmin, Thomas; Acharya, Srabasti; Becker, Julia; Robinson, Kathleen; Kelly, Mark J. S.; Gai, Feng; Stubbs, Gerald; Prusiner, Stanley B.; Degrado, William F.
2017-09-01
The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer's. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behaviour of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show that this peptide lacks the ability to seed aggregation of tau244-372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244-372 in cells. X-ray fibre diffraction, hydrogen-deuterium exchange and solid-state NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244-372 in cells is packaged in a remarkably small peptide.
Nath, Suman C; Horie, Masanobu; Nagamori, Eiji; Kino-Oka, Masahiro
2017-10-01
Aggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.1 ± 0.4) × 10 1 -(2.8 ± 0.5) × 10 1 cells/aggregate) showed a lower growth rate in comparison to medium size aggregates ((8.8 ± 0.8) × 10 1 -(6.8 ± 1.1) × 10 2 cells/aggregate) during early-stage of culture (24-72 h). However, when small size aggregates were cultured in conditioned medium, their growth rate increased significantly. On the other hand, large size aggregates ((1.1 ± 0.2) × 10 3 -(3.5 ± 1.1) × 10 3 cells/aggregate) showed a lower growth rate and lower expression level of proliferation marker (ki-67) in the center region of aggregate in comparison to medium size aggregate during early-stage of culture. Medium size aggregates showed the highest growth rate during early-stage of culture. Furthermore, hiPSCs proliferation was dependent on culture time because the growth rate decreased significantly during late-stage of culture (72-120 h) at which point collagen type I accumulated on the periphery of aggregate, suggesting blockage of diffusive transport of nutrients, oxygen and metabolites into and out of the aggregates. Consideration of initial cell number and culture time are important to maintain balance between autocrine factors secretion and extracellular matrix accumulation on the aggregate periphery to achieve optimal growth of hiPSCs in the culture of single aggregate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Tsujimura, Atsushi; Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tatebe, Harutsugu; Tokuda, Takahiko; Mizuno, Toshiki; Tanaka, Masaki
2015-01-01
The formation of intracellular aggregates containing α-synuclein (α-Syn) is one of the key steps in the progression of Parkinson's disease and dementia with Lewy bodies. Recently, it was reported that pathological α-Syn fibrils can undergo cell-to-cell transmission and form Lewy body-like aggregates. However, little is known about how they form α-Syn aggregates from fibril seeds. Here, we developed an assay to study the process of aggregate formation using fluorescent protein-tagged α-Syn-expressing cells and examined the aggregate forming activity of exogenous α-Syn fibrils. α-Syn fibril-induced formation of intracellular aggregates was suppressed by a cathepsin B specific inhibitor, but not by a cathepsin D inhibitor. α-Syn fibrils pretreated with cathepsin B in vitro enhanced seeding activity in cells. Knockdown of cathepsin B also reduced fibril-induced aggregate formation. Moreover, using LAMP-1 immunocytochemistry and live-cell imaging, we observed that these aggregates initially occurred in the lysosome. They then rapidly grew larger and moved outside the boundary of the lysosome within one day. These results suggest that the lysosomal protease cathepsin B is involved in triggering intracellular aggregate formation by α-Syn fibrils. Copyright © 2015. Published by Elsevier Inc.
Sakai, Shota; Sugawara, Tatsuya; Matsubara, Kiminori; Hirata, Takashi
2009-10-09
Carotenoids have been demonstrated to possess antioxidative and anti-inflammatory effects. However, there is no report that the effects of carotenoids on degranulation of mast cell is critical for type I allergy. In this study, we focused on the effect of carotenoids on antigen-induced degranulation of mast cells. Fucoxanthin, astaxanthin, zeaxanthin, and beta-carotene significantly inhibited the antigen-induced release of beta-hexosaminidase in rat basophilic leukemia 2H3 cells and mouse bone marrow-derived mast cells. Those carotenoids also inhibited antigen-induced aggregation of the high affinity IgE receptor (Fc epsilonRI), which is the most upstream of the degranulating signals of mast cells. Furthermore, carotenoids inhibited Fc epsilonRI-mediated intracellular signaling, such as phosphorylation of Lyn kinase and Fyn kinase. It suggests that the inhibitory effect of carotenoids on the degranulation of mast cells were mainly due to suppressing the aggregation of Fc epsilonRI followed by intracellular signaling. In addition, those carotenoids inhibited antigen-induced translocation of Fc epsilonRI to lipid rafts, which are known as platforms of the aggregation of Fc epsilonRI. We assume that carotenoids may modulate the function of lipid rafts and inhibit the translocation of Fc epsilonRI to lipid rafts. This is the first report that focused on the aggregation of Fc epsilonRI to investigate the mechanism of the inhibitory effects on the degranulation of mast cells and evaluated the functional activity of carotenoids associated with lipid rafts.
Sakai, Shota; Sugawara, Tatsuya; Matsubara, Kiminori; Hirata, Takashi
2009-01-01
Carotenoids have been demonstrated to possess antioxidative and anti-inflammatory effects. However, there is no report that the effects of carotenoids on degranulation of mast cell is critical for type I allergy. In this study, we focused on the effect of carotenoids on antigen-induced degranulation of mast cells. Fucoxanthin, astaxanthin, zeaxanthin, and β-carotene significantly inhibited the antigen-induced release of β-hexosaminidase in rat basophilic leukemia 2H3 cells and mouse bone marrow-derived mast cells. Those carotenoids also inhibited antigen-induced aggregation of the high affinity IgE receptor (FcϵRI), which is the most upstream of the degranulating signals of mast cells. Furthermore, carotenoids inhibited FcϵRI-mediated intracellular signaling, such as phosphorylation of Lyn kinase and Fyn kinase. It suggests that the inhibitory effect of carotenoids on the degranulation of mast cells were mainly due to suppressing the aggregation of FcϵRI followed by intracellular signaling. In addition, those carotenoids inhibited antigen-induced translocation of FcϵRI to lipid rafts, which are known as platforms of the aggregation of FcϵRI. We assume that carotenoids may modulate the function of lipid rafts and inhibit the translocation of FcϵRI to lipid rafts. This is the first report that focused on the aggregation of FcϵRI to investigate the mechanism of the inhibitory effects on the degranulation of mast cells and evaluated the functional activity of carotenoids associated with lipid rafts. PMID:19700409
A 31-residue peptide induces aggregation of tau’s microtubule-binding region in cells
Stöhr, Jan; Wu, Haifan; Nick, Mimi; Wu, Yibing; Bhate, Manasi; Condello, Carlo; Johnson, Noah; Rodgers, Jeffrey; Lemmin, Thomas; Achyraya, Srabasti; Becker, Julia; Robinson, Kathleen; Kelly, Mark J.S.; Gai, Feng; Stubbs, Gerald; Prusiner, Stanley B.; DeGrado, William F.
2018-01-01
The self-propagation of misfolded conformations of tau underlies neurodegenerative diseases, including Alzheimer’s disease. There is considerable interest in discovering the minimal sequence and active conformational nucleus that defines this self-propagating event. The microtubule-binding region, spanning residues 244-372, reproduces much of the aggregation behavior of tau in cells and animal models. Further dissection of the amyloid-forming region to a hexapeptide from the third microtubule-binding repeat resulted in a peptide that rapidly forms fibrils in vitro. We show here that this peptide lacks the ability to seed aggregation of tau244-372 in cells. However, as the hexapeptide is gradually extended to 31 residues, the peptides aggregate more slowly and gain potent activity to induce aggregation of tau244-372 in cells. X-ray fiber diffraction, hydrogen-deuterium exchange and solids NMR studies map the beta-forming region to a 25-residue sequence. Thus, the nucleus for self-propagating aggregation of tau244-372 in cells is packaged in a remarkably small peptide. PMID:28837163
Microencapsulation of dopamine neurons derived from human induced pluripotent stem cells.
Konagaya, Shuhei; Iwata, Hiroo
2015-01-01
Dopamine neurons derived from induced pluripotent stem cells have been widely studied for the treatment of Parkinson's disease. However, various difficulties remain to be overcome, such as tumor formation, fragility of dopamine neurons, difficulty in handling large numbers of dopamine neurons, and immune reactions. In this study, human induced pluripotent stem cell-derived precursors of dopamine neurons were encapsulated in agarose microbeads. Dopamine neurons in microbeads could be handled without specific protocols, because the microbeads protected the fragile dopamine neurons from mechanical stress. hiPS cells were seeded on a Matrigel-coated dish and cultured to induce differentiation into a dopamine neuronal linage. On day 18 of culture, cells were collected from the culture dishes and seeded into U-bottom 96-well plates to induce cell aggregate formation. After 5 days, cell aggregates were collected from the plates and microencapsulated in agarose microbeads. The microencapsulated aggregates were cultured for an additional 45 days to induce maturation of dopamine neurons. Approximately 60% of all cells differentiated into tyrosine hydroxylase-positive neurons in agarose microbeads. The cells released dopamine for more than 40 days. In addition, microbeads containing cells could be cryopreserved. hiPS cells were successfully differentiated into dopamine neurons in agarose microbeads. Agarose microencapsulation provides a good supporting environment for the preparation and storage of dopamine neurons. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Qiujun; Department of Anesthesiology, The Third Clinical Hospital, Hebei Medical University, Shijiazhuang, Hebei 050051; Liang Ge
2011-02-01
Isoflurane is known to increase {beta}-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh{sup Q111/Q111}) and wild type (STHdh{sup Q7/Q7}) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP{sub 3}) receptor antagonist. Aggregation of huntingtin protein, cellmore » viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh{sup Q111/Q111} cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh{sup Q111/Q111} huntingtin cells than in the wild type STHdh{sup Q7/Q7} striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh{sup Q111/Q111} cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP{sub 3} receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh{sup Q111/Q111} striatal cells.« less
Aggregate complexes of HIV-1 induced by multimeric antibodies.
Stieh, Daniel J; King, Deborah F; Klein, Katja; Liu, Pinghuang; Shen, Xiaoying; Hwang, Kwan Ki; Ferrari, Guido; Montefiori, David C; Haynes, Barton; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Michael, Nelson L; Robb, Merlin L; Kim, Jerome H; Denny, Thomas N; Tomaras, Georgia D; Shattock, Robin J
2014-10-02
Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.
NASA Astrophysics Data System (ADS)
Kim, Yuna; Park, Ji-Hyun; Lee, Hyojin; Nam, Jwa-Min
2016-01-01
Here, we studied the effect of the size, shape, and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs, and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs), and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.
Role of Carbonyl Modifications on Aging-Associated Protein Aggregation
Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura
2016-01-01
Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis. PMID:26776680
NASA Astrophysics Data System (ADS)
Apostol, Barbara L.; Kazantsev, Alexsey; Raffioni, Simona; Illes, Katalin; Pallos, Judit; Bodai, Laszlo; Slepko, Natalia; Bear, James E.; Gertler, Frank B.; Hersch, Steven; Housman, David E.; Marsh, J. Lawrence; Michels Thompson, Leslie
2003-05-01
The formation of polyglutamine-containing aggregates and inclusions are hallmarks of pathogenesis in Huntington's disease that can be recapitulated in model systems. Although the contribution of inclusions to pathogenesis is unclear, cell-based assays can be used to screen for chemical compounds that affect aggregation and may provide therapeutic benefit. We have developed inducible PC12 cell-culture models to screen for loss of visible aggregates. To test the validity of this approach, compounds that inhibit aggregation in the PC12 cell-based screen were tested in a Drosophila model of polyglutamine-repeat disease. The disruption of aggregation in PC12 cells strongly correlates with suppression of neuronal degeneration in Drosophila. Thus, the engineered PC12 cells coupled with the Drosophila model provide a rapid and effective method to screen and validate compounds.
Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes.
Parodi, Jorge; Ochoa-de la Paz, Lenin; Miledi, Ricardo; Martínez-Torres, Ataúlfo
2012-10-01
Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.
Dynamic imaging of interaction between protein 14-3-3 and Bid in living cells
NASA Astrophysics Data System (ADS)
Chen, Tongsheng; Xing, Da; Wang, Jinjun
2006-02-01
The 14-3-3 proteins are known to sequester certain pro-apoptotic members of this family. BH3- interacting domain death agonist (Bid) may contribute to tumor necrosis factor α(TNF-α)-induced neuronal death, although regulation by 14-3-3 has not been reported. In this study we examined whether 14-3-3 proteins interact with Bid/tBid during TNF-α-induced cell death. The TNF-αtriggered Bid cleavage and tBid translocated to mitochondria. Human lung adenocarcinoma cells were co-transfected with both CFP-Bid and 14-3-3-YFP plasmids, and the dynamical interaction between the Bid/tBid and 14-3-3 were performed on laser confocal fluorescence microscope in single living cell during TNF-α-induced cell apoptosis. The Bid distribute equally only in the cytoplasm of healthy cells, and the 14-3-3 protein distribute not only in the cytoplasm but also in the nucleus of healthy cells. Our data showed that the tBid aggregate, but the 14-3-3 protein does not aggregate as the tBid, and the 14-3-3 protein separate from the aggregated tBid, implying that the 14-3-3 proteins do not interact with the aggregated tBid after TNF-αtreatment.
Bazou, D; Santos-Martinez, M J; Medina, C; Radomski, M W
2011-04-01
Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster-platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate-cancer cell clusters may be an important strategy to control metastasis. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Enomoto, Gen; Ni-Ni-Win; Narikawa, Rei; Ikeuchi, Masahiko
2015-06-30
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that have diverse spectral properties and domain compositions. Although large numbers of CBCR genes exist in cyanobacterial genomes, no studies have assessed whether multiple CBCRs work together. We recently showed that the diguanylate cyclase (DGC) activity of the CBCR SesA from Thermosynechococcus elongatus is activated by blue-light irradiation and that, when irradiated, SesA, via its product cyclic dimeric GMP (c-di-GMP), induces aggregation of Thermosynechococcus vulcanus cells at a temperature that is suboptimum for single-cell viability. For this report, we first characterize the photobiochemical properties of two additional CBCRs, SesB and SesC. Blue/teal light-responsive SesB has only c-di-GMP phosphodiesterase (PDE) activity, which is up-regulated by teal light and GTP. Blue/green light-responsive SesC has DGC and PDE activities. Its DGC activity is enhanced by blue light, whereas its PDE activity is enhanced by green light. A ΔsesB mutant cannot suppress cell aggregation under teal-green light. A ΔsesC mutant shows a less sensitive cell-aggregation response to ambient light. ΔsesA/ΔsesB/ΔsesC shows partial cell aggregation, which is accompanied by the loss of color dependency, implying that a nonphotoresponsive DGC(s) producing c-di-GMP can also induce the aggregation. The results suggest that SesB enhances the light color dependency of cell aggregation by degrading c-di-GMP, is particularly effective under teal light, and, therefore, seems to counteract the induction of cell aggregation by SesA. In addition, SesC seems to improve signaling specificity as an auxiliary backup to SesA/SesB activities. The coordinated action of these three CBCRs highlights why so many different CBCRs exist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamagishi, Nobuyuki; Goto, Kazumasa; Nakagawa, Satomi
2010-09-10
Hsp105{alpha} and Hsp105{beta} are major heat shock proteins in mammalian cells and belong to the HSP105/110 family. Hsp105{alpha} is expressed constitutively in the cytoplasm of cells, while Hsp105{beta}, an alternatively spliced form of Hsp105{alpha}, is expressed specifically in the nucleus of cells during mild heat shock. Here, we show that not only Hsp105{beta} but also Hsp105{alpha} accumulated in the nucleus of cells following the expression of enhanced green fluorescent protein with a pathological length polyQ tract (EGFP-polyQ97) and suppressed the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Mutants of Hsp105{alpha} and Hsp105{beta} with changes in the nuclearmore » localization signal sequences, which localized exclusively in the cytoplasm with or without the expression of EGFP-polyQ97, did not suppress the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Furthermore, Hsp70 was induced by the co-expression of Hsp105{alpha} and EGFP-polyQ97, and the knockdown of Hsp70 reduced the inhibitory effect of Hsp105{alpha} and Hsp105{beta} on the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. These observations suggested that Hsp105{alpha} and Hsp105{beta} suppressed the expanded polyQ tract-induced protein aggregation and apoptosis through the induction of Hsp70.« less
Takemoto, Naohiro; Liu, Xibao; Takii, Kento; Teramura, Yuji; Iwata, Hiroo
2014-02-15
Transplantation of islets of Langerhans (islets) was used to treat insulin-dependent diabetes mellitus. However, islet grafts must be maintained by administration of immunosuppressive drugs, which can lead to complications in the long term. An approach that avoids immunosuppressive drug use is desirable. Co-aggregates of Sertoli cells and islet cells from BALB/c mice that were prepared by the hanging drop method were transplanted into C57BL/6 mouse liver through the portal vein as in human clinical islet transplantation. The core part of the aggregates contained mainly Sertoli cells, and these cells were surrounded by islet cells. The co-aggregates retained the functions of both Sertoli and islet cells. When 800 co-aggregates were transplanted into seven C57BL/6 mice via the portal vein, six of seven recipient mice demonstrated quasi-normoglycemia for more than 100 days. The hanging drop method is suitable for preparing aggregates of Sertoli and islet cells for transplantation. Notably, transplantation of these allogeneic co-aggregates into mice with chemically induced diabetes via the portal vein resulted in long-term graft survival without systemic immunosuppression.
Ralstonia insidiosa induces cell aggregation by Listeria monocytogenes
USDA-ARS?s Scientific Manuscript database
Biofilm formation is an important strategy for foodborne bacterial pathogens to survive in stressful environments such as fresh produce processing facilities. Bacterial cell aggregation strongly promotes the initiation of microcolonies and the formation of biofilms on abiological surfaces. We previ...
Lin, Mengshien; Shivalingappa, Prashanth Chandramani; Jin, Huajun; Ghosh, Anamitra; Anantharam, Vellareddy; Ali, Syed; Kanthasamy, Anumantha G.; Kanthasamy, Arthi
2012-01-01
A compromised protein degradation machinery has been implicated in methamphetamine (MA)-induced neurodegeneration. However, the signaling mechanisms that induce autophagy and UPS dysfunction are not well understood. The present study investigates the contributions of PKC delta (PKCδ) mediated signaling events in MA-induced autophagy, UPS dysfunction and cell death. Using an in vitro mesencephalic dopaminergic cell culture model, we demonstrate that MA-induced early induction of autophagy is associated with reduction in proteasomal function and concomitant dissipation of mitochondrial membrane potential (MMP), followed by significantly increased of PKCδ activation, caspase-3 activation, accumulation of ubiquitin positive aggregates and microtubule associated light chain-3 (LC3-II) levels. Interestingly, siRNA mediated knockdown of PKCδ or overexpression of cleavage resistant mutant of PKCδ dramatically reduced MA-induced autophagy, proteasomal function, and associated accumulation of ubiquitinated protein aggregates, which closely paralleled cell survival. Importantly, when autophagy was inhibited either pharmacologically (3-MA) or genetically (siRNA mediated silencing of LC3), the dopaminergic cells became sensitized to MA-induced apoptosis through caspase-3 activation. Conversely, overexpression of LC3 partially protected against MA-induced apoptotic cell death, suggesting a neuroprotective role for autophagy in MA-induced neurotoxicity. Notably, rat striatal tissue isolated from MA treated rats also exhibited elevated LC3-II, ubiquitinated protein levels, and PKCδ cleavage. Taken together, our data demonstrate that MA-induced autophagy serves as an adaptive strategy for inhibiting mitochondria mediated apoptotic cell death and degradation of aggregated proteins. Our results also suggest that the sustained activation of PKCδ leads to UPS dysfunction, resulting in the activation of caspase-3 mediated apoptotic cell death in the nigrostriatal dopaminergic system. PMID:22445524
Monine, Michael I.; Posner, Richard G.; Savage, Paul B.; Faeder, James R.; Hlavacek, William S.
2010-01-01
Abstract We use flow cytometry to characterize equilibrium binding of a fluorophore-labeled trivalent model antigen to bivalent IgE-FcεRI complexes on RBL cells. We find that flow cytometric measurements are consistent with an equilibrium model for ligand-receptor binding in which binding sites are assumed to be equivalent and ligand-induced receptor aggregates are assumed to be acyclic. However, this model predicts extensive receptor aggregation at antigen concentrations that yield strong cellular secretory responses, which is inconsistent with the expectation that large receptor aggregates should inhibit such responses. To investigate possible explanations for this discrepancy, we evaluate four rule-based models for interaction of a trivalent ligand with a bivalent cell-surface receptor that relax simplifying assumptions of the equilibrium model. These models are simulated using a rule-based kinetic Monte Carlo approach to investigate the kinetics of ligand-induced receptor aggregation and to study how the kinetics and equilibria of ligand-receptor interaction are affected by steric constraints on receptor aggregate configurations and by the formation of cyclic receptor aggregates. The results suggest that formation of linear chains of cyclic receptor dimers may be important for generating secretory signals. Steric effects that limit receptor aggregation and transient formation of small receptor aggregates may also be important. PMID:20085718
Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura
2016-01-01
Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790
Soares, Filipa A.C.; Chandra, Amit; Thomas, Robert J.; Pedersen, Roger A.; Vallier, Ludovic; Williams, David J.
2014-01-01
The transfer of a laboratory process into a manufacturing facility is one of the most critical steps required for the large scale production of cell-based therapy products. This study describes the first published protocol for scalable automated expansion of human induced pluripotent stem cell lines growing in aggregates in feeder-free and chemically defined medium. Cells were successfully transferred between different sites representative of research and manufacturing settings; and passaged manually and using the CompacT SelecT automation platform. Modified protocols were developed for the automated system and the management of cells aggregates (clumps) was identified as the critical step. Cellular morphology, pluripotency gene expression and differentiation into the three germ layers have been used compare the outcomes of manual and automated processes. PMID:24440272
De Palo, Giovanna; Yi, Darvin; Endres, Robert G.
2017-01-01
The transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient, short-range chemical gradients lead to coherent collective movement at a macroscopic scale? Here, we developed a multiscale model verified by quantitative microscopy to describe behaviors ranging widely from chemotaxis and excitability of individual cells to aggregation of thousands of cells. To better understand the mechanism of long-range cell—cell communication and hence aggregation, we analyzed cell—cell correlations, showing evidence of self-organization at the onset of aggregation (as opposed to following a leader cell). Surprisingly, cell collectives, despite their finite size, show features of criticality known from phase transitions in physical systems. By comparing wild-type and mutant cells with impaired aggregation, we found the longest cell—cell communication distance in wild-type cells, suggesting that criticality provides an adaptive advantage and optimally sized aggregates for the dispersal of spores. PMID:28422986
Motility and Segregation of Hsp104-Associated Protein Aggregates in Budding Yeast
Zhou, Chuankai; Slaughter, Brian D.; Unruh, Jay R.; Eldakak, Amr; Rubinstein, Boris; Li, Rong
2011-01-01
SUMMARY During yeast cell division, aggregates of damaged proteins are segregated asymmetrically between the bud and the mother. It is thought that protein aggregates are cleared from the bud via actin cable-based retrograde transport toward the mother, and that Bni1p formin regulates this transport. Here we examined the dynamics of Hsp104-associated protein aggregates by video microscopy, particle tracking and image correlation analysis. We show that protein aggregates undergo random walk without directional bias. Clearance of heat-induced aggregates from the bud does not depend on formin proteins but occurs mostly through dissolution via Hsp104p chaperon. Aggregates formed naturally in aged cells also exhibit random walk but do not dissolve during observation. Although our data does not disagree with a role for actin or cell polarity in aggregate segregation, modeling suggests that their asymmetric inheritance can be a predictable outcome of aggregates' slow diffusion and the geometry of yeast cells. PMID:22118470
Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells.
Hayashi, Katsuhiko; Saitou, Mitinori
2013-08-01
Oogenesis is an integrated process through which an egg acquires the potential for totipotency, a fundamental condition for creating new individuals. Reconstitution of oogenesis in a culture that generates eggs with proper function from pluripotent stem cells (PSCs) is therefore one of the key goals in basic biology as well as in reproductive medicine. Here we describe a stepwise protocol for the generation of eggs from mouse PSCs, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs are first induced into primordial germ cell-like cells (PGCLCs) that are in turn aggregated with somatic cells of female embryonic gonads, the precursors for adult ovaries. Induction of PGCLCs followed by aggregation with the somatic cells takes up to 8 d. The aggregations are then transplanted under the ovarian bursa, in which PGCLCs grow into germinal vesicle (GV) oocytes in ∼1 month. The PGCLC-derived GV oocytes can be matured into eggs in 1 d by in vitro maturation (IVM), and they can be fertilized with spermatozoa by in vitro fertilization (IVF) to obtain healthy and fertile offspring. This method provides an initial step toward reconstitution of the entire process of oogenesis in vitro.
Campbell, James H; Heikkila, John J
2018-04-23
Cadmium is a highly toxic environmental pollutant that can cause many adverse effects including cancer, neurological disease and kidney damage. Aquatic amphibians are particularly susceptible to this toxicant as it was shown to cause developmental abnormalities and genotoxic effects. In mammalian cells, the accumulation of heme oxygenase-1 (HO-1), which catalyzes the breakdown of heme into CO, free iron and biliverdin, was reported to protect cells against potentially lethal concentrations of CdCl 2 . In the present study, CdCl 2 treatment of A6 kidney epithelial cells, derived from the frog, Xenopus laevis, induced the accumulation of HO-1, heat shock protein 70 (HSP70) and HSP30 as well as an increase in the production of aggregated protein and aggresome-like structures. Treatment of cells with inhibitors of HO-1 enzyme activity, tin protoporphyrin (SnPP) and zinc protoporphyrin (ZnPP), enhanced CdCl 2 -induced actin cytoskeletal disorganization and the accumulation of HO-1, HSP70, aggregated protein and aggresome-like structures. Treatment of cells with hemin and baicalein, which were previously shown to provide cytoprotection against various stresses, induced HO-1 accumulation in a concentration-dependent manner. Also, treatment of cells with hemin and baicalein suppressed CdCl 2 -induced actin dysregulation and the accumulation of aggregated protein and aggresome-like structures. This cytoprotective effect was inhibited by SnPP. These results suggest that HO-1-mediated protection against CdCl 2 toxicity includes the maintenance of actin cytoskeletal and microtubular structure and the suppression of aggregated protein and aggresome-like structures. Copyright © 2018 Elsevier Inc. All rights reserved.
Changes in translation rate modulate stress-induced damage of diverse proteins
Kim, Heejung
2013-01-01
Proteostasis is the maintenance of the proper function of cellular proteins. Hypertonic stress disrupts proteostasis and causes rapid and widespread protein aggregation and misfolding in the nematode Caenorhabditis elegans. Optimal survival in hypertonic environments requires degradation of damaged proteins. Inhibition of protein synthesis occurs in response to diverse environmental stressors and may function in part to minimize stress-induced protein damage. We recently tested this idea directly and demonstrated that translation inhibition by acute exposure to cycloheximide suppresses hypertonicity-induced aggregation of polyglutamine::YFP (Q35::YFP) in body wall muscle cells. In this article, we further characterized the relationship between protein synthesis and hypertonic stress-induced protein damage. We demonstrate that inhibition of translation reduces hypertonic stress-induced formation and growth of Q35::YFP, Q44::YFP, and α-synuclein aggregates; misfolding of paramyosin and ras GTPase; and aggregation of multiple endogenous proteins expressed in diverse cell types. Activation of general control nonderepressible-2 (GCN-2) kinase signaling during hypertonic stress inhibits protein synthesis via phosphorylation of eukaryotic initiation factor-2α (eIF-2α). Inhibition of GCN-2 activation prevents the reduction in translation rate and greatly exacerbates the formation and growth of Q35::YFP aggregates and the aggregation of endogenous proteins. The current studies together with our previous work provide the first direct demonstration that hypertonic stress-induced reduction in protein synthesis minimizes protein aggregation and misfolding. Reduction in translation rate also serves as a signal that activates osmoprotective gene expression. The cellular proteostasis network thus plays a critical role in minimizing hypertonic stress-induced protein damage, in degrading stress-damaged proteins, and in cellular osmosensing and signaling. PMID:24153430
Protein aggregation induced during glass bead lysis of yeast
Papanayotou, Irene; Sun, Beimeng; Roth, Amy F.; Davis, Nicholas G.
2013-01-01
Yeast cell lysates produced by mechanical glass bead disruption are widely used in a variety of applications, including for the analysis of native function, e.g. protein–protein interaction, enzyme assays and membrane fractionations. Below, we report a striking case of protein denaturation and aggregation that is induced by this lysis protocol. Most of this analysis focuses on the type 1 casein kinase Yck2, which normally tethers to the plasma membrane through C-terminal palmitoylation. Surprisingly, when cells are subjected to glass bead disruption, non-palmitoylated, cytosolic forms of the kinase denature and aggregate, while membrane-associated forms, whether attached through their native palmitoyl tethers or through a variety of artificial membrane-tethering sequences, are wholly protected from denaturation and aggregation. A wider look at the yeast proteome finds that, while the majority of proteins resist glass bead-induced aggregation, a significant subset does, in fact, succumb to such denaturation. Thus, yeast researchers should be aware of this potential artifact when embarking on biochemical analyses that employ glass bead lysates to look at native protein function. Finally, we demonstrate an experimental utility for glass bead-induced aggregation, using its fine discrimination of membrane-associated from non-associated Yck2 forms to discern fractional palmitoylation states of Yck2 mutants that are partially defective for palmitoylation. PMID:20641011
Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten.
Feriotto, G; Calza, R; Bergamini, C M; Griffin, M; Wang, Z; Beninati, S; Ferretti, V; Marzola, E; Guerrini, R; Pagnoni, A; Cavazzini, A; Casciano, F; Mischiati, C
2017-03-01
Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset.
Lee, Bongsoo; Holkenbrink, Carina; Treuner-Lange, Anke
2012-01-01
Myxococcus xanthus undergoes a starvation-induced multicellular developmental program during which cells partition into three known fates: (i) aggregation into fruiting bodies followed by differentiation into spores, (ii) lysis, or (iii) differentiation into nonaggregating persister-like cells, termed peripheral rods. As a first step to characterize cell fate segregation, we enumerated total, aggregating, and nonaggregating cells throughout the developmental program. We demonstrate that both cell lysis and cell aggregation begin with similar timing at approximately 24 h after induction of development. Examination of several known regulatory proteins in the separated aggregated and nonaggregated cell fractions revealed previously unknown heterogeneity in the accumulation patterns of proteins involved in type IV pilus (T4P)-mediated motility (PilC and PilA) and regulation of development (MrpC, FruA, and C-signal). As part of our characterization of the cell lysis fate, we set out to investigate the unorthodox MazF-MrpC toxin-antitoxin system which was previously proposed to induce programmed cell death (PCD). We demonstrate that deletion of mazF in two different wild-type M. xanthus laboratory strains does not significantly reduce developmental cell lysis, suggesting that MazF's role in promoting PCD is an adaption to the mutant background strain used previously. PMID:22493014
Bazou, D; Santos-Martinez, MJ; Medina, C; Radomski, MW
2011-01-01
BACKGROUND AND PURPOSE Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. EXPERIMENTAL APPROACH Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster–platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. KEY RESULTS We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. CONCLUSION AND IMPLICATIONS Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate–cancer cell clusters may be an important strategy to control metastasis. PMID:21182493
Aggregation of Human Eyelid Adipose-derived Stem Cells by Human Body Fluids
Song, Yeonhwa; Yun, Sujin; Yang, Hye Jin; Yoon, A Young; Kim, Haekwon
2012-01-01
Fetal bovine serum (FBS) is the most frequently used serum for the cultivation of mammalian cells. However, since animal-derived materials might not be appropriate due to safety issues, allogeneic human serum (HS) has been used to replace FBS, particularly for the culture of human cells. While there has been a debate about the advantages of HS, its precise effect on human adult stem cells have not been clarified. The present study aimed to investigate the effect of HS on the human eyelid adipose stem cells (HEACs) in vitro. When HEACs were cultivated in a medium containing 10% HS, many cells moved into several spots and aggregated there. The phenomenon was observed as early as 9 days following 10% HS treatment, and 12 days following 5% HS plus 5% FBS treatment. However, the aggregation was never observed when the same cells were cultivated with 10% FBS or bovine serum albumin. To examine whether cell density might affect the aggregation, cells were seeded with different densities on 12-well dish. Until the beginning of aggregation, cells seeded at low densities exhibited the longest culture period of 16 days whereas cells seeded at high densities showed the shortest period of 9 days to form aggregation. The number of cells was 15.1±0.2×104 as the least for the low density group, and 29.3±2.8×104 as the greatest for the high density group. When human cord blood serum or normal bovine serum was examined for the same effect on HEACs, interestingly, cord blood serum induced the aggregation of cells whereas bovine serum treatment has never induced. When cells were cultivated with 10% HS for 9 days, they were obtained and analyzed by RT-PCR. Compared to FBS-cultivated HEACs, HS-cultivated HEACs did not express VIM, and less expressed GATA4, PALLD. On the other hand, HS-cultivated HEACs expressed MAP2 more than FBS-cultivated HEACs. In conclusion, human adult stem cells could move and form aggregates by the treatment with human body fluids. PMID:25949109
NASA Astrophysics Data System (ADS)
Bocsi, József; Nieschke, Kathleen; Mittag, Anja; Reichert, Thomas; Laffers, Wiebke; Marecka, Monika; Pierzchalski, Arkadiusz; Piltz, Joachim; Esche, Hans-Jürgen; Wolf, Günther; Dähnert, Ingo; Baumgartner, Adolf; Tarnok, Attila
2014-03-01
Myocardial infarction (MI) is an acute life-threatening disease with a high incidence worldwide. Aim of this study was to test lectin-carbohydrate binding-induced red blood cell (RBC) agglutination as an innovative tool for fast, precise and cost effective diagnosis of MI. Five lectins (Ricinus communis agglutinin (RCA), Phaseolus vulgaris erythroagglutinin (PHA), Datura stramonium agglutinin (DSA), Artocarpus agglutinin (ArA), Triticum agglutinin (TA)) were tested for ability to differentiate between agglutination characteristics in patients with MI (n = 101) or angina pectoris without MI (AP) (n = 34) and healthy volunteers (HV) as control (n =68) . RBC agglutination was analyzed by light absorbance of a stirred RBC suspension in the green to red light spectrum in an agglutimeter (amtec, Leipzig, Germany) for 15 min after lectin addition. Mean cell count in aggregates was estimated from light absorbance by a mathematical model. Each lectin induced RBC agglutination. RCA led to the strongest RBC agglutination (~500 RBCs/aggregate), while the others induced substantially slower agglutination and lead to smaller aggregate sizes (5-150 RBCs/aggregate). For all analyzed lectins the lectin-induced RBC agglutination of MI or AP patients was generally higher than for HV. However, only PHA induced agglutination that clearly distinguished MI from HV. Variance analysis showed that aggregate size after 15 min. agglutination induced by PHA was significantly higher in the MI group (143 RBCs/ aggregate) than in the HV (29 RBC-s/aggregate, p = 0.000). We hypothesize that pathological changes during MI induce modification of the carbohydrate composition on the RBC membrane and thus modify RBC agglutination. Occurrence of carbohydrate-lectin binding sites on RBC membranes provides evidence about MI. Due to significant difference in the rate of agglutination between MI > HV the differentiation between these groups is possible based on PHA-induced RBC-agglutination. This novel assay could serve as a rapid, cost effective valuable new tool for diagnosis of MI.
Cheema, Muhammad Umar; Damkier, Helle Hasager; Nielsen, Jakob; Poulsen, Ebbe Toftgaard; Enghild, Jan J.; Fenton, Robert A.; Praetorius, Jeppe
2014-01-01
Prolonged elevations of plasma aldosterone levels are associated with renal pathogenesis. We hypothesized that renal distress could be imposed by an augmented aldosterone-induced protein turnover challenging cellular protein degradation systems of the renal tubular cells. Cellular accumulation of specific protein aggregates in rat kidneys was assessed after 7 days of aldosterone administration. Aldosterone induced intracellular accumulation of 60 s ribosomal protein L22 in protein aggregates, specifically in the distal convoluted tubules. The mineralocorticoid receptor inhibitor spironolactone abolished aldosterone-induced accumulation of these aggregates. The aldosterone-induced protein aggregates also contained proteasome 20 s subunits. The partial de-ubiquitinase ataxin-3 was not localized to the distal renal tubule protein aggregates, and the aggregates only modestly colocalized with aggresome transfer proteins dynactin p62 and histone deacetylase 6. Intracellular protein aggregation in distal renal tubules did not lead to development of classical juxta-nuclear aggresomes or to autophagosome formation. Finally, aldosterone treatment induced foci in renal cortex of epithelial vimentin expression and a loss of E-cadherin expression, as signs of cellular stress. The cellular changes occurred within high, but physiological aldosterone concentrations. We conclude that aldosterone induces protein accumulation in distal renal tubules; these aggregates are not cleared by autophagy that may lead to early renal tubular damage. PMID:25000288
Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Baqui, Munira Muhammad Abdel; McNamara, John Campbell
2014-12-01
The binding of red pigment concentrating hormone (RPCH) to membrane receptors in crustacean chromatophores triggers Ca²⁺/cGMP signaling cascades that activate cytoskeletal motors, driving pigment granule translocation. We investigate the distributions of microfilaments and microtubules and their associated molecular motors, myosin and dynein, by confocal and transmission electron microscopy, evaluating a functional role for the cytoskeleton in pigment translocation using inhibitors of polymer turnover and motor activity in vitro. Microtubules occupy the chromatophore cell extensions whether the pigment granules are aggregated or dispersed. The inhibition of microtubule turnover by taxol induces pigment aggregation and inhibits re-dispersion. Phalloidin-FITC actin labeling, together with tannic acid fixation and ultrastructural analysis, reveals that microfilaments form networks associated with the pigment granules. Actin polymerization induced by jasplaquinolide strongly inhibits RPCH-induced aggregation, causes spontaneous pigment dispersion, and inhibits pigment re-dispersion. Inhibition of actin polymerization by latrunculin-A completely impedes pigment aggregation and re-dispersion. Confocal immunocytochemistry shows that non-muscle myosin II (NMMII) co-localizes mainly with pigment granules while blebbistatin inhibition of NMMII strongly reduces the RPCH response, also inducing spontaneous pigment dispersion. Myosin II and dynein also co-localize with the pigment granules. Inhibition of dynein ATPase by erythro-9-(2-hydroxy-3-nonyl) adenine induces aggregation, inhibits RPCH-triggered aggregation, and inhibits re-dispersion. Granule aggregation and dispersion depend mainly on microfilament integrity although microtubules may be involved. Both cytoskeletal polymers are functional only when subunit turnover is active. Myosin and dynein may be the molecular motors that drive pigment aggregation. These mechanisms of granule translocation in crustacean chromatophores share various features with those of vertebrate pigment cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Johansson, Ida; Monsen, Vivi Talstad; Pettersen, Kristine; Mildenberger, Jennifer; Misund, Kristine; Kaarniranta, Kai; Schønberg, Svanhild; Bjørkøy, Geir
2015-01-01
Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD. PMID:26237736
Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway.
Thapa, Arjun; Jett, Stephen D; Chi, Eva Y
2016-01-20
The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.
The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light.
Ooe, Emi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Kobayashi, Saori; Shimazawa, Masamitsu; Hara, Hideaki
2017-01-01
Blue light is a high-energy emitting light with a short wavelength in the visible light spectrum. Blue light induces photoreceptor apoptosis and causes age-related macular degeneration or retinitis pigmentosa. In the present study, we investigated the roles of endoplasmic reticulum (ER) stress induced by blue light-emitting diode (LED) light exposure in murine photoreceptor cells. The murine photoreceptor cell line was incubated and exposed to blue LED light (464 nm blue LED light, 450 lx, 3 to 24 h). The expression of the factors involved in the unfolded protein response pathway was examined using quantitative real-time reverse transcription (RT)-PCR and immunoblot analysis. The aggregation of short-wavelength opsin (S-opsin) in the murine photoreceptor cells was observed with immunostaining. The effect of S-opsin knockdown on ATF4 expression in the murine photoreceptor cell line was also investigated. Exposure to blue LED light increased the bip , atf4 , and grp94 mRNA levels, induced the expression of ATF4 protein, and increased the levels of ubiquitinated proteins. Exposure to blue LED light in combination with ER stress inducers (tunicamycin and dithiothreitol) induced the aggregation of S-opsin. S-opsin mRNA knockdown prevented the induction of ATF4 expression in response to exposure to blue LED light. These findings indicate that the aggregation of S-opsin induced by exposure to blue LED light causes ER stress, and ATF4 activation in particular.
Abecasis, Bernardo; Aguiar, Tiago; Arnault, Émilie; Costa, Rita; Gomes-Alves, Patricia; Aspegren, Anders; Serra, Margarida; Alves, Paula M
2017-03-20
Human induced pluripotent stem cells (hiPSC) are attractive tools for drug screening and disease modeling and promising candidates for cell therapy applications. However, to achieve the high numbers of cells required for these purposes, scalable and clinical-grade technologies must be established. In this study, we use environmentally controlled stirred-tank bioreactors operating in perfusion as a powerful tool for bioprocess intensification of hiPSC production. We demonstrate the importance of controlling the dissolved oxygen concentration at low levels (4%) and perfusion at 1.3day -1 dilution rate to improve hiPSC growth as aggregates in a xeno-free medium. This strategy allowed for increased cell specific growth rate, maximum volumetric concentrations (4.7×10 6 cell/mL) and expansion factors (approximately 19 in total cells), resulting in a 2.6-fold overall improvement in cell yields. Extensive cell characterization, including whole proteomic analysis, was performed to confirm that cells' pluripotent phenotype was maintained during culture. A scalable protocol for continuous expansion of hiPSC aggregates in bioreactors was implemented using mechanical dissociation for aggregate disruption and cell passaging. A total expansion factor of 1100 in viable cells was obtained in 11days of culture, while cells maintained their proliferation capacity, pluripotent phenotype and potential as well as genomic stability after 3 sequential passages in bioreactors. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Eberbeck, D.; Kettering, M.; Bergemann, C.; Zirpel, P.; Hilger, I.; Trahms, L.
2010-10-01
The knowledge of the physico-chemical characteristics of magnetic nanoparticles (MNPs) is essential to enhance the efficacy of MNP-based therapeutic treatments (e.g. magnetic heating, magnetic drug targeting). According to the literature, the MNP uptake by cells may depend on the coating of MNPs, the surrounding medium as well as on the aggregation behaviour of the MNPs. Therefore, in this study, the aggregation behaviour of MNPs in various media was investigated. MNPs with different coatings were suspended in cell culture medium (CCM) containing fetal calf serum (FCS) and the distribution of the hydrodynamic sizes was measured by magnetorelaxometry (MRX). FCS as well as bovine serum albumin (BSA) buffer (phosphate buffered saline with 0.1% bovine serum albumin) may induce MNP aggregation. Its strength depends crucially on the type of coating. The degree of aggregation in CCM depends on its FCS content showing a clear, local maximum at FCS concentrations, where the IgG concentration (part of FCS) is of the order of the MNP number concentration. Thus, we attribute the observed aggregation behaviour to the mechanism of agglutination of MNPs by serum compartments as for example IgG. No aggregation was induced for MNPs coated with dextran, polyarabic acid or sodium phosphate, respectively, which were colloidally stable in CCM.
Hiram-Bab, Sahar; Shapira, Yuval; Gershengorn, Marvin C; Oron, Yoram
2012-03-01
This study aimed to investigate whether the previously described differentiating islet-like aggregates of human pancreatic adenocarcinoma cells (PANC-1) develop glucose response and exhibit intercellular communication. Fura 2-loaded PANC-1 cells in serum-free medium were assayed for changes in cytosolic free calcium ([Ca]i) induced by depolarization, tolbutamide inhibition of K(ATP) channels, or glucose. Dye transfer, assayed by confocal microscopy or by FACS, was used to detect intercellular communication. Changes in messenger RNA (mRNA) expression of genes of interest were assessed by quantitative real-time polymerase chain reaction. Proliferation was assayed by the MTT method. Serum-deprived PANC-1 cell aggregates developed [Ca]i response to KCl, tolbutamide, or glucose. These responses were accompanied by 5-fold increase in glucokinase mRNA level and, to a lesser extent, of mRNAs for K(ATP) and L-type calcium channels, as well as increase in mRNA levels of glucagon and somatostatin. Trypsin, a proteinase-activated receptor 2 agonist previously shown to enhance aggregation, modestly improved [Ca]i response to glucose. Glucose-induced coordinated [Ca]i oscillations and dye transfer demonstrated the emergence of intercellular communication. These findings suggest that PANC-1 cells, a pancreatic adenocarcinoma cell line, can be induced to express a differentiated phenotype in which cells exhibit response to glucose and form a functional syncytium similar to those observed in pancreatic islets.
Ikeda, Kazuhiro; Nagata, Shogo; Okitsu, Teru; Takeuchi, Shoji
2017-06-06
Human pluripotent stem cells are a potentially powerful cellular resource for application in regenerative medicine. Because such applications require large numbers of human pluripotent stem cell-derived cells, a scalable culture system of human pluripotent stem cell needs to be developed. Several suspension culture systems for human pluripotent stem cell expansion exist; however, it is difficult to control the thickness of cell aggregations in these systems, leading to increased cell death likely caused by limited diffusion of gases and nutrients into the aggregations. Here, we describe a scalable culture system using the cell fiber technology for the expansion of human induced pluripotent stem (iPS) cells. The cells were encapsulated and cultured within the core region of core-shell hydrogel microfibers, resulting in the formation of rod-shaped or fiber-shaped cell aggregations with sustained thickness and high viability. By encapsulating the cells with type I collagen, we demonstrated a long-term culture of the cells by serial passaging at a high expansion rate (14-fold in four days) while retaining its pluripotency. Therefore, our culture system could be used for large-scale expansion of human pluripotent stem cells for use in regenerative medicine.
Hypertonic stress induces rapid and widespread protein damage in C. elegans
Burkewitz, Kris; Choe, Keith
2011-01-01
Proteostasis is defined as the homeostatic mechanisms that maintain the function of all cytoplasmic proteins. We recently demonstrated that the capacity of the proteostasis network is a critical factor that defines the limits of cellular and organismal survival in hypertonic environments. The current studies were performed to determine the extent of protein damage induced by cellular water loss. Using worm strains expressing fluorescently tagged foreign and endogenous proteins and proteins with temperature-sensitive point mutations, we demonstrate that hypertonic stress causes aggregation and misfolding of diverse proteins in multiple cell types. Protein damage is rapid. Aggregation of a polyglutamine yellow fluorescent protein reporter is observable with <1 h of hypertonic stress, and aggregate volume doubles approximately every 10 min. Aggregate formation is irreversible and occurs after as little as 10 min of exposure to hypertonic conditions. To determine whether endogenous proteins are aggregated by hypertonic stress, we quantified the relative amount of total cellular protein present in detergent-insoluble extracts. Exposure for 4 h to 400 mM or 500 mM NaCl induced a 55–120% increase in endogenous protein aggregation. Inhibition of insulin signaling or acclimation to mild hypertonic stress increased survival under extreme hypertonic conditions and prevented aggregation of endogenous proteins. Our results demonstrate that hypertonic stress causes widespread and dramatic protein damage and that cells have a significant capacity to remodel the network of proteins that function to maintain proteostasis. These findings have important implications for understanding how cells cope with hypertonic stress and other protein-damaging stressors. PMID:21613604
RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation
Lim, Chinten James; Spiegelman, George B.; Weeks, Gerald
2001-01-01
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC– cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC– cells stimulated by 2′-deoxy-cAMP, but is produced in response to GTPγS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC– cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC– cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC– cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC– cells, suggesting that AleA may activate RasC. PMID:11500376
RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation.
Lim, C J; Spiegelman, G B; Weeks, G
2001-08-15
Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.
Sheu, Joen R.; Lin, Chao H.; Chung, Jih L.; Teng, Che M.
1992-01-01
Triflavin, an Arg‐Gly‐Asp (RGD) containing peptide purified from Trimeresurus flavoviridis snake venom, inhibits human platelet aggregation by blocking fibrinogen binding to fibrinogen receptors associated with glycoprotein Ilb/IIIa complex. In this study, we show that triflavin (1‐30 μg/mouse) inhibits B16‐F10 melanoma cell‐induced lung colonization in C57BL/6 mice in a dose‐dependent manner. In vitro, triflavin dose‐dependently inhibits adhesion of B16‐F10 melanoma cells to extracellular matrices (ECMs; i.e., fibronectin, fibrinogen, vitronectin, and collagen type I). Triflavin is approximately 600‐800 times more potent than GRGDS at inhibiting cell adhesion. In addition, triflavin dose‐dependently inhibits B16‐F10 cell‐induced platelet aggregation. These results imply that the inhibitory effect of triflavin on the adhesion of tumor cells to ECMs (e.g., fibronectin, vitronectin and collagen type I) and/or tumor cell‐induced platelet aggregation may be partially responsible for its antimetastatic activity in C57BL/6 mice. PMID:1399825
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando
2012-09-28
Highlights: Black-Right-Pointing-Pointer Rotenone is a model for inducing apoptosis and synphilin-1 accumulation in Parkinson Prime s studies. Black-Right-Pointing-Pointer The metabolite sodium betahydroxybutryate mitigates these effects in SHSY5Y cell lines. Black-Right-Pointing-Pointer Results reveal a novel and innate mechanism to prevent neurodegeneration/cell death. -- Abstract: Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-taggedmore » synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-{beta}-hydroxybutyrate (Na{beta}HB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that Na{beta}HB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies.« less
Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds
2012-01-01
Background Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Result Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Conclusion Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation. PMID:22269093
Regulation of aggregate size and pattern by adenosine and caffeine in cellular slime molds.
Jaiswal, Pundrik; Soldati, Thierry; Thewes, Sascha; Baskar, Ramamurthy
2012-01-23
Multicellularity in cellular slime molds is achieved by aggregation of several hundreds to thousands of cells. In the model slime mold Dictyostelium discoideum, adenosine is known to increase the aggregate size and its antagonist caffeine reduces the aggregate size. However, it is not clear if the actions of adenosine and caffeine are evolutionarily conserved among other slime molds known to use structurally unrelated chemoattractants. We have examined how the known factors affecting aggregate size are modulated by adenosine and caffeine. Adenosine and caffeine induced the formation of large and small aggregates respectively, in evolutionarily distinct slime molds known to use diverse chemoattractants for their aggregation. Due to its genetic tractability, we chose D. discoideum to further investigate the factors affecting aggregate size. The changes in aggregate size are caused by the effect of the compounds on several parameters such as cell number and size, cell-cell adhesion, cAMP signal relay and cell counting mechanisms. While some of the effects of these two compounds are opposite to each other, interestingly, both compounds increase the intracellular glucose level and strengthen cell-cell adhesion. These compounds also inhibit the synthesis of cAMP phosphodiesterase (PdsA), weakening the relay of extracellular cAMP signal. Adenosine as well as caffeine rescue mutants impaired in stream formation (pde4- and pdiA-) and colony size (smlA- and ctnA-) and restore their parental aggregate size. Adenosine increased the cell division timings thereby making large number of cells available for aggregation and also it marginally increased the cell size contributing to large aggregate size. Reduced cell division rates and decreased cell size in the presence of caffeine makes the aggregates smaller than controls. Both the compounds altered the speed of the chemotactic amoebae causing a variation in aggregate size. Our data strongly suggests that cytosolic glucose and extracellular cAMP levels are the other major determinants regulating aggregate size and pattern. Importantly, the aggregation process is conserved among different lineages of cellular slime molds despite using unrelated signalling molecules for aggregation.
Kishimoto, Satoko; Inoue, Ken-Ichi; Nakamura, Shingo; Hattori, Hidemi; Ishihara, Masayuki; Sakuma, Masashi; Toyoda, Shigeru; Iwaguro, Hideki; Taguchi, Isao; Inoue, Teruo; Yoshida, Ken-Ichiro
2016-06-01
Heparin/protamine micro/nanoparticles (LH/P-MPs) were recently developed as low-molecular weight, biodegradable carriers for adipose-derived stromal cells (ADSCs). These particles can be used for a locally delivered stem cell therapy that promotes angiogenesis. LH/P-MPs bind to the cell surface of ADSCs and promote cell-to-cell interaction and aggregation of ADSCs. Cultured ADSC/LH/P-MP aggregates remain viable. Here, we examined the ability of these aggregates to rescue limb loss in a mouse model of hindlimb ischemia. Unilateral hindlimb ischemia was induced in adult male BALB/c mice by ligation of the iliac artery and hindlimb vein. For allotransplantation of ADSCs from the same inbred strain, we injected ADSC alone or ADSC/LH/P-MP aggregates or control medium (sham-treated) directly into the ischemic muscles. Ischemic limb blood perfusion, vessel density, and vessel area were recorded. The extent of ischemic limb necrosis or limb loss was assessed on postoperative days 2, 7, and 14. Compared with the sham-treatment control, treatment with ADSCs alone showed modest effects on blood perfusion recovery and increased the number of α-SMA-positive vessels. Response to ADSC/LH/P-MP aggregates was significantly greater than ADSCs alone for every endpoint. ADSC/LH/P-MP aggregates more effectively prevented the loss of ischemic hindlimbs than ADSCs alone or the sham-treatment. The LH/P-MPs augmented the effects of ADSCs on angiogenesis and reversal of limb ischemia. Use of ADSC/LH/P-MP aggregates offers a novel and convenient treatment method and potentially represents a promising new therapeutic approach to inducing angiogenesis in ischemic diseases. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Kabiraj, Parijat; Pal, Rituraj; Varela-Ramirez, Armando; Miranda, Manuel; Narayan, Mahesh
2012-09-28
Mitochondrial dysfunction, leading to elevated levels of reactive oxygen species, is associated with the pathogenesis of neurodegenerative disorders. Rotenone, a mitochondrial stressor induces caspase-9 and caspase-3 activation leading proteolytic cleavage of substrate nuclear poly(ADP-ribose) polymerase (PARP). PARP cleavage is directly related to apoptotic cell death. In this study, we have monitored the aggregation of green-fluorescent protein (GFP)-tagged synphilin-1, as a rotenone-induced Parkinsonia-onset biomarker. We report that the innate ketone body, Na-D-β-hydroxybutyrate (NaβHB) reduces markedly the incidence of synphilin-1 aggregation. Furthermore, our data reveal that the metabolic byproduct also prevents rotenone-induced caspase-activated apoptotic cell death in dopaminergic SH-SY5Y cells. Together, these results suggest that NaβHB is neuroprotective; it attenuates effects originating from mitochondrial insult and can serve as a scaffold for the design and development of sporadic neuropathies. Copyright © 2012 Elsevier Inc. All rights reserved.
Visualization of reticulophagy in living cells using an endoplasmic reticulum-targeted p62 mutant.
Wang, Liang; Liu, Lei; Qin, Lingsong; Luo, Qingming; Zhang, Zhihong
2017-04-01
Reticulophagy is a type of selective autophagy in which protein aggregate-containing and/or damaged endoplasmic reticulum (ER) fragments are engulfed for lysosomal degradation, which is important for ER homeostasis. Several chemical drugs and mutant proteins that promote protein aggregate formation within the ER lumen can efficiently induce reticulophagy in mammalian cells. However, the exact mechanism and cellular localization of reticulophagy remain unclear. In this report, we took advantage of the self-oligomerization property of p62/SQSTM1, an adaptor for selective autophagy, and developed a novel reticulophagy system based on an ER-targeted p62 mutant to investigate the process of reticulophagy in living cells. LC3 conversion analysis via western blot suggested that p62 mutant aggregate-induced ER stress triggered a cellular autophagic response. Confocal imaging showed that in cells with moderate aggregation conditions, the aggregates of ER-targeted p62 mutants were efficiently sequestered by autophagosomes, which was characterized by colocalization with the autophagosome precursor marker ATG16L1, the omegasome marker DFCP1, and the late autophagosomal marker LC3/GATE-16. Moreover, time-lapse imaging data demonstrated that the LC3- or DFCP1-positive protein aggregates are tightly associated with the reticular structures of the ER, thereby suggesting that reticulophagy occurs at the ER and that omegasomes may be involved in this process.
Villar-Piqué, Anna; Lopes da Fonseca, Tomás; Sant'Anna, Ricardo; Szegö, Éva Mónika; Fonseca-Ornelas, Luis; Pinho, Raquel; Carija, Anita; Gerhardt, Ellen; Masaracchia, Caterina; Abad Gonzalez, Enrique; Rossetti, Giulia; Carloni, Paolo; Fernández, Claudio O; Foguel, Debora; Milosevic, Ira; Zweckstetter, Markus; Ventura, Salvador; Outeiro, Tiago Fleming
2016-10-18
Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to adopt different stable conformational states, known as protein strains, which can be modulated both by environmental and by protein-intrinsic factors. Here, we analyzed these factors and found that the unique combination of the neurodegeneration-related metal copper and the pathological H50Q aSyn mutation induces a significant alteration in the aggregation properties of aSyn. We compared the aggregation of WT and H50Q aSyn with and without copper, and assessed the effects of the resultant protein species when applied to primary neuronal cultures. The presence of copper induces the formation of structurally different and less-damaging aSyn aggregates. Interestingly, these aggregates exhibit a stronger capacity to induce aSyn inclusion formation in recipient cells, which demonstrates that the structural features of aSyn species determine their effect in neuronal cells and supports a lack of correlation between toxicity and inclusion formation. In total, our study provides strong support in favor of the hypothesis that protein aggregation is not a primary cause of cytotoxicity.
Villar-Piqué, Anna; Lopes da Fonseca, Tomás; Sant’Anna, Ricardo; Szegö, Éva Mónika; Fonseca-Ornelas, Luis; Pinho, Raquel; Carija, Anita; Gerhardt, Ellen; Masaracchia, Caterina; Abad Gonzalez, Enrique; Rossetti, Giulia; Carloni, Paolo; Fernández, Claudio O.; Foguel, Debora; Milosevic, Ira; Zweckstetter, Markus; Ventura, Salvador; Outeiro, Tiago Fleming
2016-01-01
Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to adopt different stable conformational states, known as protein strains, which can be modulated both by environmental and by protein-intrinsic factors. Here, we analyzed these factors and found that the unique combination of the neurodegeneration-related metal copper and the pathological H50Q aSyn mutation induces a significant alteration in the aggregation properties of aSyn. We compared the aggregation of WT and H50Q aSyn with and without copper, and assessed the effects of the resultant protein species when applied to primary neuronal cultures. The presence of copper induces the formation of structurally different and less-damaging aSyn aggregates. Interestingly, these aggregates exhibit a stronger capacity to induce aSyn inclusion formation in recipient cells, which demonstrates that the structural features of aSyn species determine their effect in neuronal cells and supports a lack of correlation between toxicity and inclusion formation. In total, our study provides strong support in favor of the hypothesis that protein aggregation is not a primary cause of cytotoxicity. PMID:27708160
Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Hongmin; Monteiro, Mervyn J.
2007-08-01
Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner.more » Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.« less
Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells.
Zeng, Juan; Zhang, Heying; Tan, Yonggang; Sun, Cheng; Liang, Yusi; Yu, Jinyang; Zou, Huawei
2018-05-30
Activation of c-Met, a receptor tyrosine kinase, induces radiation therapy resistance in non-small cell lung cancer (NSCLC). The activated residual of c-Met is located in lipid rafts (Duhon et al. Mol Carcinog 49:739-49, 2010). Therefore, we hypothesized that disturbing the integrity of lipid rafts would restrain the activation of the c-Met protein and reverse radiation resistance in NSCLC. In this study, a series of experiments was performed to test this hypothesis. NSCLC A549 and H1993 cells were incubated with methyl-β-cyclodextrin (MβCD), a lipid raft inhibitor, at different concentrations for 1 h before the cells were X-ray irradiated. The following methods were used: clonogenic (colony-forming) survival assays, flow cytometry (for cell cycle and apoptosis analyses), immunofluorescence microscopy (to show the distribution of proteins in lipid rafts), Western blotting, and biochemical lipid raft isolation (purifying lipid rafts to show the distribution of proteins in lipid rafts). Our results showed that X-ray irradiation induced the aggregation of lipid rafts in A549 cells, activated c-Met and c-Src, and induced c-Met and c-Src clustering to lipid rafts. More importantly, MβCD suppressed the proliferation of A549 and H1993 cells, and the combination of MβCD and radiation resulted in additive increases in A549 and H1993 cell apoptosis. Destroying the integrity of lipid rafts inhibited the aggregation of c-Met and c-Src to lipid rafts and reduced the expression of phosphorylated c-Met and phosphorylated c-Src in lipid rafts. X-ray irradiation induced the aggregation of lipid rafts and the clustering of c-Met and c-Src to lipid rafts through both lipid raft-dependent and lipid raft-independent mechanisms. The lipid raft-dependent activation of c-Met and its downstream pathways played an important role in the development of radiation resistance in NSCLC cells mediated by c-Met. Further studies are still required to explore the molecular mechanisms of the activation of c-Met and c-Src in lipid rafts induced by radiation.
NASA Astrophysics Data System (ADS)
Lee, Kisung; Wagner, Christian; Priezzhev, Alexander V.
2017-09-01
Red blood cell (RBC) aggregation is an intrinsic property of the blood that has a direct effect on the blood viscosity and circulation. Nevertheless, the mechanism behind the RBC aggregation has not been confirmed and is still under investigation with two major hypotheses, known as "depletion layer" and "cross-bridging." We aim to ultimately understand the mechanism of the RBC aggregation and clarify both models. To measure the cell interaction in vitro in different suspensions (including plasma, isotonic solution of fibrinogen, isotonic solution of fibrinogen with albumin, and phosphate buffer saline) while moving the aggregate from one solution to another, an approach combining optical trapping and microfluidics has been applied. The study reveals evidence that RBC aggregation in plasma is at least partly due to the cross-bridging mechanism. The cell interaction strength measured in the final solution was found to be significantly changed depending on the initial solution where the aggregate was formed.
Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells.
Zhang, Pengbo; Lu, Huan; Chen, Hui; Zhang, Jiangyan; Liu, Libing; Lv, Fengting; Wang, Shu
2016-03-15
Bacteria quorum sensing (QS) has attracted significant interest for understanding cell-cell communication and regulating biological functions. In this work, we demonstrate that water-soluble cationic conjugated polymers (PFP-G2) can interact with bacteria to form aggregates through electrostatic interactions. With bacteria coated in the aggregate, PFP-G2 can induce the bacteria QS system and prolong the time duration of QS signal molecules (autoinducer-2 (AI-2)) production. The prolonged AI-2 can bind with specific protein and continuously regulate downstream gene expression. Consequently, the bacteria show a higher survival rate against antibiotics, resulting in decreased antimicrobial susceptibility. Also, AI-2 induced by PFP-G2 can stimulate 55.54 ± 12.03% more biofilm in E. coli. This method can be used to understand cell-cell communication and regulate biological functions, such as the production of signaling molecules, antibiotics, other microbial metabolites, and even virulence.
Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha
2012-10-15
Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examinedmore » the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.« less
Li, Yang; Jiang, Xulin; Li, Ling; Chen, Zhi-Nan; Gao, Ge; Yao, Rui; Sun, Wei
2018-06-28
Human induced pluripotent stem cells (hiPSCs) are more likely to successfully avoid the immunological rejection and ethical problems that are often encountered by human embryonic stem cells in various stem cell studies and applications. To transfer hiPSCs from the laboratory to clinical applications, researchers must obtain sufficient cell numbers. In this study, 3D cell printing was used as a novel method for iPSC scalable expansion. Hydroxypropyl chitin (HPCH), utilized as a new type of bioink, and a set of optimized printing parameters were shown to achieve high cell survival (> 90%) after the printing process and high proliferation efficiency (~ 32.3 folds) during subsequent 10-day culture. After the culture, high levels of pluripotency maintenance were recognized by both qualitative and quantitative detections. Compared with static suspension (SS) culture, hiPSC aggregates formed in 3D printed constructs showed a higher uniformity in size. Using novel dual-fluorescent labelling method, hiPSC aggregates in the constructs were found more inclined to form by <i>in situ</i> proliferation rather than multicellular aggregation. This study revealed unique advantages of non-ionic crosslinking bioink material HPCH, including high gel strength and rapid temperature response in hiPSC printing, and achieved primed state hiPSC printing for the first time. Features achieved in this study, such as high cell yield, high pluripotency maintenance and uniform aggregation provide good foundations for further hiPSC studies on 3D micro-tissue differentiation and drug screening. © 2018 IOP Publishing Ltd.
Hiram-Bab, Sahar; Shapira, Yuval; Gershengorn, Marvin C.; Oron, Yoram
2012-01-01
Objective This study aimed to investigate whether the previously described differentiating islet-like aggregates of human pancreatic adenocarcinoma cells (PANC-1) develop glucose response and exhibit intercellular communication. Methods Fura 2–loaded PANC-1 cells in serum-free medium were assayed for changes in cytosolic free calcium ([Ca]i) induced by depolarization, tolbutamide inhibition of K(ATP) channels, or glucose. Dye transfer, assayed by confocal microscopy or by FACS, was used to detect intercellular communication. Changes in messenger RNA (mRNA) expression of genes of interest were assessed by quantitative real-time polymerase chain reaction. Proliferation was assayed by the MTT method. Results Serum-deprived PANC-1 cell aggregates developed [Ca]i response to KCl, tolbutamide, or glucose. These responses were accompanied by 5-fold increase in glucokinase mRNA level and, to a lesser extent, of mRNAs for K(ATP) and L-type calcium channels, as well as increase in mRNA levels of glucagon and somatostatin. Trypsin, a proteinase-activated receptor 2 agonist previously shown to enhance aggregation, modestly improved [Ca]i response to glucose. Glucose-induced coordinated [Ca]i oscillations and dye transfer demonstrated the emergence of intercellular communication. Conclusions These findings suggest that PANC-1 cells, a pancreatic adenocarcinoma cell line, can be induced to express a differentiated phenotype, in which cells exhibit response to glucose and form a functional syncytium similar to those observed in pancreatic islets. PMID:22129530
Song, Wei; Lu, Yen-Chun; Frankel, Angela S.; An, Duo; Schwartz, Robert E.; Ma, Minglin
2015-01-01
Cellular therapies for liver diseases and in vitro models for drug testing both require functional human hepatocytes (Hum-H), which have unfortunately been limited due to the paucity of donor liver tissues. Human pluripotent stem cells (hPSCs) represent a promising and potentially unlimited cell source to derive Hum-H. However, the hepatic functions of these hPSC-derived cells to date are not fully comparable to adult Hum-H and are more similar to fetal ones. In addition, it has been challenging to obtain functional hepatic engraftment of these cells with prior studies having been done in immunocompromised animals. In this report, we demonstrated successful engraftment of human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (iPS-H) in immunocompetent mice by pre-engineering 3D cell co-aggregates with stromal cells (SCs) followed by encapsulation in recently developed biocompatible hydrogel capsules. Notably, upon transplantation, human albumin and α1-antitrypsin (A1AT) in mouse sera secreted by encapsulated iPS-H/SCs aggregates reached a level comparable to the primary Hum-H/SCs control. Further immunohistochemistry of human albumin in retrieved cell aggregates confirmed the survival and function of iPS-H. This proof-of-concept study provides a simple yet robust approach to improve the engraftment of iPS-H, and may be applicable to many stem cell-based therapies. PMID:26592180
GPNMB ameliorates mutant TDP-43-induced motor neuron cell death.
Nagahara, Yuki; Shimazawa, Masamitsu; Ohuchi, Kazuki; Ito, Junko; Takahashi, Hitoshi; Tsuruma, Kazuhiro; Kakita, Akiyoshi; Hara, Hideaki
2017-08-01
Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Morabito, Caterina; Steimberg, Nathalie; Mazzoleni, Giovanna; Guarnieri, Simone; Fanò-Illic, Giorgio; Mariggiò, Maria A
2015-01-01
We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions.
Mazzoleni, Giovanna; Fanò-Illic, Giorgio; Mariggiò, Maria A.
2015-01-01
We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions. PMID:25654124
Distinct pathways leading to TDP-43-induced cellular dysfunctions.
Yamashita, Makiko; Nonaka, Takashi; Hirai, Shinobu; Miwa, Akiko; Okado, Haruo; Arai, Tetsuaki; Hosokawa, Masato; Akiyama, Haruhiko; Hasegawa, Masato
2014-08-15
TAR DNA-binding protein of 43 kDa (TDP-43) is the major component protein of inclusions found in brains of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the molecular mechanisms by which TDP-43 causes neuronal dysfunction and death remain unknown. Here, we report distinct cytotoxic effects of full-length TDP-43 (FL-TDP) and its C-terminal fragment (CTF) in SH-SY5Y cells. When FL-TDP was overexpressed in the cells using a lentiviral system, exogenous TDP-43, like endogenous TDP-43, was expressed mainly in nuclei of cells without any intracellular inclusions. However, these cells showed striking cell death, caspase activation and growth arrest at G2/M phase, indicating that even simple overexpression of TDP-43 induces cellular dysfunctions leading to apoptosis. On the other hand, cells expressing TDP-43 CTF showed cytoplasmic aggregates but without significant cell death, compared with cells expressing FL-TDP. Confocal microscopic analyses revealed that RNA polymerase II (RNA pol II) and several transcription factors, such as specificity protein 1 and cAMP-response-element-binding protein, were co-localized with the aggregates of TDP-43 CTF, suggesting that sequestration of these factors into TDP-43 aggregates caused transcriptional dysregulation. Indeed, accumulation of RNA pol II at TDP-43 inclusions was detected in brains of patients with FTLD-TDP. Furthermore, apoptosis was not observed in affected neurons of FTLD-TDP brains containing phosphorylated and aggregated TDP-43 pathology. Our results suggest that different pathways of TDP-43-induced cellular dysfunction may contribute to the degeneration cascades involved in the onset of ALS and FTLD-TDP. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bansode, Rishipal R; Plundrich, Nathalie J; Randolph, Priscilla D; Lila, Mary Ann; Williams, Leonard L
2018-10-15
This study investigates the anti-allergic properties of peanut skin polyphenols (PSP)-enriched peanut (PN) protein aggregates. PSP was blended with PN flour at concentrations of 5, 10, 15, 30, and 40% (w/w). Rat basophil leukemia cells (RBL-2H3) were sensitized with either anti-DNP-IgE or PN-allergic plasma followed by co-exposure to unmodified PN flour (control) or PSP-PN protein aggregates and Ca 2+ ionophore, ionomycin. Immunoblotting and staining were performed to measure the IgE binding capacity of PSP-PN aggregates. Results showed that 30% PSP-PN aggregate significantly reduced β-hexosaminidase and histamine levels by 54.2% and 49.2%, respectively compared with control. Immunoblotting results revealed 40% PSP-PN aggregates significantly decreased IgE binding by 19%. The phosphorylation of p44/42 MAPK was significantly reduced while phosphorylation of p38 MAPK and SAPK/JNK increased upon PSP-PN protein aggregate exposure to the cells. Our results show that aggregation of PSP to PN proteins reduces allergic response by inhibiting Ca 2+ -induced MAPK-dependent cell degranulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung
2016-01-01
Background Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. Results The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. Conclusion After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow. PMID:27298790
Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung
2016-06-01
Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was performed before and at 1, 2, and 3 hours after ECC commencement. To eliminate bias induced by hematocrit and plasma, all blood samples were adjusted to a hematocrit of 45% using baseline plasma. Blood viscoelasticity, plasma viscosity, hematocrit, arterial blood gas analysis, central venous O2 saturation, and lactate were measured. The blood viscosity and aggregation index decreased abruptly 1 hour after ECC and then remained low during ECC in both groups, but blood elasticity did not change during ECC. Blood viscosity, blood elasticity, plasma viscosity, and the aggregation index were not significantly different in the groups at any time. Hematocrit decreased abruptly 1 hour after ECC in both groups due to dilution by the priming solution used. After ECC, blood viscoelasticity and RBC aggregation were not different in the pulsatile and nonpulsatile groups in the adult dog model. Furthermore, pulsatile flow did not have a more harmful effect on blood viscoelasticity or RBC aggregation than nonpulsatile flow.
Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju
2016-01-01
The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation.
Li, Rui; Yu, Guanglin; Azarin, Samira M; Hubel, Allison
2018-05-01
Inadequate preservation methods of human induced pluripotent stem cells (hiPSCs) have impeded efficient reestablishment of cell culture after the freeze-thaw process. In this study, we examined roles of the cooling rate, seeding temperature, and difference between cell aggregates (3-50 cells) and single cells in controlled rate freezing of hiPSCs. Intracellular ice formation (IIF), post-thaw membrane integrity, cell attachment, apoptosis, and cytoskeleton organization were evaluated to understand the different freezing responses between hiPSC single cells and aggregates, among cooling rates of 1, 3, and 10°C/min, and between seeding temperatures of -4°C and -8°C. Raman spectroscopy images of ice showed that a lower seeding temperature (-8°C) did not affect IIF in single cells, but significantly increased IIF in aggregates, suggesting higher sensitivity of aggregates to supercooling. In the absence of IIF, Raman images showed greater variation of dimethyl sulfoxide concentration across aggregates than single cells, suggesting cryoprotectant transport limitations in aggregates. The ability of cryopreserved aggregates to attach to culture substrates did not correlate with membrane integrity for the wide range of freezing parameters, indicating inadequacy of using only membrane integrity-based optimization metrics. Lower cooling rates (1 and 3°C/min) combined with higher seeding temperature (-4°C) were better at preventing IIF and preserving cell function than a higher cooling rate (10°C/min) or lower seeding temperature (-8°C), proving the seeding temperature range of -7°C to -12°C from literature to be suboptimal. Unique f-actin cytoskeletal organization into a honeycomb-like pattern was observed in postpassage and post-thaw colonies and correlated with successful reestablishment of cell culture.
Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen
NASA Astrophysics Data System (ADS)
Abdoun, Hamid; McMillan, Mary; Pereg, Lily
2016-04-01
Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.
BMP induction of cardiogenesis in P19 cells requires prior cell-cell interaction(s).
Angello, John C; Kaestner, Stefanie; Welikson, Robert E; Buskin, Jean N; Hauschka, Stephen D
2006-08-01
Mouse P19 embryonal carcinoma cells undergo cardiogenesis in response to high density and DMSO. We have derived a clonal subline that undergoes cardiogenesis in response to high density, but without requiring exposure to DMSO. The new subline retains the capacity to differentiate into skeletal muscle and neuronal cells in response to DMSO and retinoic acid. However, upon aggregation, these Oct 4-positive cells, termed P19-SI because they "self-induce" cardiac muscle, exhibit increased mRNAs encoding the mesodermal factor Brachyury, cardiac transcription factors Nkx 2.5 and GATA 4, the transcriptional repressor Msx-1, and cytokines Wnt 3a, Noggin, and BMP 4. Exposure of aggregated P19-SI cells to BMP 4, a known inducer of cardiogenesis, accelerates cardiogenesis, as determined by rhythmic beating and myosin staining. However, cardiogenesis is severely inhibited when P19-SI cells are aggregated in the presence of BMP 4. These results demonstrate that cell-cell interaction is required before P19-SI cells can undergo a cardiogenic response to BMP 4. A concurrent increase in the expression of Msx-1 suggests one possible process underlying the inhibition of cardiogenesis. The phenotype of P19-SI cells offers an opportunity to explore new aspects of cardiac induction.
Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans
NASA Astrophysics Data System (ADS)
El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Alsteens, David; Jackson, Desmond N.; Lipke, Peter N.; Dufrêne, Yves F.
2013-01-01
The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such a novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3-d-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy (AFM) to demonstrate that caspofungin induces major remodelling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the cells, which correlate with a decrease of the cell wall mechanical strength. Moreover, we find that the drug induces the massive exposure of the cell adhesion protein Als1 on the cell surface and leads to increased cell surface hydrophobicity, two features that trigger cell aggregation. This behaviour is not observed in yeast species lacking Als1, demonstrating the key role that the protein plays in determining the aggregation phenotype of C. albicans. The results show that AFM opens up new avenues for understanding the molecular bases of microbe-drug interactions and for developing new therapeutic agents.The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such a novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3-d-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy (AFM) to demonstrate that caspofungin induces major remodelling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the cells, which correlate with a decrease of the cell wall mechanical strength. Moreover, we find that the drug induces the massive exposure of the cell adhesion protein Als1 on the cell surface and leads to increased cell surface hydrophobicity, two features that trigger cell aggregation. This behaviour is not observed in yeast species lacking Als1, demonstrating the key role that the protein plays in determining the aggregation phenotype of C. albicans. The results show that AFM opens up new avenues for understanding the molecular bases of microbe-drug interactions and for developing new therapeutic agents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33215a
Inhibition of TTR Aggregation-Induced Cell Death – A New Role for Serum Amyloid P Component
Dacklin, Ingrid; Lundgren, Erik
2013-01-01
Background Serum amyloid P component (SAP) is a glycoprotein that is universally found associated with different types of amyloid deposits. It has been suggested that it stabilizes amyloid fibrils and therefore protects them from proteolytic degradation. Methodology/Principal Findings In this paper, we show that SAP binds not only to mature amyloid fibrils but also to early aggregates of amyloidogenic mutants of the plasma protein transthyretin (TTR). It does not inhibit fibril formation of TTR mutants, which spontaneously form amyloid in vitro at physiological pH. We found that SAP prevents cell death induced by mutant TTR, while several other molecules that are also known to decorate amyloid fibrils do not have such effect. Using a Drosophila model for TTR-associated amyloidosis, we found a new role for SAP as a protective factor in inhibition of TTR-induced toxicity. Overexpression of mutated TTR leads to a neurological phenotype with changes in wing posture. SAP-transgenic flies were crossed with mutated TTR-expressing flies and the results clearly confirmed a protective effect of SAP on TTR-induced phenotype, with an almost complete reduction in abnormal wing posture. Furthermore, we found in vivo that binding of SAP to mutated TTR counteracts the otherwise detrimental effects of aggregation of amyloidogenic TTR on retinal structure. Conclusions/Significance Together, these two approaches firmly establish the protective effect of SAP on TTR-induced cell death and degenerative phenotypes, and suggest a novel role for SAP through which the toxicity of early amyloidogenic aggregates is attenuated. PMID:23390551
Lymphocytes on sounding rocket flights.
Cogoli-Greuter, M; Pippia, P; Sciola, L; Cogoli, A
1994-05-01
Cell-cell interactions and the formation of cell aggregates are important events in the mitogen-induced lymphocyte activation. The fact that the formation of cell aggregates is only slightly reduced in microgravity suggests that cells are moving and interacting also in space, but direct evidence was still lacking. Here we report on two experiments carried out on a flight of the sounding rocket MAXUS 1B, launched in November 1992 from the base of Esrange in Sweden. The rocket reached the altitude of 716 km and provided 12.5 min of microgravity conditions.
Influence of gold nanoparticles on platelets functional activity in vitro
NASA Astrophysics Data System (ADS)
Akchurin, Garif G.; Akchurin, George G.; Ivanov, Alexey N.; Kirichuk, Vyacheslav F.; Terentyuk, George S.; Khlebtsov, Boris N.; Khlebtsov, Nikolay G.
2008-02-01
Now in the leading biomedical centers of the world approved new technology of laser photothermal destruction of cancer cells using plasmon gold nanoparticles. Investigations of influence of gold nanoparticles on white rat platelets aggregative activity in vitro have been made. Platelet aggregation was investigated in platelet rich plasma (PRP) with help of laser analyzer 230 LA <
Effect of cobalt ions on the interaction between macrophages and titanium.
Pettersson, Mattias; Pettersson, Jean; Thorén, Margareta Molin; Johansson, Anders
2018-04-30
Inflammation and bone reduction around dental implants are described as peri-implantitis and can be caused by an inflammatory response against bacterial products and toxins. Titanium (Ti) forms aggregates with serum proteins, which activate and cause release of the cytokine interleukin (IL-1β) from human macrophages. It was hypothesized that cobalt (Co) ions can interact in the formation of pro-inflammatory aggregates, formed by titanium. To test this hypothesis, we differentiated THP-1 cells into macrophages and exposed them to Ti ions alone or in combination with Co ions to investigate if IL-1β release and cytotoxicity were affected. We also investigated aggregate formation, cell uptake and human biopsies with inductively coupled plasma atomic emission spectroscopy (ICP-AES) and electron microscopy. Co at a concentration of 100 µM neutralized the IL-1β release from human macrophages and affected the aggregate formation. The aggregates formed by Ti could be detected in the cytosol of macrophages. In the presence of Co, the Ti-induced aggregates were located in the cytosol of the cultured macrophages, but outside the lysosomal structures. It is concluded that Co can neutralize the Ti-induced activation and release of active IL-1β from human macrophages in vitro. Also, serum proteins are needed for the formation of metal-protein aggregates in cell medium. Furthermore, the structures of the aggregates as well as the localisation after cellular uptake differ if Co is present in a Ti solution. Phagocytized aggregates with a similar appearance seen in vitro with Ti present, were also visible in a sample from human peri-implant tissue. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Chen, Chiung-Mei; Chen, Wan-Ling; Hung, Chen-Ting; Lin, Te-Hsien; Chao, Chih-Ying; Lin, Chih-Hsin; Wu, Yih-Ru; Chang, Kuo-Hsuan; Yao, Ching-Fa; Lee-Chen, Guey-Jen; Su, Ming-Tsan; Hsieh-Li, Hsiu Mei
2018-06-21
Spinocerebellar ataxia type 17 (SCA17) is caused by the expansion of translated CAG repeat in the TATA box binding protein (TBP) gene encoding a long polyglutamine (polyQ) tract in the TBP protein, which leads to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On cells with inducible SCA17 TBP/Q 79 -GFP expression to test five in-house NC009 indole compounds for neuroprotection. We found that both aggregation and polyQ-induced reactive oxygen species can be significantly prohibited by the tested NC009 compounds in Tet-On TBP/Q 79 293 cells. Among the five indole compounds, NC009-1 up-regulated expression of heat shock protein family B (small) member 1 (HSPB1) chaperone to reduce polyQ aggregation and promote neurite outgrowth in neuronal differentiated TBP/Q 79 SH-SY5Y cells. The increased HSPB1 thus ameliorated the increased BH3 interacting domain death agonist (BID), cytochrome c (CYCS) release, and caspase 3 (CASP3) activation which result in apoptosis. Knock down of HSPB1 attenuated the effects of NC009-1 on TBP/Q 79 SH-SY5Y cells, suggesting that HSPB1 might be one of the major pathways involved for NC009-1 effects. NC009-1 further reduced polyQ aggregation in Purkinje cells and ameliorated behavioral deficits in SCA17 TBP/Q 109 transgenic mice. Our results suggest that NC009-1 has a neuroprotective effect on SCA17 cell and mouse models to support its therapeutic potential in SCA17 treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Using Human iPSC-Derived Neurons to Model TAU Aggregation
Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav
2015-01-01
Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731
Yoon, Ye-Seul; Cho, Eun-Duk; Jung Ahn, Woo; Won Lee, Kyung; Lee, Seung-Jae; Lee, He-Jin
2017-10-05
Autophagy is a pivotal intracellular process by which cellular macromolecules are degraded upon various stimuli. A failure in the degradation of autophagic substrates such as impaired organelles and protein aggregates leads to their accumulations, which are characteristics of many neurodegenerative diseases. Pharmacological activation of autophagy has thus been considered a prospective therapeutic approach for treating neurodegenerative diseases. Among a number of autophagy-inducing agents, trehalose has received attention for its beneficial effects in different disease models of neurodegeneration. However, how trehalose promotes autophagy has not been fully revealed. We investigated the influence of trehalose and other disaccharides upon autophagic flux and aggregation of α-synuclein, a protein linked to Parkinson's disease. In differentiated human neuroblastoma and primary rat cortical neuron culture models, treatment with trehalose and other disaccharides resulted in accumulation of lipidated LC3 (LC3-II), p62, and autophagosomes, whereas it decreased autolysosomes. On the other hand, addition of Bafilomycin A1 to trehalose treatments had relatively marginal effect, an indicative of autophagic flux blockage. In concordance with these results, the cells treated with trehalose exhibited an incremental tendency in α-synuclein aggregation. Secretion of α-synuclein was also elevated in the culture medium upon trehalose treatment, thereby significantly increasing intercellular transmission of this protein. Despite the substantial increase in α-synuclein aggregation, which normally leads to cell death, cell viability was not affected upon treatment with trehalose, suggesting an autophagy-independent protective function of trehalose against protein aggregates. This study demonstrates that, although trehalose has been widely considered an autophagic inducer, it may be actually a potent blocker of the autophagic flux.
NASA Astrophysics Data System (ADS)
Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong
2013-01-01
Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.
Force Sensitivity in Saccharomyces cerevisiae Flocculins.
Chan, Cho X J; El-Kirat-Chatel, Sofiane; Joseph, Ivor G; Jackson, Desmond N; Ramsook, Caleen B; Dufrêne, Yves F; Lipke, Peter N
2016-01-01
Many fungal adhesins have short, β-aggregation-prone sequences that play important functional roles, and in the Candida albicans adhesin Als5p, these sequences cluster the adhesins after exposure to shear force. Here, we report that Saccharomyces cerevisiae flocculins Flo11p and Flo1p have similar β-aggregation-prone sequences and are similarly stimulated by shear force, despite being nonhomologous. Shear from vortex mixing induced the formation of small flocs in cells expressing either adhesin. After the addition of Ca(2+), yeast cells from vortex-sheared populations showed greatly enhanced flocculation and displayed more pronounced thioflavin-bright surface nanodomains. At high concentrations, amyloidophilic dyes inhibited Flo1p- and Flo11p-mediated agar invasion and the shear-induced increase in flocculation. Consistent with these results, atomic force microscopy of Flo11p showed successive force-distance peaks characteristic of sequentially unfolding tandem repeat domains, like Flo1p and Als5p. Flo11p-expressing cells bound together through homophilic interactions with adhesion forces of up to 700 pN and rupture lengths of up to 600 nm. These results are consistent with the potentiation of yeast flocculation by shear-induced formation of high-avidity domains of clustered adhesins at the cell surface, similar to the activation of Candida albicans adhesin Als5p. Thus, yeast adhesins from three independent gene families use similar force-dependent interactions to drive cell adhesion. IMPORTANCE The Saccharomyces cerevisiae flocculins mediate the formation of cellular aggregates and biofilm-like mats, useful in clearing yeast from fermentations. An important property of fungal adhesion proteins, including flocculins, is the ability to form catch bonds, i.e., bonds that strengthen under tension. This strengthening is based, at least in part, on increased avidity of binding due to clustering of adhesins in cell surface nanodomains. This clustering depends on amyloid-like β-aggregation of short amino acid sequences in the adhesins. In Candida albicans adhesin Als5, shear stress from vortex mixing can unfold part of the protein to expose aggregation-prone sequences, and then adhesins aggregate into nanodomains. We therefore tested whether shear stress from mixing can increase flocculation activity by potentiating similar protein remodeling and aggregation in the flocculins. The results demonstrate the applicability of the Als adhesin model and provide a rational framework for the enhancement or inhibition of flocculation in industrial applications.
Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke
2014-01-01
Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin
2018-06-01
Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.
NASA Astrophysics Data System (ADS)
Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin
2018-04-01
Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.
Butta, Nora; Larrucea, Susana; Gonzalez-Manchon, Consuelo; Alonso, Sonia; Parrilla, Roberto
2004-12-01
This work reports the functional studies of CHO cells coexpressing alpha-adrenergic (alphaAR) and human fibrinogen (Fg) receptors (integrin alphaIIbbeta3). Stimulation of these cells with alpha-agonists produced a transient rise in the free cytosolic calcium (Ca(++)) accompanied by enhanced binding to soluble Fg, and these effects were prevented by specific alphaAR antagonists. The alpha-adrenergic-induced activation of alphaIIbbeta3 in CHO-alphaIIbbeta3-alphaAR increased the rate of adhesion and extension of cells onto Fg coated plates, and also induced a soluble Fg- and alphaIIbbeta3-dependent formation of cell aggregates, whereas no effects were observed by the stimulation of CHO-alphaIIbbeta3 cells. alpha-Adrenergic antagonists, the ligand mimetic peptide RGDS, pertussis toxin (PTX), or EDTA, they all prevented the alpha-adrenergic stimulation of adhesion and aggregation. However, inhibition of PKC prevented the alpha-adrenergic stimulation of cell adherence, whereas blocking the intracellular Ca(++) mobilization impeded the stimulation of cell aggregation. The alpha-adrenergic activation was associated with phosphorylation of a protein of approximately 100 kDa and proteins of the MAPK family. The former was selectively phosphorylated by alpha-adrenergic stimulation whereas the latter were phosphorylated by the binding of cells to Fg and markedly intensified by alpha-adrenergic stimulation.
FYCO1 mediates clearance of α-synuclein aggregates through a Rab7-dependent mechanism.
Saridaki, Theodora; Nippold, Markus; Dinter, Elisabeth; Roos, Andreas; Diederichs, Leonie; Fensky, Luisa; Schulz, Jörg B; Falkenburger, Björn H
2018-05-10
Parkinson disease can be caused by mutations in the α-synuclein gene and is characterized by aggregates of α-synuclein protein. We have previously shown that overexpression of the small GTPase Rab7 can induce clearance of α-synuclein aggregates. In this study, we investigate which Rab7 effectors mediate this effect. To model Parkinson disease we expressed the pathogenic A53T mutant of α-synuclein in HEK293T cells and Drosophila melanogaster. We tested the Rab7 effectors FYVE and coiled-coil domain-containing protein 1 (FYCO1) and Rab-interacting lysosomal protein (RILP). FYCO1-EGFP decorated vesicles containing α-synuclein. RILP-EGFP also decorated vesicular structures, but they did not contain α-synuclein. FYCO1 overexpression reduced the number of cells with α-synuclein aggregates, defined as visible particles of EGFP-tagged α-synuclein, whereas RILP did not. FYCO1 but not RILP reduced the amount of α-synuclein protein as assayed by western blot, increased the disappearance of α-synuclein aggregates in time-lapse microscopy, and decreased α-synuclein-induced toxicity assayed by the Trypan blue assay. siRNA-mediated knockdown of FYCO1 but not RILP reduced Rab7 induced aggregate clearance. Collectively, these findings indicate that FYCO1 and not RILP mediates Rab7 induced aggregate clearance. The effect of FYCO1 on aggregate clearance was blocked by the dominant negative Rab7 indicating that FYCO1 requires active Rab7 to function. Electron microscopic analysis and insertion of lysosomal membranes into the plasma membrane indicate that FYCO1 could lead to secretion of α-synuclein aggregates. Extracellular α-synuclein as assayed by ELISA was, however, not increased with FYCO1. Coexpression of FYCO1 in the fly model decreased α-synuclein aggregates as shown by the filter trap assay and rescued the locomotor deficit resulting from neuronal A53T-α-synuclein expression. This latter finding confirms that a pathway involving Rab7 and FYCO1 stimulates degradation of α-synuclein and could be beneficial in patients with Parkinson disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Early outgrowth cells versus endothelial colony forming cells functions in platelet aggregation.
Bou Khzam, Lara; Bouchereau, Olivier; Boulahya, Rahma; Hachem, Ahmed; Zaid, Younes; Abou-Saleh, Haissam; Merhi, Yahye
2015-11-09
Endothelial progenitor cells (EPCs) have been implicated in neoangiogenesis, endothelial repair and cell-based therapies for cardiovascular diseases. We have previously shown that the recruitment of EPCs to sites of vascular lesions is facilitated by platelets where EPCs, in turn, modulate platelet function and thrombosis. However, EPCs encompass a heterogeneous population of progenitor cells that may exert different effects on platelet function. Recent evidence suggests the existence of two EPC subtypes: early outgrowth cells (EOCs) and endothelial colony-forming cells (ECFCs). We aimed at characterizing these two EPC subtypes and at identifying their role in platelet aggregation. EOCs and ECFCs were generated from human peripheral blood mononuclear cells (PBMCs) seeded in conditioned media on fibronectin and collagen, respectively. The morphological, phenotypical and functional characteristics of EOCs and ECFCs were assessed by optical and confocal laser scanning microscopes, cell surface markers expression, and Matrigel tube formation. The impact of EOCs and ECFCs on platelet aggregation was monitored in collagen-induced optical aggregometry and compared with PBMCs and human umbilical vein endothelial cells (HUVECs). The levels of the anti-platelet agents' nitric oxide (NO) and prostacyclin (PGI2) released from cultured cells as well as the expression of their respective producing enzymes NO synthases (NOS) and cyclooxygenases (COX) were also assessed. We showed that EOCs display a monocytic-like phenotype whereas ECFCs have an endothelial-like phenotype. We demonstrated that both EOCs and ECFCs and their supernatants inhibited platelet aggregation; however ECFCs were more efficient than EOCs. This could be related to the release of significantly higher amounts of NO and PGI2 from ECFCs, in comparison to EOCs. Indeed, ECFCs, like HUVECs, constitutively express the endothelial (eNOS)-and inducible (iNOS)-NOS isoforms, and COX-1 and weakly express COX-2, whereas EOCs do not constitutively express these NO and PGI2 producing enzymes. The different morphological, phenotypic and more importantly the release of the anti-aggregating agents PGI2 and NO in each EPC subtype are implicated in their respective roles in platelet function and thus, may be linked to the increased efficiency of ECFCs in inhibiting platelet aggregation as compared to EOCs.
Scharf, Andrea; Gührs, Karl-Heinz; von Mikecz, Anna
2016-01-01
Abstract Identifying nanomaterial-bio-interactions are imperative due to the broad introduction of nanoparticle (NP) applications and their distribution. Here, we demonstrate that silica NPs effect widespread protein aggregation in the soil nematode Caenorhabditis elegans ranging from induction of amyloid in nucleoli of intestinal cells to facilitation of protein aggregation in body wall muscles and axons of neural cells. Proteomic screening revealed that exposure of adult C. elegans with silica NPs promotes segregation of proteins belonging to the gene ontology (GO) group of “protein folding, proteolysis and stress response” to an SDS-resistant aggregome network. Candidate proteins in this group include chaperones, heat shock proteins and subunits of the 26S proteasome which are all decisively involved in protein homeostasis. The pathway of protein homeostasis was validated as a major target of silica NPs by behavioral phenotyping, as inhibitors of amyloid formation rescued NP-induced defects of locomotory patterns and egg laying. The analysis of a reporter worm for serotonergic neural cells revealed that silica NP-induced protein aggregation likewise occurs in axons of HSN neurons, where presynaptic accumulation of serotonin, e.g. disturbed axonal transport reduces the capacity for neurotransmission and egg laying. The results suggest that in C. elegans silica NPs promote a cascade of events including disturbance of protein homeostasis, widespread protein aggregation and inhibition of serotonergic neurotransmission which can be interrupted by compounds preventing amyloid fibrillation. PMID:26444998
Active matter model of Myxococcus xanthus aggregation
NASA Astrophysics Data System (ADS)
Patch, Adam; Bahar, Fatmagul; Liu, Guannan; Thutupalli, Shashi; Welch, Roy; Yllanes, David; Shaevitz, Joshua; Marchetti, M. Cristina
Myxococcus xanthus is a soil-dwelling bacterium that exhibits several fascinating collective behaviors including streaming, swarming, and generation of fruiting bodies. A striking feature of M. xanthus is that it periodically reverses its motility direction. The first stage of fruiting body formation is characterized by the aggregation of cells on a surface into round mesoscopic structures. Experiments have shown that this aggregation relies heavily on regulation of the reversal rate and local mechanical interactions, suggesting motility-induced phase separation may play an important role. We have adapted self-propelled particle models to include cell reversal and motility suppression resulting from sporulation observed in aggregates. Using 2D molecular dynamics simulations, we map the phase behavior in the space of Péclet number and local density and examine the kinetics of aggregation for comparison to experiments.
Park, Yoo Jin; Warnock, Garth L; Ao, Ziliang; Safikhan, Nooshin; Meloche, Mark; Asadi, Ali; Kieffer, Timothy J; Marzban, Lucy
2017-05-01
Islet amyloid, formed by aggregation of human islet amyloid polypeptide (hIAPP), contributes to β-cell failure in type 2 diabetes, cultured and transplanted islets. We previously showed that biosynthetic hIAPP aggregates induce β-cell Fas upregulation and activation of the Fas apoptotic pathway. We used cultured human and hIAPP-expressing mouse islets to investigate: (1) the role of interleukin-1β (IL-1β) in amyloid-induced Fas upregulation; and (2) the effects of IL-1β-induced β-cell dysfunction on pro-islet amyloid polypeptide (proIAPP) processing and amyloid formation. Human and h IAPP -expressing mouse islets were cultured to form amyloid without or with the IL-1 receptor antagonist (IL-1Ra) anakinra, in the presence or absence of recombinant IL-1β. Human islets in which amyloid formation was prevented (amyloid inhibitor or Ad-prohIAPP-siRNA) were cultured similarly. β-cell function, apoptosis, Fas expression, caspase-8 activation, islet IL-1β, β-cell area, β-/α-cell ratio, amyloid formation, and (pro)IAPP forms were assessed. hIAPP aggregates were found to increase IL-1β levels in cultured human islets that correlated with β-cell Fas upregulation, caspase-8 activation and apoptosis, all of which were reduced by IL-1Ra treatment or prevention of amyloid formation. Moreover, IL-1Ra improved culture-induced β-cell dysfunction and restored impaired proIAPP processing, leading to lower amyloid formation. IL-1β treatment potentiated impaired proIAPP processing and increased amyloid formation in cultured human and h IAPP -expressing mouse islets, which were prevented by IL-1Ra. IL-1β plays a dual role by: (1) mediating amyloid-induced Fas upregulation and β-cell apoptosis; (2) inducing impaired proIAPP processing thereby potentiating amyloid formation. Blocking IL-1β may provide a new strategy to preserve β cells in conditions associated with islet amyloid formation. © 2017 John Wiley & Sons Ltd.
siRNA screen identifies QPCT as a druggable target for Huntington's disease.
Jimenez-Sanchez, Maria; Lam, Wun; Hannus, Michael; Sönnichsen, Birte; Imarisio, Sara; Fleming, Angeleen; Tarditi, Alessia; Menzies, Fiona; Dami, Teresa Ed; Xu, Catherine; Gonzalez-Couto, Eduardo; Lazzeroni, Giulia; Heitz, Freddy; Diamanti, Daniela; Massai, Luisa; Satagopam, Venkata P; Marconi, Guido; Caramelli, Chiara; Nencini, Arianna; Andreini, Matteo; Sardone, Gian Luca; Caradonna, Nicola P; Porcari, Valentina; Scali, Carla; Schneider, Reinhard; Pollio, Giuseppe; O'Kane, Cahir J; Caricasole, Andrea; Rubinsztein, David C
2015-05-01
Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development.
2',5'-Dihydroxychalcone as a potent chemical mediator and cyclooxygenase inhibitor.
Lin, C N; Lee, T H; Hsu, M F; Wang, J P; Ko, F N; Teng, C M
1997-05-01
Eleven chalcone derivatives have been tested for their inhibitory effects on platelet aggregation in rabbit platelet suspension and the activation of mast cells and neutrophils. Arachidonic acid-induced platelet aggregation was potently inhibited by almost all the compounds and some also had a potent inhibitory effect on collagen-induced platelet aggregation and cyclooxygenase. Some hydroxychalcone derivatives showed strong inhibitory effects on the release of beta-glucuronidase and lysozyme, and on superoxide formation by rat neutrophils stimulated with the peptide fMet-Leu-Phe (fMLP). We found that the anti-inflammatory effect of 2',5'-dihydroxychalcone was greater than that of trifluoperazine. 2'5'-Dihydroxy and 2',3,4,5'-tetrahydroxyl chalcones, even at low concentration (50 microM), tested in platelet-rich plasma from man almost completely inhibited secondary aggregation induced by adrenaline. These results suggest that the anti-platelet effects of the chalcones are mainly a result of inhibition of thromboxane formation.
Kannan, R; Labotka, R; Low, P S
1988-09-25
Because the interaction of denatured hemoglobins (i.e. hemichromes) with the red cell membrane has been associated with several abnormalities commonly observed in hemichrome-containing erythrocytes, we have undertaken to isolate and characterize the hemichrome-rich membrane protein aggregates from sickle cells. The aggregates were isolated by two procedures: one at low ionic strength by centrifugation of detergent-solubilized spectrin-depleted inside-out vesicles, and the other at physiological ionic strength by detergent solubilization of whole cells followed by cytoskeletal disruption and centrifugation. The extensively washed aggregates obtained by both methods yielded similar results. These insoluble complexes were found to be highly cross-linked by predominantly intermolecular disulfide bonds; however, other nonreducible covalent linkages were also observed. Both in the presence and absence of reducing agents, the aggregate disintegrated when the hemichromes were removed by high ionic strength, suggesting that the aggregate depended heavily on the cohesive properties of the hemichromes for stability. Protein assays demonstrated that the aggregates comprised approximately 1.3% of the total membrane protein, roughly two-thirds of which appeared to be globin chains. Other major components identified in the aggregate were band 3, ankyrin, bands 4.1, 4.9, and 5, glycophorins A and B, and autologous IgG. Quantitative analysis of the IgG content demonstrated that three-fourths of the surface-bound IgG on washed sickle cells was clustered at these aggregate sites, representing an enrichment of approximately 250-fold over nonaggregated regions of the membrane. Since clustered cell surface IgG is thought to trigger removal of erythrocytes from circulation, the hemichrome-induced membrane reorganization at these aggregate sites may be an important cause of the greatly shortened life span of sickle cells.
Cholesterol impairment contributes to neuroserpin aggregation
NASA Astrophysics Data System (ADS)
Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.
2017-03-01
Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.
NASA Astrophysics Data System (ADS)
Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.
2017-05-01
Despite the beneficial effects of low-level lasers on wound healing, their application for treatment of infected injuries is controversial because low-level lasers could stimulate bacterial growth exacerbating the infectious process. Thus, the aim of this work was to evaluate in vitro effects of low-level lasers on survival, morphology and cell aggregation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the survival, cell aggregation, filamentation and morphology of bacterial cells in exponential and stationary growth phases. Fluence, wavelength and emission mode were those used in therapeutic protocols for wound healing. Data show no changes in morphology and cell aggregation, but dichromatic laser radiation decreased bacterial survival in exponential growth phase and monochromatic red and infrared lasers increased bacterial survival at the same fluence. Simultaneous dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation and simultaneous dichromatic laser could be the option for treatment of infected pressure injuries by Pantoea agglomerans.
Takagi, Satoshi; Takemoto, Ai; Takami, Miho; Oh-Hara, Tomoko; Fujita, Naoya
2014-08-01
The interactions of tumor cells with platelets contribute to the progression of tumor malignancy, and the expression levels of platelet aggregation-inducing factors positively correlate with the metastatic potential of osteosarcoma cells. However, it is unclear how tumor-platelet interaction contributes to the proliferation of osteosarcomas. We report here that osteosarcoma-platelet interactions induce the release of platelet-derived growth factor (PDGF) from platelets, which promotes the proliferation of osteosarcomas. Co-culture of platelets with MG63 or HOS osteosarcoma cells, which could induce platelet aggregation, enhanced the proliferation of each cell line in vitro. Analysis of phospho-antibody arrays revealed that co-culture of MG63 cells with platelets induced the phosphorylation of platelet derived growth factor receptor (PDGFR) and Akt. The addition of supernatants of osteosarcoma-platelet reactants also increased the growth of MG63 and HOS cells as well as the level of phosphorylated-PDGFR and -Akt. Sunitinib or LY294002, but not erlotinib, significantly inhibited the platelet-induced proliferation of osteosarcoma cells, indicating that PDGF released from platelets plays an important role in the proliferation of osteosarcomas by activating the PDGFR and then Akt. Our results suggest that inhibitors that specifically target osteosarcoma-platelet interactions may eradicate osteosarcomas. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.
De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic
2017-05-01
Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Kunio; Konagaya, Shuhei; Turner, Alexander
Human pluripotent stem cells (hPSCs) are thought to be a promising cell-source solution for regenerative medicine due to their indefinite proliferative potential and ability to differentiate to functional somatic cells. However, issues remain with regard to achieving reproducible differentiation of cells with the required functionality for realizing human transplantation therapies and with regard to reducing the potential for bacterial or fungal contamination. To meet these needs, we have developed a closed-channel culture device and corresponding control system. Uniformly-sized spheroidal hPSCs aggregates were formed inside wells within a closed-channel and maintained continuously throughout the culture process. Functional islet-like endocrine cell aggregatesmore » were reproducibly induced following a 30-day differentiation protocol. Our system shows an easily scalable, novel method for inducing PSC differentiation with both purity and functionality. - Highlights: • A simple, closed-channel-based, semi-automatic culture system is proposed. • Uniform cell aggregate formation and culture is realized in microwell structure. • Functional islet cells are successfully induced following 30-plus-day protocol. • System requires no daily medium replacement and reduces contamination risk.« less
Jiang, Yiyue; Lei, Cheng; Yasumoto, Atsushi; Kobayashi, Hirofumi; Aisaka, Yuri; Ito, Takuro; Guo, Baoshan; Nitta, Nao; Kutsuna, Natsumaro; Ozeki, Yasuyuki; Nakagawa, Atsuhiro; Yatomi, Yutaka; Goda, Keisuke
2017-07-11
According to WHO, about 10 million new cases of thrombotic disorders are diagnosed worldwide every year. Thrombotic disorders, including atherothrombosis (the leading cause of death in the US and Europe), are induced by occlusion of blood vessels, due to the formation of blood clots in which aggregated platelets play an important role. The presence of aggregated platelets in blood may be related to atherothrombosis (especially acute myocardial infarction) and is, hence, useful as a potential biomarker for the disease. However, conventional high-throughput blood analysers fail to accurately identify aggregated platelets in blood. Here we present an in vitro on-chip assay for label-free, single-cell image-based detection of aggregated platelets in human blood. This assay builds on a combination of optofluidic time-stretch microscopy on a microfluidic chip operating at a high throughput of 10 000 blood cells per second with machine learning, enabling morphology-based identification and enumeration of aggregated platelets in a short period of time. By performing cell classification with machine learning, we differentiate aggregated platelets from single platelets and white blood cells with a high specificity and sensitivity of 96.6% for both. Our results indicate that the assay is potentially promising as predictive diagnosis and therapeutic monitoring of thrombotic disorders in clinical settings.
Yuan, Youyong; Kwok, Ryan T K; Tang, Ben Zhong; Liu, Bin
2014-02-12
Targeted drug delivery to tumor cells with minimized side effects and real-time in situ monitoring of drug efficacy is highly desirable for personalized medicine. In this work, we report the synthesis and biological evaluation of a chemotherapeutic Pt(IV) prodrug whose two axial positions are functionalized with a cyclic arginine-glycine-aspartic acid (cRGD) tripeptide for targeting integrin αvβ3 overexpressed cancer cells and an apoptosis sensor which is composed of tetraphenylsilole (TPS) fluorophore with aggregation-induced emission (AIE) characteristics and a caspase-3 enzyme specific Asp-Glu-Val-Asp (DEVD) peptide. The targeted Pt(IV) prodrug can selectively bind to αvβ3 integrin overexpressed cancer cells to facilitate cellular uptake. In addition, the Pt(IV) prodrug can be reduced to active Pt(II) drug in cells and release the apoptosis sensor TPS-DEVD simultaneously. The reduced Pt(II) drug can induce the cell apoptosis and activate caspase-3 enzyme to cleave the DEVD peptide sequence. Due to free rotation of the phenylene rings, TPS-DEVD is nonemissive in aqueous media. The specific cleavage of DEVD by caspase-3 generates the hydrophobic TPS residue, which tends to aggregate, resulting in restriction of intramolecular rotations of the phenyl rings and ultimately leading to fluorescence enhancement. Such noninvasive and real-time imaging of drug-induced apoptosis in situ can be used as an indicator for early evaluation of the therapeutic responses of a specific anticancer drug.
Thompson, Kiara; Hosking, Holly; Pederick, Wayne; Singh, Indu; Santhakumar, Abishek B
2017-09-01
The anti-thrombotic properties of anthocyanin (ACN) supplementation was evaluated in this randomised, double-blind, placebo (PBO) controlled, cross-over design, dietary intervention trial in sedentary population. In all, sixteen participants (three males and thirteen females) consumed ACN (320 mg/d) or PBO capsules for 28 d followed by a 2-week wash-out period. Biomarkers of thrombogenesis and platelet activation induced by ADP; platelet aggregation induced by ADP, collagen and arachidonic acid; biochemical, lipid, inflammatory and coagulation profile were evaluated before and after supplementation. ACN supplementation reduced monocyte-platelet aggregate formation by 39 %; inhibited platelet endothelial cell adhesion molecule-1 expression by 14 %; reduced platelet activation-dependant conformational change and degranulation by reducing procaspase activating compound-1 (PAC-1) (↓10 %) and P-selectin expression (↓14 %), respectively; and reduced ADP-induced whole blood platelet aggregation by 29 %. Arachidonic acid and collagen-induced platelet aggregation; biochemical, lipid, inflammatory and coagulation parameters did not change post-ACN supplementation. PBO treatment did not have an effect on the parameters tested. The findings suggest that dietary ACN supplementation has the potential to alleviate biomarkers of thrombogenesis, platelet hyperactivation and hyper-aggregation in sedentary population.
Terashita, Y; Sugimura, S; Kudo, Y; Amano, R; Hiradate, Y; Sato, E
2011-04-01
Miniature pigs share many similar characteristics such as anatomy, physiology and body size with humans and are expected to become important animal models for therapeutic cloning using embryonic stem cells (ESCs) derived by somatic cell nuclear transfer (SCNT). In the present study, we observed that miniature pig SCNT blastocysts possessed a lower total number of nuclei and a lower percentage of POU5F1-positive cells than those possessed by in vitro fertilized (IVF) blastocysts. To overcome these problems, we evaluated the applicability of aggregating miniature pig SCNT embryos at the four-cell stage. We showed that (i) aggregation of two or three miniature pig SCNT embryos at the four-cell stage improves the total number of nuclei and the percentage of POU5F1-positive cells in blastocysts, and (ii) IVF blastocysts with low cell numbers induced by the removal of two blastomeres at the four-cell stage did not exhibit a decrease in the percentage of POU5F1-positive cells. These results suggest that the aggregation of miniature pig SCNT embryos at the four-cell stage can be a useful technique for improving the quality of miniature pig SCNT blastocysts and indicating that improvement in the percentage of POU5F1-positive cells in aggregated SCNT embryos is not simply the consequence of increased cell numbers. © 2010 Blackwell Verlag GmbH.
Stoichiometry of Nck-dependent actin polymerization in living cells
Ditlev, Jonathon A.; Michalski, Paul J.; Huber, Greg; Rivera, Gonzalo M.; Mohler, William A.
2012-01-01
Regulation of actin dynamics through the Nck/N-WASp (neural Wiskott–Aldrich syndrome protein)/Arp2/3 pathway is essential for organogenesis, cell invasiveness, and pathogen infection. Although many of the proteins involved in this pathway are known, the detailed mechanism by which it functions remains undetermined. To examine the signaling mechanism, we used a two-pronged strategy involving computational modeling and quantitative experimentation. We developed predictions for Nck-dependent actin polymerization using the Virtual Cell software system. In addition, we used antibody-induced aggregation of membrane-targeted Nck SH3 domains to test these predictions and to determine how the number of molecules in Nck aggregates and the density of aggregates affected localized actin polymerization in living cells. Our results indicate that the density of Nck molecules in aggregates is a critical determinant of actin polymerization. Furthermore, results from both computational simulations and experimentation support a model in which the Nck/N-WASp/Arp2/3 stoichiometry is 4:2:1. These results provide new insight into activities involving localized actin polymerization, including tumor cell invasion, microbial pathogenesis, and T cell activation. PMID:22613834
Liu, Shu; Hossinger, André; Göbbels, Sarah; Vorberg, Ina M
2017-03-04
Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.
Aging, mortality, and the fast growth trade-off of Schizosaccharomyces pombe
Nakaoka, Hidenori; Wakamoto, Yuichi
2017-01-01
Replicative aging has been demonstrated in asymmetrically dividing unicellular organisms, seemingly caused by unequal damage partitioning. Although asymmetric segregation and inheritance of potential aging factors also occur in symmetrically dividing species, it nevertheless remains controversial whether this results in aging. Based on large-scale single-cell lineage data obtained by time-lapse microscopy with a microfluidic device, in this report, we demonstrate the absence of replicative aging in old-pole cell lineages of Schizosaccharomyces pombe cultured under constant favorable conditions. By monitoring more than 1,500 cell lineages in 7 different culture conditions, we showed that both cell division and death rates are remarkably constant for at least 50–80 generations. Our measurements revealed that the death rate per cellular generation increases with the division rate, pointing to a physiological trade-off with fast growth under balanced growth conditions. We also observed the formation and inheritance of Hsp104-associated protein aggregates, which are a potential aging factor in old-pole cell lineages, and found that these aggregates exhibited a tendency to preferentially remain at the old poles for several generations. However, the aggregates were eventually segregated from old-pole cells upon cell division and probabilistically allocated to new-pole cells. We found that cell deaths were typically preceded by sudden acceleration of protein aggregation; thus, a relatively large amount of protein aggregates existed at the very ends of the dead cell lineages. Our lineage tracking analyses, however, revealed that the quantity and inheritance of protein aggregates increased neither cellular generation time nor cell death initiation rates. Furthermore, our results demonstrated that unusually large amounts of protein aggregates induced by oxidative stress exposure did not result in aging; old-pole cells resumed normal growth upon stress removal, despite the fact that most of them inherited significant quantities of aggregates. These results collectively indicate that protein aggregates are not a major determinant of triggering cell death in S. pombe and thus cannot be an appropriate molecular marker or index for replicative aging under both favorable and stressful environmental conditions. PMID:28632741
MacKenzie, Keith D.; Wang, Yejun; Shivak, Dylan J.; Wong, Cynthia S.; Hoffman, Leia J. L.; Lam, Shirley; Kröger, Carsten; Cameron, Andrew D. S.; Townsend, Hugh G. G.; Köster, Wolfgang
2015-01-01
Pathogenic bacteria often need to survive in the host and the environment, and it is not well understood how cells transition between these equally challenging situations. For the human and animal pathogen Salmonella enterica serovar Typhimurium, biofilm formation is correlated with persistence outside a host, but the connection to virulence is unknown. In this study, we analyzed multicellular-aggregate and planktonic-cell subpopulations that coexist when S. Typhimurium is grown under biofilm-inducing conditions. These cell types arise due to bistable expression of CsgD, the central biofilm regulator. Despite being exposed to the same stresses, the two cell subpopulations had 1,856 genes that were differentially expressed, as determined by transcriptome sequencing (RNA-seq). Aggregated cells displayed the characteristic gene expression of biofilms, whereas planktonic cells had enhanced expression of numerous virulence genes. Increased type three secretion synthesis in planktonic cells correlated with enhanced invasion of a human intestinal cell line and significantly increased virulence in mice compared to the aggregates. However, when the same groups of cells were exposed to desiccation, the aggregates survived better, and the competitive advantage of planktonic cells was lost. We hypothesize that CsgD-based differentiation is a form of bet hedging, with single cells primed for host cell invasion and aggregated cells adapted for persistence in the environment. This allows S. Typhimurium to spread the risks of transmission and ensures a smooth transition between the host and the environment. PMID:25824832
Inducible HSP70 Is Critical in Preventing the Aggregation and Enhancing the Processing of PMP22
Chittoor-Vinod, Vinita G.; Lee, Sooyeon; Judge, Sarah M.
2015-01-01
Chaperones, also called heat shock proteins (HSPs), transiently interact with proteins to aid their folding, trafficking, and degradation, thereby directly influencing the transport of newly synthesized molecules. Induction of chaperones provides a potential therapeutic approach for protein misfolding disorders, such as peripheral myelin protein 22 (PMP22)-associated peripheral neuropathies. Cytosolic aggregates of PMP22, linked with a demyelinating Schwann cell phenotype, result in suppression of proteasome activity and activation of proteostatic mechanisms, including the heat shock pathway. Although the beneficial effects of chaperones in preventing the aggregation and improving the trafficking of PMP22 have been repeatedly observed, the requirement for HSP70 in events remains elusive. In this study, we show that activation of the chaperone pathway in fibroblasts from PMP22 duplication-associated Charcot–Marie–Tooth disease type 1A patient with an FDA-approved small molecule increases HSP70 expression and attenuates proteasome dysfunction. Using cells from an HSP70.1/3−/− (inducible HSP70) mouse model, we demonstrate that under proteotoxic stress, this chaperone is critical in preventing the aggregation of PMP22, and this effect is aided by macroautophagy. When examined at steady-state, HSP70 appears to play a minor role in the trafficking of wild-type-PMP22, while it is crucial for preventing the buildup of the aggregation-prone Trembler-J-PMP22. HSP70 aids the processing of Trembler-J-PMP22 through the Golgi and its delivery to lysosomes via Rab7-positive vesicles. Together, these results demonstrate a key role for inducible HSP70 in aiding the processing and hindering the accumulation of misfolded PMP22, which in turn alleviates proteotoxicity within the cells. PMID:25694550
Adamczewski, M; Numerof, R P; Koretzky, G A; Kinet, J P
1995-04-01
Previous studies using tyrosine phosphatase inhibitors have implicated tyrosine phosphatases in the signal transduction pathway initiated by aggregation of Fc epsilon RI, the high affinity receptor for IgE. To define more precisely a role for the tyrosine phosphatase CD45 in Fc epsilon RI-mediated signaling, we have transfected the three subunits of Fc epsilon RI into wild-type Jurkat and a CD45-deficient Jurkat derivative. Here we demonstrate that CD45 is necessary for the initiation of calcium flux through the transfected Fc epsilon RI. In contrast to the effect of phosphatase inhibitors, the tyrosine phosphorylation levels of beta and gamma after aggregation of Fc epsilon RI are surprisingly reduced, relative to wild-type Jurkat, in the CD45-deficient cells. After reconstitution of the CD45-deficient cells with a chimeric molecule containing the cytoplasmic phosphatase domains of CD45, both the base line and activation-induced tyrosine phosphorylation levels are increased. By examining Lck autophosphorylation, we find that Fc epsilon RI aggregation induces an increase in Lck enzymatic activity only in wild-type Jurkat and the CD45-deficient Jurkat reconstituted with chimeric CD45. This regulation of src-family tyrosine kinase activity may be the means by which CD45 controls aggregation-induced receptor phosphorylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdes, Iris, E-mail: iris.valdes@cigb.edu.c; Bernardo, Lidice; Gil, Lazaro
Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated inmore » mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4{sup +} and CD8{sup +} cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.« less
Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations
2017-01-01
Red blood cell (RBC) aggregation and erythrocyte sedimentation rate (ESR) are considered to be promising biomarkers for effectively monitoring blood rheology at extremely low shear rates. In this study, a microfluidic-based measurement technique is suggested to evaluate RBC aggregation under hematocrit variations due to the continuous ESR. After the pipette tip is tightly fitted into an inlet port, a disposable suction pump is connected to the outlet port through a polyethylene tube. After dropping blood (approximately 0.2 mL) into the pipette tip, the blood flow can be started and stopped by periodically operating a pinch valve. To evaluate variations in RBC aggregation due to the continuous ESR, an EAI (Erythrocyte-sedimentation-rate Aggregation Index) is newly suggested, which uses temporal variations of image intensity. To demonstrate the proposed method, the dynamic characterization of the disposable suction pump is first quantitatively measured by varying the hematocrit levels and cavity volume of the suction pump. Next, variations in RBC aggregation and ESR are quantified by varying the hematocrit levels. The conventional aggregation index (AI) is maintained constant, unrelated to the hematocrit values. However, the EAI significantly decreased with respect to the hematocrit values. Thus, the EAI is more effective than the AI for monitoring variations in RBC aggregation due to the ESR. Lastly, the proposed method is employed to detect aggregated blood and thermally-induced blood. The EAI gradually increased as the concentration of a dextran solution increased. In addition, the EAI significantly decreased for thermally-induced blood. From this experimental demonstration, the proposed method is able to effectively measure variations in RBC aggregation due to continuous hematocrit variations, especially by quantifying the EAI. PMID:28878199
[Grape seed extract induces morphological changes of prostate cancer PC-3 cells].
Shang, Xue-Jun; Yin, Hong-Lin; Ge, Jing-Ping; Sun, Yi; Teng, Wen-Hui; Huang, Yu-Feng
2008-12-01
To observe the morphological changes of prostate cancer PC-3 cells induced by grape seed extract (GSE). PC-3 cells were incubated with different concentrations of GSE (100, 200 and 300 microg/ml) for 24, 48 and 72 hours, and then observed for morphological changes by invert microscopy, HE staining and transmission electron microscopy. The incubated PC-3 cells appeared round, small, wrinkled and broken under the invert microscope and exhibited the classical morphological characteristics of cell death under the electron microscope, including cell atrophy, increased vacuoles, crumpled nuclear membrane, and chromosome aggregation. GSE can cause morphological changes and induce necrosis and apoptosis of PC-3 cells.
NASA Astrophysics Data System (ADS)
Xu, Gaoping; Tang, Yonghe; Ma, Yanyan; Xu, An; Lin, Weiying
2018-01-01
The biological activity of nitroreductase (NTR) is closely related to biological hypoxia status in organisms. The development of effective methods for monitoring the activity of NTR is of great significance for medical diagnosis and tumor research. Toward this goal, we have developed a new aggregation-induced emission (AIE) fluorescence NTR probe TPE-HY used the tetraphenylethene as the fluorophore, and used the nitro group as the NTR recognition site. The probe TPE-HY has many excellent properties, including rapid response, AIE characteristics, high sensitivity and selectivity, and low cytotoxicity. Importantly, the probe TPE-HY is successfully applied to monitor endogenous NTR in living HeLa cells.
Cryptic Amyloidogenic Elements in the 3′ UTRs of Neurofilament Genes Trigger Axonal Neuropathy
Rebelo, Adriana P.; Abrams, Alexander J.; Cottenie, Ellen; Horga, Alejandro; Gonzalez, Michael; Bis, Dana M.; Sanchez-Mejias, Avencia; Pinto, Milena; Buglo, Elena; Markel, Kasey; Prince, Jeffrey; Laura, Matilde; Houlden, Henry; Blake, Julian; Woodward, Cathy; Sweeney, Mary G.; Holton, Janice L.; Hanna, Michael; Dallman, Julia E.; Auer-Grumbach, Michaela; Reilly, Mary M.; Zuchner, Stephan
2016-01-01
Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3′ UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants. PMID:27040688
Diwan, Uzra; Kumar, Virendra; Mishra, Rakesh K; Rana, Nishant Kumar; Koch, Biplob; Singh, Manish Kumar; Upadhyay, K K
2016-07-27
The present study deals with the photophysical property of a pyrene-benzthiazolium conjugate R1, as a strong intramolecular charge transfer (ICT) probe exhibiting long wavelength emission in the red region. Unlike traditional planar polyaromatic hydrocarbons whose aggregation generally quenches the light emission, the pyrene based R1 was found to display aggregation-induced emission (AIE) property along with simultaneous increase in its quantum yield upon increasing the water content of the medium. The R1 exhibits high specificity towards HSO3(-)/SO3(2-) by interrupting its own ICT producing there upon a large ratiometric blue shift of ∼220 nm in its emission spectrum. The lowest detection limit for the above measurement was found to be 8.90 × 10(-8) M. The fluorescent detection of HSO3(-) was also demonstrated excellently by test paper strip and silica coated TLC plate incorporating R1. The live cell imaging of HSO3(─) through R1 in HeLa cells was studied using fluorescence microscopic studies. The particle size and morphological features of R1 and R1-HSO3(-) aggregates in aqueous solution were characterized by DLS along with SEM analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Agarose hydrogel induced MCF-7 and BMG-1 cell line progressive 3D and 3D revert cultures.
Subramaniyan, Aishwarya; Ravi, Maddaly
2018-04-01
3D culture systems have enhanced the utility of cancer cell lines as they are considered closer to the in vivo systems. A variety of changes are induced in cells cultured in 3D systems; an apparent and striking feature being the spontaneous acquisition of distinct morphological entities. 3D reverts (3DRs) can be obtained by introducing 3D aggregates in scaffold/matrix-free culture units. It could be seen that the two cell lines used in this study exhibited differences in 3DR structures, though both were cultured on agarose hydrogels. Also, differences in 3DR formation, growth and survival were different. While 3D aggregates of several cell lines have been reported for a variety of studies, there are no studies that describe or utilize 3DRs. 3DRs can provide insights into complex events that can occur in cancer cells; especially as material to study metastasis, migration, and invasion. © 2017 Wiley Periodicals, Inc.
Gardzinski, Peter; Lee, David W K; Fei, Guang-He; Hui, Kwokyin; Huang, Guan J; Sun, Hong-Shuo; Feng, Zhong-Ping
2007-01-01
Synaptic vesicles aggregate at the presynaptic terminal during synapse formation via mechanisms that are poorly understood. Here we have investigated the role of the putative calcium sensor synaptotagmin I in vesicle aggregation during the formation of soma–soma synapses between identified partner cells using a simple in vitro synapse model in the mollusc Lymnaea stagnalis. Immunocytochemistry, optical imaging and electrophysiological recording techniques were used to monitor synapse formation and vesicle localization. Within 6 h, contact between appropriate synaptic partner cells up-regulated global synaptotagmin I expression, and induced a localized aggregation of synaptotagmin I at the contact site. Cell contacts between non-synaptic partner cells did not affect synaptotagmin I expression. Application of an human immunodeficiency virus type-1 transactivator (HIV-1 TAT)-tagged peptide corresponding to loop 3 of the synaptotagmin I C2A domain prevented synaptic vesicle aggregation and synapse formation. By contrast, a TAT-tagged peptide containing the calcium-binding motif of the C2B domain did not affect synaptic vesicle aggregation or synapse formation. Calcium imaging with Fura-2 demonstrated that TAT–C2 peptides did not alter either basal or evoked intracellular calcium levels. These results demonstrate that contact with an appropriate target cell is necessary to initiate synaptic vesicle aggregation during nascent synapse formation and that the initial aggregation of synaptic vesicles is dependent on loop 3 of the C2A domain of synaptotagmin I. PMID:17317745
Itzek, Andreas; Chen, Zhiyun; Merritt, Justin; Kreth, Jens
2016-01-01
Salivary agglutination is an important host defense mechanism to aggregate oral commensal bacteria as well as invading pathogens. Saliva flow and subsequent swallowing more easily clear aggregated bacteria compared to single cells. Phagocytic clearance of bacteria through polymorphonuclear neutrophil granulocytes also seems to increase to a certain extent with the size of bacterial aggregates. To determine a connection between salivary agglutination and the host innate immune response by phagocytosis, an in vitro agglutination assay was developed reproducing the average size of salivary bacterial aggregates. Using the oral commensal Streptococcus gordonii as a model organism, the effect of salivary agglutination to the phagocytic clearance through polymorphonuclear neutrophil granulocytes was investigated. Here we describe that salivary aggregates of S. gordonii are readily cleared through phagocytosis, while single bacterial cells showed a significant delay in being phagocytosed and killed. Furthermore, prior to phagocytosis the polymorphonuclear neutrophil granulocytes were able to induce a specific de-aggregation, which was dependent on serine protease activity. The herein presented data suggest that salivary agglutination of bacterial cells leads to an ideal size for recognition by polymorphonuclear neutrophil granulocytes. As a first line of defense, these phagocytic cells are able to recognize the aggregates and de-aggregate them via serine proteases to a more manageable size for efficient phagocytosis and subsequent killing in the phagolysosome. This observed mechanism not only prevents the rapid spreading of oral bacterial cells while entering the bloodstream but would also avoid degranulation of involved polymorphonuclear neutrophil granulocytes thus preventing collateral damage to nearby tissue. PMID:27194631
Itzek, A; Chen, Z; Merritt, J; Kreth, J
2017-06-01
Salivary agglutination is an important host defense mechanism to aggregate oral commensal bacteria as well as invading pathogens. Saliva flow and subsequent swallowing more easily clear aggregated bacteria compared with single cells. Phagocytic clearance of bacteria through polymorphonuclear neutrophil granulocytes also seems to increase to a certain extent with the size of bacterial aggregates. To determine a connection between salivary agglutination and the host innate immune response by phagocytosis, an in vitro agglutination assay was developed reproducing the average size of salivary bacterial aggregates. Using the oral commensal Streptococcus gordonii as a model organism, the effect of salivary agglutination on phagocytic clearance through polymorphonuclear neutrophil granulocytes was investigated. Here we describe how salivary aggregates of S. gordonii are readily cleared through phagocytosis, whereas single bacterial cells showed a significant delay in being phagocytosed and killed. Furthermore, before phagocytosis the polymorphonuclear neutrophil granulocytes were able to induce a specific de-aggregation, which was dependent on serine protease activity. The data presented suggest that salivary agglutination of bacterial cells leads to an ideal size for recognition by polymorphonuclear neutrophil granulocytes. As a first line of defense, these phagocytic cells are able to recognize the aggregates and de-aggregate them via serine proteases to a more manageable size for efficient phagocytosis and subsequent killing in the phagolysosome. This observed mechanism not only prevents the rapid spreading of oral bacterial cells while entering the bloodstream but would also avoid degranulation of involved polymorphonuclear neutrophil granulocytes, so preventing collateral damage to nearby tissue. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A facile in vitro model to study rapid mineralization in bone tissues.
Deegan, Anthony J; Aydin, Halil M; Hu, Bin; Konduru, Sandeep; Kuiper, Jan Herman; Yang, Ying
2014-09-16
Mineralization in bone tissue involves stepwise cell-cell and cell-ECM interaction. Regulation of osteoblast culture microenvironments can tailor osteoblast proliferation and mineralization rate, and the quality and/or quantity of the final calcified tissue. An in vitro model to investigate the influencing factors is highly required. We developed a facile in vitro model in which an osteoblast cell line and aggregate culture (through the modification of culture well surfaces) were used to mimic intramembranous bone mineralization. The effect of culture environments including culture duration (up to 72 hours for rapid mineralization study) and aggregates size (monolayer culture as control) on mineralization rate and mineral quantity/quality were examined by osteogenic gene expression (PCR) and mineral markers (histological staining, SEM-EDX and micro-CT). Two size aggregates (on average, large aggregates were 745 μm and small 79 μm) were obtained by the facile technique with high yield. Cells in aggregate culture generated visible and quantifiable mineralized matrix within 24 hours, whereas cells in monolayer failed to do so by 72 hours. The gene expression of important ECM molecules for bone formation including collagen type I, alkaline phosphatase, osteopontin and osteocalcin, varied temporally, differed between monolayer and aggregate cultures, and depended on aggregate size. Monolayer specimens stayed in a proliferation phase for the first 24 hours, and remained in matrix synthesis up to 72 hours; whereas the small aggregates were in the maturation phase for the first 24 and 48 hour cultures and then jumped to a mineralization phase at 72 hours. Large aggregates were in a mineralization phase at all these three time points and produced 36% larger bone nodules with a higher calcium content than those in the small aggregates after just 72 hours in culture. This study confirms that aggregate culture is sufficient to induce rapid mineralization and that aggregate size determines the mineralization rate. Mineral content depended on aggregate size and culture duration. Thus, our culture system may provide a good model to study regulation factors at different development phases of the osteoblastic lineage.
A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells
Burkhardt, Matthew F; Martinez, Fernando J; Wright, Sarah; Ramos, Carla; Volfson, Dmitri; Mason, Michael; Garnes, Jeff; Dang, Vu; Lievers, Jeffery; Shoukat-Mumtaz, Uzma; Martinez, Rita; Gai, Hui; Blake, Robert; Vaisberg, Eugeni; Grskovic, Marica; Johnson, Charles; Irion, Stefan; Bright, Jessica; Cooper, Bonnie; Nguyen, Leane; Griswold-Prenner, Irene; Javaherian, Ashkan
2016-01-01
Development of therapeutics for genetically complex neurodegenerative diseases such as sporadic amyotrophic lateral sclerosis (ALS) has largely been hampered by lack of relevant disease models. Reprogramming of sporadic ALS patients’ fibroblasts into induced pluripotent stem cells (iPSC) and differentiation into affected neurons that show a disease phenotype could provide a cellular model for disease mechanism studies and drug discovery. Here we report the reprogramming to pluripotency of fibroblasts from a large cohort of healthy controls and ALS patients and their differentiation into motor neurons. We demonstrate that motor neurons derived from three sALS patients show de novo TDP-43 aggregation and that the aggregates recapitulate pathology in postmortem tissue from one of the same patients from which the iPSC were derived. We configured a high-content chemical screen using the TDP-43 aggregate endpoint both in lower motor neurons and upper motor neuron like cells and identified FDA-approved small molecule modulators including Digoxin demonstrating the feasibility of patient-derived iPSC-based disease modelling for drug screening. PMID:23891805
Neupane, Lok Nath; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung
2016-03-15
A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response.
Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun
2014-10-14
A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.
Justo, G Z; Durán, N; Queiroz, M L S
2003-08-01
The present study examined the effects of MAPA, an antitumor aggregated polymer of protein magnesium ammonium phospholinoleate-palmitoleate anhydride, isolated from Aspergillus oryzae, on concanavalin A (Con A)-induced spleen cell proliferation, cytokine production and on natural killer (NK) cell activity in Ehrlich ascites tumor-bearing mice. The Ehrlich ascites tumor (EAT) growth led to diminished mitogen-induced expansion of spleen cell populations and total NK activity. This was accompanied by striking spleen enlargement, with a marked increase in total cell counts. Moreover, a substantial enhancement in IL-10 levels, paralleled by a significant decrease in IL-2 was observed, while production of IL-4 and interferon-gamma (IFN-gamma) was not altered. Treatment of mice with 5 mg/kg MAPA for 7 days promoted spleen cell proliferation, IL-2 production and NK cell activity regardless of tumor outgrowth. In addition, MAPA treatment markedly enhanced IFN-gamma levels and reduced IL-10 production relative to EAT mice. A 35% reduction in splenomegaly with normal number of nucleated cells was also found. Altogether, our results suggest that MAPA directly and/or indirectly modulates immune cell activity, and probably disengages tumor-induced suppression of these responses. Clearly, MAPA has an impact and may delay tumor outgrowth through immunotherapeutic mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre
We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to themore » stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis.« less
Real-time imaging of Huntingtin aggregates diverting target search and gene transcription
Li, Li; Liu, Hui; Dong, Peng; Li, Dong; Legant, Wesley R; Grimm, Jonathan B; Lavis, Luke D; Betzig, Eric; Tjian, Robert; Liu, Zhe
2016-01-01
The presumptive altered dynamics of transient molecular interactions in vivo contributing to neurodegenerative diseases have remained elusive. Here, using single-molecule localization microscopy, we show that disease-inducing Huntingtin (mHtt) protein fragments display three distinct dynamic states in living cells – 1) fast diffusion, 2) dynamic clustering and 3) stable aggregation. Large, stable aggregates of mHtt exclude chromatin and form 'sticky' decoy traps that impede target search processes of key regulators involved in neurological disorders. Functional domain mapping based on super-resolution imaging reveals an unexpected role of aromatic amino acids in promoting protein-mHtt aggregate interactions. Genome-wide expression analysis and numerical simulation experiments suggest mHtt aggregates reduce transcription factor target site sampling frequency and impair critical gene expression programs in striatal neurons. Together, our results provide insights into how mHtt dynamically forms aggregates and disrupts the finely-balanced gene control mechanisms in neuronal cells. DOI: http://dx.doi.org/10.7554/eLife.17056.001 PMID:27484239
Christopher, Karen L; Pedler, Michelle G; Shieh, Biehuoy; Ammar, David A; Petrash, J Mark; Mueller, Niklaus H
2014-02-01
In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically. Copyright © 2013 Elsevier B.V. All rights reserved.
Li, Li; Barry, Vivian; Daffis, Stephane; Niu, Congrong; Huntzicker, Erik; French, Dorothy M; Mikaelian, Igor; Lanford, Robert E; Delaney, William E; Fletcher, Simon P
2018-05-01
GS-9620, an oral agonist of toll-like receptor 7, is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the chimpanzee and woodchuck models of CHB. Herein, we investigated the immunomodulatory mechanisms underlying these antiviral effects. Archived liver biopsies and paired peripheral blood mononuclear cell samples from a previous chimpanzee study were analyzed by RNA sequencing, quantitative reverse transcription PCR, immunohistochemistry (IHC) and in situ hybridization (ISH). GS-9620 treatment of CHB chimpanzees induced an intrahepatic transcriptional profile significantly enriched with genes associated with hepatitis B virus (HBV) clearance in acutely infected chimpanzees. Type I and II interferon, CD8 + T cell and B cell transcriptional signatures were associated with treatment response, together with evidence of hepatocyte death and liver regeneration. IHC and ISH confirmed an increase in intrahepatic CD8 + T cell and B cell numbers during treatment, and revealed that GS-9620 transiently induced aggregates predominantly comprised of CD8 + T cells and B cells in portal regions. There were no follicular dendritic cells or IgG-positive cells in these lymphoid aggregates and very few CD11b + myeloid cells. There was no change in intrahepatic natural killer cell number during GS-9620 treatment. The antiviral response to GS-9620 treatment in CHB chimpanzees was associated with an intrahepatic interferon response and formation of lymphoid aggregates in the liver. Our data indicate these intrahepatic structures are not fully differentiated follicles containing germinal center reactions. However, the temporal correlation between development of these T and B cell aggregates and the antiviral response to treatment suggests they play a role in promoting an effective immune response against HBV. New therapies to treat chronic hepatitis B (CHB) are urgently needed. In this study we performed a retrospective analysis of liver and blood samples from a chimpanzee model of CHB to help understand how GS-9620, a drug in clinical trials, suppressed hepatitis B virus (HBV). We found that the antiviral response to GS-9620 was associated with accumulation of immune cells in the liver that can either kill cells infected with HBV or can produce antibodies that may prevent HBV from infecting new liver cells. These findings have important implications for how GS-9620 may be used in patients and may also help guide the development of new therapies to treat chronic HBV infection. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils.
Redmann, Matthew; Wani, Willayat Y; Volpicelli-Daley, Laura; Darley-Usmar, Victor; Zhang, Jianhua
2017-04-01
Parkinson's disease is a debilitating neurodegenerative disorder that is pathologically characterized by intracellular inclusions comprised primarily of alpha-synuclein (αSyn) that can also be transmitted from neuron to neuron. Several lines of evidence suggest that these inclusions cause neurodegeneration. Thus exploring strategies to improve neuronal survival in neurons with αSyn aggregates is critical. Previously, exposure to αSyn pre-formed fibrils (PFFs) has been shown to induce aggregation of endogenous αSyn resulting in cell death that is exacerbated by either starvation or inhibition of mTOR by rapamycin, both of which are able to induce autophagy, an intracellular protein degradation pathway. Since mTOR inhibition may also inhibit protein synthesis and starvation itself can be detrimental to neuronal survival, we investigated the effects of autophagy induction on neurons with αSyn inclusions by a starvation and mTOR-independent autophagy induction mechanism. We exposed mouse primary cortical neurons to PFFs to induce inclusion formation in the presence and absence of the disaccharide trehalose, which has been proposed to induce autophagy and stimulate lysosomal biogenesis. As expected, we observed that on exposure to PFFs, there was increased abundance of pS129-αSyn aggregates and cell death. Trehalose alone increased LC3-II levels, consistent with increased autophagosome levels that remained elevated with PFF exposure. Interestingly, trehalose alone increased cell viability over a 14-d time course. Trehalose was also able to restore cell viability to control levels, but PFFs still exhibited toxic effects on the cells. These data provide essential information regarding effects of trehalose on αSyn accumulation and neuronal survival on exposure to PFF. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Interactions of B16F10 melanoma cells aggregated on a cellulose substrate.
