Sample records for cell aging

  1. Effect of aging on stem cells

    PubMed Central

    Ahmed, Abu Shufian Ishtiaq; Sheng, Matilda HC; Wasnik, Samiksha; Baylink, David J; Lau, Kin-Hing William

    2017-01-01

    Pluripotent stem cells have the remarkable self-renewal ability and are capable of differentiating into multiple diverse cells. There is increasing evidence that the aging process can have adverse effects on stem cells. As stem cells age, their renewal ability deteriorates and their ability to differentiate into the various cell types is altered. Accordingly, it is suggested aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Understanding the role of the aging process in deterioration of stem cell function is crucial, not only in understanding the pathophysiology of aging-associated disorders, but also in future development of novel effective stem cell-based therapies to treat aging-associated diseases. This review article first focuses on the basis of the various aging disease-related stem cell dysfunction. It then addresses the several concepts on the potential mechanism that causes aging-related stem cell dysfunction. It also briefly discusses the current potential therapies under development for aging-associated stem cell defects. PMID:28261550

  2. Defective TFH Cell Function and Increased TFR Cells Contribute to Defective Antibody Production in Aging.

    PubMed

    Sage, Peter T; Tan, Catherine L; Freeman, Gordon J; Haigis, Marcia; Sharpe, Arlene H

    2015-07-14

    Defective antibody production in aging is broadly attributed to immunosenescence. However, the precise immunological mechanisms remain unclear. Here, we demonstrate an increase in the ratio of inhibitory T follicular regulatory (TFR) cells to stimulatory T follicular helper (TFH) cells in aged mice. Aged TFH and TFR cells are phenotypically distinct from those in young mice, exhibiting increased programmed cell death protein-1 expression but decreased ICOS expression. Aged TFH cells exhibit defective antigen-specific responses, and programmed cell death protein-ligand 1 blockade can partially rescue TFH cell function. In contrast, young and aged TFR cells have similar suppressive capacity on a per-cell basis in vitro and in vivo. Together, these studies reveal mechanisms contributing to defective humoral immunity in aging: an increase in suppressive TFR cells combined with impaired function of aged TFH cells results in reduced T-cell-dependent antibody responses in aged mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Reduced Ang2 expression in aging endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at; Ebenbauer, B.; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of agingmore » before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.« less

  4. Restoration of Mitochondrial NAD+ Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells.

    PubMed

    Son, Myung Jin; Kwon, Youjeong; Son, Taekwon; Cho, Yee Sook

    2016-12-01

    The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD + levels appear to be susceptible to aging. In aged cells, mitochondrial NAD + levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD + levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD + levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851. © 2016 AlphaMed Press.

  5. β-Cell dedifferentiation, reduced duct cell plasticity, and impaired β-cell mass regeneration in middle-aged rats.

    PubMed

    Téllez, Noèlia; Vilaseca, Marina; Martí, Yasmina; Pla, Arturo; Montanya, Eduard

    2016-09-01

    Limitations in β-cell regeneration potential in middle-aged animals could contribute to the increased risk to develop diabetes associated with aging. We investigated β-cell regeneration of middle-aged Wistar rats in response to two different regenerative stimuli: partial pancreatectomy (Px + V) and gastrin administration (Px + G). Pancreatic remnants were analyzed 3 and 14 days after surgery. β-Cell mass increased in young animals after Px and was further increased after gastrin treatment. In contrast, β-cell mass did not change after Px or after gastrin treatment in middle-aged rats. β-Cell replication and individual β-cell size were similarly increased after Px in young and middle-aged animals, and β-cell apoptosis was not modified. Nuclear immunolocalization of neurog3 or nkx6.1 in regenerative duct cells, markers of duct cell plasticity, was increased in young but not in middle-aged Px rats. The pancreatic progenitor-associated transcription factors neurog3 and sox9 were upregulated in islet β-cells of middle-aged rats and further increased after Px. The percentage of chromogranin A+/hormone islet cells was significantly increased in the pancreases of middle-aged Px rats. In summary, the potential for compensatory β-cell hyperplasia and hypertrophy was retained in middle-aged rats, but β-cell dedifferentiation and impaired duct cell plasticity limited β-cell regeneration. Copyright © 2016 the American Physiological Society.

  6. A dual role of p21 in stem cell aging.

    PubMed

    Ju, Zhenyu; Choudhury, Aaheli Roy; Rudolph, K Lenhard

    2007-04-01

    A decline in adult stem cell function occurs during aging, likely contributing to the decline in organ homeostasis and regeneration with age. An emerging field in aging research is to analyze molecular pathways limiting adult stem cell function in response to macromolecular damage accumulation during aging. Current data suggest that the p21 cell cycle inhibitor has a dual role in stem cell aging: On one hand, p21 protects adult stem cells from acute genotoxic stress by preventing inappropriate cycling of acutely damaged stem cells. On the other hand, p21 activation impairs stem cell function and survival of aging telomere dysfunctional mice indicating that p21 checkpoint function is disadvantageous in the context of chronic and persistent damage, which accumulates during aging. This article focuses on these dual roles of p21 in aging stem cells.

  7. Stem Cell Models: A Guide to Understand and Mitigate Aging?

    PubMed

    Brunauer, Regina; Alavez, Silvestre; Kennedy, Brian K

    2017-01-01

    Aging is studied either on a systemic level using life span and health span of animal models, or on the cellular level using replicative life span of yeast or mammalian cells. While useful in identifying general and conserved pathways of aging, both approaches provide only limited information about cell-type specific causes and mechanisms of aging. Stem cells are the regenerative units of multicellular life, and stem cell aging might be a major cause for organismal aging. Using the examples of hematopoietic stem cell aging and human pluripotent stem cell models, we propose that stem cell models of aging are valuable for studying tissue-specific causes and mechanisms of aging and can provide unique insights into the mammalian aging process that may be inaccessible in simple model organisms. © 2016 S. Karger AG, Basel.

  8. Advanced glycation end products promote ChREBP expression and cell proliferation in liver cancer cells by increasing reactive oxygen species.

    PubMed

    Chen, Hanbei; Li, Yakui; Zhu, Yemin; Wu, Lifang; Meng, Jian; Lin, Ning; Yang, Dianqiang; Li, Minle; Ding, WenJin; Tong, Xuemei; Su, Qing

    2017-08-01

    The aim of the study was to elucidate the mechanism by which advanced glycation end products (AGEs) promote cell proliferation in liver cancer cells.We treated liver cancer HepG2 cells with 200 mg/L AGEs or bovine serum albumin (BSA) and assayed for cell viability, cell cycle, and apoptosis. We performed real-time PCR and Western blot analysis for RNA and protein levels of carbohydrate responsive element-binding protein (ChREBP) in AGEs- or BSA-treated HepG2 cells. We analyzed the level of reactive oxygen species (ROS) in HepG2 cells treated with AGEs or BSA.We found that increased S-phase cell percentage and decreased apoptosis contributed to AGEs-induced liver cancer cell proliferation. Real-time PCR and Western blot analysis showed that AGEs stimulated RNA and protein levels of ChREBP, a transcription factor promoting glycolysis and maintaining cell proliferation in liver cancer cells. Intriguingly, the level of ROS was higher in AGEs-treated liver cancer cells. Treating liver cancer cells with antioxidant N-acetyl cystein (NAC) partly blocked AGEs-induced ChREBP expression and cell proliferation.Our results suggest that the AGEs-ROS-ChREBP pathway plays a critical role in promoting ChREBP expression and liver cancer cell proliferation.

  9. Senescent Cells: A Novel Therapeutic Target for Aging and Age-Related Diseases

    PubMed Central

    Naylor, RM; Baker, DJ; van Deursen, JM

    2014-01-01

    Aging is the main risk factor for most chronic diseases, disabilities, and declining health. It has been proposed that senescent cells—damaged cells that have lost the ability to divide—drive the deterioration that underlies aging and age-related diseases. However, definitive evidence for this relationship has been lacking. The use of a progeroid mouse model (which expresses low amounts of the mitotic checkpoint protein BubR1) has been instrumental in demonstrating that p16Ink4a-positive senescent cells drive age-related pathologies and that selective elimination of these cells can prevent or delay age-related deterioration. These studies identify senescent cells as potential therapeutic targets in the treatment of aging and age-related diseases. Here, we describe how senescent cells develop, the experimental evidence that causally implicates senescent cells in age-related dysfunction, the chronic diseases and disorders that are characterized by the accumulation of senescent cells at sites of pathology, and the therapeutic approaches that could specifically target senescent cells. PMID:23212104

  10. Age-Related Decline in Primary CD8+ T Cell Responses Is Associated with the Development of Senescence in Virtual Memory CD8+ T Cells.

    PubMed

    Quinn, Kylie M; Fox, Annette; Harland, Kim L; Russ, Brendan E; Li, Jasmine; Nguyen, Thi H O; Loh, Liyen; Olshanksy, Moshe; Naeem, Haroon; Tsyganov, Kirill; Wiede, Florian; Webster, Rosela; Blyth, Chantelle; Sng, Xavier Y X; Tiganis, Tony; Powell, David; Doherty, Peter C; Turner, Stephen J; Kedzierska, Katherine; La Gruta, Nicole L

    2018-06-19

    Age-associated decreases in primary CD8 + T cell responses occur, in part, due to direct effects on naive CD8 + T cells to reduce intrinsic functionality, but the precise nature of this defect remains undefined. Aging also causes accumulation of antigen-naive but semi-differentiated "virtual memory" (T VM ) cells, but their contribution to age-related functional decline is unclear. Here, we show that T VM cells are poorly proliferative in aged mice and humans, despite being highly proliferative in young individuals, while conventional naive T cells (T N cells) retain proliferative capacity in both aged mice and humans. Adoptive transfer experiments in mice illustrated that naive CD8 T cells can acquire a proliferative defect imposed by the aged environment but age-related proliferative dysfunction could not be rescued by a young environment. Molecular analyses demonstrate that aged T VM cells exhibit a profile consistent with senescence, marking an observation of senescence in an antigenically naive T cell population. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Retinal pigment epithelial cell multinucleation in the aging eye - a mechanism to repair damage and maintain homoeostasis.

    PubMed

    Chen, Mei; Rajapakse, Dinusha; Fraczek, Monika; Luo, Chang; Forrester, John V; Xu, Heping

    2016-06-01

    Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Dysfunction or death of RPE cells underlies many age-related retinal degenerative disorders particularly age-related macular degeneration. During aging RPE cells decline in number, suggesting an age-dependent cell loss. RPE cells are considered to be postmitotic, and how they repair damage during aging remains poorly defined. We show that RPE cells increase in size and become multinucleate during aging in C57BL/6J mice. Multinucleation appeared not to be due to cell fusion, but to incomplete cell division, that is failure of cytokinesis. Interestingly, the phagocytic activity of multinucleate RPE cells was not different from that of mononuclear RPE cells. Furthermore, exposure of RPE cells in vitro to photoreceptor outer segment (POS), particularly oxidized POS, dose-dependently promoted multinucleation and suppressed cell proliferation. Both failure of cytokinesis and suppression of proliferation required contact with POS. Exposure to POS also induced reactive oxygen species and DNA oxidation in RPE cells. We propose that RPE cells have the potential to proliferate in vivo and to repair defects in the monolayer. We further propose that the conventionally accepted 'postmitotic' status of RPE cells is due to a modified form of contact inhibition mediated by POS and that RPE cells are released from this state when contact with POS is lost. This is seen in long-standing rhegmatogenous retinal detachment as overtly proliferating RPE cells (proliferative vitreoretinopathy) and more subtly as multinucleation during normal aging. Age-related oxidative stress may promote failure of cytokinesis and multinucleation in RPE cells. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury

    PubMed Central

    Chiang, Chih-Kang; Wang, Ching-Chia; Lu, Tien-Fong; Huang, Kuo-How; Sheu, Meei-Ling; Liu, Shing-Hwa; Hung, Kuan-Yu

    2016-01-01

    Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney. PMID:27665710

  13. Transcriptional and Cell Cycle Alterations Mark Aging of Primary Human Adipose-Derived Stem Cells.

    PubMed

    Shan, Xiaoyin; Roberts, Cleresa; Kim, Eun Ji; Brenner, Ariana; Grant, Gregory; Percec, Ivona

    2017-05-01

    Adult stem cells play a critical role in the maintenance of tissue homeostasis and prevention of aging. While the regenerative potential of stem cells with low cellular turnover, such as adipose-derived stem cells (ASCs), is increasingly recognized, the study of chronological aging in ASCs is technically difficult and remains poorly understood. Here, we use our model of chronological aging in primary human ASCs to examine genome-wide transcriptional networks. We demonstrate first that the transcriptome of aging ASCs is distinctly more stable than that of age-matched fibroblasts, and further, that age-dependent modifications in cell cycle progression and translation initiation specifically characterize aging ASCs in conjunction with increased nascent protein synthesis and a distinctly shortened G1 phase. Our results reveal novel chronological aging mechanisms in ASCs that are inherently different from differentiated cells and that may reflect an organismal attempt to meet the increased demands of tissue and organ homeostasis during aging. Stem Cells 2017;35:1392-1401. © 2017 AlphaMed Press.

  14. Why do hair cells and spiral ganglion neurons in the cochlea die during aging?

    PubMed Central

    Perez, Philip; Bao, Jianxin

    2011-01-01

    Age-related decline of cochlear function is mainly due to the loss of hair cells and spiral ganglion neurons (SGNs). Recent findings clearly indicate that survival of these two cell types during aging depends on genetic and environmental interactions, and this relationship is seen at the systemic, tissue, cellular, and molecular levels. At cellular and molecular levels, age-related loss of hair cells and SGNs can occur independently, suggesting distinct mechanisms for the death of each during aging. This mechanistic independence is also observed in the loss of medial olivocochlear efferent innervation and outer hair cells during aging, pointing to a universal independent cellular mechanism for age-related neuronal death in the peripheral auditory system. While several molecular signaling pathways are implicated in the age-related loss of hair cells and SGNs, studies with the ability to locally modify gene expression in these cell types are needed to address whether these signaling pathways have direct effects on hair cells and SGNs during aging. Finally, the issue of whether age-related loss of these cells occurs via typical apoptotic pathways requires further examination. As new studies in the field of aging reshape the framework for exploring these underpinnings, understanding of the loss of hair cells and SGNs associated with age and the interventions that can treat and prevent these changes will result in dramatic benefits for an aging population. PMID:22396875

  15. Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability

    PubMed Central

    Patterson, Melissa N.; Scannapieco, Alison E.; Au, Pak Ho; Dorsey, Savanna; Royer, Catherine A.; Maxwell, Patrick H.

    2015-01-01

    Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag-GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species. PMID:26298836

  16. Trends in cell phone use among children in the Danish national birth cohort at ages 7 and 11 years.

    PubMed

    Sudan, Madhuri; Olsen, Jørn; Sigsgaard, Torben; Kheifets, Leeka

    2016-11-01

    We prospectively examined trends in cell phone use among children in the Danish National Birth Cohort. Cell phone use was assessed at ages 7 and 11 years, and we examined use patterns by age, by year of birth, and in relation to specific individual characteristics. There was an increase in cell phone use from age 7 (37%) to 11 years (94%). There was a clear pattern of greater reported cell phone use among children at age 7 years with later birth year, but this trend disappeared at age 11. Girls and those who used phones at age 7 talked more often and for longer durations at age 11 years. Low socio-economic status and later year of birth were associated with voice calls at age 7 but not at age 11 years. At age 11 most used cell phones for texting and gaming more than for voice calls. Further, children who started using cell phones at age 7 years were more likely to be heavy cell phone voice users at age 11 years, making early use a marker for higher cumulative exposure regardless of year of birth. As cell phone technology continues to advance, new use patterns will continue to emerge, and exposure assessment research among children must reflect these trends.

  17. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma.

    PubMed

    Liu, Hen-Yu; Huang, Chiung-Fang; Lin, Tzu-Chieh; Tsai, Ching-Yu; Tina Chen, Szu-Yu; Liu, Alice; Chen, Wei-Hong; Wei, Hong-Jian; Wang, Ming-Fu; Williams, David F; Deng, Win-Ping

    2014-12-01

    Aging is related to loss of functional stem cell accompanying loss of tissue and organ regeneration potentials. Previously, we demonstrated that the life span of ovariectomy-senescence accelerated mice (OVX-SAMP8) was significantly prolonged and similar to that of the congenic senescence-resistant strain of mice after platelet rich plasma (PRP)/embryonic fibroblast transplantation. The aim of this study is to investigate the potential of PRP for recovering cellular potential from senescence and then delaying animal aging. We first examined whether stem cells would be senescent in aged mice compared to young mice. Primary adipose derived stem cells (ADSCs) and bone marrow derived stem cells (BMSCs) were harvested from young and aged mice, and found that cell senescence was strongly correlated to animal aging. Subsequently, we demonstrated that PRP could recover cell potential from senescence, such as promote cell growth (cell proliferation and colony formation), increase osteogenesis, decrease adipogenesis, restore cell senescence related markers and resist the oxidative stress in stem cells from aged mice. The results also showed that PRP treatment in aged mice could delay mice aging as indicated by survival, body weight and aging phenotypes (behavior and gross morphology) in term of recovering the cellular potential of their stem cells compared to the results on aged control mice. In conclusion these findings showed that PRP has potential to delay aging through the recovery of stem cell senescence and could be used as an alternative medicine for tissue regeneration and future rejuvenation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals.

    PubMed

    Schwörer, Simon; Becker, Friedrich; Feller, Christian; Baig, Ali H; Köber, Ute; Henze, Henriette; Kraus, Johann M; Xin, Beibei; Lechel, André; Lipka, Daniel B; Varghese, Christy S; Schmidt, Manuel; Rohs, Remo; Aebersold, Ruedi; Medina, Kay L; Kestler, Hans A; Neri, Francesco; von Maltzahn, Julia; Tümpel, Stefan; Rudolph, K Lenhard

    2016-12-15

    The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFβ, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.

  19. Male Rat Germ Cells Display Age-Dependent and Cell-Specific Susceptibility in Response to Oxidative Stress Challenges1

    PubMed Central

    Selvaratnam, Johanna; Paul, Catriona; Robaire, Bernard

    2015-01-01

    For decades male germ cells were considered unaffected by aging, due to the fact that males continue to generate sperm into old age; however, evidence indicates that germ cells from aged males are of lower quality than those of young males. The current study examines the effects of aging on pachytene spermatocytes and round spermatids, and is the first study to culture these cells in isolation for an extended period. Our objective is to determine the cell-specific responses germ cells have to aging and oxidative insult. Culturing isolated germ cells from young and aged Brown Norway rats revealed that germ cells from aged males displayed an earlier decline in viability, elevated levels of reactive oxygen species (ROS), and increased spermatocyte DNA damage, compared to young males. Furthermore, oxidative insult by prooxidant 3-morpholinosydnonimine provides insight into how spermatocytes and spermatids manage excess ROS. Genome-wide microarray analyses revealed that several transcripts for antioxidants, Sod1, Cat, and Prdxs, were up-regulated in response to ROS in germ cells from young males while being expressed at lower levels in the aged. In contrast, the expression of DNA damage repair genes Rad50 and Atm were increased in the germ cells from aged animals. Our data indicate that as germ cells undergo spermatogenesis, they adapt and respond to oxidative stress differently, depending on their phase of development, and the process of aging results in redox dysfunction. Thus, even at early stages of spermatogenesis, germ cells from aged males are unable to mount an appropriate response to manage oxidative stress. PMID:26224006

  20. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    PubMed

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  1. Stem cell aging: mechanisms, regulators and therapeutic opportunities

    PubMed Central

    Oh, Juhyun; Lee, Yang David; Wagers, Amy J

    2014-01-01

    Aging tissues experience a progressive decline in homeostatic and regenerative capacities, which has been attributed to degenerative changes in tissue-specific stem cells, stem cell niches and systemic cues that regulate stem cell activity. Understanding the molecular pathways involved in this age-dependent deterioration of stem cell function will be critical for developing new therapies for diseases of aging that target the specific causes of age-related functional decline. Here we explore key molecular pathways that are commonly perturbed as tissues and stem cells age and degenerate. We further consider experimental evidence both supporting and refuting the notion that modulation of these pathways per se can reverse aging phenotypes. Finally, we ask whether stem cell aging establishes an epigenetic ‘memory’ that is indelibly written or one that can be reset. PMID:25100532

  2. Depletion of Pax7+ satellite cells does not affect diaphragm adaptations to running in young or aged mice.

    PubMed

    Murach, Kevin A; Confides, Amy L; Ho, Angel; Jackson, Janna R; Ghazala, Lina S; Peterson, Charlotte A; Dupont-Versteegden, Esther E

    2017-10-01

    Satellite cell depletion does not affect diaphragm adaptations to voluntary wheel running in young or aged mice. Satellite cell depletion early in life (4 months of age) has minimal effect on diaphragm phenotype by old age (24 months). Prolonged satellite cell depletion in the diaphragm does not result in excessive extracellular matrix accumulation, in contrast to what has been reported in hind limb muscles. Up-regulation of Pax3 mRNA+ cells after satellite cell depletion in young and aged mice suggests that Pax3+ cells may compensate for a loss of Pax7+ satellite cells in the diaphragm. Future investigations should focus on the role of Pax3+ cells in the diaphragm during adaptation to exercise and ageing. Satellite cell contribution to unstressed diaphragm is higher compared to hind limb muscles, which is probably attributable to constant activation of this muscle to drive ventilation. Whether satellite cell depletion negatively impacts diaphragm quantitative and qualitative characteristics under stressed conditions in young and aged mice is unknown. We therefore challenged the diaphragm with prolonged running activity in the presence and absence of Pax7+ satellite cells in young and aged mice using an inducible Pax7 CreER -R26R DTA model. Mice were vehicle (Veh, satellite cell-replete) or tamoxifen (Tam, satellite cell-depleted) treated at 4 months of age and were then allowed to run voluntarily at 6 months (young) and 22 months (aged). Age-matched, cage-dwelling, Veh- and Tam-treated mice without wheel access served as activity controls. Diaphragm muscles were analysed from young (8 months) and aged (24 months) mice. Satellite cell depletion did not alter diaphragm mean fibre cross-sectional area, fibre type distribution or extracellular matrix content in young or aged mice, regardless of running activity. Resting in vivo diaphragm function was also unaffected by satellite cell depletion. Myonuclear density was maintained in young satellite cell-depleted mice regardless of running, although it was modestly reduced in aged sedentary (-7%) and running (-19%) mice without satellite cells (P < 0.05). Using fluorescence in situ hybridization, we detected higher Pax3 mRNA+ cell density in both young and aged satellite cell-depleted diaphragm muscle (P < 0.05), which may compensate for the loss of Pax7+ satellite cells. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  3. Homeostatic migration and distribution of innate immune cells in primary and secondary lymphoid organs with ageing.

    PubMed

    Nikolich-Žugich, J; Davies, J S

    2017-03-01

    Ageing of the innate and adaptive immune system, collectively termed immune senescence, is a complex process. One method to understand the components of ageing involves dissociating the effects of ageing on the cells of the immune system, on the microenvironment in lymphoid organs and tissues where immune cells reside and on the circulating factors that interact with both immune cells and their microenvironment. Heterochronic parabiosis, a surgical union of two organisms of disparate ages, is ideal for this type of study, as it has the power to dissociate the age of the cell and the age of the microenvironment into which the cell resides or is migrating. So far, however, it has been used sparingly to study immune ageing. Here we review the limited literature on homeostatic innate immune cell trafficking in ageing in the absence of chronic inflammation. We also review our own recent data on trafficking of innate immune subsets between primary and secondary lymphoid organs in heterochronic parabiosis. We found no systemic bias in retention or acceptance of neutrophils, macrophages, dendritic cells or natural killer cells with ageing in primary and secondary lymphoid organs. We conclude that these four innate immune cell types migrate to and populate lymphoid organs (peripheral lymph nodes, spleen and bone marrow), regardless of their own age and of the age of lymphoid organs. © 2017 British Society for Immunology.

  4. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing.

    PubMed

    Laun, Peter; Bruschi, Carlo V; Dickinson, J Richard; Rinnerthaler, Mark; Heeren, Gino; Schwimbersky, Richard; Rid, Raphaela; Breitenbach, Michael

    2007-01-01

    Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast.

  5. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing

    PubMed Central

    Laun, Peter; Bruschi, Carlo V.; Dickinson, J. Richard; Rinnerthaler, Mark; Heeren, Gino; Schwimbersky, Richard; Rid, Raphaela; Breitenbach, Michael

    2007-01-01

    Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast. PMID:17986449

  6. Impact of genomic damage and ageing on stem cell function

    PubMed Central

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  7. Aging yeast gain a competitive advantage on non-optimal carbon sources.

    PubMed

    Frenk, Stephen; Pizza, Grazia; Walker, Rachael V; Houseley, Jonathan

    2017-06-01

    Animals, plants and fungi undergo an aging process with remarkable physiological and molecular similarities, suggesting that aging has long been a fact of life for eukaryotes and one to which our unicellular ancestors were subject. Key biochemical pathways that impact longevity evolved prior to multicellularity, and the interactions between these pathways and the aging process therefore emerged in ancient single-celled eukaryotes. Nevertheless, we do not fully understand how aging impacts the fitness of unicellular organisms, and whether such cells gain a benefit from modulating rather than simply suppressing the aging process. We hypothesized that age-related loss of fitness in single-celled eukaryotes may be counterbalanced, partly or wholly, by a transition from a specialist to a generalist life-history strategy that enhances adaptability to other environments. We tested this hypothesis in budding yeast using competition assays and found that while young cells are more successful in glucose, highly aged cells outcompete young cells on other carbon sources such as galactose. This occurs because aged yeast divide faster than young cells in galactose, reversing the normal association between age and fitness. The impact of aging on single-celled organisms is therefore complex and may be regulated in ways that anticipate changing nutrient availability. We propose that pathways connecting nutrient availability with aging arose in unicellular eukaryotes to capitalize on age-linked diversity in growth strategy and that individual cells in higher eukaryotes may similarly diversify during aging to the detriment of the organism as a whole. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Reduced Ang2 expression in aging endothelial cells.

    PubMed

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging.

    PubMed

    Young, Kira; Borikar, Sneha; Bell, Rebecca; Kuffler, Lauren; Philip, Vivek; Trowbridge, Jennifer J

    2016-10-17

    Declining immune function with age is associated with reduced lymphoid output of hematopoietic stem cells (HSCs). Currently, there is poor understanding of changes with age in the heterogeneous multipotent progenitor (MPP) cell compartment, which is long lived and responsible for dynamically regulating output of mature hematopoietic cells. In this study, we observe an early and progressive loss of lymphoid-primed MPP cells (LMPP/MPP4) with aging, concomitant with expansion of HSCs. Transcriptome and in vitro functional analyses at the single-cell level reveal a concurrent increase in cycling of aging LMPP/MPP4 with loss of lymphoid priming and differentiation potential. Impaired lymphoid differentiation potential of aged LMPP/MPP4 is not rescued by transplantation into a young bone marrow microenvironment, demonstrating cell-autonomous changes in the MPP compartment with aging. These results pinpoint an age and cellular compartment to focus further interrogation of the drivers of lymphoid cell loss with aging. © 2016 Young et al.

  10. Advanced glycation end products increase carbohydrate responsive element binding protein expression and promote cancer cell proliferation.

    PubMed

    Chen, Hanbei; Wu, Lifang; Li, Yakui; Meng, Jian; Lin, Ning; Yang, Dianqiang; Zhu, Yemin; Li, Xiaoyong; Li, Minle; Xu, Ye; Wu, Yuchen; Tong, Xuemei; Su, Qing

    2014-09-01

    Diabetic patients have increased levels of advanced glycation end products (AGEs) and the role of AGEs in regulating cancer cell proliferation is unclear. Here, we found that treating colorectal and liver cancer cells with AGEs promoted cell proliferation. AGEs stimulated both the expression and activation of a key transcription factor called carbohydrate responsive element binding protein (ChREBP) which had been shown to promote glycolytic and anabolic activity as well as proliferation of colorectal and liver cancer cells. Using siRNAs or the antagonistic antibody for the receptor for advanced glycation end-products (RAGE) blocked AGEs-induced ChREBP expression or cell proliferation in cancer cells. Suppressing ChREBP expression severely impaired AGEs-induced cancer cell proliferation. Taken together, these results demonstrate that AGEs-RAGE signaling enhances cancer cell proliferation in which AGEs-mediated ChREBP induction plays an important role. These findings may provide new explanation for increased cancer progression in diabetic patients. Copyright © 2014. Published by Elsevier Ireland Ltd.

  11. Protective effect of aged garlic extract (AGE) on the apoptosis of intestinal epithelial cells caused by methotrexate.

    PubMed

    Li, Tiesong; Ito, Kousei; Sumi, Shin-Ichiro; Fuwa, Toru; Horie, Toshiharu

    2009-04-01

    Methotrexate (MTX) causes intestinal damage, resulting in diarrhea. The side effects often disturb the cancer chemotherapy. We previously reported that AGE protected the small intestine of rats from the MTX-induced damage. In the present paper, the mechanism of the protection of AGE against the MTX-induced damage of small intestine was investigated, using IEC-6 cells originating from rat jejunum crypt. The viability and apoptosis of IEC-6 cells were examined in the presence of MTX and/or AGE. The viability of IEC-6 cells exposed to MTX was decreased by the increase of MTX concentration. The MTX-induced loss of viable IEC-6 cells was almost completely prevented by the presence of more than 0.1% AGE. In IEC-6 cells exposed to MTX, the cromatin condensation, DNA fragmentation, caspase-3 activation and cytochrome c release were observed. These were preserved to the control levels by the presence of AGE. MTX markedly decreased intracellular GSH in IEC-6 cells, but the presence of AGE in IEC-6 cells with MTX preserved intracellular GSH to the control level. IEC-6 cells in G2/M stage markedly decreased 72 h after the MTX treatment, which was preserved to the control level by the presence of AGE. These results indicated that AGE protected IEC-6 cells from the MTX-induced damage. The MTX-induced apoptosis of IEC-6 cells was shown to be depressed by AGE. AGE may be useful for the cancer chemotherapy with MTX, since AGE reduces the MTX-induced intestinal damage.

  12. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesismore » and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.« less

  13. Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability.

    PubMed

    Patterson, Melissa N; Scannapieco, Alison E; Au, Pak Ho; Dorsey, Savanna; Royer, Catherine A; Maxwell, Patrick H

    2015-10-01

    Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag-GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Characterization of bone marrow-derived mesenchymal stem cells in aging.

    PubMed

    Baker, Natasha; Boyette, Lisa B; Tuan, Rocky S

    2015-01-01

    Adult mesenchymal stem cells are a resource for autologous and allogeneic cell therapies for immune-modulation and regenerative medicine. However, patients most in need of such therapies are often of advanced age. Therefore, the effects of the aged milieu on these cells and their intrinsic aging in vivo are important considerations. Furthermore, these cells may require expansion in vitro before use as well as for future research. Their aging in vitro is thus also an important consideration. Here, we focus on bone marrow mesenchymal stem cells (BMSCs), which are unique compared to other stem cells due to their support of hematopoietic cells in addition to contributing to bone formation. BMSCs may be sensitive to age-related diseases and could perpetuate degenerative diseases in which bone remodeling is a contributory factor. Here, we review (1) the characterization of BMSCs, (2) the characterization of in vivo-aged BMSCs, (3) the characterization of in vitro-aged BMSCs, and (4) potential approaches to optimize the performance of aged BMSCs. This article is part of a Special Issue entitled "Stem Cells and Bone". Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Increased Re-Entry into Cell Cycle Mitigates Age-Related Neurogenic Decline in the Murine Subventricular Zone

    PubMed Central

    Stoll, Elizabeth A.; Habibi, Behnum A.; Mikheev, Andrei M.; Lasiene, Jurate; Massey, Susan C.; Swanson, Kristin R.; Rostomily, Robert C.; Horner, Philip J.

    2012-01-01

    Although new neurons are produced in the subventricular zone (SVZ) of the adult mammalian brain, fewer functional neurons are produced with increasing age. The age-related decline in neurogenesis has been attributed to a decreased pool of neural progenitor cells (NPCs), an increased rate of cell death, and an inability to undergo neuronal differentiation and develop functional synapses. The time between mitotic events has also been hypothesized to increase with age, but this has not been directly investigated. Studying primary-cultured NPCs from the young adult and aged mouse forebrain, we observe that fewer aged cells are dividing at a given time; however, the mitotic cells in aged cultures divide more frequently than mitotic cells in young cultures during a 48-hour period of live-cell time-lapse imaging. Double-thymidine-analog labeling also demonstrates that fewer aged cells are dividing at a given time, but those that do divide are significantly more likely to re-enter the cell cycle within a day, both in vitro and in vivo. Meanwhile, we observed that cellular survival is impaired in aged cultures. Using our live-cell imaging data, we developed a mathematical model describing cell cycle kinetics to predict the growth curves of cells over time in vitro and the labeling index over time in vivo. Together, these data surprisingly suggest that progenitor cells remaining in the aged SVZ are highly proliferative. PMID:21948688

  16. Aging and insulin signaling differentially control normal and tumorous germline stem cells.

    PubMed

    Kao, Shih-Han; Tseng, Chen-Yuan; Wan, Chih-Ling; Su, Yu-Han; Hsieh, Chang-Che; Pi, Haiwei; Hsu, Hwei-Jan

    2015-02-01

    Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC-male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. Centrosome and microtubule instability in aging Drosophila cells

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Chakrabarti, A.; Hedrick, J.

    1999-01-01

    Several cytoskeletal changes are associated with aging which includes alterations in muscle structure leading to muscular atrophy, and weakening of the microtubule network which affects cellular secretion and maintenance of cell shape. Weakening of the microtubule network during meiosis in aging oocytes can result in aneuploidy or trisomic zygotes with increasing maternal age. Imbalances of cytoskeletal organization can lead to disease such as Alzheimer's, muscular disorders, and cancer. Because many cytoskeletal diseases are related to age we investigated the effects of aging on microtubule organization in cell cultures of the Drosophila cell model system (Schneider S-1 and Kc23 cell lines). This cell model is increasingly being used as an alternative system to mammalian cell cultures. Drosophila cells are amenable to genetic manipulations and can be used to identify and manipulate genes which are involved in the aging processes. Immunofluorescence, scanning, and transmission electron microscopy were employed for the analysis of microtubule organizing centers (centrosomes) and microtubules at various times after subculturing cells in fresh medium. Our results reveal that centrosomes and the microtubule network becomes significantly affected in aging cells after 5 days of subculture. At 5-14 days of subculture, 1% abnormal out of 3% mitoses were noted which were clearly distinguishable from freshly subcultured control cells in which 3% of cells undergo normal mitosis with bipolar configurations. Microtubules are also affected in the midbody during cell division. The midbody in aging cells becomes up to 10 times longer when compared with midbodies in freshly subcultured cells. During interphase, microtubules are often disrupted and disorganized, which may indicate improper function related to transport of cell organelles along microtubules. These results are likely to help explain some cytoskeletal disorders and diseases related to aging.

  18. Deficiency in DNA damage response of enterocytes accelerates intestinal stem cell aging in Drosophila.

    PubMed

    Park, Joung-Sun; Jeon, Ho-Jun; Pyo, Jung-Hoon; Kim, Young-Shin; Yoo, Mi-Ae

    2018-03-07

    Stem cell dysfunction is closely linked to tissue and organismal aging and age-related diseases, and heavily influenced by the niche cells' environment. The DNA damage response (DDR) is a key pathway for tissue degeneration and organismal aging; however, the precise protective role of DDR in stem cell/niche aging is unclear. The Drosophila midgut is an excellent model to study the biology of stem cell/niche aging because of its easy genetic manipulation and its short lifespan. Here, we showed that deficiency of DDR in Drosophila enterocytes (ECs) accelerates intestinal stem cell (ISC) aging. We generated flies with knockdown of Mre11 , Rad50 , Nbs1 , ATM , ATR , Chk1 , and Chk2 , which decrease the DDR system in ECs. EC-specific DDR depletion induced EC death, accelerated the aging of ISCs, as evidenced by ISC hyperproliferation, DNA damage accumulation, and increased centrosome amplification, and affected the adult fly's survival. Our data indicated a distinct effect of DDR depletion in stem or niche cells on tissue-resident stem cell proliferation. Our findings provide evidence of the essential role of DDR in protecting EC against ISC aging, thus providing a better understanding of the molecular mechanisms of stem cell/niche aging.

  19. The sweet taste of death: glucose triggers apoptosis during yeast chronological aging.

    PubMed

    Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Madeo, Frank

    2010-10-01

    As time goes by, a postmitotic cell ages following a degeneration process ultimately ending in cell death. This phenomenon is evolutionary conserved and present in unicellular eukaryotes as well, making the yeast chronological aging system an appreciated model. Here, single cells die in a programmed fashion (both by apoptosis and necrosis) for the benefit of the whole population. Besides its meaning for aging and cell death research, age-induced programmed cell death represents the first experimental proof for the so-called group selection theory: Apoptotic genes became selected during evolution because of the benefits they might render to the whole cell culture and not to the individual cell. Many anti‐aging stimuli have been discovered in the yeast chronological aging system and have afterwards been confirmed in higher cells or organisms. New work from the Burhans group (this issue) now demonstrates that glucose signaling has a progeriatric effect on chronologically aged yeast cells: Glucose administration results in a diminished efficacy of cells to enter quiescence, finally causing superoxide‐mediated replication stress and apoptosis.

  20. Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion.

    PubMed

    Notsu, Masakazu; Yamaguchi, Toru; Okazaki, Kyoko; Tanaka, Ken-ichiro; Ogawa, Noriko; Kanazawa, Ippei; Sugimoto, Toshitsugu

    2014-07-01

    In diabetic patients, advanced glycation end products (AGEs) cause bone fragility because of deterioration of bone quality. We previously showed that AGEs suppressed the mineralization of mouse stromal ST2 cells. TGF-β is abundant in bone, and enhancement of its signal causes bone quality deterioration. However, whether TGF-β signaling is involved in the AGE-induced suppression of mineralization during the osteoblast lineage remains unknown. We therefore examined the roles of TGF-β in the AGE-induced suppression of mineralization of ST2 cells and human mesenchymal stem cells. AGE3 significantly (P < .001) inhibited mineralization in both cell types, whereas transfection with small interfering RNA for the receptor for AGEs (RAGEs) significantly (P < .05) recovered this process in ST2 cells. AGE3 increased (P < .001) the expression of TGF-β mRNA and protein, which was partially antagonized by transfection with RAGE small interfering RNA. Treatment with a TGF-β type I receptor kinase inhibitor, SD208, recovered AGE3-induced decreases in osterix (P < .001) and osteocalcin (P < .05) and antagonized the AGE3-induced increase in Runx2 mRNA expression in ST2 cells (P < .001). Moreover, SD208 completely and dose dependently rescued AGE3-induced suppression of mineralization in both cell types. In contrast, SD208 intensified AGE3-induced suppression of cell proliferation as well as AGE3-induced apoptosis in proliferating ST2 cells. These findings indicate that, after cells become confluent, AGE3 partially inhibits the differentiation and mineralization of osteoblastic cells by binding to RAGE and increasing TGF-β expression and secretion. They also suggest that TGF-β adversely affects bone quality not only in primary osteoporosis but also in diabetes-related bone disorder.

  1. Hypothalamic stem cells control ageing speed partly through exosomal miRNAs.

    PubMed

    Zhang, Yalin; Kim, Min Soo; Jia, Baosen; Yan, Jingqi; Zuniga-Hertz, Juan Pablo; Han, Cheng; Cai, Dongsheng

    2017-08-03

    It has been proposed that the hypothalamus helps to control ageing, but the mechanisms responsible remain unclear. Here we develop several mouse models in which hypothalamic stem/progenitor cells that co-express Sox2 and Bmi1 are ablated, as we observed that ageing in mice started with a substantial loss of these hypothalamic cells. Each mouse model consistently displayed acceleration of ageing-like physiological changes or a shortened lifespan. Conversely, ageing retardation and lifespan extension were achieved in mid-aged mice that were locally implanted with healthy hypothalamic stem/progenitor cells that had been genetically engineered to survive in the ageing-related hypothalamic inflammatory microenvironment. Mechanistically, hypothalamic stem/progenitor cells contributed greatly to exosomal microRNAs (miRNAs) in the cerebrospinal fluid, and these exosomal miRNAs declined during ageing, whereas central treatment with healthy hypothalamic stem/progenitor cell-secreted exosomes led to the slowing of ageing. In conclusion, ageing speed is substantially controlled by hypothalamic stem cells, partially through the release of exosomal miRNAs.

  2. AGEs and HMGB1 Increase Inflammatory Cytokine Production from Human Placental Cells, Resulting in an Enhancement of Monocyte Migration.

    PubMed

    Shirasuna, Koumei; Seno, Kotomi; Ohtsu, Ayaka; Shiratsuki, Shogo; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Nagayama, Shiho; Iwata, Hisataka; Kuwayama, Takehito

    2016-05-01

    Advanced glycation end products (AGEs) and high-mobility group box-1 (HMGB1) are considered contributing to placental inflammation. We examined the effect of AGEs and HMGB1 on cytokines from Sw.71 human trophoblast cell lines and the interactions between Sw.71 cells and THP-1-monocytes. Sw.71 cells were cultured with/without AGEs or HMGB1. We examined the role of AGEs or HMGB1 on THP1 migration and effect of AGEs on IL-6 from Sw.71 cells using co-cultures or conditioned medium from THP-1 cells. AGEs and HMGB1 increased interleukin (IL)-6, IL-8, and chemokine C-C motif ligand 2 (CCL2) secretion from Sw.71 cells. The secretion of IL-6 was dependent on reactive oxygen species (ROS) and NF-κB. AGEs stimulated IL-6 secretion through receptor RAGE and TLR4, whereas HMGB1 stimulated it through TLR4. AGEs, but not HMGB1, increased monocyte migration via IL-8 and CCL2 from Sw.71 cells. THP-1 monocytes induced IL-6 secretion from Sw.71 cells, and AGEs further stimulated it. AGEs and HMGB1 may promote sterile placental inflammation cooperating with monocytes/macrophages. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Epigenetic Control of Stem Cell Potential During Homeostasis, Aging, and Disease

    PubMed Central

    Beerman, Isabel; Rossi, Derrick J.

    2015-01-01

    Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease. PMID:26046761

  4. Age-related Deterioration of Hematopoietic Stem Cells.

    PubMed

    Kim, Mi Jung; Kim, Min Hwan; Kim, Seung Ah; Chang, Jae Suk

    2008-11-01

    Aging is the process of system deterioration over time in the whole body. Stem cells are self-renewing and therefore have been considered exempt from the aging process. Earlier studies by Hayflick showed that there is an intrinsic limit to the number of divisions that mammalian somatic cells can undergo, and cycling kinetics and ontogeny-related studies strongly suggest that even the most primitive stem cell functions exhibit a certain degree of aging. Despite these findings, studies on the effects of aging on stem cell functions are inconclusive. Here we review the age-related properties of hematopoietic stem cells in terms of intrinsic and extrinsic alterations, proliferative potential, signaling molecules, telomere and telomerase, senescence and cancer issues, regenerative potential and other indications of stem cell aging are discussed in detail.

  5. Age-related Deterioration of Hematopoietic Stem Cells

    PubMed Central

    Kim, Mi Jung; Kim, Min Hwan; Kim, Seung Ah; Chang, Jae Suk

    2008-01-01

    Aging is the process of system deterioration over time in the whole body. Stem cells are self-renewing and therefore have been considered exempt from the aging process. Earlier studies by Hayflick showed that there is an intrinsic limit to the number of divisions that mammalian somatic cells can undergo, and cycling kinetics and ontogeny-related studies strongly suggest that even the most primitive stem cell functions exhibit a certain degree of aging. Despite these findings, studies on the effects of aging on stem cell functions are inconclusive. Here we review the age-related properties of hematopoietic stem cells in terms of intrinsic and extrinsic alterations, proliferative potential, signaling molecules, telomere and telomerase, senescence and cancer issues, regenerative potential and other indications of stem cell aging are discussed in detail. PMID:24855509

  6. DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system.

    PubMed

    Li, Yinyin; Goronzy, Jörg J; Weyand, Cornelia M

    2018-05-01

    The aging process is the major driver of morbidity and mortality, steeply increasing the risk to succumb to cancer, cardiovascular disease, infection and neurodegeneration. Inflammation is a common denominator in age-related pathologies, identifying the immune system as a gatekeeper in aging overall. Among immune cells, T cells are long-lived and exposed to intense replication pressure, making them sensitive to aging-related abnormalities. In successful T cell aging, numbers of naïve cells, repertoire diversity and activation thresholds are preserved as long as possible; in maladaptive T cell aging, protective T cell functions decline and pro-inflammatory effector cells are enriched. Here, we review in the model system of rheumatoid arthritis (RA) how maladaptive T cell aging renders the host susceptible to chronic, tissue-damaging inflammation. In T cells from RA patients, known to be about 20years pre-aged, three interconnected functional domains are altered: DNA damage repair, metabolic activity generating energy and biosynthetic precursor molecules, and shaping of plasma membranes to promote T cell motility. In each of these domains, key molecules and pathways have now been identified, including the glycolytic enzymes PFKFB3 and G6PD; the DNA repair molecules ATM, DNA-PKcs and MRE11A; and the podosome marker protein TKS5. Some of these molecules may help in defining targetable pathways to slow the T cell aging process. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  8. Advanced Glycation End-Products Induce Apoptosis in Pancreatic Islet Endothelial Cells via NF-κB-Activated Cyclooxygenase-2/Prostaglandin E2 Up-Regulation

    PubMed Central

    Lan, Kuo-Cheng; Chiu, Chen-Yuan; Kao, Chia-Wei; Huang, Kuo-How; Wang, Ching-Chia; Huang, Kuo-Tong; Tsai, Keh-Sung

    2015-01-01

    Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs) resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF)-κB-p65 phosphorylation and cyclooxygenase (COX)-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER) stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor) to inhibit prostaglandin E2 (PGE2) production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE) protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation. PMID:25898207

  9. Numeric and volumetric changes in Leydig cells during aging of rats.

    PubMed

    Neves, Bruno Vinicius Duarte; Lorenzini, Fernando; Veronez, Djanira; Miranda, Eduardo Pereira de; Neves, Gabriela Duarte; Fraga, Rogério de

    2017-10-01

    To analyze the effects of aging in rats on the nuclear volume, cytoplasmic volume, and total volume of Leydig cells, as well as their number. Seventy-two Wistar rats were divided into six subgroups of 12 rats, which underwent right orchiectomy at 3, 6, 9, 12, 18, and 24 months of age. The weight and volume of the resected testicles were assessed. A stereological study of Leydig cells was conducted, which included measurements of cell number and nuclear, cytoplasmic, and total cell volumes. The weight and volume of the resected testicles showed reductions with age. Only the subgroup composed of 24-month old rats showed a decrease in the nuclear volume of Leydig cells. Significant reductions in the cytoplasmic volume and total volume of Leydig cells were observed in 18- and 24-month old rats. The number of Leydig cells did not vary significantly with age. Aging in rats resulted in reduction of the nuclear, cytoplasmic, and total cell volumes of Leydig cells. There was no change in the total number of these cells during aging.

  10. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    PubMed

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Regulation of Stem Cell Aging by Metabolism and Epigenetics.

    PubMed

    Ren, Ruotong; Ocampo, Alejandro; Liu, Guang-Hui; Izpisua Belmonte, Juan Carlos

    2017-09-05

    Stem cell aging and exhaustion are considered important drivers of organismal aging. Age-associated declines in stem cell function are characterized by metabolic and epigenetic changes. Understanding the mechanisms underlying these changes will likely reveal novel therapeutic targets for ameliorating age-associated phenotypes and for prolonging human healthspan. Recent studies have shown that metabolism plays an important role in regulating epigenetic modifications and that this regulation dramatically affects the aging process. This review focuses on current knowledge regarding the mechanisms of stem cell aging, and the links between cellular metabolism and epigenetic regulation. In addition, we discuss how these interactions sense and respond to environmental stress in order to maintain stem cell homeostasis, and how environmental stimuli regulate stem cell function. Additionally, we highlight recent advances in the development of therapeutic strategies to rejuvenate dysfunctional aged stem cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. [Cell renovation in the intestinal epithelium in aging].

    PubMed

    Gusel'nikova, E A; Konovalov, S S; Poliakova, V O; Kvetnoĭ, I M

    2010-01-01

    The ability to cell renovation of two basic cell types of intestinal mucosa is the important mechanism for the regulation and support of the gut physiological functions in aging and under the influence of the ecological negative factors. The study of the processes of cell renovation of the intestinal epithelial and neuroendocrine cells in physiological and radiological aging has a great interest, because the irradiation in the subletal doses could be considered as the model of artificial aging, and this fact enables studying of the radiological influence as the ecological factor, promoting the aging. In this study, the increase of cell proliferation in intestinal mucosa in physiological as well as artificial aging was observed. It was shown, that the total population of mitotic cells increases two times. These data testify about active participation of the mechanisms of cell renovation in the safety of gut functions during aging.

  13. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  14. Aged garlic extract protects against methotrexate-induced apoptotic cell injury of IEC-6 cells.

    PubMed

    Horie, Toshiharu; Li, Tiesong; Ito, Kousei; Sumi, Shin-ichiro; Fuwa, Toru

    2006-03-01

    Gastrointestinal toxicity is one of the most serious side effects of methotrexate (MTX) treatment. The side effects often disrupt the cancer chemotherapy. We previously reported that aged garlic extract (AGE) protects the small intestine of rats from MTX-induced damage. In this study, the protection of AGE against MTX-induced damage of IEC-6 cells originating from the rat jejunum crypt was investigated. MTX decreased the viability of IEC-6 cells, but this effect was prevented by AGE (0.5%). The MTX-induced apoptosis of IEC-6 cells was depressed by AGE. These results indicated that AGE protects IEC-6 cells from the MTX-induced damage. AGE may be useful in cancer chemotherapy with MTX because it reduces MTX-induced intestinal damage.

  15. Advanced glycation end products and their receptor contribute to ovarian ageing.

    PubMed

    Stensen, Mette Haug; Tanbo, Tom; Storeng, Ritsa; Fedorcsak, Peter

    2014-01-01

    Do advanced glycation end products (AGE) and the receptor for advanced glycation end products (RAGE) affect the cells of the human ovarian follicle? AGE accumulate on the surface of ovarian granulosa-lutein (GL) cells and monocytes by binding to RAGE and other receptors with possible functional effects on these cells. AGE and RAGE are expressed in granulosa and theca cells, as well as in luteinized cells derived from the ovary. In this prospective cohort study, human follicle fluid-derived cells were isolated from aspirates of ovarian follicles of women who underwent assisted reproduction treatment. Immunofluorescence microscopy and multi-colour flow cytometry were used to determine the presence of AGE and RAGE on the surface of follicular fluid-derived cells and to characterize downstream effects of RAGE activation. GL cells and ovarian monocytes were found to contain AGE and RAGE and to bind AGE-bovine serum albumin (BSA) in correlation with the patients' chronological age. AGE-BSA and BSA failed to induce significantly the cleavage of caspase-3, phosphorylation of nuclear factor-κB or the binding of annexin V (the latter was marginally increased). AGE-fibronectin was found to induce detachment of cultured GL cells in vitro. The impact of AGE and RAGE in the ovary, shown here in cells in culture, remains to be affirmed in clinical settings. The ligands of RAGE and their effects in the ovary remain uncertain but this study implies that AGEs in the form of structural long-lived extracellular matrix proteins, rather than soluble AGEs, may play a role in the decline of ovarian function during ageing. The project was funded by the Norwegian Resource Centre for Women's Health, Oslo University Hospital. The authors have no conflicts of interests.

  16. Influence of aging on the activity of mice Sca-1+CD31- cardiac stem cells.

    PubMed

    Wu, Qiong; Zhan, Jinxi; Pu, Shiming; Qin, Liu; Li, Yun; Zhou, Zuping

    2017-01-03

    Therapeutic application of cardiac resident stem/progenitor cells (CSC/CPCs) is limited due to decline of their regenerative potential with donor age. A variety of studies have shown that the cardiac aging was the problem of the stem cells, but little is known about the impact of age on the subgroups CSC/CPCs, the relationship between subgroups CSC/CPCs ageing and age-related dysfunction. Here, we studied Sca-1+CD31- subgroups of CSCs from younger(2~3months) and older(22~24months) age mice, biological differentiation was realized using specific mediums for 14 days to induce cardiomyocyte, smooth muscle cells or endothelial cells and immunostain analysis of differentiated cell resulting were done. Proliferation and cell cycle were measured by flow cytometry assay, then used microarray to dissect variability from younger and older mice. Although the number of CSCs was higher in older mice, the advanced age significantly reduced the differentiation ability into cardiac cell lineages and the proliferation ability. Transcriptional changes in Sca-1+CD31- subgroups of CSCs during aging are related to Vitamin B6 metabolism, circadian rhythm, Tyrosine metabolism, Complement and coagulation cascades. Taking together these results indicate that Cardiac resident stem/progenitor cells have significant differences in their proliferative, pluripotency and gene profiles and those differences are age depending.

  17. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors.

    PubMed

    Henry, Curtis J; Casás-Selves, Matias; Kim, Jihye; Zaberezhnyy, Vadym; Aghili, Leila; Daniel, Ashley E; Jimenez, Linda; Azam, Tania; McNamee, Eoin N; Clambey, Eric T; Klawitter, Jelena; Serkova, Natalie J; Tan, Aik Choon; Dinarello, Charles A; DeGregori, James

    2015-12-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRAS(V12), or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRAS(V12)-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation--a common feature of aging--has the potential to limit aging-associated oncogenesis.

  18. A systems biology approach to Down syndrome: identification of Notch/Wnt dysregulation in a model of stem cells aging.

    PubMed

    Cairney, C J; Sanguinetti, G; Ranghini, E; Chantry, A D; Nostro, M C; Bhattacharyya, A; Svendsen, C N; Keith, W N; Bellantuono, I

    2009-04-01

    Stem cells are central to the development and maintenance of many tissues. This is due to their capacity for extensive proliferation and differentiation into effector cells. More recently it has been shown that the proliferative and differentiative ability of stem cells decreases with age, suggesting that this may play a role in tissue aging. Down syndrome (DS), is associated with many of the signs of premature tissue aging including T-cell deficiency, increased incidence of early Alzheimer-type, Myelodysplastic-type disease and leukaemia. Previously we have shown that both hematopoietic (HSC) and neural stem cells (NSC) in patients affected by DS showed signs of accelerated aging. In this study we tested the hypothesis that changes in gene expression in HSC and NSC of patients affected by DS reflect changes occurring in stem cells with age. The profiles of genes expressed in HSC and NSC from DS patients highlight pathways associated with cellular aging including a downregulation of DNA repair genes and increases in proapoptotic genes, s-phase cell cycle genes, inflammation and angiogenesis genes. Interestingly, Notch signaling was identified as a potential hub, which when deregulated may drive stem cell aging. These data suggests that DS is a valuable model to study early events in stem cell aging.

  19. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

    PubMed

    Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R

    2017-10-05

    As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Mechanisms of lung aging.

    PubMed

    Brandenberger, Christina; Mühlfeld, Christian

    2017-03-01

    Lung aging is associated with structural remodeling, a decline of respiratory function and a higher susceptibility to acute and chronic lung diseases. Individual factors that modulate pulmonary aging include basic genetic configuration, environmental exposure, life-style and biography of systemic diseases. However, the actual aging of the lung takes place in pulmonary resident cells and is closely linked to aging of the immune system (immunosenescence). Therefore, this article reviews the current knowledge about the impact of aging on pulmonary cells and the immune system, without analyzing those factors that may accelerate the aging process in depth. Hallmarks of aging include alterations at molecular, cellular and cell-cell interaction levels. Because of the great variety of cell types in the lung, the consequences of aging display a broad spectrum of phenotypes. For example, aging is associated with more collagen and less elastin production by fibroblasts, thus increasing pulmonary stiffness and lowering compliance. Decreased sympathetic airway innervation may increase the constriction status of airway smooth muscle cells. Aging of resident and systemic immune cells leads to a pro-inflammatory milieu and reduced capacity of fighting infectious diseases. The current review provides an overview of cellular changes occurring with advancing age in general and in several cell types of the lung as well as of the immune system. Thereby, this survey not only aims at providing a better understanding of the mechanisms of pulmonary aging but also to identify gaps in knowledge that warrant further investigations.

  1. Improvement of biomaterials used in tissue engineering by an ageing treatment.

    PubMed

    Acevedo, Cristian A; Díaz-Calderón, Paulo; Enrione, Javier; Caneo, María J; Palacios, Camila F; Weinstein-Oppenheimer, Caroline; Brown, Donald I

    2015-04-01

    Biomaterials based on crosslinked sponges of biopolymers have been extensively used as scaffolds to culture mammal cells. It is well known that single biopolymers show significant change over time due to a phenomenon called physical ageing. In this research, it was verified that scaffolds used for skin tissue engineering (based on gelatin, chitosan and hyaluronic acid) express an ageing-like phenomenon. Treatments based on ageing of scaffolds improve the behavior of skin-cells for tissue engineering purposes. Physical ageing of dry scaffolds was studied by differential scanning calorimetry and was modeled with ageing kinetic equations. In addition, the physical properties of wet scaffolds also changed with the ageing treatments. Scaffolds were aged up to 3 weeks, and then skin-cells (fibroblasts) were seeded on them. Results indicated that adhesion, migration, viability, proliferation and spreading of the skin-cells were affected by the scaffold ageing. The best performance was obtained with a 2-week aged scaffold (under cell culture conditions). The cell viability inside the scaffold was increased from 60% (scaffold without ageing treatment) to 80%. It is concluded that biopolymeric scaffolds can be modified by means of an ageing treatment, which changes the behavior of the cells seeded on them. The ageing treatment under cell culture conditions might become a bioprocess to improve the scaffolds used for tissue engineering and regenerative medicine.

  2. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells.

    PubMed

    García-Prat, Laura; Sousa-Victor, Pedro; Muñoz-Cánoves, Pura

    2013-09-01

    Aging of an organism is associated with the functional decline of tissues and organs, as well as a sharp decline in the regenerative capacity of stem cells. A prevailing view holds that the aging rate of an individual depends on the ratio of tissue attrition to tissue regeneration. Therefore, manipulations that favor the balance towards regeneration may prevent or delay aging. Skeletal muscle is a specialized tissue composed of postmitotic myofibers that contract to generate force. Satellite cells are the adult stem cells responsible for skeletal muscle regeneration. Recent studies on the biology of skeletal muscle and satellite cells in aging have uncovered the critical impact of systemic and niche factors on stem cell functionality and demonstrated the capacity of aged satellite cells to rejuvenate and increase their regenerative potential when exposed to a youthful environment. Here we review the current literature on the coordinated relationship between cell extrinsic and intrinsic factors that regulate the function of satellite cells, and ultimately determine tissue homeostasis and repair during aging, and which encourage the search for new anti-aging strategies. © 2013 The Authors Journal compilation © 2013 FEBS.

  3. Interplay between mast cells, enterochromaffin cells, and sensory signaling in the aging human bowel.

    PubMed

    Yu, Y; Daly, D M; Adam, I J; Kitsanta, P; Hill, C J; Wild, J; Shorthouse, A; Grundy, D; Jiang, W

    2016-10-01

    Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration. © 2016 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  4. The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction.

    PubMed

    Guan, Siao-Syun; Sheu, Meei-Ling; Yang, Rong-Sen; Chan, Ding-Cheng; Wu, Cheng-Tien; Yang, Ting-Hua; Chiang, Chih-Kang; Liu, Shing-Hwa

    2016-04-26

    Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy and dysfunction using the models of diabetic mice and cultured β-cells. Hypertrophy, increased levels of p27Kip1, AGEs, and receptor for AGEs (RAGE), and decreased levels of HSP60, insulin, and ATP content were obviously observed in pancreatic islets of 12-week-old db/db diabetic mice. Low-concentration AGEs significantly induced the cell hypertrophy, increased the p27Kip1 expression, and decreased the HSP60 expression, insulin secretion, and ATP content in cultured β-cells, which could be reversed by RAGE neutralizing antibody. HSP60 overexpression significantly reversed AGEs-induced hypertrophy, dysfunction, and ATP reduction in β-cells. Oxidative stress was also involved in the AGEs-decreased HSP60 expression in β-cells. Pancreatic sections from diabetic patient showed islet hypertrophy, increased AGEs level, and decreased HSP60 level as compared with normal subject. These findings highlight a novel mechanism by which a HSP60-correlated signaling pathway contributes to the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under diabetic hyperglycemia.

  5. The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction

    PubMed Central

    Wu, Cheng-Tien; Yang, Ting-Hua; Chiang, Chih-Kang; Liu, Shing-Hwa

    2016-01-01

    Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy and dysfunction using the models of diabetic mice and cultured β-cells. Hypertrophy, increased levels of p27Kip1, AGEs, and receptor for AGEs (RAGE), and decreased levels of HSP60, insulin, and ATP content were obviously observed in pancreatic islets of 12-week-old db/db diabetic mice. Low-concentration AGEs significantly induced the cell hypertrophy, increased the p27Kip1 expression, and decreased the HSP60 expression, insulin secretion, and ATP content in cultured β-cells, which could be reversed by RAGE neutralizing antibody. HSP60 overexpression significantly reversed AGEs-induced hypertrophy, dysfunction, and ATP reduction in β-cells. Oxidative stress was also involved in the AGEs-decreased HSP60 expression in β-cells. Pancreatic sections from diabetic patient showed islet hypertrophy, increased AGEs level, and decreased HSP60 level as compared with normal subject. These findings highlight a novel mechanism by which a HSP60-correlated signaling pathway contributes to the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under diabetic hyperglycemia. PMID:27056903

  6. Aging of perennial cells and organ parts according to the programmed aging paradigm.

    PubMed

    Libertini, Giacinto; Ferrara, Nicola

    2016-04-01

    If aging is a physiological phenomenon-as maintained by the programmed aging paradigm-it must be caused by specific genetically determined and regulated mechanisms, which must be confirmed by evidence. Within the programmed aging paradigm, a complete proposal starts from the observation that cells, tissues, and organs show continuous turnover: As telomere shortening determines both limits to cell replication and a progressive impairment of cellular functions, a progressive decline in age-related fitness decline (i.e., aging) is a clear consequence. Against this hypothesis, a critic might argue that there are cells (most types of neurons) and organ parts (crystalline core and tooth enamel) that have no turnover and are subject to wear or manifest alterations similar to those of cells with turnover. In this review, it is shown how cell types without turnover appear to be strictly dependent on cells subjected to turnover. The loss or weakening of the functions fulfilled by these cells with turnover, due to telomere shortening and turnover slowing, compromises the vitality of the served cells without turnover. This determines well-known clinical manifestations, which in their early forms are described as distinct diseases (e.g., Alzheimer's disease, Parkinson's disease, age-related macular degeneration, etc.). Moreover, for the two organ parts (crystalline core and tooth enamel) without viable cells or any cell turnover, it is discussed how this is entirely compatible with the programmed aging paradigm.

  7. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  8. Long live the liver: immunohistochemical and stereological study of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells and hepatic stellate cells of male and female rats throughout ageing.

    PubMed

    Marcos, Ricardo; Correia-Gomes, Carla

    2016-12-01

    Male/female differences in enzyme activity and gene expression in the liver are known to be attenuated with ageing. Nevertheless, the effect of ageing on liver structure and quantitative cell morphology remains unknown. Male and female Wistar rats aged 2, 6, 12 and 18 months were examined by means of stereological techniques and immunohistochemical tagging of hepatocytes (HEP), liver sinusoidal endothelial cells (LSEC), Kupffer cells (KC) and hepatic stellate cells (HSC) in order to assess the total number and number per gram of these cells throughout life. The mean cell volume of HEP and HSC, the lobular position and the collagen content of the liver were also evaluated with stereological techniques. The number per gram of HSC was similar for both genders and was maintained throughout ageing. The mean volume of HSC was also conserved but differences in the cell body and lobular location were observed. Statistically significant gender differences in HEP were noted in young rats (females had smaller and more binucleated HEP) but were attenuated with ageing. The same occurred for KC and LSEC, since the higher number per gram in young females disappeared in older animals. Liver collagen increased with ageing but only in males. Thus, the numbers of these four cell types are related throughout ageing, with well-defined cell ratios. The shape and lobular position of HSC change with ageing in both males and females. Gender dimorphism in HEP, KC and LSEC of young rat liver disappears with ageing.

  9. Generation of glyceraldehyde-derived advanced glycation end-products in pancreatic cancer cells and the potential of tumor promotion

    PubMed Central

    Takata, Takanobu; Ueda, Tadashi; Sakasai-Sakai, Akiko; Takeuchi, Masayoshi

    2017-01-01

    AIM To determine the possibility that diabetes mellitus promotes pancreatic ductal adenocarcinoma via glyceraldehyde (GA)-derived advanced glycation-end products (GA-AGEs). METHODS PANC-1, a human pancreatic cancer cell line, was treated with 1-4 mmol/L GA for 24 h. The cell viability and intracellular GA-AGEs were measured by WST-8 assay and slot blotting. Moreover, immunostaining of PANC-1 cells with an anti-GA-AGE antibody was performed. Western blotting (WB) was used to analyze the molecular weight of GA-AGEs. Heat shock proteins 90α, 90β, 70, 27 and cleaved caspase-3 were analyzed by WB. In addition, PANC-1 cells were treated with GA-AGEs-bovine serum albumin (GA-AGEs-BSA), as a model of extracellular GA-AGEs, and proliferation of PANC-1 cells was measured. RESULTS In PANC-1 cells, GA induced the production of GA-AGEs and cell death in a dose-dependent manner. PANC-1 cell viability was approximately 40% with a 2 mmol/L GA treatment and decreased to almost 0% with a 4 mmol/L GA treatment (each significant difference was P < 0.01). Cells treated with 2 and 4 mmol/L GA produced 6.4 and 21.2 μg/mg protein of GA-AGEs, respectively (P < 0.05 and P < 0.01). The dose-dependent production of some high-molecular-weight (HMW) complexes of HSP90β, HSP70, and HSP27 was observed following administration of GA. We considered HMW complexes to be dimers and trimers with GA-AGEs-mediated aggregation. Cleaved caspase-3 could not be detected with WB. Furthermore, 10 and 20 μg/mL GA-AGEs-BSA was 27% and 34% greater than that of control cells, respectively (P < 0.05 and P < 0.01). CONCLUSION Although intracellular GA-AGEs induce pancreatic cancer cell death, their secretion and release may promote the proliferation of other pancreatic cancer cells. PMID:28785145

  10. Effect of CMV and Aging on the Differential Expression of CD300a, CD161, T-bet, and Eomes on NK Cell Subsets.

    PubMed

    Lopez-Sejas, Nelson; Campos, Carmen; Hassouneh, Fakhri; Sanchez-Correa, Beatriz; Tarazona, Raquel; Pera, Alejandra; Solana, Rafael

    2016-01-01

    Natural killer (NK) cells are innate lymphoid cells involved in the defense against virus-infected cells and tumor cells. NK cell phenotype and function is affected with age and cytomegalovirus (CMV) latent infection. Aging affects the frequency and phenotype of NK cells, and CMV infection also contributes to these alterations. Thus, a reduction of CD56 bright NK cell subpopulation associated with age and an expansion of memory-like NK cells CD56 dim CD57 + NKG2C + probably related to CMV seropositivity have been described. NK cells express T-bet and Eomes transcription factors that are necessary for the development of NK cells. Here, we analyze the effect of age and CMV seropositivity on the expression of CD300a and CD161 inhibitory receptors, and T-bet and Eomes transcription factors in NK cell subsets defined by the expression of CD56 and CD57. CD300a is expressed by the majority of NK cells. CD56 bright NK cells express higher levels of CD300a than CD56 dim NK cells. An increase in the expression of CD300a was associated with age, whereas a decreased expression of CD161 in CD56 dim NK cells was associated with CMV seropositivity. In CD56 dim NK cells, an increased percentage of CD57 + CD300a + and a reduction in the percentage of CD161 + CD300a + cells were found to be associated with CMV seropositivity. Regarding T-bet and Eomes transcription factors, CMV seropositivity was associated with a decrease of T-bet hi in CD56 dim CD57 + NK cells from young individuals, whereas Eomes expression was increased with CMV seropositivity in both CD56 bright and CD56 dim CD57 +/- (from middle age and young individuals, respectively) and was decreased with aging in all NK subsets from the three group of age. In conclusion, CMV infection and age induce significant changes in the expression of CD300a and CD161 in NK cell subsets defined by the expression of CD56 and CD57. T-bet and Eomes are differentially expressed on NK cell subsets, and their expression is affected by CMV latent infection and aging.

  11. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    PubMed Central

    2010-01-01

    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089

  12. Sox10 Expressing Cells in the Lateral Wall of the Aged Mouse and Human Cochlea

    PubMed Central

    Hao, Xinping; Xing, Yazhi; Moore, Michael W.; Zhang, Jianning; Han, Demin; Schulte, Bradley A.; Dubno, Judy R.; Lang, Hainan

    2014-01-01

    Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1–3 month-old) and aged (2–2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear. PMID:24887110

  13. The effect of syndecan-4 and glypican-1 knockdown on the proliferation and differentiation of turkey satellite cells differing in age and growth rates.

    PubMed

    Velleman, Sandra G; Clark, Daniel L; Tonniges, Jeffrey R

    2018-09-01

    Posthatch skeletal muscle growth requires myogenic satellite cells and the dynamic expression of cell membrane-associated proteins. The membrane associated heparan sulfate proteoglycans, syndecan-4 and glypican-1, link the satellite cell niche to the intracellular environment. Sydnecan-4 and glypican-1 are differentially expressed with age in turkey satellite cells and their over-expression impacts both satellite cell proliferation and differentiation, but their effect on satellite cells from lines with different growth potentials is not known. The objective of the current study was to determine if syndecan-4 and glypican-1 regulation of satellite cell proliferation and differentiation is affected by age and growth selection. Pectoralis major satellite cells isolated at 1 d, 7 and 16-wk of age from a Randombred Control 2 (RBC2) line and a 16-wk body weight (F) line selected from the RBC2 line turkeys were studied. Syndecan-4 and glypican-1 expression was knocked down in both lines. The F-line cells proliferated faster than RBC2 line cells regardless of age, while differentiation tended to be greater in RBC2 line cells than F-line cells at each age. Syndecan-4 knockdown decreased proliferation at 7- and 16-wk but not 1 d cells, and increased differentiation at 1 d and 7 wk but not 16 wk cells. Glypican-1 knockdown differentially affected proliferation depending on cell age, whereas differentiation was decreased for 7- and 16-wk but not 1 d cells. These data suggest syndecan-4 and glypican-1 differentially affected satellite cell function in an age-dependent manner, but had little impact on differences in proliferation and differentiation due to growth selection. Copyright © 2018. Published by Elsevier Inc.

