Dobbelaere, D A; Prospero, T D; Roditi, I J; Kelke, C; Baumann, I; Eichhorn, M; Williams, R O; Ahmed, J S; Baldwin, C L; Clevers, H
1990-01-01
The Tac antigen component of the bovine interleukin-2 receptor was expressed as a Cro-beta-galactosidase fusion protein in Escherichia coli and used to raise antibodies in rabbits. These antibodies were used for flow cytofluorimetric analysis to investigate the expression of Tac antigen in a variety of Theileria parva-infected cell lines and also in three Theileria annulata-infected cell lines. Cells expressing Tac antigen on their surface were found in all T. parva-infected cell lines tested whether these were of T- or B-cell origin. T cells expressing Tac antigen could be CD4- CD8-, CD4+ CD8-, CD4- CD8+, or CD4+ CD8+. Tac antigen expression was observed both in cultures which had been maintained in the laboratory for several years and in transformed cell lines which had recently been established by infection of lymphocytes in vitro with T. parva. Northern (RNA) blot analysis demonstrated Tac antigen transcripts in RNA isolated from all T. parva-infected cell lines. Three T. annulata-infected cell lines which were not of T-cell origin were also tested. Two of them expressed Tac antigen on their surface. Abundant Tac antigen mRNA was detected in these T. annulata-infected cell lines, but only trace amounts were demonstrated in the third cell line, which contained very few Tac antigen-expressing cells. In all cell lines tested, whether cloned or uncloned, a proportion of the cells did not express detectable levels of Tac antigen on their surface. This was also the case for a number of other leukocyte surface markers. In addition, we showed that the interleukin-2 receptors were biologically functional, because addition of recombinant interleukin-2 to cultures stimulated cell proliferation. Recombinant interleukin-2 treatment also resulted in increased amounts of steady-state Tac antigen mRNA. The relevance of interleukin-2 receptor expression on Theileria-infected cells is discussed. Images PMID:1979317
Immunotherapy for B-Cell Neoplasms using T Cells expressing Chimeric Antigen Receptors
Boulassel, Mohamed-Rachid; Galal, Ahmed
2012-01-01
Immunotherapy with T cells expressing chimeric antigen receptors (CAR) is being evaluated as a potential treatment for B-cell neoplasms. In recent clinical trials it has shown promising results. As the number of potential candidate antigens expands, the choice of suitable target antigens becomes more challenging to design studies and to assess optimal efficacy of CAR. Careful evaluation of candidate target antigens is required to ensure that T cells expressing CAR will preferentially kill malignant cells with a minimal toxicity against normal tissues. B cells express specific surface antigens that can theoretically act as targets for CAR design. Although many of these antigens can stimulate effective cellular immune responses in vivo, their implementation in clinical settings remains a challenge. Only targeted B-cell antigens CD19 and CD20 have been tested in clinical trials. This article reviews exploitable B cell surface antigens for CAR design and examines obstacles that could interfere with the identification of potentially useful cellular targets. PMID:23269948
1983-01-01
We report investigation of the relationship between ligand-induced B cell plasma membrane depolarization and increased expression of membrane-associated, I-A subregion encoded (mI-A) antigens. Results demonstrate that equal frequencies of B cells are stimulated to undergo membrane depolarization and to increase mI-A expression in response to mitogen, anti-Ig, and thymus-independent (TI) or thymus-dependent (TD) antigens. Further, a cause-and-effect relationship between these two events is suggested by results that demonstrate that inhibition of anti- Fab--induced depolarization by valinomycin also inhibits the subsequent increase in mI-A antigen expression and "passive" (non-ligand-mediated) depolarization of murine B cells by K+ results in hyper-mI-A antigen expression. Based upon these results we hypothesize that antigen- mediated receptor cross-linking results in signal transduction via membrane depolarization, which is resultant in increased mI-A antigen synthesis and cell surface expression. This increase in mI-A antigen density may render the B cell more receptive to subsequent interaction with I-region-restricted helper T cells. PMID:6415207
Tay, Szun Szun; Wong, Yik Chun; McDonald, David M; Wood, Nicole A W; Roediger, Ben; Sierro, Frederic; Mcguffog, Claire; Alexander, Ian E; Bishop, G Alex; Gamble, Jennifer R; Weninger, Wolfgang; McCaughan, Geoffrey W; Bertolino, Patrick; Bowen, David G
2014-06-24
CD8 T-cell responses to liver-expressed antigens range from deletional tolerance to full effector differentiation resulting in overt hepatotoxicity. The reasons for these heterogeneous outcomes are not well understood. To identify factors that govern the fate of CD8 T cells activated by hepatocyte-expressed antigen, we exploited recombinant adenoassociated viral vectors that enabled us to vary potential parameters determining these outcomes in vivo. Our findings reveal a threshold of antigen expression within the liver as the dominant factor determining T-cell fate, irrespective of T-cell receptor affinity or antigen cross-presentation. Thus, when a low percentage of hepatocytes expressed cognate antigen, high-affinity T cells developed and maintained effector function, whereas, at a high percentage, they became functionally exhausted and silenced. Exhaustion was not irreversibly determined by initial activation, but was maintained by high intrahepatic antigen load during the early phase of the response; cytolytic function was restored when T cells primed under high antigen load conditions were transferred into an environment of low-level antigen expression. Our study reveals a hierarchy of factors dictating the fate of CD8 T cells during hepatic immune responses, and provides an explanation for the different immune outcomes observed in a variety of immune-mediated liver pathologic conditions.
Ochiel, Daniel O; Rossoll, Richard M; Schaefer, Todd M; Wira, Charles R
2012-01-01
Cells of the female reproductive tract (FRT) can present antigen to naive and memory T cells. However, the effects of oestrogen, known to modulate immune responses, on antigen presentation in the FRT remain undefined. In the present study, DO11.10 T-cell antigen receptor transgenic mice specific for the class II MHC-restricted ovalbumin (OVA) 323–339 peptide were used to study the effects of oestradiol and pathogen-associated molecular patterns on antigen presentation in the FRT. We report here that oestradiol inhibited antigen presentation of OVA by uterine epithelial cells, uterine stromal cells and vaginal cells to OVA-specific memory T cells. When ovariectomized animals were treated with oestradiol for 1 or 3 days, antigen presentation was decreased by 20–80%. In contrast, incubation with PAMP increased antigen presentation by epithelial cells (Pam3Cys), stromal cells (peptidoglycan, Pam3Cys) and vaginal cells (Pam3Cys). In contrast, CpG inhibited both stromal and vaginal cell antigen presentation. Analysis of mRNA expression by reverse transcription PCR indicated that oestradiol inhibited CD40, CD80 and class II in the uterus and CD40, CD86 and class II in the vagina. Expression in isolated uterine and vaginal cells paralleled that seen in whole tissues. In contrast, oestradiol increased polymeric immunoglobulin receptor mRNA expression in the uterus and decreased it in the vagina. These results indicate that antigen-presenting cells in the uterus and vagina are responsive to oestradiol, which inhibits antigen presentation and co-stimulatory molecule expression. Further, these findings suggest that antigen-presenting cells in the uterus and vagina respond to selected Toll-like receptor agonists with altered antigen presentation. PMID:22043860
Shared target antigens on cancer cells and tissue stem cells: go or no-go for CAR T cells?
Hombach, Andreas A; Abken, Hinrich
2017-02-01
Adoptive therapy with chimeric antigen receptor (CAR) T cells redirected towards CD19 produces remissions of B cell malignancies, however, it also eradicates healthy B cells sharing the target antigen. Such 'on-target off-tumor' toxicity raises serious safety concerns when the target antigen is also expressed by tissue stem cells, with the risk of lasting tissue destruction. Areas covered: We discuss CAR T cell targeting of activation antigens versus lineage associated antigens on the basis of recent experimental and animal data and the literature in the field. Expert commentary: Targeting an activation associated antigen which is transiently expressed by stem cells seems to be safe, like CAR T cells targeting CD30 spare CD30 + hematopoietic stem and progenitor cells while eliminating CD30 + lymphoma cells, whereas targeting lineage associated antigens which increase in expression during cell maturation, like folate receptor-β and CD123, is of risk to destruct tissue stem cells.
Hesketh, J; Dobbelaere, D; Griffin, J F; Buchan, G
1993-01-01
The expression of interleukin-2 receptors (IL-2R) and proliferating cell nuclear antigens (PCNA) were compared for their usefulness as markers of lymphocyte activation. Heterologous polyclonal (anti-bovine IL-2R) and monoclonal (anti-human PCNA) antibodies were used to detect the expression of these molecules on activated deer lymphocytes. Both molecules were co-expressed on blast cells which had been activated with mitogen [concanavalin A (Con A)]. There was detectable up-regulation of IL-2R expression in response to antigen [Mycobacterium bovis-derived purified protein derivative (PPD)] stimulation while PCNA expression mimicked lymphocyte transformation (LT) reactivity. PCNA expression was found to more accurately reflect both antigen- and mitogen-activated lymphocyte activation, as estimated by LT activity. The expression of PCNA was used to identify antigen reactive cells from animals exposed to M. bovis. A very low percentage (1.1 +/- 0.4%) of peripheral blood lymphocytes from non-infected animals could be stimulated to express PCNA by in vitro culture with antigen (PPD). Within the infected group both diseased and healthy, 'in-contact', animals expressed significantly higher levels of PCNA upon antigen stimulation. PMID:8104884
Delsol, G.; Meggetto, F.; Brousset, P.; Cohen-Knafo, E.; al Saati, T.; Rochaix, P.; Gorguet, B.; Rubin, B.; Voigt, J. J.; Chittal, S.