Hindié, M; Vayssade, M; Dufresne, M; Quéant, S; Warocquier-Clérout, R; Legeay, G; Vigneron, P; Olivier, V; Duval, J-L; Nagel, M-D
2006-09-01
There is evidence that the shape of cells and their contact with a matrix direct the growth and the differentiation of both normal and cancer cells. Cells in 3D culture resemble the in vivo situation more closely than do those in conventional 2D cultures. We have studied the interactions and functions of B16F10 mouse melanoma cells, which spread and grow well on tissue culture polystyrene (tPS), when they were made to aggregate on cellulose-coated Petri dishes (CEL). This aggregation of melanoma cells on CEL was Ca2+ dependent and mediated by N-cadherins. The levels of N-cadherin and beta-catenin transcripts in cells cultured on CEL and tPS were similar, but those on CEL contained less beta-catenin protein. Immunoprecipitation and immunostaining showed that both N-cadherins and beta-catenins were present at the membranes of cells on CEL. Cells proliferated significantly more slowly after 48 h on CEL and the cellulose coating caused most of them to arrest in G1. We also compared the melanin contents and tyrosinase activity of cells on CEL and controls grown on tPS. Melanogenesis was induced in cells aggregated on CEL. A cellulose substrate thus appears to be an outstanding tool for studying cell-cell interactions and cell functions in 3D cultures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gayoung; Kim, Hyun-Man
Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherinmore » was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.« less
Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers
Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.
2013-01-01
Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613
Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy.
Tasdemir, Ezgi; Maiuri, M Chiara; Tajeddine, Nicolas; Vitale, Ilio; Criollo, Alfredo; Vicencio, José Miguel; Hickman, John A; Geneste, Olivier; Kroemer, Guido
2007-09-15
When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation.
Fibril growth and seeding capacity play key roles in α-synuclein-mediated apoptotic cell death
Mahul-Mellier, A-L; Vercruysse, F; Maco, B; Ait-Bouziad, N; De Roo, M; Muller, D; Lashuel, H A
2015-01-01
The role of extracellular α-synuclein (α-syn) in the initiation and the spreading of neurodegeneration in Parkinson's disease (PD) has been studied extensively over the past 10 years. However, the nature of the α-syn toxic species and the molecular mechanisms by which they may contribute to neuronal cell loss remain controversial. In this study, we show that fully characterized recombinant monomeric, fibrillar or stabilized forms of oligomeric α-syn do not trigger significant cell death when added individually to neuroblastoma cell lines. However, a mixture of preformed fibrils (PFFs) with monomeric α-syn becomes toxic under conditions that promote their growth and amyloid formation. In hippocampal primary neurons and ex vivo hippocampal slice cultures, α-syn PFFs are capable of inducing a moderate toxicity over time that is greatly exacerbated upon promoting fibril growth by addition of monomeric α-syn. The causal relationship between α-syn aggregation and cellular toxicity was further investigated by assessing the effect of inhibiting fibrillization on α-syn-induced cell death. Remarkably, our data show that blocking fibril growth by treatment with known pharmacological inhibitor of α-syn fibrillization (Tolcapone) or replacing monomeric α-syn by monomeric β-synuclein in α-syn mixture composition prevent α-syn-induced toxicity in both neuroblastoma cell lines and hippocampal primary neurons. We demonstrate that exogenously added α-syn fibrils bind to the plasma membrane and serve as nucleation sites for the formation of α-syn fibrils and promote the accumulation and internalization of these aggregates that in turn activate both the extrinsic and intrinsic apoptotic cell death pathways in our cellular models. Our results support the hypothesis that ongoing aggregation and fibrillization of extracellular α-syn play central roles in α-syn extracellular toxicity, and suggest that inhibiting fibril growth and seeding capacity constitute a viable strategy for protecting against α-syn-induced toxicity and slowing the progression of neurodegeneration in PD and other synucleinopathies. PMID:26138444
Defferrari, M S; da Silva, R; Orchard, I; Carlini, C R
2014-05-01
Ureases are multifunctional proteins that display biological activities independently of their enzymatic function, such as induction of exocytosis and insecticidal effects. Rhodnius prolixus, a major vector of Chagas' disease, is a model for studies on the entomotoxicity of jack bean urease (JBU). We have previously shown that JBU induces the production of eicosanoids in isolated tissues of R. prolixus. In insects, the immune response comprises cellular and humoral reactions, and is centrally modulated by eicosanoids. Cyclooxygenase products signal immunity in insects, mainly cellular reactions, such as hemocyte aggregation. In searching for a link between JBU's toxic effects and immune reactions in insects, we have studied the effects of this toxin on R. prolixus hemocytes. JBU triggers aggregation of hemocytes after injection into the hemocoel and when applied to isolated cells. On in vitro assays, the eicosanoid synthesis inhibitors dexamethasone (phospholipase A2 indirect inhibitor) and indomethacin (cyclooxygenase inhibitor) counteracted JBU's effect, indicating that eicosanoids, more specifically cyclooxygenase products, are likely to mediate the aggregation response. Contrarily, the inhibitors esculetin and baicalein were inactive, suggesting that lipoxygenase products are not involved in JBU's effect. Extracellular calcium was also necessary for JBU's effect, in agreement to other cell models responsive to ureases. A progressive darkening of the medium of JBU-treated hemocytes was observed, suggestive of a humoral response. JBU was immunolocalized in the cultured cells upon treatment along with cytoskeleton damage. The highest concentration of JBU tested on cultured cells also led to nuclei aggregation of adherent hemocytes. This is the first time urease has been shown to affect insect hemocytes, contributing to our understanding of the entomotoxic mechanisms of action of this protein. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lin, Liyun; Hu, Yuefang; Zhang, Liangliang; Huang, Yong; Zhao, Shulin
2017-08-15
In this work, we prepared glutathione (GSH)-capped copper nanoclusters (Cu NCs) with red emission by simply adjusting the pH of GSH/Cu 2+ mixture at room temperature. A photoluminescence light-up method for detecting Zn 2+ was then developed based on the aggregation induced emission enhancement of GSH-capped Cu NCs. Zn 2+ could trigger the aggregation of Cu NCs, inducing the enhancement of luminescence and the increase of absolute quantum yield from 1.3% to 6.2%. GSH-capped Cu NCs and the formed aggregates were characterized, and the possible mechanism was also discussed. The prepared GSH-capped Cu NCs exhibited a fast response towards Zn 2+ and a wider detection range from 4.68 to 2240μM. The detection limit (1.17μM) is much lower than that of the World Health Organization permitted in drinking water. Furthermore, taking advantages of the low cytotoxicity, large Stokes shift, red emission and light-up detection mode, we explored the use of the prepared GSH-capped Cu NCs in the imaging of Zn 2+ in living cells. The developed luminescence light-up nanoprobe may hold the potentials for Zn 2+ -related drinking water safety and biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Qin, Jing; Sikkema, Arend H; van der Bij, Kristine; de Jonge, Jenny C; Klappe, Karin; Nies, Vera; Jonker, Johan W; Kok, Jan Willem; Hoekstra, Dick; Baron, Wia
2017-10-11
Remyelination failure by oligodendrocytes contributes to the functional impairment that characterizes the demyelinating disease multiple sclerosis (MS). Since incomplete remyelination will irreversibly damage axonal connections, treatments effectively promoting remyelination are pivotal in halting disease progression. Our previous findings suggest that fibronectin aggregates, as an environmental factor, contribute to remyelination failure by perturbing oligodendrocyte progenitor cell (OPC) maturation. Here, we aim at elucidating whether exogenously added gangliosides (i.e., cell surface lipids with a potential to modulate signaling pathways) could counteract fibronectin-mediated inhibition of OPC maturation. Exclusive exposure of rat oligodendrocytes to GD1a, but not other gangliosides, overcomes aggregated fibronectin-induced inhibition of myelin membrane formation, in vitro , and OPC differentiation in fibronectin aggregate containing cuprizone-induced demyelinated lesions in male mice. GD1a exerts its effect on OPCs by inducing their proliferation and, at a late stage, by modulating OPC maturation. Kinase activity profiling revealed that GD1a activated a protein kinase A (PKA)-dependent signaling pathway and increased phosphorylation of the transcription factor cAMP response element-binding protein. Consistently, the effect of GD1a in restoring myelin membrane formation in the presence of fibronectin aggregates was abolished by the PKA inhibitor H89, whereas the effect of GD1a was mimicked by the PKA activator dibutyryl-cAMP. Together, GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation by activating a PKA-dependent signaling pathway. Given the persistent presence of fibronectin aggregates in MS lesions, ganglioside GD1a might act as a potential novel therapeutic tool to selectively modulate the detrimental signaling environment that precludes remyelination. SIGNIFICANCE STATEMENT As an environmental factor, aggregates of the extracellular matrix protein fibronectin perturb the maturation of oligodendrocyte progenitor cells (OPCs), thereby impeding remyelination, in the demyelinating disease multiple sclerosis (MS). Here we demonstrate that exogenous addition of ganglioside GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation, both in vitro and in vivo , by activating a PKA-dependent signaling pathway. We propose that targeted delivery of GD1a to MS lesions may act as a potential novel molecular tool to boost maturation of resident OPCs to overcome remyelination failure and halt disease progression. Copyright © 2017 the authors 0270-6474/17/379925-14$15.00/0.
Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism
Morales-Scheihing, Diego; Salvadores, Natalia; Moreno-Gonzalez, Ines; Gonzalez, Cesar; Shahnawaz, Mohammad
2017-01-01
Although a large proportion of patients with type 2 diabetes (T2D) accumulate misfolded aggregates composed of the islet amyloid polypeptide (IAPP), its role in the disease is unknown. Here, we show that pancreatic IAPP aggregates can promote the misfolding and aggregation of endogenous IAPP in islet cultures obtained from transgenic mouse or healthy human pancreas. Islet homogenates immunodepleted with anti-IAPP–specific antibodies were not able to induce IAPP aggregation. Importantly, intraperitoneal inoculation of pancreatic homogenates containing IAPP aggregates into transgenic mice expressing human IAPP dramatically accelerates IAPP amyloid deposition, which was accompanied by clinical abnormalities typical of T2D, including hyperglycemia, impaired glucose tolerance, and a substantial reduction on β cell number and mass. Finally, induction of IAPP deposition and diabetic abnormalities were also induced in vivo by administration of IAPP aggregates prepared in vitro using pure, synthetic IAPP. Our findings suggest that some of the pathologic and clinical alterations of T2D might be transmissible through a similar mechanism by which prions propagate in prion diseases. PMID:28765400
Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng
2014-10-22
ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.
Reversible Age-Related Phenotypes Induced during Larval Quiescence in C. elegans
Roux, Antoine E.; Langhans, Kelley; Huynh, Walter; Kenyon, Cynthia
2017-01-01
Summary Cells can enter quiescent states in which cell cycling and growth are suspended. We find that during a long developmental arrest (quiescence) induced by starvation, newly-hatched C. elegans acquire features associated with impaired proteostasis and aging: mitochondrial fission, ROS production, protein aggregation, decreased proteotoxic-stress resistance, and at the organismal level, decline of mobility and high mortality. All signs of aging but one, the presence of protein aggregates, were reversed upon return to development induced by feeding. The endoplasmic reticulum receptor IRE-1 is completely required for recovery, and the downstream transcription factor XBP-1, as well as a protein kinase, KGB-1, are partially required. Interestingly, kgb-1(−) mutants that do recover fail to reverse aging-like mitochondrial phenotypes and have a short adult lifespan. Our study describes the first pathway that reverses phenotypes of aging at the exit of prolonged quiescence. PMID:27304510
Expansion of Human Induced Pluripotent Stem Cells in Stirred Suspension Bioreactors.
Almutawaa, Walaa; Rohani, Leili; Rancourt, Derrick E
2016-01-01
Human induced pluripotent stem cells (hiPSCs) hold great promise as a cell source for therapeutic applications and regenerative medicine. Traditionally, hiPSCs are expanded in two-dimensional static culture as colonies in the presence or absence of feeder cells. However, this expansion procedure is associated with lack of reproducibility and low cell yields. To fulfill the large cell number demand for clinical use, robust large-scale production of these cells under defined conditions is needed. Herein, we describe a scalable, low-cost protocol for expanding hiPSCs as aggregates in a lab-scale bioreactor.
Nahomi, Rooban B; DiMauro, Michael A; Wang, Benlian; Nagaraj, Ram H
2015-01-01
Previous studies have identified peptides in the 'crystallin-domain' of the small heat-shock protein (sHSP) α-crystallin with chaperone and anti-apoptotic activities. We found that peptides in heat-shock protein Hsp20 (G71HFSVLLDVKHFSPEEIAVK91) and Hsp27 (D93RWRVSLDVNHFAPDELTVK113) with sequence homology to α-crystallin also have robust chaperone and anti-apoptotic activities. Both peptides inhibited hyperthermic and chemically induced aggregation of client proteins. The scrambled peptides of Hsp20 and Hsp27 showed no such effects. The chaperone activities of the peptides were better than those from αA- and αB-crystallin. HeLa cells took up the FITC-conjugated Hsp20 peptide and, when the cells were thermally stressed, the peptide was translocated from the cytoplasm to the nucleus. The two peptides inhibited apoptosis in HeLa cells by blocking cytochrome c release from the mitochondria and caspase-3 activation. We found that scrambling the last four amino acids in the two peptides (KAIV in Hsp20 and KTLV in Hsp27) made them unable to enter cells and ineffective against stress-induced apoptosis. Intraperitoneal injection of the peptides prevented sodium-selenite-induced cataract formation in rats by inhibiting protein aggregation and oxidative stress. Our study has identified peptides from Hsp20 and Hsp27 that may have therapeutic benefit in diseases where protein aggregation and apoptosis are contributing factors.
RNA granules: the good, the bad and the ugly
Thomas, María Gabriela; Loschi, Mariela; Desbats, María Andrea; Boccaccio, Graciela Lidia
2010-01-01
Processing bodies (PBs) and Stress granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbor transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor elF2alpha, and tRNA cleavage among others. PBs and SGs with different composition may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of nuclear stress bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA—the UV granules and the Ire1 foci—, all them induced by specific cell damage factors, contribute to cell survival. PMID:20813183
Myöhänen, TT; Hannula, MJ; Van Elzen, R; Gerard, M; Van Der Veken, P; García-Horsman, JA; Baekelandt, V; Männistö, PT; Lambeir, AM
2012-01-01
BACKGROUND AND PURPOSE The aggregation of α-synuclein is connected to the pathology of Parkinson's disease and prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein in vitro. The aim of this study was to investigate the effects of a PREP inhibitor, KYP-2047, on α-synuclein aggregation in cell lines overexpressing wild-type or A30P/A53T mutant human α-syn and in the brains of two A30P α-synuclein transgenic mouse strains. EXPERIMENTAL APPROACH Cells were exposed to oxidative stress and then incubated with the PREP inhibitor during or after the stress. Wild-type or transgenic mice were treated for 5 days with KYP-2047 (2 × 3 mg·kg−1 a day). Besides immunohistochemistry and thioflavin S staining, soluble and insoluble α-synuclein protein levels were measured by Western blot. α-synuclein mRNA levels were quantified by PCR. The colocalization of PREP and α-synuclein,and the effect of KYP-2047 on cell viability were also investigated. KEY RESULTS In cell lines, oxidative stress induced a robust aggregation of α-synuclein,and low concentrations of KYP-2047 significantly reduced the number of cells with α-synuclein inclusions while abolishing the colocalization of α-synuclein and PREP. KYP-2047 significantly reduced the amount of aggregated α-synuclein,and it had beneficial effects on cell viability. In the transgenic mice, a 5-day treatment with the PREP inhibitor reduced the amount of α-synuclein immunoreactivity and soluble α-synuclein protein in the brain. CONCLUSIONS AND IMPLICATIONS The results suggest that the PREP may play a role in brain accumulation and aggregation of α-synuclein, while KYP-2047 seems to effectively prevent these processes. PMID:22233220
NASA Astrophysics Data System (ADS)
Sreeja, K. K.; Sunil Kumar, P. B.
2018-04-01
The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.
Shen, Yajing; Wu, Congyu; Uyeda, Taro Q P; Plaza, Gustavo R; Liu, Bin; Han, Yu; Lesniak, Maciej S; Cheng, Yu
2017-01-01
Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells.
Shen, Yajing; Wu, Congyu; Uyeda, Taro Q. P.; Plaza, Gustavo R.; Liu, Bin; Han, Yu; Lesniak, Maciej S.; Cheng, Yu
2017-01-01
Magnetic nanoparticles (MNPs) functionalized with targeting moieties can recognize specific cell components and induce mechanical actuation under magnetic field. Their size is adequate for reaching tumors and targeting cancer cells. However, due to the nanometric size, the force generated by MNPs is smaller than the force required for largely disrupting key components of cells. Here, we show the magnetic assembly process of the nanoparticles inside the cells, to form elongated aggregates with the size required to produce elevated mechanical forces. We synthesized iron oxide nanoparticles doped with zinc, to obtain high magnetization, and functionalized with the epidermal growth factor (EGF) peptide for targeting cancer cells. Under a low frequency rotating magnetic field at 15 Hz and 40 mT, the internalized EGF-MNPs formed elongated aggregates and generated hundreds of pN to dramatically damage the plasma and lysosomal membranes. The physical disruption, including leakage of lysosomal hydrolases into the cytosol, led to programmed cell death and necrosis. Our work provides a novel strategy of designing magnetic nanomedicines for mechanical destruction of cancer cells. PMID:28529648
Liu, Guan-Ting; Kung, Hsiu-Ni; Chen, Chung-Kuan; Huang, Cheng; Wang, Yung-Li; Yu, Cheng-Pu; Lee, Chung-Pei
2018-02-26
Although a vesicular nucleocytoplasmic transport system is believed to exist in eukaryotic cells, the features of this pathway are mostly unknown. Here, we report that the BFRF1 protein of the Epstein-Barr virus improves vesicular transport of nuclear envelope (NE) to facilitate the translocation and clearance of nuclear components. BFRF1 expression induces vesicles that selectively transport nuclear components to the cytoplasm. With the use of aggregation-prone proteins as tools, we found that aggregated nuclear proteins are dispersed when these BFRF1-induced vesicles are formed. BFRF1-containing vesicles engulf the NE-associated aggregates, exit through from the NE, and putatively fuse with autophagic vacuoles. Chemical treatment and genetic ablation of autophagy-related factors indicate that autophagosome formation and autophagy-linked FYVE protein-mediated autophagic proteolysis are involved in this selective clearance of nuclear proteins. Remarkably, vesicular transport, elicited by BFRF1, also attenuated nuclear aggregates accumulated in neuroblastoma cells. Accordingly, induction of NE-derived vesicles by BFRF1 facilitates nuclear protein translocation and clearance, suggesting that autophagy-coupled transport of nucleus-derived vesicles can be elicited for nuclear component catabolism in mammalian cells.-Liu, G.-T., Kung, H.-N., Chen, C.-K., Huang, C., Wang, Y.-L., Yu, C.-P., Lee, C.-P. Improving nuclear envelope dynamics by EBV BFRF1 facilitates intranuclear component clearance through autophagy.
Glucose induces the translocation and the aggregation of glycogen synthase in rat hepatocytes.
Fernández-Novell, J M; Ariño, J; Vilaró, S; Guinovart, J J
1992-01-01
Incubation of rat hepatocytes with glucose results in a decrease in the amount of glycogen synthase activity found in supernatants obtained after centrifugation of cell homogenates at 9200 g. The enzymic activity was quantitatively recovered in the sediments. This effect of translocation was dose- and time-dependent and correlated with the amount of immunoreactive enzyme determined by immunoblotting in both fractions. Hydrolysis by alpha-amylase of glycogen accumulated upon incubation with the sugar did not affect the translocation pattern. Translocation was also observed when cells were incubated with 2-deoxyglucose, which did not result in accumulation of glycogen. Immunocytochemical evidence indicates that glucose induces the aggregation of glycogen synthase molecules into clusters which are recovered in the sediments. These results indicate that glucose, in addition to activating glycogen synthase, may trigger changes in the localization of the enzyme in the cell. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:1736893
Huy, Pham Dinh Quoc; Yu, Yao-Chung; Ngo, Son Tung; Thao, Tran Van; Chen, Chin-Piao; Li, Mai Suan; Chen, Yi-Cheng
2013-04-01
Aggregation of amyloid-beta (Aβ) has been proposed as the main cause of Alzheimer's disease (AD). Vitamin K deficiency has been linked to the pathogenesis of AD. Therefore, 15 synthesized vitamin K3 (VK3) analogues were studied for their anti-amyloidogenic activity. Biological and spectroscopic assays were used to characterize the effect of VK3 analogues on amyloidogenic properties of Aβ, such as aggregation, free radical formation, and cell viability. Molecular dynamics simulation was used to calculate the binding affinity and mode of VK3 analogue binding to Aβ. Both numerical and experimental results showed that several VK3 analogues, including VK3-6, VK3-8, VK3-9, VK3-10, and VK3-224 could effectively inhibit Aβ aggregation and conformational conversion. The calculated inhibition constants were in the μM range for VK3-10, VK3-6, and VK3-9 which was similar to the IC50 of curcumin. Cell viability assays indicated that VK3-9 could effectively reduce free radicals and had a protective effect on cytotoxicity induced by Aβ. The results clearly demonstrated that VK3 analogues could effectively inhibit Aβ aggregation and protect cells against Aβ induced toxicity. Modified VK3 analogues can possibly be developed as effective anti-amyloidogenic drugs for the treatment of AD. VK3 analogues effectively inhibit Aβ aggregation and are highly potent as anti-amyloidogenic drugs for therapeutic treatment of AD. Copyright © 2012 Elsevier B.V. All rights reserved.
Rimmbach, Christian; Jung, Julia J.; David, Robert
2015-01-01
Treatment of the “sick sinus syndrome” is based on artificial pacemakers. These bear hazards such as battery failure and infections. Moreover, they lack hormone responsiveness and the overall procedure is cost-intensive. “Biological pacemakers” generated from PSCs may become an alternative, yet the typical content of pacemaker cells in Embryoid Bodies (EBs) is extremely low. The described protocol combines “forward programming” of murine PSCs via the sinus node inducer TBX3 with Myh6-promoter based antibiotic selection. This yields cardiomyocyte aggregates consistent of >80% physiologically functional pacemaker cells. These “induced-sinoatrial-bodies” (“iSABs”) are spontaneously contracting at yet unreached frequencies (400-500 bpm) corresponding to nodal cells isolated from mouse hearts and are able to pace murine myocardium ex vivo. Using the described protocol highly pure sinus nodal single cells can be generated which e.g. can be used for in vitro drug testing. Furthermore, the iSABs generated according to this protocol may become a crucial step towards heart tissue engineering. PMID:25742394
Brain-derived exosomes from dementia with Lewy bodies propagate α-synuclein pathology.
Ngolab, Jennifer; Trinh, Ivy; Rockenstein, Edward; Mante, Michael; Florio, Jazmin; Trejo, Margarita; Masliah, Deborah; Adame, Anthony; Masliah, Eliezer; Rissman, Robert A
2017-06-09
Proteins implicated in neurodegenerative conditions such as Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB) have been identified in bodily fluids encased in extracellular vesicles called exosomes. Whether exosomes found in DLB patients can transmit pathology is not clear. In this study, exosomes were successfully harvested through ultracentrifugation from brain tissue from DLB and AD patients as well as non-diseased brain tissue. Exosomes extracted from brains diagnosed with either AD or DLB contained aggregate-prone proteins. Furthermore, injection of brain-derived exosomes from DLB patients into the brains of wild type mice induced α-synuclein (α-syn) aggregation. As assessed through immunofluorescent double labeling, α-syn aggregation was observed in MAP2 + , Rab5 + neurons. Using a neuronal cell line, we also identified intracellular α-syn aggregation mediated by exosomes is dependent on recipient cell endocytosis. Together, these data suggest that exosomes from DLB patients are sufficient for seeding and propagating α-syn aggregation in vivo.
Hsp25, a member of the Hsp30 family, promotes inclusion formation in response to stress.
Katoh, Yumiko; Fujimoto, Mitsuaki; Nakamura, Kosuke; Inouye, Sachiye; Sugahara, Kazuma; Izu, Hanae; Nakai, Akira
2004-05-07
Protein aggregates are oligomeric complexes of misfolded proteins, and serve as the seeds of inclusion bodies termed aggresomes in the cells. Heat shock proteins (Hsps) prevent misfolding and aggregate formation. Here, we found that only avian Hsp25 dominantly accumulated in the aggresomes induced by proteasome inhibition. Molecular cloning of chicken Hsp25 (cHsp25) revealed that it belongs to the Hsp30 family, which is a subfamily of the alpha-crystallin/small Hsp gene family. Unexpectedly, overexpression of cHsp25 into HeLa cells promoted inclusion formation whereas overexpression of mouse Hsp27 and its chicken homologue did not. These results suggest that cHsp25 acts differently from other small Hsps on protein aggregates.
Fung, Shin Yee; Lee, Mui Li; Tan, Nget Hong
2015-03-01
Snake venom LAAOs have been reported to exhibit a wide range of pharmacological activities, including cytotoxic, edema-inducing, platelet aggregation-inducing/platelet aggregation-inhibiting, bactericidal and antiviral activities. A heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom (OH-LAAO) has been shown to exhibit very potent cytotoxicity against human tumorigenic cells but not in their non-tumorigenic counterparts, and the cytotoxicity was due to the apoptosis-inducing effect of the enzyme. In this work, the molecular mechanism of cell death induced by OH-LAAO was investigated. The enzyme exerts its apoptosis-inducing effect presumably via both intrinsic and extrinsic pathways as suggested by the increase in caspase-8 and -9 activities. Oligonucleotide microarray analysis showed that the expression of a total of 178 genes was significantly altered as a result of oxidative stress induced by the hydrogen peroxide generated by the enzyme. Of the 178 genes, at least 27 genes are involved in apoptosis and cell death. These alterations of gene expression was presumably caused by the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidative modifications of signaling molecules that eventually lead to apoptosis and cell death. The very substantial up-regulation of cytochrome P450 genes may also contribute to the potent cytotoxic action of OH-LAAO by producing excessive reactive oxygen species (ROS). In conclusion, the potent apoptosis inducing activity of OH-LAAO was likely due to the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidation of signalling molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.
Martin, Brent R; Deerinck, Thomas J; Ellisman, Mark H; Taylor, Susan S; Tsien, Roger Y
2007-09-01
The tetracysteine sequence YRECCPGCCMWR fused to the N terminus of green fluorescent protein (GFP) self-aggregates upon biarsenical labeling in living cells or in vitro. Such dye-triggered aggregates form temperature-dependent morphologies and are dispersed by photobleaching. Fusion of the biarsenical aggregating GFP to the regulatory (R) or catalytic (C) subunit of PKA traps intact holoenzyme in compact fluorescent puncta upon biarsenical labeling. Contrary to the classical model of PKA activation, elevated cAMP does not allow RIalpha and Calpha to diffuse far apart unless the pseudosubstrate inhibitor PKI or locally concentrated substrate is coexpressed. However, RIIalpha releases Calpha upon elevated cAMP alone, dependent on autophosphorylation of the RIIalpha inhibitory domain. DAKAP1alpha overexpression induced R and C outer mitochondrial colocalization and showed similar regulation. Overall, effective separation of type I PKA is substrate dependent, whereas type II PKA dissociation relies on autophosphorylation.
Miranda, Joana P; Rodrigues, Armanda; Tostões, Rui M; Leite, Sofia; Zimmerman, Heiko; Carrondo, Manuel J T; Alves, Paula M
2010-12-01
The maintenance of differentiated hepatocyte phenotype in vitro depends on several factors-in particular, on extracellular matrix interactions, for example, with three-dimensional (3D) matrices. Alginate hydrogel provides the cells with a good extracellular matrix due to the formation of a massive capsule with semi-permeable properties that allows for diffusion of the medium components into the cells as well as efficient waste product elimination. Simultaneously, alginate protects the cells from shear stress caused by the hydrodynamics when cultured in stirred systems such as bioreactors. We have previously developed a hepatocyte aggregate 3D culture system in a bioreactor where improved hepatocyte functionality could be maintained over longer periods (21 days). In this work, ultra-high-viscosity alginate was used for hepatocyte aggregates entrapment. Hepatocyte biotransformation (phase I and II enzymes), CYP450 inducibility, and secretory capacity (albumin and urea production) were monitored. The analyses were performed in both spinner vessels and bioreactors to test the effect of the pO(2) control, unavailable in the spinners. Performance of alginate-encapsulated hepatocyte aggregates in culture was compared with nonencapsulated aggregate cultures in both bioreactor (controlled environment) and spinner vessels. For both culture systems, hepatocytes' metabolic and biotransformation capacities were maintained for up to 1 month, and encapsulated cells in bioreactors showed the best performance. In particular, albumin production rate increased 2- and 1.5-fold in encapsulated aggregates compared with nonencapsulated aggregates in bioreactor and spinner vessels, respectively. Urea production rate increased twofold in encapsulated cultures compared with nonencapsulated cells, in both bioreactor and spinner vessels. Similarly, in both the bioreactor and the spinner system, cell encapsulation resulted in a 1.5- and 2.8-fold improvement of hepatocyte 7-ethoxycoumarin and uridine diphosphate glucuronosyltransferases (UGT) activities, respectively. For all parameters, but for UGT activity, the bioreactor system resulted better than the spinner vessels; for UGT activity no difference was observed between the two. Furthermore, both encapsulated and nonencapsulated 3D culture systems were inducible by 3-methylcholanthrene and dexamethasone. The encapsulated systems consistently showed improved performance over the nonencapsulated cells, indicating that the protection conferred by the alginate matrix plays a relevant role in maintaining the hepatocyte functionalities in vitro.
Mechanism of platelet activation induced by endocannabinoids in blood and plasma.
Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang
2014-01-01
Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that pharmacological CB1- and CB2-receptor ligands will not affect platelets and platelet-dependent progression and complications of cardiovascular diseases.
NASA Astrophysics Data System (ADS)
Lu, Ying-ying; Chen, Tong-sheng; Qu, Jun-Le
2009-02-01
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways. However, the molecular mechanisms are not well understood. This study was investigated in human lung adenocarconoma ASTC-a-1 cell line and aimed to determine whether the apoptotic process was mediated by Bax activation and translocation during DHA-induced apoptosis. In this study, DHA induced a time-dependent apoptotic cell death, which was assayed by Cell Counting Kit (CCK-8) and Hoechst 33258 staining. Detection of Bax aggregation and translocation to mitochondria was observed in living cells which were co-transfected with GFP-Bax and Dsred-mito plasmid using confocal fluorescence microscope technique. Overall, these results demonstrated that Bax activation and translocation to mitochondria occurred during DHA-induced apoptosis.
Liu, Xinxiu; Chen, Jiayu; Liu, Wenchao; Li, Xiaogang; Chen, Qi; Liu, Tao; Gao, Shaorong; Deng, Min
2015-07-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motor neurons (MNs) and has no effective treatment. Mutations in the fused in sarcoma (FUS) gene and abnormal aggregation of FUS protein have been reported in ALS. However, the mechanisms involved in ALS are poorly understood. Clinical drug trails have failed due to a lack of appropriate disease models, including a lack of access to MNs from ALS patients. Induced pluripotent stem (iPS) cells derived from patients with ALS provide an indispensable resource for in vitro mechanistic studies and for future patient-specific cell-based therapies. Previous reports demonstrated that viral-based ALS-iPS cells generated from fibroblasts harvested from Caucasian populations are ideal for basic research; however, ALS-iPS cells are precluded from cell-based therapeutic applications because of the risks associated with the integration of viral sequences into the genome and inconvenience associated with dermal biopsies. To establish a model for use in clinical applications, using episomal vectors, we generated an integration-free iPS cell line from peripheral blood mononuclear cells (PBMCs) harvested from a familial ALS (FALS) patient carrying the FUS-P525L mutation and a healthy control. Furthermore, we successfully differentiated ALS patient-specific iPS cells into MNs and subsequently detected cytoplasmic mislocalization and formation of FUS protein aggregates in MNs due to the FUS-P525L mutation. Our findings offer a cell-based disease model for use in further elucidating ALS pathogenesis and provide a tool for exploring gene repair coupled with cell replacement therapy.
Allosteric Regulation of E-Cadherin Adhesion*
Shashikanth, Nitesh; Petrova, Yuliya I.; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M.; Leckband, Deborah E.
2015-01-01
Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120ctn, increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120ctn dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120ctn dephosphorylation. PMID:26175155
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment.
Eguchi, Takanori; Sogawa, Chiharu; Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-Ichi; Okamoto, Kuniaki; Calderwood, Stuart K
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment
Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-ichi; Okamoto, Kuniaki; Calderwood, Stuart K.
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression. PMID:29415026
Detection and characterization of red blood cell (RBC) aggregation with photoacoustics
NASA Astrophysics Data System (ADS)
Hysi, Eno; Saha, Ratan K.; Rui, Min; Kolios, Michael C.
2012-02-01
Red blood cells (RBCs) aggregate in the presence of increased plasma fibrinogen and low shear forces during blood flow. RBC aggregation has been observed in deep vein thrombosis, sepsis and diabetes. We propose using photoacoustics (PA) as a non-invasive imaging modality to detect RBC aggregation. The theoretical and experimental feasibility of PA for detecting and characterizing aggregation was assessed. A simulation study was performed to generate PA signals from non-aggregated and aggregated RBCs using a frequency domain approach and to study the PA signals' dependence on hematocrit and aggregate size. The effect of the finite bandwidth nature of transducers on the PA power spectra was also investigated. Experimental confirmation of theoretical results was conducted using porcine RBC samples exposed to 1064 nm optical wavelength using the Imagio Small Animal PA imaging system (Seno Medical Instruments, Inc., San Antonio, TX). Aggregation was induced with Dextran-70 (Sigma-Aldrich, St. Louis, MO) and the effect of hematocrit and aggregation level was investigated. The theoretical and experimental PA signal amplitude increased linearly with increasing hematocrit. The theoretical dominant frequency content of PA signals shifted towards lower frequencies (<30 MHz) and 9 dB enhancements in spectral power were observed as the size of aggregates increased compared to non-aggregating RBCs. Calibration of the PA spectra with the transducer response obtained from a 200 nm gold film was performed to remove system dependencies. Analysis of the spectral parameters from the calibrated spectra suggested that PA can assess the degree of aggregation at multiple hematocrit and aggregation levels.
Applications of Fluorogens with Rotor Structures in Solar Cells.
Ong, Kok-Haw; Liu, Bin
2017-05-29
Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.
Azorín, Erika; Solano-Agama, Carmen; Mendoza-Garrido, M Eugenia
2012-12-15
The adaptation of GH(3) cells to different microenvironments is a consequence of a partial compromise with the tumor phenotype. A collagen type IV enriched microenvironment favors an invasive phenotype and increases the substrate adhesion capacity, whereas it decreases the phosphorylation of the regulatory myosin light chain and the aggregation capacity. In contrast, the higher internal tension and increased aggregation capacity induced by collagen type I/III are factors that reduce the invasion rate. Our results show, for the first time, the importance of collagen subtypes in determining the migratory strategy: collagen I/III favors mesenchymal-like motility, whereas collagen type IV induces an ameboid-type displacement. The reciprocal modulation of the myosin light chain kinase and the Rho-kinase determines the invasive capacity through changes in tissue cohesion, extracellular matrix affinity, regulatory myosin light chain phosphorylation and spatial distribution. The collagen subtype determines which of the mechano-transduction signaling pathways will regulate the tensional homeostasis and affect the invasion ability as well as the preferred migration strategy of the cells. Copyright © 2012 Elsevier Inc. All rights reserved.
The deubiquitinating enzyme USP36 controls selective autophagy activation by ubiquitinated proteins.
Taillebourg, Emmanuel; Gregoire, Isabel; Viargues, Perrine; Jacomin, Anne-Claire; Thevenon, Dominique; Faure, Mathias; Fauvarque, Marie-Odile
2012-05-01
Initially described as a nonspecific degradation process induced upon starvation, autophagy is now known also to be involved in the degradation of specific ubiquitinated substrates such as mitochondria, bacteria and aggregated proteins, ensuring crucial functions in cell physiology and immunity. We report here that the deubiquitinating enzyme USP36 controls selective autophagy activation in Drosophila and in human cells. We show that dUsp36 loss of function autonomously inhibits cell growth while activating autophagy. Despite the phenotypic similarity, dUSP36 is not part of the TOR signaling pathway. Autophagy induced by dUsp36 loss of function depends on p62/SQSTM1, an adaptor for delivering cargo marked by polyubiquitin to autophagosomes. Consistent with p62 requirement, dUsp36 mutant cells display nuclear aggregates of ubiquitinated proteins, including Histone H2B, and cytoplasmic ubiquitinated proteins; the latter are eliminated by autophagy. Importantly, USP36 function in p62-dependent selective autophagy is conserved in human cells. Our work identifies a novel, crucial role for a deubiquitinating enzyme in selective autophagy.
Dielectric aggregation kinetics of cells in a uniform AC electric field.
Tada, Shigeru; Natsuya, Tomoyuki; Tsukamoto, Akira
2014-01-01
Cell manipulation and separation technologies have potential biological and medical applications, including advanced clinical protocols such as tissue engineering. An aggregation model was developed for a human carcinoma (HeLa) cell suspension exposed to a uniform AC electric field, in order to explore the field-induced structure formation and kinetics of cell aggregates. The momentum equations of cells under the action of the dipole-dipole interaction were solved theoretically and the total time required to form linear string-like cluster was derived. The results were compared with those of a numerical simulation. Experiments using HeLa cells were also performed for comparison. The total time required to form linear string-like clusters was derived from a simple theoretical model of the cell cluster kinetics. The growth rates of the average string length of cell aggregates showed good agreement with those of the numerical simulation. In the experiment, cells were found to form massive clusters on the bottom of a chamber. The results imply that the string-like cluster grows rapidly by longitudinal attraction when the electric field is first applied and that this process slows at later times and is replaced by lateral coagulation of short strings. The findings presented here are expected to enable design of methods for the organization of three-dimensional (3D) cellular structures without the use of micro-fabricated substrates, such as 3D biopolymer scaffolds, to manipulate cells into spatial arrangement.
Hiler, Daniel J.; Barabas, Marie E.; Griffiths, Lyra M.; Dyer, Michael A.
2017-01-01
Postmitotic differentiated neurons are among the most difficult cells to reprogram into induced pluripotent stem cells (iPSCs) because they have poor viability when cultured as dissociated cells. Other protocols to reprogram postmitotic neurons have required the inactivation of the p53 tumor suppressor. We describe a method that does not require p53 inactivation and induces reprogramming in cells purified from the retinae of reprogrammable mice in aggregates with wild-type retinal cells. After the first 10 days of reprogramming, the aggregates are then dispersed and plated on irradiated feeder cells to propagate and isolate individual iPSC clones. The reprogramming efficiency of different neuronal populations at any stage of development can be quantitated using this protocol. Reprogramming retinal neurons with this protocol will take 56 days, and these retina-derived iPSCs can undergo retinal differentiation to produce retinae in 34 days. In addition, we describe a quantitative assessment of retinal differentiation from these neuron-derived iPSCs called STEM-RET. The procedure quantitates eye field specification, optic cup formation, and retinal differentiation in 3-dimensional cultures using molecular, cellular and morphological criteria. An advanced level of cell culture experience is required to carry out this protocol. PMID:27658012
Leong, Meng Fatt; Lu, Hong Fang; Lim, Tze Chiun; Du, Chan; Ma, Nina K L; Wan, Andrew C A
2016-12-01
The use of human induced pluripotent stem cells (hiPSCs) for clinical tissue engineering applications requires expansion and differentiation of the cells using defined, xeno-free substrates. The screening and selection of suitable synthetic substrates however, is tedious, as their performance relies on the inherent material properties. In the present work, we demonstrate an alternative concept for xeno-free expansion and differentiation of hiPSCs using synthetic substrates, which hinges on the structure-function relationship between electrospun polystyrene scaffolds (ESPS) and pluripotent stem cell growth. ESPS of differential porosity was obtained by fusing the fibers at different temperatures. The more porous, loosely fused scaffolds were found to efficiently trap the cells, leading to a large number of three-dimensional (3D) aggregates which were shown to be pluripotent colonies. Immunostaining, PCR analyses, in vitro differentiation and in vivo teratoma formation studies demonstrated that these hiPSC aggregates could be cultured for up to 10 consecutive passages (P10) with maintenance of pluripotency. Flow cytometry showed that more than 80% of the cell population stained positive for the pluripotent marker OCT4 at P1, P5 and P10. P10 cells could be differentiated to neuronal-like cells and cultured within the ESPS for up to 18months. Our results suggest the usefulness of a generic class of synthetic substrates, exemplified by ESPS, for 'trapped aggregate culture' of hiPSCs. To realize the potential of human induced pluripotent stem cells (hiPSCs) in clinical medicine, robust, xeno-free substrates for expansion and differentiation of iPSCs are required. In the existing literature, synthetic materials have been reported that meet the requirement for non-xenogeneic substrates. However, the self-renewal and differentiation characteristics of hiPSCs are affected differently by the biocompatibility and physico-chemical properties of individual substrates. Although some rules based on chemical structure and substrate rigidity have been developed, most of these efforts are still empirical, and most synthetic substrates must still be rigorously screened for suitability. In this paper, we demonstrate an alternative concept for xeno-free expansion and differentiation of hiPSCs using synthetic substrates, which hinges on the structure-function relationship between electrospun polystyrene scaffolds (ESPS) and pluripotent stem cell growth. ESPS of differential porosity was obtained by fusing the fibers at different temperatures. The more porous, loosely fused scaffold was found to efficiently trap the cells, leading to a large number of three-dimensional (3D) aggregates. In the form of these trapped aggregates, we showed that hiPSCs could be cultured for up to 10 consecutive passages (P10) with maintenance of pluripotency, following which they could be differentiated to a chosen lineage. We believe that this novel, generic class of synthetic substrates that employs 'trapped aggregate culture' for expansion and differentiation of hiPSCs is an important conceptual advance, and would be of high interest to the readership of Acta Biomaterialia. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Differential Function of N-Cadherin and Cadherin-7 in the Control of Embryonic Cell Motility
Dufour, Sylvie; Beauvais-Jouneau, Alice; Delouvée, Annie; Thiery, Jean Paul
1999-01-01
Similar amounts of N-cadherin and cadherin-7, the prototypes of type I and type II cadherin, induced cell-cell adhesion in murine sarcoma 180 transfectants, Ncad-1 and cad7-29, respectively. However, in the initial phase of aggregation, Ncad-1 cells aggregated more rapidly than cad7-29 cells. Isolated Ncad-1 and cad7-29 cells adhered and spread in a similar manner on fibronectin (FN), whereas aggregated cad7-29 cells were more motile and dispersed than aggregated Ncad-1 cells. cad7-29 cells established transient contacts with their neighbors which were stabilized if FN-cell interactions were perturbed. In contrast, Ncad-1 cells remained in close contact when they migrated on FN. Both β-catenin and cadherin were more rapidly downregulated in cad7-29 than in Ncad-1 cells treated with cycloheximide, suggesting a higher turnover rate for cadherin-7–mediated cell-cell contacts than for those mediated by N-cadherin. The extent of FN-dependent focal adhesion kinase phosphorylation was much lower if the cells had initiated N-cadherin–mediated rather than cadherin-7–mediated cell adhesion before plating. On grafting into the embryo, Ncad-1 cells did not migrate and remained at or close to the graft site, even after 48 h, whereas grafted cad7-29 cells dispersed efficiently into embryonic structures. Thus, the adhesive phenotype of cadherin-7–expressing cells is regulated by the nature of the extracellular matrix environment which also controls the migratory behavior of the cells. In addition, adhesions mediated by different cadherins differentially regulate FN-dependent signaling. The transient contacts specifically observed in cadherin- 7–expressing cells may also be important in the control of cell motility. PMID:10427101
Chiovitti, Katia; Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Paludi, Domenico; D'Arrigo, Cristina; Russo, Claudio; Perico, Angelo; Ianieri, Adriana; Di Cola, Domenico; Vergara, Alberto; Aceto, Antonio; Florio, Tullio
2007-12-01
Because of high tendency of the prion protein (PrP) to aggregate, the exact PrP isoform responsible for prion diseases as well as the pathological mechanism that it activates remains still controversial. In this study, we show that a pre-fibrillar, monomeric or small oligomeric conformation of the human PrP fragment 90-231 (hPrP90-231), rather than soluble or fibrillar large aggregates, represents the neurotoxic species. In particular, we demonstrate that monomeric mild-denatured hPrP90-231 (incubated for 1 h at 53 degrees C) induces SH-SY5Y neuroblastoma cell death, while, when structured in large aggregates, it is ineffective. Using spectroscopic and cellular techniques we demonstrate that this toxic conformer is characterized by a high exposure of hydrophobic regions that favors the intracellular accumulation of the protein. Inside the cells hPrP90-231 is mainly compartmentalized into the lysosomes where it may trigger pro-apoptotic 'cell death' signals. The PrP toxic conformation, which we have obtained inducing a controlled in vitro conformational change of the protein, might mimic mild-unfolding events occurring in vivo, in the presence of specific mutations, oxidative reactions or proteolysis. Thus, in light of this model, we propose that novel therapeutic strategies, designed to inhibit the interaction of the toxic PrP with the plasmamembrane, could be beneficial to prevent the formation of intracellular neurotoxic aggregates and ultimately the neuronal death.
Steere, A C; Duray, P H; Butcher, E C
1988-04-01
Using monoclonal antibodies to spirochetal antigenes and lymphoid cell surface markers, we examined the synovial lesions of 12 patients with Lyme disease, and compared them with rheumatoid synovium and tonsillar lymphoid tissue. The synovial lesions of Lyme disease patients and rheumatoid arthritis patients were similar and often consisted of the elements found in normal organized lymphoid tissue. In both diseases, T cells, predominantly of the helper/inducer subset, were distributed diffusely in subsynovial lining areas, often with nodular aggregates of tightly intermixed T and B cells. IgD-bearing B cells were scattered within the aggregates, and a few follicular dendritic cells and activated germinal center B cells were sometimes present. Outside the aggregates, many plasma cells, high endothelial venules, scattered macrophages, and a few dendritic macrophages were found. HLA-DR and DQ expression was intense throughout the lesions. In 6 of the 12 patients with Lyme arthritis, but in none of those with rheumatoid arthritis, a few spirochetes and globular antigen deposits were seen in and around blood vessels in areas of lymphocytic infiltration. Thus, in Lyme arthritis, a small number of spirochetes are probably the antigenic stimulus for chronic synovial inflammation.
NASA Astrophysics Data System (ADS)
Taniguchi, Y.; Okuno, A.; Kato, M.
2010-03-01
Pressure can retrain the heat-induced aggregation and dissociate the heat-induced aggregates. We observed the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by FT-IR spectroscopy. The results suggest the α-helical structure collapses at the beginning of heat-induced aggregation through the swollen structure, and then the rearrangement of structure to the intermolecular β-sheet takes place through partially unfolded structure. We determined the activation volume for the heat-induced aggregation (ΔV# = +93 ml/mol) and the partial molar volume difference between native state and heat-induced aggregates (ΔV=+32 ml/mol). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular β-sheet is unfavorable under high pressure.
Lai, Zhigang; Yin, Kedong
2014-01-01
Port Shelter is a semi-enclosed bay in northeast Hong Kong where high biomass red tides are observed to occur frequently in narrow bands along the local bathymetric isobars. Previous study showed that nutrients in the Bay are not high enough to support high biomass red tides. The hypothesis is that physical aggregation and vertical migration of dinoflagellates appear to be the driving mechanism to promote the formation of red tides in this area. To test this hypothesis, we used a high-resolution estuarine circulation model to simulate the near-shore water dynamics based on in situ measured temperature/salinity profiles, winds and tidal constitutes taken from a well-validated regional tidal model. The model results demonstrated that water convergence occurs in a narrow band along the west shore of Port Shelter under a combined effect of stratified tidal current and easterly or northeasterly wind. Using particles as dinoflagellate cells and giving diel vertical migration, the model results showed that the particles aggregate along the convergent zone. By tracking particles in the model predicted current field, we estimated that the physical-biological coupled processes induced aggregation of the particles could cause 20-45 times enhanced cell density in the convergent zone. This indicated that a high cell density red tide under these processes could be initialized without very high nutrients concentrations. This may explain why Port Shelter, a nutrient-poor Bay, is the hot spot for high biomass red tides in Hong Kong in the past 25 years. Our study explains why red tide occurrences are episodic events and shows the importance of taking the physical-biological aggregation mechanism into consideration in the projection of red tides for coastal management. Copyright © 2013 Elsevier B.V. All rights reserved.
Prakash, Dharmalingam; Sudhandiran, Ganapasam
2015-12-01
Dietary flavonoids have been suggested to promote brain health by protecting brain parenchymal cells. Recently, understanding the possible mechanism underlying neuroprotective efficacy of flavonoids is of great interest. Given that fisetin exerts neuroprotection, we have examined the mechanisms underlying fisetin in regulating Aβ aggregation and neuronal apoptosis induced by aluminium chloride (AlCl3) administration in vivo. Male Swiss albino mice were induced orally with AlCl3 (200 mg/kg. b.wt./day/8 weeks). Fisetin (15 mg/Kg. b.wt. orally) was administered for 4 weeks before AlCl3-induction and administered simultaneously for 8 weeks during AlCl3-induction. We found aggregation of Amyloid beta (Aβ 40-42), elevated expressions of Apoptosis stimulating kinase (ASK-1), p-JNK (c-Jun N-terminal Kinase), p53, cytochrome c, caspases-9 and 3, with altered Bax/Bcl-2 ratio in favour of apoptosis in cortex and hippocampus of AlCl3-administered mice. Furthermore, TUNEL and fluoro-jade C staining demonstrate neurodegeneration in cortex and hippocampus. Notably, treatment with fisetin significantly (P<0.05) reduced Aβ aggregation, ASK-1, p-JNK, p53, cytochrome c, caspase-9 and 3 protein expressions and modulated Bax/Bcl-2 ratio. TUNEL-positive and fluoro-jade C stained cells were also significantly reduced upon fisetin treatment. We have identified the involvement of fisetin in regulating ASK-1 and p-JNK as possible mediator of Aβ aggregation and subsequent neuronal apoptosis during AlCl3-induced neurodegeneration. These findings define the possibility that fisetin may slow or prevent neurodegneration and can be utilised as neuroprotective agent against Alzheimer's and Parkinson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
BMP Induction of Cardiogenesis in P19 Cells Requires Prior Cell-Cell Interaction(s)
ANGELLO, JOHN C.; KAESTNER, STEFANIE; WELIKSON, ROBERT E.; BUSKIN, JEAN N.; HAUSCHKA, STEPHEN D.
2008-01-01
Mouse P19 embryonal carcinoma cells undergo cardiogenesis in response to high density and DMSO. We have derived a clonal subline which undergoes cardiogenesis in response to high density, but without requiring exposure to DMSO. The new subline retains the capacity to differentiate into skeletal muscle and neuronal cells in response to DMSO and retinoic acid. However, upon aggregation, these Oct 4-positive cells, termed P19-SI because they “self-induce” cardiac muscle, exhibit increased mRNAs encoding the mesodermal factor Brachyury, cardiac transcription factors Nkx 2.5 and GATA 4, the transcriptional repressor Msx-1, and cytokines Wnt 3a, Noggin and BMP 4. Exposure of aggregated P19-SI cells to BMP 4, a known inducer of cardiogenesis, accelerates cardiogenesis, as determined by rhythmic beating and myosin staining. However, cardiogenesis is severely inhibited when P19-SI cells are aggregated in the presence of BMP 4. These results demonstrate that cell-cell interaction is required before P19-SI cells can undergo a cardiogenic response to BMP 4. A concurrent increase in the expression of Msx-1 suggests one possible process underlying the inhibition of cardiogenesis. The phenotype of P19-SI cells offers an opportunity to explore new aspects of cardiac induction. PMID:16773658
Generating Porcine Chimeras Using Inner Cell Mass Cells and Parthenogenetic Preimplantation Embryos
Nakano, Kazuaki; Watanabe, Masahito; Matsunari, Hitomi; Matsuda, Taisuke; Honda, Kasumi; Maehara, Miki; Kanai, Takahiro; Hayashida, Gota; Kobayashi, Mirina; Kuramoto, Momoko; Arai, Yoshikazu; Umeyama, Kazuhiro; Fujishiro, Shuh-hei; Mizukami, Yoshihisa; Nagaya, Masaki; Hanazono, Yutaka; Nagashima, Hiroshi
2013-01-01
Background The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. Methodology/Significant Principal Findings In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4–8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4–8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. Conclusion/Significance Our findings indicate that the aggregation method using parthenogenetic morulae or 4–8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such as iPS cells, based on their ability to form chimeras. PMID:23626746
Mehdi, Hassan; Gong, Weitao; Guo, Huimin; Watkinson, Michael; Ma, Hua; Wajahat, Ali; Ning, Guiling
2017-09-21
Two novel organic fluorophores, containing bis-naphthylamide and quinoline motifs, have been designed and synthesized. One of the fluorophores contains an isobutylene unit and exhibits a significant aggregation-induced emission (AIE) and a remarkable highly selective ratiometric fluorescence response towards Zn 2+ in solution as well as in human liver cancer cells. The AIE behavior of this fluorophore was fully verified by fluorescence and UV/Vis spectroscopy, quantum yield calculations, and single-crystal X-ray diffraction, which revealed an intricate crystal packing system. Conversely, a fluorophore that lacks the isobutylene moiety did not exhibit any significant fluorescent properties as a result of its more flexible molecular structure that presumably allows free intramolecular rotational processes to occur. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Jae-Yong; Lee, Eun-Young; Choi, Inho; Kim, Jihoe; Cho, Kyung-Hyun
2015-12-01
Particulate matter2.5 (PM2.5) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which PM2.5 aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous PM2.5 solution on lipoprotein metabolism. Collected PM2.5 from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. PM2.5 extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. PM2.5 treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by PM2.5 solution in a dose-dependent manner. Further, PM2.5 solution caused cellular senescence in human dermal fibroblast cells. Microinjection of PM2.5 solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of PM2.5 induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins.
Kim, Jae-Yong; Lee, Eun-Young; Choi, Inho; Kim, Jihoe; Cho, Kyung-Hyun
2015-01-01
Particulate matter2.5 (PM2.5) is notorious for its strong toxic effects on the cardiovascular, skin, nervous, and reproduction systems. However, the molecular mechanism by which PM2.5 aggravates disease progression is poorly understood, especially in a water-soluble state. In the current study, we investigated the putative physiological effects of aqueous PM2.5 solution on lipoprotein metabolism. Collected PM2.5 from Seoul, Korea was dissolved in water, and the water extract (final 3 and 30 ppm) was treated to human serum lipoproteins, macrophages, and dermal cells. PM2.5 extract resulted in degradation and aggregation of high-density lipoprotein (HDL) as well as low-density lipoprotein (LDL); apoA-I in HDL aggregated and apo-B in LDL disappeared. PM2.5 treatment (final 30 ppm) also induced cellular uptake of oxidized LDL (oxLDL) into macrophages, especially in the presence of fructose (final 50 mM). Uptake of oxLDL along with production of reactive oxygen species was accelerated by PM2.5 solution in a dose-dependent manner. Further, PM2.5 solution caused cellular senescence in human dermal fibroblast cells. Microinjection of PM2.5 solution into zebrafish embryos induced severe mortality accompanied by impairment of skeletal development. In conclusion, water extract of PM2.5 induced oxidative stress as a precursor to cardiovascular toxicity, skin cell senescence, and embryonic toxicity via aggregation and proteolytic degradation of serum lipoproteins. PMID:26615830
Heydenreich, Bärbel; Bellinghausen, Iris; Lorenz, Steffen; Henmar, Helene; Strand, Dennis; Würtzen, Peter A; Saloga, Joachim
2012-01-01
Although allergen-specific immunotherapy is a clinically effective therapy for IgE-mediated allergic diseases, the risk of IgE-mediated adverse effects still exists. For this reason, chemically modified allergoids have been introduced, which may destroy IgE-binding sites while T-cell activation should be retained. The aim of the study was to analyse the differences between intact allergens and differently modified/aggregated allergoids concerning their internalization as well as T-cell and basophil activation. For this purpose human monocyte-derived immature dendritic cells (DC) were incubated with Phleum pratense or Betula verrucosa pollen extract or with the corresponding allergoids, modified with formaldehyde or glutaraldehyde. After an additional maturation process, the antigen-loaded mature DC were co-cultured with autologous CD4+ T cells. Allergenicity was tested by leukotriene release from basophils. In addition, the uptake of intact allergens and allergoids by immature DC was analysed. The proliferation of, as well as the interleukin-4 (IL-4), IL-10, IL-13 and interferon-γ production by, CD4+ T cells which had been stimulated with glutaraldehyde allergoid-treated DC was reduced compared with CD4+ T cells stimulated with intact allergen-treated or formaldehyde allergoid-treated DC. In line with this, glutaraldehyde-modified allergoids were more aggregated and were internalized more slowly. Furthermore, only the allergoids modified with glutaraldehyde induced a decreased leukotriene release by activated basophils. These findings suggest that IgE-reactive epitopes were destroyed more efficiently by modification with glutaraldehyde than with formaldehyde under the conditions chosen for these investigations. Glutaraldehyde-modified allergoids also displayed lower T-cell stimulatory capacity, which is mainly the result of greater modification/aggregation and diminished uptake by DC. PMID:22348538
Heydenreich, Bärbel; Bellinghausen, Iris; Lorenz, Steffen; Henmar, Helene; Strand, Dennis; Würtzen, Peter A; Saloga, Joachim
2012-06-01
Although allergen-specific immunotherapy is a clinically effective therapy for IgE-mediated allergic diseases, the risk of IgE-mediated adverse effects still exists. For this reason, chemically modified allergoids have been introduced, which may destroy IgE-binding sites while T-cell activation should be retained. The aim of the study was to analyse the differences between intact allergens and differently modified/aggregated allergoids concerning their internalization as well as T-cell and basophil activation. For this purpose human monocyte-derived immature dendritic cells (DC) were incubated with Phleum pratense or Betula verrucosa pollen extract or with the corresponding allergoids, modified with formaldehyde or glutaraldehyde. After an additional maturation process, the antigen-loaded mature DC were co-cultured with autologous CD4(+) T cells. Allergenicity was tested by leukotriene release from basophils. In addition, the uptake of intact allergens and allergoids by immature DC was analysed. The proliferation of, as well as the interleukin-4 (IL-4), IL-10, IL-13 and interferon-γ production by, CD4(+) T cells which had been stimulated with glutaraldehyde allergoid-treated DC was reduced compared with CD4(+) T cells stimulated with intact allergen-treated or formaldehyde allergoid-treated DC. In line with this, glutaraldehyde-modified allergoids were more aggregated and were internalized more slowly. Furthermore, only the allergoids modified with glutaraldehyde induced a decreased leukotriene release by activated basophils. These findings suggest that IgE-reactive epitopes were destroyed more efficiently by modification with glutaraldehyde than with formaldehyde under the conditions chosen for these investigations. Glutaraldehyde-modified allergoids also displayed lower T-cell stimulatory capacity, which is mainly the result of greater modification/aggregation and diminished uptake by DC. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.
2014-07-24
Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changesmore » and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.« less
Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration
Mor, Danielle E.; Tsika, Elpida; Mazzulli, Joseph R.; Gould, Neal S.; Kim, Hanna; Daniels, Malcolm J.; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L.; Tan, Victor X.; Kalb, Robert G.; Caldwell, Kim A.; Caldwell, Guy A.; Wolfe, John H.; Ischiropoulos, Harry
2018-01-01
Parkinson’s disease is defined by the loss of dopaminergic neurons in the substantia nigra and formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated dopamine levels in addition to α-synuclein expression. Nigra-targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine without damaging neurons in non-transgenic mice. In contrast, raising dopamine in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable C. elegans models expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. The data suggest a unique mechanism linking two cardinal features of Parkinson’s disease, dopaminergic cell death and α-synuclein aggregation. PMID:28920936
Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.
Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry
2017-11-01
Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.
Unrestrained AMPylation targets cytosolic chaperones and activates the heat shock response
Truttmann, Matthias C.; Zheng, Xu; Hanke, Leo; Damon, Jadyn R.; Grootveld, Monique; Krakowiak, Joanna; Pincus, David; Ploegh, Hidde L.
2017-01-01
Protein AMPylation is a conserved posttranslational modification with emerging roles in endoplasmic reticulum homeostasis. However, the range of substrates and cell biological consequences of AMPylation remain poorly defined. We expressed human and Caenorhabditis elegans AMPylation enzymes—huntingtin yeast-interacting protein E (HYPE) and filamentation-induced by cyclic AMP (FIC)-1, respectively—in Saccharomyces cerevisiae, a eukaryote that lacks endogenous protein AMPylation. Expression of HYPE and FIC-1 in yeast induced a strong cytoplasmic Hsf1-mediated heat shock response, accompanied by attenuation of protein translation, massive protein aggregation, growth arrest, and lethality. Overexpression of Ssa2, a cytosolic heat shock protein (Hsp)70, was sufficient to partially rescue growth. In human cell lines, overexpression of active HYPE similarly induced protein aggregation and the HSF1-dependent heat shock response. Excessive AMPylation also abolished HSP70-dependent influenza virus replication. Our findings suggest a mode of Hsp70 inactivation by AMPylation and point toward a role for protein AMPylation in the regulation of cellular protein homeostasis beyond the endoplasmic reticulum. PMID:28031489
Triflavin, an Arg‐Gly‐Asp‐containing Peptide, Inhibits Tumor Cell‐induced Platelet Aggregation
Sheu, Joen R.; Lin, Chao H.; Peng, Hui C.; Teng, Che M.
1993-01-01
In this study, we examined the effect of triflavin, an Arg‐Gly‐Asp (RGD)‐containing snake venom peptide, on human cervical carcinoma (HeLa) cell‐ and B16‐F10 mouse melanoma cell‐induced platelet aggregation (TCIPA) in heparinized platelet‐rich plasma. TCIPA appears to play an important role in the development of certain experimental tumor metastases. Two ADP‐scavenging agents, apyrase (10 U/ml) and creatine phosphate (CP) (5 mM)/creatine phosphokinase (CPK) (5 U/ml) completely inhibited B16‐F10 TCIPA, but hirudin (5 U/ml) had no effect. In contrast, apyrase and CP/CPK did not inhibit HeLa TCIPA while hirudin completely inhibited it. Furthermore, HeLa cells initially induced platelet aggregation and then blood coagulation at a later stage. In addition, HeLa cells shortened, in a concentration‐dependent manner, the recalcification time of normal as well as factor VIII‐ and IX‐deficient human plasma, but did not affect the recalciflcation time of factor VII‐deficient plasma. This suggests that HeLa TCIPA occurs via activation of the extrinsic pathway, probably owing to tumor cell expression of tissue factor‐like activity. HeLa cell‐induced thrombin generation was confirmed by detection of amidolytic activity towards a chromogenic substrate, S‐2238 (H‐D‐Phe‐Pip‐Arg‐p‐NA). Triflavin and GRGDS inhibited, in a dose‐dependent manner, TCIPA caused by either cell line. On a molar basis, triflavin was 10,000–30,000 times more potent than GRGDS in this regard. Moreover, monoclonal antibodies raised against glycoprotein (GP) IIb/IIIa complex (i.e., 7E3 and AP2) and against GP Ib (i.e., AP1) completely inhibited HeLa TCIPA. 7E3 and AP2 inhibited B16‐F10 TCIPA by up to 80% whereas AP1 showed only 30% inhibition of B16‐F10 TCIPA. In conclusion, the inhibitory effect of triflavin on HeLa and B16‐F10 TCIPA may be mediated principally by the binding of triflavin to the fibrinogen receptor associated with GP IIb/IIIa complex on the platelet surface. However, GP Ib is also involved in HeLa TCIPA as thrombin formation is the key factor in triggering platelet aggregation caused by HeLa cells. PMID:8226281
Preventive and therapeutic effect of brozopine on stroke in Dahl Salt-sensitive hypertensive rats.
Gao, Yuan; Wang, Yan; Li, Miao; Liu, Yali; Chang, Junbiao; Qiao, Hailing
2017-10-01
Our aim was to explore the preventive and therapeutic effects of sodium (±)-5-bromo-2-(α-hydroxypentyl) benzoate (brand name: brozopine, BZP) on stroke in Dahl Salt-sensitive (Dahl-SS) hypertensive rats. Dahl-SS rats were fed a high-salt diet to observe the effect of BZP on blood pressure, and brain, heart, and kidney tissues. Additionally, the incidence of stroke was recorded according to the neurological score. The relative mechanisms investigated included anti-oxidative effects and anti-platelet aggregation. BZP reduced the incidence of stroke, neuronal necrosis in the brain, and cell swelling and inflammatory infiltration in the kidney. Its mechanisms were related to the increased activities of gluthatione peroxidase and catalase and the decreased level of plasma nitric oxide. BZP inhibited arachidonic acid (AA) - induced platelet aggregation (IC 50 : 12µM) rather than that of adenosine diphosphate (ADP) - and/or thrombin-induced platelet aggregation in vitro. Interestingly, BZP inhibited ADP-, thrombin-, or AA-induced platelet aggregation and elevated the level of AMP-activated protein kinase, cyclic guanosine monophosphate, and vasodilator-stimulated-phosphoprotein, and attenuated ATP contents and mitogen-activated protein kinase levels in platelet and inhibited thrombus formation in a carotid artery thrombosis model, dose-dependently, in Dahl-SS hypertensive-induced stroke rats. In conclusion, BZP can have therapeutic and preventive effects on stroke in Dahl-SS hypertensive rats, the mechanisms of which may be related to anti-oxidant, anti-platelet aggregation and anti-thrombus formation. Copyright © 2017 Elsevier B.V. All rights reserved.
Pestel, J; Dessaint, J P; Joseph, M; Bazin, H; Capron, A
1984-01-01
Macrophages incubated with complexed or aggregated IgE released beta-glucuronidase (beta-G) within 30 min. In contrast in the presence of aggregated or complexed IgG, macrophages liberated equivalent amount of beta-G only after 6 h incubation. In addition the rapid macrophage stimulation induced by aggregated IgE was also followed by a faster 3H-glucosamine incorporation when compared to the delayed activation caused by aggregated IgG. However, macrophages stimulated either by IgG or by IgE oligomers produced the same percentage of plasminogen activator at 24 h. In contrast, while the interaction between macrophages and aggregated IgE was only followed by a peak of cyclic GMP and a beta-G release during the first 30 min of incubation, the interaction between macrophages and IgG oligomers was accompanied by a simultaneous increase of cyclic GMP and AMP nucleotides and by an absence of beta-G exocytosis. Moreover, the beta-G release induced by aggregated IgE was increased when macrophages were preincubated with aggregated IgG. This additive effect was not observed in the reverse situation. Finally macrophages activated by IgG oligomers were demonstrated to exert a cytotoxic effect on tumour cells and to kill schistosomula in the presence of a low level of complement. Taken together these results underline the peculiar ability of aggregated or complexed IgE to trigger rapidly the macrophage activation compared to aggregated IgG and can explain the important role of complexed IgE in some macrophage dependent cytotoxicity mechanisms (i.e. in parasitic diseases). PMID:6088135
WANG, WEI; WANG, HONG; WANG, CHUN-MEI; GOU, SI; CHEN, ZHONG-HUA; GUO, JIE
2014-01-01
The aim of this study was to investigate whether Huisheng oral solution (HSOS) has an inhibitory effect on the development of pulmonary thrombosis and metastasis in mice with Lewis lung carcinoma (LLC), and to explore the possible mechanisms involved. A mouse model of LLC was developed, and model mice were divided into either a treatment group or a control group to undergo treatment with HSOS or normal saline. Normal mice treated with saline were used as normal controls. On day 25 after treatment, blood samples were drawn from the eyes of half the mice in each group to determine blood cell counts and plasma levels of D-Dimer and vascular endothelial growth factor (VEGF), while heart blood samples were collected from the remaining mice to measure the rate of thrombin-induced platelet aggregation. For all mice, pathological analyses of the cerebrum, lung, mesentery, femoral vein, external iliac vein and spleen were performed. Tumors were weighed to assess the impact of HSOS treatment on tumor growth, and the number of thrombi, metastatic nodules and neovessels in the tumor tissue were counted. In addition, 24 normal New Zealand rabbits were divided into two groups and treated with either HSOS or normal saline to determine the rates of ADP-, collagen- or thrombin-induced platelet aggregation. Compared with the model group, HSOS treatment decreased the incidence of pulmonary thromboembolism and metastasis, the number of metastatic nodules, the plasma levels of D-dimer and VEGF, the rate of collagen-induced platelet aggregation in rabbits and the numbers of leukocytes and tumor neovessels (P<0.05 for all). It increased the thymus and spleen coefficients and the number of platelets (P<0.05 for all), but had no significant effect on thrombin-induced platelet aggregation in mice and rabbits, ADP-induced platelet aggregation in rabbits, or the number of red blood cells. The reduced rate of tumor growth was 9.7% in mice treated with HSOS. HSOS treatment effectively reduced the development of pulmonary thromboembolism and metastasis in mice bearing LLC via mechanisms possibly associated with ameliorating a blood hypercoagulable state, decreasing tumor angiogenesis and enhancing immunity. PMID:24348827
Ko, Li-Wen; Ko, Hwai-Hwa C; Lin, Wen-Lang; Kulathingal, Jayanranyan G; Yen, Shu-Hui C
2008-11-01
Filamentous alpha-synuclein (alpha-syn) aggregates form Lewy bodies (LBs), the neuropathologic hallmarks of Parkinson disease and related alpha-synucleinopathies. To model Lewy body-associated neurodegeneration, we generated transfectant 3D5 of human neuronal-type in which expression of human wild-type alpha-syn is regulated by the tetracycline off (TetOff)-inducible mechanism. Retinoic acid-elicited differentiation promoted assembly of alpha-syn aggregates after TetOff induction in 3D5 cells. The aggregates accumulated 14 days after TetOff induction were primarily soluble and showed augmented thioflavin affinity with concomitant phosphorylation and nitration of alpha-syn. Extension of the induction led to the formation of sarkosyl-insoluble aggregates that appeared concurrently with thioflavin-positive inclusions. Immunoelectron microscopy revealed that the inclusions consist of dense bundles of 8- to 12-nm alpha-syn fibrils that congregate in the perikarya and resemble Lewy bodies. Most importantly, accumulation of soluble and insoluble aggregates after TetOff induction for 14 and 28 days was reversible and did not compromise the viability of the cells or their subsequent survival. Thus, this chemically defined culture paradigm provides a useful means to elucidate how oxidative injuries and other insults that are associated with aging promote alpha-syn to self-assemble or interact with other molecules leading to neuronal degeneration in alpha-synucleinopathies.