  14. When stem cells grow old: phenotypes and mechanisms of stem cell aging.

    PubMed

    Schultz, Michael B; Sinclair, David A

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. © 2016. Published by The Company of Biologists Ltd.

  15. When stem cells grow old: phenotypes and mechanisms of stem cell aging

    PubMed Central

    Schultz, Michael B.; Sinclair, David A.

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan. PMID:26732838

  16. γ/δ T cell subsets in human aging using the classical α/β T cell model.

    PubMed

    Vasudev, Anusha; Ying, Crystal Tan Tze; Ayyadhury, Shamini; Puan, Kia Joo; Andiappan, Anand Kumar; Nyunt, Ma Shwe Zin; Shadan, Nurhidaya Binte; Mustafa, Seri; Low, Ivy; Rotzschke, Olaf; Fulop, Tamas; Ng, Tze Pin; Larbi, Anis

    2014-10-01

    Aging is associated with an increased susceptibility to infections and diseases. It has also been associated with reduced functionality and altered distribution of immune cells, especially T cells. Whereas classical α/β T cells, especially CD8(+) T cells, were shown to be highly susceptible to aging, the effects of viral persistent stimulations on the fate of γ/δ T cells are much less documented. Healthy, elderly individuals of Chinese ethnical background were recruited under the aegis of SLAS-II. In this observational study, γ/δ T cell populations were characterized by flow cytometry and compared with the α/β CD4(+) and CD8(+) T cells in elderly and young controls. In our study, we identified a reduced frequency of γ/δ T cells but not α/β T cells with aging. The classical markers of α/β T cell aging, including CD28, CD27, and CD57, did not prove significant for γ/δ T cells. The extreme range of expression of these markers in γ/δ T cells was responsible for the lack of relationship between γ/δ T cell subsets, CD4/CD8 ratio, and anti-CMV titers that was significant for α/β T cells and, especially, CD8(+) T cells. Although markers of aging for γ/δ T cells are not clearly identified, our data collectively suggest that the presence of CD27 γ/δ T cells is associated with markers of α/β T cell aging. © 2014 Society for Leukocyte Biology.

  17. Induced Pluripotent Stem Cell Derived Mesenchymal Stem Cells for Attenuating Age-Related Bone Loss

    DTIC Science & Technology

    2012-07-01

    Mesenchymal stem cell (MSC) differentiation towards the bone forming osteoblastic lineage decreases as a function of age and may contribute to age-related...problem of age-related reduced availability of MSC we propose to examine the bone anabolic potential of induced pluripotent stem cell (iPS) derived MSC

  18. The Decay of Stem Cell Nourishment at the Niche

    PubMed Central

    de Mora, Jaime Font

    2013-01-01

    Abstract One of the main features of human aging is the loss of adult stem cell homeostasis. Organs that are very dependent on adult stem cells show increased susceptibility to aging, particularly organs that present a vascular stem cell niche. Reduced regenerative capacity in tissues correlates with reduced stem cell function, which parallels a loss of microvascular density (rarefraction) and plasticity. Moreover, the age-related loss of microvascular plasticity and rarefaction has significance beyond metabolic support for tissues because stem cell niches are regulated co-ordinately with the vascular cells. In addition, microvascular rarefaction is related to increased inflammatory signals that may negatively regulate the stem cell population. Thus, the processes of microvascular rarefaction, adult stem cell dysfunction, and inflammation underlie the cycle of physiological decline that we call aging. Observations from new mouse models and humans are discussed here to support the vascular aging theory. We develop a novel theory to explain the complexity of aging in mammals and perhaps in other organisms. The connection between vascular endothelial tissue and organismal aging provides a potential evolutionary conserved mechanism that is an ideal target for the development of therapies to prevent or delay age-related processes in humans. PMID:23937078

  19. Tissue aging: the integration of collective and variant responses of cells to entropic forces over time.

    PubMed

    Todhunter, Michael E; Sayaman, Rosalyn W; Miyano, Masaru; LaBarge, Mark A

    2018-06-13

    Aging is driven by unavoidable entropic forces, physicochemical in nature, that damage the raw materials that constitute biological systems. Single cells experience and respond to stochastic physicochemical insults that occur either to the cells themselves or to their microenvironment, in a dynamic and reciprocal manner, leading to increased age-related cell-to-cell variation. We will discuss the biological mechanisms that integrate cell-to-cell variation across tissues resulting in stereotypical phenotypes of age. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Morphological, molecular and functional differences of adult bone marrow- and adipose-derived stem cells isolated from rats of different ages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantovani, Cristina; Department of Integrative Medical Biology and Surgical and Perioperative Science, Umea University, Umea; Department of Surgical and Perioperative Science, Umea University, Umea

    2012-10-01

    Adult mesenchymal stem cells have self-renewal and multiple differentiation potentials, and play important roles in regenerative medicine. However, their use may be limited by senescence or age of the donor, leading to changes in stem cell functionality. We investigated morphological, molecular and functional differences between bone marrow-derived (MSC) and adipose-derived (ASC) stem cells isolated from neonatal, young and old rats compared to Schwann cells from the same animals. Immunocytochemistry, RT-PCR, proliferation assays, western blotting and transmission electron microscopy were used to investigate expression of senescence markers. Undifferentiated and differentiated ASC and MSC from animals of different ages expressed Notch-2 atmore » similar levels; protein-38 and protein-53 were present in all groups of cells with a trend towards increased levels in cells from older animals compared to those from neonatal and young rats. Following co-culture with adult neuronal cells, dMSC and dASC from animals of all ages elicited robust neurite outgrowth. Mitotracker{sup Registered-Sign} staining was consistent with ultrastructural changes seen in the mitochondria of cells from old rats, indicative of senescence. In conclusion, this study showed that although the cells from aged animals expressed markers of senescence, aged MSC and ASC differentiated into SC-like cells still retain potential to support axon regeneration. -- Highlights: Black-Right-Pointing-Pointer Aged MSC and ASC differentiated into Schwann-like cells support axon regeneration. Black-Right-Pointing-Pointer p53 expression does not appreciably influence the biology of Schwann or stem cells. Black-Right-Pointing-Pointer Notch 2 expression was similar in cells derived from animals of different ages. Black-Right-Pointing-Pointer Proliferation rates of dMSC varied little over time or with animal age.« less

  1. Expression of cellular protective proteins SIRT1, HSP70 and SOD2 correlates with age and is significantly higher in NK cells of the oldest seniors.

    PubMed

    Kaszubowska, Lucyna; Foerster, Jerzy; Kaczor, Jan Jacek; Schetz, Daria; Ślebioda, Tomasz Jerzy; Kmieć, Zbigniew

    2017-01-01

    NK cells are key effector lymphocytes of innate immunity provided with constitutive cytolytic activity, however, their role in human ageing is not entirely understood. The study aimed to analyze the expression of proteins involved in cellular stress response sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in non-stimulated NK cells of the oldest seniors ( n  = 25; aged over 85; mean age 88 years) and compare with NK cells of the old ( n  = 30; aged under 85; mean age 76 years) and the young ( n  = 32; mean age 21 years) to find potential relationships between the level of expression of these proteins in NK cells and longevity. The concentration of carbonyl groups and 8-isoprostanes in NK cell lysates reflecting the level of oxidative stress was also measured. The group of the oldest seniors differed from the other age groups by significantly higher percentage of NK cells expressing SIRT1, HSP70 and SOD2. The concentration of both carbonyl groups and 8-isoprostanes in NK cell extracts remained within the normal range in all age groups. The percentage of NK cells with the expression of, respectively, SIRT1, HSP70 and SOD2 correlated positively with age. Some correlations between expression levels of particular protective proteins SIRT1, HSP70 and SOD2 were observed in the study population. The increased expression of cellular protective proteins SIRT1, HSP70 and SOD2 in NK cells of the oldest seniors seems to correspond to longevity and the observed correlations may suggest the involvement of these proteins in establishing NK cell homeostasis specific for healthy ageing process.

  2. Aging-associated shifts in functional status of mast cells located by adult and aged mesenteric lymphatic vessels

    PubMed Central

    Chatterjee, Victor

    2012-01-01

    We had previously proposed the presence of permanent stimulatory influences in the tissue microenvironment surrounding the aged mesenteric lymphatic vessels (MLV), which influence aged lymphatic function. In this study, we performed immunohistochemical labeling of proteins known to be present in mast cells (mast cell tryptase, c-kit, prostaglandin D2 synthase, histidine decarboxylase, histamine, transmembrane protein 16A, and TNF-α) with double verification of mast cells in the same segment of rat mesentery containing MLV by labeling with Alexa Fluor 488-conjugated avidin followed by toluidine blue staining. Additionally, we evaluated the aging-associated changes in the number of mast cells located by MLV and in their functional status by inducing mast cell activation by various activators (substance P; anti-rat DNP Immunoglobulin E; peptidoglycan from Staphyloccus aureus and compound 48/80) in the presence of ruthenium red followed by subsequent staining by toluidine blue. We found that there was a 27% aging-associated increase in the total number of mast cells, with an ∼400% increase in the number of activated mast cells in aged mesenteric tissue in resting conditions with diminished ability of mast cells to be newly activated in the presence of inflammatory or chemical stimuli. We conclude that higher degree of preactivation of mast cells in aged mesenteric tissue is important for development of aging-associated impairment of function of mesenteric lymphatic vessels. The limited number of intact aged mast cells located close to the mesenteric lymphatic compartments to react to the presence of acute stimuli may be considered contributory to the aging-associated deteriorations in immune response. PMID:22796537

  3. Increased Arf/p53 activity in stem cells, aging and cancer.

    PubMed

    Carrasco-Garcia, Estefania; Moreno, Manuel; Moreno-Cugnon, Leire; Matheu, Ander

    2017-04-01

    Arf/p53 pathway protects the cells against DNA damage induced by acute stress. This characteristic is the responsible for its tumor suppressor activity. Moreover, it regulates the chronic type of stress associated with aging. This is the basis of its anti-aging activity. Indeed, increased gene dosage of Arf/p53 displays elongated longevity and delayed aging. At a cellular level, it has been recently shown that increased dosage of Arf/p53 delays age-associated stem cell exhaustion and the subsequent decline in tissue homeostasis and regeneration. However, p53 can also promote aging if constitutively activated. In this context, p53 reduces tissue regeneration, which correlates with premature exhaustion of stem cells. We discuss here the current evidence linking the Arf/p53 pathway to the processes of aging and cancer through stem cell regulation. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42

    PubMed Central

    Geiger, Hartmut; Zheng, Yi

    2015-01-01

    Summary Aging of stem cells might be the underlying cause of tissue aging in tissue that in the adult heavily rely on stem cell activity, like the blood forming system. Hematopoiesis, the generation of blood forming cells, is sustained by hematopoietic stem cells. In this review article, we introduce the canonical set of phenotypes associated with aged HSCs, focus on the novel aging-associated phenotype apolarity caused by elevated activity of the small RhoGTPase in aged HSCs, disuccs the role of Cdc42 in hematopoiesis and describe that pharmacological inhibition of Cdc42 activity in aged HSCs results in functionally young and thus rejuvenated HSCs. PMID:25220425

  5. Direct Conversion Provides Old Neurons from Aged Donor's Skin.

    PubMed

    Koch, Philipp

    2015-12-03

    Modeling human neuronal aging at a cellular level remains challenging. Human neurons are accessible from iPSCs, but during reprogramming age-associated traits of somatic cells get lost. In this issue of Cell Stem Cell, Mertens et al. (2015) demonstrate that neurons obtained by direct cell conversion retain age-associated transcriptional traits and functional deficits of the donor cell population. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers

    PubMed Central

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A.; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-01-01

    B-cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL+ MHC class-IHi CD86Hi B cells of unknown origin. Here we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. The 4BL cells induce expression of 4-1BBL and IFNγR1 on B1a cells resulting in subsequent up regulation of membrane TNFα (mTNFα) and CD86. As a result, B1a cells induce expression of granzyme B in CD8+T cells by targeting TNFR2 via mTNFα while providing co-stimulation with CD86. Thus, for the first time, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8+T cells. PMID:26983789

  7. Lymphatic Muscle Cells in Rat Mesenteric Lymphatic Vessels of Various Ages

    PubMed Central

    Bridenbaugh, Eric A.; Nizamutdinova, Irina Tsoy; Jupiter, Daniel; Nagai, Takashi; Thangaswamy, Sangeetha; Chatterjee, Victor

    2013-01-01

    Abstract Background Recent studies on aging-associated changes in mesenteric lymph flow in situ demonstrated predominance of the severe negative chronotropic effect of aging on the contractility of aged mesenteric lymphatic vessels (MLV). At the same time, contraction amplitude of the aged vessels was only slightly diminished by aging and can be rapidly stimulated within 5–15 minutes. However, the detailed quantitative evaluation of potential aging-associated changes in muscle cells investiture in MLV has never been performed. Methods and Results In this study we, for the first time, performed detailed evaluation of muscle cells investiture in MLV in reference to the position of lymphatic valve in different zones of lymphangion within various age groups (3-mo, 9-mo and 24-mo Fischer-344 rats). Using visual and quantitative analyses of the images of MLV immunohistochemically labeled for actin, we confirmed that the zones located close upstream (pre-valve zones) and above lymphatic valves (valve zones) possess the lowest investiture of lymphatic muscle cells. Most of the high muscle cells investiture zones exist downstream to the lymphatic valve (post-valve zones). The muscle cells investiture of these zones is not affected by aging, while pre-valve and valve zones demonstrate significant aging-associated decrease in muscle cells investiture. Conclusions The low muscle cells investiture zones in lymphatic vessels consist of predominantly longitudinally oriented muscle cells which are positioned in pre-valve and valve zones and connect adjacent lymphangions. These cells may provide important functional impact on the biomechanics of the lymphatic valve gating and electrical coupling between lymphangions, while their aging-associated changes may delimit adaptive reserves of aged lymphatic vessels. PMID:23531183

  8. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II.

    PubMed

    Ilchmann, Anne; Burgdorf, Sven; Scheurer, Stephan; Waibler, Zoe; Nagai, Ryoji; Wellner, Anne; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Henle, Thomas; Kurts, Christian; Kalinke, Ulrich; Vieths, Stefan; Toda, Masako

    2010-01-01

    The Maillard reaction occurs between reducing sugars and proteins during thermal processing of foods. It produces chemically glycated proteins termed advanced glycation end products (AGEs). The glycation structures of AGEs are suggested to function as pathogenesis-related immune epitopes in food allergy. This study aimed at defining the T-cell immunogenicity of food AGEs by using ovalbumin (OVA) as a model allergen. AGE-OVA was prepared by means of thermal processing of OVA in the presence of glucose. Activation of OVA-specific CD4(+) T cells by AGE-OVA was evaluated in cocultures with bone marrow-derived murine myeloid dendritic cells (mDCs) as antigen-presenting cells. The uptake mechanisms of mDCs for AGE-OVA were investigated by using inhibitors of putative cell-surface receptors for AGEs, as well as mDCs deficient for these receptors. Compared with the controls (native OVA and OVA thermally processed without glucose), AGE-OVA enhanced the activation of OVA-specific CD4(+) T cells on coculture with mDCs, indicating that the glycation of OVA enhanced the T-cell immunogenicity of the allergen. The mDC uptake of AGE-OVA was significantly higher than that of the controls. We identified scavenger receptor class A type I and II (SR-AI/II) as a mediator of the AGE-OVA uptake, whereas the receptor for AGEs and galectin-3 were not responsible. Importantly, the activation of OVA-specific CD4(+) T cells by AGE-OVA was attenuated on coculture with SR-AI/II-deficient mDCs. SR-AI/II targets AGE-OVA to the MHC class II loading pathway in mDCs, leading to an enhanced CD4(+) T-cell activation. The Maillard reaction might thus play an important role in the T-cell immunogenicity of food allergens. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  9. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by "inflamm-ageing".

    PubMed

    Bulati, Matteo; Caruso, Calogero; Colonna-Romano, Giuseppina

    2017-07-01

    Ageing is a complex process characterized by a general decline in physiological functions with increasing morbidity and mortality. The most important aspect of ageing is the chronic inflammatory status, named "inflamm-ageing", strictly associated with the deterioration of the immune function, termed "immunosenescence". Both are causes of increased susceptibility of elderly to infectious diseases, cancer, dementia, cardiovascular diseases and autoimmunity, and of a decreased response to vaccination. It has been widely demonstrated that ageing has a strong impact on the remodelling of the B cell branch of immune system. The first evident effect is the significant decrease in circulating B cells, primarily due to the reduction of new B cell coming from bone marrow (BM) progenitors, as inflammation directly impacts on B lymphopoiesis. Besides, in aged individuals, there is a shift from naïve to memory immunoglobulins production, accompanied by the impaired ability to produce high affinity protective antibodies against newly encountered antigens. This is accompanied by the increase of expanded clones of B cells, which correlates with poor health status. Age-related modifications also occur in naïve/memory B cells subsets. Indeed, in the elderly, there is a reduction of naïve B cells, accompanied by the expansion of memory B cells that show a senescence-associated phenotype. Finally, elderly show the impaired ability of memory B cells to differentiate into plasma cells. It can be concluded that inflammation is the leading cause of the age-related impairment of B cell compartment, which play certainly a key role in the development of age-related diseases. This makes study of B cells in the aged an important tool for monitoring immunosenescence, chronic inflammatory disorders and the effectiveness of vaccines or pharmacological therapies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases

    PubMed Central

    Davalli, Pierpaola; Mitic, Tijana; Caporali, Andrea; Lauriola, Angela; D'Arca, Domenico

    2016-01-01

    The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging. PMID:27247702

  11. Manifestations and mechanisms of stem cell aging

    PubMed Central

    Liu, Ling

    2011-01-01

    Adult stem cells exist in most mammalian organs and tissues and are indispensable for normal tissue homeostasis and repair. In most tissues, there is an age-related decline in stem cell functionality but not a depletion of stem cells. Such functional changes reflect deleterious effects of age on the genome, epigenome, and proteome, some of which arise cell autonomously and others of which are imposed by an age-related change in the local milieu or systemic environment. Notably, some of the changes, particularly epigenomic and proteomic, are potentially reversible, and both environmental and genetic interventions can result in the rejuvenation of aged stem cells. Such findings have profound implications for the stem cell–based therapy of age-related diseases. PMID:21502357

  12. Epigenetic Aging and Immune Senescence in Women With Insomnia Symptoms: Findings From the Women's Health Initiative Study.

    PubMed

    Carroll, Judith E; Irwin, Michael R; Levine, Morgan; Seeman, Teresa E; Absher, Devin; Assimes, Themistocles; Horvath, Steve

    2017-01-15

    Insomnia symptoms are associated with vulnerability to age-related morbidity and mortality. Cross-sectional data suggest that accelerated biological aging may be a mechanism through which sleep influences risk. A novel method for determining age acceleration using epigenetic methylation to DNA has demonstrated predictive utility as an epigenetic clock and prognostic of age-related morbidity and mortality. We examined the association of epigenetic age and immune cell aging with sleep in the Women's Health Initiative study (N = 2078; mean 64.5 ± 7.1 years of age) with assessment of insomnia symptoms (restlessness, difficulty falling asleep, waking at night, trouble getting back to sleep, and early awakenings), sleep duration (short sleep 5 hours or less; long sleep greater than 8 hours), epigenetic age, naive T cell (CD8+CD45RA+CCR7+), and late differentiated T cells (CD8+CD28-CD45RA-). Insomnia symptoms were related to advanced epigenetic age (β ± SE = 1.02 ± 0.37, p = .005) after adjustments for covariates. Insomnia symptoms were also associated with more late differentiated T cells (β ± SE = 0.59 ± 0.21, p = .006), but not with naive T cells. Self-reported short and long sleep duration were unrelated to epigenetic age. Short sleep, but not long sleep, was associated with fewer naive T cells (p < .005) and neither was related to late differentiated T cells. Symptoms of insomnia were associated with increased epigenetic age of blood tissue and were associated with higher counts of late differentiated CD8+ T cells. Short sleep was unrelated to epigenetic age and late differentiated cell counts, but was related to a decline in naive T cells. In this large population-based study of women in the United States, insomnia symptoms are implicated in accelerated aging. Copyright © 2016. Published by Elsevier Inc.

  13. Cellular and epigenetic drivers of stem cell ageing.

    PubMed

    Ermolaeva, Maria; Neri, Francesco; Ori, Alessandro; Rudolph, K Lenhard

    2018-06-01

    Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.

  14. TGFβ lengthens the G1 phase of stem cells in aged mouse brain.

    PubMed

    Daynac, Mathieu; Pineda, Jose R; Chicheportiche, Alexandra; Gauthier, Laurent R; Morizur, Lise; Boussin, François D; Mouthon, Marc-André

    2014-12-01

    Neurogenesis decreases during aging causing a progressive cognitive decline but it is still controversial whether proliferation defects in neurogenic niches result from a loss of neural stem cells or from an impairment of their progression through the cell cycle. Using an accurate fluorescence-activated cell sorting technique, we show that the pool of neural stem cells is maintained in the subventricular zone of middle-aged mice while they have a reduced proliferative potential eventually leading to the subsequent decrease of their progeny. In addition, we demonstrate that the G1 phase is lengthened during aging specifically in activated stem cells, but not in transit-amplifying cells, and directly impacts on neurogenesis. Finally, we report that inhibition of TGFβ signaling restores cell cycle progression defects in stem cells. Our data highlight the significance of cell cycle dysregulation in stem cells in the aged brain and provide an attractive foundation for the development of anti-TGFβ regenerative therapies based on stimulating endogenous neural stem cells. © 2014 AlphaMed Press.

  15. The implications of the 'hayflick limit' for aging of the organism have been misunderstood by many gerontologists.

    PubMed

    Macieira-Coelho, A

    1995-01-01

    Many gerontologists have been misdirected by the conclusion that the decline in the division potential of some cell compartments during aging is due to the increase in nondividing cells. Terminal postmitotic cells are called senescent cells although there is no evidence that they have any implications for aging of the organism. In an experimental system, Hayflick found a drift in cell functions created by proliferation, which is of relevance to the aging of the organism. Experimental evidence suggests that the presence of terminal postmitotic cells in excess in the tissues is associated with aging-related pathological states.

  16. A continuum mathematical model of endothelial layer maintenance and senescence

    PubMed Central

    Wang, Ying; Aguda, Baltazar D; Friedman, Avner

    2007-01-01

    Background The monolayer of endothelial cells (ECs) lining the inner wall of blood vessels deteriorates as a person ages due to a complex interplay of a variety of causes including cell death arising from shear stress of blood flow and cellular oxidative stress, cellular senescence, and decreased rate of replacement of dead ECs by progenitor stem cells. Results A continuum mathematical model is developed to describe the dynamics of large EC populations of the endothelium using a system of differential equations for the number densities of cells of different generations starting from endothelial progenitors to senescent cells, as well as the densities of dead cells and the holes created upon clearing dead cells. Aging of cells is manifested in three ways, namely, losing the ability to divide when the Hayflick limit of 50 generations is reached, decreasing replication rate parameters and increasing death rate parameters as cells divide; due to the dependence of these rate parameters on cell generation, the model predicts a narrow distribution of cell densities peaking at a particular cell generation. As the chronological age of a person advances, the peak of the distribution – corresponding to the age of the endothelium – moves towards senescence correspondingly. However, computer simulations also demonstrate that sustained and enhanced stem cell homing can halt the aging process of the endothelium by maintaining a stationary cell density distribution that peaks well before the Hayflick limit. The healing rates of damaged endothelia for young, middle-aged, and old persons are compared and are found to be particularly sensitive to the stem cell homing parameter. Conclusion The proposed model describes the aging of the endothelium as being driven by cellular senescence, with a rate that does not necessarily correspond to the chronological aging of a person. It is shown that the age of the endothelium depends sensitively on the homing rates of EC progenitor cells. PMID:17692115

  17. A continuum mathematical model of endothelial layer maintenance and senescence.

    PubMed

    Wang, Ying; Aguda, Baltazar D; Friedman, Avner

    2007-08-10

    The monolayer of endothelial cells (ECs) lining the inner wall of blood vessels deteriorates as a person ages due to a complex interplay of a variety of causes including cell death arising from shear stress of blood flow and cellular oxidative stress, cellular senescence, and decreased rate of replacement of dead ECs by progenitor stem cells. A continuum mathematical model is developed to describe the dynamics of large EC populations of the endothelium using a system of differential equations for the number densities of cells of different generations starting from endothelial progenitors to senescent cells, as well as the densities of dead cells and the holes created upon clearing dead cells. Aging of cells is manifested in three ways, namely, losing the ability to divide when the Hayflick limit of 50 generations is reached, decreasing replication rate parameters and increasing death rate parameters as cells divide; due to the dependence of these rate parameters on cell generation, the model predicts a narrow distribution of cell densities peaking at a particular cell generation. As the chronological age of a person advances, the peak of the distribution - corresponding to the age of the endothelium - moves towards senescence correspondingly. However, computer simulations also demonstrate that sustained and enhanced stem cell homing can halt the aging process of the endothelium by maintaining a stationary cell density distribution that peaks well before the Hayflick limit. The healing rates of damaged endothelia for young, middle-aged, and old persons are compared and are found to be particularly sensitive to the stem cell homing parameter. The proposed model describes the aging of the endothelium as being driven by cellular senescence, with a rate that does not necessarily correspond to the chronological aging of a person. It is shown that the age of the endothelium depends sensitively on the homing rates of EC progenitor cells.

  18. Aging of hematopoietic stem cells: DNA damage and mutations?

    PubMed

    Moehrle, Bettina M; Geiger, Hartmut

    2016-10-01

    Aging in the hematopoietic system and the stem cell niche contributes to aging-associated phenotypes of hematopoietic stem cells (HSCs), including leukemia and aging-associated immune remodeling. Among others, the DNA damage theory of aging of HSCs is well established, based on the detection of a significantly larger amount of γH2AX foci and a higher tail moment in the comet assay, both initially thought to be associated with DNA damage in aged HSCs compared with young cells, and bone marrow failure in animals devoid of DNA repair factors. Novel data on the increase in and nature of DNA mutations in the hematopoietic system with age, the quality of the DNA damage response in aged HSCs, and the nature of γH2AX foci question a direct link between DNA damage and the DNA damage response and aging of HSCs, and rather favor changes in epigenetics, splicing-factors or three-dimensional architecture of the cell as major cell intrinsic factors of HSCs aging. Aging of HSCs is also driven by a strong contribution of aging of the niche. This review discusses the DNA damage theory of HSC aging in the light of these novel mechanisms of aging of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  19. Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells.

    PubMed

    Ashapkin, V V; Linkova, N S; Khavinson, V Kh; Vanyushin, B F

    2015-03-01

    Expression levels of genes encoding specific transcription factors and other functionally important proteins vary upon aging of pancreatic and bronchial epithelium cell cultures. The peptides KEDW and AEDL tissue-specifically affect gene expression in pancreatic and bronchial cell cultures, respectively. It is established in this work that the DNA methylation patterns of the PDX1, PAX6, NGN3, NKX2-1, and SCGB1A1 gene promoter regions change upon aging in pancreatic and bronchial cell cultures in correlation with variations in their expression levels. Thus, stable changes in gene expression upon aging of cell cultures could be caused by changes in their promoter methylation patterns. The methylation patterns of the PAX4 gene in pancreatic cells as well as those of the FOXA1, SCGB3A2, and SFTPA1 genes in bronchial cells do not change upon aging and are unaffected by peptides, whereas their expression levels change in both cases. The promoter region of the FOXA2 gene in pancreatic cells contains a small number of methylated CpG sites, their methylation levels being affected by cell culture aging and KEDW, though without any correlation with gene expression levels. The promoter region of the FOXA2 gene is completely unmethylated in bronchial cells irrespective of cell culture age and AEDL action. Changes in promoter methylation might be the cause of age- and peptide-induced variations in expression levels of the PDX1, PAX6, and NGN3 genes in pancreatic cells and NKX2-1 and SCGB1A1 genes in bronchial cells. Expression levels of the PAX4 and FOXA2 genes in pancreatic cells and FOXA1, FOXA2, SCGB3A2, and SFTPA1 genes in bronchial cells seem to be controlled by some other mechanisms.

  20. Studies on Human Adipose Cells in Culture: Relation of Cell Size and Cell Multiplication to Donor Age

    PubMed Central

    Adebonojo, Festus O.

    1975-01-01

    In an effort to test the adipose hyperplasia theory of obesity in humans, adipose cells, derived from anterior abdominal walls of human infants and children, were grown in synthetic medium (McCoy's 5A Medium) supplemented with 20% fetal calf serum. Adipose cells which became delipidinized in culture were found to be capable of division and the rate and number of cell divisions was age dependent. Cells of infants under 1 yr of age and cells derived from early adolescent children divided to varying degrees in culture. Adipose cells from children aged 1-10 yr showed no cell division. Cell division was never observed in a lipid-laden adipocyte. Measurements of cell diameter showed that after the first year of life, cell size increased progressively with age. During the first year adipose cell size appeared to reflect the rapid hyperplasia of the first 3 mo, reaching smallest size at 3-12 mo but increasing thereafter. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6 PMID:124114

  1. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells.

    PubMed

    Guidi, Novella; Sacma, Mehmet; Ständker, Ludger; Soller, Karin; Marka, Gina; Eiwen, Karina; Weiss, Johannes M; Kirchhoff, Frank; Weil, Tanja; Cancelas, Jose A; Florian, Maria Carolina; Geiger, Hartmut

    2017-04-03

    Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  2. A Tissue Engineered Model of Aging: Interdependence and Cooperative Effects in Failing Tissues.

    PubMed

    Acun, A; Vural, D C; Zorlutuna, P

    2017-07-11

    Aging remains a fundamental open problem in modern biology. Although there exist a number of theories on aging on the cellular scale, nearly nothing is known about how microscopic failures cascade to macroscopic failures of tissues, organs and ultimately the organism. The goal of this work is to bridge microscopic cell failure to macroscopic manifestations of aging. We use tissue engineered constructs to control the cellular-level damage and cell-cell distance in individual tissues to establish the role of complex interdependence and interactions between cells in aging tissues. We found that while microscopic mechanisms drive aging, the interdependency between cells plays a major role in tissue death, providing evidence on how cellular aging is connected to its higher systemic consequences.

  3. [Tripeptides slow down aging process in renal cell culture].

    PubMed

    Khavinson, V Kh; Tarnovskaia, S I; Lin'kova, N S; Poliakova, V O; Durnova, A O; Nichik, T E; Kvetnoĭ, I M; D'iakonov, M M; Iakutseni, P P

    2014-01-01

    The mechanism of geroprotective effect of peptides AED and EDL was studied in ageing renal cell culture. Peptide AED and EDL increase cell proliferation, decreasing expression of marker of aging p16, p21, p53 and increasing expression of SIRT-6 in young and aged renal cell culture. The reduction of SIRT-6 synthesis in cell is one of the causes of cell senescence. On the basis of experimental data models of interaction of peptides with various sites of DNA were constructed. Both peptides form most energetically favorable complexes with d(ATATATATAT)2 sequences in minor groove of DNA. It is shown that interaction of peptides AED and EDL with DNA is the cause of gene expression, encoded marker of ageing in renal cells.

  4. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

    PubMed Central

    Tsakmaki, Anastasia; Mousavy Gharavy, S Neda; Murawala, Priyanka; Konantz, Judith; Birke, Sarah; Hodson, David J; Rutter, Guy A; Bewick, Gavin A

    2018-01-01

    The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age. PMID:29624168

  5. Nutraceutical intervention reverses the negative effects of blood from aged rats on stem cells.

    PubMed

    Bickford, Paula C; Kaneko, Yuji; Grimmig, Bethany; Pappas, Colleen; Small, Brent; Sanberg, Cyndy D; Sanberg, Paul R; Tan, Jun; Douglas Shytle, R

    2015-10-01

    Aging is associated with a decline in function in many of the stem cell niches of the body. An emerging body of literature suggests that one of the reasons for this decline in function is due to cell non-autonomous influences on the niche from the body. For example, studies using the technique of parabiosis have demonstrated a negative influence of blood from aged mice on muscle satellite cells and neurogenesis in young mice. We examined if we could reverse this effect of aged serum on stem cell proliferation by treating aged rats with NT-020, a dietary supplement containing blueberry, green tea, vitamin D3, and carnosine that has been shown to increase neurogenesis in aged rats. Young and aged rats were administered either control NIH-31 diet or one supplemented with NT-020 for 28 days, and serum was collected upon euthanasia. The serum was used in cultures of both rat hippocampal neural progenitor cells (NPCs) and rat bone marrow-derived mesenchymal stem cells (MSCs). Serum from aged rats significantly reduced cell proliferation as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU) assays in both NPCs and MSCs. Serum from aged rats treated with NT-020 was not different from serum from young rats. Therefore, NT-020 rescued the effect of serum from aged rats to reduce stem cell proliferation.

  6. Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors.

    PubMed

    Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro

    2016-01-01

    It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34(+)Lin(-)) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34(+)Lin(-) cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34(+)Lin(-) cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34(+)Lin(-) cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels.

  7. Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors

    PubMed Central

    Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F.; Shieh, Jae-Hung; Moore, Malcolm A.; van den Brink, Marcel R. M.; Kusunoki, Yoichiro

    2016-01-01

    It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34+Lin− ) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34+Lin− cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34+Lin− cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34+Lin− cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels. PMID:26720799

  8. Age-related increase of sIAHP in prefrontal pyramidal cells of monkeys: relationship to cognition

    PubMed Central

    Luebke, Jennifer I.; Amatrudo, Joseph M.

    2010-01-01

    Reduced excitability, due to an increase in the slow afterhyperpolarization (and its underlying current sIAHP), occurs in CA1 pyramidal cells in aged cognitively-impaired, but not cognitively-unimpaired, rodents. We sought to determine whether similar age-related changes in the sIAHP occur in pyramidal cells in the rhesus monkey dorsolateral prefrontal cortex (dlPFC). Whole-cell patch-clamp recordings were obtained from layer 3 (L3) and layer 5 (L5) pyramidal cells in dlPFC slices prepared from young (9.6 ± 0.7 years old) and aged (22.3 ± 0.7 years old) behaviorally characterized subjects. The amplitude of the sIAHP was significantly greater in L3 (but not L5) cells from aged-impaired compared to both aged-unimpaired and young monkeys, which did not differ. Aged L3, but not L5, cells exhibited significantly increased action potential firing rates, but there was no relationship between sIAHP and firing rate. Thus, in monkey dlPFC L3 cells, an increase in sIAHP is associated with age-related cognitive decline; however, this increase is not associated with a reduction in excitability. PMID:20727620

  9. From Hayflick to Walford: the role of T cell replicative senescence in human aging.

    PubMed

    Effros, Rita B

    2004-06-01

    The immunologic theory of aging, proposed more than 40 years ago by Roy Walford, suggests that the normal process of aging in man and in animals is pathogenetically related to faulty immunological processes. Since that time, research on immunological aging has undergone extraordinary expansion, leading to new information in areas spanning from molecular biology and cell signaling to large-scale clinical studies. Investigation in this area has also provided unexpected insights into HIV disease, many aspects of which represent accelerated immunological aging. This article describes the initial insights and vision of Roy Walford into one particular facet of human immunological aging, namely, the potential relevance of the well-studied human fibroblast replicative senescence model, initially developed by Leonard Hayflick, to cells of the immune system. Extensive research on T cell senescence in cell culture has now documented changes in vitro that closely mirror alterations occurring during in vivo aging in humans, underscoring the biological significance of T cell replicative senescence. Moreover, the inclusion of high proportions of putatively senescent T cells in the 'immune risk phenotype' that is associated with early mortality in octogenarians provides initial clinical confirmation of both the immunologic theory of aging and the role of the T cell Hayflick Limit in human aging, two areas of gerontological research pioneered by Roy Walford.

  10. Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations

    PubMed Central

    Prigione, Alessandro; Hossini, Amir M.; Lichtner, Björn; Serin, Akdes; Fauler, Beatrix; Megges, Matthias; Lurz, Rudi; Lehrach, Hans; Zouboulis, Christos C.

    2011-01-01

    Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic alterations. Nevertheless, we believe it will be essential to develop reprogramming protocols capable of safeguarding the integrity of the genome of aged somatic cells, before employing iPSC-based therapy for age-associated disorders. PMID:22110631

  11. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    PubMed

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  12. Progeroid syndromes: models for stem cell aging?

    PubMed

    Bellantuono, I; Sanguinetti, G; Keith, W N

    2012-02-01

    Stem cells are responsible for tissue repair and maintenance and it is assumed that changes observed in the stem cell compartment with age underlie the concomitant decline in tissue function. Studies in murine models have highlighted the importance of intrinsic changes occurring in stem cells with age. They have also drawn the attention to other factors, such as changes in the local or systemic environment as the primary cause of stem cell dysfunction. Whilst knowledge in murine models has been advancing rapidly there has been little translation of these data to human aging. This is most likely due to the difficulties of testing the regenerative capacity of human stem cells in vivo and to substantial differences in the aging phenotype within humans. Here we summarize evidence to show how progeroid syndromes, integrated with other models, can be valuable tools in addressing questions about the role of stem cell aging in human degenerative diseases of older age and the molecular pathways involved.

  13. A syngeneic glioma model to assess the impact of neural progenitor target cell age on tumor malignancy

    PubMed Central

    Mikheev, Andrei M; Stoll, Elizabeth A; Mikheeva, Svetlana A; Maxwell, John-Patrick; Jankowski, Pawel P; Ray, Sutapa; Uo, Takuma; Morrison, Richard S; Horner, Philip J; Rostomily, Robert C

    2010-01-01

    Summary Human glioma incidence, malignancy and treatment resistance are directly proportional to patient age. Cell intrinsic factors are reported to contribute to human age-dependent glioma malignancy but suitable animal models to examine the role of aging are lacking. Here we developed an orthotopic syngeneic glioma model to test the hypothesis that the age of neural progenitor cells (NPCs), presumed cells of glioma origin, influences glioma malignancy. Gliomas generated from transformed donor 3-, 12-, and 18-month-old NPCs in same-aged adult hosts all formed highly invasive glial tumors that phenocopied the human disease. Survival analysis indicated increased malignancy of gliomas generated from older 12- and 18-month-old transformed NPCs compared with their 3-month counterparts (median survival of 38.5 and 42.5 vs. 77 days, respectively). This study showed for the first time that age of target cells at the time of transformation can affect malignancy and demonstrated the feasibility of a syngeneic model using transformed NPCs for future examination of the relative impacts of age-related cell intrinsic and cell-extrinsic factors in glioma malignancy. PMID:19489742

  14. IL-6-mediated environmental conditioning of defective Th1 differentiation dampens antitumour immune responses in old age.

    PubMed

    Tsukamoto, Hirotake; Senju, Satoru; Matsumura, Keiko; Swain, Susan L; Nishimura, Yasuharu

    2015-04-07

    Decline in immune function and inflammation concomitantly develop with ageing. Here we focus on the impact of this inflammatory environment on T cells, and demonstrate that in contrast to successful tumour elimination in young mice, replenishment of tumour-specific CD4(+) T cells fails to induce tumour regression in aged hosts. The impaired antitumour effect of CD4(+) T cells with their defective Th1 differentiation in an aged environment is restored by interleukin (IL)-6 blockade or IL-6 deficiency. IL-6 blockade also restores the impaired ability of CD4(+) T cells to promote CD8(+) T-cell-dependent tumour elimination in aged mice, which requires IFN-γ. Furthermore, IL-6-stimulated production of IL-4/IL-21 through c-Maf induction is responsible for impaired Th1 differentiation. IL-6 also contributes to IL-10 production from CD4(+) T cells in aged mice, causing attenuated responses of CD8(+) T cells. These findings suggest that IL-6 serves as an extrinsic factor counteracting CD4(+) T-cell-mediated immunity against tumour in old age.

  15. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    PubMed

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  16. Aging induced loss of stemness with concomitant gain of myogenic properties of a pure population of CD34(+)/CD45(-) muscle derived stem cells.

    PubMed

    Bose, Bipasha; Shenoy, P Sudheer

    2016-01-01

    Aging is accompanied by the functional decline of cells, tissues, and organs, as well as, a striking increase in susceptibility to a wide range of diseases. Within a tissue, both differentiated cells and adult stem cells are susceptible to intrinsic and extrinsic changes while aging. Muscle derived stem cells (MDSCs) are tissue specific stem cells which have been studied well for their multipotential nature. Although there are reports relating to diminished function and regenerative capacity of aged MDSCs as compared to their young counterparts, not much has been reported relating to the concomitant gain in unipotent nature of aged MDSCs. In this study, we report an inverse correlation between aging and expression of adult/mesenchymal stem cell markers and a direct correlation between aging and myogenecity in MDSCs. Aged MDSCs were able to generate a greater number of dystrophin positive myofibres, as compared to, the young MDSCs when transplanted in muscle of dystrophic mice. Our data, therefore, suggests that aging stress adds to the decline in stem cell characteristics with a concomitant increase in unipotency, in terms of, myogenecity of MDSCs. This study, hence, also opens the possibilities of using unipotent aged MDSCs as potential candidates for transplantation in patients with muscular dystrophies. Copyright © 2015. Published by Elsevier Ltd.

  17. Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age.

    PubMed

    Devitt, Sean M; Carter, Cynthia M; Dierov, Raia; Weiss, Scott; Gersch, Robert P; Percec, Ivona

    2015-01-01

    We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2-1159 days) from patients of varying ages (26-62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.

  18. The relationship between in vitro cellular aging and in vivo human age.

    PubMed Central

    Schneider, E L; Mitsui, Y

    1976-01-01

    Differences between early and late passage cell cultures on the organelle and macromolecular levels have been attributed to cellular "aging". However, concern has been expressed over whether changes in diploid cell populations after serial passage in vitro accurately reflect human cellular aging in vivo. Studies were therefore undertaken to determine if significant differences would be observed in the in vitro lifespans of skin fibroblast cultures from old and young normal, non-hospitalized volunteers and to examine if parameters that change with in vitro "aging" are altered as a function of age in vivo. Statistically signigificant (P less than 0.05) decreases were found in the rate of fibroblast migration, onset of cell culture senescence, in vitro lifespan, cell population replication rate, and cell number at confluency of fibroblast cultures derived from the old donor group when compared to parallel cultures from young donors. No significant differences were observed in modal cell volumes and cellular macromolecular contents. The differences observed in cell cultures from old and young donors were quantitatively and qualitatively distinct from those cellular alterations observed in early and late passage WI-38 cells (in vitro "aging"). Therefore, although early and late passage cultures of human diploid cells may provide an important cell system for examining loss of replicative potential, fibroblast cultures derived from old and young human donors may be a more appropriate model system for studying human cellular aging. PMID:1068470

  19. Aging increases cell-to-cell transcriptional variability upon immune stimulation.

    PubMed

    Martinez-Jimenez, Celia Pilar; Eling, Nils; Chen, Hung-Chang; Vallejos, Catalina A; Kolodziejczyk, Aleksandra A; Connor, Frances; Stojic, Lovorka; Rayner, Timothy F; Stubbington, Michael J T; Teichmann, Sarah A; de la Roche, Maike; Marioni, John C; Odom, Duncan T

    2017-03-31

    Aging is characterized by progressive loss of physiological and cellular functions, but the molecular basis of this decline remains unclear. We explored how aging affects transcriptional dynamics using single-cell RNA sequencing of unstimulated and stimulated naïve and effector memory CD4 + T cells from young and old mice from two divergent species. In young animals, immunological activation drives a conserved transcriptomic switch, resulting in tightly controlled gene expression characterized by a strong up-regulation of a core activation program, coupled with a decrease in cell-to-cell variability. Aging perturbed the activation of this core program and increased expression heterogeneity across populations of cells in both species. These discoveries suggest that increased cell-to-cell transcriptional variability will be a hallmark feature of aging across most, if not all, mammalian tissues. Copyright © 2017, American Association for the Advancement of Science.

  20. Intrinsic and extrinsic contributors to defective CD8+ T cell responses with aging.

    PubMed

    Jergović, Mladen; Smithey, Megan J; Nikolich-Žugich, Janko

    2018-05-01

    Aging has a profound effect on the immune system, and both innate and adaptive arms of the immune system show functional decline with age. In response to infection with intracellular microorganisms, old animals mobilize decreased numbers of antigen-specific CD8+ T cells with reduced production of effector molecules and impaired cytolytic activity. However, the CD8+ T cell-intrinsic contribution to, and molecular mechanisms behind, these defects remain unclear. In this review we will discuss the mechanistic contributions of age related changes in the CD8+ T cell pool and the relative roles of intrinsic functional defects in aged CD8+ T cells vs. defects in the aged environment initiating the CD8+ T cell response. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice.

    PubMed

    Filice, Federica; Celio, Marco R; Babalian, Alexandre; Blum, Walter; Szabolcsi, Viktoria

    2017-10-15

    Aging-associated ependymal-cell pathologies can manifest as ventricular gliosis, ventricle enlargement, or ventricle stenosis. Ventricle stenosis and fusion of the lateral ventricle (LV) walls is associated with a massive decline of the proliferative capacities of the stem cell niche in the affected subventricular zone (SVZ) in aging mice. We examined the brains of adult C57BL/6 mice and found that ependymal cells located in the adhesions of the medial and lateral walls of the rostral LVs upregulated parvalbumin (PV) and displayed reactive phenotype, similarly to injury-reactive ependymal cells. However, PV+ ependymal cells in the LV-wall adhesions, unlike injury-reactive ones, did not express glial fibrillary acidic protein. S100B+/PV+ ependymal cells found in younger mice diminished in the LV-wall adhesions throughout aging. We found that periventricular PV-immunofluorescence showed positive correlation to the grade of LV stenosis in nonaged mice (<10-month-old), and that the extent of LV-wall adhesions and LV stenosis was significantly lower in mid-aged (>10-month-old) PV-knock out (PV-KO) mice. This suggests an involvement of PV+ ependymal cells in aging-associated ventricle stenosis. Additionally, we observed a time-shift in microglial activation in the LV-wall adhesions between age-grouped PV-KO and wild-type mice, suggesting a delay in microglial activation when PV is absent from ependymal cells. Our findings implicate that compromised ependymal cells of the adhering ependymal layers upregulate PV and display phenotype shift to "reactive" ependymal cells in aging-related ventricle stenosis; moreover, they also contribute to the progression of LV-wall fusion associated with a decline of the affected SVZ-stem cell niche in aged mice. © 2017 Wiley Periodicals, Inc.

  2. Influence of temperature on the aging behavior of 18650-type lithium ion cells: A comprehensive approach combining electrochemical characterization and post-mortem analysis

    NASA Astrophysics Data System (ADS)

    Friesen, Alex; Mönnighoff, Xaver; Börner, Markus; Haetge, Jan; Schappacher, Falko M.; Winter, Martin

    2017-02-01

    The understanding of the aging behavior of lithium ion batteries in automotive and energy storage applications is essential for the acceptance of the technology. Therefore, aging experiments were conducted on commercial 18650-type state-of-the-art cells to determine the influence of the temperature during electrochemical cycling on the aging behavior of the different cell components. The cells, based on Li(Ni0.5Co0.2Mn0.3)O2 (NCM532)/graphite, were aged at 20 °C and 45 °C to different states of health. The electrochemical performance of the investigated cells shows remarkable differences depending on the cycling temperature. At contrast to the expected behavior, the cells cycled at 45 °C show a better electrochemical performance over lifetime than the cells cycled at 20 °C. Comprehensive post-mortem analyses revealed the main aging mechanisms, showing a complex interaction between electrodes and electrolyte. The main aging mechanisms of the cells cycled at 45 °C differ strongly at contrast to cells cycled at 20 °C. A strong correlation between the formed SEI, the electrolyte composition and the electrochemical performance over lifetime was observed.

  3. The impact of ageing on natural killer cell function and potential consequences for health in older adults.

    PubMed

    Hazeldine, Jon; Lord, Janet M

    2013-09-01

    Forming the first line of defence against virally infected and malignant cells, natural killer (NK) cells are critical effector cells of the innate immune system. With age, significant impairments have been reported in the two main mechanisms by which NK cells confer host protection: direct cytotoxicity and the secretion of immunoregulatory cytokines and chemokines. In elderly subjects, decreased NK cell activity has been shown to be associated with an increased incidence and severity of viral infection, highlighting the clinical implications that age-associated changes in NK cell biology have on the health of older adults. However, is an increased susceptibility to viral infection the only consequence of these age-related changes in NK cell function? Recently, evidence has emerged that has shown that in addition to eliminating transformed cells, NK cells are involved in many other biological processes such as immune regulation, anti-microbial immune responses and the recognition and elimination of senescent cells, novel functions that involve NK-mediated cytotoxicity and/or cytokine production. Thus, the decrease in NK cell function that accompanies physiological ageing is likely to have wider implications for the health of older adults than originally thought. Here, we give a detailed description of the changes in NK cell biology that accompany human ageing and propose that certain features of the ageing process such as: (i) the increased reactivation rates of latent Mycobacterium tuberculosis, (ii) the slower resolution of inflammatory responses and (iii) the increased incidence of bacterial and fungal infection are attributable in part to an age-associated decline in NK cell function. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Aging and stem cell therapy: AMPK as an applicable pharmacological target for rejuvenation of aged stem cells and achieving higher efficacy in stem cell therapy.

    PubMed

    Khorraminejad-Shirazi, Mohammadhossein; Farahmandnia, Mohammad; Kardeh, Bahareh; Estedlal, Alireza; Kardeh, Sina; Monabati, Ahmad

    2017-10-19

    In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD + ) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  5. Quantitative identification of senescent cells in aging and disease.

    PubMed

    Biran, Anat; Zada, Lior; Abou Karam, Paula; Vadai, Ezra; Roitman, Lior; Ovadya, Yossi; Porat, Ziv; Krizhanovsky, Valery

    2017-08-01

    Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single-cell basis. The method combines a senescence-associated beta-galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high-content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. A systematic review on the role of environmental toxicants in stem cells aging.

    PubMed

    Hodjat, Mahshid; Rezvanfar, Mohammad Amin; Abdollahi, Mohammad

    2015-12-01

    Stem cells are an important target for environmental toxicants. As they are the main source for replenishing of organs in the body, any changes in their normal function could affect the regenerative potential of organs, leading to the appearance of age-related disease and acceleration of the aging process. Environmental toxicants could exert their adverse effect on stem cell function via multiple cellular and molecular mechanisms, resulting in changes in the stem cell differentiation fate and cell transformation, and reduced self-renewal capacity, as well as induction of stress-induced cellular senescence. The present review focuses on the effect of environmental toxicants on stem cell function associated with the aging process. We categorized environmental toxicants according to their preferred molecular mechanism of action on stem cells, including changes in genomic, epigenomic, and proteomic levels and enhancing oxidative stress. Pesticides, tobacco smoke, radiation and heavy metals are well-studied toxicants that cause stem cell dysfunction via induction of oxidative stress. Transgenerational epigenetic changes are the most important effects of a variety of toxicants on germ cells and embryos that are heritable and could affect health in the next several generations. A better understanding of the underlying mechanisms of toxicant-induced stem cell aging will help us to develop therapeutic intervention strategies against environmental aging. Meanwhile, more efforts are required to find the direct in vivo relationship between adverse effect of environmental toxicants and stem cell aging, leading to organismal aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Rejuvenating the senescent heart

    PubMed Central

    Nguyen, Nathalie; Sussman, Mark A.

    2015-01-01

    Purpose of review The purpose of this review is to provide an update on the cardiac stem cell field with an emphasis on aging and to suggest some relevant strategies directed toward rejuvenation of the senescent heart. Recent findings Stem cells were long considered as a fountain of youth and were assumed to be equipped against any form of aging effect. However, it is now clear that stem cells suffer the consequences of aging as well. With the discovery that cardiac stem cells reside in the heart comes the question whether these cells are also impaired upon aging. As cardiac stem cell properties are also altered with age, autologous stem cell-based therapy to treat heart failure will benefit from new improved strategies. Summary With the goal to improve stem cell properties that are impaired upon aging, some strategies are highlighted. Genetic modification of adult human cardiac progenitor cells prior to autologous stem cell-based therapy, delivery of the next generation of stem cells such as CardioChimeras and CardioClusters, and improvement of the myocardial environment with rejuvenating factors constitute some of the possibilities and are discussed in more detail in this review. PMID:25760821

  8. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice.

    PubMed

    Cheng, Yiji; Wang, Xue; Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun

    2017-04-29

    Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging.

  9. Aging is associated with an expansion of CD49fhi mammary stem cells that show a decline in function and increased transformation potential

    PubMed Central

    Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Zhang, Fuchuang; Gu, Xiang; Wu, Anqi; Wang, Danhan; Chen, Yuanhong; Bandyopadhyay, Abhik; Yeh, I-Tien; Daniel, Benjamin J.; Chen, Yidong; Zou, Yi; Rebel, Vivienne L.; Walter, Christi A.; Lu, Jianxin; Huang, Changjiang; Sun, Lu-Zhe

    2016-01-01

    Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49fhi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49fhi basal-like cells in aged glands. PMID:27852980

  10. Aging is associated with an expansion of CD49fhi mammary stem cells that show a decline in function and increased transformation potential.

    PubMed

    Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Zhang, Fuchuang; Gu, Xiang; Wu, Anqi; Wang, Danhan; Chen, Yuanhong; Bandyopadhyay, Abhik; Yeh, I-Tien; Daniel, Benjamin J; Chen, Yidong; Zou, Yi; Rebel, Vivienne L; Walter, Christi A; Lu, Jianxin; Huang, Changjiang; Sun, Lu-Zhe

    2016-11-15

    Breast cancer incidence increases during aging, yet the mechanism of age-associated mammary tumorigenesis is unclear. Mammary stem cells are believed to play an important role in breast tumorigenesis, but how their function changes with age is unknown. We compared mammary epithelial cells isolated from young and old mammary glands of different cohorts of C57BL6/J and BALB/c mice, and our findings revealed that old mammary glands were characterized by increased basal cell pool comprised of mostly CD49f hi cells, altered luminal-to-basal cell ratio, and irregular ductal morphology. More interestingly, basal stem cells in old mice were increased in frequency, but showed a functional decline of differentiation and increased neoplastic transformation potential. Gene signature enrichment analysis revealed a significant enrichment of a luminal cell gene expression signature in the basal stem cell-enriched population from old mice, suggesting some luminal cells were expressing basal markers. Immunofluorescence staining confirmed the presence of luminal cells with high CD49f expression in hyperplastic lesions implicating these cells as undergoing luminal to basal phenotypic changes during aging. Whole transcriptome analysis showed elevated immune and inflammatory responses in old basal stem cells and stromal cells, which may be the underlying cause for increased CD49f hi basal-like cells in aged glands.

  11. The NLRP3 Inflammasome Promotes Age-related Thymic Demise and Immunosenescence

    PubMed Central

    Youm, Yun-Hee; Kanneganti, Thirumala-Devi; Vandanmagsar, Bolormaa; Zhu, Xuewei; Ravussin, Anthony; Adijiang, Ayinuer; Owen, John S.; Thomas, Michael J.; Francis, Joseph; Parks, John S.; Dixit, Vishwa Deep

    2013-01-01

    The collapse of thymic stromal cell microenvironment with age and resultant inability of the thymus to produce naïve T cells contributes to lower immune-surveillance in the elderly. Here we show that age-related increase in ‘lipotoxic danger signals’ such as free cholesterol (FC) and ceramides, leads to thymic caspase-1 activation via the Nlrp3 inflammasome. Elimination of Nlrp3 and Asc, a critical adaptor required for inflammasome assembly, reduces age-related thymic atrophy and results in an increase in cortical thymic epithelial cells, T cell progenitors and maintenance of T cell repertoire diversity. Using a mouse model of irradiation and hematopoietic stem cell transplantation (HSCT), we show that deletion of the Nlrp3 inflammasome accelerates T cell reconstitution and immune recovery in middle-aged animals. Collectively, these data demonstrate that lowering inflammasome-dependent caspase-1 activation increases thymic lymphopoiesis and suggest that Nlrp3 inflammasome inhibitors may aid the reestablishment of a diverse T cell repertoire in middle-aged or elderly patients undergoing HSCT. PMID:22832107

  12. Paradoxical aging in HIV: immune senescence of B Cells is most prominent in young age.

    PubMed

    Rinaldi, Stefano; Pallikkuth, Suresh; George, Varghese K; de Armas, Lesley R; Pahwa, Rajendra; Sanchez, Celeste M; Pallin, Maria Fernanda; Pan, Li; Cotugno, Nicola; Dickinson, Gordon; Rodriguez, Allan; Fischl, Margaret; Alcaide, Maria; Gonzalez, Louis; Palma, Paolo; Pahwa, Savita

    2017-04-01

    Combination antiretroviral therapies (cART)can lead to normal life expectancy in HIV-infected persons, and people aged >50 yrs represent the fastest growing HIV group. Although HIV and aging are independently associated with impaired humoral immunity, immune status in people aging with HIV is relatively unexplored. In this study influenza vaccination was used to probe age associated perturbations in the B cell compartment of HIV-negative "healthy controls" (HC) and virologically controlled HIV-infected participants on cART (HIV) (n=124), grouped by age as young (<40 yrs), middle-aged (40-59yrs) or old ( > 60 yrs). H1N1 antibody response at d21 post-vaccination correlated inversely with age in both HC and HIV. Immunophenotyping of cryopreserved PBMC demonstrated increased frequencies of double negative B cells and decreased plasmablasts in old compared to young HC. Remarkably, young HIV were different from young HC but similar to old HC in B cell phenotype, influenza specific spontaneous (d7) or memory (d21) antibody secreting cells. We conclude that B cell immune senescence is a prominent phenomenon in young HIV in comparison to young HC, but distinctions between old HIV and old HC are less evident though both groups manifest age-associated B cell dysfunction.

  13. Paradoxical aging in HIV: immune senescence of B Cells is most prominent in young age

    PubMed Central

    George, Varghese K.; de Armas, Lesley R.; Pahwa, Rajendra; Sanchez, Celeste M.; Pallin, Maria Fernanda; Pan, Li; Cotugno, Nicola; Dickinson, Gordon; Rodriguez, Allan; Fischl, Margaret; Alcaide, Maria; Gonzalez, Louis; Palma, Paolo; Pahwa, Savita

    2017-01-01

    Combination antiretroviral therapies (cART) can lead to normal life expectancy in HIV-infected persons, and people aged >50 yrs represent the fastest growing HIV group. Although HIV and aging are independently associated with impaired humoral immunity, immune status in people aging with HIV is relatively unexplored. In this study influenza vaccination was used to probe age associated perturbations in the B cell compartment of HIV-negative “healthy controls” (HC) and virologically controlled HIV-infected participants on cART (HIV) (n=124), grouped by age as young (<40 yrs), middle-aged (40-59yrs) or old (≥60 yrs). H1N1 antibody response at d21 post-vaccination correlated inversely with age in both HC and HIV. Immunophenotyping of cryopreserved PBMC demonstrated increased frequencies of double negative B cells and decreased plasmablasts in old compared to young HC. Remarkably, young HIV were different from young HC but similar to old HC in B cell phenotype, influenza specific spontaneous (d7) or memory (d21) antibody secreting cells. We conclude that B cell immune senescence is a prominent phenomenon in young HIV in comparison to young HC, but distinctions between old HIV and old HC are less evident though both groups manifest age-associated B cell dysfunction. PMID:28448963

  14. Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults.

    PubMed

    van der Heiden, Marieke; Duizendstra, Aafke; Berbers, Guy A M; Boots, Annemieke M H; Buisman, Anne-Marie

    2017-10-09

    Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the immunological fitness of the middle-aged population is ill-defined. It is currently unknown whether effective T-cell help towards B-cells is initiated by conjugate-carrier vaccines at middle-age. We characterized systemic Tetanus Toxoid (TT) specific T-helper cell responses in the circulation of middle-aged adults (50-65years of age, n=31) having received the MenACWY-TT vaccination. Blood samples were taken pre- as well as 7days, 28days, and 1year post-vaccination. TT-specific T-cell responses were determined by IFNγ Elispot and by the secretion of IFNγ, IL13, IL10, IL17, and IL21 in cell culture supernatants. Circulating CD4+CXCR5+ICOS+IL21+ cells were analyzed by flow cytometry, and meningococcal and TT-specific IgG responses by bead-based immunoassays. The correlation between the T-cell help and humoral responses was evaluated. Vaccination with a TT-carrier protein induced a mixed TT-specific Th1 (IFNγ), Th2 (IL13, IL10), and Th17 (IL17) response in most participants. Additionally, circulating CD4+CXCR5+ICOS+IL21+ cells were significantly increased 7days post-vaccination. Pre-vaccination TT-specific cytokine production and post-vaccination Th2 responses correlated positively with the increase of CD4+CXCR5+ICOS+IL21+ cells. No correlation between T-cell help and antibody responses was found. The characteristics of the T-cell response upon a TT-carrier vaccination suggests effective T-cell help towards B-cells in response to meningococcal polysaccharides, although the absence of a correlation with the antibody responses warrants further clarification. However, the robust T-helper cell response in middle-aged adults, decades after previous TT vaccinations, strengthens the classification of this age group for future vaccine interventions in the context of population ageing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Aging and reprogramming: a two-way street

    PubMed Central

    Mahmoudi, Salah; Brunet, Anne

    2012-01-01

    Aging is accompanied by the functional decline of cells, tissues, and organs, as well as a striking increase in a wide range of diseases. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) opens new avenues for the aging field and has important applications for therapeutic treatments of age-related diseases. Here we review emerging studies on how aging and age-related pathways influence iPSC generation and property. We discuss the exciting possibility that reverting to a pluripotent stem cell stage erases several deficits associated with aging and will provide new strategies for rejuvenation. Finally, we argue that reprogramming provides a unique opportunity to model aging and perhaps exceptional longevity. PMID:23146768

  16. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells

    NASA Astrophysics Data System (ADS)

    Mussa, Abdilbari Shifa; Klett, Matilda; Lindbergh, Göran; Lindström, Rakel Wreland

    2018-05-01

    The effects of external compression on the performance and ageing of NMC(1/3)/Graphite single-layer Li-ion pouch cells are investigated using a spring-loaded fixture. The influence of pressure (0.66, 0.99, 1.32, and 1.98 MPa) on impedance is characterized in fresh cells that are subsequently cycled at the given pressure levels. The aged cells are analyzed for capacity fade and impedance rise at the cell and electrode level. The effect of pressure distribution that may occur in large-format cells or in a battery pack is simulated using parallel connected cells. The results show that the kinetic and mass transport resistance increases with pressure in a fresh cell. An optimum pressure around 1.3 MPa is shown to be beneficial to reduce cyclable-lithium loss during cycling. The minor active mass losses observed in the electrodes are independent of the ageing pressure, whereas ageing pressure affects the charge transfer resistance of both NMC and graphite electrodes and the ohmic resistance of the cell. Pressure distribution induces current distribution but the enhanced current throughput at lower pressures cell does not accelerate its ageing. Conclusions from this work can explain some of the discrepancies in non-uniform ageing reported in the literature and indicate coupling between electrochemistry and mechanics.

  17. Aging, Clonality and Rejuvenation of Hematopoietic Stem Cells

    PubMed Central

    Akunuru, Shailaja; Geiger, Hartmut

    2016-01-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and increased production of reactive oxygen species have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as clonal selection of HSCs upon aging provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and potentially, alleviating aging-associated immune remodeling and myeloid malignancies. PMID:27380967

  18. Immune correlates of aging in outdoor-housed captive rhesus macaques (Macaca mulatta)

    PubMed Central

    2012-01-01

    Background Questions remain about whether inflammation is a cause, consequence, or coincidence of aging. The purpose of this study was to define baseline immunological characteristics from blood to develop a model in rhesus macaques that could be used to address the relationship between inflammation and aging. Hematology, flow cytometry, clinical chemistry, and multiplex cytokine/chemokine analyses were performed on a group of 101 outdoor-housed captive rhesus macaques ranging from 2 to 24 years of age, approximately equivalent to 8 to 77 years of age in humans. Results These results extend earlier reports correlating changes in lymphocyte subpopulations and cytokines/chemokines with increasing age. There were significant declines in numbers of white blood cells (WBC) overall, as well as lymphocytes, monocytes, and polymorphonuclear cells with increasing age. Among lymphocytes, there were no significant declines in NK cells and T cells, whereas B cell numbers exhibited significant declines with age. Within the T cell populations, there were significant declines in numbers of CD4+ naïve T cells and CD8+ naïve T cells. Conversely, numbers of CD4+CD8+ effector memory and CD8+effector memory T cells increased with age. New multiplex analyses revealed that concentrations of a panel of ten circulating cytokines/chemokines, IFNγ, IL1b, IL6, IL12, IL15, TNFα, MCP1, MIP1α, IL1ra, and IL4, each significantly correlated with age and also exhibited concordant pairwise correlations with every other factor within this group. To also control for outlier values, mean rank values of each of these cytokine concentrations in relation to age of each animal and these also correlated with age. Conclusions A panel of ten cytokines/chemokines were identified that correlated with aging and also with each other. This will permit selection of animals exhibiting relatively higher and lower inflammation status as a model to test mechanisms of inflammation status in aging with susceptibility to infections and vaccine efficacy. PMID:23151307

  19. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers.

    PubMed

    Lee-Chang, Catalina; Bodogai, Monica; Moritoh, Kanako; Chen, Xin; Wersto, Robert; Sen, Ranjan; Young, Howard A; Croft, Michael; Ferrucci, Luigi; Biragyn, Arya

    2016-04-15

    B cell dysregulation in aging is thought to mostly occur in conventional B2 cells without affecting innate B1 cells. Elderly humans and mice also accumulate 4-1BBL(+)MHC class-I(Hi)CD86(Hi)B cells of unknown origin. In this article, we report that these cells, termed 4BL cells, are activated murine and possibly human B1a cells. The activation is mediated by aging human monocytes and murine peritoneal macrophages. They induce expression and activation of 4-1BBL and IFN-γR1 on B1a cells to subsequently upregulate membrane TNF-α and CD86. As a result, activated B1a/4BL cells induce expression of granzyme B in CD8(+)T cells by targeting TNFR2 via membrane TNF-α and providing costimulation with CD86. Thus, for the first time, to our knowledge, these results indicate that aging affects the function of B1a cells. Upon aging, these cells lose their tumor-supporting activity and become inducers of potentially antitumor and autoimmune CD8(+)T cells. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. [Regulation of age-dependent phenomena. Influence of C6-substituted purines on cell aggregation and cell migration in primary cultures of lense epithelial cells].

    PubMed

    Glässer, D; Iwig, M; Weber, E

    1975-01-01

    The existence of an age dependent latent period of cell emigration has been proved in the primary culture of epithelial cells of bovine lenses. The previously described aggregation phenomenon as well as the latent period of the cell emigration increase with the age of the sponsor animals. Extracellular adenine and other C6-substituted purines, isolated from the cells themselves and added to the medium, act the same way on the lens cells in the primary culture as the increasing age of the sponsor animals. Adenine stimulates cell aggregation and inhibits the adhesion of the cells to the substratum, the cell flattening and the cell migration. The adenine action has been proved down to a concentration of 3 X 10(-6) M. During the primary culture, the lens cells gradually los the adenine sensitivity. The adenine action also occurs on single cells, isolated by trypsination, it differs from the reaction of ouabain and can be removed at low concentration by washing procedures. The results favour the suggestion C6-substituted purines to be involved in cell ageing.

  1. Rejuvenation of the aged muscle stem cell population restores strength to injured aged muscles

    PubMed Central

    Cosgrove, Benjamin D.; Gilbert, Penney M.; Porpiglia, Ermelinda; Mourkioti, Foteini; Lee, Steven P.; Corbel, Stephane Y.; Llewellyn, Michael E.; Delp, Scott L.; Blau, Helen M.

    2014-01-01

    The aged suffer from progressive muscle weakness and regenerative failure. We demonstrate that muscle regeneration is impaired with aging due in part to a cell-autonomous functional decline in skeletal muscle stem cells (MuSCs). Two-thirds of aged MuSCs are intrinsically defective relative to young MuSCs, with reduced capacity to repair myofibers and repopulate the stem cell reservoir in vivo following transplantation due to a higher incidence of cells that express senescence markers and that have elevated p38α/β MAPK activity. We show that these limitations cannot be overcome by transplantation into the microenvironment of young recipient muscles. In contrast, subjecting the aged MuSC population to transient inhibition of p38α/β in conjunction with culture on soft hydrogel substrates rapidly expands the residual functional aged MuSC population, rejuvenating its potential for regeneration, serial transplantation, and strengthening damaged muscles of aged mice. These findings reveal a synergy between biophysical and biochemical cues that provides a paradigm for a localized autologous muscle stem cell therapy in aged individuals. PMID:24531378

  2. The cell biology of aging.

    PubMed

    Hayflick, L

    1979-07-01

    Cultured normal human and animal cells are predestinued to undergo irreversible functional decrements that mimick age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occur in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.

  3. Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches

    PubMed Central

    Conboy, Irina M.; Rando, Thomas A.