1993-01-01
Based on observations of 66 cases, in which tissues were specially processed to optimize the simultaneous preservation of cell membrane antigens and morphology, we provide evidence in favor of a relationship between follicular dendritic reticulum cells (FDRC) and Reed-Sternberg (RS) cells of Hodgkin's disease (HD) other than the lymphocyte predominance subtype. RS cells were intimately related to the FDRC network (75% of cases), and the expression of CD21 antigen was frequent (41% of cases). Exclusive expression of CD21 antigen was found in 11 cases of HD, while the expression of other B-cell-associated markers (CD19, CD20, CD22) was both variable and inconsistent. The expression of T-cell antigens (CD3, CD4, CD8) was rare. Null phenotype of RS cells was observed in 27 of 66 cases (41%). Epstein-Barr virus (EBV) nucleic acids were found in 34 of 66 (51.5%) cases. Double labeling techniques showed the presence of EBV-positive RS cells within the FDRC network. A non-B-cell origin of RS cells was supported by the differential expression of EBV latent antigens in HD (latent membrane protein+, EB nuclear antigen 2-), which is unusual in EBV-driven lymphoblastoid cell lines and EBV-positive B-cell lymphomas. FDRC and RS cells are known to share morphological traits (binucleated cells), and both cell types possess Fc receptor for IgG. The hypothesis is further backed by the findings of CD15 antigen expression by occasional RS-like dysplastic FDRC in Castleman's disease (five cases), which is characterized by hyperplasia of FDRC. Whether FDRC might be the only cells involved in the conversion to RS cells by the loss or gain of antigens remains to be determined. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7685151
Flow cytometric determination of quantitative immunophenotypes
NASA Astrophysics Data System (ADS)
Redelman, Douglas; Ensign, Wayne; Roberts, Don
2001-05-01
Immunofluorescent flow cytometric analysis of peripheral blood leucocytes is most commonly used to identify and enumerate cells defined by one or more clusters of differentiation (CD) antigens. Although less widely employed, quantitative tests that measure the amounts of CD antigens expressed per cell are used in some situations such as the characterization of lymphomas and leukocytes or the measurement of CD38 on CD3plu8pluT cells in HIV infected individuals. The CD antigens used to identify leukocyte populations are functionally important molecules and it is known that under- or over-expression of some CD antigens can affect cellular responses. For example, high or low expression of CD19 on B cells is associated with autoimmune conditions or depressed antibody responses, respectively. In the current studies, the quantitative expression of CD antigens on T cells, B cells and monocytes was determined in a group of age and sex-matched Marines at several times before and after training exercises. There was substantial variation among these individuals in the quantitative expression of CD antigens and in the number of cells in various populations. However, there was relatively little variation within individuals during the two months they were examined. Thus, the number of cells in leukocyte sub-populations and the amount of CD antigens expressed per cell appear to comprise a characteristic quantitative immunophenotype.
Expression of the Thomsen-Friedenreich (TF) tumor antigen in human abort placentas.
Richter, D U; Jeschke, U; Bergemann, C; Makovitzky, J; Lüthen, F; Karsten, U; Briese, V
2005-01-01
The Thomsen-Friedenreich antigen (TF), or more precisely epitope, has been known as a pancarcinoma antigen. It consists of galactose-beta1-3-N-acetylgalactose. We have already described the expression of TF in the normal placenta. TF is expressed by the syncytium and by extravillous trophoblast cells. In this study, we investigated the expression of TF in the abort placenta. Frozen samples of human abort placentas (12 placentas), obtained from the first and second trimesters of pregnancy and, for comparison, samples of normal placentas (17 placentas) from the first, second and third trimesters of pregnancy, were used. Expression of TF was investigated by immunohistochemical methods. For identification of TF-positive cells in abort placentas, immunofluorescence methods were used. Evaluation of simple and double immunofluorescence was performed on a laser scanning microscope. Furthermore, we isolated trophoblast cells from first and third trimester placentas and evaluated cytokeratin 7 and Muc1 expression by immunofluorescence methods. We observed expression of TF antigen in the syncytiotrophoblasts layer of the placenta in all three trimesters of pregnancy in normal and abort placentas evaluated by immunohistochemical methods. There was no expression of TF antigen in the decidua of abort placentas. Immunofluorescence double staining of TF antigen and cytokeratin 7 showed reduced expression of both antigens in the abort decidua and co-expression of both antigens in the syncytiotrophoblast layer of normal and abort placentas. TF expression in the syncytiotrophoblast was reduced in abort placentas. In the isolated trophoblast cells, no TF expression was found, however, Muc1 expression was visualized. Expression of TF antigen was reduced in the first and second trimester abort decidua compared to the normal decidua during the same time of pregnancy. TF antigen was restricted to the syncytiotrophoblast and extravillous trophoblast cells in the decidua. Abort placentas expressed TF antigen on the syncytiotrophoblast layer, but with lower intensity compared to normal placentas. We found a significantly reduced co-expression of TF antigen and cytokeratin 7 in the decidua of abort placentas. These data suggested a reduction of extravillous trophoblast cells in the decidua of abort placentas. In addition, we found higher numbers of CD45-positive cells in the abort decidua compared to normal placentas.
Hettihewa, L M
2011-11-01
Dendritic cells (DCs) are potent antigen presenting cells which proceed from immature to a mature stage during their differentiation. There are several methods of obtaining long lasting mature antigen expressing DCs and different methods show different levels of antigen expressions. We investigated bone marrow derived DCs for the degree of maturation and genetically engineered antigen presentation in the presence of interleukin-4 (IL-4) as a maturity enhancer. DCs and transfected retrovirus were cultured together in the presence of granulocyte-macrophage colony stimulating factor (GMCSF)-IL4, GMCSF +IL4, lipopolysaccharide (LPS). B 7.1, B7.2 and CD11c were measured by the degree of immune fluorescence using enhanced green fluorescent protein (EGFP) shuttled retrovirus transfected antigen. Degree of MHC class I molecule with antigen presentation of antigen was also evaluated by fluorescence activated cell sorting. The antigen presenting capacity of transfected DCs was investigated. Bone marrow DCs were generated in the presence of GMCSF and IL-4 in vitro. Dividing bone marrow cells were infected with EGFP shuttled retrovirus expressing SSP2 by prolonged centrifugation for three consecutive days from day 5, 6 and 7 and continued to culture in the presence of GMSCF and IL-4 until day 8. IL-4 as a cytokine increased the maturation of retrovirus transfected DCs by high expression of B 7-1 and B 7-2. Also, IL-4 induced DC enhanced by the prolonged centrifugation and it was shown by increased antigen presentation of these dendric cells as antigen presenting cell (APC). Cytolytic effects were significantly higher in cytotoxic T cell response (CTLs) mixed with transfected DCs than CTLs mixed with pulsed DCs. There was an enhanced antigen presentation by prolonged expression of antigen loaded MHC class I receptors in DCs in the presence of IL-4 by prolonged centrifugation.
Definition of Drosophila hemocyte subsets by cell-type specific antigens.
Kurucz, Eva; Váczi, B; Márkus, R; Laurinyecz, Barbara; Vilmos, P; Zsámboki, J; Csorba, Kinga; Gateff, Elisabeth; Hultmark, D; Andó, I
2007-01-01
We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.
Sabbatino, Francesco; Villani, Vincenzo; Yearley, Jennifer H.; Deshpande, Vikram; Cai, Lei; Konstantinidis, Ioannis T.; Moon, Christina; Nota, Sjoerd; Wang, Yangyang; Al-Sukaini, Ahmad; Zhu, Andrew X.; Goyal, Lipika; Ting, David T.; Bardeesy, Nabeel; Hong, Theodore S.; Castillo, Carlos Fernandez-del; Tanabe, Kenneth K.; Lillemoe, Keith D.; Ferrone, Soldano; Ferrone, Cristina R.
2017-01-01
Purpose More effective therapy is needed for intrahepatic cholangiocarcinoma (ICC). The encouraging clinical results obtained with checkpoint molecule-specific monoclonal antibodies (mAb) have prompted us to investigate whether this type of immunotherapy may be applicable to ICC. The aims of this study were to determine whether (i) patients mount a T-cell immune response to their ICC, (ii) checkpoint molecules are expressed on both T cells and tumor cells, and (iii) tumor cells are susceptible to recognition by cognate T cells. Experimental Design Twenty-seven ICC tumors were analyzed for (i) lymphocyte infiltrate, (ii) HLA class I and HLA class II expression, and (iii) PD-1 and PD-L1 expression by T cells and ICC cells, respectively. The results of this analysis were correlated with the clinicopathologic characteristics of the patients investigated. Results Lymphocyte infiltrates were identified in all tumors. PD-L1 expression and HLA class I antigen expression by ICC cells was observed in 8 and 11, respectively, of the 27 tumors analyzed. HLA class I antigen expression correlated with CD8+ T-cell infiltrate. Furthermore, positive HLA class I antigen expression in combination with negative/rare PD-L1 expression was associated with favorable clinical course of the disease. Conclusions ICC patients are likely to mount a T-cell immune response against their own tumors. Defects in HLA class I antigen expression in combination with PD-L1 expression by ICC cells provide them with an immune escape mechanism. This mechanism justifies the implementation of immunotherapy with checkpoint molecule-specific mAbs in patients bearing ICC tumors without defects in HLA class I antigen expression. PMID:26373575
Cebula, Marcin; Ochel, Aaron; Hillebrand, Upneet; Pils, Marina C.; Schirmbeck, Reinhold; Hauser, Hansjörg; Wirth, Dagmar
2013-01-01
The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreERT2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred Kb/OVA257-264-specific OT-I T cells to OVA_X_CreERT2 mice or generated triple transgenic OVA_X CreERT2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreERT2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreERT2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreERT2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance. PMID:23869228
Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B
2014-11-01
Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Krenciute, Giedre; Prinzing, Brooke L; Yi, Zhongzhen; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Balyasnikova, Irina V; Gottschalk, Stephen
2017-07-01
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults and is virtually incurable with conventional therapies. Immunotherapy with T cells expressing GBM-specific chimeric antigen receptors (CAR) is an attractive approach to improve outcomes. Although CAR T cells targeting GBM antigens, such as IL13 receptor subunit α2 (IL13Rα2), HER2, and EGFR variant III (EGFRvIII), have had antitumor activity in preclinical models, early-phase clinical testing has demonstrated limited antiglioma activity. Transgenic expression of IL15 is an appealing strategy to enhance CAR T-cell effector function. We tested this approach in our IL13Rα2-positive glioma model in which limited IL13Rα2-CAR T-cell persistence results in recurrence of antigen-positive gliomas. T cells were genetically modified with retroviral vectors encoding IL13Rα2-CARs or IL15 (IL13Rα2-CAR.IL15 T cells). IL13Rα2-CAR.IL15 T cells recognized glioma cells in an antigen-dependent fashion, had greater proliferative capacity, and produced more cytokines after repeated stimulations in comparison with IL13Rα2-CAR T cells. No autonomous IL13Rα2-CAR.IL15 T-cell proliferation was observed; however, IL15 expression increased IL13Rα2-CAR T-cell viability in the absence of exogenous cytokines or antigen. In vivo , IL13Rα2-CAR.IL15 T cells persisted longer and had greater antiglioma activity than IL13Rα2-CAR T cells, resulting in a survival advantage. Gliomas recurring after 40 days after T-cell injection had downregulated IL13Rα2 expression, indicating that antigen loss variants occur in the setting of improved T-cell persistence. Thus, CAR T cells for GBM should not only be genetically modified to improve their proliferation and persistence, but also to target multiple antigens. Summary: Glioblastoma responds imperfectly to immunotherapy. Transgenic expression of IL15 in T cells expressing CARs improved their proliferative capacity, persistence, and cytokine production. The emergence of antigen loss variants highlights the need to target multiple tumor antigens. Cancer Immunol Res; 5(7); 571-81. ©2017 AACR . ©2017 American Association for Cancer Research.
Cancer-testis antigen expression is shared between epithelial ovarian cancer tumors.