Cardioprotection by controlling hyperamylinemia in a "humanized" diabetic rat model.
Despa, Sanda; Sharma, Savita; Harris, Todd R; Dong, Hua; Li, Ning; Chiamvimonvat, Nipavan; Taegtmeyer, Heinrich; Margulies, Kenneth B; Hammock, Bruce D; Despa, Florin
2014-08-21
Chronic hypersecretion of the pancreatic hormone amylin is common in humans with obesity or prediabetic insulin resistance and induces amylin aggregation and proteotoxicity in the pancreas. We recently showed that hyperamylinemia also affects the cardiovascular system. Here, we investigated whether amylin aggregates interact directly with cardiac myocytes and whether controlling hyperamylinemia protects the heart. By Western blot, we found abundant amylin aggregates in lysates of cardiac myocytes from obese patients, but not in controls. Aggregated amylin was elevated in failing hearts, suggesting a role in myocyte injury. Using rats overexpressing human amylin in the pancreas (HIP rats) and control myocytes incubated with human amylin, we show that amylin aggregation at the sarcolemma induces oxidative stress and Ca(2+) dysregulation. In time, HIP rats developed cardiac hypertrophy and left-ventricular dilation. We then tested whether metabolites with antiaggregation properties, such as eicosanoid acids, limit myocardial amylin deposition. Rats were treated with an inhibitor of soluble epoxide hydrolase, the enzyme that degrades endogenous eicosanoids. Treatment doubled the blood concentration of eicosanoids, which drastically reduced incorporation of aggregated amylin in cardiac myocytes and blood cells, without affecting pancreatic amylin secretion. Animals in the treated group showed reduced cardiac hypertrophy and left-ventricular dilation. The cardioprotective mechanisms included the mitigation of amylin-induced cardiac oxidative stress and Ca(2+) dysregulation. The results suggest blood amylin as a novel therapeutic target in diabetic heart disease and elevating blood levels of antiaggregation metabolites as a pharmacological strategy to reduce amylin aggregation and amylin-mediated cardiotoxicity. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Complement component 5 promotes lethal thrombosis
Mizuno, Tomohiro; Yoshioka, Kengo; Mizuno, Masashi; Shimizu, Mie; Nagano, Fumihiko; Okuda, Tomoyuki; Tsuboi, Naotake; Maruyama, Shoichi; Nagamatsu, Tadashi; Imai, Masaki
2017-01-01
Extracellular histones promote platelet aggregation and thrombosis; this is followed by induction of coagulation disorder, which results in exhaustion of coagulation factors. Complement component 5 (C5) is known to be associated with platelet aggregation and coagulation system activation. To date, the pathological mechanism underlying liver injury has remained unclear. Here, we investigated whether C5 promotes liver injury associated with histone-induced lethal thrombosis. C5-sufficient and C5-deficient mice received single tail vein injections of purified, unfractionated histones obtained from calf thymus (45–75 μg/g). Subsequently, the mice were monitored for survival for up to 72 h. Based on the survival data, the 45 μg/g dose was used for analysis of blood cell count, liver function, blood coagulation ability, and promotion of platelet aggregation and platelet/leukocyte aggregate (PLA) production by extracellular histones. C5-deficient mice were protected from lethal thrombosis and had milder thrombocytopenia, consumptive coagulopathy, and liver injury with embolism and lower PLA production than C5-sufficient mice. These results indicate that C5 is associated with coagulation disorders, PLA production, and embolism-induced liver injury. In conclusion, C5 promotes liver injury associated with histone-induced lethal thrombosis. PMID:28205538
Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light
Kuse, Yoshiki; Ogawa, Kenjiro; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki
2014-01-01
Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm2). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light. PMID:24909301
A novel autophagy modulator 6-Bio ameliorates SNCA/α-synuclein toxicity
Suresh, S. N.; Chavalmane, Aravinda K.; DJ, Vidyadhara; Yarreiphang, Haorei; Rai, Shashank; Paul, Abhik; Clement, James P.; Alladi, Phalguni Anand; Manjithaya, Ravi
2017-01-01
ABSTRACT Parkinson disease (PD) is a life-threatening neurodegenerative movement disorder with unmet therapeutic intervention. We have identified a small molecule autophagy modulator, 6-Bio that shows clearance of toxic SNCA/α-synuclein (a protein implicated in synucleopathies) aggregates in yeast and mammalian cell lines. 6-Bio induces autophagy and dramatically enhances autolysosome formation resulting in SNCA degradation. Importantly, neuroprotective function of 6-Bio as envisaged by immunohistology and behavior analyses in a preclinical model of PD where it induces autophagy in dopaminergic (DAergic) neurons of mice midbrain to clear toxic protein aggregates suggesting that it could be a potential therapeutic candidate for protein conformational disorders. PMID:28350199
Impact of membrane curvature on amyloid aggregation.
Terakawa, Mayu S; Lin, Yuxi; Kinoshita, Misaki; Kanemura, Shingo; Itoh, Dai; Sugiki, Toshihiko; Okumura, Masaki; Ramamoorthy, Ayyalusamy; Lee, Young-Ho
2018-04-28
The misfolding, amyloid aggregation, and fibril formation of intrinsically disordered proteins/peptides (or amyloid proteins) have been shown to cause a number of disorders. The underlying mechanisms of amyloid fibrillation and structural properties of amyloidogenic precursors, intermediates, and amyloid fibrils have been elucidated in detail; however, in-depth examinations on physiologically relevant contributing factors that induce amyloidogenesis and lead to cell death remain challenging. A large number of studies have attempted to characterize the roles of biomembranes on protein aggregation and membrane-mediated cell death by designing various membrane components, such as gangliosides, cholesterol, and other lipid compositions, and by using various membrane mimetics, including liposomes, bicelles, and different types of lipid-nanodiscs. We herein review the dynamic effects of membrane curvature on amyloid generation and the inhibition of amyloidogenic proteins and peptides, and also discuss how amyloid formation affects membrane curvature and integrity, which are key for understanding relationships with cell death. Small unilamellar vesicles with high curvature and large unilamellar vesicles with low curvature have been demonstrated to exhibit different capabilities to induce the nucleation, amyloid formation, and inhibition of amyloid-β peptides and α-synuclein. Polymorphic amyloidogenesis in small unilamellar vesicles was revealed and may be viewed as one of the generic properties of interprotein interaction-dominated amyloid formation. Several mechanical models and phase diagrams are comprehensively shown to better explain experimental findings. The negative membrane curvature-mediated mechanisms responsible for the toxicity of pancreatic β cells by the amyloid aggregation of human islet amyloid polypeptide (IAPP) and binding of the precursors of the semen-derived enhancer of viral infection (SEVI) are also described. The curvature-dependent binding modes of several types of islet amyloid polypeptides with high-resolution NMR structures are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Min; Mikecz, Anna von
Despite of their exponentially growing use, little is known about cell biological effects of nanoparticles. Here, we report uptake of silica (SiO{sub 2}) nanoparticles to the cell nucleus where they induce aberrant clusters of topoisomerase I (topo I) in the nucleoplasm that additionally contain signature proteins of nuclear domains, and protein aggregation such as ubiquitin, proteasomes, cellular glutamine repeat (polyQ) proteins, and huntingtin. Formation of intranuclear protein aggregates (1) inhibits replication, transcription, and cell proliferation; (2) does not significantly alter proteasomal activity or cell viability; and (3) is reversible by Congo red and trehalose. Since SiO{sub 2} nanoparticles trigger amore » subnuclear pathology resembling the one occurring in expanded polyglutamine neurodegenerative disorders, we suggest that integrity of the functional architecture of the cell nucleus should be used as a read out for cytotoxicity and considered in the development of safe nanotechnology.« less
Protein Aggregates and Novel Presenilin Gene Variants in Idiopathic Dilated Cardiomyopathy
Gianni, Davide; Li, Airong; Tesco, Giuseppina; McKay, Kenneth M.; Moore, John; Raygor, Kunal; Rota, Marcello; Gwathmey, Judith K; Dec, G William; Aretz, Thomas; Leri, Annarosa; Semigran, Marc J; Anversa, Piero; Macgillivray, Thomas E; Tanzi, Rudolph E.; Monte, Federica del
2010-01-01
Background Heart failure (HF) is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as Idiopathic Dilated Cardiomyopathy (iDCM), the origin of HF is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of β-amyloid impair cell function and lead to cell death. Methods and Results We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca2+ homeostasis. Additionally, we have identified two new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 co-immunoprecipitates with SERCA2a. Conclusions Based on these findings we propose that two mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca2+ handling and a direct effect of PSEN1 sequence variants on EC-coupling protein function. PMID:20194882
Trehalose prevents aggregation of exosomes and cryodamage.
Bosch, Steffi; de Beaurepaire, Laurence; Allard, Marie; Mosser, Mathilde; Heichette, Claire; Chrétien, Denis; Jegou, Dominique; Bach, Jean-Marie
2016-11-08
Exosomes are important mediators in intercellular communication. Released by many cell types, they transport proteins, lipids, and nucleic acids to distant recipient cells and contribute to important physiopathological processes. Standard current exosome isolation methods based on differential centrifugation protocols tend to induce aggregation of particles in highly concentrated suspensions and freezing of exosomes can induce damage and inconsistent biological activity. Trehalose is a natural, non-toxic sugar widely used as a protein stabilizer and cryoprotectant by the food and drug industry. Here we report that addition of 25 mM trehalose to pancreatic beta-cell exosome-like vesicle isolation and storage buffer narrows the particle size distribution and increases the number of individual particles per microgram of protein. Repeated freeze-thaw cycles induce an increase in particle concentration and in the width of the size distribution for exosome-like vesicles stored in PBS, but not in PBS 25 mM trehalose. No signs of lysis or incomplete vesicles were observed by cryo-electron tomography in PBS and trehalose samples. In macrophage immune assays, beta-cell extracellular vesicles in trehalose show consistently higher TNF-alpha cytokine secretion stimulation indexes suggesting improved preservation of biological activity. The addition of trehalose might be an attractive means to standardize experiments in the field of exosome research and downstream applications.
Sheriff, Lozan; Alanazi, Asma; Ward, Lewis S C; Ward, Carl; Munir, Hafsa; Rayes, Julie; Alassiri, Mohammed; Watson, Steve P; Newsome, Phil N; Rainger, G E; Kalia, Neena; Frampton, Jon; McGettrick, Helen M; Nash, Gerard B
2018-02-28
We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018. © 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Wollenberg, Michael S.; Claesen, Jan; Escapa, Isabel F.; Aldridge, Kelly L.; Fischbach, Michael A.
2014-01-01
ABSTRACT The majority of bacteria detected in the nostril microbiota of most healthy adults belong to three genera: Propionibacterium, Corynebacterium, and Staphylococcus. Among these staphylococci is the medically important bacterium Staphylococcus aureus. Almost nothing is known about interspecies interactions among bacteria in the nostrils. We observed that crude extracts of cell-free conditioned medium from Propionibacterium spp. induce S. aureus aggregation in culture. Bioassay-guided fractionation implicated coproporphyrin III (CIII), the most abundant extracellular porphyrin produced by human-associated Propionibacterium spp., as a cause of S. aureus aggregation. This aggregation response depended on the CIII dose and occurred during early stationary-phase growth, and a low pH (~4 to 6) was necessary but was not sufficient for its induction. Additionally, CIII induced plasma-independent S. aureus biofilm development on an abiotic surface in multiple S. aureus strains. In strain UAMS-1, CIII stimulation of biofilm depended on sarA, a key biofilm regulator. This study is one of the first demonstrations of a small-molecule-mediated interaction among medically relevant members of the nostril microbiota and the first description of a role for CIII in bacterial interspecies interactions. Our results indicate that CIII may be an important mediator of S. aureus aggregation and/or biofilm formation in the nostril or other sites inhabited by Propionibacterium spp. and S. aureus. PMID:25053784
Protein aggregation as a cellular response to oxidative stress induced by heme and iron
Vasconcellos, Luiz R. C.; Dutra, Fabianno F.; Siqueira, Mariana S.; Paula-Neto, Heitor A.; Dahan, Jennifer; Kiarely, Ellen; Carneiro, Leticia A. M.; Bozza, Marcelo T.; Travassos, Leonardo H.
2016-01-01
Hemolytic diseases include a variety of conditions with diverse etiologies in which red blood cells are destroyed and large amounts of hemeproteins are released. Heme has been described as a potent proinflammatory molecule that is able to induce multiple innate immune responses, such as those triggered by TLR4 and the NLRP3 inflammasome, as well as necroptosis in macrophages. The mechanisms by which eukaryotic cells respond to the toxic effects induced by heme to maintain homeostasis are not fully understood, however. Here we describe a previously uncharacterized cellular response induced by heme: the formation of p62/SQTM1 aggregates containing ubiquitinated proteins in structures known as aggresome-like induced structures (ALIS). This action is part of a response driven by the transcription factor NRF2 to the excessive generation of reactive oxygen species induced by heme that results in the expression of genes involved in antioxidant responses, including p62/SQTM1. Furthermore, we show that heme degradation by HO-1 is required for ALIS formation, and that the free iron released on heme degradation is necessary and sufficient to induce ALIS. Moreover, ferritin, a key protein in iron metabolism, prevents excessive ALIS formation. Finally, in vivo, hemolysis promotes an increase in ALIS formation in target tissues. Our data unravel a poorly understood aspect of the cellular responses induced by heme that can be explored to better understand the effects of free heme and free iron during hemolytic diseases such as sickle cell disease, dengue fever, malaria, and sepsis. PMID:27821769
Behavior of yeast cells in aqueous suspension affected by pulsed electric field.
El Zakhem, H; Lanoisellé, J-L; Lebovka, N I; Nonus, M; Vorobiev, E
2006-08-15
This work discusses pulsed electric fields (PEF) induced effects in treatment of aqueous suspensions of concentrated yeast cells (S. cerevisiae). The PEF treatment was done using pulses of near-rectangular shape, electric field strength was within E=2-5 kV/cm and the total time of treatment was t(PEF)=10(-4)-0.1 s. The concentration of aqueous yeast suspensions was in the interval of C(Y)=0-22 (wt%), where 1% concentration corresponds to the cellular density of 2x10(8) cells/mL. Triton X-100 was used for studying non-ionic surfactant additive effects. The electric current peak value I was measured during each pulse application, and from these data the electrical conductivity sigma was estimated. The PEF-induced damage results in increase of sigma with t(PEF) increasing and attains its saturation level sigma approximately sigma(max) at long time of PEF treatment. The value of sigma(max) reflects the efficiency of damage. The reduced efficiency of damage at suspension volume concentration higher than phi(Y) approximately 32 vol% is explained by the percolation phenomenon in the randomly packed suspension of near-spherical cells. The higher cytoplasmic ions leakage was observed in presence of surfactant. Experiments were carried out in the static and continuous flow treatment chambers in order to reveal the effects of mixing in PEF-treatment efficiency. A noticeable aggregation of the yeast cells was observed in the static flow chamber during the PEF treatment, while aggregation was not so pronounced in the continuous flow chamber. The nature of the enhanced aggregation under the PEF treatment was revealed by the zeta-potential measurements: these data demonstrate different zeta-potential signs for alive and dead cells. The effect of the electric field strength on the PEF-induced extraction of the intracellular components of S. cerevisiae is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, I-Hua; Shih, Hsin-Chu; Hsieh, Pei-Wen
Anoikis is defined as apoptosis, which is induced by inappropriate cell–matrix interactions. Cancer cells with anoikis resistance tend to undergo metastasis, and this phenomenon has been reported to be associated with integrin and FAK activity. HPW-RX40 is a derivative of 3,4-methylenedioxy-β-nitrostyrene, which is known to prevent platelet aggregation by inhibition of integrin. In the present study, we investigated the effect of HPW-RX40 on an anoikis-resistant human breast cancer cell line MDA-MB-231. HPW-RX40 inhibited cell aggregation and induced cell death in suspending MDA-MB-231 cells, but had only little effect on the monolayer growth of adherent cells. Analysis of caspase activation andmore » poly (ADP-ribose) polymerase (PARP) cleavage confirmed anoikis in HPW-RX40-treated suspending cancer cells. HPW-RX40 also affected the Bcl-2 family proteins in detached cancer cells. Furthermore, HPW-RX40 inhibited detachment-induced activation of FAK and the downstream phosphorylation of Src and paxillin, but did not affect this pathway in adherent cancer cells. We also found that the expression and activation of β1 integrin in MDA-MB-231 cells were reduced by HPW-RX40. The combination of HPW-RX40 with an EGFR inhibitor led to enhanced anoikis and inhibition of the FAK pathway in breast cancer cells. Taken together, our results suggest that HPW-RX40 restores the anoikis sensitivity in the metastatic breast cancer cells by inhibiting integrin and subsequent FAK activation, and reveal a potential strategy for prevention of tumor metastasis. - Highlights: • The β-nitrostyrene derivative, HPW-RX40, induces anoikis in human breast cancer cells. • HPW-RX40 inhibits the integrin/FAK signaling pathway. • The combination of HPW-RX40 with an EGFR inhibitor leads to enhanced anoikis. • HPW-RX40 may have a potential to prevent the spread of metastatic breast cancer.« less
Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis
NASA Astrophysics Data System (ADS)
Sokolov, A. V.; Aseychev, A. V.; Kostevich, V. A.; Gusev, A. A.; Gusev, S. A.; Vlasova, I. I.
2011-04-01
Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.
Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong-Ju; He, Wen-Qi; Chen, Ling
Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however,more » were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.« less
NASA Astrophysics Data System (ADS)
Jones, Emmalee M.
A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped clarify the role of the microtubule binding domain in anionic lipid affinity and demonstrated even "hyperphosphorylation" did not prevent interaction with anionic membranes. Additional studies investigated more complex membrane models to increase physiological relevance. These insights revealed structural changes in tau protein and lipid membranes after interaction. We observed tau's affinity for interfaces, and aggregation and compaction once tau partitions to interfaces. We observed the beginnings of beta-sheet formation in tau at anionic lipid membranes. We also examined disruption to the membrane on a molecular scale.
Zhang, Huan-Huan; Yu, Wen-Ying; Li, Lan; Wu, Fang; Chen, Qin; Yang, Yang; Yu, Chen-Huan
2018-04-06
Moslae Herba (MH) is broadly used as an antiviral, antipyretic and anticoagulant drug which effectively treats respiratory diseases including cough, asthma, throat, cold and flu. The excessive inflammation of the lungs is the hallmark of severe influenza A virus (IAV) infection, while platelet aggregation and its subsequent microvascular thrombosis can exacerbate IAV-induced lung injury. Thus, inhibition of platelet aggregation can be a potential target for IAV treatment. Previous studies focus on the flavonoids from MH and their anti-inflammatory activities, but the anticoagulant compounds and potential molecular mechanism of MH remains unclear. This study was to isolate and characterize diketopiperazines (DKPs) from MH and to explore the underlying anticoagulant mechanism on IAV infection models. EtOAc sub-extract separated from MH ethanolic extract was subjected to fractionation through column chromatography. The chemical structures of pure compounds were characterized by the spectral analysis. Antiviral activities of DKPs were assayed in IAV-infected Madin-Darby canine kidney (MDCK) cells and mice. Anticoagulant effects of DKPs were investigated on adenosine 5'-diphosphate (ADP)-induced acute pulmonary embolism and IAV-induced lung injury in vivo, as well as the inhibition on platelet activating factor (PAF), arachidonic acid (AA) and ADP-induced platelet aggregation in vitro. The serum levels of thromboxane B 2 (TXB 2 ) and 6-keto-PGF 1α were detected by ELISA. The expressions of key proteins in CD41-mediated PI3K/AKT pathways were determined by western blotting analysis. Six DKPs were, for the first time, isolated from MH and identified as cyclo(Tyr-Leu) (1), cyclo(Phe-Phe) (2), cyclo(Phe-Tyr) (3), cyclo(Ala-Ile) (4), cyclo(Ala-Leu) (5) and Bz-Phe-Phe-OMe (6). Among these DKPs, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe possessed low cytotoxicities and significant inhibition against cytopathic effects induced by IAV (H1N1 and H3N2) replication in MDCK cells. Furthermore, cyclo(Ala-Ile) and Bz-Phe-Phe-OMe significantly alleviated IAV-induced platelet activation and lung inflammation in mice. They could reduce the expression of CD41 and the phosphorylation of PI3K and AKT in PLTs of IAV-infected mice. These results suggested that cyclo(Ala-Ile) and Bz-Phe-Phe-OMe isolated from MH have antiviral and anticoagulant effects against IAV-induced PLT aggregation and lung inflammation via regulating CD41/PI3K/AKT pathway, and could be used as the potential agents for IAV treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
PDGF-A suppresses contact inhibition during directional collective cell migration.
Nagel, Martina; Winklbauer, Rudolf
2018-06-08
The leading edge mesendoderm (LEM) of the Xenopus gastrula moves as an aggregate by collective migration. However, LEM cells on fibronectin in vitro show contact inhibition of locomotion by quickly retracting lamellipodia upon mutual contact. We found that a fibronectin-integrin-syndecan module acts between p21-activated kinase-1 upstream and ephrinB1 downstream to promote the contact-induced collapse of lamellipodia. To function in this module, fibronectin has to be present as puncta on the surface of LEM cells. To overcome contact inhibition in LEM cell aggregates, PDGF-A deposited in the endogenous substratum of LEM migration blocks the fibronectin-integrin-syndecan module at the integrin level. This stabilizes lamellipodia preferentially in the direction of normal LEM movement and supports cell orientation and the directional migration of the coherent LEM cell mass. © 2018. Published by The Company of Biologists Ltd.
Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei; Yao, Guo-Dong; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi
2016-07-01
Gelatin has been considered to exist as intermediate substance of collagen catabolism in tissue remodeling or under inflammatory conditions. We have initiated the study on possible biological functions of gelatin that can exist temporally and locally under the conditions of remodeling and inflammation Materials and methods: To this purpose, we investigated cell proliferation and survival on gelatin-coated dishes and the response to tumor necrosis factor α (TNFα)-induced cytotoxicity in L929 cells. Autophagy level, ATP level, and ROS generation are examined. L929 cells detached from the gelatin-coated dishes and formed multicellular aggregates. TNFα-induced cytotoxicity in L929 cells was inhibited by gelatin-coating culture. The cells on gelatin-coated dishes showed reduced cellular ATP levels and increased adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation, leading to increased ROS generation and autophagy. This study showed that gelatin-coated culture protected L929 cells from TNFα-induced cytotoxicity and suggested for a possible pathophysiological function of gelatin in regulating cellular functions.
Regulation of microtubule-based transport by MAP4
Semenova, Irina; Ikeda, Kazuho; Resaul, Karim; Kraikivski, Pavel; Aguiar, Mike; Gygi, Steven; Zaliapin, Ilya; Cowan, Ann; Rodionov, Vladimir
2014-01-01
Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2–dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2–based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2–dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect. PMID:25143402
ROCK and PRK-2 Mediate the Inhibitory Effect of Y-27632 on Polyglutamine Aggregation
Shao, Jieya; Welch, William J.; Diamond, Marc I.
2009-01-01
Polyglutamine expansion in huntingtin (Htt) and the androgen receptor (AR) causes untreatable neurodegenerative diseases. Y-27632, a therapeutic lead, reduces Htt and AR aggregation in cultured cells, and Htt-induced neurodegeneration in Drosophila. Y-27632 inhibits both Rho-associated kinases ROCK and PRK-2, making its precise intracellular target uncertain. Over-expression of either kinase increases Htt and AR aggregation. Three ROCK inhibitors (Y-27632, H-1077, HA-1152), and a specific ROCK inhibitory peptide reduce polyglutamine protein aggregation, as does knockdown of ROCK or PRK-2 by RNAi. RNAi also indicates that each kinase is required for the inhibitory effects of Y-27632 to manifest fully. These two actin regulatory kinases are thus involved in polyglutamine aggregation, and their simultaneous inhibition may be an important therapeutic goal. PMID:18423405
CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation.
Kim, Hyojung; Ham, Sangwoo; Jo, Minkyung; Lee, Gum Hwa; Lee, Yun-Song; Shin, Joo-Ho; Lee, Yunjong
2017-10-03
Aging is considered the major risk factor for neurodegenerative diseases including Parkinson's disease (PD). Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging. Here, we employed CRISPR-Cas9 technology to instantly remove the telomere to induce aging in a neuroblastoma cell line. Expression of both Cas9 and guide RNA targeting telomere repeats ablated the telomere, leading to retardation of cell proliferation. Instant deletion of telomere in SH-SY5Y cells impaired mitochondrial function with diminished mitochondrial respiration and cell viability. Supporting the pathological relevance of cell aging by CRISPR-Cas9 mediated telomere removal, alterations were observed in the levels of PD-associated proteins including PTEN-induced putative kinase 1, peroxisome proliferator-activated receptor γ coactivator 1-α, nuclear respiratory factor 1, parkin, and aminoacyl tRNA synthetase complex interacting multifunctional protein 2. Significantly, α-synuclein expression in the background of telomere removal led to the enhancement of protein aggregation, suggesting positive feed-forward interaction between aging and PD pathogenesis. Collectively, our results demonstrate that CRISPR-Cas9 can be used to efficiently model cellular aging and PD.
Allosteric Regulation of E-Cadherin Adhesion.
Shashikanth, Nitesh; Petrova, Yuliya I; Park, Seongjin; Chekan, Jillian; Maiden, Stephanie; Spano, Martha; Ha, Taekjip; Gumbiner, Barry M; Leckband, Deborah E
2015-08-28
Cadherins are transmembrane adhesion proteins that maintain intercellular cohesion in all tissues, and their rapid regulation is essential for organized tissue remodeling. Despite some evidence that cadherin adhesion might be allosterically regulated, testing of this has been hindered by the difficulty of quantifying altered E-cadherin binding affinity caused by perturbations outside the ectodomain binding site. Here, measured kinetics of cadherin-mediated intercellular adhesion demonstrated quantitatively that treatment with activating, anti-E-cadherin antibodies or the dephosphorylation of a cytoplasmic binding partner, p120(ctn), increased the homophilic binding affinity of E-cadherin. Results obtained with Colo 205 cells, which express inactive E-cadherin and do not aggregate, demonstrated that four treatments, which induced Colo 205 aggregation and p120(ctn) dephosphorylation, triggered quantitatively similar increases in E-cadherin affinity. Several processes can alter cell aggregation, but these results directly demonstrated the allosteric regulation of cell surface E-cadherin by p120(ctn) dephosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Garza, Kristine M; Soto, Karla F; Murr, Lawrence E
2008-01-01
We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots – along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20–80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations of polycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419
Li, Yan-Ping; Ning, Fang-Xian; Yang, Meng-Bi; Li, Yong-Cheng; Nie, Min-Hua; Ou, Tian-Miao; Tan, Jia-Heng; Huang, Shi-Liang; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu
2011-05-01
A series of 3-substituted (5c-5f, 6c-6f) and 4-substituted (10a-10g) oxoisoaporphine derivatives were synthesized. It was found that all these synthetic compounds had IC50 values at micro or nano molar range for cholinesterase inhibition, and most of them could inhibit amyloid β (Aβ) self-induced aggregation with inhibition ratio from 31.8% to 57.6%. The structure-activity relationship studies revealed that the derivatives with higher selectivity on AChE also showed better inhibition on Aβ self-induced aggregation. The results from cell toxicity study indicated that most quaternary methiodide salts had higher IC50 values than the corresponding non-quaternary compounds. This study provided potentially important information for further development of oxoisoaporphine derivatives as lead compounds for the treatment of Alzheimer's disease. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Li, Yi; Wu, Qiong; Wang, Yujia; Li, Li; Chen, Fei; Shi, Yujun; Bao, Ji; Bu, Hong
2017-01-01
An individualized, tissue-engineered liver suitable for transplanting into a patient with liver disease would be of great benefit to the patient and the healthcare system. The tissue-engineered liver would possess the functions of the original healthy organ. Two fields of study, (i) using decellularized tissue as cell scaffolding, and (ii) stem cell differentiation into functional cells, are coming together to make this concept feasible. The decellularized liver scaffolds (DLS) can interact with cells to promote cell differentiation and signal transduction and three-dimensional (3D) stem cell aggregations can maintain the phenotypes and improve functions of stem cells after differentiation by undergoing cell-cell contact. Although the effects of DLS and stem cell aggregation culture have been intensively studied, few observations about the interaction between the two have been achieved. We established a method that combines the use of decellularized liver scaffolds and aggregation culture of MSCs (3D-DLS) and explored the effects of the two on hepatic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in bioengineered hepatic tissue. A higher percentage of albumin-producing cells, higher levels of liver-specific transcripts, higher urea cycle-related transcripts, and lower levels of stem cell-specific transcripts were observed in the 3D-DLS group when compared to that of hUC-MSCs in monolayer culture (2D), aggregation culture (3D), monolayer on DLS culture (2D-DLS). The gene arrays also indicated that 3D-DLS induced the differentiation from the hUC-MSC phenotype to the PHH phenotype. Liver-specific proteins albumin, CK-18, and glycogen storage were highly positive in the 3D-DLS group. Albumin secretion and ammonia conversion to urea were more effective with a higher cell survival rate in the 3D-DLS group for 14 days. This DLS and aggregation combination culture system provides a novel method to improve hepatic differentiation, maintain phenotype of hepatocyte-like cells and sustain survival for 14 days in vitro. This is a promising strategy to use to construct bioengineered hepatic tissue. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Generation of Healthy Mice from Gene-Corrected Disease-Specific Induced Pluripotent Stem Cells
Rittelmeyer, Ina; Sharma, Amar Deep; Sgodda, Malte; Zaehres, Holm; Bleidißel, Martina; Greber, Boris; Gentile, Luca; Han, Dong Wook; Rudolph, Cornelia; Steinemann, Doris; Schambach, Axel; Ott, Michael; Schöler, Hans R.; Cantz, Tobias
2011-01-01
Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH −/− mice) as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH −/−-induced pluripotent stem cells (iPS cells) as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH −/− iPS cell lines, we aggregated FAH −/−-iPS cells with tetraploid embryos and obtained entirely FAH −/−-iPS cell–derived mice that were viable and exhibited the phenotype of the founding FAH −/− mice. Then, we transduced FAH cDNA into the FAH −/−-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell–derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione). Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR)-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV)-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models. PMID:21765802
Stochastic Noise and Synchronisation during Dictyostelium Aggregation Make cAMP Oscillations Robust
Kim, Jongrae; Heslop-Harrison, Pat; Postlethwaite, Ian; Bates, Declan G
2007-01-01
Stable and robust oscillations in the concentration of adenosine 3′, 5′-cyclic monophosphate (cAMP) are observed during the aggregation phase of starvation-induced development in Dictyostelium discoideum. In this paper we use mathematical modelling together with ideas from robust control theory to identify two factors which appear to make crucial contributions to ensuring the robustness of these oscillations. Firstly, we show that stochastic fluctuations in the molecular interactions play an important role in preserving stable oscillations in the face of variations in the kinetics of the intracellular network. Secondly, we show that synchronisation of the aggregating cells through the diffusion of extracellular cAMP is a key factor in ensuring robustness of the oscillatory waves of cAMP observed in Dictyostelium cell cultures to cell-to-cell variations. A striking and quite general implication of the results is that the robustness analysis of models of oscillating biomolecular networks (circadian clocks, Ca2+ oscillations, etc.) can only be done reliably by using stochastic simulations, even in the case where molecular concentrations are very high. PMID:17997595
Chronic psoriatic skin inflammation leads to increased monocyte adhesion and aggregation
Golden, Jackelyn B.; Groft, Sarah G.; Squeri, Michael V.; Debanne, Sara M.; Ward, Nicole L.; McCormick, Thomas S.; Cooper, Kevin D.
2015-01-01
Psoriasis patients exhibit an increased risk of death by cardiovascular disease (CVD) and have elevated levels of circulating intermediate (CD14++CD16+) monocytes. This elevation could represent evidence of monocyte dysfunction in psoriasis patients at risk of CVD, as increases in circulating CD14++CD16+ monocytes are predictive of myocardial infarction and death. An elevation in the CD14++CD16+ cell population has been previously reported in patients with psoriatic disease, which has been confirmed in the cohort of our human psoriasis patients. CD16 expression was induced in CD14++CD16neg classical monocytes following plastic adhesion, which also elicited enhanced β2 but not β1 integrin surface expression, suggesting increased adhesive capacity. Indeed, we found that psoriasis patients have increased monocyte aggregation among circulating PBMCs which is recapitulated in the KC-Tie2 murine model of psoriasis. Visualization of human monocyte aggregates using imaging cytometry revealed that classical CD14++CD16neg monocytes are the predominant cell type participating in these aggregate pairs. Many of these pairs also included CD16+ monocytes, which could account for apparent elevations of intermediate monocytes. Additionally, intermediate monocytes and monocyte aggregates were the predominant cell type to adhere to TNF-α and IL-17A-stimulated dermal endothelium. Ingenuity Pathway Analysis (IPA) demonstrated that monocyte aggregates have a distinct transcriptional profile from singlet monocytes and monocytes following plastic adhesion, suggesting that circulating monocyte responses to aggregation are not fully accounted for by homotypic adhesion, and that further factors influence their functionality. PMID:26223654
Uemura, Norihito; Yagi, Hisashi; Uemura, Maiko T; Hatanaka, Yusuke; Yamakado, Hodaka; Takahashi, Ryosuke
2018-05-11
Intraneuronal α-synuclein (α-Syn) aggregates known as Lewy bodies (LBs) and the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) are the pathological hallmarks of Parkinson's disease (PD). Braak's hypothesis based on autopsy studies suggests that Lewy pathology initially occurs in the enteric nervous system (ENS) and then travels retrogradely to the dorsal motor nucleus of the vagus nerve (dmX), proceeding from there in a caudo-rostral direction. Recent evidence that α-Syn aggregates propagate between interconnected neurons supports this hypothesis. However, there is no direct evidence demonstrating this transmission from the ENS to the dmX and then to the SNpc. We inoculated α-Syn preformed fibrils (PFFs) or phosphate-buffered saline (PBS) into the mouse gastric wall and analyzed the progression of the pathology. The mice inoculated with α-Syn PFFs, but not with PBS, developed phosphorylated α-Syn (p-α-Syn)-positive LB-like aggregates in the dmX at 45 days postinoculation. This aggregate formation was completely abolished when vagotomy was performed prior to inoculation of α-Syn PFFs, suggesting that the aggregates in the dmX were retrogradely induced via the vagus nerve. Unexpectedly, the number of neurons containing p-α-Syn-positive aggregates in the dmX decreased over time, and no further caudo-rostral propagation beyond the dmX was observed up to 12 months postinoculation. P-α-Syn-positive aggregates were also present in the myenteric plexus at 12 months postinoculation. However, unlike in patients with PD, there was no cell-type specificity in neurons containing those aggregates in this model. These results indicate that α-Syn PFF inoculation into the mouse gastrointestinal tract can induce α-Syn pathology resembling that of very early PD, but other factors are apparently required if further progression of PD pathology is to be replicated in this animal model.
2011-01-01
Background The effects and effectiveness of the chaperone pair GroELS on the yield and quality of recombinant polypeptides produced in Escherichia coli are matter of controversy, as the reported activities of this complex are not always consistent and eventually indicate undesired side effects. The divergence in the reported data could be due, at least partially, to different experimental conditions in independent research approaches. Results We have then selected two structurally different model proteins (namely GFP and E. coli β-galactosidase) and two derived aggregation-prone fusions to explore, in a systematic way, the eventual effects of GroELS co-production on yield, solubility and conformational quality. Host cells were cultured at two alternative temperatures below the threshold at which thermal stress is expected to be triggered, to minimize the involvement of independent stress factors. Conclusions From the analysis of protein yield, solubility and biological activity of the four model proteins produced alone or along the chaperones, we conclude that GroELS impacts on yield and quality of aggregation-prone proteins with intrinsic determinants but not on thermally induced protein aggregation. No effective modifications of protein solubility have been observed, but significant stabilization of small (encapsulable) substrates and moderate chaperone-induced degradation of larger (excluded) polypeptides. These findings indicate that the activities of this chaperone pair in the context of actively producing recombinant bacteria discriminate between intrinsic and thermally-induced protein aggregation, and that the side effects of GroELS overproduction might be determined by substrate size. PMID:21992454
Mandal, Amal Kumar; Sreejith, Sivaramapanicker; He, Tingchao; Maji, Swarup Kumar; Wang, Xiao-Jun; Ong, Shi Li; Joseph, James; Sun, Handong; Zhao, Yanli
2015-05-26
We report an experimental observation of aggregation-induced enhanced luminescence upon three-photon excitation in aggregates formed from a class of unsymmetrical cyanostilbene derivatives. Changing side chains (-CH3, -C6H13, -C7H15O3, and folic acid) attached to the cyanostilbene core leads to instantaneous formation of aggregates with sizes ranging from micrometer to nanometer scale in aqueous conditions. The crystal structure of a derivative with a methyl side chain reveals the planarization in the unsymmetrical cyanostilbene core, causing luminescence from corresponding aggregates upon three-photon excitation. Furthermore, folic acid attached cyanostilbene forms well-dispersed spherical nanoaggregates that show a high three-photon cross-section of 6.0 × 10(-80) cm(6) s(2) photon(-2) and high luminescence quantum yield in water. In order to demonstrate the targeted bioimaging capability of the nanoaggregates, three cell lines (HEK293 healthy cell line, MCF7 cancerous cell line, and HeLa cancerous cell line) were employed for the investigations on the basis of their different folate receptor expression level. Two kinds of nanoaggregates with and without the folic acid targeting ligand were chosen for three-photon bioimaging studies. The cell viability of three types of cells incubated with high concentration of nanoaggregates still remained above 70% after 24 h. It was observed that the nanoaggregates without the folic acid unit could not undergo the endocytosis by both healthy and cancerous cell lines. No obvious endocytosis of folic acid attached nanoaggregates was observed from the HEK293 and MCF7 cell lines having a low expression of the folate receptor. Interestingly, a significant amount of endocytosis and internalization of folic acid attached nanoaggregates was observed from HeLa cells with a high expression of the folate receptor under three-photon excitation, indicating targeted bioimaging of folic acid attached nanoaggregates to the cancer cell line. This study presents a paradigm of using organic nanoaggregates for targeted three-photon bioimaging.
Kuo, Y; Ren, S; Lao, U; Edgar, B A; Wang, T
2013-01-01
A network of heat-shock proteins mediates cellular protein homeostasis, and has a fundamental role in preventing aggregation-associated neurodegenerative diseases. In a Drosophila model of polyglutamine (polyQ) disease, the HSP40 family protein, DNAJ-1, is a superior suppressor of toxicity caused by the aggregation of polyQ containing proteins. Here, we demonstrate that one specific HSP110 protein, 70 kDa heat-shock cognate protein cb (HSC70cb), interacts physically and genetically with DNAJ-1 in vivo, and that HSC70cb is necessary for DNAJ-1 to suppress polyglutamine-induced cell death in Drosophila. Expression of HSC70cb together with DNAJ-1 significantly enhanced the suppressive effects of DNAJ-1 on polyQ-induced neurodegeneration, whereas expression of HSC70cb alone did not suppress neurodegeneration in Drosophila models of either general polyQ disease or Huntington's disease. Furthermore, expression of a human HSP40, DNAJB1, together with a human HSP110, APG-1, protected cells from polyQ-induced neural degeneration in flies, whereas expression of either component alone had little effect. Our data provide a functional link between HSP40 and HSP110 in suppressing the cytotoxicity of aggregation-prone proteins, and suggest that HSP40 and HSP110 function together in protein homeostasis control. PMID:24091676
Sachdev, Rishibha; Kappes-Horn, Karin; Paulsen, Lydia; Duernberger, Yvonne; Pleschka, Catharina; Denner, Philip; Kundu, Bishwajit; Reimann, Jens; Vorberg, Ina
2018-03-15
Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.
Huang, Shengbing; Okamoto, Koichi; Yu, Chunrong; Sinicrope, Frank A
2013-11-22
Autophagy and apoptosis regulate cancer cell viability in response to cytotoxic stress; however, their functional relationship remains unclear. p62/sequestosome 1 is a multifunctional protein and a signaling hub that shuttles ubiquitinated proteins to the lysosome during autophagy. Autophagy inhibition up-regulates p62, and prior data suggest that p62 may mediate apoptosis. Here, we demonstrate that p62 can regulate a caspase-8-dependent apoptosis in response to the BH3 mimetic agent, ABT-263. Up-regulation of p62 was shown to enhance ABT-263-induced caspase-8 activation that was Bax-dependent and resulted from mitochondrial amplification. Dependence upon caspase-8 was confirmed using caspase-8-deficient cells and by caspase-8 siRNA. Ectopic wild-type p62, but not p62 mutants with loss of ability to promote apoptosis, was shown to co-localize with caspase-8 and to promote its self-aggregation in ABT-263-treated cells, shown using a bimolecular fluorescence complementation assay. Endogenous p62 co-localized with caspase-8 in the presence of ABT-263 plus an autophagy inhibitor. Caspase-8 was shown to interact and co-localize with the autophagosome marker, LC3II. Knockdown of p62 attenuated binding between caspase-8 and LC3II, whereas p62 overexpression enhanced the co-localization of caspase-8 aggregates with LC3. LC3 knockdown did not affect interaction between caspase-8 and p62, suggesting that p62 may facilitate caspase-8 translocation to the autophagosomal membrane. A direct activator of caspase-8, i.e., TRAIL, alone or combined with ABT-263, induced caspase-8 aggregation and co-localization with p62 that was associated with a synergistic drug interaction. Together, these results demonstrate that up-regulation of p62 can mediate apoptosis via caspase-8 in the setting of autophagy inhibition.
Huang, Shengbing; Okamoto, Koichi; Yu, Chunrong; Sinicrope, Frank A.
2013-01-01
Autophagy and apoptosis regulate cancer cell viability in response to cytotoxic stress; however, their functional relationship remains unclear. p62/sequestosome 1 is a multifunctional protein and a signaling hub that shuttles ubiquitinated proteins to the lysosome during autophagy. Autophagy inhibition up-regulates p62, and prior data suggest that p62 may mediate apoptosis. Here, we demonstrate that p62 can regulate a caspase-8-dependent apoptosis in response to the BH3 mimetic agent, ABT-263. Up-regulation of p62 was shown to enhance ABT-263-induced caspase-8 activation that was Bax-dependent and resulted from mitochondrial amplification. Dependence upon caspase-8 was confirmed using caspase-8-deficient cells and by caspase-8 siRNA. Ectopic wild-type p62, but not p62 mutants with loss of ability to promote apoptosis, was shown to co-localize with caspase-8 and to promote its self-aggregation in ABT-263-treated cells, shown using a bimolecular fluorescence complementation assay. Endogenous p62 co-localized with caspase-8 in the presence of ABT-263 plus an autophagy inhibitor. Caspase-8 was shown to interact and co-localize with the autophagosome marker, LC3II. Knockdown of p62 attenuated binding between caspase-8 and LC3II, whereas p62 overexpression enhanced the co-localization of caspase-8 aggregates with LC3. LC3 knockdown did not affect interaction between caspase-8 and p62, suggesting that p62 may facilitate caspase-8 translocation to the autophagosomal membrane. A direct activator of caspase-8, i.e., TRAIL, alone or combined with ABT-263, induced caspase-8 aggregation and co-localization with p62 that was associated with a synergistic drug interaction. Together, these results demonstrate that up-regulation of p62 can mediate apoptosis via caspase-8 in the setting of autophagy inhibition. PMID:24121507
Molecular mechanism of tau aggregation induced by anionic and cationic dyes.
Lira-De León, Karla I; García-Gutiérrez, Ponciano; Serratos, Iris N; Palomera-Cárdenas, Marianela; Figueroa-Corona, María Del P; Campos-Peña, Victoria; Meraz-Ríos, Marco A
2013-01-01
Abnormal tau filaments are a hallmark of Alzheimer's disease. Anionic dyes such as Congo Red, Thiazine Red, and Thioflavin S are able to induce tau fibrillization in vitro. SH-SY5Y cells were incubated with each dye for seven days leading to intracellular aggregates of tau protein, with different morphological characteristics. Interestingly, these tau aggregates were not observed when the Methylene Blue dye was added to the cell culture. In order to investigate the molecular mechanisms underlying this phenomenon, we developed a computational model for the interaction of the tau paired helical filament (PHF) core with every dye by docking analysis. The polar/electrostatic and nonpolar contribution to the free binding energy in the tau PHF core-anionic dye interaction was determined. We found that the tau PHF core can generate a positive net charge within the binding site localized at residuesLys311 and Lys340 (numbering according to the longest isoform hTau40). These residues are important for the binding affinity of the negative charges present in the anionic dyes causing an electrostatic environment that stabilizes the complex. Tau PHF core protofibril-Congo Red interaction has a stronger binding affinity compared to Thiazine Red or Thioflavin S. By contrast, the cationic dye Methylene Blue does not bind to nor stabilize the tau PHF core protofibrils. These results characterize the driving forces responsible for the binding of tau to anionic dyes leading to their self-aggregation and suggest that Methylene Blue may act as a destabilizing agent of tau aggregates.
Role of streams in myxobacteria aggregate formation
NASA Astrophysics Data System (ADS)
Kiskowski, Maria A.; Jiang, Yi; Alber, Mark S.
2004-10-01
Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been attributed to attractive chemotaxis, a long range interaction, but there is growing evidence that myxobacteria organization depends on contact-mediated cell-cell communication. We present a discrete stochastic model based on contact-mediated signaling that suggests an explanation for the initialization of early aggregates, aggregation dynamics and final aggregate distribution. Our model qualitatively reproduces the unique structures of myxobacteria aggregates and detailed stages which occur during myxobacteria aggregation: first, aggregates initialize in random positions and cells join aggregates by random walk; second, cells redistribute by moving within transient streams connecting aggregates. Streams play a critical role in final aggregate size distribution by redistributing cells among fewer, larger aggregates. The mechanism by which streams redistribute cells depends on aggregate sizes and is enhanced by noise. Our model predicts that with increased internal noise, more streams would form and streams would last longer. Simulation results suggest a series of new experiments.
Huber, Andrew D; Wolf, Jennifer J; Liu, Dandan; Gres, Anna T; Tang, Jing; Boschert, Kelsey N; Puray-Chavez, Maritza N; Pineda, Dallas L; Laughlin, Thomas G; Coonrod, Emily M; Yang, Qiongying; Ji, Juan; Kirby, Karen A; Wang, Zhengqiang; Sarafianos, Stefan G
2018-04-25
Heteroaryldihydropyrimidines (HAPs) are compounds that inhibit hepatitis B virus (HBV) replication by modulating viral capsid assembly. While their biophysical effects on capsid assembly in vitro have been previously studied, the effect of HAP treatment on capsid protein (Cp) in individual HBV-infected cells remains unknown. We report here that the HAP Bay 38-7690 promotes aggregation of recombinant Cp in vitro and causes a time- and dose-dependent decrease of Cp in infected cells, consistent with previously studied HAPs. Interestingly, immunofluorescence analysis showed Cp aggregating in nuclear foci of Bay 38-7690-treated infected cells in a time- and dose-dependent manner. We found these foci to be associated with promyelocytic leukemia (PML) nuclear bodies (NBs), which are structures that affect many cellular functions, including DNA damage response, transcription, apoptosis, and antiviral responses. Cp aggregation is not an artifact of the cell system used, as it is observed in HBV-expressing HepAD38 cells, in HepG2 cells transfected with an HBV-expressing plasmid, and in HepG2-NTCP cells infected with HBV. Use of a Cp overexpression vector without HBV sequences shows that aggregation is independent of viral replication, and use of an HBV-expressing plasmid harboring a HAP resistance mutation in Cp abrogated the aggregation, demonstrating that the effect is due to direct compound-Cp interactions. These studies provide novel insight into the effects of HAP-based treatment at a single-cell level. IMPORTANCE Despite the availability of effective vaccines and treatments, HBV remains a significant global health concern, with more than 240 million individuals chronically infected. Current treatments are highly effective at controlling viral replication and disease progression but rarely cure infections. Therefore, much emphasis is being placed on finding therapeutics with new drug targets, such as viral gene expression, covalently closed circular DNA formation and stability, capsid formation, and host immune modulators, with the ultimate goal of an HBV cure. Understanding the mechanisms by which novel antiviral agents act will be imperative for the development of curative HBV therapies. Copyright © 2018 Huber et al.
Huang, Peng; Chiu, Yi-Ting; Chen, Chongguang; Wang, Yujun; Liu-Chen, Lee-Yuan
2013-01-01
Introduction In contrast to green fluorescent protein and variants (GFPs), red fluorescent proteins (RFPs) have rarely been employed for generation of GPCR fusion proteins, likely because of formation of aggregates and cell toxicity of some RFPs. Among all the RFPs available, tdTomato (tdT), one of the non-aggregating RFP, has the highest brightness score (about 3 times that of eGFP) and unsurpassed photostability. Methods We fused tdT to the KOPR C-terminus. The KOPR-tdT cDNA construct was transfected into Neuro2A mouse neuroblastoma cell line (Neuro2A cells) and rat cortical primary neurons for characterization of pharmacological properties and imaging studies on KOPR trafficking. Results KOPR-tdT retained KOPR properties (cell surface expression, ligand binding, agonist-induced signaling and internalization) when expressed in Neuro2A cells and rat primary cortical neurons. Live cell imaging of KOPR-tdT enables visualization of time course of agonist-induced internalization of KOPR in real time for 60 min, without photobleaching and apparent cell toxicity. U50,488H-induced KOPR internalization occurred as early as 4 min and plateaued at about 30 min. A unique pattern of internalized KOPR in processes of primary neurons was induced by U50,488H. Discussion tdT is an alternative to, or even a better tool than, GFPs for fusing to GPCR for trafficking studies, because tdT has higher brightness and thus better resolution and less photobleaching problems due to reduced laser power used. It also has advantages associated with its longer-wavelength emission including spectral separation from autofluorescence and GFPs, reduced cell toxicity the laser may impose, and greater tissue penetration. These advantages of tdT over GPFs may be critical for live cell imaging studies of GPCRs in vitro and for studying GPCRs in vivo because of their low abundance. PMID:23856011
Specific Triazine Herbicides Induce Amyloid-β42 Production.
Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloϊse; Oumata, Nassima; Galons, Hervé; Lee, Jung Yeol; Chang, Young-Tae; Stϋber, Kathrin; Koch, Philipp; Fontaine, Gaëlle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent
2016-10-18
Proteolytic cleavage of the amyloid-β protein precursor (AβPP) by secretases leads to extracellular release of amyloid-β (Aβ) peptides. Increased production of Aβ42 over Aβ40 and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifying products of the 'human chemical exposome' (HCE) able to induce Aβ42 production may be a key to understanding some of the initiating causes of AD and to generate non-genetic, chemically-induced AD animal models. A cell model was used to screen HCE libraries for Aβ42 inducers. Out of 3500+ compounds, six triazine herbicides were found that induced a β- and γ-secretases-dependent, 2-10 fold increase in the production of extracellular Aβ42 in various cell lines, primary neuronal cells, and neurons differentiated from human-induced pluripotent stem cells (iPSCs). Immunoprecipitation/mass spectrometry analyses show enhanced production of Aβ peptides cleaved at positions 42/43, and reduced production of peptides cleaved at positions 38 and lower, a characteristic of AD. Neurons derived from iPSCs obtained from a familial AD (FAD) patient (AβPP K724N) produced more Aβ42 versus Aβ40 than neurons derived from healthy controls iPSCs (AβPP WT). Triazines enhanced Aβ42 production in both control and AD iPSCs-derived neurons. Triazines also shifted the cleavage pattern of alcadeinα, another γ-secretase substrate, suggesting a direct effect of triazines on γ-secretase activity. In conclusion, several widely used triazines enhance the production of toxic, aggregation prone Aβ42/Aβ43 amyloids, suggesting the possible existence of environmental "Alzheimerogens" which may contribute to the initiation and propagation of the amyloidogenic process in late-onset AD.
Hearst, Scoty M; Shao, Qingmei; Lopez, Mariper; Raucher, Drazen; Vig, Parminder J S
2014-10-01
Spinocerebellar ataxia 1 (SCA1) results from pathologic glutamine expansion in the ataxin-1 protein (ATXN1). This misfolded ATXN1 causes severe Purkinje cell (PC) loss and cerebellar ataxia in both humans and mice with the SCA1 disease. The molecular chaperone heat-shock proteins (HSPs) are known to modulate polyglutamine protein aggregation and are neuroprotective. Since HSPs are induced under stress, we explored the effects of focused laser light induced hyperthermia (HT) on HSP-mediated protection against ATXN1 toxicity. We first tested the effects of HT in a cell culture model and found that HT induced Hsp70 and increased its localization to nuclear inclusions in HeLa cells expressing GFP-ATXN1[82Q]. HT treatment decreased ATXN1 aggregation by making GFP-ATXN1[82Q] inclusions smaller and more numerous compared to non-treated cells. Further, we tested our HT approach in vivo using a transgenic (Tg) mouse model of SCA1. We found that our laser method increased cerebellar temperature from 38 to 40 °C without causing any neuronal damage or inflammatory response. Interestingly, mild cerebellar HT stimulated the production of Hsp70 to a significant level. Furthermore, multiple exposure of focused cerebellar laser light induced HT to heterozygous SCA1 transgenic (Tg) mice significantly suppressed the SCA1 phenotype as compared to sham-treated control animals. Moreover, in treated SCA1 Tg mice, the levels of PC calcium signaling/buffering protein calbindin-D28k markedly increased followed by a reduction in PC neurodegenerative morphology. Taken together, our data suggest that laser light induced HT is a novel non-invasive approach to treat SCA1 and maybe other polyglutamine disorders.
Santa-Maria, Ismael; Varghese, Merina; Ksiȩżak-Reding, Hanna; Dzhun, Anastasiya; Wang, Jun; Pasinetti, Giulio M.
2012-01-01
Abnormal folding of tau protein leads to the generation of paired helical filaments (PHFs) and neurofibrillary tangles, a key neuropathological feature in Alzheimer disease and tauopathies. A specific anatomical pattern of pathological changes developing in the brain suggests that once tau pathology is initiated it propagates between neighboring neuronal cells, possibly spreading along the axonal network. We studied whether PHFs released from degenerating neurons could be taken up by surrounding cells and promote spreading of tau pathology. Neuronal and non-neuronal cells overexpressing green fluorescent protein-tagged tau (GFP-Tau) were treated with isolated fractions of human Alzheimer disease-derived PHFs for 24 h. We found that cells internalized PHFs through an endocytic mechanism and developed intracellular GFP-Tau aggregates with attributes of aggresomes. This was particularly evident by the perinuclear localization of aggregates and redistribution of the vimentin intermediate filament network and retrograde motor protein dynein. Furthermore, the content of Sarkosyl-insoluble tau, a measure of abnormal tau aggregation, increased 3-fold in PHF-treated cells. An exosome-related mechanism did not appear to be involved in the release of GFP-Tau from untreated cells. The evidence that cells can internalize PHFs, leading to formation of aggresome-like bodies, opens new therapeutic avenues to prevent propagation and spreading of tau pathology. PMID:22496370
Rosas, Paola C.; Nagaraja, Ganachari M.; Kaur, Punit; Panossian, Alexander; Wickman, Georg; Garcia, L. Rene; Al-Khamis, Fahd A.; Asea, Alexzander A. A.
2016-01-01
Type 2 diabetes is a growing public health concern and accounts for approximately 90% of all the cases of diabetes. Besides insulin resistance, type 2 diabetes is characterized by a deficit in β-cell mass as a result of misfolded human islet amyloid polypeptide (h-IAPP) which forms toxic aggregates that destroy pancreatic β-cells. Heat shock proteins (HSP) play an important role in combating the unwanted self-association of unfolded proteins. We hypothesized that Hsp72 (HSPA1A) prevents h-IAPP aggregation and toxicity. In this study, we demonstrated that thermal stress significantly up-regulates the intracellular expression of Hsp72, and prevents h-IAPP toxicity against pancreatic β-cells. Moreover, Hsp72 (HSPA1A) overexpression in pancreatic β-cells ameliorates h-IAPP toxicity. To test the hypothesis that Hsp72 (HSPA1A) prevents aggregation and fibril formation, we established a novel C. elegans model that expresses the highly amyloidogenic human pro-IAPP (h-proIAPP) that is implicated in amyloid formation and β-cell toxicity. We demonstrated that h-proIAPP expression in body-wall muscles, pharynx and neurons adversely affects C. elegans development. In addition, we demonstrated that h-proIAPP forms insoluble aggregates and that the co-expression of h-Hsp72 in our h-proIAPP C. elegans model, increases h-proIAPP solubility. Furthermore, treatment of transgenic h-proIAPP C. elegans with ADAPT-232, known to induce the expression and release of Hsp72 (HSPA1A), significantly improved the growth retardation phenotype of transgenic worms. Taken together, this study identifies Hsp72 (HSPA1A) as a potential treatment to prevent β-cell mass decline in type 2 diabetic patients and establishes for the first time a novel in vivo model that can be used to select compounds that attenuate h-proIAPP aggregation and toxicity. PMID:26960140
Rosas, Paola C; Nagaraja, Ganachari M; Kaur, Punit; Panossian, Alexander; Wickman, Georg; Garcia, L Rene; Al-Khamis, Fahd A; Asea, Alexzander A A
2016-01-01
Type 2 diabetes is a growing public health concern and accounts for approximately 90% of all the cases of diabetes. Besides insulin resistance, type 2 diabetes is characterized by a deficit in β-cell mass as a result of misfolded human islet amyloid polypeptide (h-IAPP) which forms toxic aggregates that destroy pancreatic β-cells. Heat shock proteins (HSP) play an important role in combating the unwanted self-association of unfolded proteins. We hypothesized that Hsp72 (HSPA1A) prevents h-IAPP aggregation and toxicity. In this study, we demonstrated that thermal stress significantly up-regulates the intracellular expression of Hsp72, and prevents h-IAPP toxicity against pancreatic β-cells. Moreover, Hsp72 (HSPA1A) overexpression in pancreatic β-cells ameliorates h-IAPP toxicity. To test the hypothesis that Hsp72 (HSPA1A) prevents aggregation and fibril formation, we established a novel C. elegans model that expresses the highly amyloidogenic human pro-IAPP (h-proIAPP) that is implicated in amyloid formation and β-cell toxicity. We demonstrated that h-proIAPP expression in body-wall muscles, pharynx and neurons adversely affects C. elegans development. In addition, we demonstrated that h-proIAPP forms insoluble aggregates and that the co-expression of h-Hsp72 in our h-proIAPP C. elegans model, increases h-proIAPP solubility. Furthermore, treatment of transgenic h-proIAPP C. elegans with ADAPT-232, known to induce the expression and release of Hsp72 (HSPA1A), significantly improved the growth retardation phenotype of transgenic worms. Taken together, this study identifies Hsp72 (HSPA1A) as a potential treatment to prevent β-cell mass decline in type 2 diabetic patients and establishes for the first time a novel in vivo model that can be used to select compounds that attenuate h-proIAPP aggregation and toxicity.
Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R
2007-01-01
Neuroglian, a member of the L1 family of cell adhesion molecules (L1-CAMs), is expressed on surfaces of granular cells and a subset of large plasmatocytes of Manduca sexta that act as foci for hemocyte aggregation during the innate immune response. Neuroglian expressed on surfaces of transfected Sf9 cells induced their homophilic aggregation, with the aggregation being abolished in the presence of recombinant immunoglobulin (Ig) domains of neuroglian. Neuroglian and its Ig domains also can interact with hemocyte-specific integrin (HS integrin) as demonstrated with an enzyme-linked immunoassay and a surface plasmon resonance (SPR) assay. Neuroglian double-stranded (ds) RNA not only depresses expression of neuroglian in hemocytes but also depresses the cell-mediated encapsulation response of these hemocytes to foreign surfaces. After injection of a monoclonal antibody (MAb 3B11) into M. sexta larvae that recognizes the Ig domains of neuroglian, the cell-mediated encapsulation response of hemocytes was likewise inhibited. The Ig domains of neuroglian are involved in both homophilic and heterophilic interactions, and subsets of these six different Ig domains may affect different functions of neuroglian.
Ellagic acid promotes A{beta}42 fibrillization and inhibits A{beta}42-induced neurotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Ying; Tsinghua University School of Medicine, Haidian District, Beijing 100084; Yang, Shi-gao
Smaller, soluble oligomers of {beta}-amyloid (A{beta}) play a critical role in the pathogenesis of Alzheimer's disease (AD). Selective inhibition of A{beta} oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against A{beta} neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on A{beta}42 aggregation and neurotoxicity in vitro. EA promoted A{beta} fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited A{beta} aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in A{beta}42 samples co-incubated with EA in earlier phasesmore » of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic A{beta} aggregates to render them harmless, our MTT results showed that EA could significantly reduce A{beta}42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.« less
Zhang, Yahui; Mao, Huiling; Xu, Weiquan; Shi, Jianbing; Cai, Zhengxu; Tong, Bin; Dong, Yuping
2018-05-29
Organic functional materials, including conjugated molecules and fluorescent dyes, have been rapidly developed in recent years because they can be applied in many fields, such as solar cells, biosensing and bioimaging, and medical adjuvant therapy. Organic functional materials with aggregation-induced emission or aggregation-enhanced emission (AIE/AEE) characteristics have increasingly attracted attention due to their high quantum efficiency in the aggregated or solid state. A large variety of AIE/AEE materials have been designed and applied during the exponential growth of research interest in the abovementioned fields. Multiphenyl-substituted 1,3-butadiene (MPB), as a core structure that includes tetraphenyl-1,3-butadiene, hexaphenyl-1,3-butadiene and their derivatives, show a typical AIE/AEE feature and can be potentially used in all the abovementioned fields. This review summarizes the design principles, the corresponding syntheses, and the structure-property relationships of MPBs, as well as their excellent innovative functionalities and applications. This review will be very useful for scientists conducting chemistry, materials, and biomedical research in AIE/AEE-related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ciciliano, Jordan C.; Sakurai, Yumiko; Myers, David R.; Fay, Meredith E.; Hechler, Beatrice; Meeks, Shannon; Li, Renhao; Dixon, J. Brandon; Lyon, L. Andrew; Gachet, Christian
2015-01-01
The mechanism of action of the widely used in vivo ferric chloride (FeCl3) thrombosis model remains poorly understood; although endothelial cell denudation is historically cited, a recent study refutes this and implicates a role for erythrocytes. Given the complexity of the in vivo environment, an in vitro reductionist approach is required to systematically isolate and analyze the biochemical, mass transfer, and biological phenomena that govern the system. To this end, we designed an “endothelial-ized” microfluidic device to introduce controlled FeCl3 concentrations to the molecular and cellular components of blood and vasculature. FeCl3 induces aggregation of all plasma proteins and blood cells, independent of endothelial cells, by colloidal chemistry principles: initial aggregation is due to binding of negatively charged blood components to positively charged iron, independent of biological receptor/ligand interactions. Full occlusion of the microchannel proceeds by conventional pathways, and can be attenuated by antithrombotic agents and loss-of-function proteins (as in IL4-R/Iba mice). As elevated FeCl3 concentrations overcome protective effects, the overlap between charge-based aggregation and clotting is a function of mass transfer. Our physiologically relevant in vitro system allows us to discern the multifaceted mechanism of FeCl3-induced thrombosis, thereby reconciling literature findings and cautioning researchers in using the FeCl3 model. PMID:25931587
Arnhold, Florian; Gührs, Karl-Heinz
2015-01-01
Mercury (Hg) is a bioaccumulating trace metal that globally circulates the atmosphere and waters in its elemental, inorganic and organic chemical forms. While Hg represents a notorious neurotoxicant, the underlying cellular pathways are insufficiently understood. We identify amyloid protein aggregation in the cell nucleus as a novel pathway of Hg-bio-interactions. By mass spectrometry of purified protein aggregates, a subset of spliceosomal components and nucleoskeletal protein lamin B1 were detected as constituent parts of an Hg-induced nuclear aggregome network. The aggregome network was located by confocal imaging of amyloid-specific antibodies and dyes to amyloid cores within splicing-speckles that additionally recruit components of the ubiquitin-proteasome system. Hg significantly enhances global proteasomal activity in the nucleus, suggesting that formation of amyloid speckles plays a role in maintenance of protein homeostasis. RNAi knock down showed that lamin B1 for its part regulates amyloid speckle formation and thus likewise participates in nuclear protein homeostasis. As the Hg-induced cascade of interactions between the nucleoskeleton and protein homeostasis reduces neuronal signalling, amyloid fibrillation in the cell nucleus is introduced as a feature of Hg-neurotoxicity that opens new avenues of future research. Similar to protein aggregation events in the cytoplasm that are controlled by the cytoskeleton, amyloid fibrillation of nuclear proteins may be driven by the nucleoskeleton. PMID:25699204
Lee, S; Parent, C A; Insall, R; Firtel, R A
1999-09-01
We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced approximately 60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation.
Protein aggregates as depots for the release of biologically active compounds.
Artemova, Natalya V; Kasakov, Alexei S; Bumagina, Zoya M; Lyutova, Elena M; Gurvits, Bella Ya
2008-12-12
Protein misfolding and aggregation is one of the most serious problems in cell biology, molecular medicine, and biotechnology. Misfolded proteins interact with each other or with other proteins in non-productive or damaging ways. However, a new paradigm arises that protein aggregation may be exploited by nature to perform specific functions in different biological contexts. From this consideration, acceleration of stress-induced protein aggregation triggered by any factor resulting in the formation of soluble aggregates may have paradoxical positive consequences. Here, we suggest that amorphous aggregates can act as a source for the release of biologically active proteins after removal of stress conditions. To address this concept, we investigated the kinetics of thermal aggregation in vitro of yeast alcohol dehydrogenase (ADH) as a model substrate in the presence of two amphiphilic peptides: Arg-Phe or Ala-Phe-Lys. Using dynamic light scattering (DLS) and turbidimetry, we have demonstrated that under mild stress conditions the concentration-dependent acceleration of ADH aggregation by these peptides results in formation of large but soluble complexes of proteins prone to refolding.
Comparison of sea turtle thrombocyte aggregation to human platelet aggregation in whole blood.
Soslau, Gerald; Prest, Phillip J; Class, Reiner; George, Robert; Paladino, Frank; Violetta, Gary
2005-11-01
The endangered sea turtles are living "fossils" that afford us an opportunity to study the hemostatic process as it likely existed millions of years ago. There are essentially no data about turtle thrombocyte aggregation prior to our studies. Thrombocytes are nucleated cells that serve the same hemostatic functions as the anucleated mammalian platelet. Sea turtle thrombocytes aggregate in response to collagen and beta-thrombin. Ristocetin induces an agglutination/aggregation response indicating the presence of a von Willebrand-like receptor, GPIb, found in all mammalian platelets. Samples treated with alpha-thrombin plus gamma-thrombin followed by ristocetin results in a rapid, stronger response than ristocetin alone. These responses are inhibited by the RGDS peptide that blocks fibrinogen cross-linking of mammalian platelets via the fibrinogen receptor, GPIIb/IIIa. Three platelet-like proteins, GPIb, GPIIb/IIIa and P-selection are detected in sea turtle thrombocytes by fluorescence activated cell sorting. Turtle thrombocytes do not respond to ADP, epinephrine, serotonin, thromboxane A2 mimetic, U46619, trypsin, or alpha-thrombin and gamma-thrombin added alone. Comparison of hemostasis in sea turtles to other vertebrates could provide a framework for understanding the structure/function and evolution of these pathways and their individual components.
Li, Li; Li, Wei; Jung, Sang-Won; Lee, Yong-Woo; Kim, Yong-Ho
2011-01-01
The protective effects of decursin (D) and decursinol angelate (DA) purified from Angelica gigas Nakai on amyloid β-protein (Aβ)-induced neurotoxicity and the underlying mechanisms were investigated. Aβ plays a major role in the pathogenesis of Alzheimer's disease (AD) by eliciting oxidative stress. It significantly increased cytotoxicity and lipid peroxidation, but decreased glutathione contents and antioxidant enzyme activities. All of these results were markedly reversed by pretreatment with D or DA. Nuclear transcription factor Nrf2, which regulates the expression of antioxidant enzymes, was significantly increased by D or DA pretreatment. Furthermore, D and DA suppressed Aβ aggregation. These results suggest that D and DA increase cellular resistance to Aβ-induced oxidative injury in the rat pheochromocytoma (PC12) cells, presumably through not only the induction of Nrf2 and related antioxidant enzymes, but also the anti-aggregation of Aβ. Thus D and DA have therapeutic potential in treating AD and other oxidative stress-related diseases.
Yang, Hua-Li; Cai, Pei; Liu, Qiao-Hong; Yang, Xue-Lian; Fang, Si-Qiang; Tang, Yan-Wei; Wang, Cheng; Wang, Xiao-Bing; Kong, Ling-Yi
2017-11-01
A series of salicyladimine derivatives were designed, synthesized and evaluated as multi-target-directed ligands for the treatment of Alzheimer's disease (AD). Biological activity results demonstrated that some derivatives possessed significant inhibitory activities against amyloid-β (Aβ) aggregation and human monoamine oxidase B (hMAO-B) as well as remarkable antioxidant effects and low cell toxicity. The optimal compound, 5, exhibited excellent potency for inhibition of self-induced Aβ 1-42 aggregation (91.3±2.1%, 25μM), inhibition of hMAO-B (IC 50 , 1.73±0.39μM), antioxidant effects (43.4±2.6μM of IC 50 by DPPH method, 0.67±0.06 trolox equivalent by ABTS method), metal chelation and BBB penetration. Furthermore, compound 5 had neuroprotective effects against ROS generation, H 2 O 2 -induced apoptosis, 6-OHDA-induced cell injury, and a significant in vitro anti-inflammatory activity. Collectively, these findings highlighted that compound 5 was a potential balanced multifunctional neuroprotective agent for the development of anti-AD drugs. Copyright © 2017. Published by Elsevier Ltd.