    2012-01-01

    Aging is unmistakable and undeniable in mammals. Interestingly, mice develop cataracts, muscle atrophy, osteoporosis, obesity, diabetes and cognitive deficits after just 2–3 postnatal years, while it takes seven or more decades for the same age-specific phenotypes to develop in humans. Thus, chronological age corresponds differently with biological age in metazoan species and although many theories exist, we do not understand what controls the rate of mammalian aging. One interesting idea is that species-specific rate of aging represents a ratio of tissue attrition to tissue regeneration. Furthermore, current findings suggest that the age-imposed biochemical changes in the niches of tissue stem cells inhibit performance of this regenerative pool, which leads to the decline of tissue maintenance and repair. If true, slowing down stem cell and niche aging, thereby promoting tissue regeneration, could slow down the process of tissue and organismal aging. In this regard, recent studies of heterochronic parabiosis provide important clues as to the mechanisms of stem cell aging and suggest novel strategies for enhancing tissue repair in the old. Here we review current literature on the relationship between the vigor of tissue stem cells and the process of aging, with an emphasis on the rejuvenation of old tissues by the extrinsic modifications of stem cell niches. PMID:22617385

  4. Aging enhances the vulnerability of mesenchymal stromal cells to uniaxial tensile strain-induced apoptosis.

    PubMed

    McKayed, Katey; Prendergast, Patrick J; Campbell, Veronica A

    2016-02-08

    Mechanical priming can be employed in tissue engineering strategies to control the fate and differentiation pattern of mesenchymal stromal cells. This is relevant to regenerative medicine whereby mechanical cues can promote the regeneration of a specific tissue type from mesenchymal precursors. The ability of cells to respond to mechanical forces is dependent upon mechanotransduction pathways that involve membrane-associated proteins, such as integrins. During the aging process changes in the mechanotransduction machinery may influence how cells from aged individuals respond to mechanical priming. In this study mesenchymal stromal cells were prepared from young adult and aged rats and exposed to uniaxial tensile strain at 5% and 10% for 3 days, or 2.5% for 7 days. Application of 5% tensile strain had no impact on cell viability. In contrast, application of 10% tensile strain evoked apoptosis and the strain-induced apoptosis was significantly higher in the mesenchymal stromal cells prepared from the aged rats. In parallel to the age-related difference in cellular responsiveness to strain, an age-related decrease in expression of α2 integrin and actin, and enhanced lipid peroxidation was observed. This study demonstrates that mesenchymal stem cells from aged animals have an altered membrane environment, are more vulnerable to the pro-apoptotic effects of 10% tensile strain and less responsive to the pro-osteogenic effects of 2.5% tensile strain. Thus, it is essential to consider how aged cells respond to mechanical stimuli in order to identify optimal mechanical priming strategies that minimise cell loss, particularly if this approach is to be applied to an aged population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Age-related impairment of endothelial progenitor cell migration correlates with structural alterations of heparan sulfate proteoglycans.

    PubMed

    Williamson, Kate A; Hamilton, Andrew; Reynolds, John A; Sipos, Peter; Crocker, Ian; Stringer, Sally E; Alexander, Yvonne M

    2013-02-01

    Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit-Hill cells and circulating angiogenic cells are subject to age-associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age-related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age-associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2-O-sulfated-uronic acid, N, 6-O-sulfated-glucosamine (UA[2S]-GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood-derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age-related vascular pathologies. © 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  6. miR-10a restores human mesenchymal stem cell differentiation by repressing KLF4

    PubMed Central

    Li, Jiao; Dong, Jun; Zhang, Zhen-hui; Zhang, Dong-Cheng; You, Xiang-Yu; Zhong, Yun; Chen, Min-Sheng; Liu, Shi-Ming

    2013-01-01

    miRNAs have recently been shown to play a significant role in human aging. However, data demonstrating the effects of aging-related miRNAs in human mesenchymal stem cells (hMSCs) are limited. We observed that hMSC differentiation decreased with aging. We also identified that miR-10a expression was significantly decreased with age by comparing the miRNA expression of hMSCs derived from young and aged individuals. Therefore, we hypothesized that the downregulation of miR-10a may be associated with the decreased differentiation capability of hMSCs from aged individuals. Lentiviral constructs were used to up- or downregulate miR-10a in young and old hMSCs. Upregulation of miR-10a resulted in increased differentiation to adipogenic, osteogenic, and chondrogenic lineages and in reduced cell senescence. Conversely, downregulation of miR-10a resulted in decreased cell differentiation and increased cell senescence. A chimeric luciferase reporter system was generated, tagged with the full-length 3′-UTR region of KLF4 harboring the seed-matched sequence with or without four nucleotide mutations. These constructs were cotransfected with the miR-10a mimic into cells. The luciferase activity was significantly repressed by the miR-10a mimic, proving the direct binding of miR-10a to the 3′-UTR of KLF4. Direct suppression of KLF4 in aged hMSCs increased cell differentiation and decreased cell senescence. In conclusion, miR-10a restores the differentiation capability of aged hMSCs through repression of KLF4. Aging-related miRNAs may have broad applications in the restoration of cell dysfunction caused by aging. J. Cell. Physiol. 228: 2324–2336, 2013. © The Authors. Published by Wiley Periodicals, Inc. PMID:23696417

  7. Morphometric analysis of the folliculostellate cells and luteinizing hormone gonadotropic cells of the anterior pituitary of the men during the aging process.

    PubMed

    Čukuranović Kokoris, Jovana; Jovanović, Ivan; Pantović, Vukica; Krstić, Miljan; Stanojković, Milica; Milošević, Verica; Ugrenović, Slađana; Stojanović, Vesna

    2017-02-01

    The aim of this research was to quantify the changes in the morphology and density of the anterior pituitary folliculostellate (FS) and luteinizing hormone (LH) cells. Material was tissue of the pituitary gland of the 14 male cadavers. Tissue slices were immunohistochemically stained with monoclonal anti-LH antibody and polyclonal anti-S100 antibody for the detection of LH and FS cells, respectively. Digital images of the stained slices were afterwards morphometrically analyzed by ImageJ. Results of the morphometric analysis showed significant increase of the FS cells volume density in cases older than 70 years. Volume density of the LH cells did not significantly change, whereas their area significantly increased with age. Nucleocytoplasmic ratio of the LH cells gradually decreased and became significant after the age of 70. Finally, volume density of the FS cell significantly correlated with LH cells area and nucleocytoplasmic ratio. From all above cited, we concluded that in men, density and size of the FS cells increase with age. Long-term hypertrophy of the LH cells results in their functional decline after the age of 70. Strong correlation between FS cells and LH cells morphometric parameters might point to age-related interaction between these two cell groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. RNA synthesis in the pancreatic acinar cells of aging mice as revealed by electron microscopic radioautography.

    PubMed

    Nagata, Tetsuji

    2012-01-01

    For the purpose of studying the aging changes of macromolecular synthesis in the pancreatic acinar cells of experimental animals, we studied 10 groups of aging mice during development and aging from fetal day 19 to postnatal month 24. They were injected with 3H-uridine, a precursor for RNA synthesis, sacrificed and the pancreatic tissues were taken out, fixed and processed for light and electron microscopic radioautography. On many radioautograms the localization of silver grains demonstrating RNA synthesis in pancreatic acinar cells in respective aging groups were analyzed qualitatively. The number of mitochondria per cell, the number of labeled mitochondria with silver grains and the number of silver grains in each cell in respective aging groups were analyzed quantitatively in relation to the aging of animals. The results revealed that the RNA synthetic activity as expressed by the incorporations of RNA precursor, i.e., the number of silver grains in cell nuclei, cell organelles, changed due to the aging of animals. The number of mitochondria, the number of labeled mitochondria and the mitochondrial labeling index labeled with silver grains were counted in each pancreatic acinar cell. It was demonstrated that the number of mitochondria, the number of labeled mitochondria and the labeling indices showing RNA synthesis at various ages increased from embryonic day 19 to postnatal newborn day 1, 3, 9, 14, adult month 1, 2 and 6, reaching the maxima, then decreased to senile stage at postnatal year 1 to 2, indicating the aging changes. Based upon our findings, available literature on macromolecular synthesis in mitochondria of various cells are reviewed.

  9. Young endothelial cells revive aging blood.

    PubMed

    Chang, Vivian Y; Termini, Christina M; Chute, John P

    2017-11-01

    The hematopoietic system declines with age, resulting in decreased hematopoietic stem cell (HSC) self-renewal capacity, myeloid skewing, and immune cell depletion. Aging of the hematopoietic system is associated with an increased incidence of myeloid malignancies and a decline in adaptive immunity. Therefore, strategies to rejuvenate the hematopoietic system have important clinical implications. In this issue of the JCI, Poulos and colleagues demonstrate that infusions of bone marrow (BM) endothelial cells (ECs) from young mice promoted HSC self-renewal and restored immune cell content in aged mice. Additionally, delivery of young BM ECs along with HSCs following total body irradiation improved HSC engraftment and enhanced survival. These results suggest an important role for BM endothelial cells (ECs) in regulating hematopoietic aging and support further research to identify the rejuvenating factors elaborated by BM ECs that restore HSC function and the immune repertoire in aged mice.

  10. Aged Garlic Extract Modifies Human Immunity.

    PubMed

    Percival, Susan S

    2016-02-01

    Garlic contains numerous compounds that have the potential to influence immunity. Immune cells, especially innate immune cells, are responsible for the inflammation necessary to kill pathogens. Two innate lymphocytes, γδ-T and natural killer (NK) cells, appear to be susceptible to diet modification. The purpose of this review was to summarize the influence of aged garlic extract (AGE) on the immune system. The author's laboratory is interested in AGE's effects on cell proliferation and activation and inflammation and to learn whether those changes might affect the occurrence and severity of colds and flu. Healthy human participants (n = 120), between 21 and 50 y of age, were recruited for a randomized, double-blind, placebo-controlled parallel-intervention study to consume 2.56 g AGE/d or placebo supplements for 90 d during the cold and flu season. Peripheral blood mononuclear cells were isolated before and after consumption, and γδ-T and NK cell function was assessed by flow cytometry. The effect on cold and flu symptoms was determined by using daily diary records of self-reported illnesses. After 45 d of AGE consumption, γδ-T and NK cells proliferated better and were more activated than cells from the placebo group. After 90 d, although the number of illnesses was not significantly different, the AGE group showed reduced cold and flu severity, with a reduction in the number of symptoms, the number of days participants functioned suboptimally, and the number of work/school days missed. These results suggest that AGE supplementation may enhance immune cell function and may be partly responsible for the reduced severity of colds and flu reported. The results also suggest that the immune system functions well with AGE supplementation, perhaps with less accompanying inflammation. This trial was registered at clinicaltrials.gov as NCT01390116. © 2016 American Society for Nutrition.

  11. [Experimental study on aging effect of Angelica sinensis polysaccharides combined with cytarabine on human leukemia KG1alpha cell lines].

    PubMed

    Xu, Chun-Yan; Geng, Shan; Liu, Jun; Zhu, Jia-Hong; Zhang, Xian-Ping; Jiang, Rong; Wang, Ya-Ping

    2014-04-01

    The latest findings of our laboratory showed that Angelica sinensis polysaccharide (ASP) showed a definite effect in regulating the aging of hematopoietic stem cells. Leukemia is a type of malignant hematopoietic tumor in hematopoietic stem cells. There have been no relevant reports about ASP's effect in regulating the aging of leukemia cells. In this study, human acute myeloid leukemia (AML) KG1alpha cell lines in logarithmic growth phase were taken as the study object, and were divided into the ASP group, the cytarabine (Ara-C) group, the ASP + Ara-C group and the control group. The groups were respectively treated with different concentration of ASP, Ara-C and ASP + Ara-C for different periods, with the aim to study the effect of ASP combined with Ara-C in regulating the aging of human acute myeloid leukemia KG1alpha cell lines and its relevant mechanism. The results showed that ASP, Ara-C and ASP + Ara-C could obviously inhibit KG1alpha cell proliferation in vitro, block the cells in G0/G1 phase. The cells showed the aging morphological feature. The percentage of positive stained aging cells was dramatically increased, and could significantly up-regulate the expression of aging-related proteins P16 and RB, which were more obvious in the ASP + Ara-C group. In conclusion, the aging mechanism of KG1alpha cell induced by ASP and Ara-C may be related to the regulation of the expression of aging-related proteins, suggesting that the combined administration of ASP and anticancer drugs plays a better role in the treatment of leukemia .

  12. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    PubMed

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in the cortical peri-infarct area. Thus, our results highlight the importance of using aged animals for translation to clinical studies.

  13. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer's disease.

    PubMed

    Davies, Danielle S; Ma, Jolande; Jegathees, Thuvarahan; Goldsbury, Claire

    2017-11-01

    Changes in microglia function are involved in Alzheimer's disease (AD) for which ageing is the major risk factor. We evaluated microglial cell process morphologies and their gray matter coverage (arborized area) during ageing and in the presence and absence of AD pathology in autopsied human neocortex. Microglial cell processes were reduced in length, showed less branching and reduced arborized area with aging (case range 52-98 years). This occurred during normal ageing and without microglia dystrophy or changes in cell density. There was a larger reduction in process length and arborized area in AD compared to aged-matched control microglia. In AD cases, on average, 49%-64% of microglia had discontinuous and/or punctate Iba1 labeled processes instead of continuous Iba1 distribution. Up to 16% of aged-matched control microglia displayed discontinuous or punctate features. There was no change in the density of microglial cell bodies in gray matter during ageing or AD. This demonstrates that human microglia show progressive cell process retraction without cell loss during ageing. Additional changes in microglia occur with AD including Iba1 protein puncta and discontinuity. We suggest that reduced microglial arborized area may be an aging-related correlate of AD in humans. These variations in microglial cells during ageing and in AD could reflect changes in neural-glial interactions which are emerging as key to mechanisms involved in ageing and neurodegenerative disease. © 2016 International Society of Neuropathology.

  14. Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells

    PubMed Central

    Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing

    2016-01-01

    ABSTRACT Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375

  15. Aging and cytomegalovirus (CMV) infection differentially and jointly affect distinct circulating T cell subsets in humans1

    PubMed Central

    Wertheimer, Anne M.; Bennett, Michael S.; Park, Byung; Uhrlaub, Jennifer L.; Martinez, Carmine; Pulko, Vesna; Currier, Noreen L.; Nikolich-Zugich, Dragana; Kaye, Jeffrey; Nikolich-Zugich, Janko

    2014-01-01

    The impact of intrinsic aging upon human peripheral blood T-cell subsets remains incompletely quantified and understood. This impact must be distinguished from the influence of latent persistent microorganisms, particularly cytomegalovirus (CMV), which has been associated with age-related changes in the T cell pool. In a cross-sectional cohort of 152 CMV-negative individuals, aged 21–101 years, we found that aging correlated strictly to an absolute loss of naïve CD8, but not CD4, T cells, but, contrary to many reports, did not lead to an increase in memory T cell numbers. The loss of naïve CD8 T cells was not altered by CMV in 239 subjects (range 21–96 years) but the decline in CD4+ naïve cells showed significance in CMV+ individuals. These individuals also exhibited an absolute increase in the effector/effector memory CD4+ and CD8+ cells with age. That increase was seen mainly, if not exclusively, in older subjects with elevated anti-CMV Ab titers, suggesting that efficacy of viral control over time may determine the magnitude of CMV impact upon T cell memory, and perhaps upon immune defense. These findings provide important new insights into the age-related changes in the peripheral blood pool of older adults, demonstrating that aging and CMV exert both distinct and joint influence upon blood T cell homeostasis in humans. PMID:24501199

  16. Insights into neurogenesis and aging: potential therapy for degenerative disease?

    PubMed Central

    Marr, Robert A; Thomas, Rosanne M; Peterson, Daniel A

    2010-01-01

    Neurogenesis is the process by which new neural cells are generated from a small population of multipotent stem cells in the adult CNS. This natural generation of new cells is limited in its regenerative capabilities and also declines with age. The use of stem cells in the treatment of neurodegenerative disease may hold great potential; however, the age-related incidence of many CNS diseases coincides with reduced neurogenesis. This review concisely summarizes current knowledge related to adult neurogenesis and its alteration with aging and examines the feasibility of using stem cell and gene therapies to combat diseases of the CNS with advancing age. PMID:20806052

  17. [Glycation, glycoxidation and diabetes mellitus].

    PubMed

    Boulanger, Eric; Wautier, Jean-Luc; Dequiedt, Philippe; Schmidt, Anne-Marie

    2006-01-01

    Advanced glycation end-products (AGEs) result from a reaction between carbohydrates and the free amino groups of proteins, lipids, and DNA. Non enzymatic glycation, glycoxidation with glucose auto-oxidation and the polyol pathway are involved in glycated protein formation. AGEs also named glycotoxins are found in excess in pathological situations such as diabetes mellitus, renal failure, and aging or after absorption of food containing glycated products. Three major pathophysiological mechanisms are described to explain AGE toxicity, first AGEs can accumulate in the vessel wall and in collagen of different tissues; second in situ glycation is possible; third, AGEs bind to cell receptors inducing deleterious consequences. AGE receptor RAGE is a multiligand member of the immunoglobulin superfamily of cell surface molecules. AGE-receptor interaction can alter, macrophage, endothelial cell, mesangial and mesothelial cell functions and can induce inflammation. Oxidant stress, vascular hyperpermeability, vascular cell adhesion molecule-1 (VCAM-1) overexpression and monocytes chemotactic Protein-1 (MCP-1) production have been observed after cell activation by AGEs. AGEs appear to be involved in the genesis of diabetic macro but also microangiopathy such as retinopathy and glomerulosclerosis. New drugs are tested to prevent or break the AGE-protein cross-linkage, or to control the AGE-receptor interaction and their consequences. Dietary treatment, strict glycemic control and preservation of renal function remain the best approach for preventing AGE formation and limiting their deleterious effects.

  18. Obesity associated advanced glycation end products within the human uterine cavity adversely impact endometrial function and embryo implantation competence.

    PubMed

    Antoniotti, Gabriella S; Coughlan, Melinda; Salamonsen, Lois A; Evans, Jemma

    2018-04-01

    Do obese levels of advanced glycation end products (AGEs) within the uterine cavity detrimentally alter tissue function in embryo implantation and placental development? Obese levels of AGEs activate inflammatory signaling (p65 NFκB) within endometrial epithelial cells and alter their function, cause endoplasmic reticulum (ER) stress in endometrial stromal cells and impair decidualization, compromise implantation of blastocyst mimics and inhibit trophoblast invasion. Obese women experience a higher incidence of infertility, recurrent miscarriage and pregnancy complications compared with lean women. Oocyte donation cycles suggest a detrimental uterine environment plays a role in these outcomes. Uterine lavage and tissues from lean (BMI 19.5-24.9, n = 17) and obese (BMI > 30, n = 16) women examined. Cell culture experiments utilizing human endometrial epithelial, trophectoderm and trophoblast cell lines and primary human stromal cells used to examine the functional impact of obese levels of AGEs. Levels of AGEs examined within uterine lavage assessed by ELISA to determine differences between lean and obese women. Expression and localization of AGEs, receptor for AGEs (RAGE) and NFκB within endometrial tissues obtained from lean and obese women determined by immunohistochemistry. Endometrial epithelial cells (ECC-1), primary human stromal cells and trophoblast cells (HTR8-SVneo) treated with lean (2000 nmol/mol lysine) or obese (8000 nmol/mol lysine) uterine levels of AGEs and p65 NFκB (western immunoblot), real-time adhesion, proliferation migration and invasion (xCelligence real-time cell function analysis), decidualization (cell morphology and prolactin release), ER stress (western immunoblot for p-PERK) determined. Co-cultures of endometrial epithelial cells and blastocyst mimics (trophectoderm spheroids) similarly treated with lean or obese uterine levels of AGEs to determine their impact on embryo implantation. AGEs were significantly elevated (P = 0.004) within the obese (6503.59 μmol/mol lysine) versus lean (2165.88 μmol/mol lysine) uterine cavity (uterine lavage) with increased immunostaining for AGEs, RAGE and NFkB within obese endometrial tissues during the proliferative phase of the menstrual cycle. Obese uterine levels of AGEs inhibited adhesion and proliferation of endometrial epithelial (ECC-1) cells compared to treatment with lean uterine levels of AGEs. Obese uterine AGE levels impacted primary human endometrial stromal cell decidualization and activated ER stress within these cells. Obese uterine levels of AGEs also inhibited trophectodermal spheroid adhesion to hormonally primed endometrial epithelial cells and trophoblast cell line HTR8/SV-neo invasion. N/A. Mechanistic studies are performed in vitro and may not completely recapitulate cell function in vivo. These data corroborate clinical data suggesting the presence of an altered uterine environment in obese women and demonstrate that elevated uterine levels of AGEs within these women may detrimentally impact endometrial function, embryo implantation and placental development. Uterine AGE assessment in infertility work up may prove useful in determining underlying causes of infertility. AGEs can be targeted pharmacologically and such treatments may prove effective in improving reproductive complications experience by obese women. Supported by NHMRC Fellowship (#1002028 to L.A.S.), and the Victorian Government's Operational Infrastructure Support Program. MTC is supported by a JDRF Australia Clinical Research Network Career Development Award. The authors have declared that no conflict of interest exists.

  19. Symbiotic Origin of Aging.

    PubMed

    Greenberg, Edward F; Vatolin, Sergei

    2018-06-01

    Normally aging cells are characterized by an unbalanced mitochondrial dynamic skewed toward punctate mitochondria. Genetic and pharmacological manipulation of mitochondrial fission/fusion cycles can contribute to both accelerated and decelerated cellular or organismal aging. In this work, we connect these experimental data with the symbiotic theory of mitochondrial origin to generate new insight into the evolutionary origin of aging. Mitochondria originated from autotrophic α-proteobacteria during an ancient endosymbiotic event early in eukaryote evolution. To expand beyond individual host cells, dividing α-proteobacteria initiated host cell lysis; apoptosis is a product of this original symbiont cell lytic exit program. Over the course of evolution, the host eukaryotic cell attenuated the harmful effect of symbiotic proto-mitochondria, and modern mitochondria are now functionally interdependent with eukaryotic cells; they retain their own circular genomes and independent replication timing. In nondividing differentiated or multipotent eukaryotic cells, intracellular mitochondria undergo repeated fission/fusion cycles, favoring fission as organisms age. The discordance between cellular quiescence and mitochondrial proliferation generates intracellular stress, eventually leading to a gradual decline in host cell performance and age-related pathology. Hence, aging evolved from a conflict between maintenance of a quiescent, nonproliferative state and the evolutionarily conserved propagation program driving the life cycle of former symbiotic organisms: mitochondria.

  20. The hallmarks of fibroblast ageing.

    PubMed

    Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz

    2014-06-01

    Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Expansions of NK-like αβT cells with chronologic aging: Novel lymphocyte effectors that compensate for functional deficits of conventional NK cells and T cells

    PubMed Central

    Vallejo, Abbe N.; Mueller, Robert G.; Hamel, David L.; Way, Amanda; Dvergsten, Jeffrey A.; Griffin, Patricia; Newman, Anne B.

    2010-01-01

    As the repertoire of αβT cell receptors (TCR) contracts with advancing age, there is an associated age-dependent accumulation of oligoclonal T cells expressing of a variety of receptors (NKR), normally expressed on natural killer (NK) cells. Evidences for differential regulation of expression of particular NKRs between T cells and NK cells suggest that NKR expression on T cells is physiologically programmed rather than a random event of the aging process. Experimental studies show NKRs on aged αβT cells may function either as independent receptors, and/or as costimulatory receptors to the TCR. Considering the reported deficits of conventional αβTCR-driven activation and also functional deficits of classical NK cells, NKR+ αβT cells likely represent novel immune effectors that are capable of combining innate and adaptive functions. Inasmuch as immunity is a determinant of individual fitness, the type and density of NKRs could be important contributing factors to the wide heterogeneity of health characteristics of older adults, ranging from institutionalized frail elders who are unable to mount immune responses to functionally independent community-dwelling elders who exhibit protective immunity. Understanding the biology of NKR+ αβT cells could lead to new avenues for age-specific intervention to improve protective immunity. PMID:20932941

  2. Aging of bone marrow mesenchymal stromal/stem cells: Implications on autologous regenerative medicine.

    PubMed

    Charif, N; Li, Y Y; Targa, L; Zhang, L; Ye, J S; Li, Y P; Stoltz, J F; Han, H Z; de Isla, N

    2017-01-01

    With their proliferation, differentiation into specific cell types, and secretion properties, mesenchymal stromal/stem cells (MSC) are very interesting tools to be used in regenerative medicine. Bone marrow (BM) was the first MSC source characterized. In the frame of autologous MSC therapy, it is important to detect donor's parameters affecting MSC potency. Age of the donors appears as one parameter that could greatly affect MSC properties. Moreover, in vitro cell expansion is needed to obtain the number of cells necessary for clinical developments. It will lead to in vitro cell aging that could modify cell properties. This review recapitulates several studies evaluating the effect of in vitro and in vivo MSC aging on cell properties.

  3. Involvement of p53 and Bcl-2 in sensory cell degeneration in aging rat cochleae.

    PubMed

    Xu, Yang; Yang, Wei Ping; Hu, Bo Hua; Yang, Shiming; Henderson, Donald

    2017-06-01

    p53 and Bcl-2 (B-cell lymphoma 2) are involved in the process of sensory cell degeneration in aging cochleae. To determine molecular players in age-related hair cell degeneration, this study examined the changes in p53 and Bcl-2 expression at different stages of apoptotic and necrotic death of hair cells in aging rat cochleae. Young (3-4 months) and aging (23-24 months) Fisher 344/NHsd rats were used. The thresholds of the auditory brainstem response (ABR) were measured to determine the auditory function. Immunolabeling was performed to determine the expression of p53 and Bcl-2 proteins in the sensory epithelium. Propidium iodide staining was performed to determine the morphologic changes in hair cell nuclei. Aging rats exhibited a significant elevation in ABR thresholds at all tested frequencies (p < 0.001). The p53 and Bcl-2 immunoreactivity was increased in aging hair cells showing the early signs of apoptotic changes in their nuclei. The Bcl-2 expression increase was also observed in hair cells displaying early signs of necrosis. As the hair cell degenerative process advanced, p53 and Bcl-2 immunoreactivity became reduced or absent. In the areas where no detectable nuclear staining was present, p53 and Bcl-2 immunoreactivity was absent.

  4. Aged Muscle Demonstrates Fiber-Type Adaptations in Response to Mechanical Overload, in the Absence of Myofiber Hypertrophy, Independent of Satellite Cell Abundance

    PubMed Central

    Lee, Jonah D.; Fry, Christopher S.; Mula, Jyothi; Kirby, Tyler J.; Jackson, Janna R.; Liu, Fujun; Yang, Lin; Dupont-Versteegden, Esther E.; McCarthy, John J.

    2016-01-01

    Although sarcopenia, age-associated loss of muscle mass and strength, is neither accelerated nor exacerbated by depletion of muscle stem cells, satellite cells, we hypothesized that adaptation in sarcopenic muscle would be compromised. To test this hypothesis, we depleted satellite cells with tamoxifen treatment of Pax7CreER-DTA mice at 4 months of age, and 20 months later subjected the plantaris muscle to 2 weeks of mechanical overload. We found myofiber hypertrophy was impaired in aged mice regardless of satellite cell content. Even in the absence of growth, vehicle-treated mice mounted a regenerative response, not apparent in tamoxifen-treated mice. Further, myonuclear accretion occurred in the absence of growth, which was prevented by satellite cell depletion, demonstrating that myonuclear addition is insufficient to drive myofiber hypertrophy. Satellite cell depletion increased extracellular matrix content of aged muscle that was exacerbated by overload, potentially limiting myofiber growth. These results support the idea that satellite cells regulate the muscle environment, and that their loss during aging may contribute to fibrosis, particularly during periods of remodeling. Overload induced a fiber-type composition improvement, independent of satellite cells, suggesting that aged muscle is very responsive to exercise-induced enhancement in oxidative capacity, even with an impaired hypertrophic response. PMID:25878030

  5. Accelerated epigenetic aging in Werner syndrome.

    PubMed

    Maierhofer, Anna; Flunkert, Julia; Oshima, Junko; Martin, George M; Haaf, Thomas; Horvath, Steve

    2017-04-01

    Individuals suffering from Werner syndrome (WS) exhibit many clinical signs of accelerated aging. While the underlying constitutional mutation leads to accelerated rates of DNA damage, it is not yet known whether WS is also associated with an increased epigenetic age according to a DNA methylation based biomarker of aging (the "Epigenetic Clock"). Using whole blood methylation data from 18 WS cases and 18 age matched controls, we find that WS is associated with increased extrinsic epigenetic age acceleration (p=0.0072) and intrinsic epigenetic age acceleration (p=0.04), the latter of which is independent of age-related changes in the composition of peripheral blood cells. A multivariate model analysis reveals that WS is associated with an increase in DNA methylation age (on average 6.4 years, p=0.011) even after adjusting for chronological age, gender, and blood cell counts. Further, WS might be associated with a reduction in naïve CD8+ T cells (p=0.025) according to imputed measures of blood cell counts. Overall, this study shows that WS is associated with an increased epigenetic age of blood cells which is independent of changes in blood cell composition. The extent to which this alteration is a cause or effect of WS disease phenotypes remains unknown.

  6. Combining magnetic sorting of mother cells and fluctuation tests to analyze genome instability during mitotic cell aging in Saccharomyces cerevisiae.

    PubMed

    Patterson, Melissa N; Maxwell, Patrick H

    2014-10-16

    Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.

  7. Changes in the frequencies of human hematopoietic stem and progenitor cells with age and site

    PubMed Central

    Farrell, TL; McGuire, TR; Bilek, L; Brusnahan, SK; Jackson, JD; Lane, JT; Garvin, KL; O'Kane, BJ; Berger, AM; Tuljapurkar, SR; Kessinger, MA; Sharp, JG

    2013-01-01

    This study enumerated CD45hi/CD34+ and CD45hi/CD133+ human hematopoietic stem cells (HSC) and granulocyte-monocyte colony forming (GM-CFC) progenitor cells in blood and trochanteric and femoral bone marrow in 233 individuals. Stem cell frequencies were determined by multi-parameter flow cytometry employing an internal control to determine the intrinsic variance of the assays. Progenitor cell frequency was determined using a standard colony assay technique. The frequency of outliers from undetermined methodological causes was highest for blood but less than 5% for all values. The frequency of CD45hi/CD133+ cells correlated highly with the frequency of CD45hi/CD34+ cells in trochanteric and femoral bone marrow. The frequency of these HSC populations in trochanteric and femoral bone marrow rose significantly with age. In contrast, there was no significant trend of either of these cell populations with age in the blood. Trochanteric marrow GM-CFC progenitor cells showed no significant trends with age, but femoral marrow GM-CFC trended downward with age, potentially because of the reported conversion of red marrow at this site to fat with age. Hematopoietic stem and progenitor cells exhibited changes in frequencies with age that differed between blood and bone marrow. We previously reported that side population (SP) multipotential HSC, that include the precursors of CD45hi/CD133+ and CD45hi/CD34+, decline with age. Potentially the increases in stem cell frequencies in the intermediate compartment between SP and GM progenitor cells observed in this study represent a compensatory increase for the loss of more potent members of the HSC hierarchy. PMID:24246745

  8. P16INK4a Positive Cells in Human Skin Are Indicative of Local Elastic Fiber Morphology, Facial Wrinkling, and Perceived Age

    PubMed Central

    Waaijer, Mariëtte E. C.; Gunn, David A.; Adams, Peter D.; Pawlikowski, Jeff S.; Griffiths, Christopher E. M.; van Heemst, Diana; Slagboom, P. Eline; Westendorp, Rudi G. J.; Maier, Andrea B.

    2016-01-01

    Senescent cells are more prevalent in aged human skin compared to young, but evidence that senescent cells are linked to other biomarkers of aging is scarce. We counted cells positive for the tumor suppressor and senescence associated protein p16INK4a in sun-protected upper-inner arm skin biopsies from 178 participants (aged 45–81 years) of the Leiden Longevity Study. Local elastic fiber morphology, facial wrinkles, and perceived facial age were compared to tertiles of p16INK4a counts, while adjusting for chronological age and other potential confounders. The numbers of epidermal and dermal p16INK4a positive cells were significantly associated with age-associated elastic fiber morphologic characteristics, such as longer and a greater number of elastic fibers. The p16INK4a positive epidermal cells (identified as primarily melanocytes) were also significantly associated with more facial wrinkles and a higher perceived age. Participants in the lowest tertile of epidermal p16INK4a counts looked 3 years younger than those in the highest tertile, independently of chronological age and elastic fiber morphology. In conclusion, p16INK4a positive cell numbers in sun-protected human arm skin are indicative of both local elastic fiber morphology and the extent of aging visible in the face. PMID:26286607

  9. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition.

    PubMed

    Blagosklonny, Mikhail V

    2006-09-01

    While ruling out programmed aging, evolutionary theory predicts a quasi-program for aging, a continuation of the developmental program that is not turned off, is constantly on, becoming hyper-functional and damaging, causing diseases of aging. Could it be switched off pharmacologically? This would require identification of a molecular target involved in cell senescence, organism aging and diseases of aging. Notably, cell senescence is associated with activation of the TOR (target of rapamycin) nutrient- and mitogen-sensing pathway, which promotes cell growth, even though cell cycle is blocked. Is TOR involved in organism aging? In fact, in yeast (where the cell is the organism), caloric restriction, rapamycin and mutations that inhibit TOR all slow down aging. In animals from worms to mammals caloric restrictions, life-extending agents, and numerous mutations that increase longevity all converge on the TOR pathway. And, in humans, cell hypertrophy, hyper-function and hyperplasia, typically associated with activation of TOR, contribute to diseases of aging. Theoretical and clinical considerations suggest that rapamycin may be effective against atherosclerosis, hypertension and hyper-coagulation (thus, preventing myocardial infarction and stroke), osteoporosis, cancer, autoimmune diseases and arthritis, obesity, diabetes, macula-degeneration, Alzheimer's and Parkinson's diseases. Finally, I discuss that extended life span will reveal new causes for aging (e.g., ROS, 'wear and tear', Hayflick limit, stem cell exhaustion) that play a limited role now, when quasi-programmed senescence kills us first.

  10. Hyperglycemia and advanced glycation end products (AGEs) suppress the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Chang, Chia-Chu; Chen, Chen-Yu; Chang, Geen-Dong; Chen, Ting-Huan; Chen, Woan-Ling; Wen, Hui-Chin; Huang, Chih-Yang; Chang, Chung-Ho

    2017-08-15

    Aging is characterized by mild hyperglycemia and accumulation of advanced glycation end products (AGEs). Effects of chronic exposure to hyperglycemia or AGEs on the adipogenic differentiation of 3T3-L1 preadipocytes remain unclear. We examined the chronic effect of AGEs and high glucose on the differentiation of 3T3-L1 cells by culturing 3T3-L1 cells in the presence of AGEs or 25 mM glucose for 1 month. Chronic incubation of 3T3-L1 cells with AGEs or high glucose blocked their differentiation into mature adipocytes as evidenced by reduced levels of adipocyte markers such as accumulated oil droplets, GPDH, aP2, adiponectin and of adipogenesis regulators PPARγ and C/EBPα. Levels or activities of Src, PDK1, Akt, and NF-κB were higher in AGEs- and high glucose-treated cells than those in 3T3-L1 cells. Levels of Bcl-2 were elevated in AGEs- and high glucose-treated cells, and were attenuated by inhibitors of PI3-kinase, Akt and NF-κB. Moreover, adipogenesis was attenuated in 3T3-L1 cells stably expressing Bcl-2 or YAP. These results suggest that chronic AGEs and high glucose treatments up-regulate Bcl-2 and YAP via the Akt-NF-κB pathway and impair adipogenesis.

  11. Hyperglycemia and advanced glycation end products (AGEs) suppress the differentiation of 3T3-L1 preadipocytes

    PubMed Central

    Chang, Geen-Dong; Chen, Ting-Huan; Chen, Woan-Ling; Wen, Hui-Chin; Huang, Chih-Yang; Chang, Chung-Ho

    2017-01-01

    Aging is characterized by mild hyperglycemia and accumulation of advanced glycation end products (AGEs). Effects of chronic exposure to hyperglycemia or AGEs on the adipogenic differentiation of 3T3-L1 preadipocytes remain unclear. We examined the chronic effect of AGEs and high glucose on the differentiation of 3T3-L1 cells by culturing 3T3-L1 cells in the presence of AGEs or 25 mM glucose for 1 month. Chronic incubation of 3T3-L1 cells with AGEs or high glucose blocked their differentiation into mature adipocytes as evidenced by reduced levels of adipocyte markers such as accumulated oil droplets, GPDH, aP2, adiponectin and of adipogenesis regulators PPARγ and C/EBPα. Levels or activities of Src, PDK1, Akt, and NF-κB were higher in AGEs- and high glucose-treated cells than those in 3T3-L1 cells. Levels of Bcl-2 were elevated in AGEs- and high glucose-treated cells, and were attenuated by inhibitors of PI3-kinase, Akt and NF-κB. Moreover, adipogenesis was attenuated in 3T3-L1 cells stably expressing Bcl-2 or YAP. These results suggest that chronic AGEs and high glucose treatments up-regulate Bcl-2 and YAP via the Akt-NF-κB pathway and impair adipogenesis. PMID:28903400

  12. Analysis of Cell Turnover in the Bronchiolar Epithelium Through the Normal Aging Process.

    PubMed

    Ortega-Martínez, Marta; Rodríguez-Flores, Laura E; Ancer-Arellano, Adriana; Cerda-Flores, Ricardo M; de-la-Garza-González, Carlos; Ancer-Rodríguez, Jesús; Jaramillo-Rangel, Gilberto

    2016-08-01

    Aging is associated with changes in the lung that leads to a decrease in its function. Alterations in structure and function in the small airways are well recognized in chronic lung diseases. The aim of this study was the assessment of cell turnover in the bronchiolar epithelium of mouse through the normal aging process. Lungs from CD1 mice at the age of 2, 6, 12, 18, or 24 months were fixed in neutral-buffered formalin and paraffin-embedded. Proliferating cell nuclear antigen was examined by immunohistochemistry. Apoptosis was analyzed by in situ end-labeling of fragmented DNA. Epithelial dimensions were analyzed by morphometry. The 2-month-old mice showed significantly higher number of proliferating cells when compared with mice at all other age groups. The number of apoptotic cells in mice at 24 months of age was significantly greater than in mice at all other age groups. Thus, the number of epithelial cells decreased as the age of the subject increased. We also found reductions in both area and height of the bronchiolar epithelium in mice at 18 and 24 months of age. We found a decrease in the total number of epithelial cells in the aged mice, which was accompanied by a thinning of the epithelium. These changes reflect a dysregulated tissue regeneration process in the bronchiolar epithelium that might predispose to respiratory diseases in elderly subjects.

  13. A new human male diploid cell strain, TIG-7: its age-related changes and comparison with a matched female TIG-1 cell strain.

    PubMed

    Yamamoto, K; Kaji, K; Kondo, H; Matsuo, M; Shibata, Y; Tasaki, Y; Utakoji, T; Ooka, H

    1991-01-01

    A new human diploid cell strain, TIG-7, which has the male karyotype, was established and characterized. Isozyme and histocompatibility typing of the cell strain was performed. The average in vitro life span of the cells is 73 population doublings. Changes in cell volume, doubling time, saturation density, the efficiency of cell attachment, plating efficiency, and relative DNA content were examined during in vitro cellular aging. Hydrocortisone slightly prolongs the life span of the cell strain when the hormone is administered to the cultures during middle passages. The age-related changes in the parameters of TIG-7 are not appreciably different from those of the previously established TIG-1 cell strain. These results show that this cell strain is useful for research on cellular aging; further profit is anticipated from research using a combination of these two sexually different cell strains.

  14. Phagocytosis of Advanced Glycation End Products (AGEs) in Macrophages Induces Cell Apoptosis.

    PubMed

    Gao, Yuan; Wake, Hidenori; Morioka, Yuta; Liu, Keyue; Teshigawara, Kiyoshi; Shibuya, Megumi; Zhou, Jingxiu; Mori, Shuji; Takahashi, Hideo; Nishibori, Masahiro

    2017-01-01

    Advanced glycation end products (AGEs) are the products of a series of nonenzymatic modifications of proteins by reducing sugars. AGEs play a pivotal role in development of diabetic complications and atherosclerosis. Accumulation of AGEs in a vessel wall may contribute to the development of vascular lesions. Although AGEs have a diverse range of bioactivities, the clearance process of AGEs from the extracellular space, including the incorporation of AGEs into specific cells, subcellular localization, and the fate of AGEs, remains unclear. In the present study, we examined the kinetics of the uptake of AGEs by mouse macrophage J774.1 cells in vitro and characterized the process. We demonstrated that AGEs bound to the surface of the cells and were also incorporated into the cytoplasm. The temperature- and time-dependent uptake of AGEs was saturable with AGE concentration and was inhibited by cytochalasin D but not chlorpromazine. We also observed the granule-like appearance of AGE immunoreactivity in subcellular localizations in macrophages. Higher concentrations of AGEs induced intracellular ROS and 4-HNE, which were associated with activation of the NF- κ B pathway and caspase-3. These results suggest that incorporation of AGEs occurred actively by endocytosis in macrophages, leading to apoptosis of these cells through NF- κ B activation.

  15. Phagocytosis of Advanced Glycation End Products (AGEs) in Macrophages Induces Cell Apoptosis

    PubMed Central

    Wake, Hidenori; Morioka, Yuta; Liu, Keyue; Shibuya, Megumi; Zhou, Jingxiu; Mori, Shuji; Takahashi, Hideo

    2017-01-01

    Advanced glycation end products (AGEs) are the products of a series of nonenzymatic modifications of proteins by reducing sugars. AGEs play a pivotal role in development of diabetic complications and atherosclerosis. Accumulation of AGEs in a vessel wall may contribute to the development of vascular lesions. Although AGEs have a diverse range of bioactivities, the clearance process of AGEs from the extracellular space, including the incorporation of AGEs into specific cells, subcellular localization, and the fate of AGEs, remains unclear. In the present study, we examined the kinetics of the uptake of AGEs by mouse macrophage J774.1 cells in vitro and characterized the process. We demonstrated that AGEs bound to the surface of the cells and were also incorporated into the cytoplasm. The temperature- and time-dependent uptake of AGEs was saturable with AGE concentration and was inhibited by cytochalasin D but not chlorpromazine. We also observed the granule-like appearance of AGE immunoreactivity in subcellular localizations in macrophages. Higher concentrations of AGEs induced intracellular ROS and 4-HNE, which were associated with activation of the NF-κB pathway and caspase-3. These results suggest that incorporation of AGEs occurred actively by endocytosis in macrophages, leading to apoptosis of these cells through NF-κB activation. PMID:29430285

  16. Changes in Circulating B Cell Subsets Associated with Aging and Acute SIV Infection in Rhesus Macaques.

    PubMed

    Chang, W L William; Gonzalez, Denise F; Kieu, Hung T; Castillo, Luis D; Messaoudi, Ilhem; Shen, Xiaoying; Tomaras, Georgia D; Shacklett, Barbara L; Barry, Peter A; Sparger, Ellen E

    2017-01-01

    Aging and certain viral infections can negatively impact humoral responses in humans. To further develop the nonhuman primate (NHP) model for investigating B cell dynamics in human aging and infectious disease, a flow cytometric panel was developed to characterize circulating rhesus B cell subsets. Significant differences between human and macaque B cells included the proportions of cells within IgD+ and switched memory populations and a prominent CD21-CD27+ unswitched memory population detected only in macaques. We then utilized the expanded panel to analyze B cell alterations associated with aging and acute simian immunodeficiency virus (SIV) infection in the NHP model. In the aging study, distinct patterns of B cell subset frequencies were observed for macaques aged one to five years compared to those between ages 5 and 30 years. In the SIV infection study, B cell frequencies and absolute number were dramatically reduced following acute infection, but recovered within four weeks of infection. Thereafter, the frequencies of activated memory B cells progressively increased; these were significantly correlated with the magnitude of SIV-specific IgG responses, and coincided with impaired maturation of anti-SIV antibody avidity, as previously reported for HIV-1 infection. These observations further validate the NHP model for investigation of mechanisms responsible for B cells alterations associated with immunosenescence and infectious disease.

  17. TRB3 mediates advanced glycation end product-induced apoptosis of pancreatic β-cells through the protein kinase C β pathway

    PubMed Central

    Wang, Meng; Zhang, Wenjian; Xu, Shiqing; Peng, Liang; Wang, Zai; Liu, Honglin; Fang, Qing; Deng, Tingting; Men, Xiuli; Lou, Jinning

    2017-01-01

    Advanced glycation end products (AGEs), which accumulate in the body during the development of diabetes, may be one of the factors leading to pancreatic β-cell failure and reduced β-cell mass. However, the mechanisms responsible for AGE-induced apoptosis remain unclear. This study identified the role and mechanisms of action of tribbles homolog 3 (TRB3) in AGE-induced β-cell oxidative damage and apoptosis. Rat insulinoma cells (INS-1) were treated with 200 µg/ml AGEs for 48 h, and cell apoptosis was then detected by TUNEL staining and flow cytometry. The level of intracellular reactive oxygen species (ROS) was measured by a fluorescence assay. The expression levels of receptor of AGEs (RAGE), TRB3, protein kinase C β2 (PKCβ2) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) were evaluated by RT-qPCR and western blot analysis. siRNA was used to knockdown TRB3 expression through lipofection, followed by an analysis of the effects of TRB3 on PKCβ2 and NOX4. Furthermore, the PKCβ2-specific inhibitor, LY333531, was used to analyze the effects of PKCβ2 on ROS levels and apoptosis. We found that AGEs induced the apoptosis of INS-1 cells and upregulated RAGE and TRB3 expression. AGEs also increased ROS levels in β-cells. Following the knockdown of TRB3, the AGE-induced apoptosis and intracellular ROS levels were significantly decreased, suggesting that TRB3 mediated AGE-induced apoptosis. Further experiments demonstrated that the knockdown of TRB3 decreased the PKCβ2 and NOX4 expression levels. When TRB3 was knocked down, the cells expressed decreased levels of PKCβ2 and NOX4. The PKCβ2-specific inhibitor, LY333531, also reduced AGE-induced apoptosis and intracellular ROS levels. Taken together, our data suggest that TRB3 mediates AGE-induced oxidative injury in β-cells through the PKCβ2 pathway. PMID:28534945

  18. An age-related numerical and functional deficit in CD19(+) CD24(hi) CD38(hi) B cells is associated with an increase in systemic autoimmunity.

    PubMed

    Duggal, Niharika A; Upton, Jane; Phillips, Anna C; Sapey, Elizabeth; Lord, Janet M

    2013-10-01

    Autoimmunity increases with aging indicative of reduced immune tolerance, but the mechanisms involved are poorly defined. In recent years, subsets of B cells with immunoregulatory properties have been identified in murine models of autoimmune disorders, and these cells downregulate immune responses via secretion of IL10. In humans, immature transitional B cells with a CD19(+) CD24(hi) CD38(hi) phenotype have been reported to regulate immune responses via IL10 production. We found the frequency and numbers of CD19(+) CD24(hi) CD38(hi) cells were reduced in the PBMC pool with age. IL10 expression and secretion following activation via either CD40, or Toll-like receptors was also impaired in CD19(+) CD24(hi) CD38(hi) B cells from healthy older donors. When investigating the mechanisms involved, we found that CD19(+) CD24(hi) CD38(hi) B-cell function was compromised by age-related effects on both T cells and B cells: specifically, CD40 ligand expression was lower in CD4 T cells from older donors following CD3 stimulation, and signalling through CD40 was impaired in CD19(+) CD24(hi) CD38(hi) B cells from elders as evidenced by reduced phosphorylation (Y705) and activation of STAT3. However, there was no age-associated change in expression of costimulatory molecules CD80 and CD86 on CD19(+) CD24(hi) CD38(hi) cells, suggesting IL10-dependent immune suppression is impaired, but contact-dependent suppressive capacity is intact with age. Finally, we found a negative correlation between CD19(+) CD24(hi) CD38(hi) B-cell IL10 production and autoantibody (Rheumatoid factor) levels in older adults. We therefore propose that an age-related decline in CD19(+) CD24(hi) CD38(hi) B cell number and function may contribute towards the increased autoimmunity and reduced immune tolerance seen with aging. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice

    PubMed Central

    Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun

    2017-01-01

    Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging. PMID:28458256

  20. The Nlrp3 inflammasome promotes age-related thymic demise and immunosenescence.

    PubMed

    Youm, Yun-Hee; Kanneganti, Thirumala-Devi; Vandanmagsar, Bolormaa; Zhu, Xuewei; Ravussin, Anthony; Adijiang, Ayinuer; Owen, John S; Thomas, Michael J; Francis, Joseph; Parks, John S; Dixit, Vishwa Deep

    2012-01-26

    The collapse of thymic stromal cell microenvironment with age and resultant inability of the thymus to produce naive T cells contributes to lower immune-surveillance in the elderly. Here we show that age-related increase in 'lipotoxic danger signals' such as free cholesterol (FC) and ceramides, leads to thymic caspase-1 activation via the Nlrp3 inflammasome. Elimination of Nlrp3 and Asc, a critical adaptor required for inflammasome assembly, reduces age-related thymic atrophy and results in an increase in cortical thymic epithelial cells, T cell progenitors and maintenance of T cell repertoire diversity. Using a mouse model of irradiation and hematopoietic stem cell transplantation (HSCT), we show that deletion of the Nlrp3 inflammasome accelerates T cell reconstitution and immune recovery in middle-aged animals. Collectively, these data demonstrate that lowering inflammasome-dependent caspase-1 activation increases thymic lymphopoiesis and suggest that Nlrp3 inflammasome inhibitors may aid the re-establishment of a diverse T cell repertoire in middle-aged or elderly patients undergoing HSCT. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Plasmacytoid DC from Aged Mice Down-Regulate CD8 T Cell Responses by Inhibiting cDC Maturation after Encephalitozoon cuniculi Infection

    PubMed Central

    Gigley, Jason P.; Khan, Imtiaz A.

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations. PMID:21695169

  2. Plasmacytoid DC from aged mice down-regulate CD8 T cell responses by inhibiting cDC maturation after Encephalitozoon cuniculi infection.

    PubMed

    Gigley, Jason P; Khan, Imtiaz A

    2011-01-01

    Age associated impairment of immune function results in inefficient vaccination, tumor surveillance and increased severity of infections. Several alterations in adaptive immunity have been observed and recent studies report age related declines in innate immune responses to opportunistic pathogens including Encephalitozoon cuniculi. We previously demonstrated that conventional dendritic cells (cDC) from 9-month-old animals exhibit sub-optimal response to E. cuniculi infection, suggesting that age associated immune senescence begins earlier than expected. We focused this study on how age affects plasmacytoid DC (pDC) function. More specifically how aged pDC affect cDC function as we observed that the latter are the predominant activators of CD8 T cells during this infection. Our present study demonstrates that pDC from middle-aged mice (12 months) suppress young (8 week old) cDC driven CD8 T cell priming against E. cuniculi infection. The suppressive effect of pDC from older mice decreased maturation of young cDC via cell contact. Aged mouse pDC exhibited higher expression of PD-L1 and blockade of their interaction with cDC via this molecule restored cDC maturation and T cell priming. Furthermore, the PD-L1 dependent suppression of cDC T cell priming was restricted to effector function of antigen-specific CD8 T cells not their expansion. To the best of our knowledge, the data presented here is the first report highlighting a cell contact dependent, PD-L1 regulated, age associated defect in a DC subpopulation that results in a sub-optimal immune response against E. cuniculi infection. These results have broad implications for design of immunotherapeutic approaches to enhance immunity for aging populations.

  3. Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets.

    PubMed

    Wu, Rui-Xin; Bi, Chun-Sheng; Yu, Yang; Zhang, Lin-Lin; Chen, Fa-Ming

    2015-08-01

    In this study, periodontal ligament (PDL) stem cells (PDLSCs) derived from different-aged donors were used to evaluate the effect of aging on cell sheet formation. The activity of PDLSCs was first determined based on their colony-forming ability, surface markers, proliferative/differentiative potentials, senescence-associated β-galactosidase (SA-βG) staining, and expression of pluripotency-associated transcription factors. The ability of these cells to form sheets, based on their extracellular matrix (ECM) contents and their functional properties necessary for osteogenic differentiation, was evaluated to predict the age-related changes in the regenerative capacity of the cell sheets in their further application. It was found that human PDLSCs could be isolated from the PDL tissue of different-aged subjects. However, the ability of the PDLSCs to proliferate and to undergo osteogenic differentiation and their expression of pluripotency-associated transcription factors displayed age-related decreases. In addition, these cells exhibited an age-related increase in SA-βG expression. Aged cells showed an impaired ability to form functional cell sheets, as determined by morphological observations and Ki-67 immunohistochemistry staining. Based on the production of ECM proteins, such as fibronectin, integrin β1, and collagen type I; alkaline phosphatase (ALP) activity; and the expression of osteogenic genes, such as ALP, Runt-related transcription factor 2, and osteocalcin, cell sheets formed by PDLSCs derived from older donors demonstrated a less potent osteogenic capacity compared to those formed by PDLSCs from younger donors. Our data suggest that the age-associated decline in the matrix contents and osteogenic properties of PDLSC sheets should be taken into account in cell sheet engineering research and clinical periodontal regenerative therapy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Functionally Diverse NK-Like T Cells Are Effectors and Predictors of Successful Aging

    PubMed Central

    Michel, Joshua J.; Griffin, Patricia; Vallejo, Abbe N.

    2016-01-01

    The fundamental challenge of aging and long-term survivorship is maintenance of functional independence and compression of morbidity despite a life history of disease. Inasmuch as immunity is a determinant of individual health and fitness, unraveling novel mechanisms of immune homeostasis in late life is of paramount interest. Comparative studies of young and old persons have documented age-related atrophy of the thymus, the contraction of diversity of the T cell receptor (TCR) repertoire, and the intrinsic inefficiency of classical TCR signaling in aged T cells. However, the elderly have highly heterogeneous health phenotypes. Studies of defined populations of persons aged 75 and older have led to the recognition of successful aging, a distinct physiologic construct characterized by high physical and cognitive functioning without measurable disability. Significantly, successful agers have a unique T cell repertoire; namely, the dominance of highly oligoclonal αβT cells expressing a diverse array of receptors normally expressed by NK cells. Despite their properties of cell senescence, these unusual NK-like T cells are functionally active effectors that do not require engagement of their clonotypic TCR. Thus, NK-like T cells represent a beneficial remodeling of the immune repertoire with advancing age, consistent with the concept of immune plasticity. Significantly, certain subsets are predictors of physical/cognitive performance among older adults. Further understanding of the roles of these NK-like T cells to host defense, and how they integrate with other physiologic domains of function are new frontiers for investigation in Aging Biology. Such pursuits will require a research paradigm shift from the usual young-versus-old comparison to the analysis of defined elderly populations. These endeavors may also pave way to age-appropriate, group-targeted immune interventions for the growing elderly population. PMID:27933066

  5. Functionally Diverse NK-Like T Cells Are Effectors and Predictors of Successful Aging.

    PubMed

    Michel, Joshua J; Griffin, Patricia; Vallejo, Abbe N

    2016-01-01

    The fundamental challenge of aging and long-term survivorship is maintenance of functional independence and compression of morbidity despite a life history of disease. Inasmuch as immunity is a determinant of individual health and fitness, unraveling novel mechanisms of immune homeostasis in late life is of paramount interest. Comparative studies of young and old persons have documented age-related atrophy of the thymus, the contraction of diversity of the T cell receptor (TCR) repertoire, and the intrinsic inefficiency of classical TCR signaling in aged T cells. However, the elderly have highly heterogeneous health phenotypes. Studies of defined populations of persons aged 75 and older have led to the recognition of successful aging, a distinct physiologic construct characterized by high physical and cognitive functioning without measurable disability. Significantly, successful agers have a unique T cell repertoire; namely, the dominance of highly oligoclonal αβT cells expressing a diverse array of receptors normally expressed by NK cells. Despite their properties of cell senescence, these unusual NK-like T cells are functionally active effectors that do not require engagement of their clonotypic TCR. Thus, NK-like T cells represent a beneficial remodeling of the immune repertoire with advancing age, consistent with the concept of immune plasticity. Significantly, certain subsets are predictors of physical/cognitive performance among older adults. Further understanding of the roles of these NK-like T cells to host defense, and how they integrate with other physiologic domains of function are new frontiers for investigation in Aging Biology. Such pursuits will require a research paradigm shift from the usual young-versus-old comparison to the analysis of defined elderly populations. These endeavors may also pave way to age-appropriate, group-targeted immune interventions for the growing elderly population.

  6. Comparing aging of graphite/LiFePO4 cells at 22 °C and 55 °C - Electrochemical and photoelectron spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Hellqvist Kjell, Maria; Malmgren, Sara; Ciosek, Katarzyna; Behm, Mårten; Edström, Kristina; Lindbergh, Göran

    2013-12-01

    Accelerated aging at elevated temperature is commonly used to test lithium-ion battery lifetime, but the effect of an elevated temperature is still not well understood. If aging at elevated temperature would only be faster, but in all other respects equivalent to aging at ambient temperature, cells aged to end-of-life (EOL) at different temperatures would be very similar. The present study compares graphite/LiFePO4-based cells either cycle- or calendar-aged to EOL at 22 °C and 55 °C. Cells cycled at the two temperatures show differences in electrochemical impedance spectra as well as in X-ray photoelectron spectroscopy (XPS) spectra. These results show that lithium-ion cell aging is a complex set of processes. At elevated temperature, the aging is accelerated in process-specific ways. Furthermore, the XPS results of cycle-aged samples indicate increased deposition of oxygenated LiPF6 decomposition products in both the negative and positive electrode/electrolyte interfaces. The decomposition seems more pronounced at elevated temperature, and largely accelerated by cycling, which could contribute to the observed cell impedance increase.

  7. Effects of Aging on Hippocampal Neurogenesis After Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Zoey; Institute of Medical Science, University of Toronto, Toronto, Ontario; Li, Yu-Qing

    Purpose: To assess the influence of aging on hippocampal neuronal development after irradiation (IR). Methods and Materials: Male mice, 2, 4, 6, 12, and 18 months of age, were given a single dose of 0 or 5 Gy of IR. A bromodeoxyuridine (BrdU) incorporation study was used to label newborn cells. Neural progenitors, newborn neurons, and microglia in dentate gyrus (DG) were identified by phenotypic markers, and their numbers were quantified by nonbiased stereology 9 weeks after IR. Results: BrdU-positive or newborn cells in DG decreased with aging and after IR. The number of neuroblasts and newborn neurons decreased with aging, and amore » further significant reduction was observed after IR. Total type 1 cells (the putative neural stem cells), and newborn type 1 cells decreased with aging, and further reduction in total type 1 cells was observed after IR. Aging-associated activation of microglia in hippocampus was enhanced after IR. Conclusions: The aging-associated decline in hippocampal neurogenesis was further inhibited after IR. Ablation of neural progenitors and activation of microglia may contribute to the inhibition of neuronal development after IR across all ages.« less

  8. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors.

    PubMed

    Khokhlov, Alexander N

    2013-02-01

    According to our conception, the aging process is caused by cell proliferation restriction-induced accumulation of various macromolecular defects (mainly DNA damage) in cells of a mature organism or in a cell population. In the case of cell cultures, the proliferation restriction is related to so-called contact inhibition and to the Hayflick's limit, while in the case of multicellular organisms, it is related to the appearance, in the process of differentiation, of organs and tissues consisting of postmitotic and very slowly dividing cells. It is assumed that the proliferation of intact cells prevents accumulation of various errors in a cell population. However, the continuous propagation of all the cells in a multicellular organism is absolutely incompatible with its normal functioning. Thus, the program of development, when it generates postmitotic or slowly dividing cells, automatically leads also to the onset of the aging process (mortality increase with age). Therefore, any additional special program for aging simply becomes unnecessary. This, however, doesn't reject, for some organisms, the reasonability of programmed death, which makes possible the elimination of harmful, from the species point of view, individuals. It is also very important to emphasize that increase or decrease of an organism's lifespan under the effects of various external factors is not always necessarily related to modification of the aging process, though the experimental results in the field are usually interpreted in just this way. I called the experimental-gerontological models similar to the Hayflick's model "correlative", since they are based on some correlations only and not related necessarily to the gist of the aging phenomenon. So, for the Hayflick's model, it is the relationship between population doubling level and donor age, between population doubling potential and species lifespan, between some cell changes in vivo and in vitro, and so forth. If the rationale of the "Hayflick phenomenon" is used, we can't explain why we age. Nevertheless, many authors virtually put a sign of equality between aging in vitro and aging in vivo, which generates conclusions that are of quite doubtful accuracy. A classic illustration of this is the telomere concept of aging. Originally, the principle of shortening end-segments of DNA (telomeres) during each cell division was formulated at the beginning of seventies by the Russian scientist Aleksey Olovnikov and used by him to explain the limited "proliferative" lifespan in vitro of normal cells. Subsequently, the existence of this phenomenon was confirmed by the results of many research reports, the culmination of which was a publication in which the authors demonstrated the possibility of increasing the proliferative potential of normal cells by introducing the enzyme telomerase to them, thus restoring the lost telomere segments. At the moment it looks like the telomere shortening contributes to aging in vitro only, but not to aging in vivo because an organism never realizes the full proliferative potential of its cells. Besides, the most "responsive to aging" are the organs and tissues consisting of postmitotic cells, for which the concept of proliferative potential loses any meaning in practical terms. We developed another "correlative" model--a model for testing of geroprotectors and geropromoters--the "cell kinetics model." It is based on the well-known correlation between the "age" of cultured cells (age of their donor) and their saturation density. The model allowed us to perform preliminary testing of a lot of different compounds and factors that are interesting from a gerontological point of view, but it revealed no information about the real mechanisms of aging. However, the second model we use in our studies--the "stationary phase aging" model--obviously, is a "gist" model. It is based on the assumption that in the cells of stationary cultures various intracellular changes similar to those of an aging organism can be observed. The proliferation restriction in the case is provided, as a rule, just by contact inhibition. Many experimental results confirming this assumption were obtained. "Age-related" changes that are well known from organismal studies were shown to really occur in our experimental stationary cell culture model. Besides, such experiments can be carried out on nearly any type of cells from various biological species. Thus, the evolutionary approach to analysis of the data is provided. Moreover, the changes in the stationary cell cultures become detectable very soon--as a rule, in 2 to 3 weeks after beginning the experiment. All this allows us to suppose that the "stationary phase aging" model should provide a very effective approach to testing of different substances and their cocktails on their activities in terms of accelerating or retarding aging--of course, if their effect is realized on the cell level only.

  9. Rejuvenating Strategies for Stem Cell-based Therapies in Aging

    PubMed Central

    Neves, Joana; Sousa-Victor, Pedro; Jasper, Heinrich

    2017-01-01

    SUMMARY Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for development of new strategies to improve stem cell function and optimize tissue repair processes. PMID:28157498

  10. Recent advances in the cell biology of aging.

    PubMed

    Hayflick, L

    1980-01-01

    Cultured normal human and animal cells are predestined to undergo irreversible functional decrements that mimic age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occurs in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.

  11. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  12. T-kininogen induces endothelial cell proliferation.

    PubMed

    Pérez, Viviana; Leiva-Salcedo, Elías; Acuña-Castillo, Claudio; Aravena, Mauricio; Gómez, Christian; Sabaj, Valeria; Colombo, Alicia; Nishimura, Sumiyo; Pérez, Claudio; Walter, Robin; Sierra, Felipe

    2006-03-01

    Basal proliferation of endothelial cells increases with age, and this might play a role in the etiology of age-related vascular diseases, as well as angiogenesis. Serum kininogen levels increase during aging in rats and humans, and T-kininogen (T-KG) can affect proliferative homeostasis in several cell models. Both kinins and kininogens have been shown previously to be angiogenic through activation of endothelial cell proliferation, and here we show that exposure of endothelial cells to T-KG results in vigorous cell proliferation, accompanied by ERK/AKT activation. In our experiments, the proliferative response requires B1 and B2 kinin receptors, even though kinins are not released from the precursor. We hypothesize that the age-related increase in T-KG could play a significant role in the age-related dysregulation of vascular physiology and function.

  13. Aging of the Immune System. Mechanisms and Therapeutic Targets.

    PubMed

    Weyand, Cornelia M; Goronzy, Jörg J

    2016-12-01

    Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.

  14. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.

    2008-12-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE,more » or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27{sup Kip1}, collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells.« less

  15. Thymic hormone containing cells. II. Evolution of cells containing the serum thymic factor (FTS or thymulin) in normal and autoimmune mice, as revealed by anti-FTS monoclonal antibodies. Relationship with Ia bearing cells.

    PubMed Central

    Savino, W; Dardenne, M; Bach, J F

    1983-01-01

    The number of thymic epithelial cells containing the serum thymic factor (FTS or thymulin), assessed by indirect immunofluorescence using an anti-FTS monoclonal antibody, was studied in the thymus of normal and autoimmune mice as a function of age. In normal mice the number of FTS+ cells was constant until the age of 6 months and then began to decline. In autoimmune strains, the age linked decline was premature being already significant at 10 weeks of age. These findings were paralleled by the age associated decline of FTS blood levels in all strains studied. Double labelling experiments showed that in both normal and autoimmune mice, FTS+ cells were Ia negative, suggesting that these cells belong to a specific subpopulation of the thymic epithelial reticulum. PMID:6345030

  16. [Role of p38MAPK/eNOS signaling pathway in the inhibition of AGEs-induced apoptosis of human umbilical vein endothelial cells by glucagon-like peptide-1].

    PubMed

    Zeng, Hailong; Huang, Zhiqiu; Zhang, Yineng; Sun, Huilin

    2016-01-01

    To investigate the role of p38MAPK signaling pathway in the mechanism by which glucagon-like peptide-1 (GLP-1) inhibits endothelial cell damage induced by AGEs. Human umbilical vein endothelial cells were divided into control group, AGEs group, GLP-1 group, AGEs+GLP-1 group, AGEs+inhibitor group, and AGEs+GLP-1+inhibitor group. The expressions of p-p38MAPK/p38MAPK and p-eNOS/eNOS protein were examined by Western blotting, and the cell apoptosis rates were tested by flow cytometry. Compared with the control group, AGEs significantly enhanced the expression of p-p38 MAPK protein (P=0.001) while GLP-1 significantly inhibited its expression (P<0.001). AGEs significantly inhibited the expression of p-eNOS protein (P=0.007), which was enhanced by GLP-1 and p38 MAPK inhibitor (SB203580) (P=0.004). Both SB203580 and GLP-1 treatment decreased the apoptosis rate of AGEs-treated cells (P<0.001). GLP-1 can protect human umbilical vein endothelial cells against AGEs-induced apoptosis partially by inhibiting the phosphorylation of p38MAPK protein and promoting the expression of p-eNOS protein.

  17. Hyaluronan in aged collagen matrix increases prostate epithelial cell proliferation

    PubMed Central

    Damodarasamy, Mamatha; Vernon, Robert B.; Chan, Christina K.; Plymate, Stephen R.; Wight, Thomas N.

    2015-01-01

    The extracellular matrix (ECM) of the prostate, which is comprised primarily of collagen, becomes increasingly disorganized with age, a property that may influence the development of hyperplasia and cancer. Collageous ECM extracted from the tails of aged mice exhibits many characteristics of collagen in aged tissues, including the prostate. When polymerized into a 3-dimensional (3D) gel, these collagen extracts can serve as models for the study of specific cell-ECM interactions. In the present study, we examined the behaviors of human prostatic epithelial cell lines representing normal prostate epithelial cells (PEC), benign prostatic hyperplasia (BPH-1), and adenocarcinoma (LNCaP) cultured in contact with 3D gels made from collagen extracts of young and aged mice. We found that proliferation of PEC, BPH-1, and LNCaP cells were all increased by culture on aged collagen gels relative to young collagen gels. In examining age-associated differences in the composition of the collagen extracts, we found that aged and young collagen had a similar amount of several collagen-associated ECM components, but aged collagen had a much greater content of the glycosaminoglycan hyaluronan (HA) than young collagen. The addition of HA (of similar size and concentration to that found in aged collagen extracts) to cells placed in young collagen elicited significantly increased proliferation in BPH-1 cells, but not in PEC or LNCaP cells, relative to controls not exposed to HA. Of note, histochemical analyses of human prostatic tissues showed significantly higher expression of HA in BPH and prostate cancer stroma relative to stroma of normal prostate. Collectively, these results suggest that changes in ECM involving increased levels of HA contribute to the growth of prostatic epithelium with aging. PMID:25124870

  18. The changes of stage distribution of seminiferous epithelium cycle and its correlations with Leydig cell stereological parameters in aging men.

    PubMed

    Huang, Rui; Zhu, Wei-Jie; Li, Jing; Gu, Yi-Qun

    2014-12-01

    To evaluate the changes of stage distribution of seminiferous epithelium cycle and its correlations with Leydig cell stereological parameters in aging men. Point counting method was used to analyze the stereological parameters of Leydig cells. The stage number of seminiferous epithelium cycle was calculated in the same testicular tissue samples which were used for Leydig cell stereological analysis. The aging group had shown more severe pathological changes as well as higher pathologic scores than the young group. Compared with the control group, the volume density (VV) and surface density (NA) of Leydig cells in the aging group were increased significantly. The stage number of seminiferous epithelium cycle in the aging group was decreased coincidently compared to the young group. Leydig cell Vv in the young group has a positive relationship with stages I, II, III, V and VI of seminiferous epithelium cycle, and Leydig cell NA and numerical density (NV) were positively related to stage IV. However, only the correlation between NV and stage II was found in the aging group. The stage number of seminiferous epithelium cycle was decreased in aging testes. Changes in the stage distribution in aging testes were related to the Leydig cell stereological parameters which presented as a sign of morphological changes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) productionmore » in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.« less

  20. Arginase-II Promotes Tumor Necrosis Factor-α Release From Pancreatic Acinar Cells Causing β-Cell Apoptosis in Aging.

    PubMed

    Xiong, Yuyan; Yepuri, Gautham; Necetin, Sevil; Montani, Jean-Pierre; Ming, Xiu-Fen; Yang, Zhihong

    2017-06-01

    Aging is associated with glucose intolerance. Arginase-II (Arg-II), the type-II L -arginine-ureahydrolase, is highly expressed in pancreas. However, its role in regulation of pancreatic β-cell function is not known. Here we show that female (not male) mice deficient in Arg-II (Arg-II -/- ) are protected from age-associated glucose intolerance and reveal greater glucose induced-insulin release, larger islet size and β-cell mass, and more proliferative and less apoptotic β-cells compared with the age-matched wild-type (WT) controls. Moreover, Arg-II is mainly expressed in acinar cells and is upregulated with aging, which enhances p38 mitogen-activated protein kinase (p38 MAPK) activation and release of tumor necrosis factor-α (TNF-α). Accordingly, conditioned medium of isolated acinar cells from old WT (not Arg-II -/- ) mice contains higher TNF-α levels than the young mice and stimulates β-cell apoptosis and dysfunction, which are prevented by a neutralizing anti-TNF-α antibody. In acinar cells, our study demonstrates an age-associated Arg-II upregulation, which promotes TNF-α release through p38 MAPK leading to β-cell apoptosis, insufficient insulin secretion, and glucose intolerance in female rather than male mice. © 2017 by the American Diabetes Association.

  1. Age-specific functional epigenetic changes in p21 and p16 in injury-activated satellite cells

    PubMed Central

    Li, Ju; Han, Suhyoun; Cousin, Wendy; Conboy, Irina M.