Garcia-Soto, Arlene E; Schreiber, Taylor; Strbo, Natasa; Ganjei-Azar, Parvin; Miao, Feng; Koru-Sengul, Tulay; Simpkins, Fiona; Nieves-Neira, Wilberto; Lucci, Joseph; Podack, Eckhard R
2017-06-01
Cancer-testis (CT) antigens have been proposed as potential targets for cancer immunotherapy. Our objective was to evaluate the expression of a panel of CT antigens in epithelial ovarian cancer (EOC) tumor specimens, and to determine if antigen sharing occurs between tumors. RNA was isolated from EOC tumor specimens, EOC cell lines and benign ovarian tissue specimens. Real time-PCR analysis was performed to determine the expression level of 20 CT antigens. A total of 62 EOC specimens, 8 ovarian cancer cell lines and 3 benign ovarian tissues were evaluated for CT antigen expression. The majority of the specimens were: high grade (62%), serous (68%) and advanced stage (74%). 58 (95%) of the EOC tumors analyzed expressed at least one of the CT antigens evaluated. The mean number of CT antigen expressed was 4.5 (0-17). The most frequently expressed CT antigen was MAGE A4 (65%). Antigen sharing analysis showed the following: 9 tumors shared only one antigen with 62% of the evaluated specimens, while 37 tumors shared 4 or more antigens with 82%. 5 tumors expressed over 10 CT antigens, which were shared with 90% of the tumor panel. CT antigens are expressed in 95% of EOC tumor specimens. However, not a single antigen was universally expressed across all samples. The degree of antigen sharing between tumors increased with the total number of antigens expressed. These data suggest a multi-epitope approach for development of immunotherapy for ovarian cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Haggerty, Timothy J.; Dunn, Ian S.; Rose, Lenora B.; Newton, Estelle E.; Pandolfi, Franco; Kurnick, James T.
2014-01-01
In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90) share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer. PMID:25503774
Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.
2008-01-01
Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698
Expression of myeloid differentiation antigens on normal and malignant myeloid cells.
Griffin, J D; Ritz, J; Nadler, L M; Schlossman, S F
1981-01-01
A series of monoclonal antibodies have been characterized that define four surface antigens (MY3, MY4, MY7, and MY8) of human myeloid cells. They were derived from a fusion of the NS-1 plasmacytoma cell line with splenocytes from a mouse immunized with human acute myelomonocytic leukemia cells. MY3 and MY4 are expressed by normal monocytes and by greater than 90% of patients with acute monocytic leukemia or acute myelomonocytic leukemia, but are detected much less often on other types of myeloid leukemia. MY7 is expressed by granulocytes, monocytes, and 5% of normal bone marrow cells. 79% of all acute myeloblastic leukemia (AML) patients tested (72 patients) express MY7 without preferential expression by any AML subtype. MY8 is expressed by normal monocytes, granulocytes, all peroxidase-positive bone marrow cells, and 50% of AML patients. MY3, MY4, and MY8 define myeloid differentiation antigens in that they are not detected on myeloid precursor cells and appear at discrete stages of differentiation. These antigens are not expressed by lymphocytes, erythrocytes, platelets, or lymphoid malignancies. The monoclonal antisera defining these antigens have been used to study differentiation of normal myeloid cells and malignant cell lines. Images PMID:6945311
Saijo, Masayuki; Qing, Tang; Niikura, Masahiro; Maeda, Akihiko; Ikegami, Tetsuro; Sakai, Koji; Prehaud, Christophe; Kurane, Ichiro; Morikawa, Shigeru
2002-01-01
A HeLa cell line continuously expressing recombinant nucleoprotein (rNP) of the Crimean-Congo hemorrhagic fever virus (CCHFV) was established by transfection with an expression vector containing the cDNA of CCHFV NP (pKS336-CCHFV-NP). These cells were used as antigens for indirect immunofluorescence (IF) to detect immunoglobulin G antibodies to CCHFV. The sensitivity and specificity of this IF technique were examined by using serum samples and were compared to those of the IF technique using CCHFV-infected Vero E6 cells (authentic antigen). Staining of the CCHFV rNP expressed in HeLa cells showed a unique granular pattern similar to that of CCHFV-infected Vero E6 cells. Positive staining could easily be distinguished from a negative result. All 13 serum samples determined to be positive by using the authentic antigen were also determined to be positive by using CCHFV rNP-expressing HeLa cells (recombinant antigen). The 108 serum samples determined to be negative by using the authentic antigen were also determined to be negative by using the recombinant antigen. Thus, both the sensitivity and the specificity of this IF technique were 100% compared to the IF with authentic antigen. The novel IF technique using CCHFV rNP-expressing HeLa cells can be used not only for diagnosis of CCHF but also for epidemiological studies on CCHFV infections. PMID:11825944
Rouhani, Sherin J; Eccles, Jacob D; Riccardi, Priscila; Peske, J David; Tewalt, Eric F; Cohen, Jarish N; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H
2015-04-10
Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3.
Rouhani, Sherin J.; Eccles, Jacob D.; Riccardi, Priscila; Peske, J. David; Tewalt, Eric F.; Cohen, Jarish N.; Liblau, Roland; Mäkinen, Taija; Engelhard, Victor H.
2015-01-01
Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3. PMID:25857745
Rushworth, David; Jena, Bipulendu; Olivares, Simon; Maiti, Sourindra; Briggs, Neima; Somanchi, Srinivas; Dai, Jianliang; Lee, Dean; Cooper, Laurence J. N.
2014-01-01
T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to non-viral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through co-culture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed one ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Employing CARL enables one aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity. PMID:24714354
Yap, Jin Yan; Wirasinha, Rushika C; Chan, Anna; Howard, Debbie R; Goodnow, Christopher C; Daley, Stephen R
2018-02-07
Acquisition of T-cell central tolerance involves distinct pathways of self-antigen presentation to thymocytes. One pathway termed indirect presentation requires a self-antigen transfer step from thymic epithelial cells (TECs) to bone marrow-derived cells before the self-antigen is presented to thymocytes. The role of indirect presentation in central tolerance is context-dependent, potentially due to variation in self-antigen expression, processing and presentation in the thymus. Here, we report experiments in mice in which TECs expressed a membrane-bound transgenic self-antigen, hen egg lysozyme (HEL), from either the insulin (insHEL) or thyroglobulin (thyroHEL) promoter. Intrathymic HEL expression was less abundant and more confined to the medulla in insHEL mice compared with thyroHEL mice. When indirect presentation was impaired by generating mice lacking MHC class II expression in bone marrow-derived antigen-presenting cells, insHEL-mediated thymocyte deletion was abolished, whereas thyroHEL-mediated deletion occurred at a later stage of thymocyte development and Foxp3 + regulatory T-cell differentiation increased. Indirect presentation increased the strength of T-cell receptor signalling that both self-antigens induced in thymocytes, as assessed by Helios expression. Hence, indirect presentation limits the differentiation of naive and regulatory T cells by promoting deletion of self-reactive thymocytes. © 2018 John Wiley & Sons Ltd.
Nibbering, P H; Van de Gevel, J S; Van Furth, R
1990-07-20
The present study was performed in order to establish whether a cell-ELISA could be used to determine the expression of antigens by adherent murine peritoneal macrophages and also quantify the numbers of such macrophages. Accurate determination of the number of adherent macrophages proved to be possible with a cell-ELISA designed to assess complement receptor type III (CRIII) expression. Expression of CRIII was considerably more sensitive than determination of the cell-protein or DNA content as a measure of the number of adherent macrophages. For the calculation of the expression of CRIII, Ia antigen, and antigen F4/80 by resident and activated macrophages, use was made of the linear part of the curve obtained when the numbers of macrophages were plotted against the absorbance values for each of the antigens. The values for CRIII expression did not differ significantly between resident macrophages, macrophages activated with recombinant interferon-gamma (rIFN-gamma) and macrophages activated with BCG/PPD. IFN-gamma-activated and BCG/PPD-activated macrophages expressed Ia antigen significantly more intensely than did resident peritoneal macrophages. In contrast the activated macrophages expressed F4/80 significantly less intensely than resident peritoneal macrophages.
Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.
Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J
2018-02-21
Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.
Engineered T cells for pancreatic cancer treatment
Katari, Usha L; Keirnan, Jacqueline M; Worth, Anna C; Hodges, Sally E; Leen, Ann M; Fisher, William E; Vera, Juan F
2011-01-01
Objective Conventional chemotherapy and radiotherapy produce marginal survival benefits in pancreatic cancer, underscoring the need for novel therapies. The aim of this study is to develop an adoptive T cell transfer approach to target tumours expressing prostate stem cell antigen (PSCA), a tumour-associated antigen that is frequently expressed by pancreatic cancer cells. Methods Expression of PSCA on cell lines and primary tumour samples was confirmed by immunohistochemistry. Healthy donor- and patient-derived T cells were isolated, activated in vitro using CD3/CD28, and transduced with a retroviral vector encoding a chimeric antigen receptor (CAR) targeting PSCA. The ability of these cells to kill tumour cells was analysed by chromium-51 (Cr51) release. Results Prostate stem cell antigen was expressed on >70% of the primary tumour samples screened. Activated, CAR-modified T cells could be readily generated in clinically relevant numbers and were specifically able to kill PSCA-expressing pancreatic cancer cell lines with no non-specific killing of PSCA-negative target cells, thus indicating the potential efficacy and safety of this approach. Conclusions Prostate stem cell antigen is frequently expressed on pancreatic cancer cells and can be targeted for immune-mediated destruction using CAR-modified, adoptively transferred T cells. The safety and efficacy of this approach indicate that it deserves further study and may represent a promising novel treatment for patients with pancreatic cancer. PMID:21843265
Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.
Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M
1990-06-01
It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and intestinal-type metaplastic changes of epithelial cells lining the main and interlobular ducts of the pancreas.
Advantages and applications of CAR-expressing natural killer cells
Glienke, Wolfgang; Esser, Ruth; Priesner, Christoph; Suerth, Julia D.; Schambach, Axel; Wels, Winfried S.; Grez, Manuel; Kloess, Stephan; Arseniev, Lubomir; Koehl, Ulrike
2015-01-01
In contrast to donor T cells, natural killer (NK) cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD). In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR) expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy. PMID:25729364
Loh, Joy; Popkin, Daniel L.; Droit, Lindsay; Braaten, Douglas C.; Zhao, Guoyan; Zhang, Xin; Vachharajani, Punit; Myers, Nancy; Hansen, Ted H.
2012-01-01
Herpesviruses are thought to be highly genetically stable, and their use as vaccine vectors has been proposed. However, studies of the human gammaherpesvirus, Epstein-Barr virus, have found viral isolates containing mutations in HLA class I-restricted epitopes. Using murine gammaherpesvirus 68 expressing ovalbumin (OVA), we examined the stability of a gammaherpesvirus antigenic locus under strong CD8 T cell selection in vivo. OVA-specific CD8 T cells selected viral isolates containing mutations in the OVA locus but minimal alterations in other genomic regions. Thus, a CD8 T cell response to a gammaherpesvirus-expressed antigen that is not essential for replication or pathogenesis can result in selective mutation of that antigen in vivo. This finding may have relevance for the use of herpesvirus vectors for chronic antigen expression in vivo. PMID:22171269
Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia
Porter, David L.; Levine, Bruce L.; Kalos, Michael; Bagg, Adam; June, Carl H.