Tracking calcification in tissue-engineered bone using synchrotron micro-FTIR and SEM.
Deegan, Anthony J; Cinque, Gianfelice; Wehbe, Katia; Konduru, Sandeep; Yang, Ying
2015-02-01
One novel tissue engineering approach to mimic in vivo bone formation is the use of aggregate or micromass cultures. Various qualitative and quantitative techniques, such as histochemical staining, protein assay kits and RT-PCR, have been used previously on cellular aggregate studies to investigate how these intricate arrangements lead to mature bone tissue. However, these techniques struggle to reveal spatial and temporal distribution of proliferation and mineralization simultaneously. Synchrotron-based Fourier transform infrared microspectroscopy (micro-FTIR) offers a unique insight at the molecular scale by coupling high IR sensitivity to organic matter with the high spatial resolution allowed by diffraction limited SR microbeam. This study is set to investigate the effects of culture duration and aggregate size on the dynamics and spatial distribution of calcification in engineered bone aggregates by a combination of micro-FTIR and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX). A murine bone cell line has been used, and small/large bone aggregates have been induced using different chemically treated culture substrates. Our findings suggest that bone cell aggregate culturing can greatly increase levels of mineralization over short culture periods. The size of the aggregates influences mineralisation rates with larger aggregates mineralizing at a faster rate than their smaller counterparts. The micro-FTIR mapping has demonstrated that mineralization in the larger aggregates initiated from the periphery and spread to the centre, whilst the smaller aggregates have more minerals in the centre at the early stage and deposited more in the periphery after further culturing, implying that aggregate size influences calcification distribution and development over time. SEM/EDX data correlates well with the micro-FTIR results for the total mineral content. Thus, synchrotron-based micro-FTIR can accurately track mineralization process/mechanism in the engineered bone.
Inhibition of p53 Mutant Peptide Aggregation In Vitro by Cationic Osmolyte Acetylcholine Chloride.
Chen, Zhaolin; Kanapathipillai, Mathumai
2017-01-01
Mutations of tumor suppressor protein p53 are present in almost about 50% of all cancers. It has been reported that the p53 mutations cause aggregation and subsequent loss of p53 function, leading to cancer progression. Here in this study we focus on the inhibitory effects of cationic osmolyte molecules acetylcholine chloride, and choline on an aggregation prone 10 amino acid p53 mutant peptide WRPILTIITL, and the corresponding wildtype peptide RRPILTIITL in vitro. The characterization tools used for this study include Thioflavin- T (ThT) induced fluorescence, transmission electron microscopy (TEM), congo red binding, turbidity, dynamic light scattering (DLS), and cell viability assays. The results show that acetylcholine chloride in micromolar concentrations significantly inhibit p53 mutant peptide aggregation in vitro, and could be promising candidate for p53 mutant/ misfolded protein aggregation inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A model for the kinetics of homotypic cellular aggregation under static conditions
NASA Technical Reports Server (NTRS)
Neelamegham, S.; Munn, L. L.; Zygourakis, K.; McIntire, L. V. (Principal Investigator)
1997-01-01
We present the formulation and testing of a mathematical model for the kinetics of homotypic cellular aggregation. The model considers cellular aggregation under no-flow conditions as a two-step process. Individual cells and cell aggregates 1) move on the tissue culture surface and 2) collide with other cells (or aggregates). These collisions lead to the formation of intercellular bonds. The aggregation kinetics are described by a system of coupled, nonlinear ordinary differential equations, and the collision frequency kernel is derived by extending Smoluchowski's colloidal flocculation theory to cell migration and aggregation on a two-dimensional surface. Our results indicate that aggregation rates strongly depend upon the motility of cells and cell aggregates, the frequency of cell-cell collisions, and the strength of intercellular bonds. Model predictions agree well with data from homotypic lymphocyte aggregation experiments using Jurkat cells activated by 33B6, an antibody to the beta 1 integrin. Since cell migration speeds and all the other model parameters can be independently measured, the aggregation model provides a quantitative methodology by which we can accurately evaluate the adhesivity and aggregation behavior of cells.
Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).
Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault
2015-06-01
Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Choi, Sunghyun; Oh, Jae Hoon; Kim, Hyeseon; Nam, So Hee; Shin, Jeehae; Park, Jong-Sang
2015-10-01
Alzheimer's disease (AD) is an age-related disorder that causes a loss of brain function. Hyperphosphorylation of tau and the subsequent formation of intracellular neurofibrillary tangles (NFTs) are implicated in the pathogenesis of AD. Hyperphosphorylated tau accumulates into insoluble paired helical filaments that aggregate into NFTs; therefore, regulation of tau phosphorylation represents an important treatment approach for AD. Heat shock protein 27 (Hsp27) plays a specific role in human neurodegenerative diseases; however, few studies have examined its therapeutic effect. In this study, we induced tau hyperphosphorylation using okadaic acid, which is a protein phosphatase inhibitor, and generated a fusion protein of Hsp27 and the protein transduction domain of the HIV Tat protein (Tat-Hsp27) to enhance the delivery of Hsp27. We treated Tat-Hsp27 to SH-SY5Y neuroblastoma cells for 2 h; the transduction level was proportional to the Tat-hsp27 concentration. Additionally, Tat-Hsp27 reduced the level of hyperphosphorylated tau and protected cells from apoptotic cell death caused by abnormal tau aggregates. These results reveal that Hsp27 represents a valuable protein therapeutic for AD.
Orr, Christopher R.; Montie, Heather L.; Liu, Yuhong; Bolzoni, Elena; Jenkins, Shannon C.; Wilson, Elizabeth M.; Joseph, James D.; McDonnell, Donald P.; Merry, Diane E.
2010-01-01
Polyglutamine expansion within the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA) and is associated with misfolded and aggregated species of the mutant AR. We showed previously that nuclear localization of the mutant AR was necessary but not sufficient for SBMA. Here we show that an interdomain interaction of the AR that is central to its function within the nucleus is required for AR aggregation and toxicity. Ligands that prevent the interaction between the amino-terminal FXXLF motif and carboxyl-terminal AF-2 domain (N/C interaction) prevented toxicity and AR aggregation in an SBMA cell model and rescued primary SBMA motor neurons from 5α-dihydrotestosterone-induced toxicity. Moreover, genetic mutation of the FXXLF motif prevented AR aggregation and 5α-dihydrotestosterone toxicity. Finally, selective androgen receptor modulators, which prevent the N/C interaction, ameliorated AR aggregation and toxicity while maintaining AR function, highlighting a novel therapeutic strategy to prevent the SBMA phenotype while retaining AR transcriptional function. PMID:20826791
Wu, Xiaoli; Kosaraju, Jayasankar; Zhou, Wei; Tam, Kin Yip
2017-03-15
Amyloid β (Aβ) peptide aggregating to form a neurotoxic plaque, leading to cognitive deficits, is believed to be one of the plausible mechanisms for Alzheimer's disease (AD). Inhibiting Aβ aggregation is supposed to offer a neuroprotective effect to ameliorate AD. A previous report has shown that SLM, a carbazole-based fluorophore, binds to Aβ to inhibit the aggregation. However, it is not entirely clear whether the inhibition of Aβ aggregation alone would lead to the anticipated neuroprotective effects. In the current study, we intended to examine the protective action of SLM against Aβ-induced neurotoxicity in vitro and to evaluate if SLM can decrease the cognitive and behavioral deficits observed in triple transgenic AD mouse model (3xTg-AD). In the in vitro study, neurotoxicity induced by Aβ42 in human neuroblastoma (SH-SY5Y) cells was found to be reduced through the treatment with SLM. In the in vivo study, following one month SLM intraperitoneal injection (1, 2, and 4 mg/kg), 3xTg-AD mice were tested on Morris water maze (MWM) and Y-maze for their cognitive ability and sacrificed for biochemical estimations. Results show that SLM treatment improved the learning and memory ability in 3xTg-AD mice in MWM and Y-maze tasks. SLM also mitigated the amyloid burden by decreasing brain Aβ40 and Aβ42 levels and reduced tau phosphorylation, glycogen synthase kinase-3β activity, and neuro-inflammation. From our observations, SLM shows neuroprotection in SH-SY5Y cells against Aβ42 and also in 3xTg-AD mouse model by mitigating the pathological features and behavioral impairments.
Pimentel, Sheila Marie V; Bojo, Zenaida P; Roberto, Amy V D; Lazaro, Jose Enrico H; Mangalindan, Gina C; Florentino, Leila M; Lim-Navarro, Pilar; Tasdemir, Deniz; Ireland, Chris M; Concepcion, Gisela P
2003-01-01
A new microplate assay for Ca(2+)-induced platelet aggregation as detected by Giemsa dye was used to screen marine invertebrate samples from the Philippines for inhibitors of human platelet aggregation. Out of 261 crude methanol extracts of marine sponges and tunicates, 25 inhibited aggregation at 2 mg/ml. Inhibition of agonist-induced aggregation in an aggregometer was used to confirm results of the microplate assay and to determine the specific mode of inhibition of 2 samples. The marine sponge Xestospongia sp. yielded a xestospongin/araguspongine-type molecule that inhibited collagen-induced aggregation by 87% at 2 micro g/ml, and epinephrine-induced aggregation by 78% at 20 micro g/ml, while the marine sponge Aplysina sp. yielded 5,6-dibromotryptamine, which inhibited epinephrine-induced aggregation by 51% at 20 micro g/ml. In this study we have found that the microplate assay is a simple, inexpensive, yet useful preliminary tool to qualitatively screen a large number of marine samples for antiplatelet aggregation activity.
Granat, Fanny; Geffré, Anne; Bourgès-Abella, Nathalie; Braun, Jean-Pierre; Trumel, Catherine
2013-06-01
In veterinary medicine a complete blood cell count (CBC) cannot always be performed within 24 h as usually recommended, particularly for specimens shipped to a reference laboratory. This raises the question of the stability of the variables, especially in ethylenediamine tetra-acetic acid (EDTA) feline blood specimens, known to be prone to in vitro platelet aggregation. Citrate, theophylline, adenosine and dipyridamole (CTAD) has been reported to limit platelet aggregation in feline blood specimens. The aim of this study was to measure the stability of the haematological variables and the platelet aggregation score in EDTA and EDTA plus CTAD (EDCT) feline blood specimens during 48 h of storage at room temperature. Forty-six feline EDTA and EDCT blood specimens were analysed with a Sysmex XT-2000iV analyser, and the platelet count and score of platelet aggregation were estimated immediately and after 24 and 48 h of storage. A significant increase in mean corpuscular volume, haematocrit, reticulocyte and eosinophil counts, and a significant decrease in mean corpuscular haemoglobin concentration and monocyte count were observed. Haemoglobin, mean corpuscular haemoglobin, and red blood cell, white blood cell, neutrophil and lymphocyte counts remained stable. Changes in reticulocyte indexes with time (low fluorescence ratio, medium fluorescence ratio, high fluorescence ratio and immature reticulocyte fraction) were not significant. Changes were generally more pronounced in EDTA than in EDCT. Platelet aggregation decreased markedly in initially highly aggregated EDTA specimens, and increased slightly in initially non- or mildly-aggregated EDTA or EDCT specimens. Platelet counts increased and decreased, or remained stable, respectively. CTAD can reduce storage-induced changes of the haematological variables in feline samples, thus improving the reliability of a CBC and limiting clinical misinterpretations.
Effect of antimicrobial preservatives on partial protein unfolding and aggregation†
Hutchings, Regina L.; Singh, Surinder M.; Cabello-Villegas, Javier; Mallela, Krishna M. G.
2014-01-01
One-third of protein formulations are multi-dose. These require antimicrobial preservatives (APs); however, some APs have been shown to cause protein aggregation. Our previous work on a model protein cytochrome c indicated that partial protein unfolding, rather than complete unfolding, triggers aggregation. Here, we examined the relative strength of five commonly used APs on such unfolding and aggregation, and explored whether stabilizing the aggregation “hot-spot” reduces such aggregation. All APs induced protein aggregation in the order m-cresol > phenol > benzyl alcohol > phenoxyethanol > chlorobutanol. All these enhanced the partial protein unfolding that includes a local region which was predicted to be the aggregation “hot-spot”. The extent of destabilization correlated with the extent of aggregation. Further, we show that stabilizing the “hot-spot” reduces aggregation induced by all five APs. These results indicate that m-cresol causes the most protein aggregation, whereas chlorobutanol causes the least protein aggregation. The same protein region acts as the “hot-spot” for aggregation induced by different APs, implying that developing strategies to prevent protein aggregation induced by one AP will also work for others. PMID:23169345
Synthesis and evaluation of multifunctional ferulic and caffeic acid dimers for Alzheimer's disease.
He, Xi-Xin; Yang, Xiao-Hong; Ou, Rui-Ying; Ouyang, Ying; Wang, Sheng-Nan; Chen, Zi-Wei; Wen, Shi-Jun; Pi, Rong-Biao
2017-03-01
In this study, a series of novel ferulic and caffeic acid dimers was designed and synthesised, and their multifunctional properties against Alzheimer's disease (AD) were evaluated. Results showed that our multifunctional strategy was great supported by enhancing the inhibition of Aβ 1-42 self-induced aggregation. Moreover, 7b also had potent protective effects against glutamate-induced cell death without significant cell toxicity in mouse hippocampal neuronal HT22 cells and 10c effectively scavenged diphenylpicrylhydrazyl free radicals. Collectively, these data strongly encourage further optimisation of 7b as a new hit to develop multifunctional agents for the treatment of AD.
Tracking hypoxic signaling within encapsulated cell aggregates.
Skiles, Matthew L; Sahai, Suchit; Blanchette, James O
2011-12-16
In Diabetes mellitus type 1, autoimmune destruction of the pancreatic β-cells results in loss of insulin production and potentially lethal hyperglycemia. As an alternative treatment option to exogenous insulin injection, transplantation of functional pancreatic tissue has been explored. This approach offers the promise of a more natural, long-term restoration of normoglycemia. Protection of the donor tissue from the host's immune system is required to prevent rejection and encapsulation is a method used to help achieve this aim. Biologically-derived materials, such as alginate and agarose, have been the traditional choice for capsule construction but may induce inflammation or fibrotic overgrowth which can impede nutrient and oxygen transport. Alternatively, synthetic poly(ethylene glycol) (PEG)-based hydrogels are non-degrading, easily functionalized, available at high purity, have controllable pore size, and are extremely biocompatible. As an additional benefit, PEG hydrogels may be formed rapidly in a simple photo-crosslinking reaction that does not require application of non-physiological temperatures. Such a procedure is described here. In the crosslinking reaction, UV degradation of the photoinitiator, 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure 2959), produces free radicals which attack the vinyl carbon-carbon double bonds of dimethacrylated PEG (PEGDM) inducing crosslinking at the chain ends. Crosslinking can be achieved within 10 minutes. PEG hydrogels constructed in such a manner have been shown to favorably support cells, and the low photoinitiator concentration and brief exposure to UV irradiation is not detrimental to viability and function of the encapsulated tissue. While we methacrylate our PEG with the method described below, PEGDM can also be directly purchased from vendors such as Sigma. An inherent consequence of encapsulation is isolation of the cells from a vascular network. Supply of nutrients, notably oxygen, is therefore reduced and limited by diffusion. This reduced oxygen availability may especially impact β-cells whose insulin secretory function is highly dependent on oxygen. Capsule composition and geometry will also impact diffusion rates and lengths for oxygen. Therefore, we also describe a technique for identifying hypoxic cells within our PEG capsules. Infection of the cells with a recombinant adenovirus allows for a fluorescent signal to be produced when intracellular hypoxia-inducible factor (HIF) pathways are activated. As HIFs are the primary regulators of the transcriptional response to hypoxia, they represent an ideal target marker for detection of hypoxic signaling. This approach allows for easy and rapid detection of hypoxic cells. Briefly, the adenovirus has the sequence for a red fluorescent protein (Ds Red DR from Clontech) under the control of a hypoxia-responsive element (HRE) trimer. Stabilization of HIF-1 by low oxygen conditions will drive transcription of the fluorescent protein (Figure 1). Additional details on the construction of this virus have been published previously. The virus is stored in 10% glycerol at -80° C as many 150 μL aliquots in 1.5 mL centrifuge tubes at a concentration of 3.4 x 10(10) pfu/mL. Previous studies in our lab have shown that MIN6 cells encapsulated as aggregates maintain their viability throughout 4 weeks of culture in 20% oxygen. MIN6 aggregates cultured at 2 or 1% oxygen showed both signs of necrotic cells (still about 85-90% viable) by staining with ethidium bromide as well as morphological changes relative to cells in 20% oxygen. The smooth spherical shape of the aggregates displayed at 20% was lost and aggregates appeared more like disorganized groups of cells. While the low oxygen stress does not cause a pronounced drop in viability, it is clearly impacting MIN6 aggregation and function as measured by glucose-stimulated insulin secretion. Western blot analysis of encapsulated cells in 20% and 1% oxygen also showed a significant increase in HIF-1α for cells cultured in the low oxygen conditions which correlates with the expression of the DsRed DR protein.
Polling, Saskia; Mok, Yee-Foong; Ramdzan, Yasmin M.; Turner, Bradley J.; Yerbury, Justin J.; Hill, Andrew F.; Hatters, Danny M.
2014-01-01
Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively “misfolded” state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control. PMID:24425868
Polling, Saskia; Mok, Yee-Foong; Ramdzan, Yasmin M; Turner, Bradley J; Yerbury, Justin J; Hill, Andrew F; Hatters, Danny M
2014-03-07
Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively "misfolded" state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.
NASA Astrophysics Data System (ADS)
Van Liedekerke, P.; Ghysels, P.; Tijskens, E.; Samaey, G.; Smeedts, B.; Roose, D.; Ramon, H.
2010-06-01
This paper is concerned with addressing how plant tissue mechanics is related to the micromechanics of cells. To this end, we propose a mesh-free particle method to simulate the mechanics of both individual plant cells (parenchyma) and cell aggregates in response to external stresses. The model considers two important features in the plant cell: (1) the cell protoplasm, the interior liquid phase inducing hydrodynamic phenomena, and (2) the cell wall material, a viscoelastic solid material that contains the protoplasm. In this particle framework, the cell fluid is modeled by smoothed particle hydrodynamics (SPH), a mesh-free method typically used to address problems with gas and fluid dynamics. In the solid phase (cell wall) on the other hand, the particles are connected by pairwise interactions holding them together and preventing the fluid to penetrate the cell wall. The cell wall hydraulic conductivity (permeability) is built in as well through the SPH formulation. Although this model is also meant to be able to deal with dynamic and even violent situations (leading to cell wall rupture or cell-cell debonding), we have concentrated on quasi-static conditions. The results of single-cell compression simulations show that the conclusions found by analytical models and experiments can be reproduced at least qualitatively. Relaxation tests revealed that plant cells have short relaxation times (1 µs-10 µs) compared to mammalian cells. Simulations performed on cell aggregates indicated an influence of the cellular organization to the tissue response, as was also observed in experiments done on tissues with a similar structure.
Ji, Huili; Long, Chuan; Feng, Chong; Shi, Ningning; Jiang, Yingdi; Zeng, Guomin; Li, Xirui; Wu, Jingjing; Lu, Lin; Lu, Shengsheng; Pan, Dengke
2017-05-01
Blastocyst complementation is an important technique for generating chimeric organs in organ-deficient pigs, which holds great promise for solving the problem of a shortage of organs for human transplantation procedures. Porcine chimeras have been generated using embryonic germ cells, embryonic stem cells, and induced pluripotent stem cells; however, there are no authentic pluripotent stem cells for pigs. In previous studies, blastomeres from 4- to 8-cell-stage parthenogenetic embryos were able to generate chimeric fetuses efficiently, but the resulting fetuses did not produce live-born young. Here, we used early-stage embryos from somatic cell nuclear transfer (SCNT) to generate chimeric piglets by the aggregation method. Then, the distribution of chimerism in various tissues and organs was observed through the expression of enhanced green fluorescent protein (EGFP). Initially, we determined whether 4- to 8- or 8- to 16-cell-stage embryos were more suitable to generate chimeric piglets. Chimeras were produced by aggregating two EGFP-tagged Wuzhishan minipig (WZSP) SCNT embryos and two Bama minipig (BMP) SCNT embryos. The chimeric piglets were identified by coat color and microsatellite and swine leukocyte antigen analyses. Moreover, the distribution of chimerism in various tissues and organs of the piglets was evaluated by EGFP expression. We found that more aggregated embryos were produced using 4- to 8-cell-stage embryos (157/657, 23.9%) than 8- to 16-cell-stage embryos (100/499, 20.0%). Thus, 4- to 8-cell-stage embryos were used for the generation of chimeras. The rate of blastocysts development after aggregating WZSP with BMP embryos was 50.6%. Transfer of 391 blastocysts developed from 4- to 8-cell-stage embryos to five recipients gave rise to 18 piglets, of which two (11.1%) were confirmed to be chimeric by their coat color and microsatellite examination of the skin. One of the chimeric piglets died at 35 days and was subsequently autopsied, whereas the other piglet was maintained for the following observations. The heart and kidneys of the dead piglet showed chimerism, whereas the spinal cord, stomach, pancreas, intestines, muscle, ovary, and brain had no chimerism. To our knowledge, this is the first report of porcine chimeras generated by aggregating 4- to 8-cell-stage blastomeres from SCNT. We detected chimerism only in the skin, heart, and kidneys. Collectively, these results indicate that aggregation using 4- to 8-cell-stage SCNT embryos offers a practical approach for producing chimeric minipigs. Furthermore, it also provides a potential platform for generating interspecific chimeras between pigs and non-human primates for xenotransplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hortsch, M; Wang, Y M; Marikar, Y; Bieber, A J
1995-08-11
Drosophila neuroglian is a transmembrane glycoprotein that has strong structural and sequence homology to the vertebrate L1 gene family of cell adhesion molecules (Bieber, A.J., Snow, P.M., Hortsch, M., Patel, N.H., Jacobs, J.R., Traquina, Z.R., Schilling, J., and Goodman, C.S. (1989) Cell 59, 447-460. Two different neuroglian protein forms that are generated by a differential splicing process are expressed in a tissue-specific fashion by embryonic and larval cells (Hortsch, M., Bieber, A.J., Patel, N.H., and Goodman, C.S. (1990) Neuron 4, 697-709). The two neuroglial polypeptides differ only in their cytoplasmic domains. Both of these neuroglian species, when transfected into the expressed in Drosophila S2 cells, induce the calcium-independent, homophilic aggregation of transformed cells. A third artificial neuroglian protein form was constructed by substituting the neuroglian transmembrane segment and cytoplasmic domains with the glycosyl phosphatidylinositol attachment signal of the Drosophila fasciclin I protein. This cDNA construct generates a glycosyl phosphatidylinositol-anchored form of neuroglian, which retains the ability to induce homophilic cell aggregation when expressed in S2 cells, and was able to interact with both of the two naturally occurring neuroglian polypeptides. These results demonstrate that neuroglian mediates a calcium-independent, homophilic cell adhesion activity and that neither cytoplasmic neuroglian domains nor a direct interaction with cytoskeletal elements is essential for this property.
MacDonald, I J; Morgan, J; Bellnier, D A; Paszkiewicz, G M; Whitaker, J E; Litchfield, D J; Dougherty, T J
1999-11-01
To determine if subcellular localization is important to photodynamic therapy (PDT) efficacy, an in vitro fluorescence microscopy study was conducted with a congeneric series of pyropheophorbide-a derivatives in human pharyngeal squamous cell carcinoma (FaDu) cells and murine radiation-induced fibrosarcoma (RIF) mutant cells. In the FaDu cells the octyl, decyl and dodecyl ether derivatives localized to the lysosomes at extracellular concentrations less than needed to produce a 50% cell kill (LD50). At extracellular concentrations equal or greater than the LD50 the compounds localized mainly to mitochondria. The propyl, pentyl, hexyl and heptyl ether derivatives localized mainly to the mitochondria at all concentrations studied. This suggested that mitochondria are a sensitive PDT target for these derivatives. Similar experiments were performed with two Photofrin-PDT resistant RIF cell lines, one of which was found to be resistant to hexyl ether derivative (C6) mediated-PDT and the other sensitive to C6-PDT relative to the parent line. At extracellular concentrations of C6 below the LD50 of each cell line, the mutants exhibited lysosomal localization. At concentrations above these values the patterns shifted to a mainly mitochondrial pattern. In these cell lines mitochondrial localization also correlated with PDT sensitivity. Localization to mitochondria or lysosomes appeared to be affected by the aggregation state of the congeners, all of which are highly aggregated in aqueous medium. Monomers apparently were the active fraction of these compounds because equalizing the extracellular monomer concentrations produced equivalent intracellular concentrations, photoxicity and localization patterns. Compounds that were mainly aggregates localized to the lysosomes where they were rendered less active. Mitochondria appear to be a sensitive target for pyropheophorbide-a-mediated photodamage, and the degree of aggregation seems to be a determinant of the localization site.
Takahashi, Makoto; Obayashi, Masato; Ishiguro, Taro; Sato, Nozomu; Niimi, Yusuke; Ozaki, Kokoro; Mogushi, Kaoru; Mahmut, Yasen; Tanaka, Hiroshi; Tsuruta, Fuminori; Dolmetsch, Ricardo; Yamada, Mitsunori; Takahashi, Hitoshi; Kato, Takeo; Mori, Osamu; Eishi, Yoshinobu; Mizusawa, Hidehiro; Ishikawa, Kinya
2013-01-01
The human α1A voltage-dependent calcium channel (Cav2.1) is a pore-forming essential subunit embedded in the plasma membrane. Its cytoplasmic carboxyl(C)-tail contains a small poly-glutamine (Q) tract, whose length is normally 4∼19 Q, but when expanded up to 20∼33Q, the tract causes an autosomal-dominant neurodegenerative disorder, spinocerebellar ataxia type 6 (SCA6). A recent study has shown that a 75-kDa C-terminal fragment (CTF) containing the polyQ tract remains soluble in normal brains, but becomes insoluble mainly in the cytoplasm with additional localization to the nuclei of human SCA6 Purkinje cells. However, the mechanism by which the CTF aggregation leads to neurodegeneration is completely elusive, particularly whether the CTF exerts more toxicity in the nucleus or in the cytoplasm. We tagged recombinant (r)CTF with either nuclear-localization or nuclear-export signal, created doxycyclin-inducible rat pheochromocytoma (PC12) cell lines, and found that the CTF is more toxic in the cytoplasm than in the nucleus, the observations being more obvious with Q28 (disease range) than with Q13 (normal-length). Surprisingly, the CTF aggregates co-localized both with cAMP response element-binding protein (CREB) and phosphorylated-CREB (p-CREB) in the cytoplasm, and Western blot analysis showed that the quantity of CREB and p-CREB were both decreased in the nucleus when the rCTF formed aggregates in the cytoplasm. In human brains, polyQ aggregates also co-localized with CREB in the cytoplasm of SCA6 Purkinje cells, but not in other conditions. Collectively, the cytoplasmic Cav2.1-CTF aggregates are sufficient to cause cell death, and one of the pathogenic mechanisms may be abnormal CREB trafficking in the cytoplasm and reduced CREB and p-CREB levels in the nuclei. PMID:23505410
Bhattacharjee, Payel; Bhattacharyya, Debasish
2015-01-01
Fibrinogen and β-amyloid (Aβ) peptide independently form ordered aggregates but in combination, they form disordered structures which are resistant to fibrinolytic enzymes like plasmin and cause severity in cerebral amyloid angiopathy (CAA). A novel enzyme of 31.3 kDa has been isolated from the root of the medicinal plant Aristolochia indica that showed fibrinolytic as well as fibrin-Aβ co-aggregate destabilizing properties. This enzyme is functionally distinct from plasmin. Thrombolytic action of the enzyme was demonstrated in rat model. The potency of the plant enzyme in degrading fibrin and fibrin-plasma protein (Aβ, human serum albumin, lysozyme, transthyretin and fibronectin) co-aggregates was demonstrated by atomic force microscopy, scanning electron microscopy and confocal microscopy that showed better potency of the plant enzyme as compared to plasmin. Moreover, the plant enzyme inhibited localization of the co-aggregate inside SH-SY5Y human neuroblastoma cells and also co-aggregate induced cytotoxicity. Plasmin was inefficient in this respect. In the background of limited options for fragmentation of these co-aggregates, the plant enzyme may appear as a potential proteolytic enzyme. PMID:26545113
Goldsmith, H L; Quinn, T A; Drury, G; Spanos, C; McIntosh, F A; Simon, S I
2001-01-01
During inflammation, neutrophil capture by vascular endothelial cells is dependent on L-selectin and beta(2)-integrin adhesion receptors. One of us (S.I.S.) previously demonstrated that homotypic neutrophil aggregation is analogous to this process in that it is also mediated by these receptors, thus providing a model for studying the dynamics of neutrophil adhesion. In the present work, we set out to confirm the hypothesis that cell-cell adhesion via selectins serves to increase the lifetimes of neutrophil doublets formed through shear-induced two-body collisions. In turn, this would facilitate the engagement of more stable beta(2)-integrin bonds and thus increase the two-body collision efficiency (fraction of collisions resulting in the formation of nonseparating doublets). To this end, suspensions of unstimulated neutrophils were subjected to a uniform shear field in a transparent counter-rotating cone and plate rheoscope, and the formation of doublets and growth of aggregates recorded using high-speed videomicroscopy. The dependence of neutrophil doublet lifetime and two-body collision-capture efficiency on shear rate, G, from 14 to 220 s(-1) was investigated. Bond formation during a two-body collision was indicated by doublets rotating well past the orientation predicted for break-up of doublets of inert spheres. A striking dependence of doublet lifetime on shear rate was observed. At low shear (G = 14 s(-1)), no collision capture occurred, and doublet lifetimes were no different from those of neutrophils pretreated with a blocking antibody to L-selectin, or in Ca(++)-depleted EDTA buffers. At G > or = 66 s(-1), doublet lifetimes increased, with increasing G reaching values twice those for the L-selectin-blocked controls. This correlated with capture efficiencies in excess of 20%, and, at G > or = 110 s(-1), led to the rapid formation of large aggregates, and this in the absence of exogenous chemotactic stimuli. Moreover, the aggregates almost completely broke up when the shear rate was reduced below 66 s(-1). Partial inhibition of aggregate formation was achieved by blocking beta(2)-integrin receptors with antibody. By direct observation of the shear-induced interactions between neutrophils, these data reveal that steady application of a threshold level of shear rate is sufficient to support homotypic neutrophil aggregation. PMID:11566775
Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates
Böckler, Stefan; Chelius, Xenia; Hock, Nadine; Weiss, Matthias
2017-01-01
Partitioning of cell organelles and cytoplasmic components determines the fate of daughter cells upon asymmetric division. We studied the role of mitochondria in this process using budding yeast as a model. Anterograde mitochondrial transport is mediated by the myosin motor, Myo2. A genetic screen revealed an unexpected interaction of MYO2 and genes required for mitochondrial fusion. Genetic analyses, live-cell microscopy, and simulations in silico showed that fused mitochondria become critical for inheritance and transport across the bud neck in myo2 mutants. Similarly, fused mitochondria are essential for retention in the mother when bud-directed transport is enforced. Inheritance of a less than critical mitochondrial quantity causes a severe decline of replicative life span of daughter cells. Myo2-dependent mitochondrial distribution also is critical for the capture of heat stress–induced cytosolic protein aggregates and their retention in the mother cell. Together, these data suggest that coordination of mitochondrial transport, fusion, and fission is critical for asymmetric division and rejuvenation of daughter cells. PMID:28615194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, Aya; Kishi, Kasane; Aiyama, Yoshimi
In mouse testes, spermatogonial stem cells (SSCs), a subpopulation of GFRα1 (GDNF family receptor-α1)-positive spermatogonia, are widely distributed along the convoluted seminiferous tubules. The proliferation and differentiation of the SSCs are regulated in part by local expression of GDNF (glial cell-derived neurotorphic factor), one of major niche factors for SSCs. However, the in vivo dynamics of the GDNF-stimulated GFRα1-positive spermatogonia remains unclear. Here, we developed a simple method for transplanting DiI-labeled and GDNF-soaked beads into the mouse testicular interstitium. By using this method, we examined the dynamics of GFRα1-positive spermatogonia in the tubular walls close to the transplanted GDNF-soaked beads. Themore » bead-derived GDNF signals were able to induce the stratified aggregate formation of GFRα1-positive undifferentiated spermatogonia by day 3 post-transplantation. Each aggregate consisted of tightly compacted A{sub single} and marginal A{sub paired}–A{sub aligned} GFRα1-positive spermatogonia and was surrounded by A{sub aligned} GFRα1-negative spermatogonia at more advanced stages. These data not only provide in vivo evidence for the inductive roles of GDNF in forming a rapid aggregation of GFRα1-positive spermatogonia but also indicate the usefulness of this in vivo assay system of various growth factors for the stem/progenitor spermatogonia in mammalian spermatogenesis. - Highlights: • A novel bead transplantation assay was developed to examine the in vivo effects of growth factors on spermatogonia. • A rapid aggregation of GFRα1-positive spermatogonia was induced by the transplanted GDNF-soaked beads. • Tightly-compacted A{sub single} and marginal A{sub paired}–A{sub aligned} spermatogonia were formed in each GFRα1-positive aggregate.« less
Nhek, Sokha; Clancy, Robert; Lee, Kristen A; Allen, Nicole M; Barrett, Tessa J; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D; Buyon, Jill P; Berger, Jeffrey S
2017-04-01
Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet-endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte-platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β-dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β-neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Platelet activity measurements and subsequent interleukin-1β-dependent activation of the endothelium are increased in subjects with SLE. Platelet-endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. © 2017 American Heart Association, Inc.
Nhek, Sokha; Clancy, Robert; Lee, Kristen A.; Allen, Nicole M.; Barrett, Tessa J.; Marcantoni, Emanuela; Nwaukoni, Janet; Rasmussen, Sara; Rubin, Maya; Newman, Jonathan D.; Buyon, Jill P.; Berger, Jeffrey S.
2017-01-01
Objective Systemic lupus erythematosus (SLE) is associated with the premature development of cardiovascular disease. The platelet–endothelium interaction is important in the pathogenesis of cardiovascular disease. In this study, we investigated the platelet phenotype from patients with SLE and matched controls, and their effect on endothelial cells. Approach and Results Platelet aggregability was measured in 54 SLE subjects off antiplatelet therapy (mean age 40.1±12.8 years; 82% female; 37% white) with age- and sex-matched controls. Platelets were coincubated with human umbilical vein endothelial cells (HUVECs) and changes to gene expression assessed by an RNA array and quantitative reverse transcription polymerase chain reaction. SLE disease activity index ranged from 0 to 22 (mean 5.1±3.9). Compared with controls, patients with SLE had significantly increased monocyte and leukocyte–platelet aggregation and platelet aggregation in response to submaximal agonist stimulation. An agnostic microarray of HUVECs cocultured with SLE platelets found a platelet-mediated effect on endothelial gene pathways involved in cell activation. Sera from SLE versus control subjects significantly increased (1) activation of control platelets; (2) platelet adhesion to HUVECs; (3) platelet-induced HUVEC gene expression of interleukin-8, and intercellular adhesion molecule 1; and (4) proinflammatory gene expression in HUVECs, mediated by interleukin-1β–dependent pathway. Incubation of SLE-activated platelets with an interleukin-1β–neutralizing antibody or HUVECs pretreated with interleukin-1 receptor antibodies attenuated the platelet-mediated activation of endothelial cells. Conclusions Platelet activity measurements and subsequent interleukin-1β–dependent activation of the endothelium are increased in subjects with SLE. Platelet–endothelial interactions may play a role in the pathogenesis of cardiovascular disease in patients with SLE. PMID:28153882
Sakurai, Kentaro; Miyashita, Tomoharu; Okazaki, Mitsuyoshi; Yamaguchi, Takahisa; Ohbatake, Yoshinao; Nakanuma, Shinichi; Okamoto, Koichi; Sakai, Seisho; Kinoshita, Jun; Makino, Isamu; Nakamura, Keishi; Hayashi, Hironori; Oyama, Katsunobu; Tajima, Hidehiro; Takamura, Hiroyuki; Ninomiya, Itasu; Fushida, Sachio; Harada, Kenichi; Harmon, John W; Ohta, Tetsuo
2017-01-01
Severe sepsis is associated with high morbidity and mortality rates. Inflammation and coagulation play pivotal roles in the pathogenesis of sepsis leading to multiple organ failure, especially in the liver. The aim of the present study was to assess the mechanism from sepsis to liver damage in a mouse model. We created a sepsis model by injecting lipopolysaccharide (LPS) intraperitoneally in mice. At 0, 6, 12, and 24 h following intraperitoneal injection of LPS, mice were euthanised and analyzed. Primary antibodies against myeloperoxidase (MPO), hepatic sinusoidal endothelial cells (SE-1), and P-selectin (CD62p) were used. Expression and localization in neutrophil, sinusoidal endothelial, and platelet cells were assessed by immunohistochemistry. Immunohistochemical analyses revealed a positive staining for MPO, most abundantly in neutrophil granulocytes, within the hepatic sinusoids immediately after injection. Neutrophil extracellular trap (NET)-like structures stained for MPO, indicating the presence of neutrophils undergoing NETosis, were confirmed at 6 h after LPS administration. SE-1 staining for liver sinusoidal endothelial cells was significantly reduced at 12 h post-LPS administration through sinusoidal endothelial injury or detachment. Furthermore, the presence of extravasated platelets was confirmed in the space of Disse at 24 h after LPS administration. Blood sample analyses showed that white blood cell counts and platelet counts decreased gradually, while MPO amounts increased until 12 h after LPS administration. We conclude that NET formation and intravasated platelet aggregation are the first steps from sepsis to liver damage, and that extravasated platelet aggregation promoted by NET-facilitated detachment of sinusoidal endothelial cells is the origin of sepsis-induced liver dysfunction. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.
Liu, Shu; Hossinger, André; Hofmann, Julia P; Denner, Philip; Vorberg, Ina M
2016-07-12
Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. Prions are proteinaceous infectious particles that propagate by templating their quaternary structure onto nascent proteins of the same kind. Prions in yeast act as heritable epigenetic elements that can alter the phenotype when transmitted to daughter cells or during mating. Prion activity is conferred by so-called prion domains often enriched in glutamine and asparagine residues. Interestingly, many mammalian proteins also contain domains with compositional similarity to yeast prion domains. We have recently provided a proof-of-principle demonstration that a yeast prion domain also retains its prion activity in mammalian cells. We demonstrate here that cytosolic prions composed of a yeast prion domain are also packaged into extracellular vesicles that transmit the prion phenotype to bystander cells. Thus, proteins with prion-like domains can behave as proteinaceous information molecules that exploit the cellular vesicle trafficking machinery for intercellular long-distance dissemination. Copyright © 2016 Liu et al.
Rybaczek, Dorota; Bodys, Aleksandra; Maszewski, Janusz
2007-09-01
Immunocytochemistry using alpha-phospho-H2AX antibodies shows that hydroxyurea (HU), an inhibitor of ribonucleotide reductase, and aphidicolin (APH), an inhibitor of DNA-polymerases alpha and delta, may promote formation of phospho-H2AX foci in late S/G2-phase cells in root meristems of Vicia faba. Although fluorescent foci spread throughout the whole area of nucleoplasm, large phospho-H2AX aggregates in HU-treated cells allocate mainly in perinucleolar regions. A strong tendency of ATR/ATM-dependent phospho-Chk1S317 kinase to focus in analogous compartments, as opposed to phospho-Chk2T68 and to both effector kinases in APH-treated cells, may suggest that selected elements of the intra-S-phase cell cycle checkpoints share overlapping locations with DNA repair factors known to concentrate in phospho-H2AX aggregates. APH-induced phosphorylation of H2AX exhibits little or no overlap with the areas positioned close to nucleoli. Following G2-M transition of the HU- and APH-pretreated cells, altered chromatin structures are still discernible as large phospho-H2AX foci in the vicinity of chromosomes. Both in HU- and APH-treated roots, immunofluorescence analysis revealed a dominant fraction of small foci and a less frequent population of large phospho-H2AX aggregates, similar to those observed in animal cells exposed to ionizing radiation. The extent of H2AX phosphorylation has been found considerably reduced in root meristem cells treated with HU and caffeine. The frequencies of phospho-H2AX foci observed during mitosis and caffeine-mediated premature chromosome condensation (PCC) suggest that there may be functional links between the checkpoint mechanisms that control genome integrity and those activities which operate throughout the unperturbed mitosis in plants.
Esfandiari, Fereshteh; Ashtiani, Mohammad Kazemi; Sharifi-Tabar, Mehdi; Saber, Maryam; Daemi, Hamed; Ghanian, Mohammad Hossein; Shahverdi, Abdolhossein; Baharvand, Hossein
2017-03-01
Producing meiosis-competent germ cells (GCs) from embryonic stem cells (ESCs) is essential for developing advanced therapies for infertility. Here, a novel approach is presented for generation of GCs from ESCs. In this regard, microparticles (MPs) have been developed from alginate sulfate loaded with bone morphogenetic protein 4 (BMP4). The results here show that BMP4 release from alginate sulfate MPs is significantly retarded by the sulfated groups compared to neat alginate. Then, BMP4-laden MPs are incorporated within the aggregates during differentiation of GCs from ESCs. It is observed that BMP4-laden MPs increase GC differentiation from ESCs at least twofold compared to the conventional soluble delivery method. Interestingly, following meiosis induction, Dazl, an intrinsic factor that enables GCs to enter meiosis, and two essential meiosis genes (Stra8 and Smc1b) are upregulated significantly in MP-induced aggregates compared to aggregates, which are formed by the conventional method. Together, these data show that controlled delivery of BMP4 during ESC differentiation into GC establish meiosis-competent GCs which can serve as an attractive GC source for reproductive medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Verkerke-van Wijk, I; Fukuzawa, M; Devreotes, P N; Schaap, P
2001-06-01
cAMP oscillations, generated by adenylyl cyclase A (ACA), coordinate cell aggregation in Dictyostelium and have also been implicated in organizer function during multicellular development. We used a gene fusion of the ACA promoter with a labile lacZ derivative to study the expression pattern of ACA. During aggregation, most cells expressed ACA, but thereafter expression was lost in all cells except those of the anterior tip. Before aggregation, ACA transcription was strongly upregulated by nanomolar cAMP pulses. Postaggregative transcription was sustained by nanomolar cAMP pulses, but downregulated by a continuous micromolar cAMP stimulus and by the stalk-cell-inducing factor DIF. Earlier work showed that the transcription factor StatA displays tip-specific nuclear translocation and directs tip-specific expression of the nuclear protein CudA, which is essential for culmination. Both StatA and CudA were present in nuclei throughout the entire slug in an aca null mutant that expresses ACA from the constitutive actin15 promoter. This suggests that the tip-specific expression of ACA directs tip-specific nuclear translocation of StatA and tip-specific expression of CudA. Copyright 2001 Academic Press.
Dang, Phuong N; Dwivedi, Neha; Phillips, Lauren M; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D; Murphy, William L; Alsberg, Eben
2016-02-01
Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance: This study demonstrates the regulation of chondrogenesis and osteogenesis with regard to endochondral bone formation in high-density stem cell systems through the controlled presentation of inductive factors from incorporated microparticles. This work lays the foundation for a rapidly implantable tissue engineering system that promotes bone repair via endochondral ossification, a pathway that can delay the need for a functional vascular network and has an intrinsic ability to promote angiogenesis. The modular nature of this system lends well to using different cell types and/or growth factors to induce endochondral bone formation, as well as the production of other tissue types. ©AlphaMed Press.
Biointerface dynamics--Multi scale modeling considerations.
Pajic-Lijakovic, Ivana; Levic, Steva; Nedovic, Viktor; Bugarski, Branko
2015-08-01
Irreversible nature of matrix structural changes around the immobilized cell aggregates caused by cell expansion is considered within the Ca-alginate microbeads. It is related to various effects: (1) cell-bulk surface effects (cell-polymer mechanical interactions) and cell surface-polymer surface effects (cell-polymer electrostatic interactions) at the bio-interface, (2) polymer-bulk volume effects (polymer-polymer mechanical and electrostatic interactions) within the perturbed boundary layers around the cell aggregates, (3) cumulative surface and volume effects within the parts of the microbead, and (4) macroscopic effects within the microbead as a whole based on multi scale modeling approaches. All modeling levels are discussed at two time scales i.e. long time scale (cell growth time) and short time scale (cell rearrangement time). Matrix structural changes results in the resistance stress generation which have the feedback impact on: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances, and (4) cell growth. Herein, an attempt is made to discuss and connect various multi scale modeling approaches on a range of time and space scales which have been proposed in the literature in order to shed further light to this complex course-consequence phenomenon which induces the anomalous nature of energy dissipation during the structural changes of cell aggregates and matrix quantified by the damping coefficients (the orders of the fractional derivatives). Deeper insight into the matrix partial disintegration within the boundary layers is useful for understanding and minimizing the polymer matrix resistance stress generation within the interface and on that base optimizing cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.
Human Cancer and Platelet Interaction, a Potential Therapeutic Target.
Wang, Shike; Li, Zhenyu; Xu, Ren
2018-04-20
Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.
ActA Promotes Listeria monocytogenes Aggregation, Intestinal Colonization and Carriage
Travier, Laetitia; Guadagnini, Stéphanie; Gouin, Edith; Dufour, Alexandre; Chenal-Francisque, Viviane; Cossart, Pascale; Olivo-Marin, Jean-Christophe; Ghigo, Jean-Marc; Disson, Olivier; Lecuit, Marc
2013-01-01
Listeria monocytogenes (Lm) is a ubiquitous bacterium able to survive and thrive within the environment and readily colonizes a wide range of substrates, often as a biofilm. It is also a facultative intracellular pathogen, which actively invades diverse hosts and induces listeriosis. So far, these two complementary facets of Lm biology have been studied independently. Here we demonstrate that the major Lm virulence determinant ActA, a PrfA-regulated gene product enabling actin polymerization and thereby promoting its intracellular motility and cell-to-cell spread, is critical for bacterial aggregation and biofilm formation. We show that ActA mediates Lm aggregation via direct ActA-ActA interactions and that the ActA C-terminal region, which is not involved in actin polymerization, is essential for aggregation in vitro. In mice permissive to orally-acquired listeriosis, ActA-mediated Lm aggregation is not observed in infected tissues but occurs in the gut lumen. Strikingly, ActA-dependent aggregating bacteria exhibit an increased ability to persist within the cecum and colon lumen of mice, and are shed in the feces three order of magnitude more efficiently and for twice as long than bacteria unable to aggregate. In conclusion, this study identifies a novel function for ActA and illustrates that in addition to contributing to its dissemination within the host, ActA plays a key role in Lm persistence within the host and in transmission from the host back to the environment. PMID:23382675
Alvarez, Angeles; Rios-Navarro, Cesar; Blanch-Ruiz, Maria Amparo; Collado-Diaz, Victor; Andujar, Isabel; Martinez-Cuesta, Maria Angeles; Orden, Samuel; Esplugues, Juan V
2017-05-01
The controversy connecting Abacavir (ABC) with cardiovascular disease has been fuelled by the lack of a credible mechanism of action. ABC shares structural similarities with endogenous purines, signalling molecules capable of triggering prothrombotic/proinflammatory programmes. Platelets are leading actors in the process of thrombosis. Our study addresses the effects of ABC on interactions between platelets and other vascular cells, while exploring the adhesion molecules implicated and the potential interference with the purinergic signalling pathway. The effects of ABC on platelet aggregation and platelet-endothelium interactions were evaluated, respectively, with an aggregometer and a flow chamber system that reproduced conditions in vivo. The role of adhesion molecules and purinergic receptors in endothelial and platelet populations was assessed by selective pre-incubation with specific antagonists and antibodies. ABC and carbovir triphosphate (CBT) levels were evaluated by HPLC. The results showed that ABC promoted the adherence of platelets to endothelial cells, a crucial step for the formation of thrombi. This was not a consequence of a direct effect of ABC on platelets, but resulted from activation of the endothelium via purinergic ATP-P2X 7 receptors, which subsequently triggered an interplay between P-selectin and ICAM-1 on endothelial cells with constitutively expressed GPIIb/IIIa and GPIbα on platelets. ABC did not induce platelet activation (P-selectin expression or Ca 2+ mobilization) or aggregation, even at high concentrations. CBT levels in endothelial cells were lower than those required to induce platelet-endothelium interactions. Thus, ABC interference with endothelial purinergic signalling leads to platelet recruitment. This highlights the endothelium as the main cell target of ABC in this interaction, which is in line with previous experimental evidence that ABC induces manifestations of vascular inflammation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lawson, Latevi S.; Chan, James W.; Huser, Thomas
2014-06-01
Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts or linker molecules are used in conjunction with chemically sensitive reporters in order to develop robust environmentally sensitive SERS probes. While salt-induced colloidal nanosphere aggregates have produced robust SERS signals, their variability in aggregate size contributes significantly to poor SERS signal reproducibility, which can complicate their use in in vitro cellular studies. Such systems often also lack reproducibility in spectral measurements between different nanoparticle clusters. Preaggregation of colloids via linkers followed by surface functionalization with reporter molecules results in the linker occupying valuable SERS hotspot volume which could otherwise be utilized by additional reporter molecules. Ideally, both functionalities should be obtained from a single molecule. Here, we report the use of 3,5-dimercaptobenzoic acid, a single multifunctional molecule that creates SERS hotspots via the controlled aggregation of nanoparticles, and also reports pH values. We show that 3,5-dimercaptobenzoic acid bound to Au nanospheres results in an excellent pH nanoprobe, producing very robust, and highly reproducible SERS signals that can report pH across the entire physiological range with excellent pH resolution. To demonstrate the efficacy of our novel pH reporters, these probes were also used to image both the particle and pH distribution in the cytoplasm of human induced pluripotent stem cells (hiPSCs).Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts or linker molecules are used in conjunction with chemically sensitive reporters in order to develop robust environmentally sensitive SERS probes. While salt-induced colloidal nanosphere aggregates have produced robust SERS signals, their variability in aggregate size contributes significantly to poor SERS signal reproducibility, which can complicate their use in in vitro cellular studies. Such systems often also lack reproducibility in spectral measurements between different nanoparticle clusters. Preaggregation of colloids via linkers followed by surface functionalization with reporter molecules results in the linker occupying valuable SERS hotspot volume which could otherwise be utilized by additional reporter molecules. Ideally, both functionalities should be obtained from a single molecule. Here, we report the use of 3,5-dimercaptobenzoic acid, a single multifunctional molecule that creates SERS hotspots via the controlled aggregation of nanoparticles, and also reports pH values. We show that 3,5-dimercaptobenzoic acid bound to Au nanospheres results in an excellent pH nanoprobe, producing very robust, and highly reproducible SERS signals that can report pH across the entire physiological range with excellent pH resolution. To demonstrate the efficacy of our novel pH reporters, these probes were also used to image both the particle and pH distribution in the cytoplasm of human induced pluripotent stem cells (hiPSCs). Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06277e
Hong, Bong Jin; Compton, Owen C.; An, Zhi; Eryzazici, Ibrahim; Nguyen, SonBinh T.
2013-01-01
Aqueous dispersions of graphene oxide are inherently unstable in the presence of electrolytes, which screen the electrostatic surface charge on these nanosheets and induce irreversible aggregation. Two complementary strategies, utilizing either electrostatic or steric stabilization, have been developed to enhance the stability of graphene oxide in electrolyte solutions, allowing it to stay dispersed in cell culture media and serum. The electrostatic stabilization approach entails further oxidation of graphene oxide to low C/O ratio (~1.03) and increases ionic tolerance of these nanosheets. The steric stabilization technique employs an amphiphilic block copolymer that serves as a non-covalently bound surfactant to minimize the aggregate-induced nanosheets-nanosheet interactions. Both strategies can stabilize graphene oxide nanosheets with large dimensions (>300 nm) in biological media, allowing for an enhancement of >250% in the bioconjugation efficiency of streptavidin in comparison to untreated nanosheets. Notably, both strategies allow the stabilized nanosheets to be readily uptake by cells, demonstrating their excellent performance as potential drug delivery vehicles. PMID:22017285
Pickhardt, Marcus; Gazova, Zuzana; von Bergen, Martin; Khlistunova, Inna; Wang, Yipeng; Hascher, Antje; Mandelkow, Eva-Maria; Biernat, Jacek; Mandelkow, Eckhard
2005-02-04
The abnormal aggregation of tau protein into paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease. Aggregation takes place in the cytoplasm and could therefore be cytotoxic for neurons. To find inhibitors of PHF aggregation we screened a library of 200,000 compounds. The hits found in the PHF inhibition assay were also tested for their ability to dissolve preformed PHFs. The results were obtained using a thioflavin S fluorescence assay for the detection and quantification of tau aggregation in solution, a tryptophan fluorescence assay using tryptophan-containing mutants of tau, and confirmed by a pelleting assay and electron microscopy of the products. Here we demonstrate the feasibility of the approach with several compounds from the family of anthraquinones, including emodin, daunorubicin, adriamycin, and others. They were able to inhibit PHF formation with IC50 values of 1-5 microm and to disassemble preformed PHFs at DC50 values of 2-4 microm. The compounds had a similar activity for PHFs made from different tau isoforms and constructs. The compounds did not interfere with the stabilization of microtubules by tau. Tau-inducible neuroblastoma cells showed the formation of tau aggregates and concomitant cytotoxicity, which could be prevented by inhibitors. Thus, small molecule inhibitors could provide a basis for the development of tools for the treatment of tau pathology in AD and other tauopathies.
Kinetics of aggregation in charged nanoparticle solutions driven by different mechanisms
NASA Astrophysics Data System (ADS)
Abbas, S.; Yadav, I.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.
2017-05-01
The structure and kinetics during aggregation of anionic silica nanoparticles as induced through different mechanisms have been studied by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). Three different additives, namely an electrolyte (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) were used to initiate nanoparticle aggregation. Electrolyte induced aggregation can be explained by DLVO interaction, whereas depletion interaction (non-DLVO interaction) is found responsible for nanoparticle aggregation in case of non-ionic surfactant. Unlike these two cases, strong electrostatic attraction between nanoparticle and oppositely charged protein results into protein-mediated nanoparticle aggregation. The electrolyte induced aggregation show quite slow aggregation rate whereas protein mediated as well as surfactant induced aggregation takes place almost instantaneously. The significant differences observed in the kinetics are explained based on range of interactions responsible for the aggregation. In spite of differences in mechanism and kinetics, the nanoparticle clusters are found to have similar fractal morphology (fractal dimension ˜ 2.5) in all the three cases.
Emms, H.; Lewis, G. P.
1986-01-01
The effects of aspirin, carboxyheptylimidazole (CHI) and creatine phosphate/creatine phosphokinase (CP/CPK) on platelet aggregation and thromboxane B2 (TxB2) formation induced by collagen have been examined in vitro. Platelets from two species, man and the rat, have been used. In man, aspirin and CHI abolished TxB2 production but only partially inhibited aggregation. CP/CPK partially inhibited aggregation and TxB2 formation. In the rat, aspirin and CHI abolished TxB2 formation but had no effect on aggregation. CP/CPK completely inhibited aggregation and partially inhibited TxB2 generation. In man, collagen-induced aggregation is largely dependent on ADP and to a lesser extent on arachidonate metabolites whereas, in the rat, ADP alone mediates aggregation induced by this agonist. The results with CP/CPK suggest that TxB2 formation is dependent either on the prior release of platelet ADP or on aggregation itself rather than being responsible for the aggregation response. PMID:3082399
The chaperonin CCT promotes the formation of fibrillar aggregates of γ-tubulin.
Pouchucq, Luis; Lobos-Ruiz, Pablo; Araya, Gissela; Valpuesta, José María; Monasterio, Octavio
2018-04-01
The type II chaperonin CCT is involved in the prevention of the pathogenesis of numerous human misfolding disorders, as it sequesters misfolded proteins, blocks their aggregation and helps them to achieve their native state. In addition, it has been reported that CCT can prevent the toxicity of non-client amyloidogenic proteins by the induction of non-toxic aggregates, leading to new insight in chaperonin function as an aggregate remodeling factor. Here we add experimental evidence to this alternative mechanism by which CCT actively promotes the formation of conformationally different aggregates of γ-tubulin, a non-amyloidogenic CCT client protein, which are mediated by specific CCT-γ-tubulin interactions. The in vitro-induced aggregates were in some cases long fiber polymers, which compete with the amorphous aggregates. Direct injection of unfolded purified γ-tubulin into single-cell zebra fish embryos allowed us to relate this in vitro activity with the in vivo formation of intracellular aggregates. Injection of a CCT-binding deficient γ-tubulin mutant dramatically diminished the size of the intracellular aggregates, increasing the toxicity of the misfolded protein. These results point to CCT having a role in the remodeling of aggregates, constituting one of its many functions in cellular proteostasis. Copyright © 2018. Published by Elsevier B.V.
NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts.
Ciaramelli, Carlotta; Palmioli, Alessandro; De Luigi, Ada; Colombo, Laura; Sala, Gessica; Riva, Chiara; Zoia, Chiara Paola; Salmona, Mario; Airoldi, Cristina
2018-06-30
To identify food and beverages that provide the regular intake of natural compounds capable of interfering with toxic amyloidogenic aggregates, we developed an experimental protocol that combines NMR spectroscopy and atomic force microscopy, in vitro biochemical and cell assays to detect anti-Aβ molecules in natural edible matrices. We applied this approach to investigate the potential anti-amyloidogenic properties of coffee and its molecular constituents. Our data showed that green and roasted coffee extracts and their main components, 5-O-caffeoylquinic acid and melanoidins, can hinder Aβ on-pathway aggregation and toxicity in a human neuroblastoma SH-SY5Y cell line. Coffee extracts and melanoidins also counteract hydrogen peroxide- and rotenone-induced cytotoxicity and modulate some autophagic pathways in the same cell line. Copyright © 2018 Elsevier Ltd. All rights reserved.
Luo, Wen; Wang, Ting; Hong, Chen; Yang, Ya-Chen; Chen, Ying; Cen, Juan; Xie, Song-Qiang; Wang, Chao-Jie
2016-10-21
A new series of 4-dimethylamine flavonoid derivatives were designed and synthesized as potential multifunctional anti-Alzheimer agents. The inhibition of cholinesterase activity, self-induced β-amyloid (Aβ) aggregation, and antioxidant activity by these derivatives was investigated. Most of the compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. A Lineweaver-Burk plot and molecular modeling study showed that these compounds targeted both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. The derivatives showed potent self-induced Aβ aggregation inhibition and peroxyl radical absorbance activity. Moreover, compound 6d significantly protected PC12 neurons against H2O2-induced cell death at low concentrations. Thus, these compounds could become multifunctional agents for further development for the treatment of AD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Synthetic food additive dye "Tartrazine" triggers amorphous aggregation in cationic myoglobin.
Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Khan, Mohd Shahnawaz; Ali, Mohd Sajid; Al-Senaidy, Abdulrahman M; Alsenaidy, Mohammad A; Husain, Fohad Mabood; Al-Lohedan, Hamad A
2017-05-01
Protein aggregation, a characteristic of several neurodegenerative diseases, displays vast conformational diversity from amorphous to amyloid-like aggregates. In this study, we have explored the interaction of tartrazine with myoglobin protein at two different pHs (7.4 and 2.0). We have utilized various spectroscopic techniques (turbidity, Rayleigh light scattering (RLS), intrinsic fluorescence, Congo Red and far-UV CD) along with microscopy techniques i.e. atomic force microscopy (AFM) and transmission electron microscopy (TEM) to characterize the tartrazine-induced aggregation in myoglobin. The results showed that higher concentrations of tartrazine (2.0-10.0mM) induced amorphous aggregation in myoglobin at pH 2.0 via electrostatic interactions. However, tartrazine was not able to induce aggregation in myoglobin at pH 7.4; because of strong electrostatic repulsion between myoglobin and tartrazine at this pH. The tartrazine-induced amorphous aggregation process is kinetically very fast, and aggregation occurred without the formation of a nucleus. These results proposed that the electrostatic interaction is responsible for tartrazine-induced amorphous aggregation. This study may help in the understanding of mechanistic insight of aggregation by tartrazine. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dasgupta, Anushka
Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal/spatial relationship between carbonylation, protein aggregation and cellular apoptosis. Furthermore, the effectiveness of the carbonyl scavenger hydralazine, histidine hydrazide and methoxylamine at preventing cell death identifies protein carbonyls as the toxic species. Experiments using well-characterized apoptosis inhibitors place protein carbonylation downstream of the mitochondrial transition pore opening and upstream of caspase activation. These in vitro studies demonstrate for the first time a causal relationship between carbonylation, protein aggregation and apoptosis of neurons undergoing oxidative damage. This relationship was further strengthened with the experiments carried out in chapter 4, which show that inhibition of protein aggregation with congo red (CR) or 2-hydroxypropyl beta-cyclodextrin (HPCD) significantly reduced neuronal cell death without affecting the levels of oxidized proteins. Interestingly, large, juxta-nuclear aggregates are not formed upon GSH depletion, suggesting that the small protein aggregates are the cytotoxic species. Together, our data suggest that protein carbonylation causes protein aggregation to mediate neuronal apoptosis in vitro and that a similar mechanism might be contributing to neuronal/glial apoptosis in EAE. These studies provide the basis for testing protein carbonylation scavengers and protein aggregation inhibitors for the treatment of inflammatory demyelinating disorders.
Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A.; Alves, Paula M.
2016-01-01
To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. Significance The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. PMID:27025693
Correia, Cláudia; Koshkin, Alexey; Carido, Madalena; Espinha, Nuno; Šarić, Tomo; Lima, Pedro A; Serra, Margarida; Alves, Paula M
2016-05-01
To fully explore the potential of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), efficient methods for storage and shipment of these cells are required. Here, we evaluated the feasibility to cold store monolayers and aggregates of functional CMs obtained from different PSC lines using a fully defined clinical-compatible preservation formulation and investigated the time frame that hPSC-CMs could be subjected to hypothermic storage. We showed that two-dimensional (2D) monolayers of hPSC-CMs can be efficiently stored at 4°C for 3 days without compromising cell viability. However, cell viability decreased when the cold storage interval was extended to 7 days. We demonstrated that hPSC-CMs are more resistant to prolonged hypothermic storage-induced cell injury in three-dimensional aggregates than in 2D monolayers, showing high cell recoveries (>70%) after 7 days of storage. Importantly, hPSC-CMs maintained their typical (ultra)structure, gene and protein expression profile, electrophysiological profiles, and drug responsiveness. The applicability of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in the clinic/industry is highly dependent on the development of efficient methods for worldwide shipment of these cells. This study established effective clinically compatible strategies for cold (4°C) storage of hPSC-CMs cultured as two-dimensional (2D) monolayers and three-dimensional (3D) aggregates. Cell recovery of 2D monolayers of hPSC-CMs was found to be dependent on the time of storage, and 3D cell aggregates were more resistant to prolonged cold storage than 2D monolayers. Of note, it was demonstrated that 7 days of cold storage did not affect hPSC-CM ultrastructure, phenotype, or function. This study provides important insights into the cold preservation of PSC-CMs that could be valuable in improving global commercial distribution of hPSC-CMs. ©AlphaMed Press.
Calcium movements during pigment aggregation in freshwater shrimp chromatophores.
Ribeiro, Márcia; McNamara, John Campbell
2007-02-01
Pigment granule migration within crustacean chromatophores provides an excellent model with which to investigate cytoplasmic movements, given the antagonistic, neurosecretory peptide regulation of granule translocation, and the absence of innervation in these large, brightly colored cells. Red pigment-concentrating hormone (RPCH) induces pigment aggregation in shrimp chromatophores via an increase in intracellular Ca2+; however, how this increase is brought about is not known. To examine the putative Ca2+ movements leading to pigment translocation in red, ovarian chromatophores of the freshwater shrimp, Macrobrachium olfersii, this study manipulates intra- and extracellular Ca2+ employing ER Ca2+-ATPase inhibitors, ryanodine-sensitive, ER Ca2+ channel blockers, and EDTA/EGTA-buffered A23187/Ca2+-containing salines. Our findings reveal that during pigment aggregation, cytosolic Ca2+ apparently increases from an intracellular source, the abundant SER, loaded by the SERCA and released through ryanodine-sensitive receptor/channels, triggered by capacitative calcium influx and/or calcium-induced calcium release mechanisms. Aggregation also depends on external calcium, which may modulate RPCH/receptor coupling. Such calcium-regulated pigment movements form the basis of a complex system of chromatic adaptation, which confers selective advantages like camouflage and protection against ultra-violet radiation to this palaemonid shrimp.
Mirica, Katherine A.; Lockett, Matthew R.; Snyder, Phillip W.; Shapiro, Nathan D.; Mack, Eric T.; Nam, Sarah; Whitesides, George M.
2012-01-01
This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: i) the removal of high-molecular weight impurities through the addition of ammonium sulfate to the crude cell lysate; ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins—for which appropriate oligovalent ligands can be synthesized—and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation. PMID:22188202
Mirica, Katherine A; Lockett, Matthew R; Snyder, Phillip W; Shapiro, Nathan D; Mack, Eric T; Nam, Sarah; Whitesides, George M
2012-02-15
This paper describes a method for the selective precipitation and purification of a monovalent protein (carbonic anhydrase is used as a demonstration) from cellular lysate using ammonium sulfate and oligovalent ligands. The oligovalent ligands induce the formation of protein-ligand aggregates, and at an appropriate concentration of dissolved ammonium sulfate, these complexes precipitate. The purification involves three steps: (i) the removal of high-molecular-weight impurities through the addition of ammonium sulfate to the crude cell lysate; (ii) the introduction of an oligovalent ligand and the selective precipitation of the target protein-ligand aggregates from solution; and (iii) the removal of the oligovalent ligand from the precipitate by dialysis to release the target protein. The increase of mass and volume of the proteins upon aggregate formation reduces their solubility, and results in the selective precipitation of these aggregates. We recovered human carbonic anhydrase, from crude cellular lysate, in 82% yield and 95% purity with a trivalent benzene sulfonamide ligand. This method provides a chromatography-free strategy of purifying monovalent proteins--for which appropriate oligovalent ligands can be synthesized--and combines the selectivity of affinity-based purification with the convenience of salt-induced precipitation.
Mimori, Seisuke; Okuma, Yasunobu; Kaneko, Masayuki; Kawada, Koichi; Hosoi, Toru; Ozawa, Koichiro; Nomura, Yasuyuki; Hamana, Hiroshi
2012-01-01
Endoplasmic reticulum (ER) stress responses play an important role in neurodegenerative diseases. Sodium 4-phenylbutyrate (4-PBA) is a terminal aromatic substituted fatty acid that has been used for the treatment of urea cycle disorders. 4-PBA possesses in vitro chemical chaperone activity and reduces the accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R), which is involved in autosomal recessive juvenile parkinsonism (AR-JP). In this study, we show that terminal aromatic substituted fatty acids, including 3-phenylpropionate (3-PPA), 4-PBA, 5-phenylvaleric acid, and 6-phenylhexanoic acid, prevented the aggregation of lactalbumin and bovine serum albumin. Aggregation inhibition increased relative to the number of carbons in the fatty acids. Moreover, these compounds protected cells against ER stress-induced neuronal cell death. The cytoprotective effect correlated with the in vitro chemical chaperone activity. Similarly, cell viability decreased on treatment with tunicamycin, an ER stress inducer, and was dependent on the number of carbons in the fatty acids. Moreover, the expression of glucose-regulated proteins 94 and 78 (GRP94, 78) decreased according to the number of carbons in the fatty acids. Furthermore, we investigated the effects of these compounds on the accumulation of Pael-R in neuroblastoma cells. 3-PPA and 4-PBA significantly suppressed neuronal cell death caused by ER stress induced by the overexpression of Pael-R. Overexpressed Pael-R accumulated in the ER of cells. With 3-PPA and 4-PBA treatment, the localization of the overexpressed Pael-R shifted away from the ER to the cytoplasmic membrane. These results suggest that terminal aromatic substituted fatty acids are potential candidates for the treatment of neurodegenerative diseases.
Ernst, P B; Erickson, L D; Loo, W M; Scott, K G; Wiznerowicz, E B; Brown, C C; Torres-Velez, F J; Alam, M S; Black, S G; McDuffie, M; Feldman, S H; Wallace, J L; McKnight, G W; Padol, I T; Hunt, R H; Tung, K S
2012-01-01
SAMP1/YitFcs mice serve as a model of Crohn's disease, and we have used them to assess gastritis. Gastritis was compared in SAMP1/YitFcs, AKR, and C57BL/6 mice by histology, immunohistochemistry, and flow cytometry. Gastric acid secretion was measured in ligated stomachs, while anti-parietal cell antibodies were assayed by immunofluorescence and enzyme-linked immunosorbent spot assay. SAMP1/YitFcs mice display a corpus-dominant, chronic gastritis with multifocal aggregates of mononuclear cells consisting of T and B lymphocytes. Relatively few aggregates were observed elsewhere in the stomach. The infiltrates in the oxyntic mucosa were associated with the loss of parietal cell mass. AKR mice, the founder strain of the SAMP1/YitFcs, also have gastritis, although they do not develop ileitis. Genetic studies using SAMP1/YitFcs-C57BL/6 congenic mice showed that the genetic regions regulating ileitis had comparable effects on gastritis. The majority of the cells in the aggregates expressed the T cell marker CD3 or the B cell marker B220. Adoptive transfer of SAMP1/YitFcs CD4(+) T helper cells, with or without B cells, into immunodeficient recipients induced a pangastritis and duodenitis. SAMP1/YitFcs and AKR mice manifest hypochlorhydria and anti-parietal cell antibodies. These data suggest that common genetic factors controlling gastroenteric disease in SAMP1/YitFcs mice regulate distinct pathogenic mechanisms causing inflammation in separate sites within the digestive tract.