    2014-01-01

    The regenerative capacity of muscle dramatically decreases with age because old muscle stem cells fail to proliferate in response to tissue damage. Here we uncover key age-specific differences underlying this proliferative decline: namely, the genetic loci of CDK inhibitors (CDKI) p21 and p16 are more epigenetically silenced in young muscle stem cells, as compared to old, both in quiescent cells and those responding to tissue injury. Interestingly, phosphorylated ERK (pERK) induced in these cells by ectopic FGF-2 is found in association with p21 and p16 promoters, and moreover, only in the old cells. Importantly, in the old satellite cells FGF-2/pERK silences p21 epigenetically and transcriptionally, which leads to reduced p21 protein levels and enhanced cell proliferation. In agreement with the epigenetic silencing of the loci, young muscle stem cells do not depend as much as old on ectopic FGF/pERK for their myogenic proliferation. In addition, other CDKIs, such asp15INK4B and p27KIP1, become elevated in satellite cells with age, confirming and explaining the profound regenerative defect of old muscle. This work enhances our understanding of tissue aging, promoting strategies for combating age-imposed tissue degeneration. PMID:25447026

  2. Impact of aging on antigen presentation cell function of dendritic cells.

    PubMed

    Wong, Christine; Goldstein, Daniel R

    2013-08-01

    Older people exhibit increased mortality to infections and cancer as compared to younger people, indicating that aging impairs immunity. Dendritic cells (DCs) are key for bridging the innate and adaptive arms of the immune system by priming antigen specific T cells. Discerning how aging impacts DC function to initiate adaptive immune responses is of great biomedical importance as this could lead to the development of novel therapeutics to enhance immunity with aging. This review details reports indicating that aging impairs the antigen presenting function of DCs but highlights other studies indicating preserved DC function with aging. How aging impacts antigen presentation by DCs is complex and without a clear unifying biological underpinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Age-dependent changes in the sphingolipid composition of CD4+ T cell membranes and immune synapses implicate glucosylceramides in age-related T cell dysfunction

    USDA-ARS?s Scientific Manuscript database

    Sphingolipid (SL4) composition can influence the biophysical properties of cell membranes. Additionally, specific SL modulate signaling pathways involved in proliferation, senescence, and apoptosis. We investigated age-dependent changes in the SL composition of CD4+ T cells, and the impact of these ...

  4. Alterations in dendritic cell function in aged mice: potential implications for immunotherapy design.

    PubMed

    Paula, Carine; Motta, Adriana; Schmitz, Carla; Nunes, Claudia P; Souza, Ana Paula; Bonorino, Cristina

    2009-02-01

    It is known that immune system functions decrease with age, and that adaptive immune responses, especially CD4+ T cell function, seem to be the main affected point in immunity with aging. Dendritic cells (DC) are the major antigen presenting cell (APC), and at least part of the defects observed in adaptive immunity of aged individuals could be due to diminished potential of bone marrow to generate new DC, or defects in DC function. In this study, we investigated if the ability of aged bone marrow (BM) to generate new DC in vitro, as well as aged BM-derived DC responses to lypopolysaccharide (LPS). Because DC are important tools in newly developing anti-tumor therapies, we also studied the ability of aged DC to phagocytose and present antigen from necrotic tumor cells. We found that aged BM generated fewer DC in vitro compared to young BM. While LPS-induced DC maturation is reduced in DC of aged mice, a high TNF-alpha production is observed in aged DC even without LPS stimulation. While phagocytosis of tumor cells is not affected by age, and DC derived from aged BM show a higher TNF-alpha production in response to phagocytosis, presentation of tumor antigens was decreased in aged DC. Because class II upregulation in response to phagocytosis was similar between aged and young DC, this could indicate an age associated processing defect in the exogenous pathway. These findings suggest that age of BM used to generate DC does not impair their phagocytic ability or TNF-alpha production, however leads to a decreased yield in mature DC, reduced response to LPS, and diminished antigen processing/presentation potential. Our results are relevant to optimization DC-based vaccine design for aged populations.

  5. Naïve and memory CD8 T cell pool homeostasis in advanced aging: impact of age and of antigen-specific responses to cytomegalovirus.

    PubMed

    Vescovini, Rosanna; Fagnoni, Francesco Fausto; Telera, Anna Rita; Bucci, Laura; Pedrazzoni, Mario; Magalini, Francesca; Stella, Adriano; Pasin, Federico; Medici, Maria Cristina; Calderaro, Adriana; Volpi, Riccardo; Monti, Daniela; Franceschi, Claudio; Nikolich-Žugich, Janko; Sansoni, Paolo

    2014-04-01

    Alterations in the circulating CD8+ T cell pool, with a loss of naïve and accumulation of effector/effector memory cells, are pronounced in older adults. However, homeostatic forces that dictate such changes remain incompletely understood. This observational cross-sectional study explored the basis for variability of CD8+ T cell number and composition of its main subsets: naïve, central memory and effector memory T cells, in 131 cytomegalovirus (CMV) seropositive subjects aged over 60 years. We found great heterogeneity of CD8+ T cell numbers, which was mainly due to variability of the CD8 + CD28- T cell subset regardless of age. Analysis, by multiple regression, of distinct factors revealed that age was a predictor for the loss in absolute number of naïve T cells, but was not associated with changes in central or effector memory CD8+ T cell subsets. By contrast, the size of CD8+ T cells specific to pp65 and IE-1 antigens of CMV, predicted CD28 - CD8+ T cell, antigen-experienced CD8+ T cell, and even total CD8+ T cell numbers, but not naïve CD8+ T cell loss. These results indicate a clear dichotomy between the homeostasis of naïve and antigen-experienced subsets of CD8+ T cells which are independently affected, in human later life, by age and antigen-specific responses to CMV, respectively.

  6. Expansion of stem cells counteracts age-related mammary regression in compound Timp1/Timp3 null mice.

    PubMed

    Jackson, Hartland W; Waterhouse, Paul; Sinha, Ankit; Kislinger, Thomas; Berman, Hal K; Khokha, Rama

    2015-03-01

    Age is the primary risk factor for breast cancer in women. Bipotent basal stem cells actively maintain the adult mammary ductal tree, but with age tissues atrophy. We show that cell-extrinsic factors maintain the adult stem cell pool during ageing and dictate tissue stoichiometry. Mammary stem cells spontaneously expand more than 11-fold in virgin adult female mice lacking specific genes for TIMPs, the natural metalloproteinase inhibitors. Compound Timp1/Timp3 null glands exhibit Notch activation and accelerated gestational differentiation. Proteomics of mutant basal cells uncover altered cytoskeletal and extracellular protein repertoires, and we identify aberrant mitotic spindle orientation in these glands, a process that instructs asymmetric cell division and fate. We find that progenitor activity normally declines with age, but enriched stem/progenitor pools prevent tissue regression in Timp mutant mammary glands without affecting carcinogen-induced cancer susceptibility. Thus, improved stem cell content can extend mouse mammary tissue lifespan without altering cancer risk in this mouse model.

  7. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies.

    PubMed

    Toutfaire, Marie; Bauwens, Emilie; Debacq-Chainiaux, Florence

    2017-10-15

    Cellular senescence is now recognized as one of the nine hallmarks of ageing. Recent data show the involvement of senescent cells in tissue ageing and some age-related diseases. Skin represents an ideal model for the study of ageing. Indeed, skin ageing varies between individuals depending on their chronological age but also on their exposure to various exogenous factors (mainly ultraviolet rays). If senescence traits can be detected with ageing in the skin, the senescent phenotype varies among the various skin cell types. Moreover, the origin of cellular senescence in the skin is still unknown, and multiple origins are possible. This reflects the mosaic of skin ageing. Senescent cells can interfere with their microenvironment, either via the direct secretion of factors (the senescence-associated secretory phenotype) or via other methods of communication, such as extracellular vesicles. Knowledge regarding the impact of cellular senescence on skin ageing could be integrated into dermatology research, especially to limit the appearance of senescent cells after photo(chemo)therapy or in age-related skin diseases. Therapeutic approaches include the clearance of senescent cells via the use of senolytics or via the cooperation with the immune system. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Stem cell therapies in preclinical models of stroke. Is the aged brain microenvironment refractory to cell therapy?

    PubMed

    Sandu, Raluca Elena; Balseanu, Adrian Tudor; Bogdan, Catalin; Slevin, Mark; Petcu, Eugen; Popa-Wagner, Aurel

    2017-08-01

    Stroke is a devastating disease demanding vigorous search for new therapies. Initial enthusiasm to stimulate restorative processes in the ischemic brain by means of cell-based therapies has meanwhile converted into a more balanced view recognizing impediments that may be related to unfavorable age-associated environments. Recent results using a variety of drug, cell therapy or combination thereof suggest that, (i) treatment with Granulocyte-Colony Stimulating Factor (G-CSF) in aged rats has primarily a beneficial effect on functional outcome most likely via supportive cellular processes such as neurogenesis; (ii) the combination therapy, G-CSF with mesenchymal cells (G-CSF+BM-MSC or G-CSF+BM-MNC) did not further improve behavioral indices, neurogenesis or infarct volume as compared to G-CSF alone in aged animals; (iii) better results with regard to integration of transplanted cells in the aged rat environment have been obtained using iPS of human origin; (iv) mesenchymal cells may be used as drug carriers for the aged post-stroke brains. While the middle aged brain does not seem to impair drug and cell therapies, in a real clinical practice involving older post-stroke patients, successful regenerative therapies would have to be carried out for a much longer time. Copyright © 2017. Published by Elsevier Inc.

  9. Mast cells and histamine are triggering the NF-κB-mediated reactions of adult and aged perilymphatic mesenteric tissues to acute inflammation

    PubMed Central

    Nizamutdinova, Irina Tsoy; Dusio, Giuseppina F.; Gasheva, Olga Yu.; Skoog, Hunter; Tobin, Richard; Peddaboina, Chander; Meininger, Cynthia J.; Zawieja, David C.; Newell-Rogers, M. Karen; Gashev, Anatoliy A.

    2016-01-01

    This study aimed to establish mechanistic links between the aging-associated changes in the functional status of mast cells and the altered responses of mesenteric tissue and mesenteric lymphatic vessels (MLVs) to acute inflammation. We used an in vivo model of acute peritoneal inflammation induced by lipopolysaccharide treatment of adult (9-month) and aged (24-month) F-344 rats. We analyzed contractility of isolated MLVs, mast cell activation, activation of nuclear factor-κB (NF-κB) without and with stabilization of mast cells by cromolyn or blockade of all types of histamine receptors and production of 27 major pro-inflammatory cytokines in adult and aged perilymphatic mesenteric tissues and blood. We found that the reactivity of aged contracting lymphatic vessels to LPS-induced acute inflammation was abolished and that activated mast cells trigger NF-κB signaling in the mesentery through release of histamine. The aging-associated basal activation of mesenteric mast cells limits acute inflammatory NF-κB activation in aged mesentery. We conclude that proper functioning of the mast cell/histamine/NF-κB axis is necessary for reactions of the lymphatic vessels to acute inflammatory stimuli as well as for interaction and trafficking of immune cells near and within the collecting lymphatics. PMID:27875806

  10. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells

    PubMed Central

    Fernández, Agustín F.; Bayón, Gustavo F.; Urdinguio, Rocío G.; Toraño, Estela G.; García, María G.; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M.; Riancho, José A.; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A.

    2015-01-01

    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type–independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. PMID:25271306

  11. T-cell differentiation and CD56+ levels in polypoidal choroidal vasculopathy and neovascular age-related macular degeneration.

    PubMed

    Subhi, Yousif; Nielsen, Marie Krogh; Molbech, Christopher Rue; Oishi, Akio; Singh, Amardeep; Nissen, Mogens Holst; Sørensen, Torben Lykke

    2017-11-20

    Polypoidal choroidal vasculopathy (PCV) and neovascular age-related macular degeneration (AMD) are prevalent age-related diseases characterized by exudative changes in the macula. Although they share anatomical and clinical similarities, they are also distinctly characterized by their own features, e.g. vascular abnormalities in PCV and drusen-mediated progression in neovascular AMD. PCV remains etiologically uncharacterized, and ongoing discussion is whether PCV and neovascular AMD share the same etiology or constitute two substantially different diseases. In this study, we investigated T-cell differentiation and aging profile in human patients with PCV, patients with neovascular AMD, and age-matched healthy control individuals. Fresh venous blood was prepared for flow cytometry to investigate CD4 + and CD8 + T-cell differentiation (naïve, central memory, effector memory, effector memory CD45ra + ), loss of differentiation markers CD27 and CD28, and expression of aging marker CD56. Patients with PCV were similar to the healthy controls in all aspects. In patients with neovascular AMD we found significantly accelerated T-cell differentiation (more CD28 - CD27 - cells) and aging (more CD56 + cells) in the CD8 + T-cell compartment. These findings suggest that PCV and neovascular AMD are etiologically different in terms of T cell immunity, and that neovascular AMD is associated with T-cell immunosenescence.

  12. The Extract of Aster Koraiensis Prevents Retinal Pericyte Apoptosis in Diabetic Rats and Its Active Compound, Chlorogenic Acid Inhibits AGE Formation and AGE/RAGE Interaction

    PubMed Central

    Kim, Junghyun; Jo, Kyuhyung; Lee, Ik-Soo; Kim, Chan-Sik; Kim, Jin Sook

    2016-01-01

    Retinal capillary cell loss is a hallmark of early diabetic retinal changes. Advanced glycation end products (AGEs) are believed to contribute to retinal microvascular cell loss in diabetic retinopathy. In this study, the protective effects of Aster koraiensis extract (AKE) against damage to retinal vascular cells were investigated in streptozotocin (STZ)-induced diabetic rats. To examine this issue further, AGE accumulation, nuclear factor-kappaB (NF-κB) and inducible nitric oxide synthase (iNOS) were investigated using retinal trypsin digests from streptozotocin-induced diabetic rats. In the diabetic rats, TUNEL (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling)-positive retinal microvascular cells were markedly increased. Immunohistochemical studies revealed that AGEs were accumulated within the retinal microvascular cells, and this accumulation paralleled the activation of NF-κB and the expression of iNOS in the diabetic rats. However, AKE prevented retinal microvascular cell apoptosis through the inhibition of AGE accumulation and NF-κB activation. Moreover, to determine the active compounds of AKE, two major compounds, chlorogenic acid and 3,5-di-O-caffeoylquinic acid, were tested in an in vitro assay. Among these compounds, chlorogenic acid significantly reduced AGE formation as well as AGE/RAGE (receptor for AGEs) binding activity. These results suggest that AKE, particularly chlorogenic acid, is useful in inhibiting AGE accumulation in retinal vessels and exerts a preventive effect against the injuries of diabetic retinal vascular cells. PMID:27657123

  13. Aging-Induced Stem Cell Mutations as Drivers for Disease and Cancer

    PubMed Central

    Adams, Peter D.; Jasper, Heinrich; Rudolph, K. Lenhard

    2015-01-01

    Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging. PMID:26046760

  14. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation

    PubMed Central

    Nishikawa, Keizo; Nakashima, Tomoki; Takeda, Shu; Isogai, Masashi; Hamada, Michito; Kimura, Ayako; Kodama, Tatsuhiko; Yamaguchi, Akira; Owen, Michael J.; Takahashi, Satoru; Takayanagi, Hiroshi

    2010-01-01

    Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf–/– mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf+/– mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases. PMID:20877012

  15. Advanced glycation end products induce cell cycle arrest and proinflammatory changes in osteoarthritic fibroblast-like synovial cells

    PubMed Central

    2009-01-01

    Introduction Advanced glycation end products (AGEs) have been introduced to be involved in the pathogenesis of osteoarthritis (OA). The influence of AGEs on osteoarthritic fibroblast-like synovial cells (FLS) has been incompletely understood as yet. The present study investigates a potential influence of AGE-modified bovine serum albumin (AGE-BSA) on cell growth, and on the expression of proinflammatory and osteoclastogenic markers in cultured FLS. Methods FLS were established from OA joints and stimulated with AGE-BSA. The mRNA expression of p27Kip1, RAGE (receptor for AGEs), nuclear factor kappa B subunit p65 (NFκB p65), tumor necrosis factor alpha (TNF-α, interleukin-6 (IL-6), receptor activator of NFκB ligand (RANKL) and osteoprotegerin was measured by real-time PCR. The respective protein expression was evaluated by western blot analysis or ELISA. NFκB activation was investigated by luciferase assay and electrophoretic mobility shift assay (EMSA). Cell cycle analysis, cell proliferation and markers of necrosis and early apoptosis were assessed. The specificity of the response was tested in the presence of an anti-RAGE antibody. Results AGE-BSA was actively taken up into the cells as determined by immunohistochemistry and western blots. AGE-induced p27Kip1 mRNA and protein expression was associated with cell cycle arrest and an increase in necrotic, but not apoptotic cells. NFκB activation was confirmed by EMSAs including supershift experiments. Anti-RAGE antibodies attenuated all AGE-BSA induced responses. The increased expression of RAGE, IL-6 and TNF-α together with NFκB activation indicates AGE-mediated inflammation. The decreased expression of RANKL and osteoprotegerin may reflect a diminished osteoclastogenic potential. Conclusions The present study demonstrates that AGEs modulate growth and expression of genes involved in the pathophysiological process of OA. This may lead to functional and structural impairment of the joints. PMID:19735566

  16. Age-related arterial immune cell infiltration in mice is attenuated by caloric restriction or voluntary exercise.

    PubMed

    Trott, Daniel W; Henson, Grant D; Ho, Mi H T; Allison, Sheilah A; Lesniewski, Lisa A; Donato, Anthony J

    2016-12-22

    Age-related arterial inflammation is associated with dysfunction of the arteries and increased risk for cardiovascular disease. To determine if aging increases arterial immune cell infiltration as well as the populations of immune cells principally involved, we tested the hypothesis that large elastic and resistance arteries in old mice would exhibit increased immune cell infiltration compared to young controls. Additionally, we hypothesized that vasoprotective lifestyle interventions such as lifelong caloric restriction or 8weeks of voluntary wheel running would attenuate age-related arterial immune cell infiltration. The aorta and mesenteric vasculature with surrounding perivascular adipose was excised from young normal chow (YNC, 4-6months, n=10), old normal chow (ONC, 28-29months, n=11), old caloric restricted (OCR, 28-29months, n=9), and old voluntary running (OVR, 28-29months, n=5) mice and digested to a single cell suspension. The cells were then labeled with antibodies against CD45 (total leukocytes), CD3 (pan T cells), CD4 (T helper cells), CD8 (cytotoxic T cells), CD19 (B cells), CD11b, and F4/80 (macrophages) and analyzed by flow cytometry. Total leukocytes, T cells (both CD4 + and CD8 + subsets), B cells, and macrophages in both aorta and mesentery were all 5- to 6-fold greater in ONC compared to YNC. Age-related increases in T cell (both CD4 + and CD8 + ), B cell, and macrophage infiltration in aorta were abolished in OCR mice. OVR mice exhibited 50% lower aortic T cell and normalized macrophage infiltration. B cell infiltration was not affected by VR. Age-related mesenteric CD8 + T cell and macrophage infiltration was normalized in OCR and OVR mice compared to young mice, whereas B cell infiltration was normalized by CR but not VR. Splenic CD4 + T cells from ONC mice exhibited a 3-fold increase in gene expression for the T helper (Th) 1 transcription factor, Tbet, and a 4-fold increase in FoxP3, a T regulatory cell transcription factor, compared to YNC. Splenic B cells and mesenteric macrophages from old mice exhibited decreased proinflammatory cytokine gene expression regardless of treatment group. These results demonstrate that aging is associated with infiltration of immune cells around both the large-elastic and resistance arteries and that the vasoprotective lifestyle interventions, CR and VR, can ameliorate age-related arterial immune cell infiltration. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenicmore » reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPAR{gamma} activation.« less

  18. Cellular senescence and organismal aging.

    PubMed

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  19. Cellular senescence and organismal aging

    PubMed Central

    Jeyapalan, Jessie C.; Sedivy, John M.

    2012-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging. PMID:18502472

  20. Airborne polycyclic aromatic hydrocarbons trigger human skin cells aging through aryl hydrocarbon receptor.

    PubMed

    Qiao, Yuan; Li, Qiang; Du, Hong-Yang; Wang, Qiao-Wei; Huang, Ye; Liu, Wei

    2017-07-01

    Accumulating evidence suggests that polycyclic aromatic hydrocarbons (PAH) which adsorbed on the surface of ambient air particulate matters (PM), are the major toxic compound to cause cardiovascular and respiratory diseases, even cancer. However, its detrimental effects on human skin cell remain unclear. Here, we demonstrated that SRM1649b, a reference urban dust material of PAH, triggers human skin cells aging through cell cycle arrest, cell growth inhibition and apoptosis. Principally, SRM1649b facilitated Aryl hydrocarbon receptor (AhR) translocated into nucleus, subsequently activated ERK/MAPK signaling pathway, and upregulated aging-related genes expression. Most important, we found that AhR antagonist efficiently revert the aging of skin cells. Thus our novel findings firstly revealed the mechanism of skin aging under PAH contamination and provided potential strategy for clinical application. Copyright © 2017. Published by Elsevier Inc.

  1. Inhibition of lymphocyte proliferative responses to Helicobacter pylori by plastic adherent cells.

    PubMed

    Uyub, A M; Anuar, A K

    2001-03-01

    A study was carried out on 49 H. pylori-positive and 11 H. pylori-negative patients to determine the reactivity of peripheral blood lymphocytes (PBL) to phytohemagglutinin (PHA) and acid glycine extract (AGE) of H. pylori, and to identify cells responsible for imunosuppression. Based on response to PHA stimulation, cell-mediated immunity of all patients were competent. In some patients, however, response to AGE of H. pylori was suppressed by plastic adherent cells. This study provided evidence of the presence of plastic adherent suppressor cells which suppressed PBL response to AGE of H. pylori but not to PHA suggesting that immunosuppression is antigen specific. There is also an indication that immunosuppression may be species-specific as PBL devoid of plastic adherent cells only responded to stimulation by AGE of H. pylori but not that to AGE of C. jejuni.

  2. Apoptosis in capillary endothelial cells in ageing skeletal muscle

    PubMed Central

    Wang, Huijuan; Listrat, Anne; Meunier, Bruno; Gueugneau, Marine; Coudy-Gandilhon, Cécile; Combaret, Lydie; Taillandier, Daniel; Polge, Cécile; Attaix, Didier; Lethias, Claire; Lee, Kijoon; Goh, Kheng Lim; Béchet, Daniel

    2014-01-01

    The age-related loss of skeletal muscle mass and function (sarcopenia) is a consistent hallmark of ageing. Apoptosis plays an important role in muscle atrophy, and the intent of this study was to specify whether apoptosis is restricted to myofibre nuclei (myonuclei) or occurs in satellite cells or stromal cells of extracellular matrix (ECM). Sarcopenia in mouse gastrocnemius muscle was characterized by myofibre atrophy, oxidative type grouping, delocalization of myonuclei and ECM fibrosis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) indicated a sharp rise in apoptosis during ageing. TUNEL coupled with immunostaining for dystrophin, paired box protein-7 (Pax7) or laminin-2α, respectively, was used to identify apoptosis in myonuclei, satellite cells and stromal cells. In adult muscle, apoptosis was not detected in myofibres, but was restricted to stromal cells. Moreover, the age-related rise in apoptotic nuclei was essentially due to stromal cells. Myofibre-associated apoptosis nevertheless occurred in old muscle, but represented < 20% of the total muscle apoptosis. Specifically, apoptosis in old muscle affected a small proportion (0.8%) of the myonuclei, but a large part (46%) of the Pax7+ satellite cells. TUNEL coupled with CD31 immunostaining further attributed stromal apoptosis to capillary endothelial cells. Age-dependent rise in apoptotic capillary endothelial cells was concomitant with altered levels of key angiogenic regulators, perlecan and a perlecan domain V (endorepellin) proteolytic product. Collectively, our results indicate that sarcopenia is associated with apoptosis of satellite cells and impairment of capillary functions, which is likely to contribute to the decline in muscle mass and functionality during ageing. PMID:24245531

  3. Angiopoietin-1 protects the endothelial cells against advanced glycation end product injury by strengthening cell junctions and inhibiting cell apoptosis.

    PubMed

    Zhao, Jingling; Chen, Lei; Shu, Bin; Tang, Jinming; Zhang, Lijun; Xie, Julin; Liu, Xusheng; Xu, Yingbin; Qi, Shaohai

    2015-08-01

    Endothelial dysfunction is a major characteristic of diabetic vasculopathy. Protection of the vascular endothelium is an essential aspect of preventing and treating diabetic vascular complications. Although Angiopoietin-1 (Ang-1) is an important endothelial-specific protective factor, whether Ang-1 protects vascular cells undergoing advanced glycation end product (AGE) injury has not been investigated. The aim of the present study was to determine the potential effects of Ang-1 on endothelial cells after exposure to AGE. We show here that Ang-1 prevented AGE-induced vascular leakage by enhancing the adherens junctions between endothelial cells, and this process was mediated by the phosphorylation and membrane localization of VE-cadherin. Furthermore, Ang-1 also protected endothelial cells from AGE-induced death by regulating phosphatidylinositol 3-kinase (PI3K)/Akt-dependent Bad phosphorylation. Our findings suggest that the novel protective mechanisms of Ang-1 on endothelium are achieved by strengthening endothelial cell junctions and reducing endothelial cell death after AGE injury. © 2014 Wiley Periodicals, Inc.

  4. rhEPO Enhances Cellular Anti-oxidant Capacity to Protect Long-Term Cultured Aging Primary Nerve Cells.

    PubMed

    Wang, Huqing; Fan, Jiaxin; Chen, Mengyi; Yao, Qingling; Gao, Zhen; Zhang, Guilian; Wu, Haiqin; Yu, Xiaorui

    2017-08-01

    Erythropoietin (EPO) may protect the nervous system of animals against aging damage, making it a potential anti-aging drug for the nervous system. However, experimental evidence from natural aging nerve cell models is lacking, and the efficacy of EPO and underlying mechanism of this effect warrant further study. Thus, the present study used long-term cultured primary nerve cells to successfully mimic the natural aging process of nerve cells. Starting on the 11th day of culture, cells were treated with different concentrations of recombinant human erythropoietin (rhEPO). Using double immunofluorescence labeling, we found that rhEPO significantly improved the morphology of long-term cultured primary nerve cells and increased the total number of long-term cultured primary cells. However, rhEPO did not improve the ratio of nerve cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure nerve cell activity and showed that rhEPO significantly improved the activity of long-term cultured primary nerve cells. Moreover, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double immunofluorescence labeling flow cytometry revealed that rhEPO reduced the apoptotic rate of long-term cultured primary nerve cells. Senescence-associated β-galactosidase (SA-β-gal) immunohistochemistry staining showed that rhEPO significantly reduced the aging rate of long-term cultured primary nerve cells. Immunochemistry revealed that rhEPO enhanced intracellular superoxide dismutase (SOD) activity and glutathione (GSH) abundance and reduced the intracellular malondialdehyde (MDA) level. In addition, this effect depended on the dose, was maximized at a dose of 100 U/ml and was more pronounced than that of vitamin E. In summary, this study finds that rhEPO protects long-term cultured primary nerve cells from aging in a dose-dependent manner. The mechanism of this effect may be associated with the enhancement of the intracellular anti-oxidant capacity. These findings provide a theoretical basis to further the anti-aging mechanism of EPO in the nervous system, and they provide experimental evidence at the cellular level for the clinical application of EPO to protect the nervous system from aging.

  5. Stem cell ageing: does it happen and can we intervene?

    PubMed

    Bellantuono, Ilaria; Keith, W Nicol

    2007-11-19

    Adult stem cells have become the focus of intense research in recent years as a result of their role in the maintenance and repair of tissues. They exert this function through their extensive expansion (self-renewal) and multipotent differentiation capacity. Understanding whether adult stem cells retain this capacity throughout the lifespan of the individual, or undergo a process of ageing resulting in a decreased stem cell pool, is an important area of investigation. Progress in this area has been hampered by lack of suitable models and of appropriate markers and assays to identify stem cells. However, recent data suggest that an understanding of the mechanisms governing stem cell ageing can give insight into the mechanism of tissue ageing and, most importantly, advance our ability to use stem cells in cell and gene therapy strategies.

  6. Human Neural Stem Cell Aging Is Counteracted by α-Glycerylphosphorylethanolamine.

    PubMed

    Daniele, Simona; Da Pozzo, Eleonora; Iofrida, Caterina; Martini, Claudia

    2016-07-20

    Neural stem cells (NSCs) represent a subpopulation of cells, located in specific regions of the adult mammalian brain, with the ability of self-renewing and generating neurons and glia. In aged NSCs, modifications in the amount and composition of membrane proteins/lipids, which lead to a reduction in membrane fluidity and cholinergic activities, have been reported. In this respect, molecules that are effective at normalizing the membrane composition and cholinergic signaling could counteract stem cell aging. α-Glycerylphosphorylethanolamine (GPE), a nootropic drug, plays a role in phospholipid biosynthesis and acetylcholine release. Herein, GPE was assayed on human NSC cultures and on hydroxyurea-aged cells. Using cell counting, colorimetric, and fluorimetric analyses, immunoenzymatic assays, and real time PCR experiments, NSC culture proliferation, senescence, reactive oxygen species, and ADP/ATP levels were assessed. Aged NSCs exhibited cellular senescence, decreased proliferation, and an impairment in mitochondrial metabolism. These changes included a substantial induction in the nuclear factor NF-κB, a key inflammatory mediator. GPE cell treatment significantly protected the redox state and functional integrity of mitochondria, and counteracted senescence and NF-κB activation. In conclusion, our data show the beneficial properties of GPE in this model of stem cell aging.

  7. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential.

    PubMed

    Efimenko, Anastasia; Dzhoyashvili, Nina; Kalinina, Natalia; Kochegura, Tatiana; Akchurin, Renat; Tkachuk, Vsevolod; Parfyonova, Yelena

    2014-01-01

    Tissue regeneration is impaired in aged individuals. Adipose-derived mesenchymal stromal cells (ADSCs), a promising source for cell therapy, were shown to secrete various angiogenic factors and improve vascularization of ischemic tissues. We analyzed how patient age affected the angiogenic properties of ADSCs. ADSCs were isolated from subcutaneous fat tissue of patients with coronary artery disease (CAD; n = 64, 43-77 years old) and without CAD (n = 31, 2-82 years old). ADSC phenotype characterized by flow cytometry was CD90(+)/CD73(+)/CD105(+)/CD45(-)/CD31(-) for all samples, and these cells were capable of adipogenic and osteogenic differentiation. ADSCs from aged patients had shorter telomeres (quantitative reverse transcription polymerase chain reaction) and a tendency to attenuated telomerase activity. ADSC-conditioned media (ADSC-CM) stimulated capillary-like tube formation by endothelial cells (EA.hy926), and this effect significantly decreased with the age of patients both with and without CAD. Angiogenic factors (vascular endothelial growth factor, placental growth factor, hepatocyte growth factor, angiopoetin-1, and angiogenin) in ADSC-CM measured by enzyme-linked immunosorbent assay significantly decreased with patient age, whereas levels of antiangiogenic factors thrombospondin-1 and endostatin did not. Expression of angiogenic factors in ADSCs did not change with patient age (real-time polymerase chain reaction); however, gene expression of factors related to extracellular proteolysis (urokinase and its receptor, plasminogen activator inhibitor-1) and urokinase-type plasminogen activator receptor surface expression increased in ADSCs from aged patients with CAD. ADSCs from aged patients both with and without CAD acquire aging characteristics, and their angiogenic potential declines because of decreasing proangiogenic factor secretion. This could restrict the effectiveness of autologous cell therapy with ADSCs in aged patients.

  8. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions?

    PubMed

    Buschmann, Johanna; Gao, Shuping; Härter, Luc; Hemmi, Sonja; Welti, Manfred; Werner, Clement M L; Calcagni, Maurizio; Cinelli, Paolo; Wanner, Guido A

    2013-09-01

    Adipose-derived stem cells are easily accessed and have a relatively high density compared with other mesenchymal stromal cells. Isolation protocols of adipose-derived stem cells (ASC) rely on the cell's ability to adhere to tissue culture plastic overnight. It was evaluated whether the floating ASC fractions are also of interest for cell-based therapies. In addition, the impact of age, body mass index (BMI) and harvest site was assessed. The surface protein profile with the use of flow cytometry, the cell yield and the doubling time of passages 4, 5 and 6 of ASC from 30 donors were determined. Adherent and supernatant fractions were compared. The impact of age, BMI and harvest site on cell yield and doubling times was determined. Both adherent and supernatant fractions showed high mean fluorescence intensities for CD13, CD29, CD44, CD73, CD90 and CD105 and comparatively low mean fluorescence intensities for CD11b, CD62L, intracellular adhesion molecule-1 and CD34. Doubling times of adherent and supernatant fractions did not differ significantly. Whereas the old age group had a significantly lower cell yield compared with the middle aged group, BMI and harvest site had no impact on cell yield. Finally, doubling times for passages 4, 5 and 6 were not influenced by the age and BMI of the donors, nor the tissue-harvesting site. The floating ASC fraction is an equivalent second cell source just like the adherent ASC fraction. Donor age, BMI and harvest site do not influence cell yield and proliferation rate. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  9. Effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells (MSCs) in vitro.

    PubMed

    Lu, Yi-Qun; Lu, Yan; Li, Hui-Juan; Cheng, Xing-Bo

    2012-10-01

    This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs-bovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.

  10. Stem cells and aging from a quasi-immortal point of view.

    PubMed

    Boehm, Anna-Marei; Rosenstiel, Philip; Bosch, Thomas C G

    2013-11-01

    Understanding aging and how it affects an organism's lifespan is a fundamental problem in biology. A hallmark of aging is stem cell senescence, the decline of functionality, and number of somatic stem cells, resulting in an impaired regenerative capacity and reduced tissue function. In addition, aging is characterized by profound remodeling of the immune system and a quantitative decline of adequate immune responses, a phenomenon referred to as immune-senescence. Yet, what is causing stem cell and immune-senescence? This review discusses experimental studies of potentially immortal Hydra which have made contributions to answering this question. Hydra transcription factor FoxO has been shown to modulate both stem cell proliferation and innate immunity, lending strong support to a role of FoxO as critical rate-of-aging regulator from Hydra to human. Constructing a model of how FoxO responds to diverse environmental factors provides a framework for how stem cell factors might contribute to aging. © 2013 WILEY Periodicals, Inc.

  11. Accumulation of senescent cells in mitotic tissue of aging primates.

    PubMed

    Jeyapalan, Jessie C; Ferreira, Mark; Sedivy, John M; Herbig, Utz

    2007-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over 40 years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event.

  12. Corneal endothelial cell density and morphology in normal Filipino eyes.

    PubMed

    Padilla, Ma Dominga B; Sibayan, Santiago Antonio B; Gonzales, Clarissa S A

    2004-03-01

    To describe the corneal endothelial cell density and morphology in normal adult Filipino eyes. Specular microscopy was performed in 640 eyes of 320 normal Filipino volunteers aged 20 to 86 years. Of these, 163 were male, and 157 were female. Mean cell density (MCD), mean cell area (MCA), coefficient of variation (CV) in cell size (polymegathism), and hexagonality were recorded and analyzed in relation to fellow eyes, gender, and age. MCD was 2798 +/- 307.2 cells/mm, and MCA was 363.0 +/- 40.3 microm. Results showed that women had a MCD 7.8% greater than men (P < 0.01). Regression analysis showed a consistent decrease in MCD (r = -0.47) and increase in MCA (r = 0.45) from 20 to 60 years of age. This was followed by a marked decrease in correlation and apparent trend reversal for both variables in the groups above 60 years (MCD r = 0.18, MCA r = -0.04) accompanied by a marked increase in CV in cell size (20-60 years r = -0.04, >60 years r = 0.33). A very low negative correlation (r = -0.10) was noted between hexagonality and increasing age through all age groups. The first normative data for the endothelium of Filipino eyes are reported. There are statistically significant differences in MCD between genders, and a consistent decrease in MCD and increase in MCA with age only until 60 years old, after which correlation between age and these variables decreases. Polymegathism and correlation between CV in cell size and age markedly increase after age 60.

  13. Cell autonomous expression of inflammatory genes in biologically aged fibroblasts associated with elevated NF-kappaB activity.

    PubMed

    Kriete, Andres; Mayo, Kelli L; Yalamanchili, Nirupama; Beggs, William; Bender, Patrick; Kari, Csaba; Rodeck, Ulrich

    2008-07-16

    Chronic inflammation is a well-known corollary of the aging process and is believed to significantly contribute to morbidity and mortality of many age-associated chronic diseases. However, the mechanisms that cause age-associated inflammatory changes are not well understood. Particularly, the contribution of cell stress responses to age-associated inflammation in 'non-inflammatory' cells remains poorly defined. The present cross-sectional study focused on differences in molecular signatures indicative of inflammatory states associated with biological aging of human fibroblasts from donors aged 22 to 92 years. Gene expression profiling revealed elevated steady-state transcript levels consistent with a chronic inflammatory state in fibroblast cell-strains obtained from older donors. We also observed enhanced NF-kappaB DNA binding activity in a subset of strains, and the NF-kappaB profile correlated with mRNA expression levels characteristic of inflammatory processes, which include transcripts coding for cytokines, chemokines, components of the complement cascade and MHC molecules. This intrinsic low-grade inflammatory state, as it relates to aging, occurs in cultured cells irrespective of the presence of other cell types or the in vivo context. Our results are consistent with the view that constitutive activation of inflammatory pathways is a phenomenon prevalent in aged fibroblasts. It is possibly part of a cellular survival process in response to compromised mitochondrial function. Importantly, the inflammatory gene expression signature described here is cell autonomous, i.e. occurs in the absence of prototypical immune or pro-inflammatory cells, growth factors, or other inflammatory mediators.

  14. Inverse associations between obesity indicators and thymic T-cell production levels in aging atomic-bomb survivors.

    PubMed

    Yoshida, Kengo; Nakashima, Eiji; Kubo, Yoshiko; Yamaoka, Mika; Kajimura, Junko; Kyoizumi, Seishi; Hayashi, Tomonori; Ohishi, Waka; Kusunoki, Yoichiro

    2014-01-01

    Reduction of the naive T-cell population represents a deteriorating state in the immune system that occurs with advancing age. In animal model studies, obesity compromises the T-cell immune system as a result of enhanced adipogenesis in primary lymphoid organs and systemic inflammation. In this study, to test the hypothesis that obesity may contribute to the aging of human T-cell immunity, a thousand atomic-bomb survivors were examined for obesity status and ability to produce naive T cells, i.e., T-cell receptor excision circle (TREC) numbers in CD4 and CD8 T cells. The number of TRECs showed a strong positive correlation with naive T cell numbers, and lower TREC numbers were associated with higher age. We found that the TREC number was inversely associated with levels of obesity indicators (BMI, hemoglobin A1c) and serum CRP levels. Development of type-2 diabetes and fatty liver was also associated with lower TREC numbers. This population study suggests that obesity with enhanced inflammation is involved in aging of the human T-cell immune system. Given the fact that obesity increases the risk of numerous age-related diseases, attenuated immune competence is a possible mechanistic link between obesity and disease development among the elderly.

  15. Inverse Associations between Obesity Indicators and Thymic T-Cell Production Levels in Aging Atomic-Bomb Survivors

    PubMed Central

    Yoshida, Kengo; Nakashima, Eiji; Kubo, Yoshiko; Yamaoka, Mika; Kajimura, Junko; Kyoizumi, Seishi; Hayashi, Tomonori; Ohishi, Waka; Kusunoki, Yoichiro

    2014-01-01

    Reduction of the naive T-cell population represents a deteriorating state in the immune system that occurs with advancing age. In animal model studies, obesity compromises the T-cell immune system as a result of enhanced adipogenesis in primary lymphoid organs and systemic inflammation. In this study, to test the hypothesis that obesity may contribute to the aging of human T-cell immunity, a thousand atomic-bomb survivors were examined for obesity status and ability to produce naive T cells, i.e., T-cell receptor excision circle (TREC) numbers in CD4 and CD8 T cells. The number of TRECs showed a strong positive correlation with naive T cell numbers, and lower TREC numbers were associated with higher age. We found that the TREC number was inversely associated with levels of obesity indicators (BMI, hemoglobin A1c) and serum CRP levels. Development of type-2 diabetes and fatty liver was also associated with lower TREC numbers. This population study suggests that obesity with enhanced inflammation is involved in aging of the human T-cell immune system. Given the fact that obesity increases the risk of numerous age-related diseases, attenuated immune competence is a possible mechanistic link between obesity and disease development among the elderly. PMID:24651652

  16. L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells.

    PubMed

    Mobarak, Halimeh; Fathi, Ezzatollah; Farahzadi, Raheleh; Zarghami, Nosratollah; Javanmardi, Sara

    2017-03-01

    Mesenchymal stem cells are undifferentiated cells that have the ability to divide continuously and tissue regeneration potential during the transplantation. Aging and loss of cell survival, is one of the main problems in cell therapy. Since the production of free radicals in the aging process is effective, the use of antioxidant compounds can help in scavenging free radicals and prevent the aging of cells. The aim of this study is evaluate the effects of L-carnitine (LC) on proliferation and aging of rat adipose tissue-derived mesenchymal stem cells (rADSC). rADSCs were isolated from inguinal region of 5 male Rattus rats. Oil red-O, alizarin red-S and toluidine blue staining were performed to evaluate the adipogenic, osteogenic and chondrogenic differentiation of rADSCs, respectively. Flow cytometric analysis was done for investigating the cell surface markers. The methyl thiazol tetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to different concentrations of LC. rADSCs aging was evaluated by beta-galactosidase staining. The results showed significant proliferation of rADSCs 48 h after treatment with concentrations of 0.2 mM LC. In addition, in the presence of 0.2 mM LC, rADSCs appeared to be growing faster than control group and 0.2 mM LC supplementation could significantly decrease the population doubling time and aging of rADSCs. It seems that LC would be a good antioxidant to improve lifespan of rADSCs due to the decrease in aging.

  17. Investigation of pathways of advanced glycation end-products accumulation in macrophages.

    PubMed

    Nagai, Ryoji; Fujiwara, Yukio; Mera, Katsumi; Otagiri, Masaki

    2007-04-01

    Advanced glycation end-products (AGE) play a role in the pathogenesis of several diseases, including diabetic complications and atherosclerosis. In atherosclerotic lesions of human aortas, AGE are localized in the extracellular matrix and intracellularly in foam cells. Two interpretations are possible for AGE accumulation inside macrophages, one is endocytic uptake of extracellular AGE-proteins by scavenger receptors; the other is intracellular AGE formation inside the macrophages. In the present study, we determined the pathways involved in AGE accumulation inside macrophages. RAW 264.7 cells, a murine macrophage cell line, incubated with BSA and 1600 mM glucose for 40 weeks, recognized heavily modified AGE- BSA. In contrast, the cells showed no ligand activity for mildly modified AGE-BSA, prepared by incubating BSA with 50 mM glucose for 24 weeks. Nepsilon-(carboxymethyl)lysine (CML)-modified proteins of about 65 kDa were detected in human monocyte-derived macrophages incubated for 7 days with 30 mM glucose and phorbol myristate acetate. Furthermore, CML was generated when glycated protein was incubated with hypochloric acid. Taken together, our results indicate that AGE detected inside foam cells in atherosclerotic lesions are generated intracellularly rather than representing endocytic uptake of extracellular AGE-proteins by scavenger receptors.

  18. Advanced Glycated End-Products Affect HIF-Transcriptional Activity in Renal Cells

    PubMed Central

    Bondeva, Tzvetanka; Heinzig, Juliane; Ruhe, Carola

    2013-01-01

    Advanced glycated end-products (AGEs) are ligands of the receptor for AGEs and increase in diabetic disease. MAPK organizer 1 (Morg1) via its binding partner prolyl-hydroxylase domain (PHD)-3 presumably plays a role in the regulation of hypoxia-inducible factor (HIF)-1α and HIF-2α transcriptional activation. The purpose of this study was to analyze the influence of AGEs on Morg1 expression and its correlation to PHD3 activity and HIF-transcriptional activity in various renal cell types. The addition of glycated BSA (AGE-BSA) significantly up-regulated Morg1 mRNA levels in murine mesangial cells and down-regulated it in murine proximal tubular cells and differentiated podocytes. These effects were reversible when the cells were preincubated with a receptor for α-AGE antibody. AGE-BSA treatment induced a relocalization of the Morg1 cellular distribution compared with nonglycated control-BSA. Analysis of PHD3 activity demonstrated an elevated PHD3 enzymatic activity in murine mesangial cells but an inhibition in murine proximal tubular cells and podocytes after the addition of AGE-BSA. HIF-transcriptional activity was also affected by AGE-BSA treatment. Reporter gene assays and EMSAs showed that AGEs regulate HIF- transcriptional activity under nonhypoxic conditions in a cell type-specific manner. In proximal tubular cells, AGE-BSA stimulation elevated mainly HIF-1α transcriptional activity and to a lesser extent HIF-2α. We also detected an increased expression of the HIF-1α and the HIF-2α proteins in kidneys from Morg1 heterozygous (HZ) placebo mice compared with the Morg1 wild-type (WT) placebo-treated mice, and the HIF-1α protein expression in the Morg1 HZ streptozotocin-treated mice was significantly higher than the WT streptozotocin-treated mice. Analysis of isolated mesangial cells from Morg1 HZ (±) and WT mice showed an inhibited PHD3 activity and an increased HIF-transcriptional activity in cells with only one Morg1 allele. These findings are important for a better understanding of the molecular mechanisms of diabetic nephropathy. PMID:24030251

  19. DNA methylation age of human tissues and cell types

    PubMed Central

    2013-01-01

    Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research. PMID:24138928

  20. Effect of PKC-β Signaling Pathway on Expression of MCP-1 and VCAM-1 in Different Cell Models in Response to Advanced Glycation End Products (AGEs).

    PubMed

    Rempel, Lisienny C T; Finco, Alessandra B; Maciel, Rayana A P; Bosquetti, Bruna; Alvarenga, Larissa M; Souza, Wesley M; Pecoits-Filho, Roberto; Stinghen, Andréa E M

    2015-05-14

    Advanced glycation end products (AGEs) are compounds classified as uremic toxins in patients with chronic kidney disease that have several pro-inflammatory effects and are implicated in the development of cardiovascular diseases. To explore the mechanisms of AGEs-endothelium interactions through the receptor for AGEs (RAGE) in the PKC-β pathway, we evaluated the production of MCP-1 and VCAM-1 in human endothelial cells (HUVECs), monocytes, and a coculture of both. AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. The effect of AGEs on cell viability was assessed with an MTT assay. The cells were also treated with AGEs with and without a PKC-β inhibitor. MCP-1 and VCAM-1 in the cell supernatants were estimated by ELISA, and RAGE was evaluated by immunocytochemistry. AGEs exposure did not affect cell viability, but AGEs induced RAGE, MCP-1, and VCAM-1 expression in HUVECs. When HUVECs or monocytes were incubated with AGEs and a PKC-β inhibitor, MCP-1 and VCAM-1 expression significantly decreased. However, in the coculture, exposure to AGEs and a PKC-β inhibitor produced no significant effect. This study demonstrates, in vitro, the regulatory mechanisms involved in MCP-1 production in three cellular models and VCAM-1 production in HUVECs, and thus mimics the endothelial dysfunction caused by AGEs in early atherosclerosis. Such mechanisms could serve as therapeutic targets to reduce the harmful effects of AGEs in patients with chronic kidney disease.

  1. Aging-dependent decline of IL-10 producing B cells coincides with production of antinuclear antibodies but not rheumatoid factors.

    PubMed

    van der Geest, Kornelis S M; Lorencetti, Pedro G; Abdulahad, Wayel H; Horst, Gerda; Huitema, Minke; Roozendaal, Caroline; Kroesen, Bart-Jan; Brouwer, Elisabeth; Boots, Annemieke M H

    2016-03-01

    Aging is associated with development of autoimmunity. Loss of B cell tolerance in the elderly is suggested by an increased prevalence of anti-nuclear antibodies (ANAs) and rheumatoid factors (RFs). Accumulating evidence indicates that B cells also impact autoimmunity via secretion of cytokines. So far, few studies have directly assessed the effect of aging on the latter B cell function. Here, we determined if and how human aging influences the production of cytokines by B cells. In a cross-sectional study, we found that absolute numbers of circulating B cells were similar in 31 young (ages 19-39) and 73 old (age ≥ 60) individuals. Numbers of transitional B cells (CD19(+)CD27(-)CD38(High)CD24(High)) were decreased in old individuals, whereas numbers of naive and memory B cell subsets were comparable in young and old individuals. Short-term in vitro stimulation of whole blood samples revealed that numbers of B cells capable of producing TNF-α were similar in young and old individuals. In contrast, B cells capable of IL-10 production were decreased in old subjects. This decline of IL-10(+) B cells was observed in old individuals that were ANA positive, and in those that were negative for both ANAs and RFs. However, IL-10(+) B cells were remarkably well retained in the circulation of old subjects that were RF positive. Thus, pro-inflammatory TNF-α(+) B cells are retained in the elderly, whereas IL-10(+) B cells generally decline. In addition, our findings indicate that IL-10(+) B cells may differentially impact the development of ANAs and RFs in the elderly. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Age-dependent metabolic and immunosuppressive effects of Tacrolimus

    PubMed Central

    Krenzien, Felix; Quante, Markus; Heinbokel, Timm; Seyda, Midas; Minami, Koichiro; Uehara, Hirohito; Biefer, Hector Rodriguez Cetina; Schuitenmaker, Jeroen M.; Gabardi, Steven; Splith, Katrin; Schmelzle, Moritz; Petrides, Athena K.; Azuma, Haruhito; Pratschke, Johann; Li, Xian C.; ElKhal, Abdallah; Tullius, Stefan G.

    2016-01-01

    Immunosuppression in elderly recipients has been underappreciated in clinical trials. Here, we assessed age-specific effects of the calcineurin inhibitor Tacrolimus (TAC) in a murine transplant model and assessed its clinical relevance on human T-cells. Old recipient mice exhibited prolonged skin graft survival when compared to young animals following TAC administration. More importantly, half of the TAC dose was sufficient in old mice to achieve comparable systemic trough levels. TAC administration was able to reduce pro-inflammatory IFN-γ cytokine production and promote IL-10 production in old CD4+ T-cells. In addition, TAC administration decreased IL-2 secretion in old CD4+ T-cells more effectively while inhibiting the proliferation of CD4+ T-cells in old mice. Both, TAC treated murine and human CD4+ T-cells demonstrated an age-specific suppression of intracellular calcineurin levels and Ca2+-influx, two critical pathways in T-cell activation. Of note, depletion of CD8+ T-cells did not alter allograft survival outcome in old TAC treated mice, suggesting that TAC age-specific effects were mainly CD4+ T-cell mediated. Collectively, our study demonstrates age-specific immunosuppressive capacities of TAC that are CD4+ T-cell mediated. The suppression of calcineurin levels and Ca2+-influx in both, old murine and human T-cells emphasizes on the clinical relevance of age-specific effects when utilizing TAC. PMID:27754593

  3. Regulation of Satellite Cell Function in Sarcopenia

    PubMed Central

    Alway, Stephen E.; Myers, Matthew J.; Mohamed, Junaith S.

    2014-01-01

    The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003

  4. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss.

    PubMed

    Bellantuono, Ilaria; Aldahmash, Abdullah; Kassem, Moustapha

    2009-04-01

    Marrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of aging in vivo, leading to decreased ability to form and maintain bone homeostasis with age. In this review we summarize evidence of MSC involvement in age related bone loss and suggest new emerging targets for intervention.

  5. (Invited) Effect of Aging on Mechanical Properties of Lithium Ion Cell Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zenan; Cao, Lei; Hartig, Julia

    The mechanical properties of aged and fresh lithium ion cell components are evaluated in this paper. Cells components were obtained from destructive physical analysis of 40Ah NMC/Graphite-based pouch cells before and after cycling and were subjected to mechanical testing. The aging tests comprised of cycling the cell across a voltage window of 4.1V to 3.0V at room temperature (25?). Using a 2C charging rate and 1C discharging rate, the cells were subjected to over 5600 cycles before a 80% drop in the name-plate capacity was observed. Mechanical tests, including compression test, tensile test and indentation test, were conducted on themore » cell components to investigate differences in the mechanical performance. Comparison of the fresh and aged cells components shows that cycling the cells has different degrees of impact on the different cell components. Anodes suffered the most serious deterioration in mechanical properties while separators remained intact under the test condition investigated.« less

  6. Klotho, stem cells, and aging.

    PubMed

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.

  7. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook

    2009-01-09

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1{beta} (IL-1{beta}) stimulation with increasing in vitro age. Tumor necrosis factor-{alpha} (TNF-{alpha})-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-{kappa}B and AP-1.more » These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.« less

  8. Key role of T cell defects in age-related vulnerability to West Nile virus.

    PubMed

    Brien, James D; Uhrlaub, Jennifer L; Hirsch, Alec; Wiley, Clayton A; Nikolich-Zugich, Janko

    2009-11-23

    West Nile virus (WNV) infection causes a life-threatening meningoencephalitis that becomes increasingly more prevalent over the age of 50 and is 40-50x more prevalent in people over the age of 70, compared with adults under the age of 40. In a mouse model of age-related vulnerability to WNV, we demonstrate that death correlates with increased viral titers in the brain and that this loss of virus control with age was the result of defects in the CD4 and CD8 T cell response against WNV. Specific age-related defects in T cell responses against dominant WNV epitopes were detected at the level of cytokine and lytic granule production, each of which are essential for resistance against WNV, and in the ability to generate multifunctional anti-WNV effector T cells, which are believed to be critical for robust antiviral immunity. In contrast, at the peak of the response, old and adult T cells exhibited superimposable peptide sensitivity. Most importantly, although the adult CD4 or CD8 T cells readily protected immunodeficient mice upon adoptive transfer, old T cells of either subset were unable to provide WNV-specific protection. Consistent with a profound qualitative and quantitative defect in T cell immunity, old brains contained at least 12x fewer total effector CD8 T cells compared with adult mice at the peak of brain infection. These findings identify potential targets for immunomodulation and treatment to combat lethal WNV infection in the elderly.

  9. H3K4me1 marks DNA regions hypomethylated during aging in human stem and differentiated cells.

    PubMed

    Fernández, Agustín F; Bayón, Gustavo F; Urdinguio, Rocío G; Toraño, Estela G; García, María G; Carella, Antonella; Petrus-Reurer, Sandra; Ferrero, Cecilia; Martinez-Camblor, Pablo; Cubillo, Isabel; García-Castro, Javier; Delgado-Calle, Jesús; Pérez-Campo, Flor M; Riancho, José A; Bueno, Clara; Menéndez, Pablo; Mentink, Anouk; Mareschi, Katia; Claire, Fabian; Fagnani, Corrado; Medda, Emanuela; Toccaceli, Virgilia; Brescianini, Sonia; Moran, Sebastián; Esteller, Manel; Stolzing, Alexandra; de Boer, Jan; Nisticò, Lorenza; Stazi, Maria A; Fraga, Mario F

    2015-01-01

    In differentiated cells, aging is associated with hypermethylation of DNA regions enriched in repressive histone post-translational modifications. However, the chromatin marks associated with changes in DNA methylation in adult stem cells during lifetime are still largely unknown. Here, DNA methylation profiling of mesenchymal stem cells (MSCs) obtained from individuals aged 2 to 92 yr identified 18,735 hypermethylated and 45,407 hypomethylated CpG sites associated with aging. As in differentiated cells, hypermethylated sequences were enriched in chromatin repressive marks. Most importantly, hypomethylated CpG sites were strongly enriched in the active chromatin mark H3K4me1 in stem and differentiated cells, suggesting this is a cell type-independent chromatin signature of DNA hypomethylation during aging. Analysis of scedasticity showed that interindividual variability of DNA methylation increased during aging in MSCs and differentiated cells, providing a new avenue for the identification of DNA methylation changes over time. DNA methylation profiling of genetically identical individuals showed that both the tendency of DNA methylation changes and scedasticity depended on nongenetic as well as genetic factors. Our results indicate that the dynamics of DNA methylation during aging depend on a complex mixture of factors that include the DNA sequence, cell type, and chromatin context involved and that, depending on the locus, the changes can be modulated by genetic and/or external factors. © 2015 Fernández et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Vitamin E reverses impaired linker for activation of T cells activation in T cells from aged C57BL/6 mice

    USDA-ARS?s Scientific Manuscript database

    Supplemental vitamin E restores age-related defects in IL-2 production, T cell proliferation, and immune synapse formation. Here, we evaluated the effect of vitamin E on TCR-proximal signaling events. In aged murine CD4+ T cells stimulated via CD3 and CD28, tyrosine 191 of the adaptor protein LAT wa...

  11. Cellular changes in the hamster testicular interstitium with ageing and after exposure to short photoperiod.

    PubMed

    Beltrán-Frutos, E; Seco-Rovira, V; Ferrer, C; Madrid, J F; Sáez, F J; Canteras, M; Pastor, L M

    2016-04-01

    The aim of this study was to evaluate the cellular changes that occur in the hamster testicular interstitium in two very different physiological situations involving testicular involution: ageing and exposure to a short photoperiod. The animals were divided into an 'age group' with three subgroups - young, adult and old animals - and a 'regressed group' with animals subjected to a short photoperiod. The testicular interstitium was characterised by light and electron microscopy. Interstitial cells were studied histochemically with regard to their proliferation, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP in situ nick end labelling (TUNEL+) and testosterone synthetic activity. We identified two types of Leydig cell: Type A cells showed a normal morphology, while Type B cells appeared necrotic. With ageing, pericyte proliferation decreased but there was no variation in the index of TUNEL-positive Leydig cells. In the regressed group, pericyte proliferation was greater and TUNEL-positive cells were not observed in the interstitium. The testicular interstitium suffered few ultrastructural changes during ageing and necrotic Leydig cells were observed. In contrast, an ultrastructural involution of Leydig cells with no necrosis was observed in the regressed group. In conclusion, the testicular interstitium of Mesocricetus auratus showed different cellular changes in the two groups (age and regressed), probably due to the irreversible nature of ageing and the reversible character of changes induced by short photoperiod.

  12. The effect of nutritional status and myogenic satellite cell age on turkey satellite cell proliferation, differentiation, and expression of myogenic transcriptional regulatory factors and heparan sulfate proteoglycans syndecan-4 and glypican-1.

    PubMed

    Harthan, Laura B; McFarland, Douglas C; Velleman, Sandra G

    2014-01-01

    Posthatch satellite cell mitotic activity is a critical component of muscle development and growth. Satellite cells are myogenic stem cells that can be induced by nutrition to follow other cellular developmental pathways, and whose mitotic activity declines with age. The objective of the current study was to determine the effect of restricting protein synthesis on the proliferation and differentiation, expression of myogenic transcriptional regulatory factors myogenic determination factor 1, myogenin, and myogenic regulatory factor 4, and expression of the heparan sulfate proteoglycans syndecan-4 and glypican-1 in satellite cells isolated from 1-d-, 7-wk-, and 16-wk-old turkey pectoralis major muscle (1 d, 7 wk, and 16 wk cells, respectively) by using variable concentrations of Met and Cys. Four Met concentrations-30 (control), 7.5, 3, or 0 mg/L with 3.2 mg/L of Cys per 1 mg/L of Met-were used for culture of satellite cells to determine the effect of nutrition and age on satellite cell behavior during proliferation and differentiation. Proliferation was reduced by lower Met and Cys concentrations in all ages at 96 h of proliferation. Differentiation was increased in the 1 d Met-restricted cells, whereas the 7 wk cells treated with 3 mg/L of Met had decreased differentiation. Reduced Met and Cys levels from the control did not significantly affect the 16 wk cells at 72 h of differentiation. However, medium with no Met or Cys suppressed differentiation at all ages. The expression of myogenic determination factor 1, myogenin, myogenic regulatory factor 4, syndecan-4, and glypican-1 was differentially affected by age and Met or Cys treatment. These data demonstrate the age-specific manner in which turkey pectoralis major muscle satellite cells respond to nutritional availability and the importance of defining optimal nutrition to maximize satellite cell proliferation and differentiation for subsequent muscle mass accretion.

  13. Dynamic Scaling of Lipofuscin Deposition in Aging Cells

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, H. E.

    2011-07-01

    Lipofuscin is a membrane-bound cellular waste that can be neither degraded nor ejected from the cell but can only be diluted through cell division and subsequent growth. The fate of postmitotic (non-dividing) cells such as neurons, cardiac myocytes, skeletal muscle fibers, and retinal pigment epithelial cells (RPE) is to accumulate lipofuscin, which as an "aging pigment" has been considered a reliable biomarker for the age of cells. Environmental stress can accelerate the accumulation of lipofuscin. For example, accumulation in brain cells appears to be an important issue connected with heavy consumption of alcohol. Lipofuscin is made of free-radical-damaged protein and fat, whose abnormal accumulation is related to a range of disorders including Type IV mucolipidosis (ML4), Amyotrophic Lateral Sclerosis (ALS), Alzheimer's disease, Parkinson disease, and age-related macular degeneration (AMD) which is the leading cause of blindness beyond the age of 50 years. The study of lipofuscin formation and growth is important, because of their association with cellular aging. We introduce a model of non-equilibrium cluster growth and aggregation that we have developed for studying the formation and growth of lipofuscin. As an example of lipofuscin deposit in a given kind of postmitotic cell, we study the kinetics of lipofuscin growth in a RPE cell. Our results agree with a linear growth of the number of lipofuscin granules with age. We apply the dynamic scaling approach to our model and find excellent data collapse for the cluster size distribution. An unusual feature of our model is that while small particles are removed from the cell the larger ones become fixed and grow by aggregation.

  14. PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit

    PubMed Central

    Aiello, Allison E.; Dowd, Jennifer B.; Jayabalasingham, Bamini; Feinstein, Lydia; Uddin, Monica; Simanek, Amanda M.; Cheng, Caroline K.; Galea, Sandro; Wildman, Derek E.; Koenen, Karestan; Pawelec, Graham

    2016-01-01

    Background Psychosocial stress is thought to play a key role in the acceleration of immunological aging. This study investigated the relationship between lifetime and past-year history of post-traumatic stress disorder (PTSD) and the distribution of T cell phenotypes thought to be characteristic of immunological aging. Methods Data were from 85 individuals who participated in the community-based Detroit Neighborhood Health Study. Immune markers assessed included the CD4:CD8 ratio, the ratio of late-differentiated effector (CCR7-CD45RA+CD27-CD28-) to naïve (CCR7+CD45RA+CD27+CD28+) T cells, the percentage of KLRG1-expressing cells, and the percentage of CD57-expressing cells. Results In models adjusted for age, gender, race/ethnicity, education, smoking status, and medication use, we found that past-year PTSD was associated with statistically significant differences in the CD8+ T cell population, including a higher ratio of late-differentiated effector to naïve T cells, a higher percentage of KLRG1+ cells, and a higher percentage of CD57+ cells. The percentage of CD57+ cells in the CD4 subset was also significantly higher and the CD4:CD8 ratio significantly lower among individuals who had experienced past-year PTSD. Lifetime PTSD was also associated with differences in several parameters of immune aging. Conclusions PTSD is associated with an aged immune phenotype and should be evaluated as a potential catalyzer of accelerated immunological aging in future studies. PMID:26894484

  15. Immunomodulatory effects of aged garlic extract.

    PubMed

    Kyo, E; Uda, N; Kasuga, S; Itakura, Y

    2001-03-01

    Using various kinds of models, we examined the effects of aged garlic extract (AGE) on immune functions. In the immunoglobulin (Ig)E-mediated allergic mouse model, AGE significantly decreased the antigen-specific ear swelling induced by picryl chloride ointment to the ear and intravenous administration of antitrinitrophenyl antibody. In the transplanted carcinoma cell model, AGE significantly inhibited the growth of Sarcoma-180 (allogenic) and LL/2 lung carcinoma (syngenic) cells transplanted into mice. Concomitantly, increases in natural killer (NK) and killer activities of spleen cells were observed in Sarcoma-180--bearing mice administered AGE. In the psychological stress model, AGE significantly prevented the decrease in spleen weight and restored the reduction of anti-SRBC hemolytic plaque-forming cells caused by the electrical stress. These studies strongly suggest that AGE could be a promising candidate as an immune modifier, which maintains the homeostasis of immune functions; further studies are warranted to determine when it is most beneficial.

  16. IL-6 Production by TLR-Activated APC Broadly Enhances Aged Cognate CD4 Helper and B Cell Antibody Responses In Vivo.

    PubMed

    Brahmakshatriya, Vinayak; Kuang, Yi; Devarajan, Priyadharshini; Xia, Jingya; Zhang, Wenliang; Vong, Allen Minh; Swain, Susan L

    2017-04-01

    Naive CD4 T cell responses, especially their ability to help B cell responses, become compromised with aging. We find that using APC pretreated ex vivo with TLR agonists, polyinosinic-polycytidylic acid and CpG, to prime naive CD4 T cells in vivo, restores their ability to expand and become germinal center T follicular helpers and enhances B cell IgG Ab production. Enhanced helper responses are dependent on IL-6 production by the activated APC. Aged naive CD4 T cells respond suboptimally to IL-6 compared with young cells, such that higher doses are required to induce comparable signaling. Preactivating APC overcomes this deficiency. Responses of young CD4 T cells are also enhanced by preactivating APC with similar effects but with only partial IL-6 dependency. Strikingly, introducing just the activated APC into aged mice significantly enhances otherwise compromised Ab production to inactivated influenza vaccine. These findings reveal a central role for the production of IL-6 by APC during initial cognate interactions in the generation of effective CD4 T cell help, which becomes greater with age. Without APC activation, aging CD4 T cell responses shift toward IL-6-independent Th1 and CD4 cytotoxic Th cell responses. Thus, strategies that specifically activate and provide Ag to APC could potentially enhance Ab-mediated protection in vaccine responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection

    PubMed Central

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh–B cell interactions. PMID:29109730

  18. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    PubMed

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  19. Vδ2+ and α/ß T cells show divergent trajectories during human aging.

    PubMed

    Tan, Crystal Tze Ying; Wistuba-Hamprecht, Kilian; Xu, Weili; Nyunt, Ma Schwe Zin; Vasudev, Anusha; Lee, Bernett Teck Kwong; Pawelec, Graham; Puan, Kia Joo; Rotzschke, Olaf; Ng, Tze Pin; Larbi, Anis

    2016-07-19

    Chronological aging and a variety of stressors are driving forces towards immunosenescence. While much attention was paid to the main T cell component, α/β T cells, few studies concentrate on the impact of age on γ/δ T cells' characteristics. The latter are important players of adaptive immunity but also have features associated with innate immunity. Vδ2+ are the main component of γ/δ while Vδ1+ T cells expand upon Cytomegalovirus (CMV) infection and with age. The Vδ2+ T cells are not influenced by persistent infections but do contribute to immunosurveillance against bacterial pathogens. Here, we focus on Vδ2+ T cells and report that their composition and functionality is not altered in older adults. We have performed a side-by-side comparison of α/β and Vδ2 cells by using two robust markers of T cell replicative history and cell differentiation (CD28 and CD27), and cytokine secretion (IFN-γ and TNF-α). Significant differences in Vδ2 versus α/β homeostasis, as well as phenotypic and functional changes emerged. However, the data strongly suggest a sustained functionality of the Vδ2 population with age, independently of the challenge. This suggests differential trajectories towards immunosenescence in α/β and Vδ2+ T cells, most likely explained by their intrinsic functions.

  20. A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies.

    PubMed

    Basse, Britta; Ubezio, Paolo

    2007-07-01

    We develop a general mathematical model for a population of cells differentiated by their position within the cell division cycle. A system of partial differential equations governs the kinetics of cell densities in certain phases of the cell division cycle dependent on time t (hours) and an age-like variable tau (hours) describing the time since arrival in a particular phase of the cell division cycle. Transition rate functions control the transfer of cells between phases. We first obtain a theoretical solution on the infinite domain -infinity < t < infinity. We then assume that age distributions at time t=0 are known and write our solution in terms of these age distributions on t=0. In practice, of course, these age distributions are unknown. All is not lost, however, because a cell line before treatment usually lies in a state of asynchronous balanced growth where the proportion of cells in each phase of the cell cycle remain constant. We assume that an unperturbed cell line has four distinct phases and that the rate of transition between phases is constant within a short period of observation ('short' relative to the whole history of the tumour growth) and we show that under certain conditions, this is equivalent to exponential growth or decline. We can then gain expressions for the age distributions. So, in short, our approach is to assume that we have an unperturbed cell line on t

  1. Effect of age and latent CMV infection on CD8+ CD56+ T cells (NKT-like) frequency and functionality.

    PubMed

    Hassouneh, Fakhri; Campos, Carmen; López-Sejas, Nelson; Alonso, Corona; Tarazona, Raquel; Solana, Rafael; Pera, Alejandra

    2016-09-01

    Changes in the T cell pool caused by CMV infection have been proposed to contribute to immunosenescence, but it has been postulated that CMV can also have some beneficial effects in young individuals improving the immune response to other pathogens. T cells expressing CD56 (NKT-like cells) are cytotoxic effector cells with a significant role in the immune response against cancer. We have studied how age and latent CMV infection affect the frequency of NKT-like cells (CD8+ CD56+ T cells) and their response to Staphylococcal Enterotoxin B (SEB) in the context of CMV and ageing. NKT-like cell percentage increases with the combination of both CMV and age. The response to SEB and the polyfunctional index of NKT-like cells also increase with age in CMV-seropositive individuals. In young individuals, CMV infection induces a shift on the polyfunctional profile of CD8+ CD56- T cells not observed on the NKT-like cells response. NKT-like cells expressing CD57 are expanded in CMV-seropositive individuals and are more polyfunctional than their CD57-  counterpart. In addition CD57- NKT-like cells are more polyfunctional than CD8+ CD56- CD57- T cells. The results support that the expansion of polyfunctional NKT-cells may have a beneficial effect on the immune response against pathogens. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging.

    PubMed

    Coder, Brandon; Wang, Weikan; Wang, Liefeng; Wu, Zhongdao; Zhuge, Qichuan; Su, Dong-Ming

    2017-01-24

    The interaction between T cells and the central nervous system (CNS) in homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 - Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, in-depth studies aimed to elucidate the precise in the aged microenvironment and the dichotomous role of Tregs have just begun and many aspects remain unclear. This is due, not only to a mutual dependency and reciprocal causation of alterations and diseases between the nervous and T cell immune systems, but also to an inconsistent aging of the two systems, which dynamically changes with CNS injury/recovery and/or aging process. Cellular immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution - sources of chronic inflammation in the elderly (termed inflammaging), potentially induces an acceleration of brain aging and memory loss. In turn, aging of the brain via neuro-endocrine-immune network drives total body systemic aging, including that of the immune system. Therefore, immunotherapeutics including vaccination and "protective autoimmunity" provide promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute injury and chronic neuro-degeneration. We review the current understanding and recent discoveries linking the aging immune system with CNS injury and neuro-degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, focusing on targeting the aging T cell immune system in an effort to alleviate acute brain injury and chronic neuro-degeneration during aging, via the "thymus-inflammaging-neurodegeneration axis".