2012-01-01
SUMMARY We designed a lentiviral vector expressing a chimeric antigen receptor with specificity for the B-cell antigen CD19, coupled with CD137 (a costimulatory receptor in T cells [4-1BB]) and CD3-zeta (a signal-transduction component of the T-cell antigen receptor) signaling domains. A low dose (approximately 1.5×105 cells per kilogram of body weight) of autologous chimeric antigen receptor–modified T cells reinfused into a patient with refractory chronic lymphocytic leukemia (CLL) expanded to a level that was more than 1000 times as high as the initial engraftment level in vivo, with delayed development of the tumor lysis syndrome and with complete remission. Apart from the tumor lysis syndrome, the only other grade 3/4 toxic effect related to chimeric antigen receptor T cells was lymphopenia. Engineered cells persisted at high levels for 6 months in the blood and bone marrow and continued to express the chimeric antigen receptor. A specific immune response was detected in the bone marrow, accompanied by loss of normal B cells and leukemia cells that express CD19. Remission was ongoing 10 months after treatment. Hypogammaglobulinemia was an expected chronic toxic effect. PMID:21830940
Interleukin 10 (IL-10)-mediated Immunosuppression
Mittal, Sharad K.; Cho, Kyung-Jin; Ishido, Satoshi; Roche, Paul A.
2015-01-01
Efficient immune responses require regulated antigen presentation to CD4 T cells. IL-10 inhibits the ability of dendritic cells (DCs) and macrophages to stimulate antigen-specific CD4 T cells; however, the mechanisms by which IL-10 suppresses antigen presentation remain poorly understood. We now report that IL-10 stimulates expression of the E3 ubiquitin ligase March-I in activated macrophages, thereby down-regulating MHC-II, CD86, and antigen presentation to CD4 T cells. By contrast, IL-10 does not stimulate March-I expression in DCs, does not suppress MHC-II or CD86 expression on either resting or activated DCs, and does not affect antigen presentation by activated DCs. IL-10 does, however, inhibit the process of DC activation itself, thereby reducing the efficiency of antigen presentation in a March-I-independent manner. Thus, IL-10 suppression of antigen presenting cell function in macrophages is March-I-dependent, whereas in DCs, suppression is March- I-independent. PMID:26408197
Knolle, P A; Uhrig, A; Hegenbarth, S; Löser, E; Schmitt, E; Gerken, G; Lohse, A W
1998-12-01
Our study demonstrates that antigen-presenting liver sinusoidal endothelial cells (LSEC) induce production of interferon-gamma (IFN-gamma) from cloned Th1 CD4+ T cells. We show that LSEC used the mannose receptor for antigen uptake, which further strengthened the role of LSEC as antigen-presenting cell (APC) population in the liver. The ability of LSEC to activate cloned CD4+ T cells antigen-specifically was down-regulated by exogenous prostaglandin E2 (PGE2) and by IL-10. We identify two separate mechanisms by which IL-10 down-regulated T cell activation through LSEC. IL-10 decreased the constitutive surface expression of MHC class II as well as of the accessory molecules CD80 and CD86 on LSEC. Furthermore, IL-10 diminished mannose receptor activity in LSEC. Decreased antigen uptake via the mannose receptor and decreased expression of accessory molecules may explain the down-regulation of T cell activation through IL-10. Importantly, the expression of low numbers of antigen on MHC II in the absence of accessory signals on LSEC may lead to induction of anergy in T cells. Because PGE2 and IL-10 are released from LSEC or Kupffer cells (KC) in response to those concentrations of endotoxin found physiologically in portal venous blood, it is possible that the continuous presence of these mediators and their negative effect on the local APC may explain the inability of the liver to induce T cell activation and to clear chronic infections. Our results support the notion that antigen presentation by LSEC in the hepatic microenvironment contributes to the observed inability to mount an effective cell-mediated immune response in the liver.
2009-05-01
adoptive therapy using CD19-specific chimeric antigen receptor re-directed T cells for recurrent/refrctory follicular lymphoma...Beauty (SB) transposon/transposase system to express a CD19-specific chimeric antigen receptor (CAR). T cells that have undergone transposition...accomplished using genetic engineering to express a chimeric antigen receptor (CAR) to redirect the specificity of T cells for CD19 on malignant B cells
Siebenkäs, Cornelia; Chiappinelli, Katherine B; Guzzetta, Angela A; Sharma, Anup; Jeschke, Jana; Vatapalli, Rajita; Baylin, Stephen B; Ahuja, Nita
2017-01-01
Innovative therapies for solid tumors are urgently needed. Recently, therapies that harness the host immune system to fight cancer cells have successfully treated a subset of patients with solid tumors. These responses have been strong and durable but observed in subsets of patients. Work from our group and others has shown that epigenetic therapy, specifically inhibiting the silencing DNA methylation mark, activates immune signaling in tumor cells and can sensitize to immune therapy in murine models. Here we show that colon and ovarian cancer cell lines exhibit lower expression of transcripts involved in antigen processing and presentation to immune cells compared to normal tissues. In addition, treatment with clinically relevant low doses of DNMT inhibitors (that remove DNA methylation) increases expression of both antigen processing and presentation and Cancer Testis Antigens in these cell lines. We confirm that treatment with DNMT inhibitors upregulates expression of the antigen processing and presentation molecules B2M, CALR, CD58, PSMB8, PSMB9 at the RNA and protein level in a wider range of colon and ovarian cancer cell lines and treatment time points than had been described previously. In addition, we show that DNMTi treatment upregulates many Cancer Testis Antigens common to both colon and ovarian cancer. This increase of both antigens and antigen presentation by epigenetic therapy may be one mechanism to sensitize patients to immune therapies.
Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Tomoyuki; Sato, Yuko; Watanabe, Daisuke
2010-03-15
To clarify whether mutations in the large T gene encoded by Merkel cell polyomavirus affect the expression and function of large T antigen in Merkel cell carcinoma cases, we investigated the expression of large T antigen in vitro and in vivo. Immunohistochemistry using a rabbit polyclonal antibody revealed that large T antigen was expressed in the nuclei of Merkel cell carcinoma cells with Merkel cell polyomavirus infection. Deletion mutant analyses identified an Arg-Lys-Arg-Lys sequence (amino acids 277-280) as a nuclear localization signal in large T antigen. Sequence analyses revealed that there were no mutations in the nuclear localization signal inmore » any of the eleven Merkel cell polyomavirus strains examined. Furthermore, stop codons were not observed in the upstream of the nuclear localization signal in any of the Merkel cell carcinoma cases examined. These data suggest that the nuclear localization signal is highly conserved and functional in Merkel cell carcinoma cases.« less
2008-05-01
adoptive therapy using CD19- specific chimeric antigen receptor re-directed T cells for recurrent/refractory follicular lymphoma. Mol Ther...T- cell therapies for B- cell malignancies we have developed a chimeric antigen receptor (CAR) which when expressed on the cell surface redirects T...that both CD4+ and CD8+ T cells expressing CD19-specific chimeric antigen receptor (CAR) can be generated usmg a novel non-viral gene
Quinn, Laura L.; Zuo, Jianmin; Abbott, Rachel J. M.; Shannon-Lowe, Claire; Tierney, Rosemary J.; Hislop, Andrew D.; Rowe, Martin
2014-01-01
CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IE
Mellencamp, M W; O'Brien, P C; Stevenson, J R
1991-01-01
The ability of pseudorabies virus (PrV) to down-modulate expression of major histocompatibility complex class I antigens in murine and porcine cells was investigated. When quantified by flow cytometry, surface expression of class I Kk and Dk antigens on PrV-infected cells decreased by 60% or more. Down-modulation was associated with a decrease in total cellular class I antigens, indicating regulation at the transcriptional or posttranscriptional level. PrV did not suppress expression of transferrin receptor, suggesting a selective regulatory mechanism. Images PMID:1851884
Bumann, Dirk
2001-01-01
Live attenuated Salmonella strains that express a foreign antigen are promising oral vaccine candidates. Numerous genetic modifications have been empirically tested, but their effects on immunogenicity are difficult to interpret since important in vivo properties of recombinant Salmonella strains such as antigen expression and localization are incompletely characterized and the crucial early inductive events of an immune response to the foreign antigen are not fully understood. Here, methods were developed to directly localize and quantitate the in situ expression of an ovalbumin model antigen in recombinant Salmonella enterica serovar Typhimurium using two-color flow cytometry and confocal microscopy. In parallel, the in vivo activation, blast formation, and division of ovalbumin-specific CD4+ T cells were followed using a well-characterized transgenic T-cell receptor mouse model. This combined approach revealed a biphasic induction of ovalbumin-specific T cells in the Peyer's patches that followed the local ovalbumin expression of orally administered recombinant Salmonella cells in a dose- and time-dependent manner. Interestingly, intact Salmonella cells and cognate T cells seemed to remain in separate tissue compartments throughout induction, suggesting a transport of killed Salmonella cells from the colonized subepithelial dome area to the interfollicular inductive sites. The findings of this study will help to rationally optimize recombinant Salmonella strains as efficacious live antigen carriers for oral vaccination. PMID:11402006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara, T.; Jung, L.K.L.; FU, S.M.
1986-03-01
With human T cells activated for 12 hours by 12-o-tetradecanoyl phorbol-13-acetate (TPA) as immunogen, an IgG/sub 2a/ monoclonal antibody, mAb Ea 1, has been generated to a 60KD phosphorylated protein with 32KD and 28KD subunits. The antigen, Ea 1, is readily detected on 60% of isolated thymocytes by indirect immunofluorescence. A low level of Ea 1 expression is detectable on 2-6% of blood lymphocytes. Isolated T cells have been induced to express Ea 1 by TPA, mitogens and anitgens. TPA activated T cells express Ea 1 as early as 1 hour after activation. By 4 hours, greater than 95% ofmore » the T cells stain with mAb Ea 1. About 50% of the PHA or Con A activated T cells express Ea 1 with a similar kinetics. Ea 1 expression proceeds that of IL-2 receptor in these activation processes. T cells activated by soluble antigens (tetanus toxoid and PPD) and alloantigens in MLR also express Ea 1 after a long incubation. About 20% of the T cells stain for Ea 1 at day 6. Ea 1 expression is not limited to activated T cells. B cells activated by TPA or anti-IgM Ab plus B cell growth factor express Ea 1. The kinetics of Ea 1 expression is slower and the staining is less intense. Repeated attempts to detect Ea 1 on resting and activated monocytes and granulocytes have not been successful. Ea 1 expression is due to de novo synthesis for its induction is blocked by cycloheximide and actinomycin D. Ea 1 is the earliest activation antigen detectable to-date.« less
Su, L N; Little, J B
1992-08-01
Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.