Lee, Jung-Jin; Yang, Hyun; Yoo, Yeong-Min; Hong, Seong Su; Lee, Dongho; Lee, Hyun-Jung; Lee, Hak-Ju; Myung, Chang-Seon; Choi, Kyung-Chul; Jeung, Eui-Bae
2012-01-01
Morus alba (white mulberry) has been used in traditional Chinese medicine as an anti-headache, diuretic, expectorant, and anti-diabetic agent. In previous studies, extracts of Morus alba demonstrated favorable biological properties, such as antioxidant activity, suppression of lipoxygenase (LOX)-1, cytotoxicity against cancer cells, and inhibition of the invasion and migration of cancer cells. This study further evaluated the effects of morusinol, a flavonoid derived from Morus alba root bark, on platelet aggregation and thromboxane B(2) (TXB(2) formation in vitro and thrombus formation in vivo. The antiplatelet potential of morusinol was measured using in vitro rabbit platelet aggregation and TXB(2) formation assays. Arterial thrombus formation was investigated using an in vivo ferric chloride (FeCl(3)-induced thrombosis model. Morusinol significantly inhibited collagen- and arachidonic acid-induced platelet aggregation and TXB(2) formation in cultured platelets in a concentration-dependent manner. Thrombus formation was reduced by 32.1, 42.0, and 99.0% for collagen-induced TXB(2) formation, and 8.0, 24.1, and 29.2% for arachadonic acid-induced TXB(2) formation, with 5, 10, and 30 µg/mL morusinol, respectively. Moreover, oral morusinol (20 mg/kg) or aspirin (20 mg/kg) for three days significantly increased the time to occlusion in vivo by 20.3±5.0 or 6.8±2.9 min, respectively, compared with the control (1% CMC, carboxymethyl cellulose). Taken together, these results indicate that morusinol may significantly inhibit arterial thrombosis in vivo due to antiplatelet activity. Thus, morusinol may exert beneficial effects on transient ischemic attacks or stroke via the modulation of platelet activation.
A non-toxic Hsp90 inhibitor protects neurons from Abeta-induced toxicity.
Ansar, Sabah; Burlison, Joseph A; Hadden, M Kyle; Yu, Xiao Ming; Desino, Kelly E; Bean, Jennifer; Neckers, Len; Audus, Ken L; Michaelis, Mary L; Blagg, Brian S J
2007-04-01
The molecular chaperones have been implicated in numerous neurodegenerative disorders in which the defining pathology is misfolded proteins and the accumulation of protein aggregates. In Alzheimer's disease, hyperphosphorylation of tau protein results in its dissociation from microtubules and the formation of pathogenic aggregates. An inverse relationship was demonstrated between Hsp90/Hsp70 levels and aggregated tau, suggesting that Hsp90 inhibitors that upregulate these chaperones could provide neuroprotection. We recently identified a small molecule novobiocin analogue, A4 that induces Hsp90 overexpression at low nanomolar concentrations and sought to test its neuroprotective properties. A4 protected neurons against Abeta-induced toxicity at low nanomolar concentrations that paralleled its ability to upregulate Hsp70 expression. A4 exhibited no cytotoxicity in neuronal cells at the highest concentration tested, 10 microM, thus providing a large therapeutic window for neuroprotection. In addition, A4 was transported across BMECs in vitro, suggesting the compound may permeate the blood-brain barrier in vivo. Taken together, these data establish A4, a C-terminal inhibitor of Hsp90, as a potent lead for the development of a novel class of compounds to treat Alzheimer's disease.
Lee, Susan; Parent, Carole A.; Insall, Robert; Firtel, Richard A.
1999-01-01
We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced ∼60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway involved in integrating chemotaxis and signal relay pathways that are essential for aggregation. PMID:10473630
NASA Astrophysics Data System (ADS)
Kim, Jeongho; Kim, Jae Hyung; Chang, Boksoon; Choi, Eun Ha; Park, Hun-Kuk
2016-11-01
Atmospheric pressure non-thermal plasma has been introduced in various applications such as wound healing, sterilization of infected tissues, blood coagulation, delicate surgeries, and so on. The non-thermal plasma generates reactive oxygen species (ROS), including ozone. Various groups have reported that the produced ROS influence proliferation and differentiation of cells, as well as apoptosis and growth arrest of tumor cells. In this study, we investigated the effects of non-thermal plasma on rheological characteristics of red blood cells (RBC). We experimentally measured the extent of hemolysis, deformability, and aggregation of red blood cells (RBC) with respect to exposure times of non-thermal plasma. RBC morphology was also examined using field-emission scanning electron microscopy. The absorbance of hemoglobin released from the RBCs increased with increasing exposure time of the non-thermal plasma. Values of the elongation index and aggregation index were shown to decrease significantly with increasing plasma exposure times. Therefore, hemorheological properties of RBCs could be utilized to assess the performance of various non-thermal plasmas.
Landucci, E C; Antunes, E; Donato, J L; Faro, R; Hyslop, S; Marangoni, S; Oliveira, B; Cirino, G; de Nucci, G
1995-01-01
1. The effect of purified crotapotin, a non-toxic non-enzymatic chaperon protein normally complexed to a phospholipase A2 (PLA2) in South America rattlesnake venom, was studied in the acute inflammatory response induced by carrageenin (1 mg/paw), compound 48/80 (3 micrograms/paw) and 5-hydroxytryptamine (5-HT) (3 micrograms/paw) in the rat hind-paw. The effects of crotapotin on platelet aggregation, mast cell degranulation and eicosanoid release from guinea-pig isolated lung were also investigated. 2. Subplantar co-injection of crotapotin (1 and 10 micrograms/paw) with carrageenin or injection of crotapotin (10 micrograms/paw) into the contralateral paw significantly inhibited the carrageenin-induced oedema. This inhibition was also observed when crotapotin (10-30 micrograms/paw) was administered either intraperitoneally or orally. Subplantar injection of heated crotapotin (15 min at 60 degrees C) failed to inhibit carrageenin-induced oedema. Subplantar injection of crotapotin (10 micrograms/paw) also significantly inhibited the rat paw oedema induced by compound 48/80, but it did not affect 5-HT-induced oedema. 3. In adrenalectomized animals, subplantar injection of crotapotin markedly inhibited the oedema induced by carrageenin. The inhibitory effect of crotapotin was also observed in rats depleted of histamine and 5-HT stores. 4. Crotapotin (30 micrograms/paw) had no effect on either the histamine release induced by compound 48/80 in vitro or on the platelet aggregation induced by both arachidonic acid (1 nM) and platelet activating factor (1 microM) in human platelet-rich plasma. The platelet aggregation and thromboxane B2 (TXB2) release induced by thrombin (100 mu ml-1) in washed human platelets were also not affected by crotapotin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7537590
Satish Bollimpelli, V; Kondapi, Anand K
2015-12-25
Rotenone induced neuronal toxicity in ventral mesencephalic (VM) dopaminergic (DA) neurons in culture is widely accepted as an important model for the investigation of Parkinson's disease (PD). However, little is known about developmental stage dependent toxic effects of rotenone on VM neurons in vitro. The objective of present study is to investigate the effect of rotenone on developing VM neurons at immature versus mature stages. Primary VM neurons were cultured in the absence of glial cells. Exposure of VM neurons to rotenone for 2 days induced cell death in both immature and mature neurons in a concentration-dependent manner, but to a greater extent in mature neurons. While rotenone-treated mature VM neurons showed α-synuclein aggregation and sensitivity to DA neurons, immature VM neurons exhibited only DA neuronal sensitivity but not α-synuclein aggregation. In addition, on rotenone treatment, enhancement of caspase-3 activity and reactive oxygen species (ROS) production were higher in mature VM neurons than in immature neurons. These results suggest that even though both mature and immature VM neurons are sensitive to rotenone, their manifestations differ from each other, with only mature VM neurons exhibiting Parkinsonian conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
2013-01-01
Background Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. Results Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. Conclusions Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs. PMID:23497261
Han, Yi; Liu, Xing-Mao; Liu, Hong; Li, Shi-Chong; Wu, Ben-Chuan; Ye, Ling-Ling; Wang, Qu-Wei; Chen, Zhao-Lie
2006-11-01
Recombinant Chinese hamster ovary (rCHO) cells capable of producing a prourokinase mutant (mPro-uk) grown as suspended aggregates in stirred vessels were described and characterized. The addition of chitosan to a mixture of DMEM and Ham's F12 (D-MEM/F-12) medium promoted cell aggregation and spheroid formation efficiently. Multicellular aggregates formed immediately after the rCHO cells were inoculated into the chitosan-added medium, and the mean diameter of the cell aggregates reflecting the aggregate size increased with culture time, shifting from 65 to 163 mum after 2 and 9 d of culture in spinner flasks. No significant difference in the metabolism performance of the rCHO cells was observed between suspended aggregates and anchored monolayers. However, the cells cultured as suspended aggregates showed a marked decrease in growth rate as evaluated from specific growth rate (mu). Replacing D-MEM/F-12 medium with CD 293 medium caused compact spherical cell aggregates to dissociate into small irregular aggregates and single cells without apparent effects on cell performance in subcultures. The perfusion culture of the rCHO cells grown as suspended aggregates in a 2-l stirred tank bioreactor for 15 d resulted in a maximum viable cell density of 5.6 x 10(6) cells ml(-1) and an mPro-uk concentration of about 2.6 x 10(3) IU ml(-1), and cell viability was remained at roughly 90% during the entire run.
Live Cell Characterization of DNA Aggregation Delivered through Lipofection
Mieruszynski, Stephen; Briggs, Candida; Digman, Michelle A.; Gratton, Enrico; Jones, Mark R
2015-01-01
DNA trafficking phenomena, such as information on where and to what extent DNA aggregation occurs, have yet to be fully characterised in the live cell. Here we characterise the aggregation of DNA when delivered through lipofection by applying the Number and Brightness (N&B) approach. The N&B analysis demonstrates extensive aggregation throughout the live cell with DNA clusters in the extremity of the cell and peri-nuclear areas. Once within the nucleus aggregation had decreased 3-fold. In addition, we show that increasing serum concentration of cell media results in greater cytoplasmic aggregation. Further, the effects of the DNA fragment size on aggregation was explored, where larger DNA constructs exhibited less aggregation. This study demonstrates the first quantification of DNA aggregation when delivered through lipofection in live cells. In addition, this study has presents a model for alternative uses of this imaging approach, which was originally developed to study protein oligomerization and aggregation. PMID:26013547
Kamennaya, Nina A; Zemla, Marcin; Mahoney, Laura; Chen, Liang; Holman, Elizabeth; Holman, Hoi-Ying; Auer, Manfred; Ajo-Franklin, Caroline M; Jansson, Christer
2018-05-29
The contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22-2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure (pCO 2 ) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellular polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.
Counter effect of sucrose on ethanol-induced aggregation of protein.
Yadav, Jay Kant; Chandani, N; Pande Prajakt, P R; Chauhan, Jyoti Bala
2010-12-01
The present paper is an attempt to study the mechanism of ethanol induced aggregation of chicken egg albumin and to stabilize the protein against ethanol induced aggregation. The protein aggregation was determined by monitoring the light scattering of protein aggregates spectrophotometrically. The protein undergoes certain structural changes in water-ethanol solution and the degree of aggregation was found to be linearly depending upon the concentration of alcohol used. The intrinsic fluorescence study showed a large blue shift in the λ(max) (16 nm) in the presence of 50% ethanol. The ANS fluorescence intensity was found to be gradually increasing with increasing concentration of ethanol. This indicates an increase in the hydrophobic cluster on the protein surface and as a result the hydrophobic interaction is the major driving force for the aggregate formation. Addition of sucrose significantly reduced the ethanol-induced protein aggregation. In presence of 50% sucrose the ethanol the aggregation was reduced to 5%. The study reveals that addition of sucrose brings out changes in the solvent distribution and prevents the structural changes in protein which lead the aggregation.
Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves
Potnis, Neha; Colee, James; Jones, Jeffrey B.
2015-01-01
Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. PMID:26386057
Lin, Hsiang-Kai; Boatz, Jennifer C.; Krabbendam, Inge E.; Kodali, Ravindra; Hou, Zhipeng; Wetzel, Ronald; Dolga, Amalia M.; Poirier, Michelle A.; van der Wel, Patrick C. A.
2017-01-01
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells. PMID:28537272
NASA Astrophysics Data System (ADS)
Lin, Hsiang-Kai; Boatz, Jennifer C.; Krabbendam, Inge E.; Kodali, Ravindra; Hou, Zhipeng; Wetzel, Ronald; Dolga, Amalia M.; Poirier, Michelle A.; van der Wel, Patrick C. A.
2017-05-01
Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells.
Lavanya, V; Anil Kumar, B; Jamal, Shazia; Khan, Md Khurshid Alam; Ahmed, Neesar
2017-02-01
The irreversible thermal unfolding of jacalin, the lectin purified from jackfruit seeds was accompanied by aggregation, where intermolecular interactions among the subunits are favoured over intramolecular interactions. The extent of aggregation increased as a function of temperature, time and protein concentration. The anionic surfactant, sodium dodecyl sulphate (SDS) significantly suppressed the formation of aggregates as observed by turbidity measurements and Rayleigh scattering assay. Moreover, far UV-CD spectra indicate that the protein β sheet transforms into α helical structure, when denatured in the presence of 3 mM SDS. Further, jacalin when heated in the presence of SDS partially retained the hemagglutination activity when jacalin-SDS mixture was diluted to 1:8 factor since 3 mM SDS was found to lyse the red blood cells. Thus, SDS only altered the aggregation behaviour of jacalin by preventing intermolecular hydrogen bonding among the exposed residues but did not completely stabilize the native conformation.
Padró, Teresa; Lugano, Roberta; García-Arguinzonis, Maisa; Badimon, Lina
2012-01-01
Growing human atherosclerotic plaques show a progressive loss of vascular smooth muscle cells (VSMC) becoming soft and vulnerable. Lipid loaded-VSMC show impaired vascular repair function and motility due to changes in cytoskeleton proteins involved in cell-migration. Clinical benefits of statins reducing coronary events have been related to repopulation of vulnerable plaques with VSMC. Here, we investigated whether HMG-CoA reductase inhibition with rosuvastatin can reverse the effects induced by atherogenic concentrations of LDL either in the native (nLDL) form or modified by aggregation (agLDL) on human VSMC motility. Using a model of wound repair, we showed that treatment of human coronary VSMC with rosuvastatin significantly prevented (and reversed) the inhibitory effect of nLDL and agLDL in the repair of the cell depleted areas. In addition, rosuvastatin significantly abolished the agLDL-induced dephosphorylation of myosin regulatory light chain as demonstrated by 2DE-electrophoresis and mass spectrometry. Besides, confocal microscopy showed that rosuvastatin enhances actin-cytoskeleton reorganization during lipid-loaded-VSMC attachment and spreading. The effects of rosuvastatin on actin-cytoskeleton dynamics and cell migration were dependent on ROCK-signalling. Furthermore, rosuvastatin caused a significant increase in RhoA-GTP in the cytosol of VSMC. Taken together, our study demonstrated that inhibition of HMG-CoA reductase restores the migratory capacity and repair function of VSMC that is impaired by native and aggregated LDL. This mechanism may contribute to the stabilization of lipid-rich atherosclerotic plaques afforded by statins. PMID:22719992
Parkin mediates neuroprotection through activation of Notch1 signaling.
Yoon, Ji-Hye; Ann, Eun-Jung; Kim, Mi-Yeon; Ahn, Ji-Seon; Jo, Eun-Hye; Lee, Hye-Jin; Lee, Hye-Won; Lee, Young Chul; Kim, Jeong-Sun; Park, Hee-Sae
2017-02-04
Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson's disease. Inactivation of Parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins and ensuing neurodegeneration. In this study, we show that Parkin positively regulates the Notch1 signaling pathway. Overexpression of Parkin stabilized Notch1-IC protein levels, whereas knockdown of Parkin decreased Notch1-IC protein stability. Notably, overexpression of Parkin disrupted oxidative stress-induced apoptosis in neuronal cells. However, knockdown of Notch1 inhibited Parkin-induced neuronal cell survival. Together, these results indicate that Parkin is a novel regulator of the Notch1 signaling pathway, which promotes neuronal cell survival.
Chen, Xueping; Guan, Teng; Li, Chen; Shang, Huifang; Cui, Liying; Li, Xin-Min; Kong, Jiming
2012-10-12
Ubiquitinated-protein aggregates are implicated in cerebral ischemia/reperfusion injury. The very presence of these ubiquitinated-protein aggregates is abnormal and seems to be disease-related. However, it is not clear what leads to aggregate formation and whether the aggregations represent a reaction to aggregate-mediated neurodegeneration. To study the nitrosative stress-induced protein aggregation in cerebral ischemia/reperfusion injury, we used primary astrocyte cultures as a cell model, and systematically examined their iNOS expression and consequent NO generation following oxygen glucose deprivation and reperfusion. The expression of protein disulfide isomerase (PDI) and copper-zinc superoxide dismutase (SOD1) were also examined, and the biochemical interaction between PDI and SOD1 was determined by immunoprecipitation. In addition, the levels of S-nitrosylated PDI in cultured astrocytes after oxygen glucose deprivation and reperfusion treatment were measured using the biotin-switch assay. The formation of ubiquitinated-protein aggregates was detected by immunoblot and immunofluorescence staining. Our data showed that the up-regulation of iNOS expression after oxygen glucose deprivation and reperfusion treatment led to excessive NO generation. Up-regulation of PDI and SOD1 was also identified in cultured astrocytes following oxygen glucose deprivation and reperfusion, and these two proteins were found to bind to each other. Furthermore, the increased nitrosative stress due to ischemia/reperfusion injury was highly associated with NO-induced S-nitrosylation of PDI, and this S-nitrosylation of PDI was correlated with the formation of ubiquitinated-protein aggregates; the levels of S-nitrosylated PDI increased in parallel with the formation of aggregates. When NO generation was pharmacologically inhibited by iNOS specific inhibitor 1400W, S-nitrosylation of PDI was significantly blocked. In addition, the formation of ubiquitinated-protein aggregates in cultured astrocytes following oxygen glucose deprivation and reperfusion was also suppressed by 1400W. Interestingly, these aggregates were colocalized with SOD1, which was found to co-immunoprecipitate with PDI. NO-mediated S-nitrosylation of PDI may be involved in the formation of the SOD1-linked ubiquitinated-protein aggregates in cerebral ischemia/reperfusion injury.
Wang, Yi-Ting; Lin, Hui-Ching; Zhao, Wei-Zhong; Huang, Hui-Ju; Lo, Yu-Li; Wang, Hsiang-Tsui; Maan-Yuh Lin, Anya
2017-01-01
Clinical studies report significant increases in acrolein (an α,β-unsaturated aldehyde) in the substantia nigra (SN) of patients with Parkinson’s disease (PD). In the present study, acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system was investigated by local infusion of acrolein (15, 50, 150 nmoles/0.5 μl) in the SN of Sprague-Dawley rats. Acrolein-induced neurodegeneration of nigrostriatal dopaminergic system was delineated by reductions in tyrosine hydroxylase (TH) levels, dopamine transporter levels and TH-positive neurons in the infused SN as well as in striatal dopamine content. At the same time, apomorphine-induced turning behavior was evident in rats subjected to a unilateral infusion of acrolein in SN. Acrolein was pro-oxidative by increasing 4-hydroxy-2-nonenal and heme oxygenase-1 levels. Furthermore, acrolein conjugated with proteins at lysine residue and induced α-synuclein aggregation in the infused SN. Acrolein was pro-inflammatory by activating astrocytes and microglia. In addition, acrolein activated caspase 1 in the infused SN, suggesting acrolein-induced inflammasome formation. The neurotoxic mechanisms underlying acrolein-induced neurotoxicity involved programmed cell death, including apoptosis and necroptosis. Compared with well-known Parkinsonian neurotoxins, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and rotenone which do not exist in the SN of PD patients, our in vivo study shows that acrolein acts as a Parkinsonian neurotoxin in the nigrostriatal dopaminergic system of rat brain. PMID:28401906
Dexmedetomidine Increases Tau Phosphorylation Under Normothermic Conditions In Vivo and In Vitro
Whittington, Robert A.; Virág, László; Gratuze, Maud; Petry, Franck R.; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; Khoury, Noura El; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel
2015-01-01
There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have thus been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine, an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to non-transgenic mice, dexmedetomidine induced tau hyperphosphorylation persisting up to 6h in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor (α2-AR) antagonist, blocked dexmedetomidine-induced tau hyperphosphorylation. Furthermore, dexmedetomidine dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze, and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that dexmedetomidine: i) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-AR activation, ii) promotes tau aggregation in a mouse model of tauopathy, and iii) impacts spatial reference memory. PMID:26058840
Tsai, Sheng-Hui; Lai, Hsin-Chih
2015-01-01
Subinhibitory doses of antibiotics have been shown to cause changes in bacterial morphology, adherence ability, and resistance to antibiotics. In this study, the effects of subinhibitory doses of aminoglycoside antibiotics on Mycobacterium abscessus were investigated. The treatment of M. abscessus cells with subinhibitory doses of amikacin was found to change their colony from a smooth to a rough morphotype and increase their ability to adhere to a polyvinylchloride plate, aggregate in culture, and resist phagocytosis and killing by macrophages. M. abscessus cells treated with a subinhibitory dose of amikacin also became more potent in Toll-like receptor 2 (TLR-2) stimulation, leading to increased tumor necrosis factor alpha (TNF-α) production by macrophages. The MAB_3508c gene was shown to play a role in mediating these phenotypic changes, as its expression in M. abscessus cells was increased when they were treated with a subinhibitory dose of amikacin. In addition, overexpression of MAB_3508c in M. abscessus cells caused changes similar to those induced by subinhibitory doses of amikacin, including a switch from smooth to rough colony morphology, increased ability to aggregate in liquid culture, decreased motility, and increased resistance to killing by macrophages. These findings suggest the importance of using sufficient doses of antibiotics for the treatment of M. abscessus infections. PMID:26195529
Fluri, David A.; Tonge, Peter D.; Song, Hannah; Baptista, Ricardo P.; Shakiba, Nika; Shukla, Shreya; Clarke, Geoffrey; Nagy, Andras; Zandstra, Peter W.
2016-01-01
We demonstrate derivation of induced pluripotent stem cells (iPSCs) from terminally differentiated mouse cells in serum- and feeder-free stirred suspension cultures. Temporal analysis of global gene expression revealed high correlations between cells reprogrammed in suspension and cells reprogrammed in adhesion-dependent conditions. Suspension (S) reprogrammed iPSCs (SiPSCs) could be differentiated into all three germ layers in vitro and contributed to chimeric embryos in vivo. SiPSC generation allowed for efficient selection of reprogramming factor expressing cells based on their differential survival and proliferation in suspension. Seamless integration of SiPSC reprogramming and directed differentiation enabled the scalable production of functionally and phenotypically defined cardiac cells in a continuous single cell- and small aggregate-based process. This method is an important step towards the development of a robust PSC generation, expansion and differentiation technology. PMID:22447133
Karkabounas, Spyridon; Havelas, Konstantinos; Kostoula, Olga K; Vezyraki, Patra; Avdikos, Antonios; Binolis, Jayne; Hatziavazis, George; Metsios, Apostolos; Verginadis, Ioannis; Evangelou, Angelos
2006-01-01
In this study we investigated the effects of low intensity static radiofrequency electromagnetic field (EMF) causing no thermal effects, on leiomyosarcoma cells (LSC), isolated from tumors of fifteen Wistar rats induced via a 3,4-benzopyrene injection. Electromagnetic resonance frequencies measurements and exposure of cells to static EMF were performed by a device called multi channel dynamic exciter 100 V1 (MCDE). The LSC were exposed to electromagnetic resonance radiofrequencies (ERF) between 10 kHz to 120 kHz, for 45 min. During a 24h period, after the exposure of the LSC to ERF, there was no inhibition of cells proliferation. In contrast, at the end of a 48 h incubation period, LSC proliferation dramatically decreased by more than 98% (P<0.001). At that time, the survived LSC were only 2% of the total cell population exposed to ERF, and under the same culture conditions showed significant decrease of proliferation. These cells were exposed once again to ERF for 45 min (totally 4 sessions of exposure, of 45 min duration each) and tested using a flow cytometer. Experiments as above were repeated five times. It was found that 45% of these double exposed to ERF, LSC (EMF cells) were apoptotic and only a small percentage 2%, underwent mitosis. In order to determinate their metastatic potential, these EMF cells were also counted and tested by an aggregometer for their ability to aggregate platelets and found to maintain this ability., since they showed no difference in platelet aggregation ability compared to the LSC not exposed to ERF (control cells). In conclusion, exposure of LSC to specific ERF, decreases their proliferation rate and induces cell apoptosis. Also, the LSC that survived after exposed to ERF, had a lower proliferation rate compared to the LSC controls (P<0.05) but did not loose their potential for metastases (platelet aggregation ability). The non-malignant SMC were not affected by the EMF exposure (P<0.4). The specific ERF generated from the MCDE electronic device, used in this study, is safe for humans and animals, according to the international safety standards.
Visible light-induced insulin aggregation on surfaces via photoexcitation of bound thioflavin T.
Chouchane, Karim; Pignot-Paintrand, Isabelle; Bruckert, Franz; Weidenhaupt, Marianne
2018-04-01
Insulin is known to form amyloid aggregates when agitated in a hydrophobic container. Amyloid aggregation is routinely measured by the fluorescence of the conformational dye thioflavin T, which, when incorporated into amyloid fibers, fluoresces at 480 nm. The kinetics of amyloid aggregation in general is characterized by an initial lag-phase, during which aggregative nuclei form on the hydrophobic surface. These nuclei then lead to the formation of fibrils presenting a rapid growth during the elongation phase. Here we describe a novel mechanism of insulin amyloid aggregation which is surprisingly devoid of a lag-time for nucleation. The excitation of thioflavin T by visible light at 440 nm induces the aggregation of thioflavin T-positive insulin fibrils on hydrophobic surfaces in the presence of strong agitation and at physiological pH. This process is material surface-induced and depends on the fact that surface-adsorbed insulin can bind thioflavin T. Light-induced insulin aggregation kinetics is thioflavin T-mediated and is based on an energy transfer from visible light to the protein via thioflavin T. It relies on a constant supply of thioflavin T and insulin from the solution to the aggregate. The growth rate increases with the irradiance and with the concentration of thioflavin T. The supply of insulin seems to be the limiting factor of aggregate growth. This light-induced aggregation process allows the formation of local surface-bound aggregation patterns. Copyright © 2018 Elsevier B.V. All rights reserved.
Borja, Miguel; Galan, Jacob Anthony; Cantu, Esteban; Zugasti-Cruz, Alejandro; Rodríguez-Acosta, Alexis; Lazcano, David; Lucena, Sara; Suntravat, Montamas; Sánchez, y Elda Eliza
2016-01-01
The Tamaulipan rock rattlesnake (Crotalus lepidus morulus) is a montane snake that occurs in the humid pine-oak forest and the upper cloud forest of the Sierra Madre Oriental in southwestern Tamaulipas, central Nuevo Leon, and southeastern Coahuila in Mexico. Venom from this rattlesnake was fractionated by High-Performance Liquid Chromatography for the purpose of discovering disintegrin molecules. Disintegrins are non-enzymatic, small molecular weight peptides that interfere with cell-cell and cell-matrix interactions by binding to various cell receptors. Eleven fractions were collected by anion exchange chromatography and pooled into six groups (I, II, III, IV, V, and VI). Proteins of the six groups were analyzed by SDS-PAGE and western blot using antibodies raised against a disintegrin. The antibodies recognized different protein bands in five (II, III, IV, V, and VI) of six groups in a molecular mass range of 7 to 105 kDa. Western blot analysis revealed fewer protein bands in the higher molecular mass range and two bands in the disintegrin weight range in group II compared with the other four groups. Proteins in group II were further separated into nine fractions using reverse phase C18 chromatography. Fraction 4 inhibited platelet aggregation and was named morulustatin, which exhibited a single band with a molecular mass of approximately 7 kDa. Mass spectrometry analysis of fraction 4 revealed the identification of disintegrin peptides LRPGAQCADGLCCDQCR (MH+ 2035.84) and AGEECDCGSPANCCDAATCK (MH+ 2328.82). Morulustatin inhibited ADP-induced platelet aggregation in human whole blood and was concentration-dependent with an IC50 of 89.5 nM ± 12. PMID:28713196
Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2009-12-01
Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.
Nasu, Yuiko; Iwashita, Masaya; Saito, Masaki; Fushiya, Shinji; Nakahata, Norimichi
2009-05-01
Kami-shoyo-san (Jia-Wei-Xiao-Yao-San), Toki-shakuyaku-san (Dang-Gui-Shao-Yao-San) and Toki-shigyaku-ka-goshuyu-shokyo-to (Dang-Gui-Si-Ni-Jia-Wu-Zhu-Yu-Sheng-Jiang-Tang) are Kampo (traditional Chinese) medicines which are traditionally and effectively used for the treatment of chilly sensation (Hiesho) in Japan, but the active components and their detailed mechanisms have not yet been clarified. Etiologies of Hiesho include poor peripheral blood circulation and platelet aggregability contributes to peripheral blood circulation; therefore, we investigated the effect of Kampo medicines on platelet aggregation using rabbit platelets in vitro. Collagen and U46619, a thromboxane A(2) receptor agonist, caused rabbit platelet aggregation, which was potently inhibited by pretreatment of platelets with Kami-shoyo-san and Toki-shakuyaku-san in vitro. Toki-shigyaku-ka-goshuyu-shokyo-to, however, did not significantly inhibit collagen- or U46619-induced platelet aggregation. Therefore, we examined the effect on platelet aggregation of two herbal medicines, Atractylodis Lanceae Rhizoma and Poria, both of which are contained in Kami-shoyo-san and Toki-shakuyaku-san but not in Toki-shigyaku-ka-goshuyu-shokyo-to. As the results indicate, Atractylodis Lanceae Rhizoma inhibited platelet aggregation induced by collagen but not by U46619. Poria effectively inhibited U46619-induced platelet aggregation and it partially inhibited collagen-induced platelet aggregation. On the other hand, Atractylodis Lanceae Rhizoma and Poria did not inhibit adrenaline/adenosine diphosphate- or adrenaline/serotonin-induced platelet aggregation. These results suggest the possibility that the inhibition of platelet aggregation by two Kampo medicines, Kami-shoyo-san and Toki-shakuyaku-san, is one of the mechanisms underlying the improvement of Hiesho. Furthermore, Atractylodis Lanceae Rhizoma and Poria are possible herbal medicines for the inhibition of platelet aggregation.
Vollmer, G; Layer, P G
1987-12-01
Dissociated single cells from chicken retina or tectum kept in rotation-mediated cell culture aggregate, proliferate and establish a certain degree of histotypical cell-to-cell relationships ("sorting out"), but these systems never form highly laminated aggregates ("nonstratified" R- and T-aggregates). In contrast, a mixture of retinal plus pigment epithelial cells forms highly "stratified" aggregates ("RPE-aggregates", see Vollmer et al. 1984). The present comparative study of "stratified" and "nonstratified" aggregates enables us to investigate the process of cell proliferation uncoupled from that of tissue stratification. Here we try to relate these two basic neurogenetic processes with patterns of expression of cholinesterases (AChE, BChE) during formation of both types of aggregates. During early aggregate formation, in both "stratified" and "nonstratified" aggregates an increased butyrylcholinesterase activity is observed close to mitotically active cells. Quantitatively both phenomena show their maxima after 2-3 days in culture. In contrast, AChE-expression in all systems increases with incubation time. In nonproliferative areas, in the center of RPE-aggregates, the formation of plexiform layers is characterized initially by weak BChE- and then strong AChE-activity. These areas correspond with the inner (IPL) and outer (OPL) plexiform layers of the retina in vivo. Although by sucrose gradient centrifugation we find that the 6S- and the fiber-associated 11S-molecules of AChE are present in all types of aggregates, during the culture period the ratio of 11S/6S-forms increases only in RPE-aggregates, which again indicates the advanced degree of differentiation within these aggregates.(ABSTRACT TRUNCATED AT 250 WORDS)
Role of Multicellular Aggregates in Biofilm Formation
Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.
2016-01-01
ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463
Singh, Preeti; Hanson, Peter S; Morris, Christopher M
2017-06-02
Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.
Ca2+ is a key factor in α-synuclein-induced neurotoxicity
Angelova, Plamena R.; Ludtmann, Marthe H. R.; Horrocks, Mathew H.; Negoda, Alexander; Cremades, Nunilo; Klenerman, David; Dobson, Christopher M.; Wood, Nicholas W.; Pavlov, Evgeny V.; Gandhi, Sonia
2016-01-01
ABSTRACT Aggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinson's disease. We investigated the species-specific effects of α-synuclein on Ca2+ signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes. We demonstrate that α-synuclein induces an increase in basal intracellular Ca2+ in its unfolded monomeric state as well as in its oligomeric state. Electrophysiology of artificial membranes demonstrated that α-synuclein monomers induce irregular ionic currents, whereas α-synuclein oligomers induce rare discrete channel formation events. Despite the ability of monomeric α-synuclein to affect Ca2+ signalling, it is only the oligomeric form of α-synuclein that induces cell death. Oligomer-induced cell death was abolished by the exclusion of extracellular Ca2+, which prevented the α-synuclein-induced Ca2+ dysregulation. The findings of this study confirm that α-synuclein interacts with membranes to affect Ca2+ signalling in a structure-specific manner and the oligomeric β-sheet-rich α-synuclein species ultimately leads to Ca2+ dysregulation and Ca2+-dependent cell death. PMID:26989132
FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.
Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan
2017-01-01
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.
Svensson, Lisbeth; Baumgarten, Maria; Mörgelin, Matthias
2014-01-01
Platelet activation and aggregation have been reported to occur in response to a number of Gram-positive pathogens. Here, we show that platelet aggregates induced by Streptococcus pyogenes were unstable and that viable bacteria escaped from the aggregates over time. This was not due to differential activation in response to the bacteria compared with physiological activators. All the bacterial isolates induced significant platelet activation, including integrin activation and alpha and dense-granule release, at levels equivalent to those induced by potent physiological platelet activators that induced stable aggregates. The ability to escape the aggregates and to resist the antibacterial effects of platelets was dependent on active protein synthesis by the bacteria within the aggregate. We conclude that S. pyogenes bacteria can temporarily cover themselves with activated platelets, and we propose that this may facilitate survival of the bacteria in the presence of platelets. PMID:25069984
Watabe, Masahiko; Nakaki, Toshio
2008-10-01
Parkinson's disease is a progressive neurodegenerative disorder characterized by selective degeneration of nigrostriatal dopaminergic neurons. Long-term systemic mitochondrial complex I inhibition by rotenone induces selective degeneration of dopaminergic neurons in rats. We have reported dopamine redistribution from vesicles to the cytosol to play a crucial role in selective dopaminergic cell apoptosis. In the present study, we investigated how rotenone causes dopamine redistribution to the cytosol using an in vitro model of human dopaminergic SH-SY5Y cells. Rotenone stimulated nitration of the tyrosine residues of intracellular proteins. The inhibition of nitric-oxide synthase or reactive oxygen species decreased the amount of nitrotyrosine and attenuated rotenone-induced apoptosis. When we examined the intracellular localization of dopamine immunocytochemically using anti-dopamine/vesicular monoamine transporter 2 (VMAT2) antibodies and quantitatively using high-performance liquid chromatography, inhibiting nitration was found to suppress rotenone-induced dopamine redistribution from vesicles to the cytosol. We demonstrated rotenone to nitrate tyrosine residues of VMAT2 using an immunocytochemical method with anti-nitrotyrosine antibodies and biochemically with immunoprecipitation experiments. Rotenone inhibited the VMAT2 activity responsible for the uptake of dopamine into vesicles, and this inhibition was reversed by inhibiting nitration. Moreover, rotenone induced the accumulation of aggregate-like formations in the stained image of VMAT2, which was reversed by inhibiting nitration. Our findings demonstrate that nitration of the tyrosine residues of VMAT2 by rotenone leads to both functional inhibition and accumulation of aggregate-like formations of VMAT2 and consequently to the redistribution of dopamine to the cytosol and apoptosis of dopaminergic SH-SY5Y cells.
Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels
Sridharan, BanuPriya; Lin, Staphany M.; Hwu, Alexander T.; Laflin, Amy D.; Detamore, Michael S.
2015-01-01
There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance. PMID:26719986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Kamalika Roy; Centre for Neuroscience, Indian Institute of Science, Bangalore 560012; Bhattacharyya, Nitai P., E-mail: nitai_sinp@yahoo.com
2015-01-02
Highlights: • HYPK reduces mutant HTT-mediated aggregate formation and cytotoxicity. • Interaction of HYPK with HTT requires N-terminal 17 amino acid of HTT (HTT-N17). • Deletion of HTT-N17 leads to SDS-soluble, smaller, nuclear aggregates. • These smaller aggregates do not associate with HYPK and are more cytotoxic. • Maybe, interaction of HYPK with amphipathic HTT-N17 block HTT aggregate formation. - Abstract: Huntington’s disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminalmore » HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK.« less
Tripette, Julien; Alexy, Tamas; Hardy-Dessources, Marie-Dominique; Mougenel, Daniele; Beltan, Eric; Chalabi, Tawfik; Chout, Roger; Etienne-Julan, Maryse; Hue, Olivier; Meiselman, Herbert J; Connes, Philippe
2009-08-01
Recent evidence suggests that red blood cell aggregation and the ratio of hematocrit to blood viscosity (HVR), an index of the oxygen transport potential of blood, might considerably modulate blood flow dynamics in the microcirculation. It thus seems likely that these factors could play a role in sickle cell disease. We compared red blood cell aggregation characteristics, blood viscosity and HVR at different shear rates between sickle cell anemia and sickle cell hemoglobin C disease (SCC) patients, sickle cell trait carriers (AS) and control individuals (AA). Blood viscosity determined at high shear rate was lower in sickle cell anemia (n=21) than in AA (n=52), AS (n=33) or SCC (n=21), and was markedly increased in both SCC and AS. Despite differences in blood viscosity, both sickle cell anemia and SCC had similar low HVR values compared to both AA and AS. Sickle cell anemia (n=21) and SCC (n=19) subjects had a lower red blood cell aggregation index and longer time for red blood cell aggregates formation than AA (n=16) and AS (n=15), and a 2 to 3 fold greater shear rate required to disperse red blood cell aggregates. The low HVR levels found in sickle cell anemia and SCC indicates a comparable low oxygen transport potential of blood in both genotypes. Red blood cell aggregation properties are likely to be involved in the pathophysiology of sickle cell disease: the increased shear forces needed to disperse red blood cell aggregates may disturb blood flow, especially at the microcirculatory level, since red blood cell are only able to pass through narrow capillaries as single cells rather than as aggregates.
Navarro-Yepes, Juliana; Anandhan, Annadurai; Bradley, Erin; Bohovych, Iryna; Yarabe, Bo; de Jong, Annemieke; Ovaa, Huib; Zhou, You; Khalimonchuk, Oleh; Quintanilla-Vega, Betzabet; Franco, Rodrigo
2016-10-01
Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson's disease (PD). Ubiquitin (Ub), alpha (α)-synuclein, p62/sequestosome 1, and oxidized proteins are the major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effects of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP(+)) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP(+), or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ-induced cell death. The inhibition of proteasomal activity by PQ was found to be a late event in cell death progression and had neither effect on the toxicity of either MPP(+) or PQ, nor on the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins), and carbonylated proteins induced by PQ. PQ- and MPP(+)-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagy. We confirmed that PQ and MPP(+) impaired autophagy flux and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane-associated foci in yeast cells. Our results demonstrate that the inhibition of protein ubiquitination by PQ and MPP(+) is involved in the dysfunction of Ub-dependent protein degradation pathways.
Navarro-Yepes, Juliana; Anandhan, Annadurai; Bradley, Erin; Bohovych, Iryna; Yarabe, Bo; de Jong, Annemieke; Ovaa, Huib; Zhou, You; Khalimonchuk, Oleh; Quintanilla-Vega, Betzabet; Franco, Rodrigo
2016-01-01
Intracytoplasmic inclusions of protein aggregates in dopaminergic cells (Lewy bodies) are the pathological hallmark of Parkinson’s disease (PD). Ubiquitin (Ub), alpha [α]-synuclein, p62/sequestosome 1 and oxidized proteins are major components of Lewy bodies. However, the mechanisms involved in the impairment of misfolded/oxidized protein degradation pathways in PD are still unclear. PD is linked to mitochondrial dysfunction and environmental pesticide exposure. In this work, we evaluated the effect of the pesticide paraquat (PQ) and the mitochondrial toxin 1-methyl-4-phenylpyridinium (MPP+) on Ub-dependent protein degradation pathways. No increase in the accumulation of Ub-bound proteins or aggregates was observed in dopaminergic cells (SK-N-SH) treated with PQ or MPP+, or in mice chronically exposed to PQ. PQ decreased Ub protein content, but not its mRNA transcription. Protein synthesis inhibition with cycloheximide depleted Ub levels and potentiated PQ–induced cell death. Inhibition of proteasomal activity by PQ was found to be a late event in cell death progression, and had no effect on either the toxicity of MPP+ or PQ, or the accumulation of oxidized sulfenylated, sulfonylated (DJ-1/PARK7 and peroxiredoxins) and carbonylated proteins induced by PQ. PQ- and MPP+-induced Ub protein depletion prompted the dimerization/inactivation of the Ub-binding protein p62 that regulates the clearance of ubiquitinated proteins by autophagic. We confirmed that PQ and MPP+ impaired autophagy flux, and that the blockage of autophagy by the overexpression of a dominant-negative form of the autophagy protein 5 (dnAtg5) stimulated their toxicity, but there was no additional effect upon inhibition of the proteasome. PQ induced an increase in the accumulation of α-synuclein in dopaminergic cells and membrane associated foci in yeast cells. Our results demonstrate that inhibition of protein ubiquitination by PQ and MPP+ is involved in the dysfunction of Ub-dependent protein degradation pathways. PMID:26409479
Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli
Neeli-Venkata, Ramakanth; Martikainen, Antti; Gupta, Abhishekh; Gonçalves, Nadia; Fonseca, Jose
2016-01-01
ABSTRACT Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. Combined with cell divisions, this generates heterogeneous aggregate distributions in subsequent cell generations. We studied the robustness of this process with differing medium richness and antibiotics stress, which affect nucleoid size, using multimodal, time-lapse microscopy of live cells expressing both a fluorescently tagged chaperone (IbpA), which identifies in vivo the location of aggregates, and HupA-mCherry, a fluorescent variant of a nucleoid-associated protein. We find that the relative sizes of the nucleoid's major and minor axes change widely, in a positively correlated fashion, with medium richness and antibiotic stress. The aggregate's distribution along the major cell axis also changes between conditions and in agreement with the nucleoid exclusion phenomenon. Consequently, the fraction of aggregates at the midcell region prior to cell division differs between conditions, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, from the location of the peak of anisotropy in the aggregate displacement distribution, the nucleoid relative size, and the spatiotemporal aggregate distribution, we find that the exclusion of detectable aggregates from midcell is most pronounced in cells with mid-sized nucleoids, which are most common under optimal conditions. We conclude that the aggregate management mechanisms of E. coli are significantly robust but are not immune to stresses due to the tangible effect that these have on nucleoid size. IMPORTANCE Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. From live single-cell microscopy studies of the robustness of this process to various stresses known to affect nucleoid size, we find that nucleoid size and aggregate preferential locations change concordantly between conditions. Also, the degree of influence of the nucleoid on aggregate positioning differs between conditions, causing aggregate numbers at midcell to differ in cell division events, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, we find that aggregate segregation to the cell poles is most pronounced in cells with mid-sized nucleoids. We conclude that the energy-free process of the midcell exclusion of aggregates partially loses effectiveness under stressful conditions. PMID:26728194
Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.
Wang, Xu; Zhou, Bihong; Hu, Weike; Zhao, Qing; Lin, Zhanglin
2015-06-16
In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0-7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a "pull-down" tag to produce purified soluble proteins with reasonable quantity and purity from active aggregates. Owing to the structural simplicity, strong hydrophobicity, and high aggregating efficiency, these peptides can be further explored for enzyme production and immobilization.
Silicone Oil- and Agitation-Induced Aggregation of a Monoclonal Antibody in Aqueous Solution
Thirumangalathu, Renuka; Krishnan, Sampathkumar; Ricci, Margaret Speed; Brems, David N.; Randolph, Theodore W.; Carpenter, John F.
2009-01-01
Silicone oil, which is used as a lubricant or coating in devices such as syringes, needles and pharmaceutical containers, has been implicated in aggregation and particulation of proteins and antibodies. Aggregation of therapeutic protein products induced by silicone oil can pose a challenge to their development and commercialization. To systematically characterize the role of silicone oil on protein aggregation, the effects of agitation, temperature, pH and ionic strength on silicone oil-induced loss of monomeric anti-streptavidin IgG 1 antibody were examined. Additionally, the influences of excipients polysorbate20 and sucrose on protein aggregation were investigated. In the absence of agitation, protein absorbed to silicone oil with approximately monolayer coverage, however silicone oil did not stimulate aggregation during isothermal incubation unless samples were also agitated. A synergistic stimulation of aggregation by a combination of agitation and silicone oil was observed. Solution conditions which reduced colloidal stability of the antibody, as assessed by determination of osmotic second virial coefficients, accelerated aggregation during agitation with silicone oil. Polysorbate20 completely inhibited silicone oil-induced monomer loss during agitation. A formulation strategy optimizing colloidal stability of the antibody as well as incorporation of surfactants such as polysorbate20 is proposed to reduce silicone oil-induced aggregation of therapeutic protein products. PMID:19360857
BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity
Hishiya, Akinori; Salman, Mortada Najem; Carra, Serena; Kampinga, Harm H.; Takayama, Shinichi
2011-01-01
A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120G, via the intermediate domain of BAG3. Peptides that inhibit this interaction in an in vitro binding assay indicate that two conserved Ile-Pro-Val regions of BAG3 are involved in the interaction with αB-crystallin, which is similar to results showing BAG3 binding to HspB8 and HspB6. BAG3 overexpression increased αB-crystallin R120G solubility and inhibited its intracellular aggregation in HEK293 cells. BAG3 suppressed cell death induced by αB-crystallin R120G overexpression in differentiating C2C12 mouse myoblast cells. Our findings indicate a novel function for BAG3 in inhibiting protein aggregation caused by the genetic mutation of CRYAB responsible for human myofibrillar myopathy. PMID:21423662
Park, Sang A; Choe, Young Ho; Park, Eunji; Hyun, Young-Min
2018-05-22
Neutrophils are highly motile innate immune cells; they actively migrate in response to inflammatory signals. Using two-photon intravital microscopy, we discovered that neutrophils form stable clusters upon phototoxicity at a certain threshold. Without significant damage to the collagen structure of mouse dermis, neutrophils aggregated together with nearby neutrophils. Surprisingly, this in situ neutrophil clustering resulted in rigorous changes of migratory direction. The density of residing neutrophils was also a critical factor affecting clustering. Additionally, we found that the triggering point of neutrophil aggregation was correlated with the structure of the extracellular matrix in the ear dermis, where autofluorescence was strongly observed. This swarming behavior of neutrophils may reflect an unknown communication mechanism of neutrophils during migration under sterile injury.
Peel, D J; Johnson, S A; Milner, M J
1990-01-01
We have examined the ultrastructure of cellular vesicles in primary cultures of wing imaginal disc cells of Drosophila melanogaster. These cells maintain the apico-basal polarity characteristic of epithelial cells. The apical surfaces secrete extracellular material into the lumen of the vesicle from plasma membrane plaques at the tip of microvilli. During the course of one passage, cells from the established cell lines grow to confluence and then aggregate into discrete condensations joined by aligned bridges of cells. Cells in these aggregates are tightly packed, and there appears to be a loss of the epithelial polarity characteristic of the vesicle cells. Elongated cell extensions containing numerous microtubules are found in aggregates, and we suggest that these may be epithelial feet involved in the aggregation process. Virus particles are commonly found both within the nucleus and the cytoplasm of cells in the aggregates.
Surface modified alginate microcapsules for 3D cell culture
NASA Astrophysics Data System (ADS)
Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin
2016-06-01
Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.
Hamilton, Desmond J; Coffman, Matthew D; Knight, Jefferson D; Reed, Scott M
2017-09-12
Synaptotagmin (Syt) family proteins contain tandem C2 domains, C2A and C2B, which insert into anionic membranes in response to increased cytosolic Ca 2+ concentration and facilitate exocytosis in neuronal and endocrine cells. The C2A domain from Syt7 binds lipid membranes much more tightly than the corresponding domain from Syt1, but the implications of this difference for protein function are not yet clear. In particular, the ability of the isolated Syt7 C2A domain to initiate membrane apposition and/or aggregation has been previously unexplored. Here, we demonstrate that Syt7 C2A induces apposition and aggregation of liposomes using Förster resonance energy transfer (FRET) assays, dynamic light scattering, and spectroscopic techniques involving lipid-coated gold nanoparticles (LCAuNPs). Protein-membrane binding, membrane apposition, and macroscopic aggregation are three separate phenomena with distinct Ca 2+ requirements: the threshold Ca 2+ concentration for membrane binding is lowest, followed by apposition and aggregation. However, aggregation is highly sensitive to protein concentration and can occur even at submicromolar Syt7 C2A; thus, highly sensitive assays are needed for measuring apposition without complications arising from aggregation. Notably, the localized surface plasmon resonance of the LCAuNP is sensitive to ≤10 nM Syt7 C2A concentrations. Furthermore, when the LCAuNPs were added into a FRET-based liposome apposition assay, the resultant energy transfer increased; possible explanations are discussed. Overall, LCAuNP-based methods allow for highly sensitive detection of protein-induced membrane apposition under conditions that miminize large-scale aggregation.
Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi
2017-01-01
Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426
Mechanisms of m-cresol induced protein aggregation studied using a model protein cytochrome c†
Singh, Surinder M.; Hutchings, Regina L.; Mallela, Krishna M.G.
2014-01-01
Multi-dose protein formulations require an effective antimicrobial preservative (AP) to inhibit microbial growth during long-term storage of unused formulations. m-cresol is one such AP, but has been shown to cause protein aggregation. However, the fundamental physical mechanisms underlying such AP-induced protein aggregation are not understood. In this study, we used a model protein cytochrome c to identify the protein unfolding that triggers protein aggregation. m-cresol induced cytochrome c aggregation at preservative concentrations that are commonly used to inhibit microbial growth. Addition of m-cresol decreased the temperature at which the protein aggregated and increased the aggregation rate. However, m-cresol did not perturb the tertiary or secondary structure of cytochrome c. Instead, it populated an “invisible” partially unfolded intermediate where a local protein region around the methionine residue at position 80 was unfolded. Stabilizing the Met80 region drastically decreased the protein aggregation, which conclusively shows that this local protein region acts as an aggregation “hot-spot”. Based on these results, we propose that APs induce protein aggregation by partial rather than global unfolding. Because of the availability of site-specific probes to monitor different levels of protein unfolding, cytochrome c provided a unique advantage in characterizing the partial protein unfolding that triggers protein aggregation. PMID:21229618
Erickson, L. D.; Loo, W. M.; Scott, K. G.; Wiznerowicz, E. B.; Brown, C. C.; Torres-Velez, F. J.; Alam, M. S.; Black, S. G.; McDuffie, M.; Feldman, S. H.; Wallace, J. L.; McKnight, G. W.; Padol, I. T.; Hunt, R. H.; Tung, K. S.
2012-01-01
SAMP1/YitFcs mice serve as a model of Crohn's disease, and we have used them to assess gastritis. Gastritis was compared in SAMP1/YitFcs, AKR, and C57BL/6 mice by histology, immunohistochemistry, and flow cytometry. Gastric acid secretion was measured in ligated stomachs, while anti-parietal cell antibodies were assayed by immunofluorescence and enzyme-linked immunosorbent spot assay. SAMP1/YitFcs mice display a corpus-dominant, chronic gastritis with multifocal aggregates of mononuclear cells consisting of T and B lymphocytes. Relatively few aggregates were observed elsewhere in the stomach. The infiltrates in the oxyntic mucosa were associated with the loss of parietal cell mass. AKR mice, the founder strain of the SAMP1/YitFcs, also have gastritis, although they do not develop ileitis. Genetic studies using SAMP1/YitFcs-C57BL/6 congenic mice showed that the genetic regions regulating ileitis had comparable effects on gastritis. The majority of the cells in the aggregates expressed the T cell marker CD3 or the B cell marker B220. Adoptive transfer of SAMP1/YitFcs CD4+ T helper cells, with or without B cells, into immunodeficient recipients induced a pangastritis and duodenitis. SAMP1/YitFcs and AKR mice manifest hypochlorhydria and anti-parietal cell antibodies. These data suggest that common genetic factors controlling gastroenteric disease in SAMP1/YitFcs mice regulate distinct pathogenic mechanisms causing inflammation in separate sites within the digestive tract. PMID:21921286
Wang, Hongfei; Wang, Yongqiang; Gao, Hongmei; Wang, Bing; Dou, Lin; Li, Yin
2018-02-01
Piperlongumine is an alkaloid compound extracted from Piper longum L. It is a chemical substance with various pharmacological effects and medicinal value, including anti-tumor, lipid metabolism regulatory, antiplatelet aggregation and analgesic properties. The present study aimed to understand whether piperlongumine induces the apoptosis and autophagy of leukemic cells, and to identify the mechanism involved. Cell viability and autophagy were detected using MTT, phenazine methyl sulfate and trypan blue exclusion assays. The apoptosis rate was calculated using flow cytometry. The protein expression levels of microtubule-associated protein 1A/1B-light chain 3, Akt and mechanistic target of rapamycin (mTOR) were measured using western blotting. The cell growth of leukemic cells was completely inhibited following treatment with piperlongumine, and marked apoptosis was also induced. Dead cells as a result of autophagy were stained using immunofluorescence and observed under a light microscope. Phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling was suppressed by treatment with piperlongumine, while p38 signaling and caspase-3 activity were induced by treatment with piperlongumine. It was concluded that piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways.
Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2015-12-01
In this study, a simple three-dimensional (3D) suspension culture method for the expansion and cardiac differentiation of human induced pluripotent stem cells (hiPSCs) is reported. The culture methods were easily adapted from two-dimensional (2D) to 3D culture without any additional manipulations. When hiPSCs were directly applied to 3D culture from 2D in a single-cell suspension, only a few aggregated cells were observed. However, after 3 days, culture of the small hiPSC aggregates in a spinner flask at the optimal agitation rate created aggregates which were capable of cell passages from the single-cell suspension. Cell numbers increased to approximately 10-fold after 12 days of culture. The undifferentiated state of expanded hiPSCs was confirmed by flow cytometry, immunocytochemistry and quantitative RT-PCR, and the hiPSCs differentiated into three germ layers. When the hiPSCs were subsequently cultured in a flask using cardiac differentiation medium, expression of cardiac cell-specific genes and beating cardiomyocytes were observed. Furthermore, the culture of hiPSCs on Matrigel-coated dishes with serum-free medium containing activin A, BMP4 and FGF-2 enabled it to generate robust spontaneous beating cardiomyocytes and these cells expressed several cardiac cell-related genes, including HCN4, MLC-2a and MLC-2v. This suggests that the expanded hiPSCs might maintain the potential to differentiate into several types of cardiomyocytes, including pacemakers. Moreover, when cardiac cell sheets were fabricated using differentiated cardiomyocytes, they beat spontaneously and synchronously, indicating electrically communicative tissue. This simple culture system might enable the generation of sufficient amounts of beating cardiomyocytes for use in cardiac regenerative medicine and tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.
Intracellular Nanoparticle Aggregation as a Mechanism for Inducing Apoptosis in Breast Cancer Cells
2010-09-01
Viral nanoparticles as tools for intravital vascular imaging. Nature Medicine, 2006. 12(3): p. 354-360. 16. Speelmans, G., et al., Transport Studies of...999. 22. Lee, C.C., et al., A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proceedings of
The aggregation and inheritance of damaged proteins determines cell fate during mitosis
Bufalino, Mary Rose; van der Kooy, Derek
2014-01-01
Recent evidence suggests that proliferating cells polarize damaged proteins during mitosis to protect one cell from aging, and that the structural conformation of damaged proteins mediates their toxicity. We report that the growth, resistance to stress, and differentiation characteristics of a cancer cell line (PC12) with an inducible Huntingtin (Htt) fused to enhanced green fluorescent protein (GFP) are dependent on the conformation of Htt. Cell progeny containing inclusion bodies have a longer cell cycle and increased resistance to stress than those with diffuse Htt. Using live imaging, we demonstrate that asymmetric division resulting from a cell containing a single inclusion body produces sister cells with different fates. The cell that receives the inclusion body has decreased proliferation and increased differentiation compared with its sister cell without Htt. This is the first report that reveals a functional consequence of the asymmetric division of damaged proteins in mammalian cells, and we suggest that this is a result of inclusion body-induced proteasome impairment. PMID:24553116
The mechanism of the polymer-induced drag reduction in blood.
Pribush, Alexander; Hatzkelzon, Lev; Meyerstein, Dan; Meyerstein, Naomi
2013-03-01
Literature reports provide evidence that nanomolar concentrations of spaghetti-like, high molecular weight polymers decrease the hydrodynamic resistance of blood thereby improving impaired blood circulation. It has been suggested that the polymer-induced drag reduction is caused by the corralling of red blood cells (RBCs) among extended macromolecules aligned in the flow direction. This mechanism predicts that drag-reducing polymers must affect the conductivity of completely dispersed blood, time-dependent and steady state structural organization of aggregated RBCs at rest. However, experimental results obtained at the concentration of poly(ethylene oxide) (PEO, MW=4 × 10(6)) of 35 ppm show that neither the conductivity of completely dispersed blood, nor the kinetics of RBC aggregation occurring after the stoppage of flow, nor the structural organization of aggregated RBCs in the quiescent blood are affected by PEO. As these results are at odds with the "corralling" hypothesis, it is assumed that the effect of these polymers on the drag is associated with their interactions with local irregularities of disturbed laminar blood flow. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Qishan; Bag, Jnanankur
Formation of nuclear inclusions consisting of aggregates of a polyalanine expansion mutant of nuclear poly(A)-binding protein (PABPN1) is the hallmark of oculopharyngeal muscular dystrophy (OPMD). OPMD is a late onset autosomal dominant disease. Patients with this disorder exhibit progressive swallowing difficulty and drooping of their eye lids, which starts around the age of 50. Previously we have shown that treatment of cells expressing the mutant PABPN1 with a number of chemicals such as ibuprofen, indomethacin, ZnSO{sub 4}, and 8-hydroxy-quinoline induces HSP70 expression and reduces PABPN1 aggregation. In these studies we have shown that expression of additional HSPs including HSP27, HSP40,more » and HSP105 were induced in mutant PABPN1 expressing cells following exposure to the chemicals mentioned above. Furthermore, all three additional HSPs were translocated to the nucleus and probably helped to properly fold the mutant PABPN1 by co-localizing with this protein.« less
Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jae Hyeon; Hanyang Biomedical Research Institute, Seoul; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul
Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition,more » we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by apoptosis ► CPF induces autophagy in SH-SY5Y cells ► Autophagy regulates CPF-induced apoptosis in SH-SY5Y cells.« less
Aneuploidy-induced cellular stresses limit autophagic degradation
Santaguida, Stefano; Vasile, Eliza; White, Eileen; Amon, Angelika
2015-01-01
An unbalanced karyotype, a condition known as aneuploidy, has a profound impact on cellular physiology and is a hallmark of cancer. Aneuploid cells experience a number of stresses that are caused by aneuploidy-induced proteomic changes. How the aneuploidy-associated stresses affect cells and whether cells respond to them are only beginning to be understood. Here we show that autophagosomal cargo such as protein aggregates accumulate within lysosomes in aneuploid cells. This causes a lysosomal stress response. Aneuploid cells activate the transcription factor TFEB, a master regulator of autophagic and lysosomal gene expression, thereby increasing the expression of genes needed for autophagy-mediated protein degradation. Accumulation of autophagic cargo within the lysosome and activation of TFEB-responsive genes are also observed in cells in which proteasome function is inhibited, suggesting that proteotoxic stress causes TFEB activation. Our results reveal a TFEB-mediated lysosomal stress response as a universal feature of the aneuploid state. PMID:26404941
Feasibility of Induced Pluripotent Stem Cell Therapies for Treatment of Type 1 Diabetes.
Duffy, Caden; Prugue, Cesar; Glew, Rachel; Smith, Taryn; Howell, Calvin; Choi, Gina; Cook, Alonzo David
2018-06-27
Despite their potential for treating type 1 diabetes (T1D), induced pluripotent stem cells (iPSCs) have not yet been used successfully in the clinic. In this paper, advances in iPSC therapies are reviewed and compared to current methods of treating T1D. Encapsulation of iPSCs is being pursued to address such safety concerns as the possibility of immune rejection or teratoma formation, and provide for retrievability. Issues of material selection, cell differentiation, size of islet aggregates, sites of implantation, animal models, and vascularization are also being addressed. Clinical trials are being conducted to test a variety of new devices with the hope of providing additional therapies for T1D.
Reyes, Darwin R; Hong, Jennifer S; Elliott, John T; Gaitan, Michael
2011-08-16
Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.
Lactobacillus rhamnosus GG (ATCC 53103) and platelet aggregation in vitro.
Korpela, R; Moilanen, E; Saxelin, M; Vapaatalo, H
1997-06-17
Lactobacillus rhamnosus GG is an experimentally and clinically well documented probiotic used in different dairy products. The present study aimed to investigate the safety aspects of Lactobacillus rhamnosus GG, particularly with respect to platelet aggregation, the initiating event in thrombosis. Platelet rich plasma was separated from the blood of healthy volunteers, and the effects of Lactobacillus rhamnosus GG (ATCC 53103), Lactobacillus rhamnosus (ATCC 7469) and Enterococcus faecium T2L6 in different dilutions on spontaneous, ADP- and adrenaline-induced aggregation were tested. The bacteria did not influence spontaneous aggregation. Only Enterococcus faecium T2L6 enhanced the adrenaline-induced aggregation, with a less clear effect on ADP-induced aggregation.
Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein
Viswanathan, Pragasam; Rimer, Jeffrey D.; Kolbach, Ann M.; Kleinman, Jack G.
2011-01-01
Tamm-Horsfall protein (THP) is thought to protect against calcium oxalate monohydrate (COM) stone formation by inhibiting COM aggregation. Several studies reported that stone formers produce THP with reduced levels of glycosylation, particularly sialic acid levels, which leads to reduced negative charge. In this study, normal THP was treated with neuraminidase to remove sialic acid residues, confirmed by an isoelectric point shift to higher pH. COM aggregation assays revealed that desialylated THP (ds-THP) promoted COM aggregation, while normal THP inhibited aggregation. The appearance of protein aggregates in solutions at ds-THP concentrations ≥1 µg/mL in 150 mM NaCl correlated with COM aggregation promotion, implying that ds-THP aggregation induced COM aggregation. The aggregation-promoting effect of the ds-THP was independent of pH above its isoelectric point, but was substantially reduced at low ionic strength, where protein aggregation was much reduced. COM aggregation promotion was maximized at a ds-THP to COM mass ratio of ~0.025, which can be explained by a model wherein partial COM surface coverage by ds-THP aggregates promotes crystal aggregation by bridging opposing COM surfaces, whereas higher surface coverage leads to repulsion between adsorbed ds-THP aggregates. Thus, desialylation of THP apparently abrogates a normal defensive action of THP by inducing protein aggregation, and subsequently COM aggregation, a condition that favors kidney stone formation. PMID:21229239
Plant pathogen-induced water-soaking promotes Salmonella enterica growth on tomato leaves.
Potnis, Neha; Colee, James; Jones, Jeffrey B; Barak, Jeri D
2015-12-01
Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Infection-Induced Interaction between the Mosquito Circulatory and Immune Systems
King, Jonas G.; Hillyer, Julián F.
2012-01-01
Insects counter infection with innate immune responses that rely on cells called hemocytes. Hemocytes exist in association with the insect's open circulatory system and this mode of existence has likely influenced the organization and control of anti-pathogen immune responses. Previous studies reported that pathogens in the mosquito body cavity (hemocoel) accumulate on the surface of the heart. Using novel cell staining, microdissection and intravital imaging techniques, we investigated the mechanism of pathogen accumulation in the pericardium of the malaria mosquito, Anopheles gambiae, and discovered a novel insect immune tissue, herein named periostial hemocytes, that sequesters pathogens as they flow with the hemolymph. Specifically, we show that there are two types of endocytic cells that flank the heart: periostial hemocytes and pericardial cells. Resident periostial hemocytes engage in the rapid phagocytosis of pathogens, and during the course of a bacterial or Plasmodium infection, circulating hemocytes migrate to the periostial regions where they bind the cardiac musculature and each other, and continue the phagocytosis of invaders. Periostial hemocyte aggregation occurs in a time- and infection dose-dependent manner, and once this immune process is triggered, the number of periostial hemocytes remains elevated for the lifetime of the mosquito. Finally, the soluble immune elicitors peptidoglycan and β-1,3-glucan also induce periostial hemocyte aggregation, indicating that this is a generalized and basal immune response that is induced by diverse immune stimuli. These data describe a novel insect cellular immune response that fundamentally relies on the physiological interaction between the insect circulatory and immune systems. PMID:23209421
Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells.
Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul
2013-04-01
Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Dasgupta, Anushka; Zheng, Jianzheng; Perrone-Bizzozero, Nora I.; Bizzozero, Oscar A.
2013-01-01
Previous work from our laboratory implicated protein carbonylation in the pathophysiology of both MS (multiple sclerosis) and its animal model EAE (experimental autoimmune encephalomyelitis). Subsequent in vitro studies revealed that the accumulation of protein carbonyls, triggered by glutathione deficiency or proteasome inhibition, leads to protein aggregation and neuronal cell death. These findings prompted us to investigate whether their association can be also established in vivo. In the present study, we characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of MOG (myelin-oligodendrocyte glycoprotein)35–55 peptide-induced EAE in C57BL/6 mice. The results show that protein carbonyls accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. We also show a temporal correlation between protein carbonylation (but not oxidative stress) and apoptosis. Furthermore, carbonyl levels are significantly higher in apoptotic cells than in live cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are present during the course of EAE. The LC3 (microtubule-associated protein light chain 3)-II/LC3-I ratio is significantly reduced in both acute and chronic EAE indicating reduced autophagy and explaining why aggresomes accumulate in this disorder. Taken together, the results of the present study suggest a link between protein oxidation and neuronal/glial cell death in vivo, and also demonstrate impaired proteostasis in this widely used murine model of MS. PMID:23489322
Neuronal glycogen synthesis contributes to physiological aging.
Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J
2014-10-01
Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.
Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2013-01-01
Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis. PMID:19917882
Ortega, E; Schweitzer-Stenner, R; Pecht, I
1988-01-01
Three biologically active monoclonal antibodies (mAbs) specific for the monovalent, high-affinity membrane receptor for IgE (Fc epsilon R) were employed in analysing the secretory response of mast cells of the RBL-2H3 line to crosslinking of their Fc epsilon R. All three mAbs (designated F4, H10 and J17) compete with each other and with IgE for binding to the Fc epsilon R. Their stoichiometry of binding is 1 Fab:1 Fc epsilon R, hence, the intact mAbs can aggregate the Fc epsilon Rs to dimers only. Since all three mAbs induce secretion, we conclude that Fc epsilon R dimers constitute a sufficient 'signal element' for secretion of mediators for RBL-2H3 cells. The secretory dose-response of the cells to these three mAbs are, however, markedly different: F4 caused rather high secretion, reaching almost 80% of the cells' content, while J17 and H10 induced release of only 30-40% mediators content. Both the intrinsic affinities and equilibrium constants for the receptor dimerization were derived from analysis of binding data of the Fab fragments and intact mAbs. These parameters were used to compute the extent of Fc epsilon R dimerization caused by each of the antibodies. However, the different secretory responses to the three mAbs could not be rationalized simply in terms of the extent of Fc epsilon R dimerization which they produce. This suggests that it is not only the number of crosslinked Fc epsilon Rs which determines the magnitude of secretion-causing signal, but rather other constraints imposed by each individual mAb are also important.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2977332
Nikitin, N S
1977-01-01
The morphogenetic potencies of somatic cells of the fresh-water sponge Ephydatia fluviatilis in the developing aggregates depend on their initial specialization and the number of cells in the aggregate. The aggregates of nucleolar amoebocytes consisting of 500 or more cells have the highest morphogenetic potencies. All main cell types can arise in the developing homogeneous aggregates of nucleolar amoebocytes. The fine structure of nucleolar amoebocytes at different stages of development of the homogeneous aggregates was studied by means of electron microscopy. The structural rearrangements are described which accompany the process of redifferentiation of the nucleolar amoebocytes in other cell types.
Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway
Williams, Andrea; Sarkar, Sovan; Cuddon, Paul; Ttofi, Evangelia K.; Saiki, Shinji; Siddiqi, Farah H.; Jahreiss, Luca; Fleming, Angeleen; Pask, Dean; Goldsmith, Paul; O’Kane, Cahir J.; Floto, R. Andres; Rubinsztein, David C.
2009-01-01
Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases like Huntington’s disease. Autophagy induction with the mTOR inhibitor, rapamycin, accelerates clearance of these toxic substrates. As rapamycin has non-trivial side effects, we screened FDA-approved drugs to identify novel autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the Gi signaling activator clonidine, induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, where cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating Gsα, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced and we provide proof-of-principle for therapeutic relevance in Huntington’s disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+, like excitotoxicity, will inhibit autophagy, thus retarding clearance of aggregate-prone proteins. PMID:18391949
Heileman, K L; Tabrizian, M
2017-05-02
3-Dimensional cell cultures are more representative of the native environment than traditional cell cultures on flat substrates. As a result, 3-dimensional cell cultures have emerged as a very valuable model environment to study tumorigenesis, organogenesis and tissue regeneration. Many of these models encompass the formation of cell aggregates, which mimic the architecture of tumor and organ tissue. Dielectric impedance spectroscopy is a non-invasive, label free and real time technique, overcoming the drawbacks of established techniques to monitor cell aggregates. Here we introduce a platform to monitor cell aggregation in a 3-dimensional extracellular matrix using dielectric spectroscopy. The MCF10A breast epithelial cell line serves as a model for cell aggregation. The platform maintains sterile conditions during the multi-day assay while allowing continuous dielectric spectroscopy measurements. The platform geometry optimizes dielectric measurements by concentrating cells within the electrode sensing region. The cells show a characteristic dielectric response to aggregation which corroborates with finite element analysis computer simulations. By fitting the experimental dielectric spectra to the Cole-Cole equation, we demonstrated that the dispersion intensity Δε and the characteristic frequency f c are related to cell aggregate growth. In addition, microscopy can be performed directly on the platform providing information about cell position, density and morphology. This platform could yield many applications for studying the electrophysiological activity of cell aggregates.