  3. Effect of PKC-β Signaling Pathway on Expression of MCP-1 and VCAM-1 in Different Cell Models in Response to Advanced Glycation End Products (AGEs)

    PubMed Central

    Rempel, Lisienny C. T.; Finco, Alessandra B.; Maciel, Rayana A. P.; Bosquetti, Bruna; Alvarenga, Larissa M.; Souza, Wesley M.; Pecoits-Filho, Roberto; Stinghen, Andréa E. M.

    2015-01-01

    Advanced glycation end products (AGEs) are compounds classified as uremic toxins in patients with chronic kidney disease that have several pro-inflammatory effects and are implicated in the development of cardiovascular diseases. To explore the mechanisms of AGEs–endothelium interactions through the receptor for AGEs (RAGE) in the PKC-β pathway, we evaluated the production of MCP-1 and VCAM-1 in human endothelial cells (HUVECs), monocytes, and a coculture of both. AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. The effect of AGEs on cell viability was assessed with an MTT assay. The cells were also treated with AGEs with and without a PKC-β inhibitor. MCP-1 and VCAM-1 in the cell supernatants were estimated by ELISA, and RAGE was evaluated by immunocytochemistry. AGEs exposure did not affect cell viability, but AGEs induced RAGE, MCP-1, and VCAM-1 expression in HUVECs. When HUVECs or monocytes were incubated with AGEs and a PKC-β inhibitor, MCP-1 and VCAM-1 expression significantly decreased. However, in the coculture, exposure to AGEs and a PKC-β inhibitor produced no significant effect. This study demonstrates, in vitro, the regulatory mechanisms involved in MCP-1 production in three cellular models and VCAM-1 production in HUVECs, and thus mimics the endothelial dysfunction caused by AGEs in early atherosclerosis. Such mechanisms could serve as therapeutic targets to reduce the harmful effects of AGEs in patients with chronic kidney disease. PMID:26008233

  4. Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging

    PubMed Central

    Wang, Liefeng; Wu, Zhongdao; Zhuge, Qichuan; Su, Dong-Ming

    2017-01-01

    The interaction between T cells and the central nervous system (CNS) in homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 - Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, in-depth studies aimed to elucidate the precise in the aged microenvironment and the dichotomous role of Tregs have just begun and many aspects remain unclear. This is due, not only to a mutual dependency and reciprocal causation of alterations and diseases between the nervous and T cell immune systems, but also to an inconsistent aging of the two systems, which dynamically changes with CNS injury/recovery and/or aging process. Cellular immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution - sources of chronic inflammation in the elderly (termed inflammaging), potentially induces an acceleration of brain aging and memory loss. In turn, aging of the brain via neuro-endocrine-immune network drives total body systemic aging, including that of the immune system. Therefore, immunotherapeutics including vaccination and “protective autoimmunity” provide promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute injury and chronic neuro-degeneration. We review the current understanding and recent discoveries linking the aging immune system with CNS injury and neuro-degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, focusing on targeting the aging T cell immune system in an effort to alleviate acute brain injury and chronic neuro-degeneration during aging, via the “thymus-inflammaging-neurodegeneration axis”. PMID:27738345

  5. Loss of CD28 on Peripheral T Cells Decreases the Risk for Early Acute Rejection after Kidney Transplantation

    PubMed Central

    Dedeoglu, Burç; Meijers, Ruud W. J.; Klepper, Mariska; Hesselink, Dennis A.; Baan, Carla C.; Litjens, Nicolle H. R.; Betjes, Michiel G. H.

    2016-01-01

    Background End-stage renal disease patients have a dysfunctional, prematurely aged peripheral T-cell system. Here we hypothesized that the degree of premature T-cell ageing before kidney transplantation predicts the risk for early acute allograft rejection (EAR). Methods 222 living donor kidney transplant recipients were prospectively analyzed. EAR was defined as biopsy proven acute allograft rejection within 3 months after kidney transplantation. The differentiation status of circulating T cells, the relative telomere length and the number of CD31+ naive T cells were determined as T-cell ageing parameters. Results Of the 222 patients analyzed, 30 (14%) developed an EAR. The donor age and the historical panel reactive antibody score were significantly higher (p = 0.024 and p = 0.039 respectively) and the number of related donor kidney transplantation was significantly lower (p = 0.018) in the EAR group. EAR-patients showed lower CD4+CD28null T-cell numbers (p<0.01) and the same trend was observed for CD8+CD28null T-cell numbers (p = 0.08). No differences regarding the other ageing parameters were found. A multivariate Cox regression analysis showed that higher CD4+CD28null T-cell numbers was associated with a lower risk for EAR (HR: 0.65, p = 0.028). In vitro, a significant lower percentage of alloreactive T cells was observed within CD28null T cells (p<0.001). Conclusion Immunological ageing-related expansion of highly differentiated CD28null T cells is associated with a lower risk for EAR. PMID:26950734

  6. Aging-dependent DNA hypermethylation and gene expression of GSTM1 involved in T cell differentiation.

    PubMed

    Yeh, Shu-Hui; Liu, Cheng-Ling; Chang, Ren-Chieh; Wu, Chih-Chiang; Lin, Chia-Hsueh; Yang, Kuender D

    2017-07-25

    This study investigated whether aging was associated with epigenetic changes of DNA hypermethylation on immune gene expression and lymphocyte differentiation. We screened CG sites of methylation in blood leukocytes from different age populations, picked up genes with age-related increase of CG methylation content more than 15%, and validated immune related genes with CG hypermethylation involved in lymphocyte differentiation in the aged population. We found that 12 genes (EXHX1、 IL-10、 TSP50、 GSTM1、SLC5A5、SPI1、F2R、LMO2、PTPN6、FGFR2、MMP9、MET) were associated with promoter or exon one DNA hypermethylation in the aged group. Two immune related genes, GSTM1 and LMO2, were chosen to validate its aging-related CG hypermethylation in different leukocytes. We are the first to validate that GSTM1_P266 and LMO2_E128 CG methylation contents in T lymphocytes but not polymorphonuclear cells (PMNs) or mononuclear cells (MNCs) were significantly increased in the aged population. The GSTM1 mRNA expression in T lymphocytes but not PMNs or MNCs was inversely associated with the GSTM1 CG hypermethylation levels in the aged population studied. Further studies showed that lower GSTM1 CG methylation content led to the higher GSTM1 mRNA expression in T cells and knockdown of GSTM1 mRNA expression decreased type 1 T helper cell (Th1) differentiation in Jurkat T cells and normal adult CD4 T cells. The GSTM1_P266 hypermethylation in the aged population associated with lower GSTM1 mRNA expression was involved in Th1 differentiation, highlighting that modulation of aging-associated GSTM1 methylation may be able to enhance T helper cell immunity in the elders.

  7. [What will happen to molecular cell biomarkers of aging in case we cancel its program (of course, if it does exist)?].

    PubMed

    Khokhlov, A N

    2013-01-01

    Currently, gerontologists, evaluating the effectiveness of various impacts on the aging process, as a rule, use a variety of molecular cell biomarkers of aging. This provides much more rapid results than in the case of the survival curve obtaining. However, in many cases the usefulness of these biomarkers of aging is grounded in works devoted to what is called cellular/cell senescence. Unfortunately, the evolution of the term in recent years has led to the loss, to a large extent, of its original meaning, that is the changes of the cells during their replicative senescence ("on Hayflick's grounds"), similar to the changes of cells in the aging organism. At present, most of the work in this area is related to the induction of the relevant changes in the cells (usually transformed) by various DNA damaging factors. Such an approach, although is very important to define a strategy to fight cancer, but, yet again, takes us away from the study of the real mechanisms of organismal aging. In addition, there are reasons to believe that the biomarkers of aging, proposed by these studies (and in particular, the most popular of them--the activity of senescence-associated beta-galactosidase), are related, as a rule, to the proliferative status of the cells, which in the whole body is generally determined by proper implementing the program of development and differentiation, leading to the emergence of tissues and organs composed of postmitotic or very slowly proliferating cells. Therefore, the possible disabling the aging program, apparently, will not lead to any changes in the age dynamics of those biomarkers of aging. This conclusion brings us back to the need for obtaining the survival curves of experimental animals or humans as the only true (although the most time- and money-consuming) approach to evaluating the effectiveness of the modification of the aging process.

  8. Therapeutics with SPION-labeled stem cells for the main diseases related to brain aging: a systematic review.

    PubMed

    Alvarim, Larissa T; Nucci, Leopoldo P; Mamani, Javier B; Marti, Luciana C; Aguiar, Marina F; Silva, Helio R; Silva, Gisele S; Nucci-da-Silva, Mariana P; DelBel, Elaine A; Gamarra, Lionel F

    2014-01-01

    The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.

  9. NK cells of the oldest seniors represent constant and resistant to stimulation high expression of cellular protective proteins SIRT1 and HSP70.

    PubMed

    Kaszubowska, Lucyna; Foerster, Jerzy; Kaczor, Jan Jacek; Schetz, Daria; Ślebioda, Tomasz Jerzy; Kmieć, Zbigniew

    2018-01-01

    Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 ('the oldest'; n  = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 ('the old'; n  = 30; 75.6 ± 0.9 years) and the young ( n  = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between expression of these cellular protective proteins both in stimulated and non-stimulated cells. These phenomena may contribute to the long lifespan of this group of elderly. Interestingly, in NK cells SOD2 revealed a distinct role in cellular stress response since it showed sensitivity to stimulation increasing with age of participants. These observations provide novel data concerning the role of NK cells in the process of ageing.

  10. Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus.

    PubMed

    Patel, Dipika V; Sherwin, Trevor; McGhee, Charles N J

    2006-07-01

    To elucidate the structure of the human corneoscleral limbus by in vivo laser scanning confocal microscopy and to correlate limbal epithelial dimensions and density with the central epithelium and in relation to age. Fifty adult subjects were recruited into one of two age groups: younger (age<45 years) and older (age>or=45 years). Fifty left eyes of these 50 healthy subjects were examined by laser scanning in vivo confocal microscopy, to assess the basal epithelium of the central cornea and inferior limbus. Mean epithelial cell diameter, area, and density were calculated for the central basal epithelium, limbus-corneal basal epithelium, and limbus-palisade epithelium. Data were analyzed in relation to the two age groups, group A, 30+/-6 years (n=25; mean+/-SD), and group B, 60+/-11 years (n=25; P<0.01). Mean epithelial density in the limbus-cornea and limbus-palisade regions decreased significantly with age: limbus-cornea group A=7253+/-1077 cells/mm2 group B=6614+/-987 cells/mm2, P=0.03; limbus palisade group A=5409+/-799 cells/mm2, group B=5055+/-722 cells/mm2, P=0.03). Central corneal epithelial density did not change with age: group A=6162+/-503 cells/mm2, group B=6362+/-614 cells/mm2, P=0.08. Mean epithelial density was greatest at the limbus-cornea (7010+/-1081 cells/mm2) and lowest at the limbus-palisades (5289+/-847 cells/mm2). The mean width of palisade ridges was 25.0+/-6.3 microm. This is the first study to image clearly the living human corneal limbus by laser scanning in vivo confocal microscopy and to demonstrate quantitative changes in the basal epithelium with age.

  11. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D.

    PubMed

    Li, Yuan; Chang, Ye; Ye, Ning; Dai, Dongxue; Chen, Yintao; Zhang, Naijin; Sun, Guozhe; Sun, Yingxian

    2017-02-17

    We aimed to investigate the effect of advanced glycation end products (AGEs) on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs). Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay, real-time cell analyzer and 5-Ethynyl-2'-deoxyuridine (EdU) staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3) II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ) could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD) expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity.

  12. Advanced Glycation End Products Inhibit the Proliferation of Human Umbilical Vein Endothelial Cells by Inhibiting Cathepsin D

    PubMed Central

    Li, Yuan; Chang, Ye; Ye, Ning; Dai, Dongxue; Chen, Yintao; Zhang, Naijin; Sun, Guozhe; Sun, Yingxian

    2017-01-01

    We aimed to investigate the effect of advanced glycation end products (AGEs) on the proliferation and migration ability of human umbilical vein endothelial cells (HUVECs). Cell proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay, real-time cell analyzer and 5-Ethynyl-2′-deoxyuridine (EdU) staining. Cell migration was detected by wound-healing and transwell assay. AGEs significantly inhibited the proliferation and migration of HUVECs in a time-and dose-dependent way. Western blotting revealed that AGEs dramatically increased the expression of microtubule-associated protein 1 light chain 3 (LC3) II/I and p62. Immunofluorescence of p62 and acridine orange staining revealed that AGEs significantly increased the expression of p62 and the accumulation of autophagic vacuoles, respectively. Chloroquine (CQ) could further promote the expression of LC3 II/I and p62, increase the accumulation of autophagic vacuoles and promote cell injury induced by AGEs. In addition, AGEs reduced cathepsin D (CTSD) expression in a time-dependent way. Overexpression of wild-type CTSD significantly decreased the ratio of LC 3 II/I as well as p62 accumulation induced by AGEs, but overexpression of catalytically inactive mutant CTSD had no such effects. Only overexpression of wild-type CTSD could restore the proliferation of HUVECs inhibited by AGEs. However, overexpression of both wild-type CTSD and catalytically inactive mutant CTSD could promote the migration of HUVECs inhibited by AGEs. Collectively, our study found that AGEs inhibited the proliferation and migration in HUVECs and promoted autophagic flux, which in turn played a protective role against AGEs-induced cell injury. CTSD, in need of its catalytic activity, may promote proliferation in AGEs-treated HUVECs independent of the autophagy-lysosome pathway. Meanwhile, CTSD could improve the migration of AGEs-treated HUVECs regardless of its enzymatic activity. PMID:28218663

  13. Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging.

    PubMed

    Koehler, Christopher L; Perkins, Guy A; Ellisman, Mark H; Jones, D Leanne

    2017-08-07

    Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles. © 2017 Koehler et al.

  14. Green tea extract and aged garlic extract inhibit anion transport and sickle cell dehydration in vitro.

    PubMed

    Ohnishi, S T; Ohnishi, T; Ogunmola, G B

    2001-01-01

    Both green tea extract (GTE or tea polyphenols) and aged garlic extract (AGE) effectively inhibited in vitro dehydration of sickle red blood cells induced by K-Cl cotransport or red cell storage. For K-Cl cotransport induced by 500 mM urea, 0.3 mg/ml EGCg (epigallocatechin gallate; a major component in GTE) almost completely inhibited dehydration, and 6 mg/ml AGE inhibited dehydration to 30% of the control level. Both vitamins E and C had no effect at the level of 2 mM. Different tea extracts had different degrees of inhibition, but the inhibitory activity increased when the number of hydroxyl groups in the compounds increased. With storage of sickle cells at 4 degrees C for 6 days, the cells started to undergo spontaneous dehydration when incubated at 37 degrees C. Neither inhibitors for Ca-induced K efflux nor K-Cl cotransport could inhibit cell dehydration of stored sickle cells, but both GTE and AGE effectively inhibited it. Chloride efflux measurements using a chloride electrode demonstrated that both GTE and AGE inhibited anion transport in red blood cells. The inhibitory mechanism of these compounds may be related to anion transport inhibition, although involvement of their antioxidant activities can not yet be ruled out. Copyright 2001 Academic Press.

  15. NF-κB activation impairs somatic cell reprogramming in ageing.

    PubMed

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  16. Isolation of a stable subpopulation of mobilized dental pulp stem cells (MDPSCs) with high proliferation, migration, and regeneration potential is independent of age.

    PubMed

    Horibe, Hiroshi; Murakami, Masashi; Iohara, Koichiro; Hayashi, Yuki; Takeuchi, Norio; Takei, Yoshifumi; Kurita, Kenichi; Nakashima, Misako

    2014-01-01

    Insights into the understanding of the influence of the age of MSCs on their cellular responses and regenerative potential are critical for stem cell therapy in the clinic. We have isolated dental pulp stem cells (DPSCs) subsets based on their migratory response to granulocyte-colony stimulating factor (G-CSF) (MDPSCs) from young and aged donors. The aged MDPSCs were efficiently enriched in stem cells, expressing high levels of trophic factors with high proliferation, migration and anti-apoptotic effects compared to young MDPSCs. In contrast, significant differences in those properties were detected between aged and young colony-derived DPSCs. Unlike DPSCs, MDPSCs showed a small age-dependent increase in senescence-associated β-galactosidase (SA-β-gal) production and senescence markers including p16, p21, Interleukin (IL)-1β, -6, -8, and Groα in long-term culture. There was no difference between aged and young MDPSCs in telomerase activity. The regenerative potential of aged MDPSCs was similar to that of young MDPSCs in an ischemic hindlimb model and an ectopic tooth root model. These results demonstrated that the stem cell properties and the high regenerative potential of MDPSCs are independent of age, demonstrating an immense utility for clinical applications by autologous cell transplantation in dental pulp regeneration and ischemic diseases.

  17. Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism, altering peroxisomal and mitochondrial functionalities, and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death

    PubMed Central

    Arlia-Ciommo, Anthony; Leonov, Anna; Beach, Adam; Richard, Vincent R.; Bourque, Simon D.; Burstein, Michelle T.; Kyryakov, Pavlo; Gomez-Perez, Alejandra; Koupaki, Olivia; Feldman, Rachel; Titorenko, Vladimir I.

    2018-01-01

    A dietary regimen of caloric restriction delays aging in evolutionarily distant eukaryotes, including the budding yeast Saccharomyces cerevisiae. Here, we assessed how caloric restriction influences morphological, biochemical and cell biological properties of chronologically aging yeast advancing through different stages of the aging process. Our findings revealed that this low-calorie diet slows yeast chronological aging by mechanisms that coordinate the spatiotemporal dynamics of various cellular processes before entry into a non-proliferative state and after such entry. Caloric restriction causes a stepwise establishment of an aging-delaying cellular pattern by tuning a network that assimilates the following: 1) pathways of carbohydrate and lipid metabolism; 2) communications between the endoplasmic reticulum, lipid droplets, peroxisomes, mitochondria and the cytosol; and 3) a balance between the processes of mitochondrial fusion and fission. Through different phases of the aging process, the caloric restriction-dependent remodeling of this intricate network 1) postpones the age-related onsets of apoptotic and liponecrotic modes of regulated cell death; and 2) actively increases the chance of cell survival by supporting the maintenance of cellular proteostasis. Because caloric restriction decreases the risk of cell death and actively increases the chance of cell survival throughout chronological lifespan, this dietary intervention extends longevity of chronologically aging yeast. PMID:29662634

  18. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson’s disease?

    PubMed Central

    Chinta, Shankar J; Lieu, Christopher A; DeMaria, Marco; Laberge, Remi-Martin; Campisi, Judith; Andersen, Julie K

    2013-01-01

    Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson’s disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; i.e. the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. Based on recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non-neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder. PMID:23600398

  19. Aging, mortality, and the fast growth trade-off of Schizosaccharomyces pombe

    PubMed Central

    Nakaoka, Hidenori; Wakamoto, Yuichi

    2017-01-01

    Replicative aging has been demonstrated in asymmetrically dividing unicellular organisms, seemingly caused by unequal damage partitioning. Although asymmetric segregation and inheritance of potential aging factors also occur in symmetrically dividing species, it nevertheless remains controversial whether this results in aging. Based on large-scale single-cell lineage data obtained by time-lapse microscopy with a microfluidic device, in this report, we demonstrate the absence of replicative aging in old-pole cell lineages of Schizosaccharomyces pombe cultured under constant favorable conditions. By monitoring more than 1,500 cell lineages in 7 different culture conditions, we showed that both cell division and death rates are remarkably constant for at least 50–80 generations. Our measurements revealed that the death rate per cellular generation increases with the division rate, pointing to a physiological trade-off with fast growth under balanced growth conditions. We also observed the formation and inheritance of Hsp104-associated protein aggregates, which are a potential aging factor in old-pole cell lineages, and found that these aggregates exhibited a tendency to preferentially remain at the old poles for several generations. However, the aggregates were eventually segregated from old-pole cells upon cell division and probabilistically allocated to new-pole cells. We found that cell deaths were typically preceded by sudden acceleration of protein aggregation; thus, a relatively large amount of protein aggregates existed at the very ends of the dead cell lineages. Our lineage tracking analyses, however, revealed that the quantity and inheritance of protein aggregates increased neither cellular generation time nor cell death initiation rates. Furthermore, our results demonstrated that unusually large amounts of protein aggregates induced by oxidative stress exposure did not result in aging; old-pole cells resumed normal growth upon stress removal, despite the fact that most of them inherited significant quantities of aggregates. These results collectively indicate that protein aggregates are not a major determinant of triggering cell death in S. pombe and thus cannot be an appropriate molecular marker or index for replicative aging under both favorable and stressful environmental conditions. PMID:28632741

  20. Characteristic of Extracellular Zn2+ Influx in the Middle-Aged Dentate Gyrus and Its Involvement in Attenuation of LTP.

    PubMed

    Takeda, Atsushi; Koike, Yuta; Osaw, Misa; Tamano, Haruna

    2018-03-01

    An increased influx of extracellular Zn 2+ into neurons is a cause of cognitive decline. The influx of extracellular Zn 2+ into dentate granule cells was compared between young and middle-aged rats because of vulnerability of the dentate gyrus to aging. The influx of extracellular Zn 2+ into dentate granule cells was increased in middle-aged rats after injection of AMPA and high K + into the dentate gyrus, but not in young rats. Simultaneously, high K + -induced attenuation of LTP was observed in middle-aged rats, but not in young rats. The attenuation was rescued by co-injection of CaEDTA, an extracellular Zn 2+ chelator. Intracellular Zn 2+ in dentate granule cells was also increased in middle-aged slices with high K + , in which the increase in extracellular Zn 2+ was the same as young slices with high K + , suggesting that ability of extracellular Zn 2+ influx into dentate granule cells is greater in middle-aged rats. Furthermore, extracellular zinc concentration in the hippocampus was increased age-dependently. The present study suggests that the influx of extracellular Zn 2+ into dentate granule cells is more readily increased in middle-aged rats and that its increase is a cause of age-related attenuation of LTP in the dentate gyrus.

  1. Age-Dependent Metabolic and Immunosuppressive Effects of Tacrolimus.

    PubMed

    Krenzien, F; Quante, M; Heinbokel, T; Seyda, M; Minami, K; Uehara, H; Biefer, H R C; Schuitenmaker, J M; Gabardi, S; Splith, K; Schmelzle, M; Petrides, A K; Azuma, H; Pratschke, J; Li, X C; ElKhal, A; Tullius, S G

    2017-05-01

    Immunosuppression in elderly recipients has been underappreciated in clinical trials. Here, we assessed age-specific effects of the calcineurin inhibitor tacrolimus (TAC) in a murine transplant model and assessed its clinical relevance on human T cells. Old recipient mice exhibited prolonged skin graft survival compared with young animals after TAC administration. More important, half of the TAC dose was sufficient in old mice to achieve comparable systemic trough levels. TAC administration was able to reduce proinflammatory interferon-γ cytokine production and promote interleukin-10 production in old CD4 + T cells. In addition, TAC administration decreased interleukin-2 secretion in old CD4 + T cells more effectively while inhibiting the proliferation of CD4 + T cells in old mice. Both TAC-treated murine and human CD4 + T cells demonstrated an age-specific suppression of intracellular calcineurin levels and Ca 2+ influx, two critical pathways in T cell activation. Of note, depletion of CD8 + T cells did not alter allograft survival outcome in old TAC-treated mice, suggesting that TAC age-specific effects were mainly CD4 + T cell mediated. Collectively, our study demonstrates age-specific immunosuppressive capacities of TAC that are CD4 + T cell mediated. The suppression of calcineurin levels and Ca 2+ influx in both old murine and human T cells emphasizes the clinical relevance of age-specific effects when using TAC. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  2. Stem Cells and Aging.

    PubMed

    Koliakos, George

    2017-02-01

    The article is a presentation at the 4th Conference of ESAAM, which took place on October 30-31, 2015, in Athens, Greece. Its purpose was not to cover all aspects of cellular aging but to share with the audience of the Conference, in a 15-minute presentation, current knowledge about the rejuvenating and repairing somatic stem cells that are distinct from other stem cell types (such as embryonic or induced pluripotent stem cells), emphasize that our body in old age cannot take advantage of these rejuvenating cells, and provide some examples of novel experimental stem cell applications in the field of rejuvenation and antiaging biomedical research.

  3. The central role of muscle stem cells in regenerative failure with aging

    PubMed Central

    Blau, Helen M; Cosgrove, Benjamin D; Ho, Andrew T V

    2016-01-01

    Skeletal muscle mass, function, and repair capacity all progressively decline with aging, restricting mobility, voluntary function, and quality of life. Skeletal muscle repair is facilitated by a population of dedicated muscle stem cells (MuSCs), also known as satellite cells, that reside in anatomically defined niches within muscle tissues. In adult tissues, MuSCs are retained in a quiescent state until they are primed to regenerate damaged muscle through cycles of self-renewal divisions. With aging, muscle tissue homeostasis is progressively disrupted and the ability of MuSCs to repair injured muscle markedly declines. Until recently, this decline has been largely attributed to extrinsic age-related alterations in the microenvironment to which MuSCs are exposed. However, as highlighted in this Perspective, recent reports show that MuSCs also progressively undergo cell-intrinsic alterations that profoundly affect stem cell regenerative function with aging. A more comprehensive understanding of the interplay of stem cell–intrinsic and extrinsic factors will set the stage for improving cell therapies capable of restoring tissue homeostasis and enhancing muscle repair in the aged. PMID:26248268

  4. Accumulation of Senescent Cells in Mitotic Tissue of Aging Primates

    PubMed Central

    Jeyapalan, Jessie C.; Ferreira, Mark; Sedivy, John M.; Herbig, Utz

    2013-01-01

    Cellular senescence, a stress induced growth arrest of somatic cells, was first documented in cell cultures over forty years ago, however its physiological significance has only recently been demonstrated. Using novel biomarkers of cellular senescence we examined whether senescent cells accumulate in tissues from baboons of ages encompassing the entire lifespan of this species. We show that dermal fibroblasts, displaying markers of senescence such as telomere damage, active checkpoint kinase ATM, high levels of heterochromatin proteins and elevated levels of p16, accumulate in skin biopsies from baboons with advancing age. The number of dermal fibroblasts containing damaged telomeres reaches a value of over 15% of total fibroblasts, whereas 80% of cells contain high levels of the heterochromatin protein HIRA. In skeletal muscle, a postmitotic tissue, only a small percentage of myonuclei containing damaged telomeres were detected regardless of animal age. The presence of senescent cells in mitotic tissues might therefore be a contributing factor to aging and age related pathology and provides further evidence that cellular senescence is a physiological event. PMID:17116315

  5. Effects of advanced glycation end products on ezrin-dependent functions in LLC-PK1 proximal tubule cells.

    PubMed

    Bach, Leon A; Gallicchio, Marisa A; McRobert, E Anne; Tikoo, Anjali; Cooper, Mark E

    2005-06-01

    We have recently shown that advanced glycation products (AGEs) bind to the ERM (ezrin, radixin, moesin) family of proteins. ERM proteins act as cross-linkers between cell membrane proteins and the actin cytoskeleton. They are also involved in signal transduction pathways. They therefore have a critical role in normal cell processes, including modulation of cell shape, adhesion, and motility. We postulate that AGEs may contribute to diabetic complications by disrupting ERM function. In support of this hypothesis, AGEs inhibit ezrin-dependent tubulogenesis of proximal tubule cells. Phosphorylation is an important activating mechanism for ERM proteins, and AGEs inhibit ezrin phosphorylation mediated by the epidermal growth factor receptor.

  6. Overexpression of Insulin-Like Growth Factor 1 Enhanced the Osteogenic Capability of Aging Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Chen, Ching-Yun; Tseng, Kuo-Yun; Lai, Yen-Liang; Chen, Yo-Shen; Lin, Feng-Huei; Lin, Shankung

    2017-01-01

    Many studies have indicated that loss of the osteoblastogenic potential in bone marrow mesenchymal stem cells (bmMSCs) is the major component in the etiology of the aging-related bone deficit. But how the bmMSCs lose osteogenic capability in aging is unclear. Using 2-dimentional cultures, we examined the dose response of human bmMSCs, isolated from adult and aged donors, to exogenous insulin-like growth factor 1 (IGF-1), a growth factor regulating bone formation. The data showed that the mitogenic activity and the osteoblastogenic potential of bmMSCs in response to IGF-1 were impaired with aging, whereas higher doses of IGF-1 increased the proliferation rate and osteogenic potential of aging bmMSCs. Subsequently, we seeded IGF-1-overexpressing aging bmMSCs into calcium-alginate scaffolds and incubated in a bioreactor with constant perfusion for varying time periods to examine the effect of IGF-1 overexpression to the bone-forming capability of aging bmMSCs. We found that IGF-1 overexpression in aging bmMSCs facilitated the formation of cell clusters in scaffolds, increased the cell survival inside the cell clusters, induced the expression of osteoblast markers, and enhanced the biomineralization of cell clusters. These results indicated that IGF-1 overexpression enhanced cells' osteogenic capability. Thus, our data suggest that the aging-related loss of osteogenic potential in bmMSCs can be attributed in part to the impairment in bmMSCs' IGF-1 signaling, and support possible application of IGF-1-overexpressing autologous bmMSCs in repairing bone defect of the elderly and in producing bone graft materials for repairing large scale bone injury in the elderly.

  7. Moderate Exercise Mitigates the Detrimental Effects of Aging on Tendon Stem Cells.

    PubMed

    Zhang, Jianying; Wang, James H-C

    2015-01-01

    Aging is known to cause tendon degeneration whereas moderate exercise imparts beneficial effects on tendons. Since stem cells play a vital role in maintaining tissue integrity, in this study we aimed to define the effects of aging and moderate exercise on tendon stem/progenitor cells (TSCs) using in vitro and in vivo models. TSCs derived from aging mice (9 and 24 months) proliferated significantly slower than TSCs obtained from young mice (2.5 and 5 months). In addition, expression of the stem cell markers Oct-4, nucleostemin (NS), Sca-1 and SSEA-1 in TSCs decreased in an age-dependent manner. Interestingly, moderate mechanical stretching (4%) of aging TSCs in vitro significantly increased the expression of the stem cell marker, NS, but 8% stretching decreased NS expression. Similarly, 4% mechanical stretching increased the expression of Nanog, another stem cell marker, and the tenocyte-related genes, collagen I and tenomodulin. However, 8% stretching increased expression of the non-tenocyte-related genes, LPL, Sox-9 and Runx-2, while 4% stretching had minimal effects on the expression of these genes. In the in vivo study, moderate treadmill running (MTR) of aging mice (9 months) resulted in the increased proliferation rate of aging TSCs in culture, decreased lipid deposition, proteoglycan accumulation and calcification, and increased the expression of NS in the patellar tendons. These findings indicate that while aging impairs the proliferative ability of TSCs and reduces their stemness, moderate exercise can mitigate the deleterious effects of aging on TSCs and therefore may be responsible for decreased aging-induced tendon degeneration.

  8. Potential importance of B cells in aging and aging-associated neurodegenerative diseases.

    PubMed

    Biragyn, Arya; Aliseychik, Maria; Rogaev, Evgeny

    2017-04-01

    Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.

  9. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry

    PubMed Central

    Yang, Jing; McCormick, Mark A.; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K.; Li, Hao

    2015-01-01

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms. PMID:26351681

  10. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    PubMed

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  11. The influence of donor age on liver regeneration and hepatic progenitor cell populations.

    PubMed

    Ono, Yoshihiro; Kawachi, Shigeyuki; Hayashida, Tetsu; Wakui, Masatoshi; Tanabe, Minoru; Itano, Osamu; Obara, Hideaki; Shinoda, Masahiro; Hibi, Taizo; Oshima, Go; Tani, Noriyuki; Mihara, Kisyo; Kitagawa, Yuko

    2011-08-01

    Recent reports suggest that donor age might have a major impact on recipient outcome in adult living donor liver transplantation (LDLT), but the reasons underlying this effect remain unclear. The aims of this study were to compare liver regeneration between young and aged living donors and to evaluate the number of Thy-1+ cells, which have been reported to be human hepatic progenitor cells. LDLT donors were divided into 2 groups (Group O, donor age ≥ 50 years, n = 6 and Group Y, donor age ≤ 30 years, n = 9). The remnant liver regeneration rates were calculated on the basis of computed tomography volumetry on postoperative days 7 and 30. Liver tissue samples were obtained from donors undergoing routine liver biopsy or patients undergoing partial hepatectomy for metastatic liver tumors. Thy-1+ cells were isolated and counted using immunomagnetic activated cell sorting (MACS) technique. Donor liver regeneration rates were significantly higher in young donors compared to old donors (P = .042) on postoperative day 7. Regeneration rates were significantly higher after right lobe resection compared to rates after left lobe resection. The MACS findings showed that the number of Thy-1+ cells in the human liver consistently tended to decline with age. Our study revealed that liver regeneration is impaired with age after donor hepatectomy, especially after right lobe resection. The declining hepatic progenitor cell population might be one of the reasons for impaired liver regeneration in aged donors. Copyright © 2011 Mosby, Inc. All rights reserved.

  12. Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging.

    PubMed

    Renkema, Kristin R; Li, Gang; Wu, Angela; Smithey, Megan J; Nikolich-Žugich, Janko

    2014-01-01

    Naive T cell responses are eroded with aging. We and others have recently shown that unimmunized old mice lose ≥ 70% of Ag-specific CD8 T cell precursors and that many of the remaining precursors acquire a virtual (central) memory (VM; CD44(hi)CD62L(hi)) phenotype. In this study, we demonstrate that unimmunized TCR transgenic (TCRTg) mice also undergo massive VM conversion with age, exhibiting rapid effector function upon both TCR and cytokine triggering. Age-related VM conversion in TCRTg mice directly depended on replacement of the original TCRTg specificity by endogenous TCRα rearrangements, indicating that TCR signals must be critical in VM conversion. Importantly, we found that VM conversion had adverse functional effects in both old wild-type and old TCRTg mice; that is, old VM, but not old true naive, T cells exhibited blunted TCR-mediated, but not IL-15-mediated, proliferation. This selective proliferative senescence correlated with increased apoptosis in old VM cells in response to peptide, but decreased apoptosis in response to homeostatic cytokines IL-7 and IL-15. Our results identify TCR as the key factor in differential maintenance and function of Ag-specific precursors in unimmunized mice with aging, and they demonstrate that two separate age-related defects--drastic reduction in true naive T cell precursors and impaired proliferative capacity of their VM cousins--combine to reduce naive T cell responses with aging.

  13. Paeoniflorin ameliorates AGEs-induced mesangial cell injury through inhibiting RAGE/mTOR/autophagy pathway.

    PubMed

    Chen, Juan; Zhao, Di; Zhu, Maomao; Zhang, Minghua; Hou, Xuefeng; Ding, Wenbo; Sun, Shuai; Bu, Weiquan; Feng, Liang; Ma, Shiping; Jia, Xiaobin

    2017-05-01

    Glomerular mesangial cell plays a vital role in diabetic nephropathy (DN). Recent research has demonstrated that autophagy involved in the development of DN. Paeoniflorin (PF), a monoterpene glucoside, has been proved to attenuate advanced glycation end products (AGEs)-induced mesangial cell injury. However, the regulatory mechanism of PF on autophagy in mesangial cell remains unclear. The aim of this study was to explore the effect of PF on autophagy in AGEs-induced mesangial cell dysfunction. In this study, the leakage of the lactic dehydrogenase (LDH) into the extracellular medium was measured by LDH kit. Transmission electron microscopy (TEM) and mRFP-GFP-microtubule-associated protein light chain 3 (LC3) transfection were performed to observe the formation of autophagy in AGEs-induced mesangial cell. The RAGE/mTOR/autophagy pathway was analyzed by western blotting and small-interfering RNA transfection. Our results showed that the expression of LC3II, p62 were changed in a time-dependent manner in AGEs-stimulated mesangial cell. While PF could decrease the expression of LC3II/LC3I and reduce the number of autophagosomes. Knockdown of Atg5 promoted the protective effect of PF on AGEs-induced HBZY-1 injury. Furthermore, we found PF inhibited autophagy at least partly through inhibiting RAGE and upregulating the level of p-mTOR to against AGEs-induced mesangial cell dysfunction. Thus, PF could be a potential agent for the treatment of DN. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. [Anti-aging action of the total lactones of ginkgo on aging mice].

    PubMed

    Dong, Liu-yi; Fan, Li; Li, Gui-fang; Guo, Yan; Pan, Jian; Chen, Zhi-wu

    2004-03-01

    To investigate the effects of total lactones of ginkgo on aging by using D-galactose induced aging mice and natural aging mice. By using D-galactose induced aging mice, to detect the LF content in heart and liver, the Hyp content in liver, the MAO, GSH-Px activities and the NO content in cerebrum. The apoptosis of cerebral cell was determined by terminal deoxy-nucleotidyl transforase-mediated dUTP-digoxigenin nick end-labeling (Tunel) in natural aging mice. TLG was shown to increase the GSH-Px activities, reduce the NO content and decrease the MAO activity in cerebrum. Meanwhile, TLG was found to reduce the LF content in liver and heart and raise the Hyp content in liver. TLG was shown to inhibit apoptosis of cerebral cell and decrease the number of apoptotic cells in the brain. TLG possesses effect on antiaging via attenuating lipid peroxidation and NO and apoptosis of cerebral cells.

  15. Role of Immune Aging in Susceptibility to West Nile Virus.

    PubMed

    Yao, Yi; Montgomery, Ruth R

    2016-01-01

    West Nile virus (WNV) can cause severe neuroinvasive disease in humans and currently no vaccine or specific treatments are available. As aging is the most prominent risk factor for WNV, age-related immune dysregulation likely plays an essential role in host susceptibility to infection with WNV. In this review, we summarize recent findings in effects of aging on immune responses to WNV infection. In particular, we focus on the age-dependent dysregulation of innate immune cell types-neutrophils, macrophages, and dendritic cells-in response to WNV infection, as well as age-related alterations in NK cells and γδ T cells that may associate with increased WNV susceptibility in older people. We also highlight two advanced technologies, i.e., mass cytometry and microRNA profiling, which significantly contribute to systems-level study of immune dysregulation in aging and should facilitate new discoveries for therapeutic intervention against WNV.

  16. Prevention of psychological stress-induced immune suppression by aged garlic extract.

    PubMed

    Kyo, E; Uda, N; Ushijima, M; Kasuga, S; Itakura, Y

    1999-11-01

    We determined the effect of Aged Garlic Extract (AGE) on damage caused to immune function by a psychological stress using a communication box. After four days of a psychological stress, a decrease in spleen weight and spleen cells was observed in the psychological stress-exposed mice as compared normal mice (non-stress). AGE significantly prevented the decreases in spleen weight and cells. Additionally, AGE significantly prevented the reduction of hemolytic plaque-forming-cells in spleen cells and anti-SRBC antibody titer in serum caused by this psychological stress. Moreover, a reduction in NK activities was observed in the psychological stress-exposed mice as compared with normal mice (non-stress), whereas NK activities in the AGE administered mice were almost the same as normal mice (non-stress). These results indicate that psychological stress qualitatively and quantitatively impairs immune function, and that AGE is extremely useful for preventing psychologically-induced damage.

  17. New Advanced Technologies in Stem Cell Therapy

    DTIC Science & Technology

    2012-09-01

    directions for this project include investigating modulation of the IKK/NF-kB pathway as a means to rejuvenate the phenotype of aged muscle stem and...Reference 1. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young...the influence that age plays on the regeneration capacity of the cells. Study Design: We will investigate the effects of cell survival, proliferation

  18. New Advanced Technologies In Stem Cell Therapy

    DTIC Science & Technology

    2011-09-01

    rejuvenate the phenotype of aged muscle stem and progenitor cells. Clinical research should be conducted to test the efficacy of p65 inhibition...entothelial cells or pericytes). Finally we will investigate the influence that age plays on the regeneration capacity of the cells. Study Design: We...skeletal muscle when compared to male MDSCs, we will determine the influence that sex has on the hMDCs. Due to the fact that MDSCs isolated from aged

  19. The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer’s Disease

    PubMed Central

    Ko, Shun-Yao; Ko, Hshin-An; Chu, Kuo-Hsiung; Shieh, Tzong-Ming; Chi, Tzong-Cherng; Chen, Hong-I; Chang, Weng-Cheng; Chang, Shu-Shing

    2015-01-01

    Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer’s disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD. PMID:26587989

  20. The Possible Mechanism of Advanced Glycation End Products (AGEs) for Alzheimer's Disease.

    PubMed

    Ko, Shun-Yao; Ko, Hshin-An; Chu, Kuo-Hsiung; Shieh, Tzong-Ming; Chi, Tzong-Cherng; Chen, Hong-I; Chang, Weng-Cheng; Chang, Shu-Shing

    2015-01-01

    Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer's disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD.

  1. Modulation of dendritic cell and T cell cross-talk during aging: The potential role of checkpoint inhibitory molecules.

    PubMed

    Gardner, Joanne K; Mamotte, Cyril D S; Jackaman, Connie; Nelson, Delia J

    2017-09-01

    Dendritic cells (DCs) undergo continuous changes throughout life, and there is evidence that elderly DCs have a reduced capacity to stimulate T cells, which may contribute to impaired anti-tumour immune responses in elderly people with cancer. Changes in checkpoint inhibitory molecules/pathways during aging may be one mechanism that impairs the ability of elderly DCs to activate T cells. However, little is currently known regarding the combined effects of aging and cancer on DC and T cell inhibitory molecules/pathways. In this review, we discuss our current understanding of the influence of aging and cancer on key DC and T cell inhibitory molecules/pathways, the potential underlying cellular and molecular mechanisms contributing to their modulation, and the possibility of therapeutically targeting inhibitory molecules in elderly cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [The age-related changes in hemolymph cellular composition and in the spectrum of cytomorphological traits of hemocyte genetic damages in snail Lymnaea stagnalis].

    PubMed

    Koneva, O Iu; Afonin, V Iu; Dromashko, S E

    2006-01-01

    The age-related changes in hemolymph cellular composition of snail Lymnaea stagnalis (Gastropoda, Pulmonata) obtained from individuals of a natural population (the river Pripayt, Gomel region, Belarus) as well as in the spectrum of cytomorphological traits of hemocyte genetic damages have been studied. The percentage of the distinguished hemolymph cell types during the chosen age period was not revealed to change. The percentage of cells with different morphological attributes of cell death varied during ageing. The tendency to increase in the total level of dying cells was observed.

  3. Experimentally induced, synergistic late effects of a single dose of radiation and aging: significance in LKS fraction as compared with mature blood cells.

    PubMed

    Hirabayashi, Yoko; Tsuboi, Isao; Nakachi, Kei; Kusunoki, Yoichiro; Inoue, Tohru

    2015-03-01

    The number of murine mature blood cells recovered within 6 weeks after 2-Gy whole-body irradiation at 6 weeks of age, whereas in the case of the undifferentiated hematopoietic stem/progenitor cell (HSC/HPC) compartment [cells in the lineage-negative, c-kit-positive and stem-cell-antigen-1-positive (LKS) fraction], the numerical differences between mice with and without irradiation remained more than a year, but conclusively the cells showed numerical recovery. When mice were exposed to radiation at 6 months of age, acute damages of mature blood cells were rather milder probably because of their maturation with age; but again, cells in the LKS fraction were specifically damaged, and their numerical recovery was significantly delayed probably as a result of LKS-specific cellular damages. Interestingly, in contrast to the recovery of the number of cells in the LKS fraction, their quality was not recovered, which was quantitatively assessed on the basis of oxidative-stress-related fluorescence intensity. To investigate why the recovery in the number of cells in the LKS fraction was delayed, expression levels of genes related to cellular proliferation and apoptosis of cells in the bone marrow and LKS fraction were analyzed by real-time polymerase chain reaction (RT-PCR). In the case of 21-month-old mice after radiation exposure, Ccnd1, PiK3r1 and Fyn were overexpressed solely in cells in the LKS fraction. Because Ccnd1and PiK3r1 upregulated by aging were further upregulated by radiation, single-dose radiation seemed to induce the acceleration of aging, which is related to the essential biological responses during aging based on a lifetime-dependent relationship between a living creature and xenobiotic materials. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Aging-associated changes in L-type calcium channels in the left atria of dogs.

    PubMed

    Gan, Tian-Yi; Qiao, Weiwei; Xu, Guo-Jun; Zhou, Xian-Hui; Tang, Bao-Peng; Song, Jian-Guo; Li, Yao-Dong; Zhang, Jian; Li, Fa-Peng; Mao, Ting; Jiang, Tao

    2013-10-01

    Action potential (AP) contours vary considerably between the fibers of normal adult and aged left atria. The underlying ionic and molecular mechanisms that mediate these differences remain unknown. The aim of the present study was to investigate whether the L-type calcium current (I Ca.L ) and the L-type Ca 2+ channel of the left atria may be altered with age to contribute to atrial fibrillation (AF). Two groups of mongrel dogs (normal adults, 2-2.5 years old and older dogs, >8 years old) were used in this study. The inducibility of AF was quantitated using the cumulative window of vulnerability (WOV). A whole-cell patch-clamp was used to record APs and I Ca.L in left atrial (LA) cells obtained from the two groups of dogs. Protein and mRNA expression levels of the a1C (Cav1.2) subunit of the L-type calcium channel were assessed using western blotting and quantitative PCR (qPCR), respectively. Although the resting potential, AP amplitude and did not differ with age, the plateau potential was more negative and the APD 90 was longer in the aged cells compared with that in normal adult cells. Aged LA cells exhibited lower peak I Ca.L current densities than normal adult LA cells (P<0.05). In addition, the Cav1.2 mRNA and protein expression levels in LA cells were decreased in the aged group compared with those in the normal adult group. The lower AP plateau potential and the decreased I Ca.L of LA cells in aged dogs may contribute to the slow and discontinuous conduction of the left atria. Furthermore, the reduction of the expression levels of Cav1.2 with age may be the molecular mechanism that mediates the decline in I Ca.L with increasing age.

  5. Basic Biology of Skeletal Aging: Role of Stress Response Pathways

    PubMed Central

    2013-01-01

    Although a decline in bone formation and loss of bone mass are common features of human aging, the molecular mechanisms mediating these effects have remained unclear. Evidence from pharmacological and genetic studies in mice has provided support for a deleterious effect of oxidative stress in bone and has strengthened the idea that an increase in reactive oxygen species (ROS) with advancing age represents a pathophysiological mechanism underlying age-related bone loss. Mesenchymal stem cells and osteocytes are long-lived cells and, therefore, are more susceptible than other types of bone cells to the molecular changes caused by aging, including increased levels of ROS and decreased autophagy. However, short-lived cells like osteoblast progenitors and mature osteoblasts and osteoclasts are also affected by the altered aged environment characterized by lower levels of sex steroids, increased endogenous glucocorticoids, and higher oxidized lipids. This article reviews current knowledge on the effects of the aging process on bone, with particular emphasis on the role of ROS and autophagy in cells of the osteoblast lineage in mice. PMID:23825036

  6. B-Cell Activation and Tolerance Mediated by B-Cell Receptor, Toll-Like Receptor, and Survival Signal Crosstalk in SLE Pathogenesis

    DTIC Science & Technology

    2017-09-01

    Dec, 2016 "Integrating innate , adaptive, & survival signals to control B cell selection, homeostasis and tolerance" Pasteur Institute of Shanghai...secondary lymphoid tissues. Aging Dis. 2: 361–373. 8. Goenka, R., J. L. Scholz, M. S. Naradikian, and M. P. Cancro. 2014. Memory B cells form in aged...Scholz, and M. P. Cancro. 2011. A B- cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118: 1294–1304. 10. Rubtsov, A

  7. Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae

    PubMed Central

    Higuchi-Sanabria, Ryo; Pernice, Wolfgang M A; Vevea, Jason D; Alessi Wolken, Dana M; Boldogh, Istvan R; Pon, Liza A

    2014-01-01

    Aging determinants are asymmetrically distributed during cell division in S. cerevisiae, which leads to production of an immaculate, age-free daughter cell. During this process, damaged components are sequestered and retained in the mother cell, and higher functioning organelles and rejuvenating factors are transported to and/or enriched in the bud. Here, we will describe the key quality control mechanisms in budding yeast that contribute to asymmetric cell division of aging determinants including mitochondria, endoplasmic reticulum (ER), vacuoles, extrachromosomal rDNA circles (ERCs), and protein aggregates. PMID:25263578

  8. Defective Wound-healing in Aging Gingival Tissue.

    PubMed

    Cáceres, M; Oyarzun, A; Smith, P C

    2014-07-01

    Aging may negatively affect gingival wound-healing. However, little is known about the mechanisms underlying this phenomenon. The present study examined the cellular responses associated with gingival wound-healing in aging. Primary cultures of human gingival fibroblasts were obtained from healthy young and aged donors for the analysis of cell proliferation, cell invasion, myofibroblastic differentiation, and collagen gel remodeling. Serum from young and old rats was used to stimulate cell migration. Gingival repair was evaluated in Sprague-Dawley rats of different ages. Data were analyzed by the Mann-Whitney and Kruskal-Wallis tests, with a p value of .05. Fibroblasts from aged donors showed a significant decrease in cell proliferation, migration, Rac activation, and collagen remodeling when compared with young fibroblasts. Serum from young rats induced higher cell migration when compared with serum from old rats. After TGF-beta1 stimulation, both young and old fibroblasts demonstrated increased levels of alpha-SMA. However, alpha-SMA was incorporated into actin stress fibers in young but not in old fibroblasts. After 7 days of repair, a significant delay in gingival wound-healing was observed in old rats. The present study suggests that cell migration, myofibroblastic differentiation, collagen gel remodeling, and proliferation are decreased in aged fibroblasts. In addition, altered cell migration in wound-healing may be attributable not only to cellular defects but also to changes in serum factors associated with the senescence process. © International & American Associations for Dental Research.

  9. Aging Neural Progenitor Cells Have Decreased Mitochondrial Content and Lower Oxidative Metabolism*

    PubMed Central

    Stoll, Elizabeth A.; Cheung, Willy; Mikheev, Andrei M.; Sweet, Ian R.; Bielas, Jason H.; Zhang, Jing; Rostomily, Robert C.; Horner, Philip J.

    2011-01-01

    Although neurogenesis occurs in discrete areas of the adult mammalian brain, neural progenitor cells (NPCs) produce fewer new neurons with age. To characterize the molecular changes that occur during aging, we performed a proteomic comparison between primary-cultured NPCs from the young adult and aged mouse forebrain. This analysis yielded changes in proteins necessary for cellular metabolism. Mitochondrial quantity and oxygen consumption rates decrease with aging, although mitochondrial DNA in aged NPCs does not have increased mutation rates. In addition, aged cells are resistant to the mitochondrial inhibitor rotenone and proliferate in response to lowered oxygen conditions. These results demonstrate that aging NPCs display an altered metabolic phenotype, characterized by a coordinated shift in protein expression, subcellular structure, and metabolic physiology. PMID:21900249

  10. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging.

    PubMed

    Baar, Marjolein P; Brandt, Renata M C; Putavet, Diana A; Klein, Julian D D; Derks, Kasper W J; Bourgeois, Benjamin R M; Stryeck, Sarah; Rijksen, Yvonne; van Willigenburg, Hester; Feijtel, Danny A; van der Pluijm, Ingrid; Essers, Jeroen; van Cappellen, Wiggert A; van IJcken, Wilfred F; Houtsmuller, Adriaan B; Pothof, Joris; de Bruin, Ron W F; Madl, Tobias; Hoeijmakers, Jan H J; Campisi, Judith; de Keizer, Peter L J

    2017-03-23

    The accumulation of irreparable cellular damage restricts healthspan after acute stress or natural aging. Senescent cells are thought to impair tissue function, and their genetic clearance can delay features of aging. Identifying how senescent cells avoid apoptosis allows for the prospective design of anti-senescence compounds to address whether homeostasis can also be restored. Here, we identify FOXO4 as a pivot in senescent cell viability. We designed a FOXO4 peptide that perturbs the FOXO4 interaction with p53. In senescent cells, this selectively causes p53 nuclear exclusion and cell-intrinsic apoptosis. Under conditions where it was well tolerated in vivo, this FOXO4 peptide neutralized doxorubicin-induced chemotoxicity. Moreover, it restored fitness, fur density, and renal function in both fast aging Xpd TTD/TTD and naturally aged mice. Thus, therapeutic targeting of senescent cells is feasible under conditions where loss of health has already occurred, and in doing so tissue homeostasis can effectively be restored. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ovarian Stem Cell Nests in Reproduction and Ovarian Aging.

    PubMed

    Ye, Haifeng; Zheng, Tuochen; Li, Wei; Li, Xiaoyan; Fu, Xinxin; Huang, Yaoqi; Hu, Chuan; Li, Jia; Huang, Jian; Liu, Zhengyv; Zheng, Liping; Zheng, Yuehui

    2017-01-01

    The fixed primordial follicles pool theory, which monopolized reproductive medicine for more than one hundred years, has been broken by the discovery, successful isolation and establishment of ovarian stem cells. It has brought more hope than ever of increasing the size of primordial follicle pool, improving ovarian function and delaying ovarian consenescence. Traditional view holds that stem cell aging contributes to the senility of body and organs. However, in the process of ovarian aging, the main factor leading to the decline of the reproductive function is the aging and degradation of ovarian stem cell nests, rather than the senescence of ovarian germ cells themselves. Recent studies have found that the immune system and circulatory system are involved in the formation of ovarian germline stem cell niches, as well as regulating the proliferation and differentiation of ovarian germline stem cells through cellular and hormonal signals. Therefore, we can improve ovarian function and delay ovarian aging by improving the immune system and circulatory system, which will provide an updated program for the treatment of premature ovarian failure (POF) and infertility. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. GH Mediates Exercise-Dependent Activation of SVZ Neural Precursor Cells in Aged Mice

    PubMed Central

    Blackmore, Daniel G.; Vukovic, Jana; Waters, Michael J.; Bartlett, Perry F.

    2012-01-01

    Here we demonstrate, both in vivo and in vitro, that growth hormone (GH) mediates precursor cell activation in the subventricular zone (SVZ) of the aged (12-month-old) brain following exercise, and that GH signaling stimulates precursor activation to a similar extent to exercise. Our results reveal that both addition of GH in culture and direct intracerebroventricular infusion of GH stimulate neural precursor cells in the aged brain. In contrast, no increase in neurosphere numbers was observed in GH receptor null animals following exercise. Continuous infusion of a GH antagonist into the lateral ventricle of wild-type animals completely abolished the exercise-induced increase in neural precursor cell number. Given that the aged brain does not recover well after injury, we investigated the direct effect of exercise and GH on neural precursor cell activation following irradiation. This revealed that physical exercise as well as infusion of GH promoted repopulation of neural precursor cells in irradiated aged animals. Conversely, infusion of a GH antagonist during exercise prevented recovery of precursor cells in the SVZ following irradiation. PMID:23209615

  13. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults.

    PubMed

    Qin, Ling; Jing, Xie; Qiu, Zhifeng; Cao, Wei; Jiao, Yang; Routy, Jean-Pierre; Li, Taisheng

    2016-05-01

    Aging is a major risk factor for several conditions including neurodegenerative, cardiovascular diseases and cancer. Functional impairments in cellular pathways controlling genomic stability, and immune control have been identified. Biomarker of immune senescence is needed to improve vaccine response and to develop therapy to improve immune control. To identify phenotypic signature of circulating immune cells with aging, we enrolled 1068 Chinese healthy volunteers ranging from 18 to 80 years old. The decreased naïve CD4+ and CD8+ T cells, increased memory CD4+ or CD8+ T cells, loss of CD28 expression on T cells and reverse trend of CD38 and HLA-DR, were significant for aging of immune system. Conversely, the absolute counts and percentage of NK cells and CD19+B cells maintained stable in aging individuals. The Chinese reference ranges of absolute counts and percentage of peripheral lymphocyte in this study might be useful for future clinical evaluation.

  14. The cell biology of aging.

    PubMed

    Hayflick, L

    1985-02-01

    It is only within the past ten years that biogerontology has become attractive to a sufficient number of biologists so that the field can be regarded as a seriously studied discipline. Cytogerontology, or the study of aging at the cellular level, had its genesis about 20 years ago when the dogma that maintained that cultured normal cells could replicate forever was overturned. Normal human and animal cells have a finite capacity to replicate and function whether they are cultured in vitro or transplanted as grafts in vivo. This phenomenon has been interpreted to be aging at the cellular level. Only abnormal somatic cells are capable of immortality. In recent years it has been found that the number of population doublings of which cultured normal cells are capable is inversely proportional to donor age. There is also good evidence that the number of population doublings of cultured normal fibroblasts is directly proportional to the maximum lifespan of ten species that have been studied. Cultures prepared from patients with accelerated aging syndromes (progeria and Werner's syndrome) undergo far fewer doublings than do those of age-matched controls. The normal human fibroblast cell strain WI-38 was established in 1962 from fetal lung, and several hundred ampules of these cells were frozen in liquid nitrogen at that time. These ampules have been reconstituted periodically and shown to be capable of replication. This represents the longest period of time that a normal human cell has ever been frozen. Normal human fetal cell strains such as WI-38 have the capacity to double only about 50 times. If cultures are frozen at various population doublings, the number of doublings remaining after reconstitution is equal to 50 minus the number of doublings that occurred prior to freezing. The memory of the cells has been found to be accurate after 23 years of preservation in liquid nitrogen. Normal human cells incur many physiologic decrements that herald the approach of their failure to divide. Many of these functional decrements are identical to decrements found in humans as they age. Thus it is likely that these decrements are also the precursors of age changes in vivo. The finite replicative capacity of normal cells is never seen to occur in vivo because aging and death of the individual occurs well before the doubling limit is reached.

  15. On the relationship between cell cycle analysis with ergodic principles and age-structured cell population models.

    PubMed

    Kuritz, K; Stöhr, D; Pollak, N; Allgöwer, F

    2017-02-07

    Cyclic processes, in particular the cell cycle, are of great importance in cell biology. Continued improvement in cell population analysis methods like fluorescence microscopy, flow cytometry, CyTOF or single-cell omics made mathematical methods based on ergodic principles a powerful tool in studying these processes. In this paper, we establish the relationship between cell cycle analysis with ergodic principles and age structured population models. To this end, we describe the progression of a single cell through the cell cycle by a stochastic differential equation on a one dimensional manifold in the high dimensional dataspace of cell cycle markers. Given the assumption that the cell population is in a steady state, we derive transformation rules which transform the number density on the manifold to the steady state number density of age structured population models. Our theory facilitates the study of cell cycle dependent processes including local molecular events, cell death and cell division from high dimensional "snapshot" data. Ergodic analysis can in general be applied to every process that exhibits a steady state distribution. By combining ergodic analysis with age structured population models we furthermore provide the theoretic basis for extensions of ergodic principles to distribution that deviate from their steady state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. SPECIFICITIES OF ENDOMETRIAL PROLIFERATION/STEM CELL INDEX DISTRIBUTION IN ENDOMETRIOID CARCINOMA OF DIFFERENT GRADE OF MALIGNANCY.

    PubMed

    Kikalishvili, N; Beriashvili, R; Muzashvili, T; Burkadze, G

    2018-03-01

    Endometrial neoplasia is the most common malignant tumor of female genital system in developed countries. The incidence of endometrial cancer has increased in the last years and despite advances in diagnosis and treatment, the death rates have steadily been increasing over the past 20 years. Therefore aspects of endometrial cancer development, pathogenesis and effective treatment is especially urgent to this day, as much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Endometrial stem cells take the special place among somatic stem cells of female reproductive system-the detection of them and identification of their location in the complex cellular hierarchy still remains challenging. Further study of endometrial stem cells will clarify their role in gynecologic pathologies associated with hyper-proliferative states of endometrium. The aim of our study was to explore the specificities of endometrial proliferative/stem cell index distribution under endometrioid carcinoma of different grade of malignancy. The study represents a retrospective research. The coded and depersonalized material data from Acad. N. Kipshidze Central University Clinic was used in the study. 3 study groups - 1st study group "Endometrioid Carcinoma Grade 1" (14 cases), 2nd study group "Endometrioid Carcinoma Grade 2" (23 cases) and 3rd study group "Endometrioid Carcinoma Grade 3" were selected from routine histopathology tissue specimens of uterus. Hematoxilyn-eosin technology and immunohistochemistry with proliferation marker ki67 and stem cell marker CD146 was performed. The proliferative/stem cell index was calculated by the ratio of Ki67-positive cell percentage value divided by CD146-positive cell percentage value. The study showed that in the 1st study group labeled as "Endometrioid Carcinoma Grade 1", the proliferative/stem cell index ranges between 21.7 and 25.5. Its mean average value in the age distribution subgroups accounts for: 1.1) reproductive age - 22.4; 1.2) menopause - 23.5; 1.3) post-menopause - 24.8. Proliferative/stem cell index reaches its maximum in the samples retrieved from post-menopause age, and decreases significantly in reproductive age individuals. In the 2nd study group labeled as "Endometrioid Carcinoma Grade 2", the proliferative/stem cell index increases and ranges within the interval 23.2-27.8. Its mean average value in the age distribution subgroups accounts for: 2.1) reproductive age -23.7; 2.2) menopause - 24.2; 2.3) post-menopause - 25.8. In the 3rd study group labeled as "Endometrioid Carcinoma Grade 3", the proliferative/stem cell index markedly increases and ranges within the interval 25.8-29.4. Its mean average value in the age distribution subgroups accounts for: 3.1) reproductive age - 28.4; 3.2) menopause - 28.5; 3.3) post-menopause - 28.5. It was found that average value of proliferative/stem cell index in the 1st and 2nd study groups (EC Grade 1/2) keeps the same tendencies of increase in age subgroups as well as at endometrial hyperplasia conditions - in particular in both study groups increase in value of the proliferative/stem cell index in age subgroups makes about 1% (1st study group-0,97%, 2nd study group-0,96%). What about 3rd study group (EC Grade 3) average value of proliferative/stem cell index in age subgroups is almost the same. It was found that average value of proliferative/stem cell index in endometrioid carcinoma most markedly differs from the norm in post-menopause period. The study showed that average value of proliferative/stem cell index in endometrioid carcinoma cases (EC Grade 1/2) tends to increase with age like endometrial hyperplasia conditions, in contrast with the norm, where it is observed to progressively decrease with aging. The attention should be given to the fact that the mean average value of proliferative/stem cell index in endometrioid carcinoma Grade 3 is almost constant.

  17. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging.

    PubMed

    Paltsev, Michael A; Polyakova, Victoria O; Kvetnoy, Igor M; Anderson, George; Kvetnaia, Tatiana V; Linkova, Natalia S; Paltseva, Ekaterina M; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-03-15

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin А); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing.

  18. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging

    PubMed Central

    Paltsev, Michael A.; Polyakova, Victoria O.; Kvetnoy, Igor M.; Anderson, George; Kvetnaia, Tatiana V.; Linkova, Natalia S.; Paltseva, Ekaterina M.; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-01-01

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin A); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing. PMID:26943046

  19. Effect of PPARG on AGEs-induced AKT/MTOR signaling-associated human chondrocytes autophagy.

    PubMed

    Wang, Zhao-Jun; Zhang, Hai-Bin; Chen, Cheng; Huang, Hao; Liang, Jian-Xia

    2018-02-17

    Accumulation of advanced glycation end products (AGEs) in articular cartilage is thought to represent a major risk factor for osteoarthritis development. In this study we aimed to probe the role of AGEs in human chondrocytes and to determine the impact of the peroxisome proliferator-activated receptor-γ (PPARG) on AGEs-induced cell autophagy. Cell viability was measured after human chondrocytes were treated with different concentrations of AGEs with or without the PPARG inhibitor, T0070907, or agonist, pioglitazone. Autophagy activation markers (MAP2LC3, BECN1 and SQSTM1/P62), expression of PPARG and the phosphorylation levels of Akt/MTOR were determined by Western blotting; autophagosome formation was analyzed by transmission electron microscopy (TEM); autophagic flux was detected with mRFP-GFP-LC3 tandem construct. Low doses of AGEs over a short amount of time stimulated chondrocyte proliferation and autophagy by limiting phosphorylation of Akt/MTOR signaling. The addition of PPARG inhibitor T0070907 lead to defective autophagy. High dose and long exposure to AGEs inhibited cell viability and autophagy by increasing phosphorylation levels of Akt/MTOR signaling. The agonist, pioglitazone, was shown to protect cell autophagy in a dose-dependent manner. Our findings suggest AGEs can downregulate PPARG and that PPARG maintains cell viability by activating the Akt/MTOR signaling pathway as well as inducing chondrocyte autophagy. © 2018 International Federation for Cell Biology.

  20. Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss.

    PubMed

    Xiong, Hao; Pang, Jiaqi; Yang, Haidi; Dai, Min; Liu, Yimin; Ou, Yongkang; Huang, Qiuhong; Chen, Suijun; Zhang, Zhigang; Xu, Yaodong; Lai, Lan; Zheng, Yiqing

    2015-04-01

    The molecular mechanisms underlying age-related hearing loss are not fully understood, and currently, there is no treatment for this disorder. MicroRNAs have recently been reported to be increasingly associated with age-related diseases and are emerging as promising therapeutic targets. In this study, miR-34a/Sirtuin 1 (SIRT1)/p53 signaling was examined in cochlear hair cells during aging. MiR-34a, p53 acetylation, and apoptosis increased in the cochlea of C57BL/6 mice with aging, whereas an age-related decrease in SIRT1 was observed. In the inner ear HEI-OC1 cell line, miR-34a overexpression inhibited SIRT1, leading to an increase in p53 acetylation and apoptosis. Moreover, miR-34a knockdown increased SIRT1 expression and diminished p53 acetylation, and apoptosis. Additionally, resveratrol, an activator of SIRT1, significantly rescued miR-34a overexpression-induced HEI-OC1 cell death and significantly reduced hearing threshold shifts and hair cell loss in C57BL/6 mice after a 2-month administration. Our results support a link between age-related cochlear hair cell apoptosis and miR-34a/SIRT1/p53 signaling, which may serve as a potential target for age-related hearing loss treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology.

    PubMed

    Konsolaki, Eleni; Skaliora, Irini

    2015-08-01

    The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Microglial K+ Channel Expression in Young Adult and Aged Mice

    PubMed Central

    Schilling, Tom; Eder, Claudia

    2015-01-01

    The K+ channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K+ channels and their regulation in vivo is limited. Here, we have investigated K+ currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K+ currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K+ currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K+ current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K+ currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca2+-activated K+ channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K+ channel pattern nor K+ channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca2+-activated, K+ channels. PMID:25472417

  3. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing

    NASA Astrophysics Data System (ADS)

    Larsson, Fredrik; Bertilsson, Simon; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2018-01-01

    Commercial 6.8 Ah lithium-ion cells with different ageing/status have been abused by external heating in an oven. Prior to the abuse test, selected cells were aged either by C/2 cycling up to 300 cycles or stored at 60 °C. Gas emissions were measured by FTIR and three separate vents were identified, two well before the thermal runaway while the third occurred simultaneously with the thermal runaway releasing heavy smoke and gas. Emissions of toxic carbon monoxide (CO), hydrogen fluoride (HF) and phosphorous oxyfluoride (POF3) were detected in the third vent, regardless if there was a fire or not. All abused cells went into thermal runaway and emitted smoke and gas, the working cells also released flames as well as sparks. The dead cells were however less reactive but still underwent thermal runaway. For about half of the working cells, for all levels of cycle ageing, ignition of the accumulated battery released gases occurred about 15 s after the thermal runaway resulting in a gas explosion. The thermal runaway temperature, about 190 °C, varied somewhat for the different cell ageing/status where a weak local minimum was found for cells cycled between 100 and 200 times.

  4. Stem cells in degenerative orthopaedic pathologies: effects of aging on therapeutic potential.

    PubMed

    Atesok, Kivanc; Fu, Freddie H; Sekiya, Ichiro; Stolzing, Alexandra; Ochi, Mitsuo; Rodeo, Scott A

    2017-02-01

    The purpose of this study was to summarize the current evidence on the use of stem cells in the elderly population with degenerative orthopaedic pathologies and to highlight the pathophysiologic mechanisms behind today's therapeutic challenges in stem cell-based regeneration of destructed tissues in the elderly patients with osteoarthritis (OA), degenerative disc disease (DDD), and tendinopathies. Clinical and basic science studies that report the use of stem cells in the elderly patients with OA, DDD, and tendinopathies were identified using a PubMed search. The studies published in English have been assessed, and the best and most recent evidence was included in the current study. Evidence suggests that, although short-term results regarding the effects of stem cell therapy in degenerative orthopaedic pathologies can be promising, stem cell therapies do not appear to reverse age-related tissue degeneration. Causes of suboptimal outcomes can be attributed to the decrease in the therapeutic potential of aged stem cell populations and the regenerative capacity of these cells, which might be negatively influenced in an aged microenvironment within the degenerated tissues of elderly patients with OA, DDD, and tendinopathies. Clinical protocols guiding the use of stem cells in the elderly patient population are still under development, and high-level randomized controlled trials with long-term outcomes are lacking. Understanding the consequences of age-related changes in stem cell function and responsiveness of the in vivo microenvironment to stem cells is critical when designing cell-based therapies for elderly patients with degenerative orthopaedic pathologies.

  5. Activation of FoxM1 Revitalizes the Replicative Potential of Aged β-Cells in Male Mice and Enhances Insulin Secretion

    PubMed Central

    Golson, Maria L.; Dunn, Jennifer C.; Maulis, Matthew F.; Dadi, Prasanna K.; Osipovich, Anna B.; Magnuson, Mark A.; Jacobson, David A.