Rottiers, P; Verfaillie, T; Contreras, R; Revets, H; Desmedt, M; Dooms, H; Fiers, W; Grooten, J
1998-11-09
Progression to malignancy of transformed cells involves complex genetic alterations and aberrant gene expression patterns. While aberrant gene expression is often caused by alterations in individual genes, the contribution of the tumoral environment to the triggering of this gene expression is less well established. The stable but heterogeneous expression in cultured EL4/13 cells of a novel tumor-associated antigen, designated as HTgp-175, was chosen for the investigation of gene expression during tumor formation. Homogeneously HTgp-175-negative EL4/13 cells, isolated by cell sorting or obtained by subcloning, acquired HTgp-175 expression as a result of tumor formation. The tumorigenicity of HTgp-175-negative vs. HTgp-175-positive EL4 variants was identical, indicating that induction but not selection accounted for the phenotypic switch from HTgp-175-negative to HTgp-175-positive. Although mutagenesis experiments showed that the protein was not essential for tumor establishment, tumor-derived cells showed increased malignancy, linking HTgp-175 expression with genetic changes accompanying tumor progression. This novel gene expression was not an isolated event, since it was accompanied by ectopic expression of the large chondroitin sulfate proteoglycan PG-M and of normal differentiation antigens. We conclude that signals derived from the tumoral microenvironment contribute significantly to the aberrant gene expression pattern of malignant cells, apparently by fortuitous activation of differentiation processes and cause expression of novel differentiation antigens as well as of inappropriate tumor-associated and ectopic antigens.
In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor.
Boissonnas, Alexandre; Fetler, Luc; Zeelenberg, Ingrid S; Hugues, Stéphanie; Amigorena, Sebastian
2007-02-19
Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8(+) cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration.
1995-01-01
A class of molecules that is expressed on antigen presenting cells, exemplified by CD80 (B7), has been found to provide a necessary costimulatory signal for T cell activation and proliferation. CD28 and CTLA4 are the B7 counterreceptors and are expressed on the majority of human CD4+ T cells and many CD8+ T cells. The signal these molecules mediate is distinguished from other costimulatory signals by the finding that T cell recognition of antigen results in a prolonged state of T cell unresponsiveness or anergy, unless these costimulatory molecules are engaged. However, nearly half of the CD8+ and CD4-CD8- T cells lack CD28, and the costimulatory signals required for the activation of such cells are unknown. To understand the pathways of activation used by CD28- T cells, we have examined the costimulatory requirements of antigen-specific CD4-CD8- TCR(+)-alpha/beta circulating T cells that lack the expression of CD28. We have characterized two T cell lines, DN1 and DN6, that recognize a mycobacterial antigen, and are restricted not by major histocompatibility complex class I or II, but by CD1b or CD1c, two members of a family of major histocompatibility complex-related molecules that have been recently implicated in a distinct pathway for antigen presentation. Comparison of antigen-specific cytolytic responses of the DN1 and DN6 T cell lines against antigen-pulsed CD1+ monocytes or CD1+ B lymphoblastoid cell lines (B-LCL) demonstrated that these T cells recognized antigen presented by both types of cells. However, T cell proliferation occurred only when antigen was presented by CD1+ monocytes, indicating that the CD1+ monocytes expressed a costimulatory molecule that the B- LCL transfectants lacked. This hypothesis was confirmed by demonstrating that the T cells became anergic when incubated with the CD1(+)-transfected B-LCL in the presence of antigen, but not in the absence of antigen. The required costimulatory signal occurred by a CD28-independent mechanism since both the CD1+ monocytes and CD1+ B-LCL transfectants expressed B7-1 and B7-2, and DN1 and DN6 lacked surface expression of CD28. We propose that these data define a previously unrecognized pathway of costimulation for T cells distinct from that involving CD28 and its counterreceptors. We suggest that this B7- independent pathway plays a crucial role in the activation and maintenance of tolerance of at least a subset of CD28- T cells. PMID:7500046
NASA Astrophysics Data System (ADS)
Mak, Jeffrey Y. W.; Xu, Weijun; Reid, Robert C.; Corbett, Alexandra J.; Meehan, Bronwyn S.; Wang, Huimeng; Chen, Zhenjun; Rossjohn, Jamie; McCluskey, James; Liu, Ligong; Fairlie, David P.
2017-03-01
Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5 h, 37 °C). Antigen solution structures, MAIT cell activation potencies (EC50 3-500 pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2 nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNγ, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation.
Zehn, Dietmar; Bevan, Michael J.
2009-01-01
Summary T cells causing autoimmunity must escape tolerance. We observed that CD8+ T cells with high avidity for an antigen expressed in the pancreas, kidney, and thymic medulla were efficiently removed from a polyclonal repertoire by central and peripheral tolerance mechanisms. However, both mechanisms spared low-avidity T cells from elimination. Neither the introduction of activated, self-antigen-specific CD4+ helper T cells nor a global inflammatory stimulus were sufficient to activate the low-avidity CD8+ T cells and did not break tolerance. In contrast, challenge with a recombinant bacterium expressing the self antigen primed the low-avidity T cells, and the animals rapidly developed autoimmune diabetes. We suggest that whereas thymic and peripheral tolerance mechanisms remove cells that can be primed by endogenous amounts of self antigen, they do not guard against tissue destruction by low-avidity effector T cells, which have been primed by higher amounts of self antigen or by crossreactive antigens. PMID:16879996
Epstein, L M; Forney, J D
1984-01-01
A screening procedure was devised for the isolation of X-ray-induced mutations affecting the expression of the A immobilization antigen (i-antigen) in Paramecium tetraurelia. Two of the mutations isolated by this procedure proved to be in modifier genes. The two genes are unlinked to each other and unlinked to the structural A i-antigen gene. These are the first modifier genes identified in a Paramecium sp. that affect surface antigen expression. Another mutation was found to be a deletion of sequences just downstream from the A i-antigen gene. In cells carrying this mutation, the A i-antigen gene lies in close proximity to the end of a macronuclear chromosome. The expression of the A i-antigen is not affected in these cells, demonstrating that downstream sequences are not important for the regulation and expression of the A i-antigen gene. A stable cell line was also recovered which shows non-Mendelian inheritance of a macronuclear deletion of the A i-antigen gene. This mutant does not contain the gene in its macronucleus, but contains a complete copy of the gene in its micronucleus. In the cytoplasm of wild-type animals, the micronuclear gene is included in the developing macronucleus; in the cytoplasm of the mutant, the incorporation of the A i-antigen gene into the macronucleus is inhibited. This is the first evidence that a mechanism is available in ciliates to control the expression of a gene by regulating its incorporation into developing macronuclei. Images PMID:6092921
Specificity in cancer immunotherapy.
Schietinger, Andrea; Philip, Mary; Schreiber, Hans
2008-10-01
From the earliest days in the field of tumor immunology three questions have been asked: do cancer cells express tumor-specific antigens, does the immune system recognize these antigens and if so, what is their biochemical nature? We now know that truly tumor-specific antigens exist, that they are caused by somatic mutations, and that these antigens can induce both humoral and cell-mediated immune responses. Because tumor-specific antigens are exclusively expressed by the cancer cell and are often crucial for tumorigenicity, they are ideal targets for anti-cancer immunotherapy. Nevertheless, the antigens that are targeted today by anti-tumor immunotherapy are not tumor-specific antigens, but antigens that are normal molecules also expressed by normal tissues (so-called "tumor-associated" antigens). If tumor-specific antigens exist and are ideal targets for immunotherapy, why are they not being targeted? In this review, we summarize current knowledge of tumor-specific antigens: their identification, immunological relevance and clinical use. We discuss novel tumor-specific epitopes and propose new approaches that could improve the success of cancer immunotherapy, especially for the treatment of solid tumors.
Vertebrate Cells Express Protozoan Antigen after Hybridization
NASA Astrophysics Data System (ADS)
Crane, Mark St. J.; Dvorak, James A.
1980-04-01
Epimastigotes, the invertebrate host stage of Trypanosoma cruzi, the protozoan parasite causing Chagas' disease in man, were fused with vertebrate cells by using polyethylene glycol. Hybrid cells were selected on the basis of T. cruzi DNA complementation of biochemical deficiencies in the vertebrate cells. Some clones of the hybrid cells expressed T. cruzi-specific antigen. It might be possible to use selected antigens obtained from the hybrids as vaccines for immunodiagnosis or for elucidation of the pathogenesis of Chagas' disease.
Preclinical Assessment of CAR T-Cell Therapy Targeting the Tumor Antigen 5T4 in Ovarian Cancer
Owens, Gemma L.; Sheard, Victoria E.; Kalaitsidou, Milena; Blount, Daniel; Lad, Yatish; Cheadle, Eleanor J.; Edmondson, Richard J.; Kooner, Gurdeep; Gilham, David E.
2018-01-01
Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer. Matched blood and tumor samples were collected from 12 patients with ovarian cancer; all tumors were positive for 5T4 expression by immunohistochemistry. Patient T cells were effectively transduced with 2 different anti-5T4 CAR constructs which differed in their affinity for the target antigen. Co-culture of CAR T cells with matched autologous tumor disaggregates resulted in antigen-specific secretion of IFN-gamma. Furthermore, assessment of the efficacy of anti-5T4 CAR T cells in a mouse model resulted in therapeutic benefit against established ovarian tumors. These results demonstrate proof of principle that 5T4 is an attractive target for immune intervention in ovarian cancer and that patient T cells engineered to express a 5T4-specific CAR can recognize and respond physiologically to autologous tumor cells. PMID:29239915
NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability
Sommermeyer, Daniel; Conrad, Heinke; Krönig, Holger; Gelfort, Haike; Bernhard, Helga; Uckert, Wolfgang
2013-01-01
The cancer-testis antigen NY-ESO-1 has been used as a target for different immunotherapies like vaccinations and adoptive transfer of antigen-specific cytotoxic T cells, as it is expressed in various tumor types and has limited expression in normal cells. The in vitro generation of T cells with defined antigen specificity by T cell receptor (TCR) gene transfer is an established method to create cells for immunotherapy. However, an extensive characterization of TCR which are candidates for treatment of patients is crucial for successful therapies. The TCR has to be efficiently expressed, their affinity to the desired antigen should be high enough to recognize low amounts of endogenously processed peptides on tumor cells, and the TCR should not be cross-reactive to other antigens. We characterized three NY-ESO-1 antigen-reactive cytotoxic T lymphocyte clones which were generated by different approaches of T cell priming (autologous, allogeneic), and transferred their TCR into donor T cells for more extensive evaluations. Although one TCR most efficiently bound MHC-multimers loaded with NY-ESO-1 peptide, T cells expressing this transgenic TCR were not able to recognize endogenously processed antigen. A second TCR recognized HLA-A2 independent of the bound peptide beside its much stronger recognition of NY-ESO-1 bound to HLA-A2. A third TCR displayed an intermediate but peptide-specific performance in all functional assays and, therefore, is the most promising candidate TCR for further clinical development. Our data indicate that multiple parameters of TCR gene-modified T cells have to be evaluated to identify an optimal TCR candidate for adoptive therapy. PMID:22907642
Koyama, Yoshiyuki; Ito, Tomoko; Hasegawa, Aya; Eriguchi, Masazumi; Inaba, Toshio; Ushigusa, Takahiro; Sugiura, Kikuya
2016-11-01
To examine the potential of exosomes derived from the tumor cells, which had been genetically modified to express a Mycobacterium tuberculosis antigen, as a cancer vaccine aimed at overcoming the weak immunogenicity of tumor antigens. We transfected B16 melanoma cells with a plasmid encoding the M. tuberculosis antigen, early secretory antigenic target-6 (ESAT-6). The secreted exosomes bearing both tumor-associated antigens and the pathogenic antigen (or their epitopes) were collected. When the exosomes were injected into foot pads of mice, they significantly (p < 0.05) evoked cellular immunity against both ESAT-6, and B16 tumor cells. Intra-tumoral injection of the exosomes significantly suppressed (p < 0.001) tumor growth in syngeneic B16 tumor-bearing mice, while the exosomes derived from the non-transfected B16 cells showed no effect on tumor growth, although both exosomes should have similar tumor antigens. Exosomes bearing both tumor antigens and the M. tuberculosis antigen (or their epitopes) have a high potential as a candidate for cancer vaccine to overcome the immune escape by tumor cells.