Multiscale simulation of red blood cell aggregation
NASA Astrophysics Data System (ADS)
Bagchi, P.; Popel, A. S.
2004-11-01
In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.
NASA Astrophysics Data System (ADS)
Arsov, Zoran; Urbančič, Iztok; Štrancar, Janez
2018-02-01
Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon.
Li, Hao; Tatematsu, Kenji; Somiya, Masaharu; Iijima, Masumi; Kuroda, Shun'ichi
2018-06-01
Macrophage hyperfunction or dysfunction is tightly associated with various diseases, such as osteoporosis, inflammatory disorder, and cancers. However, nearly all conventional drug delivery system (DDS) nanocarriers utilize endocytosis for entering target cells; thus, the development of macrophage-targeting and phagocytosis-inducing DDS nanocarriers for treating these diseases is required. In this study, we developed a hepatitis B virus (HBV) envelope L particle (i.e., bio-nanocapsule (BNC)) outwardly displaying a tandem form of protein G-derived IgG Fc-binding domain and protein L-derived IgG Fab-binding domain (GL-BNC). When conjugated with the macrophage-targeting ligand, mouse IgG2a (mIgG2a), the GL-BNC itself, and the liposome-fused GL-BNC (i.e., GL-virosome) spontaneously initiated aggregation by bridging between the Fc-binding domain and Fab-binding domain with mIgG2a. The aggregates were efficiently taken up by macrophages, whereas this was inhibited by latrunculin B, a phagocytosis-specific inhibitor. The mIgG2a-GL-virosome containing doxorubicin exhibited higher cytotoxicity toward macrophages than conventional liposomes and other BNC-based virosomes. Thus, GL-BNCs and GL-virosomes may constitute promising macrophage-targeting and phagocytosis-inducing DDS nanocarriers. We have developed a novel macrophage-targeting and phagocytosis-inducing bio-nanocapsule (BNC)-based nanocarrier named GL-BNC, which comprises a hepatitis B virus envelope L particle outwardly displaying protein G-derived IgG Fc- and protein L-derived IgG Fab-binding domains in tandem. The GL-BNC alone or liposome-fused form (GL-virosomes) could spontaneously aggregate when conjugated with macrophage-targeting IgGs, inducing phagocytosis by the interaction between IgG Fc of aggregates and FcγR on phagocytes. Thereby these aggregates were efficiently taken up by macrophages. GL-virosomes containing doxorubicin exhibited higher cytotoxicity towards macrophages than ZZ-virosomes and liposomes. Our results suggested that GL-BNCs and GL-virosomes would serve as promising drug delivery system nanocarriers for targeting delivery to macrophages. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Jamming and liquidity in 3D cancer cell aggregates
NASA Astrophysics Data System (ADS)
Oswald, Linda; Grosser, Steffen; Lippoldt, Jürgen; Pawlizak, Steve; Fritsch, Anatol; KäS, Josef A.
Traditionally, tissues are treated as simple liquids, which holds for example for embryonic tissue. However, recent experiments have shown that this picture is insufficient for other tissue types, suggesting possible transitions to solid-like behavior induced by cellular jamming. The coarse-grained self-propelled Voronoi (SPV) model predicts such a transition depending on cell shape which is thought to arise from an interplay of cell-cell adhesion and cortical tension. We observe non-liquid behavior in 3D breast cancer spheroids of varying metastatic potential and correlate single cell shapes, single cell dynamics and collective dynamic behavior of fusion and segregation experiments via the SPV model.
Garcia, Gene L; Rericha, Erin C; Heger, Christopher D; Goldsmith, Paul K; Parent, Carole A
2009-07-01
Starvation of Dictyostelium induces a developmental program in which cells form an aggregate that eventually differentiates into a multicellular structure. The aggregate formation is mediated by directional migration of individual cells that quickly transition to group migration in which cells align in a head-to-tail manner to form streams. Cyclic AMP acts as a chemoattractant and its production, secretion, and degradation are highly regulated. A key protein is the extracellular phosphodiesterase PdsA. In this study we examine the role and localization of PdsA during chemotaxis and streaming. We find that pdsA(-) cells respond chemotactically to a narrower range of chemoattractant concentrations compared with wild-type (WT) cells. Moreover, unlike WT cells, pdsA(-) cells do not form streams at low cell densities and form unusual thick and transient streams at high cell densities. We find that the intracellular pool of PdsA is localized to the endoplasmic reticulum, which may provide a compartment for storage and secretion of PdsA. Because we find that cAMP synthesis is normal in cells lacking PdsA, we conclude that signal degradation regulates the external cAMP gradient field generation and that the group migration behavior of these cells is compromised even though their signaling machinery is intact.
The Group Migration of Dictyostelium Cells Is Regulated by Extracellular Chemoattractant Degradation
Garcia, Gene L.; Rericha, Erin C.; Heger, Christopher D.; Goldsmith, Paul K.
2009-01-01
Starvation of Dictyostelium induces a developmental program in which cells form an aggregate that eventually differentiates into a multicellular structure. The aggregate formation is mediated by directional migration of individual cells that quickly transition to group migration in which cells align in a head-to-tail manner to form streams. Cyclic AMP acts as a chemoattractant and its production, secretion, and degradation are highly regulated. A key protein is the extracellular phosphodiesterase PdsA. In this study we examine the role and localization of PdsA during chemotaxis and streaming. We find that pdsA− cells respond chemotactically to a narrower range of chemoattractant concentrations compared with wild-type (WT) cells. Moreover, unlike WT cells, pdsA− cells do not form streams at low cell densities and form unusual thick and transient streams at high cell densities. We find that the intracellular pool of PdsA is localized to the endoplasmic reticulum, which may provide a compartment for storage and secretion of PdsA. Because we find that cAMP synthesis is normal in cells lacking PdsA, we conclude that signal degradation regulates the external cAMP gradient field generation and that the group migration behavior of these cells is compromised even though their signaling machinery is intact. PMID:19477920
The formulation and immunogenicity of therapeutic proteins: Product quality as a key factor.
Richard, Joel; Prang, Nadia
2010-08-01
The formation of anti-drug antibodies represents a risk that should be assessed carefully during biopharmaceutical drug product (DP) development, as such antibodies compromise safety and efficacy and may alter the pharmacokinetic properties of a compound. This feature review discusses immunogenicity issues in biopharmaceutical DP development, with a focus on product quality. Excipient-induced and aggregate-induced immunogenicity are reviewed based on the concepts of 'aggregation-competent' species and 'provocative' aggregates. In addition, the influence of formulation parameters, such as particulates and contaminants appearing in the DP during processing and storage, on aggregate-induced immunogenicity are presented, including the role of fill-and-finish equipments and the effect of interactions with container materials. Furthermore, methods to detect and quantify aggregation and precursor conformational changes in a protein formulation are reviewed, and immunological mechanisms that may lead to aggregate-induced immunogenicity are proposed and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poelstra, K.; Baller, J.F.; Hardonk, M.J.
1991-04-01
It has been proposed, predominantly from ex vivo studies, that glomerular ADPase may function as an antithrombotic principle within the rat kidney. Therefore, intraglomerular platelet aggregation was studied in vivo in rats after impairment of glomerular ADPase activity using local X-irradiation (20 Gy). Biochemical assays in suspensions of glomeruli obtained from rats 24 hours after local X-irradiation (group I) demonstrated a significant reduction in ADPase activity as compared to sham treated rats (group II; p less than 0.01). Cytochemical observations at the ultrastructural level showed that this reduction in glomerular enzyme activity represents in particular ADPase activity detectable in themore » basement membrane. Following X-irradiation, intraglomerular platelet aggregation was quantitatively studied in two groups of rats. Both groups received X-irradiation of the left kidney (20 Gy). Twenty-four hours after X-irradiation, animals received an intravenous injection of either 0.5 ml of saline (group III; N = 6) or 0.5 ml of heterologous nephrotoxic serum (NTS; group IV; N = 6). Subsequently, 24 hours after this injection, platelet aggregation in left kidneys was compared with aggregation in contralateral non-X-irradiated kidneys. The results showed that while X-irradiation per se did not induce intraglomerular platelet aggregation as compared with the contralateral kidney (0.20 +/- 0.08% versus 0.17 +/- 0.06% platelet aggregation/glomerulus), a significant increase in platelet aggregation could be demonstrated in X-irradiated kidneys in the early phase of nephrotoxic serum nephritis as compared with the contralateral nephritic kidney. A potential effect of altered influx of inflammatory cells after X-irradiation could be excluded since no difference in H2O2 producing cells was observed between left and right kidneys.« less
Jeng, Jiiang-Huei; Chen, Shiao-Yun; Liao, Chang-Hui; Tung, Yuan-Yii; Lin, Bor-Ru; Hahn, Liang-Jiunn; Chang, Mei-Chi
2002-05-01
There are 2 to 6 billion betel quid (BQ) chewers in the world. Areca nut (AN), a BQ component, modulates arachidonic acid (AA) metabolism, which is crucial for platelet function. AN extract (1 and 2 mg/ml) stimulated rabbit platelet aggregation, with induction of thromboxane B2 (TXB2) production. Contrastingly, Piper betle leaf (PBL) extract inhibited AA-, collagen-, and U46619-induced platelet aggregation, and TXB2 and prostaglandin-D2 (PGD2) production. PBL extract also inhibited platelet TXB2 and PGD2 production triggered by thrombin, platelet activating factor (PAF), and adenosine diphosphate (ADP), whereas little effect on platelet aggregation was noted. Moreover, PBL is a scavenger of O2(*-) and *OH, and inhibits xanthine oxidase activity and the (*)OH-induced PUC18 DNA breaks. Deferoxamine, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and neomycin prevented AN-induced platelet aggregation and TXB2 production. Indomethacin, genistein, and PBL extract inhibited only TXB2 production, but not platelet aggregation. Catalase, superoxide dismutase, and dimethylthiourea (DMT) showed little effect on AN-induced platelet aggregation, whereas catalase and DMT inhibited the AN-induced TXB2 production. These results suggest that AN-induced platelet aggregation is associated with iron-mediated reactive oxygen species production, calcium mobilization, phospholipase C activation, and TXB2 production. PBL inhibited platelet aggregation via both its antioxidative effects and effects on TXB2 and PGD2 production. Effects of AN and PBL on platelet aggregation and AA metabolism is crucial for platelet activation in the oral mucosa and cardiovascular system in BQ chewers.
Effects of Pasteurella haemolytica leukotoxic culture supernatant on bovine neutrophil aggregation.
Conlon, P; Gervais, M; Chaudhari, S; Conlon, J
1992-07-01
Pasteurella haemolytica A1 leukotoxic culture supernatant was evaluated for its ability to cause aggregation of bovine peripheral neutrophils. Neutrophils were isolated by a hypotonic lysis method and incubated with zymosan-activated plasma (ZAP), leukotoxic culture supernatant, antileukotoxin serum, calcium and magnesium-free media, p-bromophenacyl bromide and protein kinase C inhibitors. Aggregation was evaluated by changes in infrared light transmittance. Leukotoxic culture supernatant caused neutrophils to aggregate, and this effect was significantly removed by preincubation with antileukotoxin serum. Aggregation to ZAP and leukotoxin was dependent on the presence of extra-cellular calcium. Activation of protein kinase C by phorbol myristate acetate induced aggregation which was reduced by staurosporine; however, aggregation to leukotoxin did not involve protein kinase C activation. Phospholipase A2 inhibition did not alter the aggregation response to ZAP or to leukotoxin. The in vitro measurement of neutrophil aggregation induced by the leukotoxin of P. haemolytica reflects cytoskeletal and other activation events that may contribute to the intense inflammatory process which this organism induces in the lungs of cattle.
Protein Self-Assembly and Protein-Induced DNA Morphologies
NASA Astrophysics Data System (ADS)
Mawhinney, Matthew T.
The ability of biomolecules to associate into various structural configurations has a substantial impact on human physiology. The synthesis of protein polypeptide chains using the information encoded by DNA is mediated through the use of regulatory proteins, known as transcription factors. Some transcription factors perform function by inducing local curvature in deoxyribonucleic acid (DNA) strands, the mechanisms of which are not entirely known. An important architectural protein, eleven zinc finger CTCF (11 ZF CTCF) is involved in genome organization and hypothesized to mediate DNA loop formation. Direct evidence for these CTCF-induced DNA loops has yet to be observed. In this thesis, the effect of 11 ZF CTCF on DNA morphology is examined using atomic force microscopy, a powerful technique for visualizing biomolecules with nanometer resolution. The presence of CTCF is revealed to induce a variety of morphologies deviating from the relaxed state of control DNA samples, including compact circular complexes, meshes, and networks. Images reveal quasi-circular DNA/CTCF complexes consistent with a single DNA molecule twice wrapped around the protein. The structures of DNA and proteins are highly important for operations in the cell. Structural irregularities may lead to a variety of issues, including more than twenty human pathologies resulting from aberrant protein misfolding into amyloid aggregates of elongated fibrils. Insulin deficiency and resistance characterizing type 2 diabetes often requires administration of insulin. Injectable and inhalable delivery methods have been documented to result in the deposition of amyloid fibrils. Oligomers, soluble multiprotein assemblies, are believed to play an important role in this process. Insulin aggregation under physiological conditions is not well understood and oligomers have not yet been fully characterized. In this thesis, in vitro insulin aggregation at acidic and neutral pH is explored using a variety of techniques, including kinetic thioflavin T fluorescence, circular dichroism spectroscopy, atomic force and electron microscopy imaging. The size distribution of insulin oligomers at different assembly stages is characterized through covalent cross-linking and gel electrophoresis. Results show that at the earliest assembly stage, oligomers comprise up to 40% and 70% of soluble insulin at acidic and neutral pH, respectively. While the highest oligomer order increases with insulin concentration at acidic pH, the opposite tendency is observed at neutral pH, with heptamers formed in 10 muM insulin. These findings suggest that oligomers may be on- and off- pathway assemblies for insulin at acidic and neutral pH, respectively. Agitation, required to induce insulin aggregation at neutral pH, increases fibril formation rate and fibrillar mass by an order of magnitude each. Insulin incubated under agitated conditions at neutral pH rapidly aggregates into large micrometer-sized aggregates, which provides insight into injection-site amyloidosis and toxic pulmonary aggregates induced by administration of extraneous insulin.
Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases
Alam, Parvez; Chaturvedi, Sumit Kumar; Siddiqi, Mohammad Khursheed; Rajpoot, Ravi Kant; Ajmal, Mohd Rehan; Zaman, Masihuz; Khan, Rizwan Hasan
2016-01-01
Protein misfolding and aggregation have been associated with several human diseases such as Alzheimer’s, Parkinson’s and familial amyloid polyneuropathy etc. In this study, anti-fibrillation activity of vitamin k3 and its effect on the kinetics of amyloid formation of hen egg white lysozyme (HEWL) and Aβ-42 peptide were investigated. Here, in combination with Thioflavin T (ThT) fluorescence assay, circular dichroism (CD), transmission electron microscopy and cell cytotoxicity assay, we demonstrated that vitamin k3 significantly inhibits fibril formation as well as the inhibitory effect is dose dependent manner. Our experimental studies inferred that vitamin k3 exert its neuro protective effect against amyloid induced cytotoxicity through concerted pathway, modifying the aggregation formation towards formation of nontoxic aggregates. Molecular docking demonstrated that vitamin k3 mediated inhibition of HEWL and Aβ-42 fibrillogenesis may be initiated by interacting with proteolytic resistant and aggregation prone regions respectively. This work would provide an insight into the mechanism of protein aggregation inhibition by vitamin k3; pave the way for discovery of other small molecules that may exert similar effect against amyloid formation and its associated neurodegenerative diseases. PMID:27230476
Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases.
Alam, Parvez; Chaturvedi, Sumit Kumar; Siddiqi, Mohammad Khursheed; Rajpoot, Ravi Kant; Ajmal, Mohd Rehan; Zaman, Masihuz; Khan, Rizwan Hasan
2016-05-27
Protein misfolding and aggregation have been associated with several human diseases such as Alzheimer's, Parkinson's and familial amyloid polyneuropathy etc. In this study, anti-fibrillation activity of vitamin k3 and its effect on the kinetics of amyloid formation of hen egg white lysozyme (HEWL) and Aβ-42 peptide were investigated. Here, in combination with Thioflavin T (ThT) fluorescence assay, circular dichroism (CD), transmission electron microscopy and cell cytotoxicity assay, we demonstrated that vitamin k3 significantly inhibits fibril formation as well as the inhibitory effect is dose dependent manner. Our experimental studies inferred that vitamin k3 exert its neuro protective effect against amyloid induced cytotoxicity through concerted pathway, modifying the aggregation formation towards formation of nontoxic aggregates. Molecular docking demonstrated that vitamin k3 mediated inhibition of HEWL and Aβ-42 fibrillogenesis may be initiated by interacting with proteolytic resistant and aggregation prone regions respectively. This work would provide an insight into the mechanism of protein aggregation inhibition by vitamin k3; pave the way for discovery of other small molecules that may exert similar effect against amyloid formation and its associated neurodegenerative diseases.
Moisture-induced aggregation of lyophilized DNA and its prevention.
Sharma, Vikas K; Klibanov, Alexander M
2007-01-01
To investigate the moisture-induced aggregation (i.e., a loss of solubility in water) of DNA in a solid state and to develop rational strategies for its prevention. Lyophilized calf thymus DNA was exposed to relative humidity (RH) levels from 11% to 96% at 55 degrees C. Following a 24-h incubation under these stressed conditions, the solubility of DNA in different aqueous solutions and the water uptake of DNA were determined. The effects of solution pH and NaCl concentration and the presence of excipients (dextran and sucrose) on the subsequent moisture-induced aggregation of DNA were examined. The extent of this aggregation was compared with that of a supercoiled plasmid DNA. Upon a 24-h incubation at 55 degrees C, calf thymus DNA underwent a major moisture-induced aggregation reaching a maximum at a 60% RH; in contrast, the single-stranded DNA exhibited the maximal aggregation at a 96% RH. Moisture uptake and aqueous solubility studies revealed that the aggregation was primarily due to formation of inter-strand hydrogen bonds. Aggregation of DNA also proceeded at 37 degrees C, albeit at a slower rate. Solution pH and NaCl concentration affected DNA aggregation only at higher RH levels. This aggregation was markedly reduced by co-lyophilization with dextran or sucrose (but not with PEG). The aggregation pattern of a supercoiled plasmid DNA was similar to that of its linear calf thymus counterpart. The moisture-induced aggregation of lyophilized DNA is caused mainly by non-covalent cross-links between disordered, single-stranded regions of DNA. At high RH levels, renaturation and aggregation of DNA compete with each other. The aggregation is minimized at low RH levels, at optimal solution pH and salt concentration prior to lyophilization, and by co-lyophilizing with excipients capable of forming multiple hydrogen bonds, e.g., dextran and sucrose.
Erythropoietin Receptor Signaling Is Membrane Raft Dependent
McGraw, Kathy L.; Fuhler, Gwenny M.; Johnson, Joseph O.; Clark, Justine A.; Caceres, Gisela C.; Sokol, Lubomir; List, Alan F.
2012-01-01
Upon erythropoietin (Epo) engagement, Epo-receptor (R) homodimerizes to activate JAK2 and Lyn, which phosphorylate STAT5. Although recent investigations have identified key negative regulators of Epo-R signaling, little is known about the role of membrane localization in controlling receptor signal fidelity. Here we show a critical role for membrane raft (MR) microdomains in creation of discrete signaling platforms essential for Epo-R signaling. Treatment of UT7 cells with Epo induced MR assembly and coalescence. Confocal microscopy showed that raft aggregates significantly increased after Epo stimulation (mean, 4.3±1.4(SE) vs. 25.6±3.2 aggregates/cell; p≤0.001), accompanied by a >3-fold increase in cluster size (p≤0.001). Raft fraction immunoblotting showed Epo-R translocation to MR after Epo stimulation and was confirmed by fluorescence microscopy in Epo stimulated UT7 cells and primary erythroid bursts. Receptor recruitment into MR was accompanied by incorporation of JAK2, Lyn, and STAT5 and their activated forms. Raft disruption by cholesterol depletion extinguished Epo induced Jak2, STAT5, Akt and MAPK phosphorylation in UT7 cells and erythroid progenitors. Furthermore, inhibition of the Rho GTPases Rac1 or RhoA blocked receptor recruitment into raft fractions, indicating a role for these GTPases in receptor trafficking. These data establish a critical role for MR in recruitment and assembly of Epo-R and signal intermediates into discrete membrane signaling units. PMID:22509308
Martin, Dustin P.; Anantharam, Vellareddy; Jin, Huajun; Witte, Travis; Houk, Robert; Kanthasamy, Arthi; Kanthasamy, Anumantha G.
2011-01-01
Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrPC). Although the exact function of PrPC has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrPC protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC50 = 428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases. PMID:21871919
ERIC Educational Resources Information Center
Ma, Xiaofeng; Sun, Rui; Cheng, Jinghui; Liu, Jiaoyan; Gou, Fei; Xiang, Haifeng; Zhou, Xiangge
2016-01-01
A laboratory experiment visually exploring two opposite basic principles of fluorescence of aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE) is demonstrated. The students would prepared two salicylaldehyde-based Schiff bases through a simple one-pot condensation reaction of one equiv of 1,2-diamine with 2 equiv of…
A truncated apoptin protein variant selectively kills cancer cells.
Ruiz-Martínez, Santiago; Castro, Jessica; Vilanova, Maria; Bruix, Marta; Laurents, Douglas V; Ribó, Marc; Benito, Antoni
2017-06-01
Apoptin is a nonstructural protein encoded by one of the three open reading frames of the chicken anemia virus genome. It has attracted a great deal of interest due to its ability to induce apoptosis in multiple transformed and malignant mammalian cell lines without affecting primary and non-transformed cells. However, the use of Apoptin as an anticancer drug is restricted by its strong tendency to aggregate. A number of methods to overcome this problem have been proposed, including transduction techniques to deliver the Apoptin gene into tumor cells, but all such methods have certain drawbacks. Here we describe that a truncated variant of Apoptin, lacking residues 1 to 43, is a soluble, non-aggregating protein that maintains most of the biological properties of wild-type Apoptin when transfected into cells. We show that the cytotoxic effect of this variant is also present when it is added exogenously to cancer cells, but not to normal cells. In addition to the interest this protein has attracted as a promising therapeutic strategy, it is also an excellent model to study the structural properties of Apoptin and how they relate to its mechanism of action.
Wrobel, Dominika; Kolanowska, Katarzyna; Gajek, Arkadiusz; Gomez-Ramirez, Rafael; de la Mata, Javier; Pedziwiatr-Werbicka, Elżbieta; Klajnert, Barbara; Waczulikova, Iveta; Bryszewska, Maria
2014-03-01
We have investigated the interactions between cationic NN16 and BDBR0011 carbosilane dendrimers with red blood cells or their cell membranes. The carbosilane dendrimers used possess 16 cationic functional groups. Both the dendrimers are made of water-stable carbon-silicon bonds, but NN16 possesses some oxygen-silicon bonds that are unstable in water. The nucleic acid used in the experiments was targeted against GAG-1 gene from the human immunodeficiency virus, HIV-1. By binding to the outer leaflet of the membrane, carbosilane dendrimers decreased the fluidity of the hydrophilic part of the membrane but increased the fluidity of the hydrophobic interior. They induced hemolysis, but did not change the morphology of the cells. Increasing concentrations of dendrimers induced erythrocyte aggregation. Binding of short interfering ribonucleic acid (siRNA) to a dendrimer molecule decreased the availability of cationic groups and diminished their cytotoxicity. siRNA-dendrimer complexes changed neither the fluidity of biological membranes nor caused cell hemolysis. Addition of dendriplexes to red blood cell suspension induced echinocyte formation. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping
2008-01-01
We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.
Dexmedetomidine increases tau phosphorylation under normothermic conditions in vivo and in vitro.
Whittington, Robert A; Virág, László; Gratuze, Maud; Petry, Franck R; Noël, Anastasia; Poitras, Isabelle; Truchetti, Geoffrey; Marcouiller, François; Papon, Marie-Amélie; El Khoury, Noura; Wong, Kevin; Bretteville, Alexis; Morin, Françoise; Planel, Emmanuel
2015-08-01
There is developing interest in the potential association between anesthesia and the onset and progression of Alzheimer's disease. Several anesthetics have, thus, been demonstrated to induce tau hyperphosphorylation, an effect mostly mediated by anesthesia-induced hypothermia. Here, we tested the hypothesis that acute normothermic administration of dexmedetomidine (Dex), an intravenous sedative used in intensive care units, would result in tau hyperphosphorylation in vivo and in vitro. When administered to nontransgenic mice, Dex-induced tau hyperphosphorylation persisting up to 6 hours in the hippocampus for the AT8 epitope. Pretreatment with atipamezole, a highly specific α2-adrenergic receptor antagonist, blocked Dex-induced tau hyperphosphorylation. Furthermore, Dex dose-dependently increased tau phosphorylation at AT8 in SH-SY5Y cells, impaired mice spatial memory in the Barnes maze and promoted tau hyperphosphorylation and aggregation in transgenic hTau mice. These findings suggest that Dex: (1) increases tau phosphorylation, in vivo and in vitro, in the absence of anesthetic-induced hypothermia and through α2-adrenergic receptor activation, (2) promotes tau aggregation in a mouse model of tauopathy, and (3) impacts spatial reference memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Kamennaya, Nina A.; Zemla, Marcin; Mahoney, Laura; ...
2018-05-29
Here, the contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22–2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure ( pCO 2) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellularmore » polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamennaya, Nina A.; Zemla, Marcin; Mahoney, Laura
Here, the contribution of planktonic cyanobacteria to burial of organic carbon in deep-sea sediments before the emergence of eukaryotic predators ~1.5 Ga has been considered negligible owing to the slow sinking speed of their small cells. However, global, highly positive excursion in carbon isotope values of inorganic carbonates ~2.22–2.06 Ga implies massive organic matter burial that had to be linked to oceanic cyanobacteria. Here to elucidate that link, we experiment with unicellular planktonic cyanobacteria acclimated to high partial CO 2 pressure ( pCO 2) representative of the early Paleoproterozoic. We find that high pCO 2 boosts generation of acidic extracellularmore » polysaccharides (EPS) that adsorb Ca and Mg cations, support mineralization, and aggregate cells to form ballasted particles. The down flux of such self-assembled cyanobacterial aggregates would decouple the oxygenic photosynthesis from oxidative respiration at the ocean scale, drive export of organic matter from surface to deep ocean and sustain oxygenation of the planetary surface.« less
Kroschwald, Sonja; Maharana, Shovamayee; Mateju, Daniel; Malinovska, Liliana; Nüske, Elisabeth; Poser, Ina; Richter, Doris; Alberti, Simon
2015-01-01
RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI: http://dx.doi.org/10.7554/eLife.06807.001 PMID:26238190
Aliakbari, Farhang; Mohammad-Beigi, Hossein; Rezaei-Ghaleh, Nasrollah; Becker, Stefan; Dehghani Esmatabad, Faezeh; Eslampanah Seyedi, Hadieh Alsadat; Bardania, Hassan; Tayaranian Marvian, Amir; Collingwood, Joanna F; Christiansen, Gunna; Zweckstetter, Markus; Otzen, Daniel E; Morshedi, Dina
2018-05-17
The protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-independent fashion. They do so largely by increasing lag time (formation of fibrillization nuclei) rather than elongation (extension of existing nuclei). Interactions between neutral NLPs and αSN may locate to the N-terminus of the protein. This interaction can even perturb the interaction of αSN with negatively charged NLPs which induces an α-helical structure in αSN. This interaction was found to occur throughout the fibrillization process. Both NLP-Chol and NLP-Chol-PEG were shown to be biocompatible in vitro, and to reduce αSN neurotoxicity and reactive oxygen species (ROS) levels with no influence on intracellular calcium in neuronal cells, emphasizing a prospective role for NLPs in reducing αSN pathogenicity in vivo as well as utility as a vehicle for drug delivery.
Nanoscopic insights into seeding mechanisms and toxicity of α-synuclein species in neurons
Pinotsi, Dorothea; Michel, Claire H.; Buell, Alexander K.; Laine, Romain F.; Mahou, Pierre; Dobson, Christopher M.; Kaminski, Clemens F.; Kaminski Schierle, Gabriele S.
2016-01-01
New strategies for visualizing self-assembly processes at the nanoscale give deep insights into the molecular origins of disease. An example is the self-assembly of misfolded proteins into amyloid fibrils, which is related to a range of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Here, we probe the links between the mechanism of α-synuclein (AS) aggregation and its associated toxicity by using optical nanoscopy directly in a neuronal cell culture model of Parkinson’s disease. Using superresolution microscopy, we show that protein fibrils are taken up by neuronal cells and act as prion-like seeds for elongation reactions that both consume endogenous AS and suppress its de novo aggregation. When AS is internalized in its monomeric form, however, it nucleates and triggers the aggregation of endogenous AS, leading to apoptosis, although there are no detectable cross-reactions between externally added and endogenous protein species. Monomer-induced apoptosis can be reduced by pretreatment with seed fibrils, suggesting that partial consumption of the externally added or excess soluble AS can be significantly neuroprotective. PMID:26993805
Carnosine's Effect on Amyloid Fibril Formation and Induced Cytotoxicity of Lysozyme
Wu, Josephine W.; Liu, Kuan-Nan; How, Su-Chun; Chen, Wei-An; Lai, Chia-Min; Liu, Hwai-Shen; Hu, Chaur-Jong; Wang, Steven S. -S.
2013-01-01
Carnosine, a common dipeptide in mammals, has previously been shown to dissemble alpha-crystallin amyloid fibrils. To date, the dipeptide's anti-fibrillogensis effect has not been thoroughly characterized in other proteins. For a more complete understanding of carnosine's mechanism of action in amyloid fibril inhibition, we have investigated the effect of the dipeptide on lysozyme fibril formation and induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Our study demonstrates a positive correlation between the concentration and inhibitory effect of carnosine against lysozyme fibril formation. Molecular docking results show carnosine's mechanism of fibrillogenesis inhibition may be initiated by binding with the aggregation-prone region of the protein. The dipeptide attenuates the amyloid fibril-induced cytotoxicity of human neuronal cells by reducing both apoptotic and necrotic cell deaths. Our study provides solid support for carnosine's amyloid fibril inhibitory property and its effect against fibril-induced cytotoxicity in SH-SY5Y cells. The additional insights gained herein may pave way to the discovery of other small molecules that may exert similar effects against amyloid fibril formation and its associated neurodegenerative diseases. PMID:24349167
Influence of classical and rock music on red blood cell rheological properties in rats.
Erken, Gulten; Bor Kucukatay, Melek; Erken, Haydar Ali; Kursunluoglu, Raziye; Genc, Osman
2008-01-01
A number of studies have reported physiological effects of music. Different types of music have been found to induce different alterations. Although some physiological and psychological parameters have been demonstrated to be influenced by music, the effect of music on hemorheological parameters such as red blood cell (RBC) deformability and aggregation are unknown. This study aimed at investigating the effects of classical and rock music on hemorheological parameters in rats. Twenty-eight rats were divided into four groups: the control, noise-applied, and the classical music- and rock music-applied groups. Taped classical or rock music were played repeatedly for 1 hour a day for 2 weeks and 95-dB machine sound was applied to the noise-applied rats during the same period. RBC deformability and aggregation were measured using an ektacytometer. RBC deformability was found to be increased in the classical music group. Exposure to both classical and rock music resulted in a decrement in erythrocyte aggregation, but the decline in RBC aggregation was of a higher degree of significance in the classical music group. Exposure to noise did not have any effect on the parameters studied. The results of this study indicate that the alterations in hemorheological parameters were more pronounced in the classical music group compared with the rock music group.
Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation.
Chai, Ye Jin; Sierecki, Emma; Tomatis, Vanesa M; Gormal, Rachel S; Giles, Nichole; Morrow, Isabel C; Xia, Di; Götz, Jürgen; Parton, Robert G; Collins, Brett M; Gambin, Yann; Meunier, Frédéric A
2016-09-12
Munc18-1 is a key component of the exocytic machinery that controls neurotransmitter release. Munc18-1 heterozygous mutations cause developmental defects and epileptic phenotypes, including infantile epileptic encephalopathy (EIEE), suggestive of a gain of pathological function. Here, we used single-molecule analysis, gene-edited cells, and neurons to demonstrate that Munc18-1 EIEE-causing mutants form large polymers that coaggregate wild-type Munc18-1 in vitro and in cells. Surprisingly, Munc18-1 EIEE mutants also form Lewy body-like structures that contain α-synuclein (α-Syn). We reveal that Munc18-1 binds α-Syn, and its EIEE mutants coaggregate α-Syn. Likewise, removal of endogenous Munc18-1 increases the aggregative propensity of α-Syn(WT) and that of the Parkinson's disease-causing α-Syn(A30P) mutant, an effect rescued by Munc18-1(WT) expression, indicative of chaperone activity. Coexpression of the α-Syn(A30P) mutant with Munc18-1 reduced the number of α-Syn(A30P) aggregates. Munc18-1 mutations and haploinsufficiency may therefore trigger a pathogenic gain of function through both the corruption of native Munc18-1 and a perturbed chaperone activity for α-Syn leading to aggregation-induced neurodegeneration. © 2016 Chai et al.
Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation
Giles, Nichole; Morrow, Isabel C.; Collins, Brett M.
2016-01-01
Munc18-1 is a key component of the exocytic machinery that controls neurotransmitter release. Munc18-1 heterozygous mutations cause developmental defects and epileptic phenotypes, including infantile epileptic encephalopathy (EIEE), suggestive of a gain of pathological function. Here, we used single-molecule analysis, gene-edited cells, and neurons to demonstrate that Munc18-1 EIEE-causing mutants form large polymers that coaggregate wild-type Munc18-1 in vitro and in cells. Surprisingly, Munc18-1 EIEE mutants also form Lewy body–like structures that contain α-synuclein (α-Syn). We reveal that Munc18-1 binds α-Syn, and its EIEE mutants coaggregate α-Syn. Likewise, removal of endogenous Munc18-1 increases the aggregative propensity of α-SynWT and that of the Parkinson’s disease–causing α-SynA30P mutant, an effect rescued by Munc18-1WT expression, indicative of chaperone activity. Coexpression of the α-SynA30P mutant with Munc18-1 reduced the number of α-SynA30P aggregates. Munc18-1 mutations and haploinsufficiency may therefore trigger a pathogenic gain of function through both the corruption of native Munc18-1 and a perturbed chaperone activity for α-Syn leading to aggregation-induced neurodegeneration. PMID:27597756
Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem.
Aguado, Alejandra; Fernández-Higuero, José Angel; Moro, Fernando; Muga, Arturo
2015-08-15
The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologs of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Induced oligomerization targets Golgi proteins for degradation in lysosomes.
Tewari, Ritika; Bachert, Collin; Linstedt, Adam D
2015-12-01
Manganese protects cells against forms of Shiga toxin by down-regulating the cycling Golgi protein GPP130. Down-regulation occurs when Mn binding causes GPP130 to oligomerize and traffic to lysosomes. To determine how GPP130 is redirected to lysosomes, we tested the role of GGA1 and clathrin, which mediate sorting in the canonical Golgi-to-lysosome pathway. GPP130 oligomerization was induced using either Mn or a self-interacting version of the FKBP domain. Inhibition of GGA1 or clathrin specifically blocked GPP130 redistribution, suggesting recognition of the aggregated GPP130 by the GGA1/clathrin-sorting complex. Unexpectedly, however, GPP130's cytoplasmic domain was not required, and redistribution also occurred after removal of GPP130 sequences needed for its normal cycling. Therefore, to test whether aggregate recognition might be a general phenomenon rather than one involving a specific GPP130 determinant, we induced homo-oligomerization of two unrelated Golgi-targeted constructs using the FKBP strategy. These were targeted to the cis- and trans-Golgi, respectively, using domains from mannosidase-1 and galactosyltransferase. Significantly, upon oligomerization, each redistributed to peripheral punctae and was degraded. This occurred in the absence of detectable UPR activation. These findings suggest the unexpected presence of quality control in the Golgi that recognizes aggregated Golgi proteins and targets them for degradation in lysosomes. © 2015 Tewari et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Manikandan, Irulappan; Chang, Chien-Huei; Chen, Chia-Ling; Sathish, Veerasamy; Li, Wen-Shan; Malathi, Mahalingam
2017-07-01
Novel benzimidazoquinoline derivative (AVT) was synthesized through a substitution reaction and characterized by various spectral techniques. Analyzing the optical properties of AVT under absorption and emission spectral studies in different environments exclusively with respect to solvents and pH, intriguing characteristics viz. aggregation induced emission enhancement (AIEE) in the THF solvent and 'On-Off' pH sensing were found at neutral pH. Sensing nature of AVT with diverse metal ions and bovine serum albumin (BSA) was also studied. Among the metal ions, Fe3 + ion alone tunes the fluorescence intensity of AVT probe in aqueous medium from ;turn-on; to ;turn-off; through ligand (probe) to metal charge transfer (LMCT) mechanism. The probe AVT in aqueous medium interacts strongly with BSA due to Fluorescence Resonance Energy Transfer (FRET) and the conformational change in BSA was further analyzed using synchronous fluorescence techniques. Docking study of AVT with BSA reveals that the active site of binding is tryptophan residue which is also supported by the experimental results. Interestingly, fluorescent AVT probe in cells was examined through cellular imaging studies using BT-549 and MDA-MB-231 cells. Thus, the single molecule probe based detection of multiple species and stimuli were described.
NASA Astrophysics Data System (ADS)
Zheng, Sichao; Huang, Cuihong; Zhao, Xuyan; Zhang, Yong; Liu, Shuwen; Zhu, Qiuhua
2018-01-01
Organic fluorophores have a wide range of biological uses and are usually needed to be prepared as water-soluble compounds or nanoparticles for applications in aqueous biosystems owing to their hydrophobic properties, which often is a complex, time-consuming and high-cost process. Here, the nanoparticle preparation of hydrophobic fluorophores and their application in cell imaging have been investigated. It was found: a) fetal bovine serum (FBS) shows an excellent dispersion effect on hydrophobic small-molecule organic compounds; b) a hydrophobic C6-unsubstituted tetrahydropyrimidine (Me-THP-Naph) can be prepared as nanosuspensions utilizing cell culture medium with 10% FBS and directly be used as a specific real-time imaging probe for the endoplasmic reticulum (ER), a dynamic organelle playing a crucial role in many cellular processes. Compared with existing ER-targeted organic fluorescent probes, Me-THP-Naph, a product of an efficient five-component reaction that we developed, has unconventional aggregation-induced emission characteristics and shows advantages of low cost, long-term staining, good photostability, high signal-to-noise ratio and excellent biocompatibility, which make it a potential specific probe for real-time ER imaging. More importantly, this work affords a simple strategy for direct application of hydrophobic organic compounds in aqueous biological systems.
Densil, Simon; Chang, Chien-Huei; Chen, Chia-Ling; Mathavan, Alagarsamy; Ramdass, Arumugam; Sathish, Veerasamy; Thanasekaran, Pounraj; Li, Wen-Shan; Rajagopal, Seenivasan
2018-06-01
Three anthracene-based Schiff base complexes, R1-R3 (R1 = (E)-N´-((anthracen-10-yl)methylene)benzohydrazide; R2 = (E)-1-((anthracen-10-yl)methylene)-4-phenylsemicarbazide; and R3 = (E)-1-((anthracen-10-yl)methylene)-4-phenylthiosemicarbazide) were synthesized from 9-anthracenecarboxaldehyde, benzohydrazide, 4-phenylsemicarbazide and 4-phenylthiosemi-carbazide respectively, and characterized by various spectral techniques. The absorption spectral characteristics of R1-R3 were bathochromically tuned to the visible region by extending the π conjugation. These target compounds were weakly fluorescent in tetrahydrofuran (THF) solution because of rapid isomerization of the C=N double bond in the excited state. However, the aqueous dispersion of R1-R3 in the THF/water mixture by the gradual addition of water up to 90% resulted in an increase in the fluorescence intensity mainly due to aggregation-induced emission enhancement (AIEE) properties. The formation of nanoaggregates of R1-R3 were confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The compounds R1-R3 are ideal probes for the fluorescence sensing of bovine serum albumin (BSA) and breast cancer cells by optical cell imaging. Copyright © 2018 John Wiley & Sons, Ltd.
Neuronal glycogen synthesis contributes to physiological aging
Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J
2014-01-01
Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora’s disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. PMID:25059425
Understanding curcumin-induced modulation of protein aggregation.
Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P
2017-07-01
Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.
Critical radius in the organisation of synuclein-alpha interacting protein in living cells
NASA Astrophysics Data System (ADS)
Narayanan, Arjun; Meriin, Anatoli; Sherman, Michael; Cisse, Ibrahim
We report a super-resolution imaging study of protein aggregation in the living cell. Focusing on the aggregation of the Parkinsons's disease linked Synuclein-alpha interacting protein, we found and characterized sub-diffraction aggregates in healthy cells and studied the progression of these aggregates in stressed cells. Our results allowed us to establish the aggregation process as amenable to a simple physical description - the well-established thermodynamics of condensation phenomena. This description turned out to be both robust and useful. Not only did the distribution of aggregate sizes fit exceedingly well to the thermodynamic predictions in all tested conditions, but its evolving shape under pharmacological and genetic perturbations correlated intuitively with predictions from cell biology. The picture emerging from measurements in different genetic and pharmacological states is a view of protein aggregate size distribution as resulting from a non-equilibrium steady state maintained - even in healthy cells - with continuous and concurrent aggregate production and clearance.
Jung, Julia Jeannine; Husse, Britta; Rimmbach, Christian; Krebs, Stefan; Stieber, Juliane; Steinhoff, Gustav; Dendorfer, Andreas; Franz, Wolfgang-Michael; David, Robert
2014-01-01
Summary Therapeutic approaches for “sick sinus syndrome” rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via “biological pacemakers” derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells. These induced sinoatrial bodies (iSABs) exhibited highly increased beating rates (300–400 bpm), coming close to those found in mouse hearts, and were able to robustly pace myocardium ex vivo. Our study introduces iSABs as highly pure, functional nodal tissue that is derived from PSCs and may be important for future cell therapies and drug testing in vitro. PMID:24936448
Carterson, A J; Höner zu Bentrup, K; Ott, C M; Clarke, M S; Pierson, D L; Vanderburg, C R; Buchanan, K L; Nickerson, C A; Schurr, M J
2005-02-01
A three-dimensional (3-D) lung aggregate model was developed from A549 human lung epithelial cells by using a rotating-wall vessel bioreactor to study the interactions between Pseudomonas aeruginosa and lung epithelial cells. The suitability of the 3-D aggregates as an infection model was examined by immunohistochemistry, adherence and invasion assays, scanning electron microscopy, and cytokine and mucoglycoprotein production. Immunohistochemical characterization of the 3-D A549 aggregates showed increased expression of epithelial cell-specific markers and decreased expression of cancer-specific markers compared to their monolayer counterparts. Immunohistochemistry of junctional markers on A549 3-D cells revealed that these cells formed tight junctions and polarity, in contrast to the cells grown as monolayers. Additionally, the 3-D aggregates stained positively for the production of mucoglycoprotein while the monolayers showed no indication of staining. Moreover, mucin-specific antibodies to MUC1 and MUC5A bound with greater affinity to 3-D aggregates than to the monolayers. P. aeruginosa attached to and penetrated A549 monolayers significantly more than the same cells grown as 3-D aggregates. Scanning electron microscopy of A549 cells grown as monolayers and 3-D aggregates infected with P. aeruginosa showed that monolayers detached from the surface of the culture plate postinfection, in contrast to the 3-D aggregates, which remained attached to the microcarrier beads. In response to infection, proinflammatory cytokine levels were elevated for the 3-D A549 aggregates compared to monolayer controls. These findings suggest that A549 lung cells grown as 3-D aggregates may represent a more physiologically relevant model to examine the interactions between P. aeruginosa and the lung epithelium during infection.
Bhattarai, Prabesh; Thomas, Alvin Kuriakose; Cosacak, Mehmet Ilyas; Papadimitriou, Christos; Mashkaryan, Violeta; Froc, Cynthia; Reinhardt, Susanne; Kurth, Thomas; Dahl, Andreas; Zhang, Yixin; Kizil, Caghan
2016-10-18
Human brains are prone to neurodegeneration, given that endogenous neural stem/progenitor cells (NSPCs) fail to support neurogenesis. To investigate the molecular programs potentially mediating neurodegeneration-induced NSPC plasticity in regenerating organisms, we generated an Amyloid-β42 (Aβ42)-dependent neurotoxic model in adult zebrafish brain through cerebroventricular microinjection of cell-penetrating Aβ42 derivatives. Aβ42 deposits in neurons and causes phenotypes reminiscent of amyloid pathophysiology: apoptosis, microglial activation, synaptic degeneration, and learning deficits. Aβ42 also induces NSPC proliferation and enhanced neurogenesis. Interleukin-4 (IL4) is activated primarily in neurons and microglia/macrophages in response to Aβ42 and is sufficient to increase NSPC proliferation and neurogenesis via STAT6 phosphorylation through the IL4 receptor in NSPCs. Our results reveal a crosstalk between neurons and immune cells mediated by IL4/STAT6 signaling, which induces NSPC plasticity in zebrafish brains. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija
2017-01-01
Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mitchell, Jason S.; Brown, Wells S.; Woodside, Darren G.; Vanderslice, Peter; McIntyre, Bradley W.
2008-01-01
Lipid rafts are small laterally mobile microdomains that are highly enriched in lymphocyte signaling molecules. GM1 gangliosides are a common lipid raft component and have been shown to be important in many T cell functions. The aggregation of specific GM1 lipid rafts can control many T cell activation events, including their novel association with T cell integrins. We found that clustering GM1 lipid rafts can regulate β1 integrin function. This was apparent through increased resistance to shear flow dependent detachment of T cells adherent to the α4β1 and α5β1 integrin ligand fibronectin (FN). Adhesion strengthening as a result of clustering GM1 enriched lipid rafts correlated with increased cellular rigidity and morphology through the localization of cortical F-actin, the resistance to shear induced cell stretching, and an increase in the surface area and symmetry of the contact area between the cell surface and adhesive substrate. Furthermore, clustering GM1 lipid rafts could initiate integrin “inside-out” signaling mechanisms. This was seen through increased integrin-cytoskeleton associations and enhanced soluble binding of FN and VCAM-1 suggesting the induction of high affinity integrin conformations. The activation of these adhesion strengthening characteristics appear to be specific for the aggregation of GM1 lipid rafts as the aggregation of the heterogeneous raft associated molecule CD59 failed to activate these functions. These findings indicate a novel mechanism to signal to β1 integrins and to activate adhesion strengthening processes. PMID:19139760
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taneo, Jun; Adachi, Takumi; Yoshida, Aiko
2015-03-13
Amyloid β (Aβ) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1β (IL-1β) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aβ aggregates on IL-1β production in mouse primary microglia. We prepared Aβ oligomer and fibril from Aβ (1–42) peptide in vitro. We analyzed the characteristics of these oligomers and fibrils by electrophoresis and atomic force microscopy. Interestingly, Aβ oligomers but not Aβ monomers or fibrils induced robust IL-1β production in themore » presence of lipopolysaccharide. Moreover, Aβ oligomers induced endo/phagolysosome rupture, which released cathepsin B into the cytoplasm. Aβ oligomer-induced IL-1β production was inhibited not only by the cathepsin B inhibitor CA-074-Me but also by the reactive oxygen species (ROS) inhibitor N-acetylcysteine. Random chemical crosslinking abolished the ability of the oligomers to induce IL-1β. Thus, multimerization and fibrillization causes Aβ oligomers to lose the ability to induce IL-1β. These results indicate that Aβ oligomers, but not fibrils, induce IL-1β production in primary microglia in a cathepsin B- and ROS-dependent manner. - Highlights: • We prepared amyloid β (Aβ) fibrils with minimum contamination of Aβ oligomers. • Primary microglia (MG) produced IL-1β in response to Aβ oligomers, but not fibrils. • Only Aβ oligomers induced leakage of cathepsin B from endo/phagolysosomes. • IL-1β production in response to Aβ oligomers depended on both cathepsin B and ROS. • Crosslinking reduced the ability of the Aβ oligomers to induce IL-1β from MG.« less
2018-01-01
Synthetic hydrogel materials can recapitulate the natural cell microenvironment; however, it is equally necessary that the gels maintain cell viability and phenotype while permitting reisolation without stress, especially for use in the stem cell field. Here, we describe a family of synthetically accessible, squaramide-based tripodal supramolecular monomers consisting of a flexible tris(2-aminoethyl)amine (TREN) core that self-assemble into supramolecular polymers and eventually into self-recovering hydrogels. Spectroscopic measurements revealed that monomer aggregation is mainly driven by a combination of hydrogen bonding and hydrophobicity. The self-recovering hydrogels were used to encapsulate NIH 3T3 fibroblasts as well as human-induced pluripotent stem cells (hiPSCs) and their derivatives in 3D. The materials reported here proved cytocompatible for these cell types with maintenance of hiPSCs in their undifferentiated state essential for their subsequent expansion or differentiation into a given cell type and potential for facile release by dilution due to their supramolecular nature. PMID:29528623
Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T
1986-05-01
The pharmacological mechanisms of platelet aggregation induced by highly toxic proteins (CrTX-I, CrTX-II, and CrTX-III) obtained from tentacles of a jellyfish, Carybdea rastonii, were investigated. When the partially purified toxin (pCrTX) and CrTXs were added to the citrated platelet-rich plasma (PRP), aggregation was produced in a concentration-dependent manner. The activity of CrTXs was approximately 100 times more potent than pCrTX. The CrTXs-induced aggregation was little affected by indomethacin and quinacrine at concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. The CrTXs-induced aggregation in washed platelets was significantly augmented in the presence of Ca2+. The pretreatment with verapamil failed to modify this augmentation of aggregation. The concentration of cytoplasmic-free calcium ([Ca2+]i) of platelets was increased by CrTXs at the same concentrations that produced aggregation. This effect of CrTXs was again little affected by verapamil. CrTXs at the same concentrations as those that produced aggregation and increased [Ca2+]i caused depolarization of platelets, which was unchanged after pretreatment with sodium or potassium transport inhibitors. CrTX-I significantly increased the 22Na flux into platelets and this effect of CrTX-I was unaffected by tetrodotoxin. The CrTX-I-induced aggregation, depolarization, and increase in [Ca2+]i were all significantly attenuated in the low Na+ medium. These results suggest that CrTXs cause a massive depolarization by increasing cation permeability and this generalized depolarization permits an inward movement of Ca2+ down its electrochemical gradient which, in turn, triggers platelet aggregation.
Hemoglobin Aggregation in Single Red Blood Cells of Sickle Cell Anemia
NASA Astrophysics Data System (ADS)
Nishio, Izumi; Tanaka, Toyoichi; Sun, Shao-Tang; Imanishi, Yuri; Tsuyoshi Ohnishi, S.
1983-06-01
A laser light scattering technique was used to observe the extent of hemoglobin aggregation in solitary red blood cells of sickle cell anemia. Hemoglobin aggregation was confirmed in deoxygenated cells. The light scattering technique can also be applied to cytoplasmic studies of any biological cell.
NASA Astrophysics Data System (ADS)
Barbosa Neto, Newton; Dutra, Marcia; Araujo, Paulo; Sampaio, Renato
Solution aggregated thin films of conjugated polymers have demonstrated to be promising materials for many applications, e.g., solar cells and field-effect transistors. There are many standard methods to generate aggregates in polymeric solution, which includes poor solvent addiction and solution temperature manipulation. Here, we demonstrate a new approach to induce aggregate formation on solution of P3HT polymer. Under light excitation with 355 nm or 532 nm pulsed laser the polymer exhibit significant changes on its UV-Vis spectrum which are most known in the literature as the formation of H-J aggregates and additional new bands associated with polaron formation. Such changes in the amorphous phase of the polymers are seen in specific conditions of solvent combinations. We show also the dependency on the excitation laser power which can be identified as a threshold to ignite the formation of the new structure. We are grateful to CNPq and CAPES for financial support.
Metazoan Hsp70 machines use Hsp110 to power protein disaggregation.
Rampelt, Heike; Kirstein-Miles, Janine; Nillegoda, Nadinath B; Chi, Kang; Scholz, Sebastian R; Morimoto, Richard I; Bukau, Bernd
2012-11-05
Accumulation of aggregation-prone misfolded proteins disrupts normal cellular function and promotes ageing and disease. Bacteria, fungi and plants counteract this by solubilizing and refolding aggregated proteins via a powerful cytosolic ATP-dependent bichaperone system, comprising the AAA+ disaggregase Hsp100 and the Hsp70-Hsp40 system. Metazoa, however, lack Hsp100 disaggregases. We show that instead the Hsp110 member of the Hsp70 superfamily remodels the human Hsp70-Hsp40 system to efficiently disaggregate and refold aggregates of heat and chemically denatured proteins in vitro and in cell extracts. This Hsp110 effect relies on nucleotide exchange, not on ATPase activity, implying ATP-driven chaperoning is not required. Knock-down of nematode Caenorhabditis elegans Hsp110, but not an unrelated nucleotide exchange factor, compromises dissolution of heat-induced protein aggregates and severely shortens lifespan after heat shock. We conclude that in metazoa, Hsp70-Hsp40 powered by Hsp110 nucleotide exchange represents the crucial disaggregation machinery that reestablishes protein homeostasis to counteract protein unfolding stress.
Acid-induced aggregation propensity of nivolumab is dependent on the Fc.
Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Xu, Lu; Zhang, Junjie; Guo, Qingcheng; Zhang, Dapeng; Qian, Weizhu; Li, Bohua; Dai, Jianxin; Hou, Sheng; Guo, Yajun; Wang, Hao
2016-01-01
Nivolumab, an anti-programmed death (PD)1 IgG4 antibody, has shown notable success as a cancer treatment. Here, we report that nivolumab was susceptible to aggregation during manufacturing, particularly in routine purification steps. Our experimental results showed that exposure to low pH caused aggregation of nivolumab, and the Fc was primarily responsible for an acid-induced unfolding phenomenon. To compare the intrinsic propensity of acid-induced aggregation for other IgGs subclasses, tocilizumab (IgG1), panitumumab (IgG2) and atezolizumab (aglyco-IgG1) were also investigated. The accurate pH threshold of acid-induced aggregation for individual IgG Fc subclasses was identified and ranked as: IgG1 < aglyco-IgG1 < IgG2 < IgG4. This result was cross-validated by thermostability and conformation analysis. We also assessed the effect of several protein stabilizers on nivolumab, and found mannitol ameliorated the acid-induced aggregation of the molecule. Our results provide valuable insight into downstream manufacturing process development, especially for immune checkpoint modulating molecules with a human IgG4 backbone.
Becker, Diane M.; Yanek, Lisa R.; Faraday, Nauder; Vaidya, Dhananjay; Mathias, Rasika; Kral, Brian G.; Becker, Lewis C.
2014-01-01
Abstract Greater ex vivo platelet aggregation to agonists may identify individuals at risk of acute coronary syndromes (ACS). However, increased aggregation to a specific agonist may be masked by inherent variability in other activation pathways. In this study, we inhibited the cyclooxygenase‐1 (COX1) pathway with 2‐week aspirin therapy and measured residual aggregation to collagen and ADP to determine whether increased aggregation in a non‐COX1 pathway is associated with incident ACS. We assessed ex vivo whole blood platelet aggregation in 1,699 healthy individuals with a family history of early‐onset coronary artery disease followed for 6±1.2 years. Incident ACS events were observed in 22 subjects. Baseline aggregation was not associated with ACS. After COX1 pathway inhibition, collagen‐induced aggregation was significantly greater in participants with ACS compared with those without (29.0 vs. 23.6 ohms, p < 0.001). In Cox proportional hazards models, this association remained significant after adjusting for traditional cardiovascular risk factors (HR = 1.10, 95%CI = 1.06–1.15; p < 0.001). In contrast, ADP‐induced aggregation after COX1 inhibition was not associated with ACS. After COX1 pathway inhibition, subjects with greater collagen‐induced platelet aggregation demonstrated a significant excess risk of incident ACS. These data suggest that platelet activation related to collagen may play an important role in the risk of ACS. PMID:25066685
Evidence for Compression of Escherichia coli K12 Cells under the Effect of TiO₂ Nanoparticles.
Zhukova, Lyudmila V
2015-12-16
It has been shown that treatment with titanium dioxide nanoparticles (TiO2 NPs) combined with near-ultraviolet (UV-A) irradiation or in certain dark conditions reduced the numbers of various microorganisms, but the mechanism of this effect remains unclear. In this study to further clarify the mechanism of the antibacterial effect of TiO2 NPs the physiological state of E. coli K12 cells was estimated after incubation with the NPs (0.2 g/L) for different periods of time, with or without UV-A irradiation. Cell incubation with TiO2 NPs, combined or not combined with UV-A irradiation, showed that inactive cells were located only within cell aggregates formed after incubation with TiO2 NPs and that the larger the aggregate, the greater the number of such cells. When the formation of large aggregates was prevented, exposure to NPs under UV-A irradiation failed to result in cell inactivation. A comparative analysis of fluorescence and optical microscopic images of the same aggregates showed that the location of inactivated cells coincided with the zone of increased optical density within the aggregate. After treatment with TiO2 NPs under UV-A for 30, 60, or 120 min cells within the aggregates were the first to be inactivated. Cells on which NPs irradiated more strongly (at the periphery of large aggregates and single) remained active for a longer time than cells within the aggregates. As the time of treatment increased, so did the degree of cell compaction, with some zones of the aggregates eventually transforming into an acellular mass. After UV-A irradiation the cell aggregates spontaneously moved toward each other and gradually fused into larger structures, indicating that such exposure enhanced mutual attraction of cells treated with the NPs. Present study provides evidence for hypothesis that bacterial cells covered with TiO2 NPs are inactivated due to their mutual attraction and consequent compression.
Tao, Yong; Rongin, Uwitije; Xing, Zhongwen
2016-01-01
The malaria-infected red blood cells experience a significant decrease in cell deformability and increase in cell membrane adhesion. Blood hemodynamics in microvessels is significantly affected by the alteration of the mechanical property as well as the aggregation of parasitized red blood cells. In this study, we aim to numerically study the connection between cell-level mechanobiological properties of human red blood cells and related malaria disease state by investigating the transport of multiple red blood cell aggregates passing through microchannels with symmetric stenosis. Effects of stenosis magnitude, aggregation strength, and cell deformability on cell rheology and flow characteristics were studied by a two-dimensional model using the fictitious domain-immersed boundary method. The results indicated that the motion and dissociation of red blood cell aggregates were influenced by these factors and the flow resistance increases with the increase of aggregating strength and cell stiffness. Further, the roughness of the velocity profile was enhanced by cell aggregation, which considerably affected the blood flow characteristics. The study may assist us in understanding cellular-level mechanisms in disease development. PMID:28105411
Self-organized, near-critical behavior during aggregation in Dictyostelium discoideum
NASA Astrophysics Data System (ADS)
de Palo, Giovanna; Yi, Darvin; Gregor, Thomas; Endres, Robert
During starvation, the social amoeba Dictyostelium discoideum aggregates artfully via pattern formation into a multicellular slug and finally spores. The aggregation process is mediated by the secretion and sensing of cyclic adenosine monophosphate, leading to the synchronized movement of cells. The whole process is a remarkable example of collective behavior, spontaneously emerging from single-cell chemotaxis. Despite this phenomenon being broadly studied, a precise characterization of the transition from single cells to multicellularity has been elusive. Here, using fluorescence imaging data of thousands of cells, we investigate the role of cell shape in aggregation, demonstrating remarkable transitions in cell behavior. To better understand their functional role, we analyze cell-cell correlations and provide evidence for self-organization at the onset of aggregation (as opposed to leader cells), with features of criticality in this finite system. To capture the mechanism of self-organization, we extend a detailed single-cell model of D.discoideum chemotaxis by adding cell-cell communication. We then use these results to extract a minimal set of rules leading to aggregation in the population model. If universal, similar rules may explain other types of collective cell behavior.
Wen, Jie; Fang, Fang; Guo, Shu-Han; Zhang, Ying; Peng, Xiang-Lei; Sun, Wei-Min; Wei, Xiao-Ran; He, Jin-Sheng; Hung, Tao
2018-02-01
Autophagy is disturbed in Alzheimer's disease (AD) and maintaining normal autophagy homeostasis is a new therapeutic strategy for AD treatment. Amyloid β-derived diffusible ligands (ADDLs), the most toxic species of which are oligomeric forms of amyloid β peptide (Aβ) that originate from amyloid β precursor protein (APP) via autophagy; however, whether ADDLs are involved in autophagy-related AD pathogenesis remains unclear. In this study, we primarily defined the specific subsets of ADDLs, A-0, A-12, A-24, and A-48, which were generated from ADDL aggregation mixtures at different time courses of assembly. The secondary structures of ADDL subsets were detected by circular dichroism (CD). Neuronal or non-neuronal cells were exposed to the subsets of ADDLs in vitro, and then, autophagic markers were detected. Our results first showed that exogenous or endogenous LC3 puncta (autophagosomes) were induced in the cytoplasm of cells exposed to ADDLs and that the LC3 puncta were the strongest with A-24 exposure. Then, the CD spectroscopy data also indicated that the proportion of α-helices decreased, whereas the proportion of β-strands and β-turns increased during ADDL assembly from 0 to 24 h. In addition, the quantitative Western blot data demonstrated that the ratio of LC3B-II/I was significantly increased, and SQSTM1/p62 decreased over time. Finally, our results indicated that the level of phosphorylated p70 S6 kinase (p-p70 S6 kinase), which is a substrate protein in the MTOR pathway, and the ratio of p-p70 S6 kinase/p70 S6 kinase significantly decreased following A-24 exposure. Taken together, our data suggest that ADDL-induced abnormal autophagy is correlated with Aβ aggregation degree and the MTOR pathway, which might contribute to ADDL-induced AD pathogenesis.
Endothelial progenitor cells inhibit platelet function in a P-selectin-dependent manner.
Abou-Saleh, Haissam; Hachem, Ahmed; Yacoub, Daniel; Gillis, Marc-Antoine; Merhi, Yahye
2015-05-07
The role of endothelial progenitor cells (EPCs) in vascular repair is related to their recruitment at the sites of injury and their interaction with different components of the circulatory system. We have previously shown that EPCs bind and inhibit platelet function and impair thrombus formation via prostacyclin secretion, but the role of EPC binding to platelet P-selectin in this process has not been fully characterized. In the present study, we assessed the impact of EPCs on thrombus formation and we addressed the implication of P-selectin in this process. EPCs were generated from human peripheral blood mononuclear cells cultured on fibronectin in conditioned media. The impact of EPCs on platelet aggregation and thrombus formation was investigated in P-selectin deficient (P-sel(-/-)) mice and their wild-type (WT) counterparts. EPCs significantly and dose-dependently impaired collagen-induced whole blood platelet aggregation in WT mice, whereas no effects were observed in P-sel(-/-) mice. Moreover, in a ferric chloride-induced arterial thrombosis model, infusion of EPCs significantly reduced thrombus formation in WT, but not in P-sel(-/-) mice. Furthermore, the relative mass of thrombi generated in EPC-treated P-sel(-/-) mice were significantly larger than those in EPC-treated WT mice, and the number of EPCs recruited within the thrombi and along the arterial wall was reduced in P-sel(-/-) mice as compared to WT mice. This study shows that EPCs impair platelet aggregation and reduce thrombus formation via a cellular mechanism involving binding to platelet P-selectin. These findings add new insights into the role of EPC-platelet interactions in the regulation of thrombotic events during vascular repair.
In Vitro Assessment of Nanoparticle Effects on Blood Coagulation.
Potter, Timothy M; Rodriguez, Jamie C; Neun, Barry W; Ilinskaya, Anna N; Cedrone, Edward; Dobrovolskaia, Marina A
2018-01-01
Blood clotting is a complex process which involves both cellular and biochemical components. The key cellular players in the blood clotting process are thrombocytes or platelets. Other cells, including leukocytes and endothelial cells, contribute to clotting by expressing the so-called pro-coagulant activity (PCA) complex on their surface. The biochemical component of blood clotting is represented by the plasma coagulation cascade, which includes plasma proteins also known as coagulation factors. The coordinated interaction between platelets, leukocytes, endothelial cells, and plasma coagulation factors is necessary for maintaining hemostasis and for preventing excessive bleeding. Undesirable activation of all or some of these components may lead to pathological blood coagulation and life-threatening conditions such as consumptive coagulopathy or disseminated intravascular coagulation (DIC). In contrast, unintended inhibition of the coagulation pathways may lead to hemorrhage. Thrombogenicity is the property of a test material to induce blood coagulation by affecting one or more elements of the clotting process. Anticoagulant activity refers to the property of a test material to inhibit coagulation. The tendency to cause platelet aggregation, perturb plasma coagulation, and induce leukocyte PCA can serve as an in vitro measure of a nanomaterial's likelihood to be pro- or anticoagulant in vivo. This chapter describes three procedures for in vitro analyses of platelet aggregation, plasma coagulation time, and activation of leukocyte PCA. Platelet aggregation and plasma coagulation procedures have been described earlier. The revision here includes updated details about nanoparticle sample preparation, selection of nanoparticle concentration for the in vitro study, and updated details about assay controls. The chapter is expanded to describe a method for the leukocyte PCA analysis and case studies demonstrating the performance of these in vitro assays.
Thamilselvan, Vijayalakshmi; Menon, Mani
2013-01-01
Oxalate-induced oxidative cell injury is one of the major mechanisms implicated in calcium oxalate nucleation, aggregation and growth of kidney stones. We previously demonstrated that oxalate-induced NADPH oxidase-derived free radicals play a significant role in renal injury. Since NADPH oxidase activation requires several regulatory proteins, the primary goal of this study was to characterize the role of Rac GTPase in oxalate-induced NADPH oxidase-mediated oxidative injury in renal epithelial cells. Our results show that oxalate significantly increased membrane translocation of Rac1 and NADPH oxidase activity of renal epithelial cells in a time-dependent manner. We found that NSC23766, a selective inhibitor of Rac1, blocked oxalate-induced membrane translocation of Rac1 and NADPH oxidase activity. In the absence of Rac1 inhibitor, oxalate exposure significantly increased hydrogen peroxide formation and LDH release in renal epithelial cells. In contrast, Rac1 inhibitor pretreatment, significantly decreased oxalate-induced hydrogen peroxide production and LDH release. Furthermore, PKC α and δ inhibitor, oxalate exposure did not increase Rac1 protein translocation, suggesting that PKC resides upstream from Rac1 in the pathway that regulates NADPH oxidase. In conclusion, our data demonstrate for the first time that Rac1-dependent activation of NADPH oxidase might be a crucial mechanism responsible for oxalate-induced oxidative renal cell injury. These findings suggest that Rac1 signaling plays a key role in oxalate-induced renal injury, and may serve as a potential therapeutic target to prevent calcium oxalate crystal deposition in stone formers and reduce recurrence. PMID:21814770
Cao, M; Zhang, J B; Dong, D D; Mou, Y; Li, K; Fang, J; Wang, Z Y; Chen, C; Zhao, J; Yie, S M
2015-10-16
Cells isolated from human first trimester umbilical cord perivascular layer (hFTM-PV) tissues display the pluripotent characteristics of stem cells. In this study, we examined whether hFTM-PV cells can differentiate into islet-like clusters (ILCs) in vitro, and whether transplantation of the hFTM-PV cells with and without differentiation in vitro can alleviate diabetes in nude mice. The hFTM-PV cells were differentiated into ILCs in vitro through a simple stepwise culture protocol. To examine the in vivo effects of the cells, the hFTM-PV cells with and without differentiation in vitro were transplanted into the abdominal cavity of nude mice with streptozotocin (STZ)-induced diabetes. Blood glucose levels, body weight, and the survival probability of the diabetic nude mice were then statistically analyzed. The hFTM-PV cells were successfully induced into ILCs that could release insulin in response to elevated concentrations of glucose in vitro. In transplantation experiments, we observed that mice transplanted with the undifferentiated hFTM-PV cells, embryonic body-like cell aggregations, or ILCs all demonstrated normalized hyperglycemia and showed improved survival rate compared with those without cell transplantation. The hFTM-PV cells have the ability to differentiate into ILCs in vitro and transplantations of undifferentiated and differentiated cells can alleviate STZ-induced diabetes in nude mice. This may offer a potential cell source for stem cell-based therapy for treating diabetes in the future.
An in vitro model of Mycobacterium leprae induced granuloma formation
2013-01-01
Background Leprosy is a contagious and chronic systemic granulomatous disease caused by Mycobacterium leprae. In the pathogenesis of leprosy, granulomas play a key role, however, the mechanisms of the formation and maintenance of M. leprae granulomas are still not clearly understood. Methods To better understand the molecular physiology of M. leprae granulomas and the interaction between the bacilli and human host cells, we developed an in vitro model of human granulomas, which mimicked the in vivo granulomas of leprosy. Macrophages were differentiated from human monocytes, and infected with M. leprae, and then cultured with autologous human peripheral blood mononuclear cells (PBMCs). Results Robust granuloma-like aggregates were obtained only when the M. leprae infected macrophages were co-cultured with PBMCs. Histological examination showed M. leprae within the cytoplasmic center of the multinucleated giant cells, and these bacilli were metabolically active. Macrophages of both M1 and M2 types co-existed in the granuloma like aggregates. There was a strong relationship between the formation of granulomas and changes in the expression levels of cell surface antigens on macrophages, cytokine production and the macrophage polarization. The viability of M. leprae isolated from granulomas indicated that the formation of host cell aggregates benefited the host, but the bacilli also remained metabolically active. Conclusions A simple in vitro model of human M. leprae granulomas was established using human monocyte-derived macrophages and PBMCs. This system may be useful to unravel the mechanisms of disease progression, and subsequently develop methods to control leprosy. PMID:23782413
An in vitro model of Mycobacterium leprae induced granuloma formation.