    2015-01-01

    Type 2 diabetes incidence increases with age, while β-cell replication declines. The transcription factor FoxM1 is required for β-cell replication in various situations, and its expression declines with age. We hypothesized that increased FoxM1 activity in aged β-cells would rejuvenate proliferation. Induction of an activated form of FoxM1 was sufficient to increase β-cell mass and proliferation in 12-month-old male mice after just 2 weeks. Unexpectedly, at 2 months of age, induction of activated FoxM1 in male mice improved glucose homeostasis with unchanged β-cell mass. Cells expressing activated FoxM1 demonstrated enhanced glucose-stimulated Ca2+ influx, which resulted in improved glucose tolerance through enhanced β-cell function. Conversely, our laboratory has previously demonstrated that mice lacking FoxM1 in the pancreas display glucose intolerance or diabetes with only a 60% reduction in β-cell mass, suggesting that the loss of FoxM1 is detrimental to β-cell function. Ex vivo insulin secretion was therefore examined in size-matched islets from young mice lacking FoxM1 in β-cells. Foxm1-deficient islets indeed displayed reduced insulin secretion. Our studies reveal that activated FoxM1 increases β-cell replication while simultaneously enhancing insulin secretion and improving glucose homeostasis, making FoxM1 an attractive therapeutic target for diabetes. PMID:26251404

  6. Age-specific bone tumour incidence rates are governed by stem cell exhaustion influencing the supply and demand of progenitor cells.

    PubMed

    Richardson, Richard B

    2014-07-01

    Knudson's carcinogenic model, which simulates incidence rates for retinoblastoma, provides compelling evidence for a two-stage mutational process. However, for more complex cancers, existing multistage models are less convincing. To fill this gap, I hypothesize that neoplasms preferentially arise when stem cell exhaustion creates a short supply of progenitor cells at ages of high proliferative demand. To test this hypothesis, published datasets were employed to model the age distribution of osteochondroma, a benign lesion, and osteosarcoma, a malignant one. The supply of chondrogenic stem-like cells in femur growth plates of children and adolescents was evaluated and compared with the progenitor cell demand of longitudinal bone growth. Similarly, the supply of osteoprogenitor cells from birth to old age was compared with the demands of bone formation. Results show that progenitor cell demand-to-supply ratios are a good risk indicator, exhibiting similar trends to the unimodal and bimodal age distributions of osteochondroma and osteosarcoma, respectively. The hypothesis also helps explain Peto's paradox and the finding that taller individuals are more prone to cancers and have shorter lifespans. The hypothesis was tested, in the manner of Knudson, by its ability to convincingly explain and demonstrate, for the first time, a bone tumour's bimodal age-incidence curve. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Lithium-ion Open Circuit Voltage (OCV) curve modelling and its ageing adjustment

    NASA Astrophysics Data System (ADS)

    Lavigne, L.; Sabatier, J.; Francisco, J. Mbala; Guillemard, F.; Noury, A.

    2016-08-01

    This paper is a contribution to lithium-ion batteries modelling taking into account aging effects. It first analyses the impact of aging on electrode stoichiometry and then on lithium-ion cell Open Circuit Voltage (OCV) curve. Through some hypotheses and an appropriate definition of the cell state of charge, it shows that each electrode equilibrium potential, but also the whole cell equilibrium potential can be modelled by a polynomial that requires only one adjustment parameter during aging. An adjustment algorithm, based on the idea that for two fixed OCVs, the state of charge between these two equilibrium states is unique for a given aging level, is then proposed. Its efficiency is evaluated on a battery pack constituted of four cells.

  8. c-Kit-positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy.

    PubMed

    Sanada, Fumihiro; Kim, Junghyun; Czarna, Anna; Chan, Noel Yan-Ki; Signore, Sergio; Ogórek, Barbara; Isobe, Kazuya; Wybieralska, Ewa; Borghetti, Giulia; Pesapane, Ada; Sorrentino, Andrea; Mangano, Emily; Cappetta, Donato; Mangiaracina, Chiara; Ricciardi, Mario; Cimini, Maria; Ifedigbo, Emeka; Perrella, Mark A; Goichberg, Polina; Choi, Augustine M; Kajstura, Jan; Hosoda, Toru; Rota, Marcello; Anversa, Piero; Leri, Annarosa

    2014-01-03

    Hypoxia favors stem cell quiescence, whereas normoxia is required for stem cell activation, but whether cardiac stem cell (CSC) function is regulated by the hypoxic/normoxic state of the cell is currently unknown. A balance between hypoxic and normoxic CSCs may be present in the young heart, although this homeostatic control may be disrupted with aging. Defects in tissue oxygenation occur in the old myocardium, and this phenomenon may expand the pool of hypoxic CSCs, which are no longer involved in myocyte renewal. Here, we show that the senescent heart is characterized by an increased number of quiescent CSCs with intact telomeres that cannot re-enter the cell cycle and form a differentiated progeny. Conversely, myocyte replacement is controlled only by frequently dividing CSCs with shortened telomeres; these CSCs generate a myocyte population that is chronologically young but phenotypically old. Telomere dysfunction dictates their actual age and mechanical behavior. However, the residual subset of quiescent young CSCs can be stimulated in situ by stem cell factor reversing the aging myopathy. Our findings support the notion that strategies targeting CSC activation and growth interfere with the manifestations of myocardial aging in an animal model. Although caution has to be exercised in the translation of animal studies to human beings, our data strongly suggest that a pool of functionally competent CSCs persists in the senescent heart and that this stem cell compartment can promote myocyte regeneration effectively, partly correcting the aging myopathy.

  9. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: Correlation with cytokines

    PubMed Central

    Brusnahan, S.K.; McGuire, T.R.; Jackson, J.D.; Lane, J.T.; Garvin, K.L.; O’Kane, B.J.; Berger, A.M.; Tuljapurkar, S.R.; Kessinger, M.A.; Sharp, J.G.

    2010-01-01

    Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N = 100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean = 30.7, SEM = 2) decreased and IL-6 levels (mean = 4.4, SEM = 1) increased with age as did marrow fat (mean = 1.2 mm fat/g, SEM = 0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive. PMID:21035480

  10. Development and aging of a brain neural stem cell niche.

    PubMed

    Conover, Joanne C; Todd, Krysti L

    2017-08-01

    In the anterior forebrain, along the lateral wall of the lateral ventricles, a neurogenic stem cell niche is found in a region referred to as the ventricular-subventricular zone (V-SVZ). In rodents, robust V-SVZ neurogenesis provides new neurons to the olfactory bulb throughout adulthood; however, with increasing age stem cell numbers are reduced and neurogenic capacity is significantly diminished, but new olfactory bulb neurons continue to be produced even in old age. Humans, in contrast, show little to no new neurogenesis after two years of age and whether V-SVZ neural stem cells persist in the adult human brain remains unclear. Here, we review functional and organizational differences in the V-SVZ stem cell niche of mice and humans, and examine how aging affects the V-SVZ niche and its associated functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. 8-Oxoguanine DNA glycosylase1-driven DNA repair-A paradoxical role in lung aging.

    PubMed

    German, Peter; Saenz, David; Szaniszlo, Peter; Aguilera-Aguirre, Leopoldo; Pan, Lang; Hegde, Muralidhar L; Bacsi, Attila; Hajas, Gyorgy; Radak, Zsolt; Ba, Xueqing; Mitra, Sankar; Papaconstantinou, John; Boldogh, Istvan

    2017-01-01

    Age-associated changes in lung structure and function are some of the most important predictors of overall health, cognitive activities and longevity. Common to all aging cells is an increase in oxidatively modified DNA bases, primarily 8-oxo-7,8-dihydroguanine (8-oxoG). It is repaired via DNA base excision repair pathway driven by 8-oxoguanine DNA glycosylase-1 (OGG1-BER), whose role in aging has been the focus of many studies. This study hypothesizes that signaling and consequent gene expression during cellular response to OGG1-BER "wires" senescence/aging processes. To test OGG1-BER was mimicked by repeatedly exposing diploid lung fibroblasts cells and airways of mice to 8-oxoG base. Results showed that repeated exposures led to G1 cell cycle arrest and pre-matured senescence of cultured cells in which over 1000 genes were differentially expressed -86% of them been identical to those in naturally senesced cells. Gene ontology analysis of gene expression displayed biological processes driven by small GTPases, phosphoinositide 3-kinase and mitogen activated kinase cascades both in cultured cells and lungs. These results together, points to a new paradigm about the role of DNA damage and repair by OGG1 in aging and age-associated disease processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells

    DOE PAGES

    Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.; ...

    2017-02-28

    Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less

  13. Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.

    Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less

  14. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  15. Deletion of Pofut1 in Mouse Skeletal Myofibers Induces Muscle Aging-Related Phenotypes in cis and in trans

    PubMed Central

    Zygmunt, Deborah A.; Singhal, Neha; Kim, Mi-Lyang; Cramer, Megan L.; Crowe, Kelly E.; Xu, Rui; Jia, Ying; Adair, Jessica; Martinez-Pena y Valenzuela, Isabel; Akaaboune, Mohammed; White, Peter; Janssen, Paulus M.

    2017-01-01

    ABSTRACT Sarcopenia, the loss of muscle mass and strength during normal aging, involves coordinate changes in skeletal myofibers and the cells that contact them, including satellite cells and motor neurons. Here we show that the protein O-fucosyltransferase 1 gene (Pofut1), which encodes a glycosyltransferase required for NotchR-mediated cell-cell signaling, has reduced expression in aging skeletal muscle. Moreover, premature postnatal deletion of Pofut1 in skeletal myofibers can induce aging-related phenotypes in cis within skeletal myofibers and in trans within satellite cells and within motor neurons via the neuromuscular junction. Changed phenotypes include reduced skeletal muscle size and strength, decreased myofiber size, increased slow fiber (type 1) density, increased muscle degeneration and regeneration in aged muscles, decreased satellite cell self-renewal and regenerative potential, and increased neuromuscular fragmentation and occasional denervation. Pofut1 deletion in skeletal myofibers reduced NotchR signaling in young adult muscles, but this effect was lost with age. Increasing muscle NotchR signaling also reduced muscle size. Gene expression studies point to regulation of cell cycle genes, muscle myosins, NotchR and Wnt pathway genes, and connective tissue growth factor by Pofut1 in skeletal muscle, with additional effects on α dystroglycan glycosylation. PMID:28265002

  16. Environmental stress, ageing and glial cell senescence: a novel mechanistic link to Parkinson's disease?

    PubMed

    Chinta, S J; Lieu, C A; Demaria, M; Laberge, R-M; Campisi, J; Andersen, J K

    2013-05-01

    Exposure to environmental toxins is associated with a variety of age-related diseases including cancer and neurodegeneration. For example, in Parkinson's disease (PD), chronic environmental exposure to certain toxins has been linked to the age-related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti-cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence-associated secretory phenotype (SASP; that is the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age-related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. On the basis of recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  17. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model.

    PubMed

    McClanahan, Fabienne; Riches, John C; Miller, Shaun; Day, William P; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M; Capasso, Melania; Gribben, John G

    2015-07-09

    T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3(+)CD8(+) T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1(+) T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8(+) T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. © 2015 by The American Society of Hematology.

  18. Mechanisms of PD-L1/PD-1–mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eµ-TCL1 CLL mouse model

    PubMed Central

    McClanahan, Fabienne; Riches, John C.; Miller, Shaun; Day, William P.; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M.; Capasso, Melania

    2015-01-01

    T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3+CD8+ T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1+ T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8+ T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. PMID:25979947

  19. The age-dependent epigenetic and physiological changes in an Arabidopsis T87 cell suspension culture during long-term cultivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwiatkowska, Aleksandra, E-mail: A.Kwiatkows@gmail.com; Zebrowski, Jacek; Oklejewicz, Bernadetta

    2014-05-02

    Highlights: • A decrease in proliferation rate during long-term cultivation of Arabidopsis cells. • Age-dependent increase in senescence-associated gene expression in Arabidopsis cells. • Age-related increase in DNA methylation, H3K9me2, and H3K27me3 in Arabidopsis cells. • High potential of photosynthetic efficiency of long-term cultured Arabidopsis cells. - Abstract: Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic andmore » physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.« less

  20. Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement.

    PubMed

    Kellner, Manuela; Steindorff, Marina M; Strempel, Jürgen F; Winkel, Andreas; Kühnel, Mark P; Stiesch, Meike

    2014-06-01

    Autologous therapy via stem cell-based tissue regeneration is an aim to rebuild natural teeth. One option is the use of adult stem cells from the dental pulp (DPSCs), which have been shown to differentiate into several types of tissue in vitro and in vivo, especially into tooth-like structures. DPSCs are mainly isolated from the dental pulp of third molars routinely extracted for orthodontic reasons. Due to the extraction of third molars at various phases of life, DPSCs are isolated at different developmental stages of the tooth. The present study addressed the question whether DPSCs from patients of different ages were similar in their growth characteristics with respect to the stage of tooth development. Therefore DPSCs from third molars of 12-30 year-old patients were extracted, and growth characteristics, e.g. doubling time and maximal cell division potential were analysed. In addition, pulp and hard dental material weight were recorded. Irrespective of the age of patients almost all isolated cells reached 40-60 generations with no correlation between maximal cell division potential and patient age. Cells from patients <22 years showed a significantly faster doubling time than the cells from patients ≥22 years. The age of patients at the time of stem cell isolation is not a crucial factor concerning maximal cell division potential, but does have an impact on the doubling time. However, differences in individuals regarding growth characteristics were more pronounced than age-dependent differences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy

    PubMed Central

    Wei, Ying; Gao, Jiaqi; Qin, Lingling; Xu, Yunling; Shi, Haoxia; Qu, Lingxia; Liu, Yongqiao; Xu, Tunhai; Liu, Tonghua

    2017-01-01

    Renal tubular cell apoptosis and tubular dysfunction is an important process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney damage associated with glucotoxicity. Curcumin has been demonstrated to possess potent anti-apoptotic properties. However, the roles of curcumin in renal epithelial cells are yet to be defined. The present study investigated advanced glycation or glycoxidation end-product (AGE)-induced toxicity in renal tubular epithelial cells via several complementary assays, including cell viability, cell apoptosis and cell autophagy in the NRK-52E rat kidney tubular epithelial cell line. The extent of apoptosis was significantly increased in the NRK-52E cells following treatment with AGEs. The results also indicated that curcumin reversed this effect by promoting autophagy through the phosphoinositide 3-kinase/AKT serine/threonine kinase signaling pathway. These conclusions suggested that curcumin exerts a renoprotective effect in the presence of AGEs, at least in part by activating autophagy in NRK-52E cells. Collectively, these findings indicate that curcumin not only exerts renoprotective effects, however may also act as a novel therapeutic strategy for the treatment of diabetic nephropathy. PMID:29285156

  2. Endothelial transplantation rejuvenates aged hematopoietic stem cell function

    PubMed Central

    Poulos, Michael G.; Gutkin, Michael C.; Llanos, Pierre; Gilleran, Katherine; Rabbany, Sina Y.; Butler, Jason M.

    2017-01-01

    Age-related changes in the hematopoietic compartment are primarily attributed to cell-intrinsic alterations in hematopoietic stem cells (HSCs); however, the contribution of the aged microenvironment has not been adequately evaluated. Understanding the role of the bone marrow (BM) microenvironment in supporting HSC function may prove to be beneficial in treating age-related functional hematopoietic decline. Here, we determined that aging of endothelial cells (ECs), a critical component of the BM microenvironment, was sufficient to drive hematopoietic aging phenotypes in young HSCs. We used an ex vivo hematopoietic stem and progenitor cell/EC (HSPC/EC) coculture system as well as in vivo EC infusions following myelosuppressive injury in mice to demonstrate that aged ECs impair the repopulating activity of young HSCs and impart a myeloid bias. Conversely, young ECs restored the repopulating capacity of aged HSCs but were unable to reverse the intrinsic myeloid bias. Infusion of young, HSC-supportive BM ECs enhanced hematopoietic recovery following myelosuppressive injury and restored endogenous HSC function in aged mice. Coinfusion of young ECs augmented aged HSC engraftment and enhanced overall survival in lethally irradiated mice by mitigating damage to the BM vascular microenvironment. These data lay the groundwork for the exploration of EC therapies that can serve as adjuvant modalities to enhance HSC engraftment and accelerate hematopoietic recovery in the elderly population following myelosuppressive regimens. PMID:29035282

  3. Transcriptional Noise and Somatic Mutations in the Aging Pancreas.

    PubMed

    Swisa, Avital; Kaestner, Klaus H; Dor, Yuval

    2017-12-05

    The underlying mechanisms and functional significance of pancreatic β cell heterogeneity are an intensive area of investigation. In a recent Cell paper, Enge and colleagues (2017) performed single-cell RNA sequencing of human pancreatic cells and concluded that with age, pancreatic cells become transcriptionally noisy and accumulate somatic mutations. Copyright © 2017. Published by Elsevier Inc.

  4. Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals.

    PubMed

    Soroka, Yoram; Ma'or, Zeev; Leshem, Yael; Verochovsky, Lilian; Neuman, Rami; Brégégère, François Menahem; Milner, Yoram

    2008-10-01

    The aging process and its characterization in keratinocytes have not been studied in depth until now. We have assessed the cellular and molecular characteristics of aged epidermal keratinocytes in monolayer cultures and in skin by measuring their morphological, fluorometric and biochemical properties. Light and electron microscopy, as well as flow cytometry, revealed increase in cell size, changes in cell shape, alterations in mitochondrial structure and cytoplasmic content with aging. We showed that the expression of 16 biochemical markers was altered in aged cultured cells and in tissues, including caspases 1 and 3 and beta-galactosidase activities, immunoreactivities of p16, Ki67, 20S proteasome and effectors of the Fas-dependent apoptotic pathway. Aged cells diversity, and individual variability of aging markers, call for a multifunctional assessment of the aging phenomenon, and of its modulation by drugs. As a test case, we have measured the effects of Dead Sea minerals on keratinocyte cultures and human skin, and found that they stimulate proliferation and mitochondrial activity, decrease the expression of some aging markers, and limit apoptotic damage after UVB irradiation.

  5. Circadian rhythm of the Leydig cells endocrine function is attenuated during aging.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Bjelic, Maja M; Radovic, Sava M; Andric, Silvana A; Kostic, Tatjana S

    2016-01-01

    Although age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion. Although arrhythmic, the expression of Insl3, another secretory product of Leydig cells, was decreased in both groups. Intracellular cAMP and most important steroidogenic genes (Star, Cyp11a1 and Cyp17a1), together with positive steroidogenic regulator (Nur77), showed preserved circadian rhythm in aging although rhythm robustness and expression level were attenuated in both aged groups. Aging compromised cholesterol mobilization and uptake by Leydig cells: the oscillatory transcription pattern of genes encoding HDL-receptor (Scarb1), hormone sensitive lipase (Lipe, enzyme that converts cholesterol esters from lipid droplets into free cholesterol) and protein responsible for forming the cholesterol esters (Soat2) were flattened in 24-month group. The majority of examined clock genes displayed circadian behavior in expression but only a few of them (Bmal1, Per1, Per2, Per3 and Rev-Erba) were reduced in 24-month-old group. Furthermore, aging reduced oscillatory expression pattern of Sirt1 and Nampt, genes encoding key enzymes that connect cellular metabolism and circadian network. Altogether circadian amplitude of Leydig cell's endocrine function decreased during aging. The results suggest that clock genes are more resistant to aging than genes involved in steroidogenesis supporting the hypothesis about peripheral clock involvement in rhythm maintenance during aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Early Generated B-1-Derived B Cells Have the Capacity To Progress To Become Mantle Cell Lymphoma-like Neoplasia in Aged Mice.

    PubMed

    Hayakawa, Kyoko; Formica, Anthony M; Nakao, Yuka; Ichikawa, Daiju; Shinton, Susan A; Brill-Dashoff, Joni; Smith, Mitchell R; Morse, Herbert C; Hardy, Richard R

    2018-06-13

    In mice, fetal/neonatal B-1 cell development generates murine CD5 + B cells (B1a) with autoreactivity. We analyzed B1a cells at the neonatal stage in a V H 11/D/J H knock-in mouse line (V H 11t) that generates an autoreactive antiphosphatidylcholine BCR. Our study revealed that antiphosphatidylcholine B1a cells develop in liver, mature in spleen, and distribute in intestine/colon, mesenteric lymph node (mLN), and body cavity as the outcome of B-1 cell development before B-2 cell development. Throughout life, self-renewing B-1 B1a cells circulate through intestine, mesenteric vessel, and blood. The body cavity-deposited B1a cells also remigrate. In old age, some B1a cells proceed to monoclonal B cell lymphocytosis. When neonatal B-1 B1a cells express an antithymocyte/Thy-1 autoreactivity (ATA) BCR transgene in the C.B17 mouse background, ATA B cells increase in PBL and strongly develop lymphomas in aging mice that feature splenomegaly and mLN hyperplasia with heightened expression of CD11b, IL-10, and activated Stat3. At the adult stage, ATA B cells were normally present in the mantle zone area, including in intestine. Furthermore, frequent association with mLN hyperplasia suggests the influence by intestinal microenvironment on lymphoma development. When cyclin D1 was overexpressed by the Eμ-cyclin D1 transgene, ATA B cells progressed to further diffused lymphoma in aged mice, including in various lymph nodes with accumulation of IgM hi IgD lo CD5 + CD23 - CD43 + cells, resembling aggressive human mantle cell lymphoma. Thus, our findings reveal that early generated B cells, as an outcome of B-1 cell development, can progress to become lymphocytosis, lymphoma, and mantle cell lymphoma-like neoplasia in aged mice. Copyright © 2018 by The American Association of Immunologists, Inc.

  7. Calorie Restriction Attenuates Terminal Differentiation of Immune Cells.

    PubMed

    White, Matthew J; Beaver, Charlotte M; Goodier, Martin R; Bottomley, Christian; Nielsen, Carolyn M; Wolf, Asia-Sophia F M; Boldrin, Luisa; Whitmore, Charlotte; Morgan, Jennifer; Pearce, Daniel J; Riley, Eleanor M

    2016-01-01

    Immune senescence is a natural consequence of aging and may contribute to frailty and loss of homeostasis in later life. Calorie restriction increases healthy life-span in C57BL/6J (but not DBA/2J) mice, but whether this is related to preservation of immune function, and how it interacts with aging, is unclear. We compared phenotypic and functional characteristics of natural killer (NK) cells and T cells, across the lifespan, of calorie-restricted (CR) and control C57BL/6 and DBA/2 mice. Calorie restriction preserves a naïve T cell phenotype and an immature NK cell phenotype as mice age. The splenic T cell populations of CR mice had higher proportions of CD11a - CD44 lo cells, lower expression of TRAIL, KLRG1, and CXCR3, and higher expression of CD127, compared to control mice. Similarly, splenic NK cells from CR mice had higher proportions of less differentiated CD11b - CD27 + cells and correspondingly lower proportions of highly differentiated CD11b + CD27 - NK cells. Within each of these subsets, cells from CR mice had higher expression of CD127, CD25, TRAIL, NKG2A/C/E, and CXCR3 and lower expression of KLRG1 and Ly49 receptors compared to controls. The effects of calorie restriction on lymphoid cell populations in lung, liver, and lymph nodes were identical to those seen in the spleen, indicating that this is a system-wide effect. The impact of calorie restriction on NK cell and T cell maturation is much more profound than the effect of aging and, indeed, calorie restriction attenuates these age-associated changes. Importantly, the effects of calorie restriction on lymphocyte maturation were more marked in C57BL/6 than in DBA/2J mice indicating that delayed lymphocyte maturation correlates with extended lifespan. These findings have implications for understanding the interaction between nutritional status, immunity, and healthy lifespan in aging populations.

  8. From the Hayflick mosaic to the mosaics of ageing. Role of stress-induced premature senescence in human ageing.

    PubMed

    Toussaint, Olivier; Remacle, Jose; Dierick, Jean-François; Pascal, Thierry; Frippiat, Christophe; Zdanov, Stéphanie; Magalhaes, Joao Pedro; Royer, Véronique; Chainiaux, Florence

    2002-11-01

    The Hayflick limit-senescence of proliferative cell types-is a fundamental feature of proliferative cells in vitro. Various human proliferative cell types exposed in vitro to many types of subcytotoxic stresses undergo stress-induced premature senescence (SIPS) (also called stress-induced premature senescence-like phenotype, according to the definition of senescence). The known mechanisms of appearance the main features of SIPS are reviewed: senescent-like morphology, growth arrest, senescence-related changes in gene expression, telomere shortening. Long before telomere-shortening induces senescence, other factors such as culture conditions or lack of 'feeder cells' can trigger either SIPS or prolonged reversible G(0) phase of the cell cycle. In vivo, 'proliferative' cell types of aged individuals are likely to compose a mosaic made of cells irreversibly growth arrested or not. The higher level of stress to which these cells have been exposed throughout their life span, the higher proportion of the cells of this mosaic will be in SIPS rather than in telomere-shortening dependent senescence. All cell types undergoing SIPS in vivo, most notably the ones in stressful conditions, are likely to participate in the tissular changes observed along ageing. For instance, human diploid fibroblasts (HDFs) exposed in vivo and in vitro to pro-inflammatory cytokines display biomarkers of senescence and might participate in the degradation of the extracellular matrix observed in ageing.

  9. Rapid NK cell differentiation in a population with near-universal human cytomegalovirus infection is attenuated by NKG2C deletions.

    PubMed

    Goodier, Martin R; White, Matthew J; Darboe, Alansana; Nielsen, Carolyn M; Goncalves, Adriana; Bottomley, Christian; Moore, Sophie E; Riley, Eleanor M

    2014-10-02

    Natural killer (NK) cells differentiate and mature during the human life course; human cytomegalovirus (HCMV) infection is a known driver of this process. We have explored human NK cell phenotypic and functional maturation in a rural African (Gambian) population with a high prevalence of HCMV. The effect of age on the frequency, absolute number, phenotype, and functional capacity of NK cells was monitored in 191 individuals aged from 1 to 49 years. Increasing frequencies of NK cells with age were associated with increased proportions of CD56dim cells expressing the differentiation marker CD57 and expansion of the NKG2C+ subset. Frequencies of NK cells responding to exogenous cytokines declined with age in line with a decreased proportion of CD57- cells. These changes coincided with a highly significant drop in anti-HCMV IgG titers by the age of 10 years, suggesting that HCMV infection is brought under control as NK cells differentiate (or vice versa). Deletion at the NKG2C locus was associated with a gene dose-dependent reduction in proportions of CD94+ and CD57+ NK cells. Importantly, anti-HCMV IgG titers were significantly elevated in NKG2C-/- children, suggesting that lack of expression of NKG2C may be associated with altered control of HCMV in childhood. © 2014 by The American Society of Hematology.

  10. Rapid NK cell differentiation in a population with near-universal human cytomegalovirus infection is attenuated by NKG2C deletions

    PubMed Central

    Goodier, Martin R.; White, Matthew J.; Darboe, Alansana; Nielsen, Carolyn M.; Goncalves, Adriana; Bottomley, Christian; Moore, Sophie E.

    2014-01-01

    Natural killer (NK) cells differentiate and mature during the human life course; human cytomegalovirus (HCMV) infection is a known driver of this process. We have explored human NK cell phenotypic and functional maturation in a rural African (Gambian) population with a high prevalence of HCMV. The effect of age on the frequency, absolute number, phenotype, and functional capacity of NK cells was monitored in 191 individuals aged from 1 to 49 years. Increasing frequencies of NK cells with age were associated with increased proportions of CD56dim cells expressing the differentiation marker CD57 and expansion of the NKG2C+ subset. Frequencies of NK cells responding to exogenous cytokines declined with age in line with a decreased proportion of CD57− cells. These changes coincided with a highly significant drop in anti-HCMV IgG titers by the age of 10 years, suggesting that HCMV infection is brought under control as NK cells differentiate (or vice versa). Deletion at the NKG2C locus was associated with a gene dose-dependent reduction in proportions of CD94+ and CD57+ NK cells. Importantly, anti-HCMV IgG titers were significantly elevated in NKG2C−/− children, suggesting that lack of expression of NKG2C may be associated with altered control of HCMV in childhood. PMID:25150297

  11. Changes in cell-cycle kinetics responsible for limiting somatic growth in mice

    PubMed Central

    Chang, Maria; Parker, Elizabeth A.; Muller, Tessa J. M.; Haenen, Caroline; Mistry, Maanasi; Finkielstain, Gabriela P.; Murphy-Ryan, Maureen; Barnes, Kevin M.; Sundaram, Rajeshwari; Baron, Jeffrey

    2009-01-01

    In mammals, the rate of somatic growth is rapid in early postnatal life but then slows with age, approaching zero as the animal approaches adult body size. To investigate the underlying changes in cell-cycle kinetics, [methyl-3H]thymidine and 5’-bromo-2’deoxyuridine were used to double-label proliferating cells in 1-, 2-, and 3-week-old mice for four weeks. Proliferation of renal tubular epithelial cells and hepatocytes decreased with age. The average cell-cycle time did not increase in liver and increased only 1.7 fold in kidney. The fraction of cells in S-phase that will divide again declined approximately 10 fold with age. Concurrently, average cell area increased approximately 2 fold. The findings suggest that somatic growth deceleration primarily results not from an increase in cell-cycle time but from a decrease in growth fraction (fraction of cells that continue to proliferate). During the deceleration phase, cells appear to reach a proliferative limit and undergo their final cell divisions, staggered over time. Concomitantly, cells enlarge to a greater volume, perhaps because they are relieved of the size constraint imposed by cell division. In conclusion, a decline in growth fraction with age causes somatic growth deceleration and thus sets a fundamental limit on adult body size. PMID:18535488

  12. The specific localization of advanced glycation end-products (AGEs) in rat pancreatic islets.

    PubMed

    Morioka, Yuta; Teshigawara, Kiyoshi; Tomono, Yasuko; Wang, Dengli; Izushi, Yasuhisa; Wake, Hidenori; Liu, Keyue; Takahashi, Hideo Kohka; Mori, Shuji; Nishibori, Masahiro

    2017-08-01

    Advanced glycation end-products (AGEs) are produced by non-enzymatic glycation between protein and reducing sugar such as glucose. Although glyceraldehyde-derived AGEs (Glycer-AGEs), one of the AGEs subspecies, have been reported to be involved in the pathogenesis of various age-relating diseases such as diabetes mellitus or arteriosclerosis, little is known about the pathological and physiological mechanism of AGEs in vivo. In present study, we produced 4 kinds of polyclonal antibodies against AGEs subspecies and investigated the localization of AGEs-modified proteins in rat peripheral tissues, making use of these antibodies. We found that Glycer-AGEs and methylglyoxal-derived AGEs (MGO-AGEs) were present in pancreatic islets of healthy rats, distinguished clearly into the pancreatic α and β cells, respectively. Although streptozotocin-induced diabetic rats suffered from remarkable impairment of pancreatic islets, the localization and deposit levels of the Glycer- and MGO-AGEs were not altered in the remaining α and β cells. Remarkably, the MGO-AGEs in pancreatic β cells were localized into the insulin-secretory granules. These results suggest that the cell-specific localization of AGEs-modified proteins are presence generally in healthy peripheral tissues, involved in physiological intracellular roles, such as a post-translational modulator contributing to the secretory and/or maturational functions of insulin. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  13. Human T cell immunosenescence and inflammation in aging.

    PubMed

    Bektas, Arsun; Schurman, Shepherd H; Sen, Ranjan; Ferrucci, Luigi

    2017-10-01

    The aging process is driven by a finite number of inter-related mechanisms that ultimately lead to the emergence of characteristic phenotypes, including increased susceptibility to multiple chronic diseases, disability, and death. New assays and analytical tools have become available that start to unravel some of these mechanisms. A prevailing view is that aging leads to an imbalance between stressors and stress-buffering mechanisms that causes loss of compensatory reserve and accumulation of unrepaired damage. Central to this paradigm are changes in the immune system and the chronic low-grade proinflammatory state that affect many older individuals, even when they are apparently healthy and free of risk factors. Independent of chronological age, high circulating levels of proinflammatory markers are associated with a high risk of multiple adverse health outcomes in older persons. In this review, we discuss current theories about causes and consequences of the proinflammatory state of aging, with a focus on changes in T cell function. We examine the role of NF-κB activation and its dysregulation and how NF-κB activity differs among subgroups of T cells. We explore emerging hypotheses about immunosenescence and changes in T cell behavior with age, including consideration of the T cell antigen receptor and regulatory T cells (T regs ). We conclude by illustrating how research using advanced technology is uncovering clues at the core of inflammation and aging. Some of the preliminary work in this field is already improving our understanding of the complex mechanisms by which immunosenescence of T cells is intertwined during human aging. © Society for Leukocyte Biology.

  14. Can Metabolic Mechanisms of Stem Cell Maintenance Explain Aging and the Immortal Germline?

    PubMed

    Snoeck, Hans-Willem

    2015-06-04

    The mechanisms underlying the aging process are not understood. Even tissues endowed with somatic stem cells age while the germline appears immortal. I propose that this paradox may be explained by the pervasive use of glycolysis by somatic stem cells as opposed to the predominance of mitochondrial respiration in gametes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. High IL-10 production by aged AIDS patients is related to high frequency of Tr-1 phenotype and low in vitro viral replication.

    PubMed

    Andrade, Regis M; Hygino, Joana; Kasahara, Taissa M; Vieira, Morgana M; Xavier, Luciana F; Blanco, Bernardo; Damasco, Paulo V; Silva, Rodrigo M; Lima, Dirce B; Oliveira, Ariane L; Lemos, Alberto S; Andrade, Arnaldo F B; Bento, Cleonice A M

    2012-10-01

    This work aims to elucidate the effects of age and HIV-1 infection on the frequency and function of T cell subsets in response to HIV-specific and non-specific stimuli. As compared with the younger AIDS group, the frequencies of naive and central memory T cells were significantly lower in aged AIDS patients. Although there was also a dramatic loss of classical CD4(+)FoxP3(+)CD25(+)Treg cells in this patient group, high frequencies of IL-10-producing CD4(+)FoxP3(-) T cells were observed. In our system, the increased production of IL-10 in aged AIDS patients was mainly derived from Env-specific CD4(+)FoxP3(-)CD152(+) T cells. Interestingly, while the blockade of IL-10 activity by monoclonal antibody clearly enhanced the release of IL-6 and IL-1β by Env-stimulated PBMC cultures from aged AIDS patients, this monoclonal antibody enhanced in vitro HIV-1-replication. In conclusion, HIV infection and aging undoubtedly contribute synergistically to a complex immune dysfunction in T cell compartment of HAART-treated older HIV-infected individuals. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Antecedents of cell aging research.

    PubMed

    Hayflick, L

    1989-01-01

    Our observation that normal human and animal cells have a limited capacity to divide and function in vitro overturned a dogma held since the turn of the century. The dogma held that cultured normal cells are immortal and gerontologists interpreted this to mean that aging, therefore, could not be the result of intracellular events. We concluded that longevity and aging do result from intracellular events, and, in the subsequent 30 years, the validity of our finding has been widely confirmed. Other major findings have been made: (a) The number of population doublings and functional events that a cultured normal cell can undergo is inversely proportional to donor age and, probably, directly proportional to species longevity; (b) the limit on cell division and function also occurs in vivo when normal cells are transplanted seriatim; (c) as cell doublings or functional events reach their limit, changes occur in hundreds of variables from the molecular to the whole cell. Most importantly, many of these changes are identical to those seen in intact humans and animals as they age; (d) WI-38, the first widely distributed normal human cell strain has retained its memory of population doubling level during 27 years of cryogenic storage. This is the longest time that any normal human cell has ever been preserved. Evidence that longevity is determined by genetic events is overwhelming but evidence that age changes are the result of gene expression is not. Normal age changes must be distinguished from disease. Because few feral animals ever become old, natural selection could not have favored the development of a genetically programmed aging process. In the 2 or 3 million years of human existence, too few old humans existed to have provided a selective advantage favoring the development of a genetic program that would determine age changes. The selective advantage of maintaining physiological vigor for as long as possible in order to insure maximum reproductive success may be the essential indirect determinant of longevity. Natural selection has provided sexually mature animals with extraordinary reserve capacities in virtually all organs. After sexual maturation, animals continue to function by utilizing the reserve capacity that evolved to insure that they would attain reproductive success. The magnitude of reserve capacity is the essential element in determining postdevelopmental longevity. Thus "Why do we age?" may be the wrong question. The right question may be "Why do we live as long as we do?"

  17. The origin of life at the origin of ageing?

    PubMed

    Currais, Antonio

    2017-05-01

    At first glance, the ageing of unicellular organisms would appear to be different from the ageing of complex, multicellular organisms. In an attempt to describe the nature of ageing in diverse organisms, the intimate links between the origins of life and ageing are examined. Departing from Leslie Orgel's initial ideas on why organisms age, it is then discussed how the potentially detrimental events characteristic of ageing are continuous, cell-autonomous and universal to all organisms. The manifestation of these alterations relies on the balance between their production and cellular renewal. Renewal is achieved not only by repair and maintenance mechanisms but, importantly, by the process of cell division such that every time cells divide ageing-associated effects are diluted. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Factors affecting reconstitution of the T cell compartment in allogeneic haematopoietic cell transplant recipients.

    PubMed

    Fallen, P R; McGreavey, L; Madrigal, J A; Potter, M; Ethell, M; Prentice, H G; Guimarães, A; Travers, P J

    2003-11-01

    The factors affecting T cell reconstitution post haematopoietic cell transplantation (HCT) are not well characterised. We carried out a longitudinal analysis of T cell reconstitution in 32 HCT recipients during the first 12 months post transplant. We analysed reconstitution of naïve, memory and effector T cells, their diversity and monitored thymic output using TCR rearrangement excision circles (TRECs). Thymic-independent pathways were responsible for the rapid reconstitution of memory and effector T cells less than 6 months post HCT. Thymic-dependent pathways were activated between 6 and 12 months in the majority of patients with naïve T cell numbers increasing in parallel with TREC levels. Increasing patient age, chronic GVHD and T cell depletion (with or without pretransplant Campath-1H) predicted low TREC levels and slow naïve T cell recovery. Furthermore, increasing patient age also predicted high memory and effector T cell numbers. The effects of post HCT immunosuppression, total body irradiation, donor leucocyte infusions, T cell dose and post HCT infections on T cell recovery were also analysed. However, no effects of these single variables across a variety of different age, GVHD and T cell depletion groups were apparent. This study suggests that future analysis of the factors affecting T cell reconstitution and studies aimed at reactivating the thymus through therapeutic intervention should be analysed in age-, GVHD- and TCD-matched patient groups.

  19. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis

    PubMed Central

    Mora, Ana L.; Rojas, Mauricio

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic age-related lung disease with high mortality that is characterized by abnormal scarring of the lung parenchyma. There has been a recent attempt to define the age-associated changes predisposing individuals to develop IPF. Age-related perturbations that are increasingly found in epithelial cells and fibroblasts from IPF lungs compared with age-matched cells from normal lungs include defective autophagy, telomere attrition, altered proteostasis, and cell senescence. These divergent processes seem to converge in mitochondrial dysfunction and metabolic distress, which potentiate maladaptation to stress and susceptibility to age-related diseases such as IPF. Therapeutic approaches that target aging processes may be beneficial for halting the progression of disease and improving quality of life in IPF patients. PMID:28145905

  20. Immune Regulatory Properties of CD117pos Amniotic Fluid Stem Cells Vary According to Gestational Age

    PubMed Central

    Di Trapani, Mariano; Bassi, Giulio; Fontana, Emanuela; Giacomello, Luca; Pozzobon, Michela; Guillot, Pascale V.; De Coppi, Paolo

    2015-01-01

    Amniotic Fluid Stem (AFS) cells are broadly multipotent fetal stem cells derived from the positive selection and ex vivo expansion of amniotic fluid CD117/c-kitpos cells. Considering the differentiation potential in vitro toward cell lineages belonging to the three germ layers, AFS cells have raised great interest as a new therapeutic tool, but their immune properties still need to be assessed. We analyzed the in vitro immunological properties of AFS cells from different gestational age in coculture with T, B, and natural killer (NK) cells. Nonactivated (resting) first trimester-AFS cells showed lower expression of HLA class-I molecules and NK-activating ligands than second and third trimester-AFS cells, whose features were associated with lower sensitivity to NK cell-mediated lysis. Nevertheless, inflammatory priming with interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) enhanced resistance of all AFS cell types to NK cytotoxicity. AFS cells modulated lymphocyte proliferation in a different manner according to gestational age: first trimester-AFS cells significantly inhibited T and NK cell proliferation, while second and third trimester-AFS cells were less efficient. In addition, only inflammatory-primed second trimester-AFS cells could suppress B cell proliferation, which was not affected by the first and third trimester-AFS cells. Indolamine 2,3 dioxygenase pathway was significantly involved only in T cell suppression mediated by second and third trimester-AFS cells. Overall, this study shows a number of significant quantitative differences among AFS cells of different gestational age that have to be considered in view of their clinical application. PMID:25072397

  1. Age-associated Epstein–Barr virus-specific T cell responses in seropositive healthy adults

    PubMed Central

    Cárdenas Sierra, D; Vélez Colmenares, G; Orfao de Matos, A; Fiorentino Gómez, S; Quijano Gómez, S M

    2014-01-01

    Epstein–Barr virus (EBV) is present in 95% of the world's adult population. The immune response participates in immune vigilance and persistent infection control, and this condition is maintained by both a good quality (functionality) and quantity of specific T cells throughout life. In the present study, we evaluated EBV-specific CD4+ and CD8+ T lymphocyte responses in seropositive healthy individuals younger and older than 50 years of age. The assessment comprised the frequency, phenotype, functionality and clonotypic distribution of T lymphocytes. We found that in both age groups a similar EBV-specific T cell response was found, with overlapping numbers of tumour necrosis factor (TNF)-α+ T lymphocytes (CD4+ and CD8+) within the memory and effector cell compartments, in addition to monofunctional and multi-functional T cells producing interleukin (IL)-2 and/or interferon (IFN)-γ. However, individuals aged more than 50 years showed significantly higher frequencies of IL-2-producing CD4+ T lymphocytes in association with greater production of soluble IFN-γ, TNF-α and IL-6 than subjects younger than 50 years. A polyclonal T cell receptor (TCR)-variable beta region (Vβ) repertoire exists in both age groups under basal conditions and in response to EBV; the major TCR families found in TNF-α+/CD4+ T lymphocytes were Vβ1, Vβ2, Vβ17 and Vβ22 in both age groups, and the major TCR family in TNF-α+/CD8+ T cells was Vβ13·1 for individuals younger than 50 years and Vβ9 for individuals aged more than 50 years. Our findings suggest that the EBV-specific T cell response (using a polyclonal stimulation model) is distributed throughout several T cell differentiation compartments in an age-independent manner and includes both monofunctional and multi-functional T lymphocytes. PMID:24666437

  2. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics.

    PubMed

    Spaethling, Jennifer M; Na, Young-Ji; Lee, Jaehee; Ulyanova, Alexandra V; Baltuch, Gordon H; Bell, Thomas J; Brem, Steven; Chen, H Isaac; Dueck, Hannah; Fisher, Stephen A; Garcia, Marcela P; Khaladkar, Mugdha; Kung, David K; Lucas, Timothy H; O'Rourke, Donald M; Stefanik, Derek; Wang, Jinhui; Wolf, John A; Bartfai, Tamas; Grady, M Sean; Sul, Jai-Yoon; Kim, Junhyong; Eberwine, James H

    2017-01-17

    Investigation of human CNS disease and drug effects has been hampered by the lack of a system that enables single-cell analysis of live adult patient brain cells. We developed a culturing system, based on a papain-aided procedure, for resected adult human brain tissue removed during neurosurgery. We performed single-cell transcriptomics on over 300 cells, permitting identification of oligodendrocytes, microglia, neurons, endothelial cells, and astrocytes after 3 weeks in culture. Using deep sequencing, we detected over 12,000 expressed genes, including hundreds of cell-type-enriched mRNAs, lncRNAs and pri-miRNAs. We describe cell-type- and patient-specific transcriptional hierarchies. Single-cell transcriptomics on cultured live adult patient derived cells is a prime example of the promise of personalized precision medicine. Because these cells derive from subjects ranging in age into their sixties, this system permits human aging studies previously possible only in rodent systems. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Age Is Relative-Impact of Donor Age on Induced Pluripotent Stem Cell-Derived Cell Functionality.

    PubMed

    Strässler, Elisabeth Tamara; Aalto-Setälä, Katriina; Kiamehr, Mostafa; Landmesser, Ulf; Kränkel, Nicolle

    2018-01-01

    Induced pluripotent stem cells (iPSCs) avoid many of the restrictions that hamper the application of human embryonic stem cells: limited availability of source material due to legal restrictions in some countries, immunogenic rejection and ethical concerns. Also, the donor's clinical phenotype is often known when working with iPSCs. Therefore, iPSCs seem ideal to tackle the two biggest tasks of regenerative medicine: degenerative diseases with genetic cause (e.g., Duchenne's muscular dystrophy) and organ replacement in age-related diseases (e.g., end-stage heart or renal failure), especially in combination with recently developed gene-editing tools. In the setting of autologous transplantation in elderly patients, donor age becomes a potentially relevant factor that needs to be assessed. Here, we review and critically discuss available data pertinent to the questions: How does donor age influence the reprogramming process and iPSC functionality? Would it even be possible to reprogram senescent somatic cells? How does donor age affect iPSC differentiation into specialised cells and their functionality? We also identify research needs, which might help resolve current unknowns. Until recently, most hallmarks of ageing were attributed to an accumulation of DNA damage over time, and it was thus expected that DNA damage from a somatic cell would accumulate in iPSCs and the cells derived from them. In line with this, a decreased lifespan of cloned organisms compared with the donor was also observed in early cloning experiments. Therefore, it was questioned for a time whether iPSC derived from an old individual's somatic cells would suffer from early senescence and, thus, may not be a viable option either for disease modelling nor future clinical applications. Instead, typical signs of cellular ageing are reverted in the process of iPSC reprogramming, and iPSCs from older donors do not show diminished differentiation potential nor do iPSC-derived cells from older donors suffer early senescence or show functional impairments when compared with those from younger donors. Thus, the data would suggest that donor age does not limit iPSC application for modelling genetic diseases nor regenerative therapies. However, open questions remain, e.g., regarding the potential tumourigenicity of iPSC-derived cells and the impact of epigenetic pattern retention.

  4. Cell-production rates estimated by the use of vincristine sulphate and flow cytometry. II. Correlation between the cell-production rates of ageing ascites tumours and the number of S phase tumour cells.

    PubMed

    Barfod, I H; Barfod, N M

    1980-01-01

    A new method for the evaluation of cell production rates combining flow cytometry (FCM) and the stathmokinetic method using vincristine sulphate (VS) has been used for the analysis of three aneuploid ascites tumours at different stages of growth. Using this technique it was possible to estimate the well-known decrease in cell production rates of ageing ascites tumours. The percentage of normal host cells in the aneuploid tumours studied was easily determined by FCM prior to the calculation of the tumour cell-production rates. A correlation was found between the percentage of tumour cells in the S phase and the tumour cell-production rate. This correlation is probably explained by the gradual transfer of proliferating cells in S phase to resting G1 and G2 phases with increasing tumour age.

  5. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    DOEpatents

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  6. [Possibilities and limitations of fibroblast cultures in the study of animal aging].

    PubMed

    Van Gansen, P; Van Lerberghe, N

    1987-01-01

    INTRODUCTION. Aging--the effect of time--occurs in every living organism. Senescence is the last period of the lifespan, leading to death. It happens in all animals, with the exception of a few didermic species (Hydras) having a stock of embryonic cells and being immortal. The causes of animal senescence are badly known. They depend both on genetic characters (maximal lifespan of a species) and on medium factors (mean expectation of life of the animals of a species). Animal senescence could depend on cell aging: 1) by senescence and death of the differentiated cells, 2) by modified proliferation and differentiation of the stem cells of differentiated tissues, 3) by alterations in the extracellular matrices, 4) by interactions between factors 1) 2) and 3) in each tissue, 5) by interactions between the several tissues of an organism. This complexity badly impedes the experimental study of animal senescence. Normal mammal cells are aging when they are cultivated (in vitro ageing): their phenotype varies and depends on the cell generation (in vitro differentiation); the last cell-generation doesn't divide anymore and declines until death of the culture (in vitro senescence). Analysis of these artificial but well controlled systems allows an experimental approach of the proliferation, differentiation, senescence and death of the cells and of the extracellular matrix functions. Present literature upon in vitro aging of cultivated human cells is essentially made of papers where proliferation and differentiation characteristics are compared between early ("young") and late ("old") cell-generations of the cultures. FIBROBLASTIC CELLS OF THE MOUSE SKIN. This cell type has been studied in our laboratory, using different systems: 1) Primary cultures isolated from peeled skins of 19 day old mouse embryos, 2) Mouse dermis analyzed in the animals, 3) Cultivated explants of skins, 4) Serial sub-cultures of fibroblasts isolated from these explants, 5) Cells cultivated comparably on plane substrates (glass, plastic, collagen films) and on tridimensional matrices (collagen fibres). Systems 2), 3), 4) and 5) have been obtained either from 19 day old embryos or from 6 groups of animals of different ages (from 1/2 till 25 month). In primary cultures (system 1) all the cell generations have been analyzed, including the last one until death of the culture. We have shown that many characters are varying with cell-generation: cell form and cell mass, rate of DNA replication and cell division, rate of RNA transcription, nature of the accumulated and of the synthetized proteins, organization of the cytoskeletal elements, organization of the extracellular matrix, type of cell death.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Impact of Aging, Cytomegalovirus Infection, and Long-Term Treatment for Human Immunodeficiency Virus on CD8+ T-Cell Subsets

    PubMed Central

    Veel, Ellen; Westera, Liset; van Gent, Rogier; Bont, Louis; Otto, Sigrid; Ruijsink, Bram; Rabouw, Huib H.; Mudrikova, Tania; Wensing, Annemarie; Hoepelman, Andy I. M.; Borghans, José A. M.; Tesselaar, Kiki

    2018-01-01

    Both healthy aging and human immunodeficiency virus (HIV) infection lead to a progressive decline in naive CD8+ T-cell numbers and expansion of the CD8+ T-cell memory and effector compartments. HIV infection is therefore often considered a condition of premature aging. Total CD8+ T-cell numbers of HIV-infected individuals typically stay increased even after long-term (LT) combination antiretroviral treatment (cART), which is associated with an increased risk of non-AIDS morbidity and mortality. The causes of these persistent changes in the CD8+ T-cell pool remain debated. Here, we studied the impact of age, CMV infection, and LT successful cART on absolute cell numbers in different CD8+ T-cell subsets. While naïve CD8+ T-cell numbers in cART-treated individuals (N = 38) increased to healthy levels, central memory (CM), effector memory (EM), and effector CD8+ T-cell numbers remained higher than in (unselected) age-matched healthy controls (N = 107). Longitudinal analysis in a subset of patients showed that cART did result in a loss of memory CD8+ T-cells, mainly during the first year of cART, after which memory cell numbers remained relatively stable. As CMV infection is known to increase CD8+ T-cell numbers in healthy individuals, we studied whether any of the persistent changes in the CD8+ T-cell pools of cART-treated patients could be a direct reflection of the high CMV prevalence among HIV-infected individuals. We found that EM and effector CD8+ T-cell numbers in CMV+ healthy individuals (N = 87) were significantly higher than in CMV− (N = 170) healthy individuals. As a result, EM and effector CD8+ T-cell numbers in successfully cART-treated HIV-infected individuals did not deviate significantly from those of age-matched CMV+ healthy controls (N = 39). By contrast, CM T-cell numbers were quite similar in CMV+ and CMV− healthy individuals across all ages. The LT expansion of the CM CD8+ T-cell pool in cART-treated individuals could thus not be attributed directly to CMV and was also not related to residual HIV RNA or to the presence of HIV-specific CM T-cells. It remains to be investigated why the CM CD8+ T-cell subset shows seemingly irreversible changes despite years of effective treatment. PMID:29619031

  8. Myocardial aging as a T-cell–mediated phenomenon

    PubMed Central

    Ramos, Gustavo Campos; van den Berg, Anne; Nunes-Silva, Vânia; Weirather, Johannes; Peters, Laura; Burkard, Matthias; Friedrich, Mike; Pinnecker, Jürgen; Abeßer, Marco; Heinze, Katrin G.; Schuh, Kai; Beyersdorf, Niklas; Kerkau, Thomas; Demengeot, Jocelyne; Frantz, Stefan; Hofmann, Ulrich

    2017-01-01

    In recent years, the myocardium has been rediscovered under the lenses of immunology, and lymphocytes have been implicated in the pathogenesis of cardiomyopathies with different etiologies. Aging is an important risk factor for heart diseases, and it also has impact on the immune system. Thus, we sought to determine whether immunological activity would influence myocardial structure and function in elderly mice. Morphological, functional, and molecular analyses revealed that the age-related myocardial impairment occurs in parallel with shifts in the composition of tissue-resident leukocytes and with an accumulation of activated CD4+ Foxp3− (forkhead box P3) IFN-γ+ T cells in the heart-draining lymph nodes. A comprehensive characterization of different aged immune-deficient mouse strains revealed that T cells significantly contribute to age-related myocardial inflammation and functional decline. Upon adoptive cell transfer, the T cells isolated from the mediastinal lymph node (med-LN) of aged animals exhibited increased cardiotropism, compared with cells purified from young donors or from other irrelevant sites. Nevertheless, these cells caused rather mild effects on cardiac functionality, indicating that myocardial aging might stem from a combination of intrinsic and extrinsic (immunological) factors. Taken together, the data herein presented indicate that heart-directed immune responses may spontaneously arise in the elderly, even in the absence of a clear tissue damage or concomitant infection. These observations might shed new light on the emerging role of T cells in myocardial diseases, which primarily affect the elderly population. PMID:28255084

  9. Genetic Manipulation of Glycogen Allocation Affects Replicative Lifespan in E. coli

    PubMed Central

    Röösli, Thomas; Bigosch, Colette; Ackermann, Martin

    2016-01-01

    In bacteria, replicative aging manifests as a difference in growth or survival between the two cells emerging from division. One cell can be regarded as an aging mother with a decreased potential for future survival and division, the other as a rejuvenated daughter. Here, we aimed at investigating some of the processes involved in aging in the bacterium Escherichia coli, where the two types of cells can be distinguished by the age of their cell poles. We found that certain changes in the regulation of the carbohydrate metabolism can affect aging. A mutation in the carbon storage regulator gene, csrA, leads to a dramatically shorter replicative lifespan; csrA mutants stop dividing once their pole exceeds an age of about five divisions. These old-pole cells accumulate glycogen at their old cell poles; after their last division, they do not contain a chromosome, presumably because of spatial exclusion by the glycogen aggregates. The new-pole daughters produced by these aging mothers are born young; they only express the deleterious phenotype once their pole is old. These results demonstrate how manipulations of nutrient allocation can lead to the exclusion of the chromosome and limit replicative lifespan in E. coli, and illustrate how mutations can have phenotypic effects that are specific for cells with old poles. This raises the question how bacteria can avoid the accumulation of such mutations in their genomes over evolutionary times, and how they can achieve the long replicative lifespans that have recently been reported. PMID:27093302

  10. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling.

    PubMed

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway.

  11. Chronic inflammation potentiates kidney aging.

    PubMed

    Mei, Changlin; Zheng, Feng

    2009-11-01

    Chronic inflammation, characterized by increased serum levels of tumor necrosis factor-alpha, interleukin-6, C-reactive protein, and plasminogen activator inhibitor-1, and the presence of inflammatory-related diseases, are seen commonly in aging. Both the dysregulation of immune cells and phenotypic changes in parenchymal cells may contribute to chronic inflammation in aging. Moreover, senescent cells are an important source of inflammatory factors. Oxidative stress, via activation of p38 and c-Jun N-terminal kinase and induction of cell senescence, is likely to play a critical role in inflammation. Endoplasmic reticulum stress also may be present in aging and be involved in inflammation. Advanced glycation end products also are important contributors to inflammation in aging. Because the kidney is a major site for the excretion, and perhaps the degradation, of advanced glycation end products and small inflammatory molecules, reduced renal function in aging may promote oxidative stress and inflammation. Chronic inflammation in turn may potentiate the initiation and progression of lesions in the aging kidney.

  12. The slippery slope of hematopoietic stem cell aging.

    PubMed

    Wahlestedt, Martin; Bryder, David

    2017-12-01

    The late stages of life, in most species including humans, are associated with a decline in the overall maintenance and health of the organism. This applies also to the hematopoietic system, where aging is not only associated with an increased predisposition for hematological malignancies, but also identified as a strong comorbidity factor for other diseases. Research during the last two decades has proposed that alterations at the level of hematopoietic stem cells (HSCs) might be a root cause for the hematological changes observed with age. However, the recent realization that not all HSCs are alike with regard to fundamental stem cell properties such as self-renewal and lineage potential has several implications for HSC aging, including the synchrony and the stability of the aging HSC state. To approach HSC aging from a clonal perspective, we recently took advantage of technical developments in cellular barcoding and combined this with the derivation of induced pluripotent stem cells (iPSCs). This allowed us to selectively approach HSCs functionally affected by age. The finding that such iPSCs were capable of fully regenerating multilineage hematopoiesis upon morula/blastocyst complementation provides compelling evidence that many aspects of HSC aging can be reversed, which indicates that a central mechanism underlying HSC aging is a failure to uphold the epigenomes associated with younger age. Here we discuss these findings in the context of the underlying causes that might influence HSC aging and the requirements and prospects for restoration of the aging HSC epigenome. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  13. In vitro and in vivo effects of zinc on cytokine signalling in human T cells.

    PubMed

    Varin, Audrey; Larbi, Anis; Dedoussis, George V; Kanoni, Stavroula; Jajte, Jolanta; Rink, Lothar; Monti, Daniela; Malavolta, Marco; Marcellini, Fiorella; Mocchegiani, Eugenio; Herbein, Georges; Fulop, Tamas

    2008-05-01

    Aging is associated with changes in the immune response which are collectively called immunosenescence. The changes mainly affect the adaptive immune response and especially the T cell-mediated cellular immune response. There are a few data indicating that the cytokine signalling in T cells is altered with aging. Zinc has been specifically shown to have potent immunomodulatory effects. The aim of the present work was to study the IL-2 and IL-6 cytokine signalling and activation induced cell death (AICD) in T cells of elderly subjects of various ages and from various European countries. These experiments were performed in the frame of European Community financed project called ZINCAGE "Nutritional zinc, oxidative stress and immunosenescence: biochemical, genetic and lifestyle implications for healthy ageing", assembling 17 laboratories from 8 countries through Europe. The study was carried out in a total of 312 French and a group of 201 (26 from Italy, 63 from France, 57 from Greece, 24 from Poland and 30 from Germany) healthy non-institutionalized men and women older than 60 years of age, with available dietary data. Human peripheral blood mononuclear cells (PBMC) were obtained from heparinized blood and were stimulated in vitro by IL-2 or IL-6 for various periods and the phosphorylation of STAT3 and STAT5 was measured by FACScan. The activation induced cell death (AICD) was measured after anti-CD3 and CD28 restimulation for 48h by using the Annexin:FITC Apoptosis Kit. We found that there is an IL-2 signalling defect with aging up to 90 years of age which cannot be modulated by zinc. In contrast at 90 years and over the zinc could reverse the negative signalling effect of IL-2. There is also a signalling defect for STAT3 and STAT5 activation in T cells under IL-6 stimulation with aging and the zinc supplementation could potentiate only the STAT5 activation in the age-group 90 years and over. Studying signalling in PBL from different countries we detected less activation in T cells of subjects from France and the most changes occurred in T cells of subjects from Poland, suggesting no correlation with the plasma zinc status observed in these countries. In vivo zinc supplementation had no effect on IL-2 and IL-6-modulated STAT3 and STAT5 activation. Zinc added in vitro to these T cells even inhibited the stimulation either by IL-2 or by IL-6. Zinc supplementation improved the susceptibility of T cells to AICD in both age-groups, with more efficiency in later ages. Our results suggest that zinc can have a potent immunomodulatory effect via the modulation of cytokine signalling and AICD, however this effect depends on the function and the activation status of the T cells.

  14. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro.

    PubMed

    Guo, Yinting; Niu, Kaijun; Okazaki, Tatsuma; Wu, Hongmei; Yoshikawa, Takeo; Ohrui, Takashi; Furukawa, Katsutoshi; Ichinose, Masakazu; Yanai, Kazuhiko; Arai, Hiroyuki; Huang, Guowei; Nagatomi, Ryoichi

    2014-02-01

    Sarcopenia is characterized by the age-related loss of muscle mass and strength, which results in higher mortality in aged people. One of the mechanisms of the sarcopenia is the loss in the function and number of muscle satellite cells. Chronic low-grade inflammation plays a central role in the pathogenesis of age-related sarcopenia. Accumulating evidence suggests that coffee, one of the most widely consumed beverages in the world, has potential pharmacological benefits such as anti-inflammatory and anti-oxidant effects. Since these effects may improve sarcopenia and the functions of satellite cells, we examined the effects of coffee on the skeletal muscles in an animal model using aged mice. In vivo, coffee treatment attenuated the decrease in the muscle weight and grip strength, increased the regenerating capacity of injured muscles, and decreased the serum pro-inflammatory mediator levels compared to controls. In vitro, using satellite cells isolated from aged mice, coffee treatment increased the cell proliferation rate, augmented the cell cycle, and increased the activation level of Akt intra-cellular signaling pathway compared to controls. These findings suggest that the coffee treatment had a beneficial effect on age-related sarcopenia. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Gadd45 proteins: Relevance to aging, longevity and age-related pathologies

    PubMed Central

    Moskalev, Alexey A.; Smit-McBride, Zeljka; Shaposhnikov, Mikhail V.; Plyusnina, Ekaterina N.; Zhavoronkov, Alex; Budovsky, Arie; Tacutu, Robi; Fraifeld, Vadim E.

    2013-01-01

    The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis – all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions. PMID:21986581

  16. Epigenetic regulation of hematopoietic stem cell aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu; Department of Pediatrics, Harvard Medical School, Boston, MA 02115; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, MA 02116

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and playmore » a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.« less

  17. Amniotic Epithelial Cells: A New Tool to Combat Aging and Age-Related Diseases?

    PubMed Central

    Di Germanio, Clara; Bernier, Michel; de Cabo, Rafael; Barboni, Barbara

    2016-01-01

    The number of elderly people is growing at an unprecedented rate and this increase of the aging population is expected to have a direct impact on the incidence of age-related diseases and healthcare-associated costs. Thus, it is imperative that new tools are developed to fight and slow age-related diseases. Regenerative medicine is a promising strategy for the maintenance of health and function late in life; however, stem cell-based therapies face several challenges including rejection and tumor transformation. As an alternative, the placenta offers an extraordinary source of fetal stem cells, including the amniotic epithelial cells (AECs), which retain some of the characteristics of embryonic stem cells, but show low immunogenicity, together with immunomodulatory and anti-inflammatory activities. Because of these characteristics, AECs have been widely utilized in regenerative medicine. This perspective highlights different mechanisms triggered by transplanted AECs that could be potentially useful for anti-aging therapies, which include: Graft and differentiation for tissue regeneration in age-related settings, anti-inflammatory behavior to combat “inflammaging,” anti-tumor activity, direct lifespan and healthspan extension properties, and possibly rejuvenation in a manner reminiscent of heterochronic parabiosis. Here, we critically discuss benefits and limitation of AECs-based therapies in age-related diseases. PMID:27921031

  18. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue1

    PubMed Central

    Lumeng, Carey N.; Liu, Jianhua; Geletka, Lynn; Delaney, Colin; DelProposto, Jennifer; Desai, Anjali; Oatmen, Kelsie; Martinez-Santibanez, Gabriel; Julius, Annabelle; Garg, Sanjay; Yung, Raymond L.

    2011-01-01

    Age-related adiposity has been linked to chronic inflammatory diseases in late-life. To date, the studies on adipose tissue leukocytes and aging have not taken into account the heterogeneity of adipose tissue macrophages (ATMs), nor have they examined how age impacts other leukocytes such as T cell in fat. Therefore, we have performed a detailed examination of ATM subtypes in young and old mice using state of the art techniques. Our results demonstrate qualitative changes in ATMs with aging that generate a decrease in resident Type 2 (M2) ATMs. The profile of ATMs in old fat shifts towards a pro-inflammatory environment with increased numbers of CD206-CD11c- (double negative) ATMs. The mechanism of this aging-induced shift in the phenotypic profile of ATMs was found to be related to a decrease in PPARγ expression in ATMs and alterations in chemokine/chemokine receptor expression profiles. Furthermore, we have revealed a profound and unexpected expansion of adipose tissue T (ATT) cells in visceral fat with aging that includes a significant induction of regulatory T cells (Tregs) in fat. Our findings demonstrate a unique inflammatory cell signature in the physiologic context of aging adipose tissue that differs from those induced in setting of diet-induced obesity. PMID:22075699

  19. High-throughput analysis of yeast replicative aging using a microfluidic system

    PubMed Central

    Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong

    2015-01-01

    Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317

  20. [Loss of total 5-methylcytosine from the genome during cell culture aging coincides with the Hayflick limit].

    PubMed

    Mazin, A L

    1993-01-01

    Analyzing the data about the age-related 5-methylcytosine (5mC) loss from DNA of cell cultures, the following conclusions have been made: 1. The rate of 5mC loss from DNA does not depend on the cell donor age; it remains constant during the logarithmic phase of cell growth, and may vary significantly in different cell lines. 2. The rate is inversely proportional to their Hayflick limit and to the species lifespan of cell donors. 3. In immortal cell lines the 5mC content in DNA is stable or increases with aging. 4. Hayflick limit estimations coincide with or are lower than the number of cell population doublings that corresponds to all 5mC loss from cell genome. A simple and fast method has been proposed for Hayflick limit prognostication by analysis of the rate of DNA hypomethylation. It may be used for early diagnosis of precrisis and immortal cell lines. Evidence has been obtained that age-dependent 5mC loss from DNA is the result of accumulating 5mC-->T+C substitutions that occur during DNA methylation in every cell division. The loss of all genomic 5mC residues during the lifespan may correspond to accumulation of about 3 x 10(6) 5mC-->T transitions or, on average, one mutation per gene. This may be one of the main reasons of the "catastrophe of errors" and cessation of cell proliferation. It is calculated that the rate of 5mC-->T transitions in normal cells may be 2.3 x 10(-5) per site in each cell doubling in human, 6 x 10(-5) in hamster, and 4.6 x 10(-4) in mouse. DNA methylation as a generator of mutations may be a "counter" of cell divisions and thus be one of the molecular mechanisms of the Hayflick phenomenon. The conclusion is made that the DNA methylation system may be considered as a genetically programmed mechanism for accumulating mutations during cell aging.

  1. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration.

    PubMed

    Kohler, Julia; Popov, Cvetan; Klotz, Barbara; Alberton, Paolo; Prall, Wolf Christian; Haasters, Florian; Müller-Deubert, Sigrid; Ebert, Regina; Klein-Hitpass, Ludger; Jakob, Franz; Schieker, Matthias; Docheva, Denitsa

    2013-12-01

    Although the link between altered stem cell properties and tissue aging has been recognized, the molecular and cellular processes of tendon aging have not been elucidated. As tendons contain stem/progenitor cells (TSPC), we investigated whether the molecular and cellular attributes of TSPC alter during tendon aging and degeneration. Comparing TSPC derived from young/healthy (Y-TSPC) and aged/degenerated human Achilles tendon biopsies (A-TSPC), we observed that A-TSPC exhibit a profound self-renewal and clonogenic deficits, while their multipotency was still retained. Senescence analysis showed a premature entry into senescence of the A-TSPC, a finding accompanied by an upregulation of p16(INK4A). To identify age-related molecular factors, we performed microarray and gene ontology analyses. These analyses revealed an intriguing transcriptomal shift in A-TSPC, where the most differentially expressed probesets encode for genes regulating cell adhesion, migration, and actin cytoskeleton. Time-lapse analysis showed that A-TSPC exhibit decelerated motion and delayed wound closure concomitant to a higher actin stress fiber content and a slower turnover of actin filaments. Lastly, based on the expression analyses of microarray candidates, we suggest that dysregulated cell-matrix interactions and the ROCK kinase pathway might be key players in TSPC aging. Taken together, we propose that during tendon aging and degeneration, the TSPC pool is becoming exhausted in terms of size and functional fitness. Thus, our study provides the first fundamental basis for further exploration into the molecular mechanisms behind tendon aging and degeneration as well as for the selection of novel tendon-specific therapeutical targets. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Mitochondrial proteostasis as a shared characteristic of slowed aging: the importance of considering cell proliferation.

    PubMed

    Hamilton, Karyn L; Miller, Benjamin F

    2017-10-15

    Proteostasis is one of the seven "pillars of aging research" identified by the Trans-NIH Geroscience Initiative and loss of proteostasis is associated with aging and age-related chronic disease. Accumulated protein damage and resultant cellular dysfunction are consequences of limited protein repair systems and slowed protein turnover. When relatively high rates of protein turnover are maintained despite advancing age, damaged proteins are more quickly degraded and replaced, maintaining proteome fidelity. Therefore, maintenance of protein turnover represents an important proteostatic mechanism. However, measurement of protein synthesis without consideration for cell proliferation can result in an incomplete picture, devoid of information about how new proteins are being allocated. Simultaneous measurement of protein and DNA synthesis provides necessary mechanistic insight about proteins apportioned for newly proliferating cells versus for somatic maintenance. Using this approach with a number of murine models of slowed aging shows that, compared to controls, energetic resources are directed more toward somatic maintenance and proteostasis, and away from cell growth and proliferation. In particular, slowed aging models are associated with heightened mechanisms of mitochondrial proteostatic maintenance. Taking cell proliferation into account may explain the paradoxical findings that aging itself and slowed aging interventions can both be characterized by slower rates of protein synthesis. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  3. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Tran, Alexander; Sundaram, Padmaja; Agrawal, Anshu

    2016-06-01

    Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141(hi), GARP(+) DCs displayed enhanced capacity to induce T regulatory cells compared to CD141(lo) and GARP(-) DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141(hi), GARP(+) DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases.