Heterogeneity of clonogenic cells in acute myeloblastic leukemia.
Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D
1985-01-01
The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic leukemic cells were found within a distinct subpopulation that was less "differentiated" than the total cell population. Clonogenic leukemic cells from different patients could be divided into three phenotype groups. In the first group (7 of 20 cases), the clonogenic cells expressed surface antigens characteristic of the normal multipotent colony-forming cell (Ia, MY9). These cases tended to have "undifferentiated" (FAB M1) morphology, and the total cell population generally lacked expression of "late" monocyte antigens such as MY3 and Mo2. A second group (seven cases) of clonogenic cells expressed surface antigens characteristic of an "early" (day 14) colony-forming unit granulocyte-monocyte (CFU-GM), and a third group (six cases) was characteristic of a "late" (day 7) CFU-GM. The cases in these latter two groups tended to have myelomonocytic (FAB M4) morphology and to express monocyte surface antigens. These results suggest that the clonogenic cells are a distinct subpopulation in all cases of AML, and may be derived from normal hematopoietic progenitor cells at multiple points in the differentiation pathway. The results further support the possibility that selected monoclonal antibodies have the potential to purge leukemic clonogenic cells from bone marrow in some AML patients without eliminating critical normal progenitor cells. PMID:3855866
Heterogeneity of clonogenic cells in acute myeloblastic leukemia.
Sabbath, K D; Ball, E D; Larcom, P; Davis, R B; Griffin, J D
1985-02-01
The expression of differentiation-associated surface antigens by the clonogenic leukemic cells from 20 patients with acute myeloblastic leukemia (AML) was studied with a panel of seven cytotoxic monoclonal antibodies (anti-Ia, -MY9, -PM-81, -AML-2-23, -Mol, -Mo2, and -MY3). The surface antigen phenotypes of the clonogenic cells were compared with the phenotypes of the whole leukemic cell population, and with the phenotypes of normal hematopoietic progenitor cells. In each case the clonogenic leukemic cells were found within a distinct subpopulation that was less "differentiated" than the total cell population. Clonogenic leukemic cells from different patients could be divided into three phenotype groups. In the first group (7 of 20 cases), the clonogenic cells expressed surface antigens characteristic of the normal multipotent colony-forming cell (Ia, MY9). These cases tended to have "undifferentiated" (FAB M1) morphology, and the total cell population generally lacked expression of "late" monocyte antigens such as MY3 and Mo2. A second group (seven cases) of clonogenic cells expressed surface antigens characteristic of an "early" (day 14) colony-forming unit granulocyte-monocyte (CFU-GM), and a third group (six cases) was characteristic of a "late" (day 7) CFU-GM. The cases in these latter two groups tended to have myelomonocytic (FAB M4) morphology and to express monocyte surface antigens. These results suggest that the clonogenic cells are a distinct subpopulation in all cases of AML, and may be derived from normal hematopoietic progenitor cells at multiple points in the differentiation pathway. The results further support the possibility that selected monoclonal antibodies have the potential to purge leukemic clonogenic cells from bone marrow in some AML patients without eliminating critical normal progenitor cells.
Podocytes Are Nonhematopoietic Professional Antigen-Presenting Cells
Burkard, Miriam; Ölke, Martha; Daniel, Christoph; Amann, Kerstin; Hugo, Christian; Kurts, Christian; Steinkasserer, Alexander; Gessner, André
2013-01-01
Podocytes are essential to the structure and function of the glomerular filtration barrier; however, they also exhibit increased expression of MHC class II molecules under inflammatory conditions, and they remove Ig and immune complexes from the glomerular basement membrane (GBM). This finding suggests that podocytes may act as antigen-presenting cells, taking up and processing antigens to initiate specific T cell responses, similar to professional hematopoietic cells such as dendritic cells or macrophages. Here, MHC–antigen complexes expressed exclusively on podocytes of transgenic mice were sufficient to activate CD8+ T cells in vivo. In addition, deleting MHC class II exclusively on podocytes prevented the induction of experimental anti-GBM nephritis. Podocytes ingested soluble and particulate antigens, activated CD4+ T cells, and crosspresented exogenous antigen on MHC class I molecules to CD8+ T cells. In conclusion, podocytes participate in the antigen-specific activation of adaptive immune responses, providing a potential target for immunotherapies of inflammatory kidney diseases and transplant rejection. PMID:23539760
Caruso, Hillary G; Torikai, Hiroki; Zhang, Ling; Maiti, Sourindra; Dai, Jianliang; Do, Kim-Anh; Singh, Harjeet; Huls, Helen; Lee, Dean A; Champlin, Richard E; Heimberger, Amy B; Cooper, Laurence J N
2016-06-01
Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.
Fan, Xiaohu; Lang, Haili; Zhou, Xianpei; Zhang, Li; Yin, Rong; Maciejko, Jessica; Giannitsos, Vasiliki; Motyka, Bruce; Medin, Jeffrey A.; Platt, Jeffrey L.
2010-01-01
Abstract The ABO histo-blood group system is the most important antigen system in transplantation medicine, yet no small animal model of the ABO system exists. To determine the feasibility of developing a murine model, we previously subcloned the human α-1,2-fucosyltransferase (H-transferase, EC 2.4.1.69) cDNA and the human α-1,3-N-acetylgalactosaminyltransferase (A-transferase, EC 2.4.1.40) cDNA into lentiviral vectors to study their ability to induce human histo-blood group A antigen expression on mouse cells. Herein we investigated the optimal conditions for human A and H antigen expression in murine cells. We determined that transduction of a bicistronic lentiviral vector (LvEF1-AH-trs) resulted in the expression of A antigen in a mouse endothelial cell line. We also studied the in vivo utility of this vector to induce human A antigen expression in mouse liver. After intrahepatic injection of LvEF1-AH-trs, A antigen expression was observed on hepatocytes as detected by immunohistochemistry and real-time RT-PCR. In human group A erythrocyte-sensitized mice, A antigen expression in the liver was associated with tissue damage, and deposition of antibody and complement. These results suggest that this gene transfer strategy can be used to simulate the human ABO blood group system in a murine model. This model will facilitate progress in the development of interventions for ABO-incompatible transplantation and transfusion scenarios, which are difficult to develop in clinical or large animal settings. PMID:20163247
Rhoden, John J.; Dyas, Gregory L.
2016-01-01
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022
James, Scott E.; Greenberg, Philip D.; Jensen, Michael C.; Lin, Yukang; Wang, Jinjuan; Till, Brian G.; Raubitschek, Andrew A.; Forman, Stephen J.; Press, Oliver W.
2008-01-01
We have targeted CD22 as a novel tumor-associated antigen for recognition by human CTL genetically modified to express chimeric T cell receptors (cTCR) recognizing this surface molecule. CD22-specifc cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR+ CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR+ CTL exhibited lower levels of maximum lysis and lower antigen sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of antigen engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope but constructed as a truncated CD22 molecule to approximate the length of a TCR:pMHC complex. The reduced sensitivity of CD22-specific cTCR+ CTL for antigen-induced triggering of effector functions has potential therapeutic applications, as such cells selectively lysed B cell lymphoma lines expressing high levels of CD22 but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength – and consequently antigen sensitivity – can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate antigen density. PMID:18453625
Priceman, Saul J.; Gerdts, Ethan A.; Tilakawardane, Dileshni; Kennewick, Kelly T.; Murad, John P.; Park, Anthony K.; Jeang, Brook; Yamaguchi, Yukiko; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E.; Brown, Christine E.; Forman, Stephen J.
2018-01-01
ABSTRACT Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with “on-target off-tumor” activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies. PMID:29308300
Jutila, Mark A.; Wilson, Eric; Kurk, Sandy
1997-01-01
Bovine γ/δ T cells and neutrophils roll on 24 h cytokine- or lipopolysaccharide-stimulated bovine fetal umbilical cord endothelial cells in assays done under physiological flow. An antibody directed against E- and L-selectin has minimal blocking effect on this rolling interaction. mAbs were raised against the stimulated bovine endothelial cells and screened for inhibition of γ/δ T cell rolling. One mAb (GR113) was identified that recognizes an antigen (GR antigen) selectively expressed by stimulated bovine endothelial cells isolated from fetal umbilical cord, mesenteric lymph nodes, and aorta. GR113 blocked bovine γ/δ T cell as well as neutrophil rolling on the 24 h-activated endothelial cells. The GR antigen was constitutively expressed at low levels on the cell surface of platelets and its expression was not upregulated after stimulation of these cells with thrombin or phorbol myristate acetate. However, stimulated platelets released a soluble, functionally active form of the molecule that selectively bound in solution to γ/δ T cells in a mixed lymphocyte preparation. GR113 mAb blocked the binding of the soluble platelet molecule to the γ/δ T cells. Soluble GR antigen also bound a subset of human lymphocytes. Cutaneous lymphocyte-associated antigen (CLA) bright human lymphocytes exhibited the greatest capacity to bind the GR antigen, though CLA was not required for binding. Subsets of both human CD4 and CD8 T cells bound the GR antigen. Immunoprecipitation experiments showed the GR antigen to be 110-120 kD M r. The binding of soluble GR antigen was inhibited by EDTA and O-sialoglycoprotease, but not neuraminidase treatment of the target cells. PMID:9362530
Tsuji, Kunikazu; Ojima, Miyoko; Otabe, Koji; Horie, Masafumi; Koga, Hideyuki; Sekiya, Ichiro; Muneta, Takeshi
2017-06-09
Flow cytometric analysis of cell surface antigens is a powerful tool for the isolation and characterization of stem cells residing in adult tissues. In contrast to the collection of hematopoietic stem cells, the process of enzymatic digestion is usually necessary to prepare mesenchymal stem cells (MSCs) suspensions, which can influence the expression of cell surface markers. In this study, we examined the effects of various cell-detaching reagents and digestion times on the expression of stem cell-related surface antigens and MSC functions. Human MSCs were detached from dishes using four different reagents: trypsin, TrypLE, collagenase, and a nonenzymatic cell dissociation reagent (C5789; Sigma-Aldrich). Following dissociation reagent incubations ranging from 5 to 120 min, cell surface markers were analyzed by flow cytometry. Trypsin and TrypLE quickly dissociated the cells within 5 min, while collagenase and C5789 required 60 min to obtain maximum cell yields. C5789 significantly decreased cell viability at 120 min. Trypsin treatment significantly reduced CD44+, CD55+, CD73+, CD105+, CD140a+, CD140b+, and CD201+ cell numbers within 30 min. Collagenase treatment reduced CD140a expression by 30 min. In contrast, TrypLE treatment did not affect the expression of any cell surface antigens tested by 30 min. Despite the significant loss of surface antigen expression after 60 min of treatment with trypsin, adverse effects of enzymatic digestion on multipotency of MSCs were limited. Overall, our data indicated that TrypLE is advantageous over other cell dissociation reagents tested for the rapid preparation of viable MSC suspensions.