Wang, Hongsheng; Maeda, Yumi; Fukutomi, Yasuo; Makino, Masahiko
2013-06-20
Leprosy is a contagious and chronic systemic granulomatous disease caused by Mycobacterium leprae. In the pathogenesis of leprosy, granulomas play a key role, however, the mechanisms of the formation and maintenance of M. leprae granulomas are still not clearly understood. To better understand the molecular physiology of M. leprae granulomas and the interaction between the bacilli and human host cells, we developed an in vitro model of human granulomas, which mimicked the in vivo granulomas of leprosy. Macrophages were differentiated from human monocytes, and infected with M. leprae, and then cultured with autologous human peripheral blood mononuclear cells (PBMCs). Robust granuloma-like aggregates were obtained only when the M. leprae infected macrophages were co-cultured with PBMCs. Histological examination showed M. leprae within the cytoplasmic center of the multinucleated giant cells, and these bacilli were metabolically active. Macrophages of both M1 and M2 types co-existed in the granuloma like aggregates. There was a strong relationship between the formation of granulomas and changes in the expression levels of cell surface antigens on macrophages, cytokine production and the macrophage polarization. The viability of M. leprae isolated from granulomas indicated that the formation of host cell aggregates benefited the host, but the bacilli also remained metabolically active. A simple in vitro model of human M. leprae granulomas was established using human monocyte-derived macrophages and PBMCs. This system may be useful to unravel the mechanisms of disease progression, and subsequently develop methods to control leprosy.
Amsterdam, A; Berkowitz, A; Nimrod, A; Kohen, F
1980-01-01
The temporal relationship between redistribution of receptors to lutropin (luteinizing hormone)/human chorionic gonadotropin in cultured rat ovarian granulosa cells and the cellular response to hormonal challenge were studied. Visualization of receptor-bound human chorionic gonadotropin by indirect immunofluorescence, with hormone-specific antibodies after fixation with 2% formaldehyde, revealed the existence of small clusters around the entire cell circumference 5--20 min after exposure to the hormone at 37 degrees C. Such small receptor aggregates were also evident if hormone incubation was at 4 degrees C or if cells were fixed with 2% formaldehyde before incubation. Larger clusters were evident after prolonged incubation with the hormone (2--4 hr) at 37 degrees C. The later change coincided with diminished cyclic AMP accumulation in respose to challenge with fresh hormone. When the fixation step was omitted and antibodies to human chorionic gonadotropin were applied after hormonal binding, acceleration of both receptor clustering and the desensitization process was observed. This maneuver also induced capping of the hormone receptors. In contrast, monovalent Fab' fragments of the antibodies were without effect. Internalization of the bound hormone in lysosomes, and subsequent degradation, was evident 8 hr after hormonal application and was not accelerated by the antibodies. It is suggested that clustering of the luteinizing hormone receptors may play a role in cellular responsiveness to the hormone. Massive aggregation of the receptors may desensitize the cell by interferring with coupling to adenylate cyclase. Images PMID:6251459
Tanaka, Yoshinori; Nonaka, Takashi; Suzuki, Genjiro; Kametani, Fuyuki; Hasegawa, Masato
2016-04-01
Profilin 1 (PFN1) is an actin monomer-binding protein essential for regulating cytoskeletal dynamics in all cell types. Recently, mutations in the PFN1 gene have been identified as a cause of familial amyotrophic lateral sclerosis (ALS). The co-aggregation of PFN1 bearing mutations that cause ALS with TDP-43 (a key molecule in both sporadic and some familial forms of ALS), together with the classical TDP-43 pathology detected in post-mortem tissues of patients with autosomal dominant PFN1 mutation, imply that gain-of-toxic-function of PFN1 mutants is associated with the onset of ALS. However, it remains unknown how PFN1 mutants cause ALS. We found mutant PFN1 that causes ALS formed cytoplasmic aggregates positive for ubiquitin and p62, and these aggregates sequestered endogenous TDP-43. In cells harboring PFN1 aggregates, formation of aggresome-like structures was inhibited in the presence of proteasome inhibitor, and conversion of LC3-I to LC3-II was suppressed in the presence of lysosome inhibitor. Further, insoluble TDP-43 was increased in both cases. Co-expression of ALS-linked mutant PFN1 and TDP-43 increased insoluble and phosphorylated TDP-43 levels. The C-terminal region of TDP-43, essential for aggregation of TDP-43, was also indispensable for the interaction with PFN1. Interestingly, insoluble fractions prepared from cells expressing ALS-linked mutant PFN1 functioned as a seed to induce accumulation and phosphorylation of TDP-43, indicating that TDP-43 accumulated in the presence of the PFN1 mutants is converted to prion-like species. These findings provide new insight into the mechanisms of neurodegeneration in ALS, suggesting that gain-of-toxic-function PFN1 gene mutation leads to conformational change of TDP-43. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
CHOI, YONG-JOON; KIM, NAM HO; LIM, MAN SUP; LEE, HEE JAE; KIM, SUNG SOO; CHUN, WANJOO
2014-01-01
Although selective striatal cell death is a characteristic hallmark in the pathogenesis of Huntington’s disease (HD), the underlying mechanism of striatal susceptibility remains to be clarified. Heat shock proteins (HSPs) have been reported to suppress the aggregate formation of mutant huntingtin and concurrent striatal cell death. In a previous study, we observed that heat shock transcription factor 1 (HSF1), a major transcription factor of HSPs, significantly attenuated 3-nitropropionic acid (3NP)-induced reactive oxygen species (ROS) production and apoptosis through the expression of HSP 70 in striatal cells. To investigate the differential roles of HSPs in 3NP-induced striatal cell death, the effect of geldanamycin (GA), an HSP 90 inhibitor, was examined in 3NP-stimulated striatal cells. GA significantly attenuated 3NP-induced striatal apoptosis and ROS production with an increased expression of HSP 70. Triptolide (TL), an HSP 70 inhibitor, abolished GA-mediated protective effects in 3NP-stimulated striatal cells. To understand the underlying mechanism by which GA-mediated HSP 70 protects striatal cells against 3NP stimulation, the involvement of various signaling pathways was examined. GA significantly attenuated 3NP-induced c-Jun N-terminal kinase (JNK) phosphorylation and subsequent c-Jun phosphorylation in striatal cells. Taken together, the present study demonstrated that GA exhibits protective properties against 3NP-induced apoptosis and JNK activation via the induction of HSP 70 in striatal cells, suggesting that expression of HSP 70 may be a valuable therapeutic target in the treatment of HD. PMID:24756698
Choi, Yong-Joon; Kim, Nam Ho; Lim, Man Sup; Lee, Hee Jae; Kim, Sung Soo; Chun, Wanjoo
2014-07-01
Although selective striatal cell death is a characteristic hallmark in the pathogenesis of Huntington's disease (HD), the underlying mechanism of striatal susceptibility remains to be clarified. Heat shock proteins (HSPs) have been reported to suppress the aggregate formation of mutant huntingtin and concurrent striatal cell death. In a previous study, we observed that heat shock transcription factor 1 (HSF1), a major transcription factor of HSPs, significantly attenuated 3‑nitropropionic acid (3NP)‑induced reactive oxygen species (ROS) production and apoptosis through the expression of HSP 70 in striatal cells. To investigate the differential roles of HSPs in 3NP‑induced striatal cell death, the effect of geldanamycin (GA), an HSP 90 inhibitor, was examined in 3NP‑stimulated striatal cells. GA significantly attenuated 3NP‑induced striatal apoptosis and ROS production with an increased expression of HSP 70. Triptolide (TL), an HSP 70 inhibitor, abolished GA‑mediated protective effects in 3NP‑stimulated striatal cells. To understand the underlying mechanism by which GA‑mediated HSP 70 protects striatal cells against 3NP stimulation, the involvement of various signaling pathways was examined. GA significantly attenuated 3NP‑induced c‑Jun N‑terminal kinase (JNK) phosphorylation and subsequent c‑Jun phosphorylation in striatal cells. Taken together, the present study demonstrated that GA exhibits protective properties against 3NP‑induced apoptosis and JNK activation via the induction of HSP 70 in striatal cells, suggesting that expression of HSP 70 may be a valuable therapeutic target in the treatment of HD.
Chiang, Ming-Chang; Chen, Hui-Mei; Lai, Hsing-Lin; Chen, Hsiao-Wen; Chou, Szu-Yi; Chen, Chiung-Mei; Tsai, Fuu-Jen; Chern, Yijuang
2009-08-15
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The resultant mutant Htt protein (mHtt) forms aggregates in the brain and several peripheral tissues (e.g. the liver) and causes devastating neuronal degeneration. Metabolic defects resulting from Htt aggregates in peripheral tissues also contribute to HD pathogenesis. Simultaneous improvement of defects in both the CNS and peripheral tissues is thus the most effective therapeutic strategy and is highly desirable. We earlier showed that an agonist of the A(2A) adenosine receptor (A(2A) receptor), CGS21680 (CGS), attenuates neuronal symptoms of HD. We found herein that the A(2A) receptor also exists in the liver, and that CGS ameliorated the urea cycle deficiency by reducing mHtt aggregates in the liver. By suppressing aggregate formation, CGS slowed the hijacking of a crucial transcription factor (HSF1) and two protein chaperons (Hsp27 and Hsp70) into hepatic Htt aggregates. Moreover, the abnormally high levels of high-molecular-mass ubiquitin conjugates in the liver of an HD mouse model (R6/2) were also ameliorated by CGS. The protective effect of CGS against mHtt-induced aggregate formation was reproduced in two cells lines and was prevented by an antagonist of the A(2A) receptor and a protein kinase A (PKA) inhibitor. Most importantly, the mHtt-induced suppression of proteasome activity was also normalized by CGS through PKA. Our findings reveal a novel therapeutic pathway of A(2A) receptors in HD and further strengthen the concept that the A(2A) receptor can be a drug target in treating HD.
Trevino, R. Sean; Lauckner, Jane E.; Sourigues, Yannick; Pearce, Margaret M.; Bousset, Luc; Melki, Ronald; Kopito, Ron R.
2012-01-01
The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathy, inherited disorders like Huntington disease, and sporadic diseases like Alzheimer and Parkinson diseases, is intimately linked to the formation of fibrillar protein aggregates. It is becoming increasingly appreciated that prion-like intercellular transmission of protein aggregates can contribute to the stereotypical spread of disease pathology within the brain, but the mechanisms underlying the binding and uptake of protein aggregates by mammalian cells are largely uninvestigated. We have investigated the properties of polyglutamine (polyQ) aggregates that endow them with the ability to bind to mammalian cells in culture and the properties of the cell surface that facilitate such uptake. Binding and internalization of polyQ aggregates are common features of mammalian cells and depend upon both trypsin-sensitive and trypsin-resistant saturable sites on the cell surface, suggesting the involvement of cell surface proteins in this process. polyQ aggregate binding depends upon the presence of a fibrillar amyloid-like structure and does not depend upon electrostatic interaction of fibrils with the cell surface. Sequences in the huntingtin protein that flank the amyloid-forming polyQ tract also influence the extent to which aggregates are able to bind to cell surfaces. PMID:22753412
The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis
Zhou, Junsong; Wu, Yi; Wang, Lu; Rauova, Lubica; Hayes, Vincent M.; Poncz, Mortimer; Essex, David W.
2015-01-01
Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation. PMID:26529254
Sarmiento, Rosa E; Tirado, Rocio G; Valverde, Laura E; Gómez-Garcia, Beatriz
2007-01-01
Background The binding of viral-specific antibodies to cell-surface antigens usually results in down modulation of the antigen through redistribution of antigens into patches that subsequently may be internalized by endocytosis or may form caps that can be expelled to the extracellular space. Here, by use of confocal-laser-scanning microscopy we investigated the kinetics of the modulation of respiratory syncytial virus (RSV) antigen by RSV-specific IgG. RSV-infected human epithelial cells (HEp-2) were incubated with anti-RSV polyclonal IgG and, at various incubation times, the RSV-cell-surface-antigen-antibody complexes (RSV Ag-Abs) and intracellular viral proteins were detected by indirect immunoflourescence. Results Interaction of anti-RSV polyclonal IgG with RSV HEp-2 infected cells induced relocalization and aggregation of viral glycoproteins in the plasma membrane formed patches that subsequently produced caps or were internalized through clathrin-mediated endocytosis participation. Moreover, the concentration of cell surface RSV Ag-Abs and intracellular viral proteins showed a time dependent cyclic variation and that anti-RSV IgG protected HEp-2 cells from viral-induced death. Conclusion The results from this study indicate that interaction between RSV cell surface proteins and specific viral antibodies alter the expression of viral antigens expressed on the cells surface and intracellular viral proteins; furthermore, interfere with viral induced destruction of the cell. PMID:17608950
Changing the threshold-Signals and mechanisms of mast cell priming.
Halova, Ivana; Rönnberg, Elin; Draberova, Lubica; Vliagoftis, Harissios; Nilsson, Gunnar P; Draber, Petr
2018-03-01
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E 2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Light-induced aggregation of microbial exopolymeric substances.
Sun, Luni; Xu, Chen; Zhang, Saijin; Lin, Peng; Schwehr, Kathleen A; Quigg, Antonietta; Chiu, Meng-Hsuen; Chin, Wei-Chun; Santschi, Peter H
2017-08-01
Sunlight can inhibit or disrupt the aggregation process of marine colloids via cleavage of high molecular weight compounds into smaller, less stable fragments. In contrast, some biomolecules, such as proteins excreted from bacteria can form aggregates via cross-linking due to photo-oxidation. To examine whether light-induced aggregation can occur in the marine environment, we conducted irradiation experiments on a well-characterized protein-containing exopolymeric substance (EPS) from the marine bacterium Sagitulla stellata. Our results show that after 1 h sunlight irradiation, the turbidity level of soluble EPS was 60% higher than in the dark control. Flow cytometry also confirmed that more particles of larger sized were formed by sunlight. In addition, we determined a higher mass of aggregates collected on filter in the irradiated samples. This suggests light can induce aggregation of this bacterial EPS. Reactive oxygen species hydroxyl radical and peroxide played critical roles in the photo-oxidation process, and salts assisted the aggregation process. The observation that Sagitulla stellata EPS with relatively high protein content promoted aggregation, was in contrast to the case where no significant differences were found in the aggregation of a non-protein containing phytoplankton EPS between the dark and light conditions. This, together with the evidence that protein-to-carbohydrate ratio of aggregates formed under light condition is significantly higher than that formed under dark condition suggest that proteins are likely the important component for aggregate formation. Light-induced aggregation provides new insights into polymer assembly, marine snow formation, and the fate/transport of organic carbon and nitrogen in the ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation.
Sart, Sébastien; Ma, Teng; Li, Yan
2013-01-01
Cultivation of undifferentiated pluripotent stem cells (PSCs) as aggregates has emerged as an efficient culture configuration, enabling rapid and controlled large scale expansion. Aggregate-based PSC cryopreservation facilitates the integrated process of cell expansion and cryopreservation, but its feasibility has not been demonstrated. The goals of current study are to assess the suitability of cryopreserving intact mouse embryonic stem cell (mESC) aggregates and investigate the effects of aggregate size and the formulation of cryopreservation solution on mESC survival and recovery. The results demonstrated the size-dependent cell survival and recovery of intact aggregates. In particular, the generation of reactive oxygen species (ROS) and caspase activation were reduced for small aggregates (109 ± 55 μm) compared to medium (245 ± 77 μm) and large (365 ± 141 μm) ones, leading to the improved cell recovery. In addition, a defined protein-free formulation was tested and found to promote the aggregate survival, eliminating the cell exposure to animal serum. The cryopreserved aggregates also maintained the pluripotent markers and the differentiation capacity into three-germ layers after thawing. In summary, the cryopreservation of small PSC aggregates in a defined protein-free formulation was shown to be a suitable approach toward a fully integrated expansion and cryopreservation process at large scale. Copyright © 2012 American Institute of Chemical Engineers (AIChE).
Smith, Corey; Wakisaka, Naohiro; Crough, Tania; Peet, Jesse; Yoshizaki, Tomokazu; Beagley, Leone; Khanna, Rajiv
2009-06-11
Activation of the nuclear factor-kappaB pathway by Epstein-Barr virus-encoded latent membrane protein-1 (LMP-1) leads to an up-regulation of the major histocompatibility complex class I antigen-processing pathway. Paradoxically, LMP-1 itself induces a subdominant CD8+ T-cell response and appears to have evolved to avoid immune recognition. Here we show that, although expression of LMP-1 in human cells dramatically enhanced the trans-presentation of CD8+ T-cell epitopes, cis-presentation of LMP-1-derived epitopes was severely impaired. Testing of a series of LMP-1 mutants revealed that deletion of the first transmembrane domain of LMP-1, which prevented self-aggregation, significantly enhanced cis-presentation of T-cell epitopes from this protein, whereas it lost its ability to up-regulate trans-presentation. Interestingly, we also found that cis-presentation of LMP-1 epitopes was rescued by blocking the proteasome function. Taken together, these results delineate a novel mechanism of immune evasion, which renders a virally encoded oncogene inaccessible to the conventional major histocompatibility complex class I pathway limiting its cis-presentation to effector cells.
Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro
2013-01-01
Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in the presence of clinically-used PEs. The rheological behavior of the mixtures was analyzed in parallel with in vivo analysis of blood flow in microvessels using intravital microscopy when administered in a clinically relevant scenario. The interaction between the PFC emulsion and PE with blood produced PFC droplets and red blood cell (RBCs) aggregation, and increased blood viscosity. The PFC droplets formed aggregates when mixed with PEs containing electrolytes, and the aggregation increased with the electrolyte concentration. Mixtures of PFC with PEs that produced PFC aggregates also induced RCBs aggregation when mixed with blood, increasing blood viscosity at low shear rates. The more viscous suspension at low shear rates produced a blunted blood flow velocity profile in vivo relative to non-aggregating mixtures of PFC and PEs. For the PEs evaluated, albumin produced minimal to undetectable aggregation. PFC and PEs interaction with blood can affect sections of the microcirculation with low shear rate (e.g. arterioles, venules, and pulmonary circulation) because aggregates could cause capillary occlusion, decrease perfusion, pulmonary emboli, or focal ischemia. PMID:23606592
Effects of Pasteurella haemolytica leukotoxic culture supernatant on bovine neutrophil aggregation.
Conlon, P; Gervais, M; Chaudhari, S; Conlon, J
1992-01-01
Pasteurella haemolytica A1 leukotoxic culture supernatant was evaluated for its ability to cause aggregation of bovine peripheral neutrophils. Neutrophils were isolated by a hypotonic lysis method and incubated with zymosan-activated plasma (ZAP), leukotoxic culture supernatant, antileukotoxin serum, calcium and magnesium-free media, p-bromophenacyl bromide and protein kinase C inhibitors. Aggregation was evaluated by changes in infrared light transmittance. Leukotoxic culture supernatant caused neutrophils to aggregate, and this effect was significantly removed by preincubation with antileukotoxin serum. Aggregation to ZAP and leukotoxin was dependent on the presence of extra-cellular calcium. Activation of protein kinase C by phorbol myristate acetate induced aggregation which was reduced by staurosporine; however, aggregation to leukotoxin did not involve protein kinase C activation. Phospholipase A2 inhibition did not alter the aggregation response to ZAP or to leukotoxin. The in vitro measurement of neutrophil aggregation induced by the leukotoxin of P. haemolytica reflects cytoskeletal and other activation events that may contribute to the intense inflammatory process which this organism induces in the lungs of cattle. PMID:1423054
Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors
NASA Astrophysics Data System (ADS)
Cho, Edward H.; Wendel, Marco; Luttgen, Madelyn; Yoshioka, Craig; Marrinucci, Dena; Lazar, Daniel; Schram, Ethan; Nieva, Jorge; Bazhenova, Lyudmila; Morgan, Alison; Ko, Andrew H.; Korn, W. Michael; Kolatkar, Anand; Bethel, Kelly; Kuhn, Peter
2012-02-01
Circulating tumor cells (CTCs) have been implicated as a population of cells that may seed metastasis and venous thromboembolism (VTE), two major causes of mortality in cancer patients. Thus far, existing CTC detection technologies have been unable to reproducibly detect CTC aggregates in order to address what contribution CTC aggregates may make to metastasis or VTE. We report here an enrichment-free immunofluorescence detection method that can reproducibly detect and enumerate homotypic CTC aggregates in patient samples. We identified CTC aggregates in 43% of 86 patient samples. The fraction of CTC aggregation was investigated in blood draws from 24 breast, 14 non-small cell lung, 18 pancreatic, 15 prostate stage IV cancer patients and 15 normal blood donors. Both single CTCs and CTC aggregates were measured to determine whether differences exist in the physical characteristics of these two populations. Cells contained in CTC aggregates had less area and length, on average, than single CTCs. Nuclear to cytoplasmic ratios between single CTCs and CTC aggregates were similar. This detection method may assist future studies in determining which population of cells is more physically likely to contribute to metastasis and VTE.
Compartmentalization of superoxide dismutase 1 (SOD1G93A) aggregates determines their toxicity
Weisberg, Sarah J.; Lyakhovetsky, Roman; Werdiger, Ayelet-chen; Gitler, Aaron D.; Soen, Yoav; Kaganovich, Daniel
2012-01-01
Neurodegenerative diseases constitute a class of illnesses marked by pathological protein aggregation in the brains of affected individuals. Although these disorders are invariably characterized by the degeneration of highly specific subpopulations of neurons, protein aggregation occurs in all cells, which indicates that toxicity arises only in particular cell biological contexts. Aggregation-associated disorders are unified by a common cell biological feature: the deposition of the culprit proteins in inclusion bodies. The precise function of these inclusions remains unclear. The starting point for uncovering the origins of disease pathology must therefore be a thorough understanding of the general cell biological function of inclusions and their potential role in modulating the consequences of aggregation. Here, we show that in human cells certain aggregate inclusions are active compartments. We find that toxic aggregates localize to one of these compartments, the juxtanuclear quality control compartment (JUNQ), and interfere with its quality control function. The accumulation of SOD1G93A aggregates sequesters Hsp70, preventing the delivery of misfolded proteins to the proteasome. Preventing the accumulation of SOD1G93A in the JUNQ by enhancing its sequestration in an insoluble inclusion reduces the harmful effects of aggregation on cell viability. PMID:22967507
Guyomarc'h, Fanny; Renan, Marie; Chatriot, Marc; Gamerre, Valérie; Famelart, Marie-Hélène
2007-12-26
Changes in the acid gelation properties of skim milk as a result of variations in the micelle/serum distribution of the heat-induced whey protein/kappa-casein aggregates, induced by the combination of heat treatment and limited renneting, were investigated. No dramatic change in the zeta potential or the isoelectric point of the casein micelles was suggested, whether the aggregates were all attached to the casein micelle or not. Fluorescence intensity measurement using 8-anilino-1-naphthalenesulfonic acid (ANS) showed that the heat-induced aggregates were highly hydrophobic. Dynamic oscillation viscosimetry showed that acid gelation using glucono-delta-lactone (GDL) started at a higher pH value in prerenneted milk. However, no change in the gelation profile of skim milk could be related to the proportion of aggregates bound to the surface of the casein micelles. The results support the idea of an early interaction between the serum aggregates and the casein micelles on acidification.
White, A. P.; Gibson, D. L.; Grassl, G. A.; Kay, W. W.; Finlay, B. B.; Vallance, B. A.; Surette, M. G.
2008-01-01
The Salmonella rdar (red, dry, and rough) morphotype is an aggregative and resistant physiology that has been linked to survival in nutrient-limited environments. Growth of Salmonella enterica serovar Typhimurium was analyzed in a variety of nutrient-limiting conditions to determine whether aggregation would occur at low cell densities and whether the rdar morphotype was involved in this process. The resulting cultures consisted of two populations of cells, aggregated and nonaggregated, with the aggregated cells preferentially displaying rdar morphotype gene expression. The two groups of cells could be separated based on the principle that aggregated cells were producing greater amounts of thin aggregative fimbriae (Tafi or curli). In addition, the aggregated cells retained some physiological characteristics of the rdar morphotype, such as increased resistance to sodium hypochlorite. Competitive infection experiments in mice showed that nonaggregative ΔagfA cells outcompeted rdar-positive wild-type cells in all tissues analyzed, indicating that aggregation via the rdar morphotype was not a virulence adaptation in Salmonella enterica serovar Typhimurium. Furthermore, in vivo imaging experiments showed that Tafi genes were not expressed during infection but were expressed once Salmonella was passed out of the mice into the feces. We hypothesize that the primary role of the rdar morphotype is to enhance Salmonella survival outside the host, thereby aiding in transmission. PMID:18195033
Cotter, Christopher R.; Schüttler, Heinz-Bernd; Igoshin, Oleg A.; Shimkets, Lawrence J.
2017-01-01
Collective cell movement is critical to the emergent properties of many multicellular systems, including microbial self-organization in biofilms, embryogenesis, wound healing, and cancer metastasis. However, even the best-studied systems lack a complete picture of how diverse physical and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Known for its social developmental cycle, the bacterium Myxococcus xanthus uses coordinated movement to generate three-dimensional aggregates called fruiting bodies. Despite extensive progress in identifying genes controlling fruiting body development, cell behaviors and cell–cell communication mechanisms that mediate aggregation are largely unknown. We developed an approach to examine emergent behaviors that couples fluorescent cell tracking with data-driven models. A unique feature of this approach is the ability to identify cell behaviors affecting the observed aggregation dynamics without full knowledge of the underlying biological mechanisms. The fluorescent cell tracking revealed large deviations in the behavior of individual cells. Our modeling method indicated that decreased cell motility inside the aggregates, a biased walk toward aggregate centroids, and alignment among neighboring cells in a radial direction to the nearest aggregate are behaviors that enhance aggregation dynamics. Our modeling method also revealed that aggregation is generally robust to perturbations in these behaviors and identified possible compensatory mechanisms. The resulting approach of directly combining behavior quantification with data-driven simulations can be applied to more complex systems of collective cell movement without prior knowledge of the cellular machinery and behavioral cues. PMID:28533367
NASA Astrophysics Data System (ADS)
Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi
2011-07-01
Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.
Transport of cargo from periphery to brain by circulating monocytes.
Cintron, Amarallys F; Dalal, Nirjari V; Dooyema, Jeromy; Betarbet, Ranjita; Walker, Lary C
2015-10-05
The misfolding and aggregation of the Aβ peptide - a fundamental event in the pathogenesis of Alzheimer׳s disease - can be instigated in the brains of experimental animals by the intracranial infusion of brain extracts that are rich in aggregated Aβ. Recent experiments have found that the peripheral (intraperitoneal) injection of Aβ seeds induces Aβ deposition in the brains of APP-transgenic mice, largely in the form of cerebral amyloid angiopathy. Macrophage-type cells normally are involved in pathogen neutralization and antigen presentation, but under some circumstances, circulating monocytes have been found to act as vectors for the transport of pathogenic agents such as viruses and prions. The present study assessed the ability of peripheral monocytes to transport Aβ aggregates from the peritoneal cavity to the brain. Our initial experiments showed that intravenously delivered macrophages that had previously ingested fluorescent nanobeads as tracers migrate primarily to peripheral organs such as spleen and liver, but that a small number also reach the brain parenchyma. We next injected CD45.1-expressing monocytes from donor mice intravenously into CD45.2-expressing host mice; after 24h, analysis by fluorescence-activated cell sorting (FACS) and histology confirmed that some CD45.1 monocytes enter the brain, particularly in the superficial cortex and around blood vessels. When the donor monocytes are first exposed to Aβ-rich brain extracts from human AD cases, a subset of intravenously delivered Aβ-containing cells migrate to the brain. These experiments indicate that, in mouse models, circulating monocytes are potential vectors by which exogenously delivered, aggregated Aβ travels from periphery to brain, and more generally support the hypothesis that macrophage-type cells can participate in the dissemination of proteopathic seeds. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mao, Liucheng; Liu, Meiying; Xu, Dazhuang; Wan, Qing; Huang, Qiang; Jiang, Ruming; Shi, Yingge; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen
2017-05-01
Fluorescent silica nanoparticles (FSNPs) have been extensively investigated for various biomedical applications in recently years. However, the aggregation of organic dyes in silica nanoparticles also leads the significant fluorescence quenching owing to the aggregation caused quenching effects of organic dyes. Herein, we developed a rather facile strategy to fabricate FSNPs with desirable fluorescent properties through non-covalent incorporation of fluorophores with aggregation-induced emission (AIE) feature into silica nanoparticles, which were subsequently modified with functional polymers. The resultant FSNPs polymer nanocomposites (named as FSNPs-poly(IA-co-PEGMA)) exhibited uniform spherical morphology, high water dispersiity, and bright red fluorescence. Cytotoxicity results indicate that FSNPs-poly(IA-co-PEGMA) possess excellent biocompatibility. Cell uptake behavior suggests FSNPs-poly(IA-co-PEGMA) are of great potential for biological imaging applications. Taken together, we have reported a facile method for the fabrication of FSNPs through non-covalent encapsulation using an AIE-active dye. These FSNPs can be further functionalized with functional polymers through ring-opening reaction and the resultant FSNPs-poly(IA-co-PEGMA) showed great potential for biological imaging. More importantly, we believe that many other functional components could also be integrated into these FSNPs through the facile ring-opening reaction. Therefore, this method should be a facile and general tool for fabrication of polymer functionalized AIE-active FSNPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, Johannes; German Center for Neurodegenerative Diseases – DZNE, Site Munich, Feodor-Lynen-Str. 17, 81377 Munich; Hillmer, Andreas S.
Synucleinopathies such as dementia with Lewy bodies or Parkinson’s disease are characterized by intracellular deposition of pathologically aggregated α-synuclein. The details of the molecular pathogenesis of PD and especially the conditions that lead to intracellular aggregation of α-synuclein and the role of these aggregates in cell death remain unknown. In cell free in vitro systems considerable knowledge about the aggregation processes has been gathered. In comparison, the knowledge about these aggregation processes in cells is far behind. In cells α-synuclein aggregates can be toxic. However, the crucial particle species responsible for decisive steps in pathogenesis such as seeding a continuing aggregationmore » process and triggering cell death remain to be identified. In order to understand the complex nature of intracellular α-synuclein aggregate formation, we analyzed fluorescent particles formed by venus and α-synuclein-venus fusion proteins and α-synuclein-hemi-venus fusion proteins derived from gently lyzed cells. With these techniques we were able to identify and characterize α-synuclein oligomers formed in cells. Especially the use of α-synuclein-hemi-venus fusion proteins enabled us to identify very small α-synuclein oligomers with high sensitivity. Furthermore, we were able to study the molecular effect of heat shock protein 70, which is known to inhibit α-synuclein aggregation in cells. Heat shock protein 70 does not only influence the size of α-synuclein oligomers, but also their quantity. In summary, this approach based on fluorescence single particle spectroscopy, that is suited for high throughput measurements, can be used to detect and characterize intracellularly formed α-synuclein aggregates and characterize the effect of molecules that interfere with α-synuclein aggregate formation. - Highlights: • Single particle spectroscopy detects intracellular formed α-synuclein aggregates. • Fusion proteins allow detection of protein aggregates at the oligomer level. • The technique detects molecules inhibiting α-synuclein aggregate formation. • Single particle spectroscopy is suited for high throughput measurements.« less
Klymenko, Yuliya; Kim, Oleg; Loughran, Elizabeth; Yang, Jing; Lombard, Rachel; Alber, Mark; Stack, M. Sharon
2017-01-01
During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multi-cellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich sub-mesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior, however the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the sub-mesothelial collagen matrix. Acquisition of Ncad by E-cadherin expressing cells (Ecad+) increased mesothelial clearance activity, but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a “leader-follower” mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad+ in pre-clinical models of EOC metastasis. PMID:28628116
Klymenko, Y; Kim, O; Loughran, E; Yang, J; Lombard, R; Alber, M; Stack, M S
2017-10-19
During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multicellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich submesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior; however, the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin-expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin-expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad-spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the submesothelial collagen matrix. Acquisition of Ncad by Ecad+ cells increased mesothelial clearance activity but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a 'leader-follower' mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad in preclinical models of EOC metastasis.
Exciton Dynamics in Alternative Solar Cell Materials: Polymers, Nanocrystals, and Small Molecules
NASA Astrophysics Data System (ADS)
Pundsack, Thomas J.
To keep fossil fuel usage in 2040 even with 2010 usage, 50% of global energy will need to come from alternative sources such as solar cells. While the photovoltaic market is currently dominated by crystalline silicon, there are many low-cost solar cell materials such as conjugated polymers, semiconductor nanocrystals, and organic small molecules which could compete with fossil fuels. To create cost-competitive devices, understanding the excited state dynamics of these materials is necessary. The first section of this thesis looks at aggregation in poly(3-hexylthiophene) (P3HT) which is commonly used in organic photovoltaics. The amount of aggregation in P3HT thin films was controlled by using a mixture of regioregular and regiorandom P3HT. Even with few aggregates present, excited states were found to transfer from amorphous to aggregate domains in <50 fs which could indicate efficient long-range energy transfer. To further study P3HT aggregation, a triblock consisting of two P3HT chains with a coil polymer between them was investigated. By changing solvents, aggregation was induced in a stable and reversible manner allowing for spectroscopic studies of P3HT aggregates in solution. The polarity of the solvent was adjusted, and no change in excited state dynamics was observed implying the excited state has little charge-transfer character. Next, the conduction band density of states for copper zinc tin sulfide nanocrystals (CZTS NCs) was measured using pump-probe spectroscopy and found to be in agreement with theoretical results. The density of states shifted and dilated for smaller NCs indicative of quantum confinement. The excited state lifetime was found to be short (<20 ps) and independent of NC size which could limit the efficiency of CZTS photovoltaic devices. Finally, triplet-triplet annihilation (TTA) was studied in platinum octaethylporphyrin (PtOEP) thin films. By analyzing pump-probe spectra, the product of TTA in PtOEP thin films was assigned to a long-lived metal-centered state. To elucidate the mechanism of TTA, the annihilation dynamics were modeled using second order kinetics as well as Forster and Dexter energy transfer. Dexter energy transfer provided the best fits and the most reasonable fitting parameters.
Triptolide Promotes the Clearance of α-Synuclein by Enhancing Autophagy in Neuronal Cells.
Hu, Guanzheng; Gong, Xiaoli; Wang, Le; Liu, Mengru; Liu, Yang; Fu, Xia; Wang, Wei; Zhang, Ting; Wang, Xiaomin
2017-04-01
Parkinson's disease (PD) is an aging-associated neurodegenerative disease with a characteristic feature of α-synuclein accumulation. Point mutations (A53T, A30P) that increase the aggregation propensity of α-synuclein result in familial early onset PD. The abnormal metabolism of α-synuclein results in aberrant level changes of α-synuclein in PD. In pathological conditions, α-synuclein is degraded mainly by the autophagy-lysosome pathway. Triptolide (T10) is a monomeric compound isolated from a traditional Chinese herb. Our group demonstrated for the first time that T10 possesses potent neuroprotective properties both in vitro and in vivo PD models. In the present study, we reported T10 as a potent autophagy inducer in neuronal cells, which helped to promote the clearance of various forms of α-synuclein in neuronal cells. We transfected neuronal cells with A53T mutant (A53T) or wild-type (WT) α-synuclein plasmids and found T10 attenuated the cytotoxicity induced by pathogenic A53T α-synuclein overexpression. We observed that T10 significantly reduced both A53T and WT α-synuclein level in neuronal cell line, as well as in primary cultured cortical neurons. Excluding the changes of syntheses, secretion, and aggregation of α-synuclein, we further added autophagy inhibitor or proteasome inhibitor with T10, and we noticed that T10 promoted the clearance of α-synuclein mainly by the autophagic pathway. Lastly, we observed increased autophagy marker LC3-II expression and autophagosomes by GFP-LC3-II accumulation and ultrastructural characterization. However, the lysosome activity and cell viability were not modulated by T10. Our study revealed that T10 could induce autophagy and promote the clearance of both WT and A53T α-synuclein in neurons. These results provide evidence of T10 as a promising mean to treat PD and other neurodegenerative diseases by reducing pathogenic proteins in neurons.
Guessous, Fadila; Marcinkiewicz, Marek; Polanowska-Grabowska, Renata; Kongkhum, Sudawadee; Heatherly, Daniel; Obrig, Tom; Gear, Adrian R. L.
2005-01-01
Shiga toxins (Stxs) produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli are the most common cause of hemolytic-uremic syndrome (HUS). It is well established that vascular endothelial cells, mainly those located in the renal microvasculature, are targets for Stxs. The aim of the present research was to evaluate whether E. coli-derived Shiga toxin 2 (Stx2) incubated with human microvascular endothelial cells (HMEC-1) induces release of chemokines and other factors that might stimulate platelet function. HMEC-1 were exposed for 24 h in vitro to Stx2, lipopolysaccharide (LPS), or the Stx2-LPS combination, and chemokine production was assessed by immunoassay. More interleukin-8 was released than stromal cell-derived factor 1α (SDF-1α) or SDF-1β and RANTES. The Stx2-LPS combination potentiated chemokine release, but Stx2 alone caused more release of SDF-1α at 24 h than LPS or Stx2-LPS did. In the presence of low ADP levels, HMEC-1 supernatants activated platelet function assessed by classical aggregometry, single-particle counting, granule secretion, P-selectin exposure, and the formation of platelet-monocyte aggregates. Supernatants from HMEC-1 exposed only to Stx2 exhibited enhanced exposure of platelet P-selectin and platelet-THP-1 cell interactions. Blockade of platelet cyclooxygenase by indomethacin prevented functional activation. The chemokine RANTES enhanced platelet aggregation induced by SDF-1α, macrophage-derived chemokine, or thymus and activation-regulated chemokine in the presence of very low ADP levels. These data support the hypothesis that microvascular endothelial cells exposed to E. coli O157:H7-derived Stx2 and LPS release chemokines and other factors, which when combined with low levels of primary agonists, such as ADP, cause platelet activation and promote the renal thrombosis associated with HUS. PMID:16299328
Wu, Wenbo; Mao, Duo; Hu, Fang; Xu, Shidang; Chen, Chao; Zhang, Chong-Jing; Cheng, Xiamin; Yuan, Youyong; Ding, Dan; Kong, Deling; Liu, Bin
2017-09-01
Photodynamic therapy (PDT), which relies on photosensitizers (PS) and light to generate reactive oxygen species to kill cancer cells or bacteria, has attracted much attention in recent years. PSs with both bright emission and efficient singlet oxygen generation have also been used for image-guided PDT. However, simultaneously achieving effective 1 O 2 generation, long wavelength absorption, and stable near-infrared (NIR) emission with low dark toxicity in a single PS remains challenging. In addition, it is well known that when traditional PSs are made into nanoparticles, they encounter quenched fluorescence and reduced 1 O 2 production. In this contribution, these challenging issues have been successfully addressed through designing the first photostable photosensitizer with aggregation-induced NIR emission and very effective 1 O 2 generation in aggregate state. The yielded nanoparticles show very effective 1 O 2 generation, bright NIR fluorescence centered at 820 nm, excellent photostability, good biocompatibility, and negligible dark in vivo toxicity. Both in vitro and in vivo experiments prove that the nanoparticles are excellent candidates for image-guided photodynamic anticancer therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resurrecting Inactive Antimicrobial Peptides from the Lipopolysaccharide Trap
Mohanram, Harini
2014-01-01
Host defense antimicrobial peptides (AMPs) are a promising source of antibiotics for the treatment of multiple-drug-resistant pathogens. Lipopolysaccharide (LPS), the major component of the outer leaflet of the outer membrane of Gram-negative bacteria, functions as a permeability barrier against a variety of molecules, including AMPs. Further, LPS or endotoxin is the causative agent of sepsis killing 100,000 people per year in the United States alone. LPS can restrict the activity of AMPs inducing aggregations at the outer membrane, as observed for frog AMPs, temporins, and also in model AMPs. Aggregated AMPs, “trapped” by the outer membrane, are unable to traverse the cell wall, causing their inactivation. In this work, we show that these inactive AMPs can overcome LPS-induced aggregations while conjugated with a short LPS binding β-boomerang peptide motif and become highly bactericidal. The generated hybrid peptides exhibit activity against Gram-negative and Gram-positive bacteria in high-salt conditions and detoxify endotoxin. Structural and biophysical studies establish the mechanism of action of these peptides in LPS outer membrane. Most importantly, this study provides a new concept for the development of a potent broad-spectrum antibiotic with efficient outer membrane disruption as the mode of action. PMID:24419338
Ghadge, Ghanashyam D; Pavlovic, John D; Koduvayur, Sujatha P; Kay, Brian K; Roos, Raymond P
2013-08-01
Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. Copyright © 2013 Elsevier Inc. All rights reserved.
Yao, Dong; Wang, Zheng; Miao, Li; Wang, Linyan
2016-09-15
Carthamus tinctorius is used as one of the Traditional Chinese Medicine (TCM) materials in prescriptions and composite to promote blood circulation to remove blood stasis, regulate menstruation and alleviate pain for over 2500 years. Modern pharmacological experiments have demonstrated that safflower has wide-reaching biological activities, including dilating coronary artery, modulating immune system, improving myocardial ischemia, anticoagulation and thromboprophylaxis, antioxidation, antihypoxic, antiaging, antifatigue, antiinflammation, anti-hepatic fibrosis, antitumor, analgesia, etc. Platelet aggregation of safflower extract and main constituents in safflower were determined by PAF-induced or ADP-induced platelet aggregation in vitro. Anticoagulation activity was measured by clotting assay of thrombin time (TT), prothrombin time (PT) and activated partial thromboplastin time (APTT) according to the methods provided by the biological reagents provider (Sun Biochemical). Antioxidant effects of safflower were assessed using DPPH radical-scavenging activity test, ABTS radical-scavenging activity test and ferric reducing antioxidant power test. In addition, rats ovary granulosa cell proliferation activity was used for the bio-activity index on regulate menstruation of safflower. Safflower extract at the concentration of 0.7g/mL (P<0.001) and 0.5g/mL (P<0.01) had significantly antagonistic effect on PAF-induced platelet aggregation, compared with negative control. And the anti-platelet aggregation of 0.7g/mL safflower extract was significantly stronger than that of positive control (P<0.001). 0.7g/mL of hydroxysafflor yellow A (P<0.01), anhydrosafflor yellow B (P<0.05), 6-hydroxykaempferol-3-O-rutinoside (P<0.05), keampferol-3-O-β-rutinoside (P<0.01) had significant effect on platelet aggregation compared with negative control. Safflower extract at the concentration of 0.5g/mL (P<0.001) and 0.125g/mL (P<0.01) could significantly inhibit ADP-induced platelet aggregation, compared with negative control. And antagonistic effect of safflower extract was significantly stronger than the effect of positive control (P<0.001). Adenosine (P<0.001), anhydrosafflor yellow B (P<0.01) and 6-hydroxykaempferol-3-O-rutinoside (P<0.01) at the concentration of 0.5g/mL had significant effect on ADP-induced platelet aggregation compared with negative control. 0.125g/mL of adenosine (P<0.05) had significant effect on ADP-induced platelet aggregation compared with negative control. The effect of 0.5g/mL adenosine (P<0.01) and 6-hydroxykaempferol-3-O-rutinoside (P<0.05) was significantly stronger than that of positive control. Safflower extract at the concentration of 0.7mg/mL (P<0.001) and 0.5mg/mL (P<0.001) had significantly anticoagulation activity in PT, TT and APTT, compared with negative control. However, the respective compound didn't have significant effect on PT and TT at experiment concentration. At the concentration of 0.7mg/mL, hydroxysafflor yellow A (P<0.01), 6-hydroxykaempferol-3,6,7-tri-O-β-d-glucoside (P<0.05), 6-hydroxyapigenin-6-O-glucoside-7-O-glucuronide (P<0.01), anhydrosafflor yellow B (P<0.001), 6-hydroxykaempferol-3-O-rutinoside (P<0.05) and keampferol-3-O-β-rutinoside (P<0.05) significantly prolonged APTT, compared with negative control. At the concentration of 0.5mg/mL, hydroxysafflor yellow A (P<0.05), 6-hydroxyapigenin-6-O-glucoside-7-O-glucuronide (P<0.05), anhydrosafflor yellow B (P<0.001), 6-hydroxykaempferol-3-O-rutinoside (P<0.05) and keampferol-3-O-β-rutinoside (P<0.05) could significantly prolong APTT, compared with negative control. From the results of DPPH, ABTS radical scavenging activity test and Fe(3+) reduction power test, 5mg/mL, 2.5mg/mL and 1.25mg/mL safflower extract had antioxidant effects. Every compound with each concentration (5mg/mL, 2.5mg/mL and 1.25mg/mL) had significant effect on Fe(3+) reduction power (P<0.001 vs. negative control). Safflower extract, cytidine, 6-hydroxy-kaempferol-3,6-di-O-β-d-glucoside-7-O-β-d-glucuronide, 6-hydroxykaemp-ferol-3,6,7-tri-O-β-D-glucoside and keampferol-3-O-β-rutinoside significantly promoted ovarian granulosa cell proliferation. Based on previous researches, the activities of safflower extract and pure compounds isolated from safflower were studied in this paper. This study found some compounds with the effects of anti-platelet aggregation, anticoagulation, antioxidation and ovarian granulosa cell proliferation, and further revealed the possible pharmacological mechanism of safflower. Copyright © 2016. Published by Elsevier Ireland Ltd.
Inhibition of Human Amylin Aggregation and Cellular Toxicity by Lipoic Acid and Ascorbic Acid.
Azzam, Sarah Kassem; Jang, Hyunwoo; Choi, Myung Chul; Alsafar, Habiba; Lukman, Suryani; Lee, Sungmun
2018-04-30
More than 30 human degenerative diseases result from protein aggregation such as Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Islet amyloid deposits, a hallmark in T2DM, are found in pancreatic islets of more than 90 % of T2DM patients. An association between amylin aggregation and reduction in β-cell mass was also established by post-mortem studies. A strategy in preventing protein aggregation-related disorders is to inhibit the protein aggregation and associated toxicity. In this study we demonstrated that two inhibitors, lipoic acid and ascorbic acid, significantly inhibited amylin aggregation. Compared to amylin (15 μM) as 100 %, lipoic acid and ascorbic acid reduced amylin fibril formation to 42.1 ± 17.2 % and 42.9 ± 12.8 % respectively, which is confirmed by fluorescence and TEM images. In cell viability tests, both inhibitors protected RIN-m5f β-cells from the toxicity of amylin aggregates. At 10:1 molar ratio of lipoic acid to amylin, lipoic acid with amylin increased the cell viability to 70.3 %, whereas only 42.8 % RIN-m5f β-cells survived in amylin aggregates. For ascorbic acid, an equimolar ratio achieved the highest cell viability of 63.3 % as compared to 42.8 % with amylin aggregates only. Docking results showed that lipoic acid and ascorbic acid physically interact with amylin amyloidogenic region (residues Ser20-Ser29) via hydrophobic interactions; hence reducing aggregation levels. Therefore, lipoic acid and ascorbic acid prevented amylin aggregation via hydrophobic interactions, which resulted in the prevention of cell toxicity in vitro.
Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans
Woolley, Christine M.; Barrila, Jennifer; Buchanan, Kent; McCracken, James; Inglis, Diane O.; Searles, Stephen C.; Nelman-Gonzalez, Mayra A.; Ott, C. Mark; Wilson, James W.; Pierson, Duane L.; Stefanyshyn-Piper, Heidemarie M.; Hyman, Linda E.; Nickerson, Cheryl A.
2013-01-01
This study presents the first global transcriptional profiling and phenotypic characterization of the major human opportunistic fungal pathogen, Candida albicans, grown in spaceflight conditions. Microarray analysis revealed that C. albicans subjected to short-term spaceflight culture differentially regulated 452 genes compared to synchronous ground controls, which represented 8.3% of the analyzed ORFs. Spaceflight-cultured C. albicans–induced genes involved in cell aggregation (similar to flocculation), which was validated by microscopic and flow cytometry analysis. We also observed enhanced random budding of spaceflight-cultured cells as opposed to bipolar budding patterns for ground samples, in accordance with the gene expression data. Furthermore, genes involved in antifungal agent and stress resistance were differentially regulated in spaceflight, including induction of ABC transporters and members of the major facilitator family, downregulation of ergosterol-encoding genes, and upregulation of genes involved in oxidative stress resistance. Finally, downregulation of genes involved in actin cytoskeleton was observed. Interestingly, the transcriptional regulator Cap1 and over 30% of the Cap1 regulon was differentially expressed in spaceflight-cultured C. albicans. A potential role for Cap1 in the spaceflight response of C. albicans is suggested, as this regulator is involved in random budding, cell aggregation, and oxidative stress resistance; all related to observed spaceflight-associated changes of C. albicans. While culture of C. albicans in microgravity potentiates a global change in gene expression that could induce a virulence-related phenotype, no increased virulence in a murine intraperitoneal (i.p.) infection model was observed under the conditions of this study. Collectively, our data represent an important basis for the assessment of the risk that commensal flora could play during human spaceflight missions. Furthermore, since the low fluid-shear environment of microgravity is relevant to physical forces encountered by pathogens during the infection process, insights gained from this study could identify novel infectious disease mechanisms, with downstream benefits for the general public. PMID:24324620
Luo, Wanxian; Wen, Ge; Yang, Li; Tang, Jiao; Wang, Jianguo; Wang, Jihui; Zhang, Shiyu; Zhang, Li; Ma, Fei; Xiao, Liling; Wang, Ying; Li, Yingjia
2017-01-01
In this study, we investigated the potential of a dual-targeted pH-sensitive doxorubicin prodrug-microbubble complex (DPMC) in ultrasound (US)-assisted antitumor therapy. The doxorubicin prodrug (DP) consists of a succinylated-heparin carrier conjugated with doxorubicin (DOX) via hydrazone linkage and decorated with dual targeting ligands, folate and cRGD peptide. Combination of microbubble (MB) and DP, generated via avidin-biotin binding, promoted intracellular accumulation and improved therapeutic efficiency assisted by US cavitation and sonoporation. Aggregates of prepared DP were observed with an inhomogeneous size distribution (average diameters: 149.6±29.8 nm and 1036.2±38.8 nm, PDI: 1.0) while DPMC exhibited a uniform distribution (average diameter: 5.804±2.1 μm), facilitating its usage for drug delivery. Notably, upon US exposure, DPMC was disrupted and aggregated DP dispersed into homogeneous small-sized nanoparticles (average diameter: 128.6±42.3 nm, PDI: 0.21). DPMC could target to angiogenic endothelial cells in tumor region via αvβ3-mediated recognition and subsequently facilitate its specific binding to tumor cells mediated via recognition of folate receptor (FR) after US exposure. In vitro experiments showed higher tumor specificity and killing ability of DPMC with US than free DOX and DP for breast cancer MCF-7 cells. Furthermore, significant accumulation and specificity for tumor tissues of DPMC with US were detected using in vivo fluorescence and ultrasound molecular imaging, indicating its potential to integrate tumor imaging and therapy. In particular, through inducing apoptosis, inhibiting cell proliferation and antagonizing angiogenesis, DPMC with US produced higher tumor inhibition rates than DOX or DPMC without US in MCF-7 xenograft tumor-bearing mice while inducing no obvious body weight loss. Our strategy provides an effective platform for the delivery of large-sized or aggregated particles to tumor sites, thereby extending their therapeutic applications in vivo. PMID:28255342
Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder
2011-05-01
Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misu, Masayasu; Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp; Kawai, Norikazu
In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cellsmore » in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.« less
Study of the cell activity in three-dimensional cell culture by using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Arunngam, Pakajiraporn; Mahardika, Anggara; Hiroko, Matsuyoshi; Andriana, Bibin Bintang; Tabata, Yasuhiko; Sato, Hidetoshi
2018-02-01
The purpose of this study is to develop a estimation technique of local cell activity in cultured 3D cell aggregate with gelatin hydrogel microspheres by using Raman spectroscopy. It is an invaluable technique allowing real-time, nondestructive, and invasive measurement. Cells in body generally exist in 3D structure, which physiological cell-cell interaction enhances cell survival and biological functions. Although a 3D cell aggregate is a good model of the cells in living tissues, it was difficult to estimate their physiological conditions because there is no effective technique to make observation of intact cells in the 3D structure. In this study, cell aggregates were formed by MC3T-E1 (pre-osteoblast) cells and gelatin hydrogel microspheres. In appropriate condition MC3T-E1 cells can differentiate into osteoblast. We assume that the activity of the cell would be different according to the location in the aggregate because the cells near the surface of the aggregate have more access to oxygen and nutrient. Raman imaging technique was applied to measure 3D image of the aggregate. The concentration of the hydroxyapatite (HA) is generated by osteoblast was estimated with a strong band at 950-970 cm-1 which assigned to PO43- in HA. It reflects an activity of the specific site in the cell aggregate. The cell density in this specific site was analyzed by multivariate analysis of the 3D Raman image. Hence, the ratio between intensity and cell density in the site represents the cell activity.
Anderson, C L; Grey, H M
1974-05-01
An autoradiographic binding assay employing (125)I-labeled heat-aggregated mouse IgG2b myeloma protein (MOPC 141) was used to demonstrate receptors for IgG on 20-45% of Balb/c thymocytes and on 70-80% of splenocytes. Binding could also be shown with heat or BDB aggregates of another IgG2b (MOPC 195), with IgG1 and with human gamma-globulin, but not with aggregated chicken gamma-globulin, IgA, BSA, nor with aggregated Fab fragments of IgG2b. Optimum binding was obtained at 37 degrees C. Detection of binding was dependent upon aggregate size with complexes of more than 100 IgG molecules being optimal, aggregates of 6-25 detecting splenocytes but not thymocytes, and aggregates of less than 6 binding to a negligible extent. Comparison of grain counts on various cell types showed mastocytoma cells (P815) and macrophages averaging 40-50 grains/cell/day, allogeneically activated thymocytes 20-30, splenocytes 2-3, L5178 lymphoma cells 1, and positive thymocytes 0.6 grains/cell/day. Double labeling experiments for surface Ig, theta-antigen, and agg IgG receptor on mouse spleen cells indicated that a relatively high density of receptor was present on about 80% of B cells, 30% of T cells, and 60% of SIg(-), theta(-), null cells.
Automatic analysis of microscopic images of red blood cell aggregates
NASA Astrophysics Data System (ADS)
Menichini, Pablo A.; Larese, Mónica G.; Riquelme, Bibiana D.
2015-06-01
Red blood cell aggregation is one of the most important factors in blood viscosity at stasis or at very low rates of flow. The basic structure of aggregates is a linear array of cell commonly termed as rouleaux. Enhanced or abnormal aggregation is seen in clinical conditions, such as diabetes and hypertension, producing alterations in the microcirculation, some of which can be analyzed through the characterization of aggregated cells. Frequently, image processing and analysis for the characterization of RBC aggregation were done manually or semi-automatically using interactive tools. We propose a system that processes images of RBC aggregation and automatically obtains the characterization and quantification of the different types of RBC aggregates. Present technique could be interesting to perform the adaptation as a routine used in hemorheological and Clinical Biochemistry Laboratories because this automatic method is rapid, efficient and economical, and at the same time independent of the user performing the analysis (repeatability of the analysis).
Lan, Jin-Shuai; Hou, Jian-Wei; Liu, Yun; Ding, Yue; Zhang, Yong; Li, Ling; Zhang, Tong
2017-12-01
A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1-42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC 50 , 12.1 nM for eeAChE, 8.6 nM for hAChE, 2.6 μM for eqBuChE and 4.4 μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1-42) aggregation (64.7% at 20 μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer's diseases.
The Contribution of α-Synuclein Spreading to Parkinson's Disease Synaptopathy
Faustini, Gaia; Missale, Cristina; Pizzi, Marina; Spano, PierFranco
2017-01-01
Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration. PMID:28133550
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ilho; Kim, Jiyeon; Park, Joong-Yeol
2013-05-01
Although clusterin (CLU) was originally identified as a secreted glycoprotein that plays cytoprotective role, several intracellular CLU variants have been recently identified in the diverse pathological conditions. The mechanistic basis of these variants is now believed to be alternative splicing and retrotranslocation. Here, we uncovered, an unglycosylated and signal sequence-unprocessed, CLU variant in the cytosol. This variant proved to be a product that cotranslationally rerouted to the cytosol during translocation. Cytosolic CLU was prone to aggregation at peri-nuclear region of cells and induced cell death. Signal sequence is shown to be an important determinant for cytosolic CLU generation and aggregation.more » These results provide not only a new mechanistic insight into the cytosolic CLU generation but also an idea for therapeutic mislocalization of CLU as a strategy for cancer treatment. - Highlights: ► Intracellular CLU variants have been recently identified in the diverse pathological conditions. ► Translocation of clusterin is less efficient than that of Prl. ► We identified a new cytotoxic clusterin variant whose signal sequence was unprocessed. ► This variant proved to be a product that cotranslationally rerouted to cytosol.« less
Ramshini, H; Moghaddasi, A-S; Aldaghi, L-S; Mollania, N; Ebrahim-Habibi, A
2017-12-08
Alzheimer's disease (AD) is a chronic degenerative disease characterized by the presence of amyloid plaques and neurofibrillary tangles (NFTs), which results into memory and learning impairments. In the present study, we showed that the aggregates formed by a protein that has no link with Alzheimer's disease, namely the hen egg white lysozyme (HEWL), were cytotoxic and decreased spatial learning and memory in rats. The effect of Ag-nano particles (Ag-NPs) was investigated on disruption of amyloid aggregation and preservation of cognitive behavior of rats. Twenty-four male Wistar rats were divided into 4 groups including a control group, and injected with either scopolamine, lysozyme or aggregates pre-incubated with Ag-NPs. Rats' behavior was monitored using Morris water maze (MWM) twenty days after injections. HEWL aggregation in the presence and absence of the Ag-NPs was assayed by Thioflavin T binding, atomic force microscopy and cell-based cytotoxicity assay. Ag-NPs were capable to directly disrupt HEWL oligomerization and the resulting aggregates were non-toxic. We also showed that rats of the Ag-NPs group found MWM test platform in less time and with less distance traveled, in comparison with lysozyme group. Ag-NPs also increased the percentage of time elapsed and the distance swum in the target quadrant in the rat model of AD, in probe test. These observations suggest that Ag-NPs improved spatial learning and memory by inhibiting amyloid fibril-induced neurotoxicity. Furthermore, we suggest using model proteins as a valid tool to investigate the pathogenesis of Alzheimer's disease.
Lawson, Latevi S; Chan, James W; Huser, Thomas
2014-07-21
Chemical sensing on the nanoscale has been breaking new ground since the discovery of surface enhanced Raman scattering (SERS). For nanoparticles, controlled particle aggregation is necessary to achieve the largest SERS enhancements. Therefore, aggregating agents such as salts or linker molecules are used in conjunction with chemically sensitive reporters in order to develop robust environmentally sensitive SERS probes. While salt-induced colloidal nanosphere aggregates have produced robust SERS signals, their variability in aggregate size contributes significantly to poor SERS signal reproducibility, which can complicate their use in in vitro cellular studies. Such systems often also lack reproducibility in spectral measurements between different nanoparticle clusters. Preaggregation of colloids via linkers followed by surface functionalization with reporter molecules results in the linker occupying valuable SERS hotspot volume which could otherwise be utilized by additional reporter molecules. Ideally, both functionalities should be obtained from a single molecule. Here, we report the use of 3,5-dimercaptobenzoic acid, a single multifunctional molecule that creates SERS hotspots via the controlled aggregation of nanoparticles, and also reports pH values. We show that 3,5-dimercaptobenzoic acid bound to Au nanospheres results in an excellent pH nanoprobe, producing very robust, and highly reproducible SERS signals that can report pH across the entire physiological range with excellent pH resolution. To demonstrate the efficacy of our novel pH reporters, these probes were also used to image both the particle and pH distribution in the cytoplasm of human induced pluripotent stem cells (hiPSCs).
Dendritic copper phthalocyanine with aggregation induced blue emission and solid-state fluorescence
NASA Astrophysics Data System (ADS)
Wang, Jiayi; Pan, Lin; Zhou, Xuefei; Jia, Kun; Liu, Xiaobo
2016-09-01
In this work, dendritic copper phthalocyanine (CuPc) showing obvious aggregation induced emission (AIE) and strong solid-state fluorescence was synthesized. It was found that synthesized CuPc can be easily solubilized in polar aprotic solvent, where no fluorescence signal was detected. Interestingly, both the CuPc aggregates in solution and solid-state powder exhibited strong fluorescence emission around 480 nm, which should be attributed to the restriction of intramolecular rotation as rationalized in aggregation induced emission framework. Meanwhile the obvious crystalline enhanced solid-state fluorescent emission is observed for CuPc powder.
Lin, Jia-Hui; Tseng, Wei-Lung
2015-01-01
Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.
A three-dimensional human neural cell culture model of Alzheimer's disease.
Choi, Se Hoon; Kim, Young Hye; Hebisch, Matthias; Sliwinski, Christopher; Lee, Seungkyu; D'Avanzo, Carla; Chen, Hechao; Hooli, Basavaraj; Asselin, Caroline; Muffat, Julien; Klee, Justin B; Zhang, Can; Wainger, Brian J; Peitz, Michael; Kovacs, Dora M; Woolf, Clifford J; Wagner, Steven L; Tanzi, Rudolph E; Kim, Doo Yeon
2014-11-13
Alzheimer's disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-β plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer's disease posits that the excessive accumulation of amyloid-β peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer's disease (FAD) mutations exhibit amyloid-β-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer's disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer's disease patients have shown elevated levels of toxic amyloid-β species and phosphorylated tau but did not demonstrate amyloid-β plaques or neurofibrillary tangles. Here we report that FAD mutations in β-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-β, including amyloid-β plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-β generation with β- or γ-secretase inhibitors not only decreased amyloid-β pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-β-mediated tau phosphorylation. We have successfully recapitulated amyloid-β and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer's disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.
Red blood cell generation by three-dimensional aggregate cultivation of late erythroblasts.
Lee, EunMi; Han, So Yeon; Choi, Hye Sook; Chun, Bokhwan; Hwang, Byunghee; Baek, Eun Jung
2015-02-01
Stem cell-derived erythroid cells hold great potential for the treatment of blood-loss anemia and for erythropoiesis research; however, cultures using conventional flat plates or bioreactors have failed to show promising results. By mimicking the in vivo bone marrow (BM) environment in which most erythroid cells are physically aggregated, we show that a three-dimensional (3D) aggregate culture system facilitates erythroid cell maturation and red blood cell (RBC) production more effectively than two-dimensional high-density cell cultivation. Late erythroblasts (polychromatic or orthochromatic erythroblasts) were differentiated from cord blood CD34(+) cells over 15 days and then allowed to form tight aggregates at a minimum density of 1×10(7) cells/mL for 2-3 days. To scale up the cell culture and to make the media supply efficient throughout the cell aggregates, several macroporous microcarriers and porous scaffolds were applied to the 3D culture system. In comparison to control culture conditions, erythroid cells in 3D aggregates were significantly more differentiated toward RBCs with significantly reduced nuclear dysplasia. When 3D culture was performed inside macroporous microcarriers, the cell culture scale was increased and cells exhibited enhanced differentiation and enucleation. Microcarriers with a pore diameter of approximately 400 μm produced more mature cells than those with a smaller pore diameter. In addition, this aggregate culture method minimized the culture space and media volume required. In conclusion, a 3D aggregate culture system can be used to generate transfusable human erythrocytes at the terminal maturation stage, mimicking the in vivo BM microenvironment. Porous structures can efficiently maximize the culture scale, enabling large-scale production of RBCs. These results enhance our understanding of the importance of physical contact among late erythroblasts for their final maturation into RBCs.
Letson, Hayley; Dobson, Geoffrey
2017-01-01
Systemic inflammation and coagulopathy are major drivers of injury progression following hemorrhagic trauma. Our aim was to examine the effect of small-volume 3% NaCl adenosine, lidocaine and Mg2+ (ALM) bolus and 0.9% NaCl/ALM 'drip' on inflammation and coagulation in a rat model of hemorrhagic shock. Sprague-Dawley rats (429±4 g) were randomly assigned to: 1) shams, 2) no-treatment, 3) saline-controls, 4) ALM-therapy, and 5) Hextend®. Hemorrhage was induced in anesthetized-ventilated animals by liver resection (60% left lateral lobe and 50% medial lobe). After 15 min, a bolus of 3% NaCl ± ALM (0.7 ml/kg) was administered intravenously (Phase 1) followed 60 min later by 4 hour infusion of 0.9% NaCl ± ALM (0.5 ml/kg/hour) with 1-hour monitoring (Phase 2). Plasma cytokines were measured on Magpix® and coagulation using Stago/Rotational Thromboelastometry. After Phase 1, saline-controls, no-treatment and Hextend® groups showed significant falls in white and red cells, hemoglobin and hematocrit (up to 30%), whereas ALM animals had similar values to shams (9-15% losses). After Phase 2, these deficits in non-ALM groups were accompanied by profound systemic inflammation. In contrast, after Phase 1 ALM-treated animals had undetectable plasma levels of IL-1α and IL-1β, and IL-2, IL-6 and TNF-α were below baseline, and after Phase 2 they were less or similar to shams. Non-ALM groups (except shams) also lost their ability to aggregate platelets, had lower plasma fibrinogen levels, and were hypocoagulable. ALM-treated animals had 50-fold higher ADP-induced platelet aggregation, and 9.3-times higher collagen-induced aggregation compared to saline-controls, and had little or no coagulopathy with significantly higher fibrinogen shifting towards baseline. Hextend® had poor outcomes. Small-volume ALM bolus/drip mounted a frontline defense against non-compressible traumatic hemorrhage by defending immune cell numbers, suppressing systemic inflammation, improving platelet aggregation and correcting coagulopathy. Saline-controls were equivalent to no-treatment. Possible mechanisms of ALM's immune-bolstering effect are discussed.
Presynaptic elements involved in the maintenance of the neuromuscular junction
NASA Technical Reports Server (NTRS)
Burrows, G. H.
1984-01-01
Alterations in the neuromuscular junction were observed in rats preceding loss of muscle mass. In view of the possibility that these alterations involve changes in the secretion of myotrophic agents by presynaptic motor neurons, an investigation was undertaken to characterize a neuronall factor which is thought to be involved in the initiation and maintenance of cholinergic synapses. This factor, which is secreted into the incubation medium by NG108-15 neuroblastoma x glioma hybrid cells, induces the aggregation of nicotinic acetylcholine receptors on primary cultures of rat hindlimb myotubes. Previous attempts to purify this factor failed. Extensive washing of the NG108-15 cells with hepes-buffered salt solution followed by short (4 hour) collection times resulted in the collection of incubation medium containing maximal aggregation activity with as little as 5 ug secreted protein per ml of fresh medium. A three-fold increase in specific activity was obtained after anion exchange chromatography.
Photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex.
Zhang, Zhigang; Dai, Ruihui; Ma, Jiajia; Wang, Shuying; Wei, Xuehong; Wang, Hongfei
2015-02-01
Many planar photosensitizers tend to self-aggregate via van der Waals interactions between π-conjugated systems. The self-aggregation of the photosensitizer may reduce the efficiency of the photosensitizer to generate singlet oxygen, thereby diminishing its photodynamic activity. Efforts have been made to improve the photodynamic activity of bis-(o-diiminobenzosemiquinonato)platinum(II) which has planar geometry by the introduction of the sterically hindered triphenylamine moiety into the ligand. Herein we report the photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex in red light studied by fluorescence spectra, agarose gel assay and cell viability assay. The results suggest that the triphenylamine-modified platinum-diimine complex has better capability to generate singlet oxygen than bis-(o-diiminobenzosemiquinonato)platinum(II), and it can induce DNA damage in red light, causing high photocytotoxicity in HepG-2 cells in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.
Involvement of nuclear factor {kappa}B in platelet CD40 signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1
Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders.« less
Acid-induced aggregation propensity of nivolumab is dependent on the Fc
Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Xu, Lu; Zhang, Junjie; Guo, Qingcheng; Zhang, Dapeng; Qian, Weizhu; Li, Bohua; Dai, Jianxin; Hou, Sheng; Guo, Yajun; Wang, Hao
2016-01-01
ABSTRACT Nivolumab, an anti-programmed death (PD)1 IgG4 antibody, has shown notable success as a cancer treatment. Here, we report that nivolumab was susceptible to aggregation during manufacturing, particularly in routine purification steps. Our experimental results showed that exposure to low pH caused aggregation of nivolumab, and the Fc was primarily responsible for an acid-induced unfolding phenomenon. To compare the intrinsic propensity of acid-induced aggregation for other IgGs subclasses, tocilizumab (IgG1), panitumumab (IgG2) and atezolizumab (aglyco-IgG1) were also investigated. The accurate pH threshold of acid-induced aggregation for individual IgG Fc subclasses was identified and ranked as: IgG1 < aglyco-IgG1 < IgG2 < IgG4. This result was cross-validated by thermostability and conformation analysis. We also assessed the effect of several protein stabilizers on nivolumab, and found mannitol ameliorated the acid-induced aggregation of the molecule. Our results provide valuable insight into downstream manufacturing process development, especially for immune checkpoint modulating molecules with a human IgG4 backbone. PMID:27310175
Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process*
Tsai, Chai-jui; Aslam, Kiran; Drendel, Holli M.; Asiago, Josephat M.; Goode, Kourtney M.; Paul, Lake N.; Rochet, Jean-Christophe; Hazbun, Tony R.
2015-01-01
The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins. PMID:26306045