  4. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age

    PubMed Central

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Tran, Alexander; Sundaram, Padmaja; Agrawal, Anshu

    2016-01-01

    Aged subjects display increased susceptibility to mucosal diseases. Retinoic Acid (RA) plays a major role in inducing tolerance in the mucosa. RA acts on Dendritic cells (DCs) to induce mucosal tolerance. Here we compared the response of DCs from aged and young individuals to RA with a view to understand the role of DCs in age-associated increased susceptibility to mucosal diseases. Our investigations revealed that compared to young DCs, RA stimulated DCs from aged subjects are defective in inducing IL-10 and T regulatory cells. Examinations of the underlying mechanisms indicated that RA exposure led to the upregulation of CD141 and GARP on DCs which rendered the DCs tolerogenic. CD141hi, GARP+ DCs displayed enhanced capacity to induce T regulatory cells compared to CD141lo and GARP− DCs. Unlike RA stimulated DCs from young, DCs from aged subjects exhibited diminished upregulation of both CD141 and GARP. The percentage of DCs expressing CD141 and GARP on RA treatment was significantly reduced in DCs from aged individuals. Furthermore, the remaining CD141hi, GARP+ DCs from aged individuals were also deficient in inducing T regs. In summary, reduced response of aged DCs to RA enhances mucosal inflammation in the elderly, increasing their susceptibility to mucosal diseases. PMID:27244900

  5. Age decline in the activity of the Ca2+-sensitive K+ channel of human red blood cells.

    PubMed

    Tiffert, Teresa; Daw, Nuala; Etzion, Zipora; Bookchin, Robert M; Lew, Virgilio L

    2007-05-01

    The Ca(2+)-sensitive K(+) channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca(2+) loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age-activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K(+) permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age-density distribution pattern during dehydration. However, when Ca(2+) loads were used to induce maximal K(+) fluxes via Gardos channels in all RBCs (F(max)), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F(max) was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age-activity relation revealed a monotonic decline in F(max) with cell age, with a broad quasi-Gaussian F(max) distribution among the RBCs.

  6. Elixir of Life: Thwarting Aging With Regenerative Reprogramming.

    PubMed

    Beyret, Ergin; Martinez Redondo, Paloma; Platero Luengo, Aida; Izpisua Belmonte, Juan Carlos

    2018-01-05

    All living beings undergo systemic physiological decline after ontogeny, characterized as aging. Modern medicine has increased the life expectancy, yet this has created an aged society that has more predisposition to degenerative disorders. Therefore, novel interventions that aim to extend the healthspan in parallel to the life span are needed. Regeneration ability of living beings maintains their biological integrity and thus is the major leverage against aging. However, mammalian regeneration capacity is low and further declines during aging. Therefore, modalities that reinforce regeneration can antagonize aging. Recent advances in the field of regenerative medicine have shown that aging is not an irreversible process. Conversion of somatic cells to embryonic-like pluripotent cells demonstrated that the differentiated state and age of a cell is not fixed. Identification of the pluripotency-inducing factors subsequently ignited the idea that cellular features can be reprogrammed by defined factors that specify the desired outcome. The last decade consequently has witnessed a plethora of studies that modify cellular features including the hallmarks of aging in addition to cellular function and identity in a variety of cell types in vitro. Recently, some of these reprogramming strategies have been directly used in animal models in pursuit of rejuvenation and cell replacement. Here, we review these in vivo reprogramming efforts and discuss their potential use to extend the longevity by complementing or augmenting the regenerative capacity. © 2017 American Heart Association, Inc.

  7. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puddu, A., E-mail: alep100@hotmail.com; Storace, D.; Odetti, P.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation preventsmore » FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.« less

  8. Age-related changes in expression of transforming growth factor-beta and receptors in cells of intervertebral discs.

    PubMed

    Matsunaga, Shunji; Nagano, Satoshi; Onishi, Toshiyuki; Morimoto, Norio; Suzuki, Shusaku; Komiya, Setsuro

    2003-01-01

    The authors conducted a study to determine age-related changes in expression of transforming growth factor (TGF)-beta1, -beta2, -beta3, and Type I and Type II receptors in various cells in the nucleus pulposus and anulus fibrosus. Immunolocalization of TGFbetas and Type I and II receptors was examined during the aging process of cervical intervertebral discs in senescence-accelerated mice (SAM). The TGFbeta family has important roles for cellular function of various tissues. Its role in disc aging, however, is unknown. Detailed information on the temporal and spatial localization of TGFbetas and their receptors in discs is required before discussing introduction of them clinically into the intervertebral disc. Three groups of five SAM each were used. The groups of SAM were age 8, 24, and 50 weeks, respectively. Hematoxylin and eosin staining and immunohistochemical study involving specific antibodies for TGFbeta1, -beta2, -beta3, and Types I and II TGF receptors were performed. Intervertebral discs exhibited degenerative change with advancing age. The TGFbetas and their receptors were present in the fibrocartilaginous cells within the anulus fibrosus and notochord-like cells within the nucleus pulposus of young mice. Expression of TGFbetas and Type I and Type II receptors changed markedly in the cells within the anulus fibrosus during the aging process. The TGFbetas and their receptors were present in cells within the nucleus pulposus and the anulus fibrosus of young mice, and their expression decreased with age.

  9. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: correlation with cytokines.

    PubMed

    Brusnahan, S K; McGuire, T R; Jackson, J D; Lane, J T; Garvin, K L; O'Kane, B J; Berger, A M; Tuljapurkar, S R; Kessinger, M A; Sharp, J G

    2010-01-01

    Hematological deficiencies increase with aging leading to anemias, reduced hematopoietic stress responses and myelodysplasias. This study tested the hypothesis that side population hematopoietic stem cells (SP-HSC) would decrease with aging, correlating with IGF-1 and IL-6 levels and increases in bone marrow fat. Marrow was obtained from the femoral head and trochanteric region of the femur at surgery for total hip replacement (N=100). Whole trabecular marrow samples were ground in a sterile mortar and pestle and cellularity and fat content determined. Marrow and blood mononuclear cells were stained with Hoechst dye and the SP-HSC profiles acquired. Marrow stromal cells (MSC) were enumerated flow cytometrically employing the Stro-1 antibody, and clonally in the colony forming unit fibroblast (CFU-F) assay. Plasma levels of IGF-1 (ng/ml) and IL-6 (pg/ml) were measured by ELISA. SP-HSC in blood and bone marrow decreased with age but the quality of the surviving stem cells increased. MSC decreased non-significantly. IGF-1 levels (mean=30.7, SEM=2) decreased and IL-6 levels (mean=4.4, SEM=1) increased with age as did marrow fat (mean=1.2mmfat/g, SEM=0.04). There were no significant correlations between cytokine levels or fat and SP-HSC numbers. Stem cells appear to be progressively lost with aging and only the highest quality stem cells survive. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism.

    PubMed

    Flores, Rafael R; Clauson, Cheryl L; Cho, Joonseok; Lee, Byeong-Chel; McGowan, Sara J; Baker, Darren J; Niedernhofer, Laura J; Robbins, Paul D

    2017-06-01

    With aging, there is progressive loss of tissue homeostasis and functional reserve, leading to an impaired response to stress and an increased risk of morbidity and mortality. A key mediator of the cellular response to damage and stress is the transcription factor NF-κB. We demonstrated previously that NF-κB transcriptional activity is upregulated in tissues from both natural aged mice and in a mouse model of a human progeroid syndrome caused by defective repair of DNA damage (ERCC1-deficient mice). We also demonstrated that genetic reduction in the level of the NF-κB subunit p65(RelA) in the Ercc1 -/∆ progeroid mouse model of accelerated aging delayed the onset of age-related pathology including muscle wasting, osteoporosis, and intervertebral disk degeneration. Here, we report that the largest fraction of NF-κB -expressing cells in the bone marrow (BM) of aged (>2 year old) mice (C57BL/6-NF-κB EGFP reporter mice) are Gr-1 + CD11b + myeloid-derived suppressor cells (MDSCs). There was a significant increase in the overall percentage of MDSC present in the BM of aged animals compared with young, a trend also observed in the spleen. However, the function of these cells appears not to be compromised in aged mice. A similar increase of MDSC was observed in BM of progeroid Ercc1 -/∆ and BubR1 H/H mice. The increase in MDSC in Ercc1 -/∆ mice was abrogated by heterozygosity in the p65/RelA subunit of NF-κB. These results suggest that NF-κB activation with aging, at least in part, drives an increase in the percentage of MDSCs, a cell type able to suppress immune cell responses. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Deterioration of autonomic neuronal receptor signaling and mechanisms intrinsic to heart pacemaker cells contribute to age-associated alterations in heart rate variability in vivo.

    PubMed

    Yaniv, Yael; Ahmet, Ismayil; Tsutsui, Kenta; Behar, Joachim; Moen, Jack M; Okamoto, Yosuke; Guiriba, Toni-Rose; Liu, Jie; Bychkov, Rostislav; Lakatta, Edward G

    2016-08-01

    We aimed to determine how age-associated changes in mechanisms extrinsic and intrinsic to pacemaker cells relate to basal beating interval variability (BIV) reduction in vivo. Beating intervals (BIs) were measured in aged (23-25 months) and adult (3-4 months) C57BL/6 male mice (i) via ECG in vivo during light anesthesia in the basal state, or in the presence of 0.5 mg mL(-1) atropine + 1 mg mL(-1) propranolol (in vivo intrinsic conditions), and (ii) via a surface electrogram, in intact isolated pacemaker tissue. BIV was quantified in both time and frequency domains using linear and nonlinear indices. Although the average basal BI did not significantly change with age under intrinsic conditions in vivo and in the intact isolated pacemaker tissue, the average BI was prolonged in advanced age. In vivo basal BIV indices were found to be reduced with age, but this reduction diminished in the intrinsic state. However, in pacemaker tissue BIV indices increased in advanced age vs. adults. In the isolated pacemaker tissue, the sensitivity of the average BI and BIV in response to autonomic receptor stimulation or activation of mechanisms intrinsic to pacemaker cells by broad-spectrum phosphodiesterase inhibition declined in advanced age. Thus, changes in mechanisms intrinsic to pacemaker cells increase the average BIs and BIV in the mice of advanced age. Autonomic neural input to pacemaker tissue compensates for failure of molecular intrinsic mechanisms to preserve average BI. But this compensation reduces the BIV due to both the imbalance of autonomic neural input to the pacemaker cells and altered pacemaker cell responses to neural input. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.

    PubMed

    Iyer, Sonia; Brooks, Robert; Gumbleton, Matthew; Kerr, William G

    2015-05-01

    Hematopoietic stem cell (HSC) self-renewal and lineage choice are subject to intrinsic control. However, this intrinsic regulation is also impacted by external cues provided by niche cells. There are multiple cellular components that participate in HSC support with the mesenchymal stem cell (MSC) playing a pivotal role. We had previously identified a role for SH2 domain-containing inositol 5'-phosphatase-1 (SHIP1) in HSC niche function through analysis of mice with germline or induced SHIP1 deficiency. In this study, we show that the HSC compartment expands significantly when aged in a niche that contains SHIP1-deficient MSC; however, this expanded HSC compartment exhibits a strong bias toward myeloid differentiation. In addition, we show that SHIP1 prevents chronic G-CSF production by the aging MSC compartment. These findings demonstrate that intracellular signaling by SHIP1 in MSC is critical for the control of HSC output and lineage commitment during aging. These studies increase our understanding of how myeloid bias occurs in aging and thus could have implications for the development of myeloproliferative disease in aging.

  13. The chromatin accessibility signature of human immune aging stems from CD8+ T cells.

    PubMed

    Ucar, Duygu; Márquez, Eladio J; Chung, Cheng-Han; Marches, Radu; Rossi, Robert J; Uyar, Asli; Wu, Te-Chia; George, Joshy; Stitzel, Michael L; Palucka, A Karolina; Kuchel, George A; Banchereau, Jacques

    2017-10-02

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8 + T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. © 2017 Ucar et al.

  14. The chromatin accessibility signature of human immune aging stems from CD8+ T cells

    PubMed Central

    Marches, Radu; Rossi, Robert J.; Uyar, Asli; Wu, Te-Chia; Stitzel, Michael L.; Palucka, A. Karolina

    2017-01-01

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8+ T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. PMID:28904110

  15. Thiazolidinedione treatment and constitutive-PPARγ activation induces ectopic adipogenesis and promotes age-related thymic involution

    PubMed Central

    Youm, Yun-Hee; Yang, Hyunwon; Amin, Raj; Smith, Steven R.; Leff, Todd; Dixit, Vishwa Deep

    2010-01-01

    Age-related thymic involution is characterized by reduction in T cell production together with ectopic adipocyte development within the hematopoietic and thymic niches. PPARγ is required for adipocyte development, glucose homeostasis and is a target for several insulin-sensitizing drugs. Our prior studies showed that age-related elevation of PPARγ expression in thymic stromal cells is associated with thymic involution. Here, using clinically relevant pharmacological and genetic manipulations in mouse models, we provide evidence that activation of PPARγ leads to reduction in thymopoiesis. Treatment of aged mice with anti-hyperglycemic PPARγ-ligand class of Thiazolidinedione drug, Rosiglitazone caused robust thymic expression of classical pro-adipogenic transcripts. Rosiglitazone reduced thymic cellularity, lowered the naïve T cell number and T cell receptor excision circles (TRECs) indicative of compromised thymopoiesis. To directly investigate whether PPARγ activation induces thymic involution, we created transgenic mice with constitutive-active PPARγ (CA-PPARg) fusion protein in cells of adipogenic lineage. Importantly, CA-PPARγ transgene was expressed in thymus and in Fibroblast Specific Protein-1/S100A4 (FSP1+) cells, a marker of secondary mesenchymal cells. The CAPPARγ fusion protein mimicked the liganded PPARγ receptor and the transgenic mice displayed increased ectopic thymic adipogenesis and reduced thymopoiesis. Furthermore, the reduction in thymopoiesis in CA-PPARγ mice was associated with higher bone marrow adiposity and lower hematopoietic stem cell progenitor pool. Consistent with lower thymic output, CAPPARγ transgenic mice had restricted T cell receptor (TCR) repertoire diversity. Collectively, our data suggest that activation of PPARγ accelerates thymic aging and thymus-specific PPARγ antagonist may forestall age-related decline in T cell diversity. PMID:20374200

  16. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors

    PubMed Central

    Metcalf, Talibah U; Cubas, Rafael A; Ghneim, Khader; Cartwright, Michael J; Grevenynghe, Julien Van; Richner, Justin M; Olagnier, David P; Wilkinson, Peter A; Cameron, Mark J; Park, Byung S; Hiscott, John B; Diamond, Michael S; Wertheimer, Anne M; Nikolich-Zugich, Janko; Haddad, Elias K

    2015-01-01

    Aging leads to dysregulation of multiple components of the immune system that results in increased susceptibility to infections and poor response to vaccines in the aging population. The dysfunctions of adaptive B and T cells are well documented, but the effect of aging on innate immunity remains incompletely understood. Using a heterogeneous population of peripheral blood mononuclear cells (PBMCs), we first undertook transcriptional profiling and found that PBMCs isolated from old individuals (≥ 65 years) exhibited a delayed and altered response to stimulation with TLR4, TLR7/8, and RIG-I agonists compared to cells obtained from adults (≤ 40 years). This delayed response to innate immune agonists resulted in the reduced production of pro-inflammatory and antiviral cytokines and chemokines including TNFα, IL-6, IL-1β, IFNα, IFNγ, CCL2, and CCL7. While the major monocyte and dendritic cell subsets did not change numerically with aging, activation of specific cell types was altered. PBMCs from old subjects also had a lower frequency of CD40+ monocytes, impaired up-regulation of PD-L1 on monocytes and T cells, and increased expression of PD-L2 and B7-H4 on B cells. The defective immune response to innate agonists adversely affected adaptive immunity as TLR-stimulated PBMCs (minus CD3 T cells) from old subjects elicited significantly lower levels of adult T-cell proliferation than those from adult subjects in an allogeneic mixed lymphocyte reaction (MLR). Collectively, these age-associated changes in cytokine, chemokine and interferon production, as well as co-stimulatory protein expression could contribute to the blunted memory B- and T-cell immune responses to vaccines and infections. PMID:25728020

  17. CD137 ligand reverse signaling skews hematopoiesis towards myelopoiesis during aging.

    PubMed

    Tang, Qianqiao; Koh, Liang Kai; Jiang, Dongsheng; Schwarz, Herbert

    2013-09-01

    CD137 is a costimulatory molecule expressed on activated T cells. Its ligand, CD137L, is expressed on the surface of hematopoietic progenitor cells, and upon binding to CD137 induces reverse signaling into hematopoietic progenitor cells promoting their activation, proliferation and myeloid differentiation. Since aging is associated with an increasing number of myeloid cells we investigated the role of CD137 and CD137L on myelopoiesis during aging. Comparing 3 and 12 months old WT, CD137‐/‐ and CD137L‐/‐ mice we found significantly more granulocytes and monocytes in the bone marrow of older WT mice, while this age‐dependent increase was absent in CD137‐/‐ and CD137L‐/‐ mice. Instead, the bone marrow of 12 months old CD137‐/‐ and CD137L‐/‐ mice was characterized by an accumulation of hematopoietic progenitor cells, suggesting that the differentiation of hematopoietic progenitor cells became arrested in the absence of CD137L signaling. CD137L signaling is initiated by activated CD137‐expressing, CD4+ T cells. These data identify a novel molecular mechanisms underlying immune aging by demonstrating that CD137‐expressing CD4+ T cells in the bone marrow engage CD137L on hematopoietic progenitor cells, and that this CD137L signaling biases hematopoiesis towards myelopoiesis during aging.

  18. Continuous hair cell turnover in the inner ear vestibular organs of a mammal, the Daubenton's bat (Myotis daubentonii).

    PubMed

    Kirkegaard, M; Jørgensen, J M

    2000-02-01

    In both humans and mice the number of hair cells in the inner ear sensory epithelia declines with age, indicating cell death (Park et al. 1987; Rosenhall 1973). However, recent reports demonstrate the ability of the vestibular sensory epithelia to regenerate after injury (Forge et al. 1993, 1998; Kuntz and Oesterle 1998; Li and Forge 1997; Rubel et al. 1995; Tanyeri et al. 1995). Still, a continuous hair cell turnover in the vestibular epithelia has not previously been demonstrated in mature mammals. Bats are the only flying mammals, and they are known to live to a higher age than animals of equal size. The maximum age of many species is 20 years, with average lifespans of 4-6 years (Schober and Grimmberger 1989). Further, the young are fully developed and able to fly at the age of 2 months, and thus the vestibular organs are thought to be differentiated at that age. Consequently, long-lived mammals such as bats might compensate for the loss of hair cells by producing new hair cells in their postembryonic life. Here we show that the utricular macula of adult Daubenton's bats (more than 6 months old) contains innervated immature hair cells as well as apoptotic hair cells, which strongly indicates a continuous turnover of hair cells, as previously demonstrated in birds.

  19. Continuous Hair Cell Turnover in the Inner Ear Vestibular Organs of a Mammal, the Daubenton's Bat (Myotis daubentonii)

    NASA Astrophysics Data System (ADS)

    Kirkegaard, M.; Jørgensen, J. M.

    In both humans and mice the number of hair cells in the inner ear sensory epithelia declines with age, indicating cell death (Park et al. 1987; Rosenhall 1973). However, recent reports demonstrate the ability of the vestibular sensory epithelia to regenerate after injury (Forge et al. 1993, 1998; Kuntz and Oesterle 1998; Li and Forge 1997; Rubel et al. 1995; Tanyeri et al. 1995). Still, a continuous hair cell turnover in the vestibular epithelia has not previously been demonstrated in mature mammals. Bats are the only flying mammals, and they are known to live to a higher age than animals of equal size. The maximum age of many species is 20years, with average lifespans of 4-6years (Schober and Grimmberger 1989). Further, the young are fully developed and able to fly at the age of 2months, and thus the vestibular organs are thought to be differentiated at that age. Consequently, long-lived mammals such as bats might compensate for the loss of hair cells by producing new hair cells in their postembryonic life. Here we show that the utricular macula of adult Daubenton's bats (more than 6months old) contains innervated immature hair cells as well as apoptotic hair cells, which strongly indicates a continuous turnover of hair cells, as previously demonstrated in birds.

  20. Late onset globoid cell leukodystrophy.

    PubMed

    Grewal, R P; Petronas, N; Barton, N W

    1991-11-01

    A 29 year old male with onset of globoid cell leukodystrophy at age 14 is described. This is the first case of enzymatically confirmed globoid cell leukodystrophy with onset of symptoms after the age of ten. This patient is unique because of the late onset and slow progression and extends the clinical spectrum of globoid cell leukodystrophy.

  1. Application of First Principles Model to Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Bugga, Ratnakumar; DiStefano, Salvidor

    1996-01-01

    Previous models use a single phase reaction; cycled cell predicts cannot be met with a single phase; interphase conversion provides means for film aging; aging cells predictions display typical behaviors: pressure changes in NiH² cells; voltage fading upon cycling; second plateau on discharge of cycled cells; negative limited behavior for Ni-Cds.

  2. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging.

    PubMed

    Davis, Hannah M; Pacheco-Costa, Rafael; Atkinson, Emily G; Brun, Lucas R; Gortazar, Arancha R; Harris, Julia; Hiasa, Masahiro; Bolarinwa, Surajudeen A; Yoneda, Toshiyuki; Ivan, Mircea; Bruzzaniti, Angela; Bellido, Teresita; Plotkin, Lilian I

    2017-06-01

    Skeletal aging results in apoptosis of osteocytes, cells embedded in bone that control the generation/function of bone forming and resorbing cells. Aging also decreases connexin43 (Cx43) expression in bone; and osteocytic Cx43 deletion partially mimics the skeletal phenotype of old mice. Particularly, aging and Cx43 deletion increase osteocyte apoptosis, and osteoclast number and bone resorption on endocortical bone surfaces. We examined herein the molecular signaling events responsible for osteocyte apoptosis and osteoclast recruitment triggered by aging and Cx43 deficiency. Cx43-silenced MLO-Y4 osteocytic (Cx43 def ) cells undergo spontaneous cell death in culture through caspase-3 activation and exhibit increased levels of apoptosis-related genes, and only transfection of Cx43 constructs able to form gap junction channels reverses Cx43 def cell death. Cx43 def cells and bones from old mice exhibit reduced levels of the pro-survival microRNA miR21 and, consistently, increased levels of the miR21 target phosphatase and tensin homolog (PTEN) and reduced phosphorylated Akt, whereas PTEN inhibition reduces Cx43 def cell apoptosis. miR21 reduction is sufficient to induce apoptosis of Cx43-expressing cells and miR21 deletion in miR21 fl/fl bones increases apoptosis-related gene expression, whereas a miR21 mimic prevents Cx43 def cell apoptosis, demonstrating that miR21 lies downstream of Cx43. Cx43 def cells release more osteoclastogenic cytokines [receptor activator of NFκB ligand (RANKL)/high-mobility group box-1 (HMGB1)], and caspase-3 inhibition prevents RANKL/HMGB1 release and the increased osteoclastogenesis induced by conditioned media from Cx43 def cells, which is blocked by antagonizing HMGB1-RAGE interaction. These findings identify a novel Cx43/miR21/HMGB1/RANKL pathway involved in preventing osteocyte apoptosis that also controls osteoclast formation/recruitment and is impaired with aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. H3K4 demethylase activities repress proliferative and postmitotic aging

    PubMed Central

    Alvares, Stacy M; Mayberry, Gaea A; Joyner, Ebony Y; Lakowski, Bernard; Ahmed, Shawn

    2014-01-01

    Homeostasis of postmitotic and proliferating cells is maintained by pathways that repress stress. We found that the Caenorhabditis elegans histone 3 lysine 4 (H3K4) demethylases RBR-2 and SPR-5 promoted postmitotic longevity of stress-resistant daf-2 adults, altered pools of methylated H3K4, and promoted silencing of some daf-2 target genes. In addition, RBR-2 and SPR-5 were required for germ cell immortality at a high temperature. Transgenerational proliferative aging was enhanced for spr-5; rbr-2 double mutants, suggesting that these histone demethylases may function sequentially to promote germ cell immortality by targeting distinct H3K4 methyl marks. RBR-2 did not play a comparable role in the maintenance of quiescent germ cells in dauer larvae, implying that it represses stress that occurs as a consequence of germ cell proliferation, rather than stress that accumulates in nondividing cells. We propose that H3K4 demethylase activities promote the maintenance of chromatin states during stressful growth conditions, thereby repressing postmitotic aging of somatic cells as well as proliferative aging of germ cells. PMID:24134677

  4. Novel ageing-biomarker discovery using data-intensive technologies.

    PubMed

    Griffiths, H R; Augustyniak, E M; Bennett, S J; Debacq-Chainiaux, F; Dunston, C R; Kristensen, P; Melchjorsen, C J; Navarrete, Santos A; Simm, A; Toussaint, O

    2015-11-01

    Ageing is accompanied by many visible characteristics. Other biological and physiological markers are also well-described e.g. loss of circulating sex hormones and increased inflammatory cytokines. Biomarkers for healthy ageing studies are presently predicated on existing knowledge of ageing traits. The increasing availability of data-intensive methods enables deep-analysis of biological samples for novel biomarkers. We have adopted two discrete approaches in MARK-AGE Work Package 7 for biomarker discovery; (1) microarray analyses and/or proteomics in cell systems e.g. endothelial progenitor cells or T cell ageing including a stress model; and (2) investigation of cellular material and plasma directly from tightly-defined proband subsets of different ages using proteomic, transcriptomic and miR array. The first approach provided longitudinal insight into endothelial progenitor and T cell ageing. This review describes the strategy and use of hypothesis-free, data-intensive approaches to explore cellular proteins, miR, mRNA and plasma proteins as healthy ageing biomarkers, using ageing models and directly within samples from adults of different ages. It considers the challenges associated with integrating multiple models and pilot studies as rational biomarkers for a large cohort study. From this approach, a number of high-throughput methods were developed to evaluate novel, putative biomarkers of ageing in the MARK-AGE cohort. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression

    PubMed Central

    Lowe, Donna; Raj, Kenneth

    2014-01-01

    Age is undoubtedly a major risk factor for heart disease. However, the reason for this is not entirely clear. In the course of our investigation into the mechanism of radiation-induced cardiovascular disease, we made several unexpected findings that inform us on this question. We observed that human coronary endothelial cells, while being able to initiate repair of radiation-induced DNA damage, often fail to complete the repair and become senescent. Such radiation-induced cellular aging occurs through a mutation-independent route. Endothelial cells that aged naturally through replication or as a result of radiation exhibited indistinguishable characteristics. The promoter regions of the CD44 gene in aging endothelial cells become demethylated, and the proteins are highly expressed on the cell surface, making the cells adhesive for monocytes. Adhesion is a cardinal feature that recruits monocytes to the endothelium, allowing them to infiltrate the vessel wall and initiate atherosclerosis. The epigenetic activation of CD44 expression is particularly significant as it causes persistent elevated CD44 protein expression, making senescent endothelial cells chronically adhesive. In addition to understanding why cardiovascular disease increases with age, these observations provide insights into the puzzling association between radiation and cardiovascular disease and highlight the need to consider premature aging as an additional risk of radiation to human health. PMID:25059316

  6. Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration.

    PubMed

    Soriano-Arroquia, Ana; McCormick, Rachel; Molloy, Andrew P; McArdle, Anne; Goljanek-Whysall, Katarzyna

    2016-04-01

    A common characteristic of aging is defective regeneration of skeletal muscle. The molecular pathways underlying age-related decline in muscle regenerative potential remain elusive. microRNAs are novel gene regulators controlling development and homeostasis and the regeneration of most tissues, including skeletal muscle. Here, we use satellite cells and primary myoblasts from mice and humans and an in vitro regeneration model, to show that disrupted expression of microRNA-143-3p and its target gene, Igfbp5, plays an important role in muscle regeneration in vitro. We identified miR-143 as a regulator of the insulin growth factor-binding protein 5 (Igfbp5) in primary myoblasts and show that the expression of miR-143 and its target gene is disrupted in satellite cells from old mice. Moreover, we show that downregulation of miR-143 during aging may act as a compensatory mechanism aiming at improving myogenesis efficiency; however, concomitant upregulation of miR-143 target gene, Igfbp5, is associated with increased cell senescence, thus affecting myogenesis. Our data demonstrate that dysregulation of miR-143-3p:Igfbp5 interactions in satellite cells with age may be responsible for age-related changes in satellite cell function. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    NASA Astrophysics Data System (ADS)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  8. The effect of age and medical comorbidities on in vitro myoblast expansion in women with and without pelvic organ prolapse.

    PubMed

    Price, Danielle Markle; Lane, Felicia L; Craig, Jocelyn B; Nistor, Gabriel; Motakef, Saba; Pham, Quynh-Ahn; Keirstead, Hans

    2014-01-01

    This is an observational study is designed to assess the influence of age, prolapse and medical co-morbidities on myogenic stem cells growth in-vitro. A biopsy of the rectus abdominus muscle was obtained during surgery in patients with and without pelvic organ prolapse (POP). Nuclei number and fiber count were correlated with patient's age, presence of POP, and medical comorbidities. Efficiency of expansion of myogenic stem cells in vitro was calculated. The percentage of Pax7-, MyoD-, and desmin-positive cells was correlated with age, POP status, and medical comorbidities. A total of 17 specimens were obtained; 13 specimens were available for histologic analysis. There was no correlation between patient's age, POP status or medical comorbidities and nuclei or fiber count, growth rate, or the percentage of Pax7- and MyoD-positive cells. Patients with 2 to 4 medical comorbidities were noted to have a significantly lower percentage of desmin-positive cells. Specimens with a higher nuclear count had significantly better cellular expansion. Data were analyzed using Kruskal-Wallis or Wilcoxon rank sum statistics. Multiple medical comorbidities but not patient's age or POP status influenced in vitro myogenic stem cell growth. These data suggest that patients with advancing age or POP may be acceptable autologous donors if treatment of urinary or anal incontinence requires myoblast transplantation.

  9. Persistent viral infections and immune aging.

    PubMed

    Brunner, Stefan; Herndler-Brandstetter, Dietmar; Weinberger, Birgit; Grubeck-Loebenstein, Beatrix

    2011-07-01

    Immunosenescence comprises a set of dynamic changes occurring to both, the innate as well as the adaptive immune system that accompany human aging and result in complex manifestations of still poorly defined deficiencies in the elderly population. One of the most prominent alterations during aging is the continuous involution of the thymus gland which is almost complete by the age of 50. Consequently, the output of naïve T cells is greatly diminished in elderly individuals which puts pressure on homeostatic forces to maintain a steady T cell pool for most of adulthood. In a great proportion of the human population, this fragile balance is challenged by persistent viral infections, especially Cytomegalovirus (CMV), that oblige certain T cell clones to monoclonally expand repeatedly over a lifetime which then occupy space within the T cell pool. Eventually, these inflated memory T cell clones become exhausted and their extensive accumulation accelerates the age-dependent decline of the diversity of the T cell pool. As a consequence, infectious diseases are more frequent and severe in elderly persons and immunological protection following vaccination is reduced. This review therefore aims to shed light on how various types of persistent viral infections, especially CMV, influence the aging of the immune system and highlight potential measures to prevent the age-related decline in immune function. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Age-related changes in humoral and cell-mediated immunity in Down syndrome children living at home.

    PubMed

    Lockitch, G; Singh, V K; Puterman, M L; Godolphin, W J; Sheps, S; Tingle, A J; Wong, F; Quigley, G

    1987-11-01

    Abnormalities of humoral and cell-mediated immunity have been described in Down syndrome but reported findings have been inconsistent. Confounding factors have included age, institutional versus home life, hepatitis B antigenemia, and zinc deficiency. To clarify this problem, we studied 64 children with Down syndrome (DS) compared with an age-matched control group. All children had always lived at home. All the DS children were negative for hepatitis B surface antigen. Serum zinc concentration in the DS group was on average 12 micrograms/dl lower than age-matched control children. They also had significantly lower levels of immunoglobulin M, total lymphocyte count, T and B lymphocytes, and T helper and suppressor cells. In vitro lymphocyte response to phytohemagglutinin and concanavalin A was significantly reduced at all ages in the DS group. Lymphocyte response to pokeweed mitogen increased with age in control children but decreased in the DS children. By 18 yr, the mean response for DS was 60000 cpm lower than controls. The DS group had significantly higher concentrations of immunoglobulins A and G than controls and the difference increased with age. Complement fractions C3 and C4 were also higher in the DS group at all ages. The number of HNK-1 positive cells was higher in the DS group than controls at all ages. When hepatitis and institutionalization are excluded as confounding factors, DS children still differ in both humoral and cell-mediated immunity from an age-matched control group.

  11. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion.

    PubMed

    Stearns-Reider, Kristen M; D'Amore, Antonio; Beezhold, Kevin; Rothrauff, Benjamin; Cavalli, Loredana; Wagner, William R; Vorp, David A; Tsamis, Alkiviadis; Shinde, Sunita; Zhang, Changqing; Barchowsky, Aaron; Rando, Thomas A; Tuan, Rocky S; Ambrosio, Fabrisia

    2017-06-01

    Age-related declines in skeletal muscle regeneration have been attributed to muscle stem cell (MuSC) dysfunction. Aged MuSCs display a fibrogenic conversion, leading to fibrosis and impaired recovery after injury. Although studies have demonstrated the influence of in vitro substrate characteristics on stem cell fate, whether and how aging of the extracellular matrix (ECM) affects stem cell behavior has not been investigated. Here, we investigated the direct effect of the aged muscle ECM on MuSC lineage specification. Quantification of ECM topology and muscle mechanical properties reveals decreased collagen tortuosity and muscle stiffening with increasing age. Age-related ECM alterations directly disrupt MuSC responses, and MuSCs seeded ex vivo onto decellularized ECM constructs derived from aged muscle display increased expression of fibrogenic markers and decreased myogenicity, compared to MuSCs seeded onto young ECM. This fibrogenic conversion is recapitulated in vitro when MuSCs are seeded directly onto matrices elaborated by aged fibroblasts. When compared to young fibroblasts, fibroblasts isolated from aged muscle display increased nuclear levels of the mechanosensors, Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ), consistent with exposure to a stiff microenvironment in vivo. Accordingly, preconditioning of young fibroblasts by seeding them onto a substrate engineered to mimic the stiffness of aged muscle increases YAP/TAZ nuclear translocation and promotes secretion of a matrix that favors MuSC fibrogenesis. The findings here suggest that an age-related increase in muscle stiffness drives YAP/TAZ-mediated pathogenic expression of matricellular proteins by fibroblasts, ultimately disrupting MuSC fate. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  12. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells

    PubMed Central

    Moorefield, Emily C.; Andres, Sarah F.; Blue, R. Eric; Van Landeghem, Laurianne; Mah, Amanda T.; Santoro, M. Agostina; Ding, Shengli

    2017-01-01

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFPLow), activatable reserve IESC and enteroendocrine cells (Sox9-EGFPHigh), Sox9-EGFPSublow progenitors, and Sox9-EGFPNegative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFPLow IESC and Sox9-EGFPHigh cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging. PMID:28854151

  13. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia.

    PubMed

    Boas, F E; Forman, L; Beutler, E

    1998-03-17

    Phosphatidylserine (PS) normally localizes to the inner leaflet of cell membranes but becomes exposed in abnormal or apoptotic cells, signaling macrophages to ingest them. Along similar lines, it seemed possible that the removal of red cells from circulation because of normal aging or in hemolytic anemias might be triggered by PS exposure. To investigate the role of PS exposure in normal red cell aging, we used N-hydroxysuccinimide-biotin to tag rabbit red cells in vivo, then used phycoerythrin-streptavidin to label the biotinylated cells, and annexin V-fluorescein isothiocyanate (FITC) to detect the exposed PS. Flow cytometric analysis of these cells drawn at 10-day intervals up to 70 days after biotinylation indicated that older, biotinylated cells expose more PS. Furthermore, our data match a simple model of red cell senescence that assumes both an age-dependent destruction of senescent red cells preceded by several hours of PS exposure and a random destruction of red cells without PS exposure. By using this model, we demonstrated that the exposure of PS parallels the rate at which biotinylated red cells are removed from circulation. On the other hand, using an annexin V-FITC label and flow cytometry demonstrates that exposed PS does not cause the reduced red cell life span of patients with hemolytic anemia, with the possible exception of those with unstable hemoglobins or sickle cell anemia. Thus, in some cases PS exposure on the cell surface may signal the removal of red cells from circulation, but in other cases some other signal must trigger the sequestration of cells.

  14. The number and function of circulating CD34+CD133+ progenitor cells decreased in stable coronary artery disease but not in acute myocardial infarction

    PubMed Central

    Kondo, Takahisa; Shintani, Satoshi; Maeda, Kengo; Hayashi, Mutsuharu; Inden, Yasuya; Numaguchi, Yasushi; Sugiura, Kaichiro; Morita, Yasuhiro; Kitamura, Tomoya; Kamiya, Haruo; Sone, Takahito; Ohno, Miyoshi; Murohara, Toyoaki

    2010-01-01

    Objective Circulating CD34+CD133+ cells are one of the main sources of circulating endothelial progenitor cells (EPCs). Age is inversely related to the number and function of CD34+CD133+ progenitor cells in stable coronary artery disease (CAD), but the relationship remains unclear in acute myocardial infarction (AMI). The authors aimed to clarify how ageing affects the number and function of mobilised CD34+CD133+ progenitor cells in AMI. Design and results Circulating CD34+CD133+ progenitor cells were measured by flow cytometry. Measurements were made at admission for CAD, or on day 7 after the onset of AMI. In stable CAD (n=131), circulating CD34+CD133+ cells decreased with age (r=−0.344, p<0.0001). In AMI, circulating CD34+CD133+ cells did not correlate with age (n=50), and multivariate analysis revealed that the decreased number of circulating CD34+CD133+ cells was associated with male sex and higher peak creatinine kinase. The ability to give rise to functional EPCs, which show good migratory and tube-forming capabilities, deteriorated among stable CAD subjects (n=10) compared with AMI subjects (N=6). Conclusions In stable CAD, the number and function of circulating CD34+CD133+ progenitor cells decreased with age, whereas those mobilised and circulating in AMI did not. PMID:27325937

  15. A novel quantitative methodology for age evaluation of the human corneal endothelium

    NASA Astrophysics Data System (ADS)

    Rannou, Klervi; Thuret, Gilles; Gain, Philippe; Pinoli, Jean-Charles; Gavet, Yann

    2017-03-01

    The human corneal endothelium regulates the cornea transparency. Its cells, that cannot regenerate after birth, form a tesselated mosaic with almost perfect hexagonal cells during childhood, becoming progressively bigger and less ordered during aging. This study included 50 patients (in 10 decades groups) and 10 specular microscopy observations per patient. Five different criteria were measured on the manually segmented cells: area and perimeter of the cells as well as reduced Minkowski functionals. All these criteria were used to assess the probability of age group membership. We demonstrated that the age evaluation is near the reality, although a high variability was observed for patients between 30 and 70 years old.

  16. Characterization and functionality of cardiac progenitor cells in congenital heart patients.

    PubMed

    Mishra, Rachana; Vijayan, Kalpana; Colletti, Evan J; Harrington, Daniel A; Matthiesen, Thomas S; Simpson, David; Goh, Saik Kia; Walker, Brandon L; Almeida-Porada, Graça; Wang, Deli; Backer, Carl L; Dudley, Samuel C; Wold, Loren E; Kaushal, Sunjay

    2011-02-01

    Human cardiac progenitor cells (hCPCs) may promote myocardial regeneration in adult ischemic myocardium. The regenerative capacity of hCPCs in young patients with nonischemic congenital heart defects for potential use in congenital heart defect repair warrants exploration. Human right atrial specimens were obtained during routine congenital cardiac surgery across 3 groups: neonates (age, <30 days), infants (age, 1 month to 2 years), and children (age, >2 to ≤13 years). C-kit(+) hCPCs were 3-fold higher in neonates than in children >2 years of age. hCPC proliferation was greatest during the neonatal period as evidenced by c-kit(+) Ki67(+) expression but decreased with age. hCPC differentiation capacity was also greatest in neonatal right atrium as evidenced by c-kit(+), NKX2-5(+), NOTCH1(+), and NUMB(+) expression. Despite the age-dependent decline in resident hCPCs, we isolated and expanded right atrium-derived CPCs from all patients (n=103) across all ages and diagnoses using the cardiosphere method. Intact cardiospheres contained a mix of heart-derived cell subpopulations that included cardiac progenitor cells expressing c-kit(+), Islet-1, and supporting cells. The number of c-kit(+)-expressing cells was highest in human cardiosphere-derived cells (hCDCs) grown from neonatal and infant right atrium. Furthermore, hCDCs could differentiate into diverse cardiovascular lineages by in vitro differentiation assays. Transplanted hCDCs promoted greater myocardial regeneration and functional improvement in infarcted myocardium than transplanted cardiac fibroblasts. Resident hCPCs are most abundant in the neonatal period and rapidly decrease over time. hCDCs can be reproducibly isolated and expanded from young human myocardial samples regardless of age or diagnosis. hCPCs are functional and have potential in congenital cardiac repair.

  17. Aging reduces the neuroprotective capacity, VEGF secretion, and metabolic activity of rat choroid plexus epithelial cells.

    PubMed

    Emerich, Dwaine F; Schneider, Patricia; Bintz, Briannan; Hudak, Jebecka; Thanos, Christopher G

    2007-01-01

    Delivery of neurotrophic molecules to the brain has potential for preventing neuronal loss in neurodegenerative disorders. Choroid plexus (CP) epithelial cells secrete numerous neurotrophic factors, and encapsulated CP transplants are neuroprotective in models of stroke and Huntington's disease (HD). To date, all studies examining the neuroprotective potential of CP transplants have used cells isolated from young donor animals. Because the aging process significantly impacts the cytoarchitecture and function of the CP the following studies determined whether age-related impairments occur in its neuroprotective capacity. CP was isolated from either young (3-4 months) or aged (24 months) rats. In vitro, young CP epithelial cells secreted more VEGF and were metabolically more active than aged CP epithelial cells. Additionally, conditioned medium from cultured aged CP was less potent than young CP at enhancing the survival of serum-deprived neurons. Finally, encapsulated CP was tested in an animal model of HD. Cell-loaded or empty alginate capsules (control group) were transplanted unilaterally into the rat striatum. Seven days later, the animals received an injection of quinolinic acid (QA; 225 nmol) adjacent to the implant site. Animals were tested for motor function 28 days later. In the control group, QA lesions severely impaired function of the contralateral forelimb. Implants of young CP were potently neuroprotective as rats receiving CP transplants were not significantly impaired when tested for motor function. In contrast, implants of CP from aged rats were only modestly effective and were much less potent than young CP transplants. These data are the first to directly link aging with diminished neuroprotective capacity of CP epithelial cells.

  18. The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types.

    PubMed

    Youn, Ahrim; Wang, Shuang

    2018-01-01

    Cell division is important in human aging and cancer. The estimation of the number of cell divisions (mitotic age) of a given tissue type in individuals is of great interest as it allows not only the study of biological aging (using a new molecular aging target) but also the stratification of prospective cancer risk. Here, we introduce the MiAge Calculator, a mitotic age calculator based on a novel statistical framework, the MiAge model. MiAge is designed to quantitatively estimate mitotic age (total number of lifetime cell divisions) of a tissue using the stochastic replication errors accumulated in the epigenetic inheritance process during cell divisions. With the MiAge model, the MiAge Calculator was built using the training data of DNA methylation measures of 4,020 tumor and adjacent normal tissue samples from eight TCGA cancer types and was tested using the testing data of DNA methylation measures of 2,221 tumor and adjacent normal tissue samples of five other TCGA cancer types. We showed that within each of the thirteen cancer types studied, the estimated mitotic age is universally accelerated in tumor tissues compared to adjacent normal tissues. Across the thirteen cancer types, we showed that worse cancer survivals are associated with more accelerated mitotic age in tumor tissues. Importantly, we demonstrated the utility of mitotic age by showing that the integration of mitotic age and clinical information leads to improved survival prediction in six out of the thirteen cancer types studied. The MiAge Calculator is available at http://www.columbia.edu/∼sw2206/softwares.htm .

  19. Enhanced expression of PD-1 and other activation markers by CD4+ T cells of young but not old patients with metastatic melanoma.

    PubMed

    van den Brom, Rob R H; van der Geest, Kornelis S M; Brouwer, Elisabeth; Hospers, Geke A P; Boots, Annemieke M H

    2018-06-01

    The biological behavior of melanoma is unfavorable in the elderly when compared to young subjects. We hypothesized that differences in T-cell responses might underlie the distinct behavior of melanoma in young and old melanoma patients. Therefore, we investigated the circulating T-cell compartment of 34 patients with metastatic melanoma and 42 controls, which were classified as either young or old. Absolute numbers of CD4+ T cells were decreased in young and old melanoma patients when compared to the age-matched control groups. Percentages of naive and memory CD4+ T cells were not different when comparing old melanoma patients to age-matched controls. Percentages of memory CD4+ T cells tended to be increased in young melanoma patients compared to young controls. Proportions of naive CD4+ T cells were lower in young patients than in age-matched controls, and actually comparable to those in old patients and controls. This was accompanied with increased percentages of memory CD4+ T cells expressing HLA-DR, Ki-67, and PD-1 in young melanoma patients in comparison to the age-matched controls, but not in old patients. Proportions of CD45RA-FOXP3 high memory regulatory T cells were increased in young and old melanoma patients when compared to their age-matched controls, whereas those of CD45RA+FOXP3 low naive regulatory T cells were similar. We observed no clear modulation of the circulating CD8+ T-cell repertoire in melanoma patients. In conclusion, we show that CD4+ T cells of young melanoma patients show signs of activation, whereas these signs are less clear in CD4+ T cells of old patients.

  20. Age, sex, and nutritional status modify the CD4+ T-cell recovery rate in HIV-tuberculosis co-infected patients on combination antiretroviral therapy.

    PubMed

    Ezeamama, Amara E; Mupere, Ezekiel; Oloya, James; Martinez, Leonardo; Kakaire, Robert; Yin, Xiaoping; Sekandi, Juliet N; Whalen, Christopher C

    2015-06-01

    Baseline age and combination antiretroviral therapy (cART) were examined as determinants of CD4+ T-cell recovery during 6 months of tuberculosis (TB) therapy with/without cART. It was determined whether this association was modified by patient sex and nutritional status. This longitudinal analysis included 208 immune-competent, non-pregnant, ART-naive HIV-positive patients from Uganda with a first episode of pulmonary TB. CD4+ T-cell counts were measured using flow cytometry. Age was defined as ≤24, 25-29, 30-34, and 35-39 vs. ≥40 years. Nutritional status was defined as normal (>18.5kg/m(2)) vs. underweight (≤18.5kg/m(2)) using the body mass index (BMI). Multivariate random effects linear mixed models were fitted to estimate differences in CD4+ T-cell recovery in relation to specified determinants. cART was associated with a monthly rise of 15.7 cells/μl (p<0.001). Overall, age was not associated with CD4+ T-cell recovery during TB therapy (p = 0.655). However, among patients on cART, the age-associated CD4+ T-cell recovery rate varied by sex and nutritional status, such that age <40 vs. ≥40 years predicted superior absolute CD4+ T-cell recovery among females (p=0.006) and among patients with a BMI ≥18.5kg/m(2) (p<0.001). TB-infected HIV-positive patients aged ≥40 years have a slower rate of immune restoration given cART, particularly if BMI is >18.5kg/m(2) or they are female. These patients may benefit from increased monitoring and nutritional support during cART. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. β-Cell Ca(2+) dynamics and function are compromised in aging.

    PubMed

    Barker, Christopher J; Li, Luosheng; Köhler, Martin; Berggren, Per-Olof

    2015-01-01

    Defects in pancreatic β-cell function and survival are key components in type 2 diabetes (T2D). An age-dependent deterioration in β-cell function has also been observed, but little is known about the molecular mechanisms behind this phenomenon. Our previous studies indicate that the regulation of cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) may be critical and that this is dependent on the proper function of the mitochondria. The [Ca(2+)]i dynamics of the pancreatic β-cell are driven by an interplay between glucose-induced influx of extracellular Ca(2+) via voltage-dependent Ca(2+) channels and the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-mediated liberation of Ca(2+) from intracellular stores. Our previous work has indicated a direct relationship between disruption of Ins(1,4,5)P3-mediated Ca(2+) regulation and loss of β-cell function, including disturbed [Ca(2+)]i dynamics and compromised insulin secretion. To investigate these processes in aging we used three mouse models, a premature aging mitochondrial mutator mouse, a mature aging phenotype (C57BL/6) and an aging-resistant phenotype (129). Our data suggest that age-dependent impairment in mitochondrial function leads to modest changes in [Ca(2+)]i dynamics in mouse β-cells, particularly in the pattern of [Ca(2+)]i oscillations. These changes are driven by modifications in both PLC/Ins(1,4,5)P3-mediated Ca(2+) mobilization from intracellular stores and decreased β-cell Ca(2+) influx over the plasma membrane. Our findings underscore an important concept, namely that even relatively small, time-dependent changes in β-cell signal-transduction result in compromised insulin release and in a diabetic phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Telocytes and putative stem cells in ageing human heart

    PubMed Central

    Popescu, Laurentiu M; Curici, Antoanela; Wang, Enshi; Zhang, Hao; Hu, Shengshou; Gherghiceanu, Mihaela

    2015-01-01

    Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit http://www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days–1 year), children (6–17 years) and adults (34–60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm2) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52–62%; vascular smooth muscle cells and pericytes 22–28%, Schwann cells with nerve endings 6–7%, fibroblasts 3–10%, macrophages 1–8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults). PMID:25545142

  3. Retarded differentiation of Leydig cells and increased apoptosis of germ cells in the initial round of spermatogenesis of rats with lethal dwarf and epilepsy (lde/lde) phenotypes.

    PubMed

    Takenaka, Motoo; Yagi, Mio; Amakasu, Kohei; Suzuki, Katsushi; Suzuki, Hiroetsu

    2008-01-01

    The lde/lde rats show a severe dwarf phenotype with early postnatal lethality and a high incidence of epileptic seizure. Seizures are first detected in this model between 16 and 63 days of age, and mostly begin as wild running and progress to generalized tonic-clonic convulsions. Because our histological examination detected many extracellular vacuoles in the hippocampus and amygdaloid bodies of these animals at 28 days of age, these pathological alterations may be related to the epileptogenesis in lde/lde rats. In addition to these defects, male lde/lde rats have apparently smaller testes with reduced number of germ cells and poorly matured adult-type Leydig cells in comparison with wild-type controls. In the present study, we performed anatomical, histological, and endocrinologic examinations to characterize the testicular phenotype of lde/lde rats at 21, 28, 35, and 56 days of age. Male lde/lde rats showed severely retarded growth of the testes and accessory sex organs. Their seminiferous tubules were significantly smaller and contained markedly fewer germ cells at all time points examined as compared with controls. Significantly fewer Sertoli cells at 21 and 28 days of age, markedly decreased spermatocyte number at 28 days of age, and delayed appearance of spermatids at 56 days of age were observed in the testes of lde/lde rats. More TUNEL (T&T-mediated duTP-biotin nick-end labeling)-positive cells were detected in lde/lde seminiferous tubules, and the largest number of apoptotic cells was recorded at 28 days of age. The increases in 3beta-hydroxysteroid dehydrogenase-positive adult-type Leydig cells and 11beta-hydroxysteroid dehydrogenase-positive mature adult-type Leydig cells were also severely retarded in the testes of lde/lde rats. Consistent with these defects, significantly lower plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone concentrations were detected in lde/lde males at 28 days of age, and weak immunostaining for FSH and smaller cytoplasm of LH-positive cells were detected in the anterior pituitary lobes of lde/lde males. Despite a normal level of plasma LH after 35 days of age, a significantly lower level of plasma testosterone was detected at 56 days of age. These results indicate that the normal lde allele is related to prepubertal elevations of gonadotropins and normal development of adult-type Leydig cells. Because lde/lde rats experience epileptic seizures during the period when the hypothalamus-pituitary-testicular axis is established, lde/lde rats would be useful as a model for reproductive disorder with pediatric epilepsy.

  4. Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing, and disease

    PubMed Central

    Almada, Albert E.; Wagers, Amy J.

    2016-01-01

    Satellite cells are adult myogenic stem cells that function to repair damaged muscle. The enduring capacity for muscle regeneration requires efficient satellite cell expansion after injury, differentiation to produce myoblasts that can reconstitute damaged fibers, and self-renewal to replenish the muscle stem cell pool for subsequent rounds of injury and repair. Emerging studies indicate that misregulations of satellite cell fate and function contribute to age-associated muscle dysfunction and influence the severity of muscle diseases, including Duchenne Muscular Dystrophy (DMD). It has also become apparent that satellite cell fate during muscle regeneration, aging, and in the context of DMD is governed by an intricate network of intrinsic and extrinsic regulators. Targeted manipulation of this network may offer unique opportunities for muscle regenerative medicine. PMID:26956195

  5. Suppression of antioxidant Nrf-2 and downstream pathway in H9c2 cells by advanced glycation end products (AGEs) via ERK phosphorylation.

    PubMed

    Ko, Shun-Yao; Chang, Shu-Shing; Lin, I-Hsuan; Chen, Hong-I

    2015-11-01

    Diabetic cardiomyopathy is related to oxidative stress and correlated with the presence of advanced glycation end products (AGEs). In a clinical setting, AGEs can be detected in patients presenting diabetic cardiomyopathy; however, the underlying mechanism has yet to be elucidated. In our previous study, AGEs increase cell hypertrophy via ERK phosphorylation in a process closely related to ROS production. Thus, we propose that AGEs regulate the antioxidant gene nuclear factor-erythroid 2-related factor (Nrf-2). In H9c2 cells treated with AGEs, the expression of Nrf-2 was reduced; however, ERK phosphorylation was shown to increase. Treatment with H2O2 was also shown to increase Nrf-2 and ERK phosphorylation. In cells pretreatment with ROS scavenger NAC, the effects of H2O2 were reduced; however, the effects of the AGEs remained largely unchanged. Conversely, when cells were pretreated with PD98059 (ERK inhibitor), the expression of Nrf-2 was recovered following treatment with AGEs. Our results suggest that AGEs inhibit Nrf-2 via the ERK pathway; however, this influence is partly associated with ROS. Our finding further indicated that AGEs possess both ROS-dependent and ROS-independent pathways, resulting in a reduction in Nrf-2. This report reveals an important mechanism underlying the regulation of diabetic cardiomyopathy progression by AGEs. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche.

    PubMed

    Garg, Koyal; Boppart, Marni D

    2016-11-01

    Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span. Copyright © 2016 the American Physiological Society.

  7. Propagation of senescent mice using nuclear transfer embryonic stem cell lines.

    PubMed

    Mizutani, Eiji; Ono, Tetsuo; Li, Chong; Maki-Suetsugu, Rinako; Wakayama, Teruhiko

    2008-09-01

    Senescent mice are often infertile, and the cloning success rate decreases with age, making it almost impossible to produce cloned progeny directly from such animals. In this study, we tried to produce offspring from such "unclonable" senescent mice using nuclear transfer techniques. Donor fibroblasts were obtained from the tail tips of mice aged up to 2 years and 9 months. Although most attempts failed to produce cloned mice by direct somatic cell nuclear transfer, we managed to establish nuclear transfer embryonic stem (ntES) cell lines from all aged mice with an establishment rate of 10-25%, irrespective of sex or strain. Finally, cloned mice were obtained from these ntES cells by a second round of nuclear transfer. In addition, healthy offspring was obtained from all aged donors via germline transmission of ntES cells in chimeric mice. This technique is thus applicable to the propagation of a variety of animals, irrespective of age or fertile potential.

  8. Effects of Long-Term Cranberry Supplementation on Endocrine Pancreas in Aging Rats

    PubMed Central

    Zhu, Min; Hu, Jingping; Perez, Evelyn; Phillips, Dawn; Kim, Wook; Ghaedian, Reza; Napora, Joshua K.

    2011-01-01

    The effects of long-term cranberry consumption on age-related changes in endocrine pancreas are not fully understood. Here we treated male Fischer 344 rats with either 2% whole cranberry powder supplemented or normal rodent chow from 6 to 22 month old. Both groups displayed an age-related decline in basal plasma insulin concentrations, but this age-related decline was delayed by cranberry. Cranberry supplementation led to increased β-cell glucose responsiveness during the oral glucose tolerance test. Portal insulin concentration was 7.6-fold higher in rats fed cranberry, coupled with improved β-cell function. However, insulin resistance values were similar in both groups. Total β-cell mass and expression of pancreatic and duodenal homeobox 1 and insulin within islets were significantly enhanced in rats fed cranberry relative to controls. Furthermore, cranberry increased insulin release of an insulin-producing β-cell line, revealing its insulinotropic effect. These findings suggest that cranberry is of particular benefit to β-cell function in normal aging rats. PMID:21768504

  9. Role of pattern recognition receptors of the neurovascular unit in inflamm-aging.

    PubMed

    Wilhelm, Imola; Nyúl-Tóth, Ádám; Kozma, Mihály; Farkas, Attila E; Krizbai, István A

    2017-11-01

    Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes. Copyright © 2017 the American Physiological Society.

  10. Immunization of Aged Mice with a Pneumococcal Conjugate Vaccine Combined with an Unmethylated CpG-Containing Oligodeoxynucleotide Restores Defective Immunoglobulin G Antipolysaccharide Responses and Specific CD4+-T-Cell Priming to Young Adult Levels

    DTIC Science & Technology

    2006-04-01

    aged and young adult mice made comparable levels of proinflammatory cytokines in response to CpG-ODN, although cells from aged mice secreted higher...sepsis, is significantly elevated in the elderly relative to young adults (37, 60). Defective innate immunity including diminished neutrophil and...young adult recipients (15). Exposure to inflammatory cy- tokines in vivo could restore the defective CD4-T-cell function in aged mice (20). Pn

  11. Characterization of mammary epithelial stem/progenitor cells and their changes with aging in common marmosets.

    PubMed

    Wu, Anqi; Dong, Qiaoxiang; Gao, Hui; Shi, Yuanshuo; Chen, Yuanhong; Zhang, Fuchuang; Bandyopadhyay, Abhik; Wang, Danhan; Gorena, Karla M; Huang, Changjiang; Tardif, Suzette; Nathanielsz, Peter W; Sun, Lu-Zhe

    2016-08-25

    Age is the number one risk factor for breast cancer, yet the underlying mechanisms are unexplored. Age-associated mammary stem cell (MaSC) dysfunction is thought to play an important role in breast cancer carcinogenesis. Non-human primates with their close phylogenetic relationship to humans provide a powerful model system to study the effects of aging on human MaSC. In particular, the common marmoset monkey (Callithrix jacchus) with a relatively short life span is an ideal model for aging research. In the present study, we characterized for the first time the mammary epithelial stem/progenitor cells in the common marmoset. The MaSC-enriched cells formed four major types of morphologically distinct colonies when cultured on plates pre-seeded with irradiated NIH3T3 fibroblasts, and were also capable of forming mammospheres in suspension culture and subsequent formation of 3D organoids in Matrigel culture. Most importantly, these 3D organoids were found to contain stem/progenitor cells that can undergo self-renewal and multi-lineage differentiation both in vitro and in vivo. We also observed a significant decrease of luminal-restricted progenitors with age. Our findings demonstrate that common marmoset mammary stem/progenitor cells can be isolated and quantified with established in vitro and in vivo assays used for mouse and human studies.

  12. Mitochondrial role in cell aging

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Fleming, J.; Economos, A. C.; Johnson, J. E., Jr.

    1980-01-01

    The experimental studies on the mitochondria of insect and mammalian cells are examined with a view to an analysis of intrinsic mitochondrial senescence, and its relation to the age-related changes in other cell organelles. The fine structural and biochemical data support the concept that the mitochondria of fixed postmitotic cells may be the site of intrinsic aging because of the attack by free radicals and lipid peroxides originating in the organelles as a by-product of oxygen reduction during respiration. Although the cells have numerous mechanisms for counteracting lipid peroxidation injury, there is a slippage in the antioxidant protection. Intrinsic mitochondrial aging could thus be considered as a specific manifestation of oxygen toxicity. It is proposed that free radical injury renders an increasing number of the mitochondria unable to divide, probably because of damage to the lipids of the inner membrane and to mitochondrial DNA.

  13. Age-related changes in the response of intestinal cells to parathyroid hormone.

    PubMed

    Russo de Boland, Ana

    2004-12-01

    The concept of the role(s) of parathyroid hormone (PTH), has expanded from that on acting on the classical target tissues, bone and kidney, to the intestine where its actions are of regulatory and developmental importance: regulation of intracellular calcium through modulation of second messengers and, activation of mitogenic cascades leading to cell proliferation. Several causes have been postulated to modify the hormone response in intestinal cells with ageing, among them, alterations of PTH receptor (PTHR1) binding sites, reduced expression of G proteins and hormone signal transduction changes. The current review summarizes the actual knowledge regarding the molecular and biochemical basis of age-impaired PTH receptor-mediated signaling in intestinal cells. A fundamental understanding of why PTH functions are impaired with age will enhance our understanding of its importance in intestinal cell physiology.

  14. Staying young at heart: autophagy and adaptation to cardiac aging.

    PubMed

    Leon, Leonardo J; Gustafsson, Åsa B

    2016-06-01

    Aging is a predominant risk factor for developing cardiovascular disease. Therefore, the cellular processes that contribute to aging are attractive targets for therapeutic interventions that can delay or prevent the development of age-related diseases. Our understanding of the underlying mechanisms that contribute to the decline in cell and tissue functions with age has greatly advanced over the past decade. Classical hallmarks of aging cells include increased levels of reactive oxygen species, DNA damage, accumulation of dysfunctional organelles, oxidized proteins and lipids. These all contribute to a progressive decline in the normal physiological function of the cell and to the onset of age-related conditions. A major cause of the aging process is progressive loss of cellular quality control. Autophagy is an important quality control pathway and is necessary to maintain cardiac homeostasis and to adapt to stress. A reduction in autophagy has been observed in a number of aging models and there is compelling evidence that enhanced autophagy delays aging and extends life span. Enhancing autophagy counteracts age-associated accumulation of protein aggregates and damaged organelles in cells. In this review, we discuss the functional role of autophagy in maintaining homeostasis in the heart, and how a decline is associated with accelerated cardiac aging. We also evaluate therapeutic approaches being researched in an effort to maintain a healthy young heart. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells.

    PubMed

    Delabaere, Laetitia; Ertl, Henry A; Massey, Dashiell J; Hofley, Carolyn M; Sohail, Faraz; Bienenstock, Elisa J; Sebastian, Hans; Chiolo, Irene; LaRocque, Jeannine R

    2017-04-01

    Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).

    PubMed

    Kuwano, Kazuyoshi; Araya, Jun; Hara, Hiromichi; Minagawa, Shunsuke; Takasaka, Naoki; Ito, Saburo; Kobayashi, Kenji; Nakayama, Katsutoshi

    2016-11-01

    Aging is associated with impairments in homeostasis. Although aging and senescence are not equivalent, the number of senescent cells increases with aging. Cellular senescence plays important roles in tissue repair or remodeling, as well as embryonic development. Autophagy is a process of lysosomal self-degradation that maintains a homeostatic balance between the synthesis, degradation, and recycling of cellular proteins. Autophagy diminishes with aging; additionally, accelerated aging can be attributed to reduced autophagy. Cellular senescence has been widely implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), a disease of accelerated lung aging, presumably by impairing cell repopulation and by aberrant cytokine secretion in the senescence-associated secretory phenotype. The possible participation of autophagy in the pathogenic sequence of COPD has been extensively explored. Although it has been reported that increased autophagy may induce epithelial cell death, an insufficient reserve of autophagy can induce cellular senescence in bronchial epithelial cells of COPD. Furthermore, advanced age is one of the most important risk factors for the development of idiopathic pulmonary fibrosis (IPF). Telomere shortening is found in blood leukocytes and alveolar epithelial cells from patients with IPF. Accelerated senescence of epithelial cells plays a role in IPF pathogenesis by perpetuating abnormal epithelial-mesenchymal interactions. Insufficient autophagy may be an underlying mechanism of accelerated epithelial cell senescence and myofibroblast differentiation in IPF. Herein, we review the molecular mechanisms of cellular senescence and autophagy and summarize the role of cellular senescence and autophagy in both COPD and IPF. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  17. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta.

    PubMed

    Matsui, T; Nakamura, N; Ojima, A; Nishino, Y; Yamagishi, S-I

    2016-09-01

    Advanced glycation end products (AGEs)-receptor RAGE interaction evokes oxidative stress and inflammatory reactions, thereby being involved in endothelial cell (EC) damage in diabetes. Sulforaphane is generated from glucoraphanin, a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, by myrosinase. Sulforaphane has been reported to protect against oxidative stress-mediated cell and tissue injury. However, effects of sulforaphane on AGEs-induced vascular damage remain unclear. In this study, we investigated whether and how sulforaphane could inhibit inflammation in AGEs-exposed human umbilical vein ECs (HUVECs) and AGEs-injected rat aorta. Sulforaphane treatment for 4 or 24 h dose-dependently inhibited the AGEs-induced increase in RAGE, monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecular-1 (VCAM-1) gene expression in HUVECs. AGEs significantly stimulated MCP-1 production by, and THP-1 cell adhesion to, HUVECs, both of which were prevented by 1.6 μM sulforaphane. Sulforaphane significantly suppressed oxidative stress generation and NADPH oxidase activation evoked by AGEs in HUVECs. Furthermore, aortic RAGE, ICAM-1 and VCAM-1 expression in AGEs-injected rats were increased, which were suppressed by simultaneous infusion of sulforaphane. The present study demonstrated for the first time that sulforaphane could inhibit inflammation in AGEs-exposed HUVECs and AGEs-infused rat aorta partly by suppressing RAGE expression through its anti-oxidative properties. Inhibition of the AGEs-RAGE axis by sulforaphane might be a novel therapeutic target for vascular injury in diabetes. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  18. Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells

    PubMed Central

    Bowser, Matthew; Herberg, Samuel; Arounleut, Phonepasong; Shi, Xingming; Fulzele, Sadanand; Hill, William D.; Isales, Carlos M.; Hamrick, Mark W.

    2013-01-01

    The activin A-myostatin-follistatin system is thought to play an important role in the regulation of muscle and bone mass throughout growth, development, and aging; however, the effects of these ligands on progenitor cell proliferation and differentiation in muscle and bone are not well understood. In addition, age-associated changes in the relative expression of these factors in musculoskeletal tissues have not been described. We therefore examined changes in protein levels of activin A, follistatin, and myostatin (GDF-8) in both muscle and bone with age in C57BL6 mice using ELISA. We then investigated the effects of activin A, myostatin and follistatin on the proliferation and differentiation of primary myoblasts and mouse bone marrow stromal cells (BMSCs) in vitro. Myostatin levels and the myostatin:follistatin ratio increased with age in the primarily slow-twitch mouse soleus muscle, whereas the pattern was reversed with age in the fast-twitch extensor digitorum longus muscle. Myostatin levels and the myostatin: follistatin ratio increased significantly (+75%) in mouse bone marrow with age, as did activin A levels (+17%). Follistatin increased the proliferation of primary myoblasts from both young and aged mice, whereas myostatin increased proliferation of younger myoblasts but decreased proliferation of older myoblasts. Myostatin reduced proliferation of both young and aged BMSCs in a dose-dependent fashion, and activin A increased mineralization in both young and aged BMSCs. Together these data suggest that aging in mice is accompanied by changes in the expression of activin A and myostatin, as well as changes in the response of bone and muscle progenitor cells to these factors. Myostatin appears to play a particularly important role in the impaired proliferative capacity of muscle and bone progenitor cells from aged mice. PMID:23178301

  19. Changes in androgen receptor, estrogen receptor alpha, and sexual behavior with aging and testosterone in male rats.

    PubMed

    Wu, Di; Gore, Andrea C

    2010-07-01

    Reproductive aging in males is characterized by a diminution in sexual behavior beginning in middle age. We investigated the relationships among testosterone, androgen receptor (AR) and estrogen receptor alpha (ERalpha) cell numbers in the hypothalamus, and their relationship to sexual performance in male rats. Young (3months) and middle-aged (12months) rats were given sexual behavior tests, then castrated and implanted with vehicle or testosterone capsules. Rats were tested again for sexual behavior. Numbers of AR and ERalpha immunoreactive cells were counted in the anteroventral periventricular nucleus and the medial preoptic nucleus, and serum hormones were measured. Middle-aged intact rats had significant impairments of all sexual behavior measures compared to young males. After castration and testosterone implantation, sexual behaviors in middle-aged males were largely comparable to those in the young males. In the hypothalamus, AR cell density was significantly (5-fold) higher, and ERalpha cell density significantly (6-fold) lower, in testosterone- than vehicle-treated males, with no age differences. Thus, restoration of serum testosterone to comparable levels in young and middle-aged rats resulted in similar preoptic AR and ERalpha cell density concomitant with a reinstatement of most behaviors. These data suggest that age-related differences in sexual behavior cannot be due to absolute levels of testosterone, and further, the middle-aged brain retains the capacity to respond to exogenous testosterone with changes in hypothalamic AR and ERalpha expression. Our finding that testosterone replacement in aging males has profound effects on hypothalamic receptors and behavior has potential medical implications for the treatment of age-related hypogonadism in men. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Late onset globoid cell leukodystrophy.

    PubMed Central

    Grewal, R P; Petronas, N; Barton, N W

    1991-01-01

    A 29 year old male with onset of globoid cell leukodystrophy at age 14 is described. This is the first case of enzymatically confirmed globoid cell leukodystrophy with onset of symptoms after the age of ten. This patient is unique because of the late onset and slow progression and extends the clinical spectrum of globoid cell leukodystrophy. Images PMID:1800646

  1. The expression of human natural killer cell receptors in early life.

    PubMed

    Sundström, Y; Nilsson, C; Lilja, G; Kärre, K; Troye-Blomberg, M; Berg, L

    2007-01-01

    Natural killer (NK) cells play an important role in tumour immunosurveillance and the early defence against viral infections. Recognition of altered cells (i.e. infected- or tumour-cells) is achieved through a multiple receptor recognition strategy which gives the NK cells inhibitory or activating signals depending on the ligands present on the target cell. NK cells originate from the bone marrow where they develop and proliferate. However, further maturation processes and homeostasis of NK cells in peripheral blood are not well understood. To determine the proportions of cells and the expression of NK cell receptors, mononuclear cells from children at three time points during early childhood were compared, i.e. cord blood (CB), 2 and 5 years of age. The proportion of NK cells was high in CB, but the interferon-gamma (IFN-gamma) production low compared to later in life. In contrast, the proportion of T cells was low in CB. This may indicate a deviation of the regulatory function of NK cells in CB compared to later in life, implying an importance of innate immunity in early life before the adaptive immune system matures. Additionally, we found that the proportion of LIR-1(+) NK cells increased with increasing age while CD94(+)NKG2C(-) (NKG2A(+)) NK cells and the level of expression of NKG2D, NKp30 and NKp46 decreased with age. These age related changes in NK cell populations defined by the expression of activating and inhibitory receptors may be the result of pathogen exposure and/or a continuation of the maturation process that begins in the bone marrow.

  2. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae

    PubMed Central

    Frye, Mitchell D.; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2016-01-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. PMID:27837652

  3. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    PubMed

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of hyperglycemia on the number of CD117+ progenitor cells and their differentiation toward endothelial progenitor cells in young and old ages.