Lin, Jing-Wen; Shaw, Tovah N.; Annoura, Takeshi; Fougère, Aurélie; Bouchier, Pascale; Chevalley-Maurel, Séverine; Kroeze, Hans; Franke-Fayard, Blandine; Janse, Chris J.; Couper, Kevin N.
2014-01-01
Model antigens are frequently introduced into pathogens to study determinants that influence T-cell responses to infections. To address whether an antigen's subcellular location influences the nature and magnitude of antigen-specific T-cell responses, we generated Plasmodium berghei parasites expressing the model antigen ovalbumin (OVA) either in the parasite cytoplasm or on the parasitophorous vacuole membrane (PVM). For cytosolic expression, OVA alone or conjugated to mCherry was expressed from a strong constitutive promoter (OVAhsp70 or OVA::mCherryhsp70); for PVM expression, OVA was fused to HEP17/EXP1 (OVA::Hep17hep17). Unexpectedly, OVA expression in OVAhsp70 parasites was very low, but when OVA was fused to mCherry (OVA::mCherryhsp70), it was highly expressed. OVA expression in OVA::Hep17hep17 parasites was strong but significantly less than that in OVA::mCherryhsp70 parasites. These transgenic parasites were used to examine the effects of antigen subcellular location and expression level on the development of T-cell responses during blood-stage infections. While all OVA-expressing parasites induced activation and proliferation of OVA-specific CD8+ T cells (OT-I) and CD4+ T cells (OT-II), the level of activation varied: OVA::Hep17hep17 parasites induced significantly stronger splenic and intracerebral OT-I and OT-II responses than those of OVA::mCherryhsp70 parasites, but OVA::mCherryhsp70 parasites promoted stronger OT-I and OT-II responses than those of OVAhsp70 parasites. Despite lower OVA expression levels, OVA::Hep17hep17 parasites induced stronger T-cell responses than those of OVA::mCherryhsp70 parasites. These results indicate that unconjugated cytosolic OVA is not stably expressed in Plasmodium parasites and, importantly, that its cellular location and expression level influence both the induction and magnitude of parasite-specific T-cell responses. These parasites represent useful tools for studying the development and function of antigen-specific T-cell responses during malaria infection. PMID:25156724
Davis, W C; Naessens, J; Brown, W C; Ellis, J A; Hamilton, M J; Cantor, G H; Barbosa, J I; Ferens, W; Bohach, G A
1996-08-01
Monoclonal antibodies potentially specific for antigens expressed or upregulated on activated leukocytes were selected for further analysis from the panel submitted to the third international workshop on ruminant leukocyte antigens. The kinetics of expression of these activation antigens on resting peripheral mononuclear cells (PBMC) and PBMC stimulated with concanavalin A or staphylococcal superantigen SECI for 4, 24 or 96 h were compared, as well as their appearance on various subsets of cells. For some of them, a molecular mass could be determined after immunoprecipitation from radio-labeled, lectin-stimulated cells. Based on the results from the clustering, kinetic studies and biochemical data, evidence was gathered for assigning two additional mAbs to cluster BoCD25 (IL-2 receptor) and two mAbs to cluster BoCD71 (transferrin receptor). Four mAbs recognized an early activation antigen predominantly expressed on gamma delta T cells in short-term cultures. A number of other activation antigens were further characterized.
DuPage, Michel; Cheung, Ann; Mazumdar, Claire; Winslow, Monte M.; Bronson, Roderick; Schmidt, Leah M.; Crowley, Denise; Chen, Jianzhu; Jacks, Tyler
2010-01-01
SUMMARY Neoantigens derived from somatic mutations in tumors may provide a critical link between the adaptive immune system and cancer. Here we describe a system to introduce exogenous antigens into genetically engineered mouse lung cancers to mimic tumor neoantigens. We show that endogenous T cells respond to and infiltrate tumors, significantly delaying malignant progression. Despite continued antigen expression, T cell infiltration does not persist and tumors ultimately escape immune attack. Transplantation of cell lines derived from these lung tumors or prophylactic vaccination against the autochthonous tumors, however, results in rapid tumor eradication or selection of tumors that lose antigen expression. These results provide insight into the dynamic nature of the immune response to naturally arising tumors. PMID:21251614
Chimeric Antigen Receptor T cell (CAR-T) therapies that specifically target B-cell maturation antigen (BCMA) are strong therapeutic candidates for patients with plasma cell malignancy diseases such as, multiple myeloma (MM), as well as for patients with Hodgkin’s lymphoma. BCMA is a cell surface protein preferentially expressed on a subset of B cells and mature plasma cells, but not on other cells in the body. The limited expression of BCMA on B and plasma cells makes BCMA an attractive therapeutic target for B cell and plasma cell malignancy diseases. The 12 anti-BCMA CARs described are fully human CARS and have the potential to treat patients with various plasma cell and B cell malignancy diseases.
Lee, Suk Jun; Bae, Joonbeom; Kim, Sunhee; Jeong, Seonah; Choi, Chang-Yong; Choi, Sang-Pil; Kim, Hyun-Sook; Jung, Woon-Won; Imm, Jee-Young; Kim, Sae Hun; Chun, Taehoon
2013-02-01
Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (A(b)) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G(1) to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27(KIP1). Saponins also increased stability of p27(KIP1) in Th cells after antigenic stimulation.
In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor
Boissonnas, Alexandre; Fetler, Luc; Zeelenberg, Ingrid S.; Hugues, Stéphanie; Amigorena, Sebastian
2007-01-01
Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8+ cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration. PMID:17261634
Terrada, C; Pâques, M; Fisson, S; De Kozak, Y; Klatzmann, D; Salomon, B; LeHoang, P; Bodaghi, B
2008-02-01
Uveitis is an inflammation involving the retina. The antigens targeted by the experimental models are located in the pigmentary epithelium-photoreceptor complex. To gain insights into the variations in topographic expression of the antigen in the retina, we studied a new mouse model. and methods: Stable retinal expression of the influenza virus hemagglutinin (HA) was obtained after intravitreal or subretinal injection of recombinant adeno-associated virus carrying HA (AAV-HA). One month later, we transferred HA-specific T cells, followed by a subcutaneous immunization of the cognate antigen emulsified in CFA. The animals were clinically examined with a slit lamp biomicroscope. Infiltration of donor cells was detected by immunostaining on retina flatmounts with anti-Thy-1.1 antibody, and infiltrating cells were studied using FACS analysis. Whatever the location of the HA expression, intraocular inflammation was clinically and histologically detected in all animals, between 10 and 15 days after immunization with HA. Lesions were identified with histopathological analysis. The ocular infiltrate was mostly composed of macrophages and HA-specific T cells in different proportions. The topographic variations of targeted ocular antigens do not seem to modify the development of inflammatory reactions in our model. By targeting different antigen-presenting cells, ocular infiltrating cells are different.
Liu, Danya; Burd, Eileen M.; Coopersmith, Craig M.; Ford, Mandy L.
2016-01-01
Following T cell encounter with antigen, multiple signals are integrated to collectively induce distinct differentiation programs within antigen-specific CD8+ T cell populations. Several factors contribute to these cell fate decisions including the amount and duration of antigen, exposure to inflammatory cytokines, and degree of ligation of cosignaling molecules. The inducible costimulator (ICOS) is not expressed on resting T cells but is rapidly upregulated upon encounter with antigen. However, the impact of ICOS signaling on programmed differentiation is not well understood. In this study we therefore sought to determine the role of ICOS signaling on CD8+ T cell programmed differentiation. Through the creation of novel ICOS retrogenic antigen-specific TCR transgenic CD8+ T cells, we interrogated the phenotype, functionality, and recall potential of CD8+ T cells that receive early and sustained ICOS signaling during antigen exposure. Our results reveal that these ICOS signals critically impacted cell fate decisions of antigen-specific CD8+ T cells, resulting in increased frequencies of KLRG-1hiCD127lo cells, altered BLIMP-1, T-bet, and eomesodermin expression, and increased cytolytic capacity as compared to empty vector controls. Interestingly, however, ICOS retrogenic CD8+ T cells also preferentially homed to non-lymphoid organs, and exhibited reduced multi-cytokine functionality and reduced ability to mount secondary recall responses upon challenge in vivo. In sum, our results suggest that an altered differentiation program is induced following early and sustained ICOS expression, resulting in the generation of more cytolyticly potent, terminally differentiated effectors that possess limited capacity for recall response. PMID:26729800
Friedman, Kevin M; Garrett, Tracy E; Evans, John W; Horton, Holly M; Latimer, Howard J; Seidel, Stacie L; Horvath, Christopher J; Morgan, Richard A
2018-05-01
B-cell maturation antigen (BCMA) expression has been proposed as a marker for the identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Consistent BCMA expression was confirmed on MM biopsies (29/29 BCMA+), and it was further demonstrated that BCMA is expressed in a substantial number of lymphoma samples, as well as primary chronic lymphocytic leukemia B cells. To target BCMA using redirected autologous T cells, lentiviral vectors (LVV) encoding chimeric antigen receptors (CARs) were constructed with four unique anti-BCMA single-chain variable fragments, fused to the CD137 (4-1BB) co-stimulatory and CD3ζ signaling domains. One LVV, BB2121, was studied in detail, and BB2121 CAR-transduced T cells (bb2121) exhibited a high frequency of CAR + T cells and robust in vitro activity against MM cell lines, lymphoma cell lines, and primary chronic lymphocytic leukemia peripheral blood. Based on receptor quantification, bb2121 recognized tumor cells expressing as little as 222 BCMA molecules per cell. The in vivo pharmacology of anti-BCMA CAR T cells was studied in NSG mouse models of human MM, Burkitt lymphoma, and mantle cell lymphoma, where mice received a single intravenous administration of vehicle, control vector-transduced T cells, or anti-BCMA CAR-transduced T cells. In all models, the vehicle and control CAR T cells failed to inhibit tumor growth. In contrast, treatment with bb2121 resulted in rapid and sustained elimination of the tumors and 100% survival in all treatment models. Together, these data support the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also some lymphomas.