    PubMed

    Pierpaoli, Elisa; Moresi, Raffaella; Orlando, Fiorenza; Malavolta, Marco; Provinciali, Mauro

    2016-10-01

    Dysfunction of endothelial progenitor cells (EPCs) has been reported either in aging or diabetes, though the influence of an "old" environment on numerical and functional changes of diabetes associated EPCs is not known. We evaluated the effect of both aging and early stage of streptozotocin-induced diabetes on the number of bone marrow-derived CD117 + progenitor cells, and on their differentiation in vitro toward EPCs. The phenotype of progenitor cells and the uptake of acetylated-low density lipoprotein (Ac-LDL) were evaluated after cell culture in VEGF, FGF-1, and IGF-1 supplemented medium. Hyperglycemia similarly reduced the number of CD117 + cells both in young and old mice. CD117 + cells from young mice differentiated better than those from old animals "in vitro", with a greater reduction of CD117 + cells and an higher increase of CD184 + VEGFR-2 + cells. In diabetic mice, in vitro CD117 + cells differentiation was significantly reduced in young animals. Diabetes did not impact on the scarce differentiation of CD117 + cells from old mice. Hyperglycemia reduced the uptake of acLDL by EPCs greatly in young than in old mice. These findings indicate that part of the EPCs functional alterations induced by hyperglicemia in young mice are observed in normal aged mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Assessment of the reliability of human corneal endothelial cell-density estimates using a noncontact specular microscope.

    PubMed

    Doughty, M J; Müller, A; Zaman, M L

    2000-03-01

    We sought to determine the variance in endothelial cell density (ECD) estimates for human corneal endothelia. Noncontact specular micrographs were obtained from white subjects without any history of contact lens wear, or major eye disease or surgery; subjects were within four age groups (children, young adults, older adults, senior citizens). The endothelial image was scanned, and the areas from > or =75 cells measured from an overlay by planimetry. The cell-area values were used to calculate the ECD repeatedly so that the intra- and intersubject variation in an average ECD estimate could be made by using different numbers of cells (5, 10, 15, etc.). An average ECD of 3,519 cells/mm2 (range, 2,598-5,312 cells/mm2) was obtained of counts of 75 cells/ endothelium from individuals aged 6-83 years. Average ECD estimates in each age group were 4,124, 3,457, 3,360, and 3,113 cells/mm2, respectively. Analysis of intersubject variance revealed that ECD estimates would be expected to be no better than +/-10% if only 25 cells were measured per endothelium, but approach +/-2% if 75 cells are measured. In assessing the corneal endothelium by noncontact specular microscopy, cell count should be given, and this should be > or =75/ endothelium for an expected variance to be at a level close to that recommended for monitoring age-, stress-, or surgery-related changes.

  6. Cellular Components, Including Stem-Like Cells, of Preterm Mother's Mature Milk as Compared with Those in Her Colostrum: A Pilot Study.

    PubMed

    Kaingade, Pankaj; Somasundaram, Indumathi; Sharma, Akshita; Patel, Darshan; Marappagounder, Dhanasekaran

    2017-09-01

    Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.

  7. Differential impact of glucose levels and advanced glycation end-products on tubular cell viability and pro-inflammatory/profibrotic functions.

    PubMed

    Franko, Benoit; Brault, Julie; Jouve, Thomas; Beaumel, Sylvain; Benhamou, Pierre-Yves; Zaoui, Philippe; Stasia, Marie José

    2014-09-05

    High glucose (HG) or synthetic advanced glycation end-products (AGE) conditions are generally used to mimic diabetes in cellular models. Both models have shown an increase of apoptosis, oxidative stress and pro-inflammatory cytokine production in tubular cells. However, the impact of the two conditions combined has rarely been studied. In addition, the impact of glucose level variation due to cellular consumption is not clearly characterized in such experiments. Therefore, the aim of this study was to compare the effect of HG and AGE separately and of both on tubular cell phenotype changes in the HK2 cell line. Moreover, glucose consumption was monitored every hour to maintain the glucose level by supplementation throughout the experiments. We thus observed a significant decrease of apoptosis and H2O2 production in the HK2 cell. HG or AGE treatment induced an increase of total and mitochondrial apoptosis as well as TGF-β release compared to control conditions; however, AGE or HG led to apoptosis preferentially involving the mitochondria pathway. No cumulative effect of HG and AGE treatment was observed on apoptosis. However, a pretreatment with RAGE antibodies partially abolished the apoptotic effect of HG and completely abolished the apoptotic effect of AGE. In conclusion, tubular cells are sensitive to the lack of glucose as well as to the HG and AGE treatments, the AGE effect being more deleterious than the HG effect. Absence of a potential synergistic effect of HG and AGE could indicate that they act through a common pathway, possibly via the activation of the RAGE receptors. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring.

    PubMed

    Horvath, Steve; Pirazzini, Chiara; Bacalini, Maria Giulia; Gentilini, Davide; Di Blasio, Anna Maria; Delledonne, Massimo; Mari, Daniela; Arosio, Beatrice; Monti, Daniela; Passarino, Giuseppe; De Rango, Francesco; D'Aquila, Patrizia; Giuliani, Cristina; Marasco, Elena; Collino, Sebastiano; Descombes, Patrick; Garagnani, Paolo; Franceschi, Claudio

    2015-12-01

    Given the dramatic increase in ageing populations, it is of great importance to understand the genetic and molecular determinants of healthy ageing and longevity. Semi-supercentenarians (subjects who reached an age of 105-109 years) arguably represent the gold standard of successful human ageing because they managed to avoid or postpone the onset of major age-related diseases. Relatively few studies have looked at epigenetic determinants of extreme longevity in humans. Here we test whether families with extreme longevity are epigenetically distinct from controls according to an epigenetic biomarker of ageing which is known as "epigenetic clock". We analyze the DNA methylation levels of peripheral blood mononuclear cells (PBMCs) from Italian families constituted of 82 semi-supercentenarians (mean age: 105.6 ± 1.6 years), 63 semi-supercentenarians' offspring (mean age: 71.8 ± 7.8 years), and 47 age-matched controls (mean age: 69.8 ± 7.2 years). We demonstrate that the offspring of semi-supercentenarians have a lower epigenetic age than age-matched controls (age difference=5.1 years, p=0.00043) and that centenarians are younger (8.6 years) than expected based on their chronological age. By contrast, no significant difference could be observed for estimated blood cell counts (such as naïve or exhausted cytotoxic T cells or helper T cells). Future studies will be needed to replicate these findings in different populations and to extend them to other tissues. Overall, our results suggest that epigenetic processes might play a role in extreme longevity and healthy human ageing.

  9. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring

    PubMed Central

    Horvath, Steve; Pirazzini, Chiara; Bacalini, Maria Giulia; Gentilini, Davide; Di Blasio, Anna Maria; Delledonne, Massimo; Mari, Daniela; Arosio, Beatrice; Monti, Daniela; Passarino, Giuseppe; De Rango, Francesco; D'Aquila, Patrizia; Giuliani, Cristina; Marasco, Elena; Collino, Sebastiano; Descombes, Patrick; Garagnani, Paolo; Franceschi, Claudio

    2015-01-01

    Given the dramatic increase in ageing populations, it is of great importance to understand the genetic and molecular determinants of healthy ageing and longevity. Semi-supercentenarians (subjects who reached an age of 105-109 years) arguably represent the gold standard of successful human ageing because they managed to avoid or postpone the onset of major age-related diseases. Relatively few studies have looked at epigenetic determinants of extreme longevity in humans. Here we test whether families with extreme longevity are epigenetically distinct from controls according to an epigenetic biomarker of ageing which is known as “epigenetic clock”. We analyze the DNA methylation levels of peripheral blood mononuclear cells (PBMCs) from Italian families constituted of 82 semi-supercentenarians (mean age: 105.6 ± 1.6 years), 63 semi-supercentenarians' offspring (mean age: 71.8 ± 7.8 years), and 47 age-matched controls (mean age: 69.8 ± 7.2 years). We demonstrate that the offspring of semi-supercentenarians have a lower epigenetic age than age-matched controls (age difference=5.1 years, p=0.00043) and that centenarians are younger (8.6 years) than expected based on their chronological age. By contrast, no significant difference could be observed for estimated blood cell counts (such as naïve or exhausted cytotoxic T cells or helper T cells). Future studies will be needed to replicate these findings in different populations and to extend them to other tissues. Overall, our results suggest that epigenetic processes might play a role in extreme longevity and healthy human ageing. PMID:26678252

  10. Resistance to age-dependent thymic atrophy in long-lived mice that are deficient in pregnancy-associated plasma protein A

    PubMed Central

    Vallejo, Abbe N.; Michel, Joshua J.; Bale, Laurie K.; Lemster, Bonnie H.; Borghesi, Lisa; Conover, Cheryl A.

    2009-01-01

    Pregnancy-associated plasma protein A (PAPPA) is a metalloproteinase that controls the tissue availability of insulin-like growth factor (IGF). Homozygous deletion of PAPPA in mice leads to lifespan extension. Since immune function is an important determinant of individual fitness, we examined the natural immune ecology of PAPPA−/− mice and their wild-type littermates reared under specific pathogen-free condition with aging. Whereas wild-type mice exhibit classic age-dependent thymic atrophy, 18-month-old PAPPA−/− mice maintain discrete thymic cortex and medulla densely populated by CD4+CD8+ thymocytes that are capable of differentiating into single-positive CD4 and CD8 T cells. Old PAPPA−/− mice have high levels of T cell receptor excision circles, and have bone marrows enriched for subsets of thymus-seeding progenitors. PAPPA−/− mice have an overall larger pool of naive T cells, and also exhibit an age-dependent accumulation of CD44+CD43+ memory T cells similar to wild-type mice. However, CD43+ T cell subsets of old PAPPA−/− mice have significantly lower prevalence of 1B11 and S7, glycosylation isoforms known to inhibit T cell activation with normal aging. In bioassays of cell activation, splenic T cells of old PAPPA−/− mice have high levels of activation antigens and cytokine production, and also elicit Ig production by autologous B cells at levels equivalent to young wild-type mice. These data suggest an IGF-immune axis of healthy longevity. Controlling the availability of IGF in the thymus by targeted manipulation of PAPPA could be a way to maintain immune homeostasis during postnatal development and aging. PMID:19549878

  11. A Pilot Study Linking Endothelial Injury in Lungs and Kidneys in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Laucho-Contreras, Maria E.; Petersen, Hans; Bijol, Vanesa; Sholl, Lynette M.; Choi, Mary E.; Divo, Miguel; Pinto-Plata, Victor; Chetta, Alfredo; Tesfaigzi, Yohannes; Celli, Bartolomé R.

    2017-01-01

    Rationale: Patients with chronic obstructive pulmonary disease (COPD) frequently have albuminuria (indicative of renal endothelial cell injury) associated with hypoxemia. Objectives: To determine whether (1) cigarette smoke (CS)-induced pulmonary and renal endothelial cell injury explains the association between albuminuria and COPD, (2) CS-induced albuminuria is linked to increases in the oxidative stress–advanced glycation end products (AGEs) receptor for AGEs (RAGE) pathway, and (3) enalapril (which has antioxidant properties) limits the progression of pulmonary and renal injury by reducing activation of the AGEs–RAGE pathway in endothelial cells in both organs. Methods: In 26 patients with COPD, 24 ever-smokers without COPD, 32 nonsmokers who underwent a renal biopsy or nephrectomy, and in CS-exposed mice, we assessed pathologic and ultrastructural renal lesions, and measured urinary albumin/creatinine ratios, tissue oxidative stress levels, and AGEs and RAGE levels in pulmonary and renal endothelial cells. The efficacy of enalapril on pulmonary and renal lesions was assessed in CS-exposed mice. Measurements and Main Results: Patients with COPD and/or CS-exposed mice had chronic renal injury, increased urinary albumin/creatinine ratios, and increased tissue oxidative stress and AGEs-RAGE levels in pulmonary and renal endothelial cells. Treating mice with enalapril attenuated CS-induced increases in urinary albumin/creatinine ratios, tissue oxidative stress levels, endothelial cell AGEs and RAGE levels, pulmonary and renal cell apoptosis, and the progression of chronic renal and pulmonary lesions. Conclusions: Patients with COPD and/or CS-exposed mice have pulmonary and renal endothelial cell injury linked to increased endothelial cell AGEs and RAGE levels. Albuminuria could identify patients with COPD in whom angiotensin-converting enzyme inhibitor therapy improves renal and lung function by reducing endothelial injury. PMID:28085500

  12. Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response.

    PubMed

    Perez, Felipe P; Zhou, Ximing; Morisaki, Jorge; Jurivich, Donald

    2008-04-01

    Hormesis may result when mild repetitive stress increases cellular defense against diverse injuries. This process may also extend in vitro cellular proliferative life span as well as delay and reverse some of the age-dependent changes in both replicative and non-replicative cells. This study evaluated the potential hormetic effect of non-thermal repetitive electromagnetic field shock (REMFS) and its impact on cellular aging and mortality in primary human T lymphocytes and fibroblast cell lines. Unlike previous reports employing electromagnetic radiation, this study used a long wave length, low energy, and non-thermal REMFS (50MHz/0.5W) for various therapeutic regimens. The primary outcomes examined were age-dependent morphological changes in cells over time, cellular death prevention, and stimulation of the heat shock response. REMFS achieved several biological effects that modified the aging process. REMFS extended the total number of population doublings of mouse fibroblasts and contributed to youthful morphology of cells near their replicative lifespan. REMFS also enhanced cellular defenses of human T cells as reflected in lower cell mortality when compared to non-treated T cells. To determine the mechanism of REMFS-induced effects, analysis of the cellular heat shock response revealed Hsp90 release from the heat shock transcription factor (HSF1). Furthermore, REMFS increased HSF1 phosphorylation, enhanced HSF1-DNA binding, and improved Hsp70 expression relative to non-REMFS-treated cells. These results show that non-thermal REMFS activates an anti-aging hormetic effect as well as reduces cell mortality during lethal stress. Because the REMFS configuration employed in this study can potentially be applied to whole body therapy, prospects for translating these data into clinical interventions for Alzheimer's disease and other degenerative conditions with aging are discussed.

  13. Alteration of functional state of peripheral blood erythrocytes in women of different age groups at dislipidemia conditions.

    PubMed

    Ratiani, L; Intskirveli, N; Ormotsadze, G; Sanikidze, T

    2011-12-01

    The aim of the study was identification of statistically reliable correlations and the cause-effect relationships between viability of red blood cells and dislipidema parametres and/or metabolic disorders, induced by age related alterations of estrogen content, in women of different ages (reproductive, menopausal) On the basis of the analysis of research results we can conclude that in the different age groups of women with atherosclerosis-induced cardiovascular diseases revealed estrogen-related dependence between Tg-s and HDL content, functional status of phereperial blood erytrotcites and severity of dislipidemia. The aterogenic index Tg/HD proved to be sensitive marker of dislipidemia in reproductive aging women, but does't reflect disorders of lipid metabolism in postmenosal women. It was proved the existence of reliable corelation between red blood cells dysfunction indicator, spherulation quality, and atherogenic index Tg/HDL highlights; however, the correlation coefficient is 2 times higher in the reproductive age as in menopause. Spherulation quality of red blood cells at low HDL content showd fast growth rate in reproductive-aged women, and was unsensetive to HDL content in postmenopasal women. It was concluded that age-related lack of estrogens in postmenopausal women indirectly contributes to decrease protection of red blood cells against oxidative damage, reduces their deformabelity and disturbances the rheological properties. So, Spherulation quality of red blood cells may be used as a diagnostic marker of severity of atherosclerosis.

  14. Hemopoiesis in healthy old people and centenarians: well-maintained responsiveness of CD34+ cells to hemopoietic growth factors and remodeling of cytokine network.

    PubMed

    Bagnara, G P; Bonsi, L; Strippoli, P; Bonifazi, F; Tonelli, R; D'Addato, S; Paganelli, R; Scala, E; Fagiolo, U; Monti, D; Cossarizza, A; Bonafé, M; Franceschi, C

    2000-02-01

    In vitro hemopoiesis and hemopoietic cytokines production were evaluated in 9 centenarians (median age 100.5 years, age range: 100-104 years), 10 old people (median age: 71 years, age range: 66-73 years), and 10 young people (median age: 35 years, age range: 30-45 years), all carefully selected for their healthy status. The main findings were the following: (i) a trend towards a decreased absolute number of CD34+ progenitor cells in the peripheral blood of old people and centenarians, in comparison to young subjects; (ii) a well-preserved capability of CD34+ cells from old people and centenarians to respond to hemopoietic cytokines, and to form erythroid (BFU-E), granulocyte-macrophagic (CFU-GM), and mixed colonies (CFU-GEMM) in a way (number, size, and morphology) indistinguishable from that of young subjects; (iii) an age-related decreased in vitro production of granulocyte-macrophagic colony-stimulating factor (GM-CSF) and a decreased production of interleukin-3 (IL-3) in centenarians by phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC); (iv) a linear increase of the serum level of stem cell factor (SCF), measured in the above-mentioned subjects and in 65 additional subjects, including 4 centenarians. These data suggest that basal hematopoietic potential is well preserved in healthy centenarians, and that the hemopoietic cytokine network undergoes a complex remodeling with age.

  15. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    PubMed

    Lindstrom, Derek L; Leverich, Christina K; Henderson, Kiersten A; Gottschling, Daniel E

    2011-03-01

    Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  16. [Effect of Bushen Huoxue Compound on Retinal Müller Cells in High Glucose or AGEs Conditions].

    PubMed

    Xie, Xue-jun; Song, Ming-xia; Zhang, Mei; Qin, Wei; Wan, Li; Fang, Yang

    2015-06-01

    To explore the effect of Bushen Huoxue Compound (BHC) on lactate dehydrogenase (LDH) leakage, expressions of vascular endothelial growth factor (VEGF) and VEGF mRNA in retinal Muller cells under high glucose condition or advanced glycosylation end products (AGEs) condition by using serum pharmacological method. The retinal Müller cells of 5-7 days post-natal Sprague Dawley (SD) rats were cultured with modified enzyme-digestion method. Purified retinal Muller cells were cultured in normal conditions, high glucose condition (50 mmol/L) or AGEs (50 mg/L and 100 mg/L) conditions, and BHC-containing serum was added to culture medium. The LDH leakage and VEGF expressions were measured by enzyme-linked immunosorbent assay (ELISA). In addition, the relative expression of VEGF mRNA was tested by reverse transcription polymerase chain reaction (RT-PCR). Compared with the normal control group, expressions of VEGF and VEGF mRNA were significantly increased in the high glucose group, the low dose AGEs group and the high dose AGEs group (all P < 0.01). The LDH leakage was obviously increased in the high dose AGEs group, when compared with the normal control group and the high glucose group (P < 0.01). The LDH leakage, expressions of VEGF and VEGF mRNA were obviously decreased by BHC-containing serum both in high glucose and AGEs conditions (P < 0.05, P < 0.01). BHC-containing serum had no significant effect on the LDH leakage and expressions of VEGF and VEGF mRNA in normal conditions (P > 0.05). AGEs intervention could obviously lower the stability of Müller cell membrane. Up-regulated expressions of VEGF and VEGF mRNA in cultured Müller cells could be induced by AGEs or high glucose. BHC-containing serum could stabilize the stability of Müller cell membrane, inhibit the transcription of VEGF mRNA and decrease the protein expression of VEGF, which might be one of important mechanisms for preventing and treating diabetic retinopathy.

  17. Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age.

    PubMed

    Deng, X-H; Bertini, G; Xu, Y-Z; Yan, Z; Bentivoglio, M

    2006-08-25

    Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement does not develop gradually since youth, but appears characterized by relatively late onset.

  18. Change in the Interstitial Cells of Cajal and nNOS Positive Neuronal Cells with Aging in the Stomach of F344 Rats

    PubMed Central

    Kwon, Yong Hwan; Kim, Nayoung; Nam, Ryoung Hee; Park, Ji Hyun; Lee, Sun Min; Kim, Sung Kook; Lee, Hye Seung; Kim, Yong Sung; Lee, Dong Ho

    2017-01-01

    The gastric accommodation reflex is an important mechanism in gastric physiology. However, the aging-associated structural and functional changes in gastric relaxation have not yet been established. Thus, we evaluated the molecular changes of interstitial cell of Cajal (ICC) and neuronal nitric oxide synthase (nNOS) and the function changes in the corpus of F344 rats at different ages (6-, 31-, 74-wk and 2-yr). The proportion of the c-Kit-positive area in the submucosal border (SMB) and myenteric plexus (MP) layer was significantly lower in the older rats, as indicated by immunohistochemistry. The density of the nNOS-positive immunoreactive area also decreased with age in the SMB, circular muscle (CM), and MP. Similarly, the percent of nNOS-positive neuronal cells per total neuronal cells and the proportion of nNOS immunoreactive area of MP also decreased in aged rats. In addition, the mRNA and protein expression of c-Kit and nNOS significantly decreased with age. Expression of stem cell factor (SCF) and the pan-neuronal marker PGP 9.5 mRNA was significantly lower in the older rats than in the younger rats. Barostat studies showed no difference depending on age. Instead, the change of volume was significantly decreased by L-NG63-nitroarginine methyl ester in the 2-yr-old rats compared with the 6-wk-old rats (P = 0.003). Taken together, the quantitative and molecular nNOS changes in the stomach might play a role in the decrease of gastric accommodation with age. PMID:28045993

  19. Environmental enrichment alters dentate granule cell morphology in oldest-old rat.

    PubMed

    Darmopil, Sanja; Petanjek, Zdravko; Mohammed, Abdul H; Bogdanović, Nenad

    2009-08-01

    The hippocampus of aged rats shows marked age-related morphological changes that could cause memory deficits. Experimental evidence has established that environmental enrichment attenuates memory deficits in aged rats. We therefore studied whether environmental enrichment produces morphological changes on the dentate granule cells of aged rats. Fifteen male Sprague-Dawley rats, 24 months of age, were randomly distributed in two groups that were housed under standard (n = 7) or enriched (n = 8) environmental conditions for 26 days. Quantitative data of dendritic morphology from dentate gyrus granule cells were obtained on Golgi-Cox stained sections. Environmental enrichment significantly increased the complexity and size of dendritic tree (total number of segments increased by 61% and length by 116%), and spine density (88% increase). There were large interindividual differences within the enriched group, indicating differential individual responses to environmental stimulation. Previous studies in young animals have shown changes produced by environmental enrichment in the morphology of dentate gyrus granule cells. The results of the present study show that environmental enrichment can also produce changes in dentate granule cell morphology in the senescent brain. In conclusion, the hippocampus retains its neuroplastic capacity during aging, and enriched environmental housing conditions can attenuate age-related dendritic regression and synaptic loss, thus preserving memory functions.

  20. In serum veritas—in serum sanitas? Cell non-autonomous aging compromises differentiation and survival of mesenchymal stromal cells via the oxidative stress pathway

    PubMed Central

    Geißler, S; Textor, M; Schmidt-Bleek, K; Klein, O; Thiele, M; Ellinghaus, A; Jacobi, D; Ode, A; Perka, C; Dienelt, A; Klose, J; Kasper, G; Duda, G N; Strube, P

    2013-01-01

    Even tissues capable of complete regeneration, such as bone, show an age-related reduction in their healing capacity. Here, we hypothesized that this decline is primarily due to cell non-autonomous (extrinsic) aging mediated by the systemic environment. We demonstrate that culture of mesenchymal stromal cells (MSCs) in serum from aged Sprague–Dawley rats negatively affects their survival and differentiation ability. Proteome analysis and further cellular investigations strongly suggest that serum from aged animals not only changes expression of proteins related to mitochondria, unfolded protein binding or involved in stress responses, it also significantly enhances intracellular reactive oxygen species production and leads to the accumulation of oxidatively damaged proteins. Conversely, reduction of oxidative stress levels in vitro markedly improved MSC function. These results were validated in an in vivo model of compromised bone healing, which demonstrated significant increase regeneration in aged animals following oral antioxidant administration. These observations indicate the high impact of extrinsic aging on cellular functions and the process of endogenous (bone) regeneration. Thus, addressing the cell environment by, for example, systemic antioxidant treatment is a promising approach to enhance tissue regeneration and to regain cellular function especially in elderly patients. PMID:24357801

  1. Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment

    PubMed Central

    Kovtonyuk, Larisa V.; Fritsch, Kristin; Feng, Xiaomin; Manz, Markus G.; Takizawa, Hitoshi

    2016-01-01

    All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of “Inflamm-Aging,” or inflammation-associated aging of hematopoiesis. PMID:27895645

  2. Age-related T cell responses to allergens in childhood.

    PubMed

    Smart, J M; Suphioglu, C; Kemp, A S

    2003-03-01

    T cell priming, as determined by allergen-induced proliferative responses, is believed to occur principally in early childhood in both atopic and non-atopic infants under the influence of multiple factors including environmental allergen exposure. It is considered that T cell priming with expansion of Th2 cells is a crucial factor in the development of atopic disease. To examine T cell priming to commonly encountered allergens in childhood in relation to age. In a cross-sectional study T cell proliferation in relation to age was examined for three common allergens, ovalbumin (OVA), house dust mite (HDM) and rye grass pollen (RYE), in atopic and non-atopic children. The effect of age on Th1 (IFN-gamma) and Th2 (IL-5 and IL-13) cytokine production in response to these allergens was investigated to examine the possibility of immune deviation with time. A significant increase in T cell proliferation with age was observed with RYE among atopic children only. However, the same was not observed with the two other allergens studied (i.e. OVA and HDM). In addition, RYE-induced (but not HDM or OVA) cytokine production showed an increased Th2 deviation with age as reflected in the increasing IL-5/IFN-gamma and IL-13/IFN-gamma ratios only among the atopic subjects with rye grass pollen sensitivity. These findings suggest that grass pollen sensitivity in childhood is accompanied by a progressive accumulation of allergen-primed T cells and progressive deviation of the allergen-induced cytokine response towards a Th2 response in atopic subjects throughout childhood.

  3. Morphology of the non-sensory tissue components in rat aging vomeronasal organ.

    PubMed

    Eltony, S A; Elgayar, S A

    2011-08-01

    With 30 figures, 3 histograms and 3 tables The vomeronasal organ (VNO) is a chemosensory organ that detects environmental pheromones. The morphology of the 'non-sensory' epithelium (NSE) of the VNO and its lamina propria, as well as how it relates to ageing has received little attention. Histological, histochemical, morphometric and ultrastructural techniques were used to study the morphological structure of the rat NSE in five adult (3 months old) and five aged (2-2.5 years old) male albino rats. In adult rats, the NSE contained dark and light columnar cells with predominance of the latter. The surface of the epithelial cells was covered with microvilli and/or cilia. The lamina propria contained serous vomeronasal glands (VNGs), smooth muscles with numerous variable-sized mitochondria, vessels including lymphatic capillaries and nerve bundles. The following changes were detected in aged rats. The NSE exhibited an increase in number of dark columnar cells. Some cells revealed a prominent cell coat, dense aggregation of filaments in the luminal cytoplasm and appearance of multinucleated cells. Their surface revealed malformed configuration. Large mitochondria (2 μm), formed by fusion, were frequently observed in the smooth muscle cells of the lamina propria. Lipid droplets were frequently detected both in the VNGs acini and in the lymphatic endothelium. Ageing affected both the cells of the tissues and the extracellular matrix. © 2011 Blackwell Verlag GmbH.

  4. Wood combustion particles induce adverse effects to normal and diseased airway epithelia.

    PubMed

    Krapf, Manuel; Künzi, Lisa; Allenbach, Sandrine; Bruns, Emily A; Gavarini, Ilaria; El-Haddad, Imad; Slowik, Jay G; Prévôt, André S H; Drinovec, Luka; Močnik, Griša; Dümbgen, Lutz; Salathe, Matthias; Baumlin, Nathalie; Sioutas, Constantinos; Baltensperger, Urs; Dommen, Josef; Geiser, Marianne

    2017-04-19

    Residential wood burning is a major source of poorly characterized, deleterious particulate matter, whose composition and toxicity may vary with wood type, burning condition and photochemical age. The causative link between ambient wood particle constituents and observed adverse health effects is currently lacking. Here we investigate the relationship between chemical properties of primary and atmospherically aged wood combustion particles and acute toxicity in human airway epithelial cells. Emissions from a log wood burner were diluted and injected into a smog chamber for photochemical aging. After concentration-enrichment and removal of oxidizing gases, directly emitted and atmospherically aged particles were deposited on cell cultures at the air-liquid interface for 2 hours in an aerosol deposition chamber mimicking physiological conditions in lungs. Cell models were fully differentiated normal and diseased (cystic fibrosis and asthma) human bronchial epithelia (HBE) and the bronchial epithelial cell line BEAS-2B. Cell responses were assessed at 24 hours after aerosol exposure. Atmospherically relevant doses of wood combustion particles significantly increased cell death in all but the asthma cell model. Expression of oxidative stress markers increased in HBE from all donors. Increased cell death and inflammatory responses could not be assigned to a single chemical fraction of the particles. Exposure to primary and aged wood combustion particles caused adverse effects to airway epithelia, apparently induced by several interacting components.

  5. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders

    PubMed Central

    Smith, Derek K.; He, Miao; Zhang, Chun-Li; Zheng, Jialin C.

    2018-01-01

    Neural cell identity reprogramming strategies aim to treat age-related neurodegenerative disorders with newly induced neurons that regenerate neural architecture and functional circuits in vivo. The isolation and neural differentiation of pluripotent embryonic stem cells provided the first in vitro models of human neurodegenerative disease. Investigation into the molecular mechanisms underlying stem cell pluripotency revealed that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs) and these cells could be used to model Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease. Additional neural precursor and direct transdifferentiation strategies further enabled the induction of diverse neural linages and neuron subtypes both in vitro and in vivo. In this review, we highlight neural induction strategies that utilize stem cells, iPSCs, and lineage reprogramming to model or treat age-related neurodegenerative diseases, as well as, the clinical challenges related to neural transplantation and in vivo reprogramming strategies. PMID:26844759

  6. Skeletal muscle regeneration and impact of aging and nutrition.

    PubMed

    Domingues-Faria, Carla; Vasson, Marie-Paule; Goncalves-Mendes, Nicolas; Boirie, Yves; Walrand, Stephane

    2016-03-01

    After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Aging and longevity in the simplest animals and the quest for immortality

    PubMed Central

    Petralia, Ronald S.; Mattson, Mark P.; Yao, Pamela J.

    2014-01-01

    Here we review the examples of great longevity and potential immortality in the earliest animal types and contrast and compare these to humans and other higher animals. We start by discussing aging in single-celled organisms such as yeast and ciliates, and the idea of the immortal cell clone. Then we describe how these cell clones could become organized into colonies of different cell types that lead to multicellular animal life. We survey aging and longevity in all of the basal metazoan groups including ctenophores (comb jellies), sponges, placozoans, cnidarians (hydras, jellyfish, corals and sea anemones) and myxozoans. Then we move to the simplest bilaterian animals (with a head, three body cell layers, and bilateral symmetry), the two phyla of flatworms. A key determinant of longevity and immortality in most of these simple animals is the large numbers of pluripotent stem cells that underlie the remarkable abilities of these animals to regenerate and rejuvenate themselves. Finally, we discuss briefly the evolution of the higher bilaterians and how longevity was reduced and immortality lost due to attainment of greater body complexity and cell cycle strategies that protect these complex organisms from developing tumors. We also briefly consider how the evolution of multiple aging-related mechanisms/pathwayshinders our ability to understand and modify the aging process in higher organisms. PMID:24910306

  8. The yeast replicative aging model.

    PubMed

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  9. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

    PubMed Central

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway. PMID:29372041

  10. Aging of the T cell compartment in mice and humans: from no naïve expectations to foggy memories

    PubMed Central

    Nikolich-Žugich, Janko

    2014-01-01

    Until the mid-20th century, infectious diseases were the major cause of morbidity and mortality in humans. Massive vaccination campaigns, antibiotics, antivirals and advanced public health measures drastically reduced sickness and death of infections in children and younger adults. Older adults (>65yr of age), however, remain vulnerable to infections, and to date infectious diseases remain amongst the top 5–10 causes of death in this population. The aging of the immune system, often referred to as immune senescence, is the key phenomenon underlying this vulnerability. This review centers on age-related changes in T cells, which are dramatically and reproducibly altered with aging. I will discuss changes in T cell production, maintenance, function and response to latent persistent infection, particularly against the cytomegalovirus (CMV), that exerts profound influence on the aging T cell pool, concluding with a brief list of measures to improve immune function in older adults. PMID:25193936

  11. The Mechanobiology of Aging

    PubMed Central

    Walston, Jeremy; Wirtz, Denis

    2016-01-01

    Aging is a complex, multifaceted process that induces a myriad of physiological changes over an extended period of time. Aging is accompanied by major biochemical and biomechanical changes at macroscopic and microscopic length scales that affect not only tissues and organs but also cells and subcellular organelles. These changes include transcriptional and epigenetic modifications; changes in energy production within mitochondria; and alterations in the overall mechanics of cells, their nuclei, and their surrounding extracellular matrix. In addition, aging influences the ability of cells to sense changes in extracellular-matrix compliance (mechanosensation) and to transduce these changes into biochemical signals (mechanotransduction). Moreover, following a complex positive-feedback loop, aging is accompanied by changes in the composition and structure of the extracellular matrix, resulting in changes in the mechanics of connective tissues in older individuals. Consequently, these progressive dysfunctions facilitate many human pathologies and deficits that are associated with aging, including cardiovascular, musculoskeletal, and neurodegenerative disorders and diseases. Here, we critically review recent work highlighting some of the primary biophysical changes occurring in cells and tissues that accompany the aging process. PMID:26643020

  12. Hydra, a powerful model for aging studies

    PubMed Central

    Tomczyk, Szymon; Fischer, Kathleen; Austad, Steven; Galliot, Brigitte

    2015-01-01

    Cnidarian Hydra polyps escape senescence, most likely due to the robust activity of their three stem cell populations. These stem cells continuously self-renew in the body column and differentiate at the extremities following a tightly coordinated spatial pattern. Paul Brien showed in 1953 that in one particular species, Hydra oligactis, cold-dependent sexual differentiation leads to rapid aging and death. Here, we review the features of this inducible aging phenotype. These cellular alterations, detected several weeks after aging was induced, are characterized by a decreasing density of somatic interstitial cell derivatives, a disorganization of the apical nervous system, and a disorganization of myofibers of the epithelial cells. Consequently, tissue replacement required to maintain homeostasis, feeding behavior, and contractility of the animal are dramatically affected. Interestingly, this aging phenotype is not observed in all H. oligactis strains, thus providing a powerful experimental model for investigations of the genetic control of aging. Given the presence in the cnidarian genome of a large number of human orthologs that have been lost in ecdysozoans, such approaches might help uncover novel regulators of aging in vertebrates. PMID:26120246

  13. Nutrition and lifestyle in healthy aging: the telomerase challenge.

    PubMed

    Boccardi, Virginia; Paolisso, Giuseppe; Mecocci, Patrizia

    2016-01-01

    Nutrition and lifestyle, known to modulate aging process and age-related diseases, might also affect telomerase activity. Short and dysfunctional telomeres rather than average telomere length are associated with longevity in animal models, and their rescue by telomerase maybe sufficient to restore cell and organismal viability. Improving telomerase activation in stem cells and potentially in other cells by diet and lifestyle interventions may represent an intriguing way to promote health-span in humans.

  14. Neocortical glial cell numbers in human brains.

    PubMed

    Pelvig, D P; Pakkenberg, H; Stark, A K; Pakkenberg, B

    2008-11-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia and neurons and counting were done in each of the four lobes. The study showed that the different subpopulations of glial cells behave differently as a function of age; the number of oligodendrocytes showed a significant 27% decrease over adult life and a strong correlation to the total number of neurons while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex.

  15. When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome?

    PubMed

    Van Saen, D; Vloeberghs, V; Gies, I; Mateizel, I; Sermon, K; De Schepper, Jean; Tournaye, H; Goossens, E

    2018-06-01

    When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome (KS)? In KS, germ cell loss is not observed in testicular tissue from fetuses in the second semester of pregnancy but present at a prepubertal age when the testicular architecture is still normal, while fibrosis is highly present at an adolescent age. Most KS patients are azoospermic at adult age because of a massive germ cell loss. However, the timing when this germ cell loss starts is not known. It is assumed that germ cell loss increases at puberty. Therefore, testicular sperm extraction (TESE) at an adolescent age has been suggested to increase the chances of sperm retrieval at onset of spermatogenesis. However, recent data indicate that testicular biopsies from peripubertal KS patients contain only a few germ cells. In this study, we give an update on fertility preservation in adolescent KS patients and evaluate whether fertility preservation would be beneficial at prepubertal age. The possibility of retrieving testicular spermatozoa by TESE was evaluated in adolescent and adult KS men. The presence of spermatogonia and the degree of fibrosis were also analysed in testicular biopsies from KS patients at different ages. The patients were divided into four age groups: foetal (n = 5), prepubertal (aged 4-7 years; n = 4), peripubertal (aged 12-16 years; n = 20) and adult (aged 18-41 years; n = 27) KS patients. In peripubertal and adult KS patients, retrieval of spermatozoa was attempted by semen analysis after masturbation, vibrostimulation, electroejaculation or by TESE. MAGE-A4 immunohistochemistry was performed to evaluate the presence of germ cells in testicular biopsies from foetal, prepubertal, peripubertal and adult KS patients. Tissue morphology was evaluated by haematoxylin-periodic acid Schiff (H/PAS) staining. Testicular spermatozoa were collected by TESE in 48.1% of the adult KS patients, while spermatozoa were recovered after TESE in only one peripubertal patient (5.0%). Germ cells were detectable in testicular biopsies from 21% of adult men for whom no spermatozoa could be retrieved by TESE and in 31.5% of peripubertal KS boys. Very small numbers of spermatogonia (0.03-0.06 spermatogonia/tubule) were detected in three out of four (75%) prepubertal patients. At a foetal age, the number of germ cells was similar for KS and control samples. Increased signs of fibrosis were not present at foetal and prepubertal ages, but peripubertal and adult KS patients showed high levels of fibrosis. N/A. Only four prepubertal biopsies were included in this study, but they all showed a very low germ cell number. A high variability in the number of spermatogonia per mm2 was observed in the limited (n = 5) number of foetal biopsies. However, testicular biopsies from prepubertal and foetal Klinefelter patients are difficult to obtain. Testicular tissue banking at a prepubertal age has been suggested as a potential method for fertility preservation in early diagnosed KS boys. However, our results show that a reduction in germ cell number has already taken place in childhood. Therefore, offering testicular tissue banking in young KS boys to prevent subsequent sterility might be a questionable strategy. However, this should be confirmed in a larger study population. This project was funded by the scientific Fund Willy Gepts from the UZ Brussel (D.V.S., J.D.S.), grants from the Vrije Universiteit Brussel (E.G.) and a Methusalem grant (K.S.). D.V.S is a post-doctoral fellow of the Fonds Wetenschappelijk Onderzoek (FWO; 12M2815N). No conflict of interest is declared.

  16. Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq

    PubMed Central

    Peffers, Mandy Jayne; Goljanek-Whysall, Katarzyna; Collins, John; Fang, Yongxiang; Rushton, Michael; Loughlin, John; Proctor, Carole; Clegg, Peter David

    2016-01-01

    Mesenchymal stem cells (MSC) are capable of multipotent differentiation into connective tissues and as such are an attractive source for autologous cell-based regenerative medicine and tissue engineering. Epigenetic mechanisms, like DNA methylation, contribute to the changes in gene expression in ageing. However there was a lack of sufficient knowledge of the role that differential methylation plays during chondrogenic, osteogenic and tenogenic differentiation from ageing MSCs. This study undertook genome level determination of the effects of DNA methylation on expression in engineered tissues from chronologically aged MSCs. We compiled unique DNA methylation signatures from chondrogenic, osteogenic, and tenogenic engineered tissues derived from young; n = 4 (21.8 years ± 2.4 SD) and old; n = 4 (65.5 years±8.3SD) human MSCs donors using the Illumina HumanMethylation 450 Beadchip arrays and compared these to gene expression by RNA sequencing. Unique and common signatures of global DNA methylation were identified. There were 201, 67 and 32 chondrogenic, osteogenic and tenogenic age-related DE protein-coding genes respectively. Findings inferred the nature of the transcript networks was predominantly for ‘cell death and survival’, ‘cell morphology’, and ‘cell growth and proliferation’. Further studies are required to validate if this gene expression effect translates to cell events. Alternative splicing (AS) was dysregulated in ageing with 119, 21 and 9 differential splicing events identified in chondrogenic, osteogenic and tenogenic respectively, and enrichment in genes associated principally with metabolic processes. Gene ontology analysis of differentially methylated loci indicated age-related enrichment for all engineered tissue types in ‘skeletal system morphogenesis’, ‘regulation of cell proliferation’ and ‘regulation of transcription’ suggesting that dynamic epigenetic modifications may occur in genes associated with shared and distinct pathways dependent upon engineered tissue type. An altered phenotype in engineered tissues was observed with ageing at numerous levels. These changes represent novel insights into the ageing process, with implications for stem cell therapies in older patients. In addition we have identified a number of tissue-dependant pathways, which warrant further studies. PMID:27533049

  17. Impact of the Hayflick Limit on T cell responses to infection: lessons from aging and HIV disease.

    PubMed

    Effros, Rita B

    2004-02-01

    Aging and HIV disease show certain immunological similarities. In both situations, control over viral infection is diminished, and there is an increase in certain types of cancer. The immune cell type responsible for controlling viral infections and cancer is the so-called CD8 or cytotoxic T cell. In elderly persons and individuals chronically infected with HIV, there are high proportions of CD8 T cells that resemble cells that reach the end stage of replicative senescence in cell culture after repeated rounds of antigen-driven proliferation. Senescent cultures are characterized by irreversible cell cycle arrest, shortened telomeres, inability to upregulate telomerase, loss of CD28 expression, and apoptosis resistance. Strategies that retard replicative senescence may, therefore, provide novel approaches to enhancing immune function during aging and HIV disease.

  18. Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment.

    PubMed

    Zheng, Wei; Wang, Shi; Ma, Dandan; Tang, Liang; Duan, Yinzhong; Jin, Yan

    2009-09-01

    The application of periodontal ligament stem cells (PDLSCs) may be effective for periodontal regenerative therapy. As tissue regenerative potential may be negatively regulated by aging, whether aging and its microenvironment modify human PDLSCs remains a question. In this study, we compared the proliferation and differentiation capacity of PDLSCs obtained from young and aged donors. Then, we exposed aged PDLSCs to young periodontal ligament cell-conditioned medium (PLC-CM), and young PDLSCs were exposed to aged PLC-CM. Morphological appearance, colony-forming assay, cell cycle analysis, osteogenic and adipogenic induction media, gene expression of cementoblast phenotype, and in vivo differentiation capacities of PDLSCs were evaluated. PDLSCs obtained from aged donors exhibited decreased proliferation and differentiation capacity when compared with those from young donors. Young PLC-CM enhanced the proliferation and differentiation capacity of PDLSCs from aged donors. Aged PDLSCs induced by young PLC-CM showed enhanced tissue-regenerative capacity to produce cementum/periodontal ligament-like structures, whereas young PDLSCs induced by aged PLC-CM transplants mainly formed connective tissues. To our knowledge, this is the first study to mimic the developmental microenvironment of PDLSCs in vitro, and our data suggest that age influences the proliferation and differentiation potential of human PDLSCs, and that the activity of human PDLSCs can be modulated by the extrinsic microenvironment.

  19. Higher mortality and impaired elimination of bacteria in aged mice after intracerebral infection with E. coli are associated with an age-related decline of microglia and macrophage functions.

    PubMed

    Schütze, Sandra; Ribes, Sandra; Kaufmann, Annika; Manig, Anja; Scheffel, Jörg; Redlich, Sandra; Bunkowski, Stephanie; Hanisch, Uwe-Karsten; Brück, Wolfgang; Nau, Roland

    2014-12-30

    Incidence and mortality of bacterial meningitis are strongly increased in aged compared to younger adults demanding new strategies to improve prevention and therapy of bacterial central nervous system (CNS) infections the elderly. Here, we established a geriatric mouse model for an intracerebral E. coli infection which reflects the clinical situation in aged patients: After intracerebral challenge with E. coli K1, aged mice showed a higher mortality, a faster development of clinical symptoms, and a more pronounced weight loss. Elimination of bacteria and systemic inflammatory response were impaired in aged mice, however, the number of infiltrating leukocytes and microglial cells in the CNS of aged and young mice did not differ substantially. In vitro, primary microglial cells and peritoneal macrophages from aged mice phagocytosed less E. coli and released less NO and cyto-/chemokines compared to cells from young mice both without activation and after stimulation by agonists of TLR 2, 4, and 9. Our results suggest that the age-related decline of microglia and macrophage functions plays an essential role for the higher susceptibility of aged mice to intracerebral infections. Strategies to improve the phagocytic potential of aged microglial cells and macrophages appear promising for prevention and treatment of CNS infections in elderly patients.

  20. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer.

    PubMed

    Teschendorff, Andrew E; Menon, Usha; Gentry-Maharaj, Aleksandra; Ramus, Susan J; Weisenberger, Daniel J; Shen, Hui; Campan, Mihaela; Noushmehr, Houtan; Bell, Christopher G; Maxwell, A Peter; Savage, David A; Mueller-Holzner, Elisabeth; Marth, Christian; Kocjan, Gabrijela; Gayther, Simon A; Jones, Allison; Beck, Stephan; Wagner, Wolfgang; Laird, Peter W; Jacobs, Ian J; Widschwendter, Martin

    2010-04-01

    Polycomb group proteins (PCGs) are involved in repression of genes that are required for stem cell differentiation. Recently, it was shown that promoters of PCG target genes (PCGTs) are 12-fold more likely to be methylated in cancer than non-PCGTs. Age is the most important demographic risk factor for cancer, and we hypothesized that its carcinogenic potential may be referred by irreversibly stabilizing stem cell features. To test this, we analyzed the methylation status of over 27,000 CpGs mapping to promoters of approximately 14,000 genes in whole blood samples from 261 postmenopausal women. We demonstrate that stem cell PCGTs are far more likely to become methylated with age than non-targets (odds ratio = 5.3 [3.8-7.4], P < 10(-10)), independently of sex, tissue type, disease state, and methylation platform. We identified a specific subset of 69 PCGT CpGs that undergo hypermethylation with age and validated this methylation signature in seven independent data sets encompassing over 900 samples, including normal and cancer solid tissues and a population of bone marrow mesenchymal stem/stromal cells (P < 10(-5)). We find that the age-PCGT methylation signature is present in preneoplastic conditions and may drive gene expression changes associated with carcinogenesis. These findings shed substantial novel insights into the epigenetic effects of aging and support the view that age may predispose to malignant transformation by irreversibly stabilizing stem cell features.

  1. Aqueous Extract of Agaricus blazei Murrill Prevents Age-Related Changes in the Myenteric Plexus of the Jejunum in Rats

    PubMed Central

    de Santi-Rampazzo, Ana Paula; Schoffen, João Paulo Ferreira; Cirilo, Carla Possani; Zapater, Mariana Cristina Vicente Umada; Vicentini, Fernando Augusto; Soares, Andréia Assunção; Peralta, Rosane Marina; Bracht, Adelar; Buttow, Nilza Cristina; Natali, Maria Raquel Marçal

    2015-01-01

    This study evaluated the effects of the supplementation with aqueous extract of Agaricus blazei Murrill (ABM) on biometric and blood parameters and quantitative morphology of the myenteric plexus and jejunal wall in aging Wistar rats. The animals were euthanized at 7 (C7), 12 (C12 and CA12), and 23 months of age (C23 and CA23). The CA12 and CA23 groups received a daily dose of ABM extract (26 mg/animal) via gavage, beginning at 7 months of age. A reduction in food intake was observed with aging, with increases in the Lee index, retroperitoneal fat, intestinal length, and levels of total cholesterol and total proteins. Aging led to a reduction of the total wall thickness, mucosa tunic, villus height, crypt depth, and number of goblet cells. In the myenteric plexus, aging quantitatively decreased the population of HuC/D+ neuronal and S100+ glial cells, with maintenance of the nNOS+ nitrergic subpopulation and increase in the cell body area of these populations. Supplementation with the ABM extract preserved the myenteric plexus in old animals, in which no differences were detected in the density and cell body profile of neurons and glial cells in the CA12 and CA23 groups, compared with C7 group. The supplementation with the aqueous extract of ABM efficiently maintained myenteric plexus homeostasis, which positively influenced the physiology and prevented the death of the neurons and glial cells. PMID:25960748

  2. Tocotrienol-rich fraction prevents cellular aging by modulating cell proliferation signaling pathways.

    PubMed

    Khor, S C; Mohd Yusof, Y A; Wan Ngah, W Z; Makpol, S

    Vitamin E has been suggested as nutritional intervention for the prevention of degenerative and age-related diseases. In this study, we aimed to elucidate the underlying mechanism of tocotrienol-rich fraction (TRF) in delaying cellular aging by targeting the proliferation signaling pathways in human diploid fibroblasts (HDFs). Tocotrienol-rich fraction was used to treat different stages of cellular aging of primary human diploid fibroblasts viz. young (passage 6), pre-senescent (passage 15) and senescent (passage 30). Several selected targets involved in the downstream of PI3K/AKT and RAF/MEK/ERK pathways were compared in total RNA and protein. Different transcriptional profiles were observed in young, pre-senescent and senescent HDFs, in which cellular aging increased AKT, FOXO3, CDKN1A and RSK1 mRNA expression level, but decreased ELK1, FOS and SIRT1 mRNA expression level. With tocotrienol-rich fraction treatment, gene expression of AKT, FOXO3, ERK and RSK1 mRNA was decreased in senescent cells, but not in young cells. The three down-regulated mRNA in cellular aging, ELK1, FOS and SIRT1, were increased with tocotrienol-rich fraction treatment. Expression of FOXO3 and P21Cip1 proteins showed up-regulation in senescent cells but tocotrienol-rich fraction only decreased P21Cip1 protein expression in senescent cells. Tocotrienol-rich fraction exerts gene modulating properties that might be responsible in promoting cell cycle progression during cellular aging.

  3. Cell phone exposures and hearing loss in children in the Danish National Birth Cohort.

    PubMed

    Sudan, Madhuri; Kheifets, Leeka; Arah, Onyebuchi A; Olsen, Jorn

    2013-05-01

    Children today are exposed to cell phones early in life, and may be the most vulnerable if exposure is harmful to health. We investigated the association between cell phone use and hearing loss in children. The Danish National Birth Cohort (DNBC) enrolled pregnant women between 1996 and 2002. Detailed interviews were conducted during gestation, and when the children were 6 months, 18 months and 7 years of age. We used multivariable-adjusted logistic regression, marginal structural models (MSM) with inverse-probability weighting, and doubly robust estimation (DRE) to relate hearing loss at age 18 months to cell phone use at age 7 years, and to investigate cell phone use reported at age 7 in relation to hearing loss at age 7. Our analyses included data from 52 680 children. We observed weak associations between cell phone use and hearing loss at age 7, with odds ratios and 95% confidence intervals from the traditional logistic regression, MSM and DRE models being 1.21 [95% confidence interval [CI] 0.99, 1.46], 1.23 [95% CI 1.01, 1.49] and 1.22 [95% CI 1.00, 1.49], respectively. Our findings could have been affected by various biases and are not sufficient to conclude that cell phone exposures have an effect on hearing. This is the first large-scale epidemiologic study to investigate this potentially important association among children, and replication of these findings is needed. © 2013 Blackwell Publishing Ltd.

  4. The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells.

    PubMed

    Rao, Jialing; Ye, Zengchun; Tang, Hua; Wang, Cheng; Peng, Hui; Lai, Weiyan; Li, Yin; Huang, Wanbing; Lou, Tanqi

    2017-01-05

    A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs.

  5. Cell Phone Exposures and Hearing Loss in Children in the Danish National Birth Cohort

    PubMed Central

    Sudan, Madhuri; Kheifets, Leeka; Arah, Onyebuchi A.; Olsen, Jorn

    2013-01-01

    Background Children today are exposed to cell phones early in life, and may be the most vulnerable if exposure is harmful to health. We investigated the association between cell phone use and hearing loss in children. Methods The Danish National Birth Cohort (DNBC) enrolled pregnant women between 1996 and 2002. Detailed interviews were conducted during gestation, and when the children were 6 months, 18 months, and 7 years of age. We used multivariable-adjusted logistic regression, marginal structural models (MSM) with inverse-probability weighting, and doubly-robust estimation (DRE) to relate hearing loss at age 18 months to cell phone use at age seven years, and to investigate cell phone use reported at age seven in relation to hearing loss at age seven. Results Our analyses included data from 52,680 children. We observed weak associations between cell phone use and hearing loss at age seven, with odds ratios and 95% confidence intervals from the traditional logistic regression, MSM, and DRE models being 1.21 [0.99–1.46], 1.23 [1.01–1.49], and 1.22 [1.00–1.49], respectively. Conclusions Our findings could have been affected by various biases and are not sufficient to conclude that cell phone exposures have an effect on hearing. This is the first large-scale epidemiologic study to investigate this potentially important association among children, and replication of these findings is needed. PMID:23574412

  6. Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells.

    PubMed

    Moorefield, Emily C; Andres, Sarah F; Blue, R Eric; Van Landeghem, Laurianne; Mah, Amanda T; Santoro, M Agostina; Ding, Shengli

    2017-08-29

    Intestinal epithelial stem cells (IESCs) are critical to maintain intestinal epithelial function and homeostasis. We tested the hypothesis that aging promotes IESC dysfunction using old (18-22 months) and young (2-4 month) Sox9-EGFP IESC reporter mice. Different levels of Sox9-EGFP permit analyses of active IESC (Sox9-EGFP Low ), activatable reserve IESC and enteroendocrine cells (Sox9-EGFP High ), Sox9-EGFP Sublow progenitors, and Sox9-EGFP Negative differentiated lineages. Crypt-villus morphology, cellular composition and apoptosis were measured by histology. IESC function was assessed by crypt culture, and proliferation by flow cytometry and histology. Main findings were confirmed in Lgr5-EGFP and Lgr5-LacZ mice. Aging-associated gene expression changes were analyzed by Fluidigm mRNA profiling. Crypts culture from old mice yielded fewer and less complex enteroids. Histology revealed increased villus height and Paneth cells per crypt in old mice. Old mice showed increased numbers and hyperproliferation of Sox9-EGFP Low IESC and Sox9-EGFP High cells. Cleaved caspase-3 staining demonstrated increased apoptotic cells in crypts and villi of old mice. Gene expression profiling revealed aging-associated changes in mRNAs associated with cell cycle, oxidative stress and apoptosis specifically in IESC. These findings provide new, direct evidence for aging associated IESC dysfunction, and define potential biomarkers and targets for translational studies to assess and maintain IESC function during aging.

  7. Effects of Age and Heart Failure on Human Cardiac Stem Cell Function

    PubMed Central

    Cesselli, Daniela; Beltrami, Antonio P.; D'Aurizio, Federica; Marcon, Patrizia; Bergamin, Natascha; Toffoletto, Barbara; Pandolfi, Maura; Puppato, Elisa; Marino, Laura; Signore, Sergio; Livi, Ugolino; Verardo, Roberto; Piazza, Silvano; Marchionni, Luigi; Fiorini, Claudia; Schneider, Claudio; Hosoda, Toru; Rota, Marcello; Kajstura, Jan; Anversa, Piero; Beltrami, Carlo A.; Leri, Annarosa

    2011-01-01

    Currently, it is unknown whether defects in stem cell growth and differentiation contribute to myocardial aging and chronic heart failure (CHF), and whether a compartment of functional human cardiac stem cells (hCSCs) persists in the decompensated heart. To determine whether aging and CHF are critical determinants of the loss in growth reserve of the heart, the properties of hCSCs were evaluated in 18 control and 23 explanted hearts. Age and CHF showed a progressive decrease in functionally competent hCSCs. Chronological age was a major predictor of five biomarkers of hCSC senescence: telomeric shortening, attenuated telomerase activity, telomere dysfunction-induced foci, and p21Cip1 and p16INK4a expression. CHF had similar consequences for hCSCs, suggesting that defects in the balance between cardiomyocyte mass and the pool of nonsenescent hCSCs may condition the evolution of the decompensated myopathy. A correlation was found previously between telomere length in circulating bone marrow cells and cardiovascular diseases, but that analysis was restricted to average telomere length in a cell population, neglecting the fact that telomere attrition does not occur uniformly in all cells. The present study provides the first demonstration that dysfunctional telomeres in hCSCs are biomarkers of aging and heart failure. The biomarkers of cellular senescence identified here can be used to define the birth date of hCSCs and to sort young cells with potential therapeutic efficacy. PMID:21703415

  8. Promise and problems in relating cellular senescence in vitro to aging in vivo.

    PubMed

    Rubin, Harry

    2002-01-01

    According to the 'Hayflick limit', human fetal fibroblasts have a uniform, limited replicative lifespan of about 50 population doublings in cell culture. This concept was extrapolated to diverse cells in the body. It seemed to decrease with the age of the cell donor and, as a form of cell senescence, was thought to underlie the aging process. More discriminating analysis, however, showed that the fibroblasts decayed in a stochastic manner from the time of their explantation, at a rate that increased with the number of population doublings in culture. There was no consistent relation to the age of the donor. Despite the contradictory evidence, the original version of the Hayflick limit retained its general acceptance. Cell senescence was attributed to the absence of telomerase in the fibroblasts, which resulted in shortening of telomeres at each division until they fell below a critical length needed for further division. However, it is well established that stem cells in renewing tissues undergo many more than 50 divisions in a lifetime, without apparent senescence. Contrary to early findings of no telomerase in most tissues, their stem cells retain telomerase and presumably telomere length despite many divisions in vivo. Massive accumulation of lipofuscin granules occurs under stress in long term crowded cultures, but the granules dissipate on subculture or neoplastic transformation. The overall results indicate a critical disjunction between cell senescence in vitro and aging in vivo. By contrast, cell culture has been useful in showing a need for telomere capping in maintaining cell stability and viability. It may also provide information about the biochemical mechanism of lipofuscin production.

  9. CRISPR-Cas9 Mediated Telomere Removal Leads to Mitochondrial Stress and Protein Aggregation.

    PubMed

    Kim, Hyojung; Ham, Sangwoo; Jo, Minkyung; Lee, Gum Hwa; Lee, Yun-Song; Shin, Joo-Ho; Lee, Yunjong

    2017-10-03

    Aging is considered the major risk factor for neurodegenerative diseases including Parkinson's disease (PD). Telomere shortening is associated with cellular senescence. In this regard, pharmacological or genetic inhibition of telomerase activity has been used to model cellular aging. Here, we employed CRISPR-Cas9 technology to instantly remove the telomere to induce aging in a neuroblastoma cell line. Expression of both Cas9 and guide RNA targeting telomere repeats ablated the telomere, leading to retardation of cell proliferation. Instant deletion of telomere in SH-SY5Y cells impaired mitochondrial function with diminished mitochondrial respiration and cell viability. Supporting the pathological relevance of cell aging by CRISPR-Cas9 mediated telomere removal, alterations were observed in the levels of PD-associated proteins including PTEN-induced putative kinase 1, peroxisome proliferator-activated receptor γ coactivator 1-α, nuclear respiratory factor 1, parkin, and aminoacyl tRNA synthetase complex interacting multifunctional protein 2. Significantly, α-synuclein expression in the background of telomere removal led to the enhancement of protein aggregation, suggesting positive feed-forward interaction between aging and PD pathogenesis. Collectively, our results demonstrate that CRISPR-Cas9 can be used to efficiently model cellular aging and PD.

  10. Effect of Cytomegalovirus (CMV) and Ageing on T-Bet and Eomes Expression on T-Cell Subsets.

    PubMed

    Hassouneh, Fakhri; Lopez-Sejas, Nelson; Campos, Carmen; Sanchez-Correa, Beatriz; Tarazona, Raquel; Pera, Alejandra; Solana, Rafael

    2017-06-29

    The differential impact of ageing and cytomegalovirus (CMV) latent infection on human T-cell subsets remains to some extent controversial. The purpose of this study was to analyse the expression of the transcription factors T-bet and Eomes and CD57 on CD4+, CD4 hi CD8 lo and CD8+ T-cell subsets in healthy individuals, stratified by age and CMV serostatus. The percentage of CD4+ T-cells expressing T-bet or Eomes was very low, in particular in CD4+ T-cells from young CMV-seronegative individuals, and were higher in CMV-seropositive older individuals, in both CD57- and CD57+ CD4+ T-cells. The study of the minor peripheral blood double-positive CD4 hi CD8 lo T-cells showed that the percentage of these T-cells expressing both Eomes and T-bet was higher compared to CD4+ T-cells. The percentage of CD4 hi CD8 lo T-cells expressing T-bet was also associated with CMV seropositivity and the coexpression of Eomes, T-bet and CD57 on CD4 hi CD8 lo T-cells was only observed in CMV-seropositive donors, supporting the hypothesis that these cells are mature effector memory cells. The percentage of T-cells expressing Eomes and T-bet was higher in CD8+ T-cells than in CD4+ T-cells. The percentages of CD8+ T-cells expressing Eomes and T-bet increased with age in CMV-seronegative and -seropositive individuals and the percentages of CD57- CD8+ and CD57+ CD8+ T-cells coexpressing both transcription factors were similar in the different groups studied. These results support that CMV chronic infection and/or ageing are associated to the expansion of highly differentiated CD4+, CD4 hi CD8 lo and CD8+ T-cells that differentially express T-bet and Eomes suggesting that the expression of these transcription factors is essential for the generation and development of an effector-memory and effector T lymphocytes involved in conferring protection against chronic CMV infection.

  11. SIRT3 Links Oxidative Stress with Aging and Cancer | Center for Cancer Research

    Cancer.gov

    When cells produce energy, they also form reactive oxygen molecules capable of damaging proteins and DNA. Normally, these molecules are neutralized by a protein called superoxide dismutase, or SOD. However, as a cell ages, oxidative damage accumulates. The increase in oxidative cellular damage as people age may provide a mechanistic connection between aging and carcinogenesis.

  12. Ghrelin promotes thymopoiesis during aging

    PubMed Central

    Dixit, Vishwa Deep; Yang, Hyunwon; Sun, Yuxiang; Weeraratna, Ashani T.; Youm, Yun-Hee; Smith, Roy G.; Taub, Dennis D.

    2007-01-01

    The decline in adaptive immunity, T lymphocyte output, and the contraction of the TCR repertoire with age is largely attributable to thymic involution. The loss of thymic function with age may be due to diminished numbers of progenitors and the loss of critical cytokines and hormones from the thymic microenvironment. We have previously demonstrated that the orexigenic hormone ghrelin is expressed by immune cells and regulates T cell activation and inflammation. Here we report that ghrelin and ghrelin receptor expression within the thymus diminished with progressive aging. Infusion of ghrelin into 14-month-old mice significantly improved the age-associated changes in thymic architecture and thymocyte numbers, increasing recent thymic emigrants and improving TCR diversity of peripheral T cell subsets. Ghrelin-induced thymopoiesis during aging was associated with enhanced early thymocyte progenitors and bone marrow–derived Lin–Sca1+cKit+ cells, while ghrelin- and growth hormone secretagogue receptor–deficient (GHS-R–deficient) mice displayed enhanced age-associated thymic involution. Leptin also enhanced thymopoiesis in aged but not young mice. Our findings demonstrate what we believe to be a novel role for ghrelin and its receptor in thymic biology and suggest a possible therapeutic benefit of harnessing this pathway in the reconstitution of thymic function in immunocompromised subjects. PMID:17823656

  13. Effect of Age on Blood Rheology in Sickle Cell Anaemia and Sickle Cell Haemoglobin C Disease: A Cross-Sectional Study.

    PubMed

    Renoux, Céline; Romana, Marc; Joly, Philippe; Ferdinand, Séverine; Faes, Camille; Lemonne, Nathalie; Skinner, Sarah; Garnier, Nathalie; Etienne-Julan, Maryse; Bertrand, Yves; Petras, Marie; Cannas, Giovanna; Divialle-Doumdo, Lydia; Nader, Elie; Cuzzubbo, Daniela; Lamarre, Yann; Gauthier, Alexandra; Waltz, Xavier; Kebaili, Kamila; Martin, Cyril; Hot, Arnaud; Hardy-Dessources, Marie-Dominique; Pialoux, Vincent; Connes, Philippe

    2016-01-01

    Blood rheology plays a key role in the pathophysiology of sickle cell anaemia (SS) and sickle cell haemoglobin C disease (SC), but its evolution over the lifespan is unknown. Blood viscosity, red blood cell (RBC) deformability and aggregation, foetal haemoglobin (HbF) and haematocrit were measured in 114 healthy individuals (AA), 267 SS (161 children + 106 adults) and 138 SC (74 children + 64 adults) patients. Our results showed that 1) RBC deformability is at its maximal value during the early years of life in SS and SC populations, mainly because HbF level is also at its peak, 2) during childhood and adulthood, hydroxycarbamide treatment, HbF level and gender modulated RBC deformability in SS patients, independently of age, 3) blood viscosity is higher in older SS and SC patients compared to younger ones and 4) haematocrit decreases as SS patients age. The hemorheological changes detected in older patients could play a role in the progressive development of several chronic disorders in sickle cell disease, whose prevalence increases with age. Retarding these age-related haemorheological impairments, by using suitable drugs, may minimize the risks of vaso-occlusive events and chronic disorders.

  14. The glia doctrine: addressing the role of glial cells in healthy brain ageing.

    PubMed

    Nagelhus, Erlend A; Amiry-Moghaddam, Mahmood; Bergersen, Linda H; Bjaalie, Jan G; Eriksson, Jens; Gundersen, Vidar; Leergaard, Trygve B; Morth, J Preben; Storm-Mathisen, Jon; Torp, Reidun; Walhovd, Kristine B; Tønjum, Tone

    2013-10-01

    Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Cytokinetic Failure-induced Tetraploidy Develops into Aneuploidy, Triggering Skin Aging in Phosphovimentin-deficient Mice.

    PubMed

    Tanaka, Hiroki; Goto, Hidemasa; Inoko, Akihito; Makihara, Hiroyuki; Enomoto, Atsushi; Horimoto, Katsuhisa; Matsuyama, Makoto; Kurita, Kenichi; Izawa, Ichiro; Inagaki, Masaki

    2015-05-22

    Tetraploidy, a state in which cells have doubled chromosomal sets, is observed in ∼20% of solid tumors and is considered to frequently precede aneuploidy in carcinogenesis. Tetraploidy is also detected during terminal differentiation and represents a hallmark of aging. Most tetraploid cultured cells are arrested by p53 stabilization. However, the fate of tetraploid cells in vivo remains largely unknown. Here, we analyze the ability to repair wounds in the skin of phosphovimentin-deficient (VIM(SA/SA)) mice. Early into wound healing, subcutaneous fibroblasts failed to undergo cytokinesis, resulting in binucleate tetraploidy. Accordingly, the mRNA level of p21 (a p53-responsive gene) was elevated in a VIM(SA/SA)-specific manner. Disappearance of tetraploidy coincided with an increase in aneuploidy. Thereafter, senescence-related markers were significantly elevated in VIM(SA/SA) mice. Because our tetraploidy-prone mouse model also exhibited subcutaneous fat loss at the age of 14 months, another premature aging phenotype, our data suggest that following cytokinetic failure, a subset of tetraploid cells enters a new cell cycle and develops into aneuploid cells in vivo, which promote premature aging. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Mathematical modelling the age dependence of Epstein-Barr virus associated infectious mononucleosis.

    PubMed

    Huynh, Giao T; Adler, Frederick R

    2012-09-01

    Most people get Epstein-Barr virus (EBV) infection at young age and are asymptomatic. Primary EBV infection in adolescents and young adults, however, often leads to infectious mononucleosis (IM) with symptoms including fever, fatigue and sore throat that can persist for months. Expansion in the number of CD8(+) T cells, especially against EBV lytic proteins, are the main cause of these symptoms. We propose a mathematical model for the regulation of EBV infection within a host to address the dependence of IM on age. This model tracks the number of virus, infected B cell and epithelial cell and CD8(+) T-cell responses to the infection. We use this model to investigate three hypotheses for the high incidence of IM in teenagers and young adults: saliva and antibody effects that increase with age, high cross-reactive T-cell responses and a high initial viral load. The model supports the first two of these hypotheses and suggests that variation in host antibody responses and the complexity of the pre-existing cross-reactive T-cell repertoire, both of which depend on age, may play important roles in the etiology of IM.

  17. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    PubMed

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  18. Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex

    PubMed Central

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions. PMID:22719923

  19. Age-related changes in the response of intestinal cells to 1α,25(OH)2-vitamin D3.

    PubMed

    Gonzalez Pardo, Verónica; Russo de Boland, Ana

    2013-01-01

    The hormonally active form of vitamin D(3), 1α,25(OH)(2)-vitamin D(3), acts in intestine, its major target tissue, where its actions are of regulatory and developmental importance: regulation of intracellular calcium through modulation of second messengers and activation of mitogenic cascades leading to cell proliferation. Several causes have been postulated to modify the hormone response in intestinal cells with ageing, among them, alterations of vitamin D receptor (VDR) levels and binding sites, reduced expression of G-proteins and hormone signal transduction changes. The current review summarizes the actual knowledge regarding the molecular and biochemical basis of age-impaired 1α,25(OH)(2)-vitamin D(3) receptor-mediated signaling in intestinal cells. A fundamental understanding why the hormone functions are impaired with age will enhance our knowledge of its importance in intestinal cell physiology. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Recent advances in the study of age-related hearing loss - A Mini-Review

    PubMed Central

    Kidd, Ambrose R; Bao, Jianxin

    2013-01-01

    Hearing loss is a common age-associated affliction that can result from the loss of hair cells and spiral ganglion neurons (SGNs) in the cochlea. Although hair cells and SGNs are typically lost in the same cochlea, recent analysis suggests that they can occur independently, via unique mechanisms. Research has identified both environmental and genetic factors that contribute to degeneration of cochlear cells. Additionally, molecular analysis has identified multiple cell signaling mechanisms that likely contribute to pathological changes that result in hearing deficiencies. These analyses should serve as useful primers for future work, including genomic and proteomic analysis, to elucidate the mechanisms driving cell loss in the aging cochlea. Significant progress in this field has occurred in the past decade. As our understanding of aging-induced cochlear changes continues to improve, our ability to offer medical intervention will surely benefit the growing elderly population. PMID:22710288

Top