O'Flaherty, Sarah; Klaenhammer, Todd R
2016-10-15
Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid-based expression systems since expressing antigens from a chromosomal location confers an advantage to the vaccine strains by eliminating the antibiotic maintenance required for plasmids and negates issues with plasmid instability that would result in loss of the antigen. Lactic acid bacteria, including Lactobacillus acidophilus, have shown potential for mucosal vaccine delivery, as L. acidophilus is bile and acid tolerant, allowing transit through the gastrointestinal tract where cells interact with host epithelial and immune cells, including dendritic cells. In this study, we successfully expressed C. botulinum and B. anthracis antigens in the probiotic L. acidophilus strain NCFM. Both antigens were highly expressed individually or in tandem from the chromosome of L. acidophilus. Copyright © 2016 O'Flaherty and Klaenhammer.
Klaenhammer, Todd R.
2016-01-01
ABSTRACT Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. IMPORTANCE Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid-based expression systems since expressing antigens from a chromosomal location confers an advantage to the vaccine strains by eliminating the antibiotic maintenance required for plasmids and negates issues with plasmid instability that would result in loss of the antigen. Lactic acid bacteria, including Lactobacillus acidophilus, have shown potential for mucosal vaccine delivery, as L. acidophilus is bile and acid tolerant, allowing transit through the gastrointestinal tract where cells interact with host epithelial and immune cells, including dendritic cells. In this study, we successfully expressed C. botulinum and B. anthracis antigens in the probiotic L. acidophilus strain NCFM. Both antigens were highly expressed individually or in tandem from the chromosome of L. acidophilus. PMID:27496774
CD8+ T-cell responses rapidly select for antigen-negative tumor cells in the prostate.
Bak, S Peter; Barnkob, Mike Stein; Wittrup, K Dane; Chen, Jianzhu
2013-12-01
Stimulation of patients' immune systems for the treatment of solid tumors is an emerging therapeutic paradigm. The use of enriched autologous T cells for adoptive cell therapy or vaccination with antigen-loaded dendritic cells have shown clinical efficacy in melanoma and prostate cancer, respectively. However, the long-term effects of immune responses on selection and outgrowth of antigen-negative tumor cells in specific tumor types must be determined to understand and achieve long-term therapeutic effects. In this study, we have investigated the expression of a tumor-specific antigen in situ after treatment with tumor-specific CD8(+) T cells in an autochthonous mouse model of prostate cancer. After T-cell treatment, aggregates of dead antigen-positive tumor cells were concentrated in the lumen of the prostate gland and were eventually eliminated from the prostate tissue. Despite the elimination of antigen-positive tumor cells, prostate tumor continued to grow in T-cell-treated mice. Interestingly, the remaining tumor cells were antigen negative and downregulated MHC class I expression. These results show that CD8(+) T cells are effective in eliminating antigen-bearing prostate tumor cells but they also can select for the outgrowth of antigen-negative tumor cells. These findings provide insights into the requirements for an effective cancer immunotherapy within the prostate that not only induces potent immune responses but also avoids selection and outgrowth of antigen-negative tumor cells. ©2013 AACR.
Sayej, Wael N; Foster, Christopher; Jensen, Todd; Chatfield, Sydney; Finck, Christine
2018-06-12
The role of epithelial cells in eosinophilic esophagitis (EoE) is not well understood. In this study, our aim was to isolate, culture, and expand esophageal epithelial cells obtained from patients with or without EoE and characterize differences observed over time in culture. Biopsies were obtained at the time of endoscopy from children with EoE or suspected to have EoE. We established patient-derived esophageal epithelial cell (PDEEC) lines utilizing conditional reprogramming methods. We determined integrin profiles, gene expression, MHC class II expression, and reactivity to antigen stimulation. The PDEECs were found to maintain their phenotype over several passages. There were differences in integrin profiles and gene expression levels in EoE-Active compared to normal controls and EoE-Remission patients. Once stimulated with antigens, PDEECs express MHC class II molecules on their surface, and when co-cultured with autologous T-cells, there is increased IL-6 and TNF-α secretion in EoE-Active patients vs. controls. We are able to isolate, culture, and expand esophageal epithelial cells from pediatric patients with and without EoE. Once stimulated with antigens, these cells express MHC class II molecules and behave as non-professional antigen-presenting cells. This method will help us in developing an ex vivo, individualized, patient-specific model for diagnostic testing for causative antigens.
Immunotherapy for Prostate Cancer: Lessons from Responses to Tumor-Associated Antigens
Westdorp, Harm; Sköld, Annette E.; Snijer, Berit A.; Franik, Sebastian; Mulder, Sasja F.; Major, Pierre P.; Foley, Ronan; Gerritsen, Winald R.; de Vries, I. Jolanda M.
2014-01-01
Prostate cancer (PCa) is the most common cancer in men and the second most common cause of cancer-related death in men. In recent years, novel therapeutic options for PCa have been developed and studied extensively in clinical trials. Sipuleucel-T is the first cell-based immunotherapeutic vaccine for treatment of cancer. This vaccine consists of autologous mononuclear cells stimulated and loaded with an immunostimulatory fusion protein containing the prostate tumor antigen prostate acid posphatase. The choice of antigen might be key for the efficiency of cell-based immunotherapy. Depending on the treatment strategy, target antigens should be immunogenic, abundantly expressed by tumor cells, and preferably functionally important for the tumor to prevent loss of antigen expression. Autoimmune responses have been reported against several antigens expressed in the prostate, indicating that PCa is a suitable target for immunotherapy. In this review, we will discuss PCa antigens that exhibit immunogenic features and/or have been targeted in immunotherapeutic settings with promising results, and we highlight the hurdles and opportunities for cancer immunotherapy. PMID:24834066
Central Tolerance to Tissue-specific Antigens Mediated by Direct and Indirect Antigen Presentation
Gallegos, Alena M.; Bevan, Michael J.
2004-01-01
Intrathymic expression of tissue-specific antigens (TSAs) by medullary thymic epithelial cells (Mtecs) leads to deletion of autoreactive T cells. However, because Mtecs are known to be poor antigen-presenting cells (APCs) for tolerance to ubiquitous antigens, and very few Mtecs express a given TSA, it was unclear if central tolerance to TSA was induced directly by Mtec antigen presentation or indirectly by thymic bone marrow (BM)-derived cells via cross-presentation. We show that professional BM-derived APCs acquire TSAs from Mtecs and delete autoreactive CD8 and CD4 T cells. Although direct antigen presentation by Mtecs did not delete the CD4 T cell population tested in this study, Mtec presentation efficiently deleted both monoclonal and polyclonal populations of CD8 T cells. For developing CD8 T cells, deletion by BM-derived APC and by Mtec presentation occurred abruptly at the transitional, CD4high CD8low TCRintermediate stage, presumably as the cells transit from the cortex to the medulla. These studies reveal a cooperative relationship between Mtecs and BM-derived cells in thymic elimination of autoreactive T cells. Although Mtecs synthesize TSAs and delete a subset of autoreactive T cells, BM-derived cells extend the range of clonal deletion by cross-presenting antigen captured from Mtecs. PMID:15492126
Schmidt, Janine; Bonzheim, Irina; Steinhilber, Julia; Montes-Mojarro, Ivonne A; Ortiz-Hidalgo, Carlos; Klapper, Wolfram; Fend, Falko; Quintanilla-Martínez, Leticia
2017-09-01
Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is characterized by expression of oncogenic ALK fusion proteins due to the translocation t(2;5)(p23;q35) or variants. Although genotypically a T-cell lymphoma, ALK+ ALCL cells frequently show loss of T-cell-specific surface antigens and expression of monocytic markers. C/EBPβ, a transcription factor constitutively overexpressed in ALK+ ALCL cells, has been shown to play an important role in the activation and differentiation of macrophages and is furthermore capable of transdifferentiating B-cell and T-cell progenitors to macrophages in vitro. To analyze the role of C/EBPβ for the unusual phenotype of ALK+ ALCL cells, C/EBPβ was knocked down by RNA interference in two ALK+ ALCL cell lines, and surface antigen expression profiles of these cell lines were generated using a Human Cell Surface Marker Screening Panel (BD Biosciences). Interesting candidate antigens were further analyzed by immunohistochemistry in primary ALCL ALK+ and ALK- cases. Antigen expression profiling revealed marked changes in the expression of the activation markers CD25, CD30, CD98, CD147, and CD227 after C/EBPβ knockdown. Immunohistochemical analysis confirmed a strong, membranous CD147 (EMMPRIN) expression in ALK+ ALCL cases. In contrast, ALK- ALCL cases showed a weaker CD147 expression. CD274 or PD-L1, an immune inhibitory receptor ligand, was downregulated after C/EBPβ knockdown. PD-L1 also showed stronger expression in ALK+ ALCL compared with ALK- ALCL, suggesting an additional role of C/EBPβ in ALK+ ALCL in generating an immunosuppressive environment. Finally, no expression changes of T-cell or monocytic markers were detected. In conclusion, surface antigen expression profiling demonstrates that C/EBPβ plays a critical role in the activation state of ALK+ ALCL cells and reveals CD147 and PD-L1 as important downstream targets. The multiple roles of CD147 in migration, adhesion, and invasion, as well as T-cell activation and proliferation suggest its involvement in the pathogenesis of ALCL.
Engineering Chimeric Antigen Receptor T cells to Treat Glioblastoma.
Choi, Bryan D; O'Rourke, Donald M; Maus, Marcela V
2017-08-01
Immunotherapy has emerged as a promising strategy for glioblastoma (GBM), a disease that remains universally fatal despite currently available standard-of-care. Adoptive T cell therapy has been shown to produce potent antitumor immunity while obviating the need for traditional antigen presentation and primary immune responses. Chimeric antigen receptors (CARs) are specialized molecules that can be expressed on the surface of T cells allowing for redirected cytotoxicity against tumor antigens of interest. To date, the application of CAR T cells for GBM has been relatively limited, in large part due to a dearth of well-described tumor specific antigens that are both homogenously and frequently expressed. A mutated version of the epidermal growth factor receptor, EGFRvIII, is a constitutively activated tyrosine kinase that is expressed on the surface of GBM and other common neoplasms, but completely absent from all normal tissues. We have recently generated CAR T cells directed against EGFRvIII and reported results from a Phase I clinical trial investigating this platform in patients with EGFRvIII-expressing GBM. Our study showed that despite conventional notions of central nervous system "immune-privilege," EGFRvIII CAR T cells trafficked to intracerebral tumors, leading to successful targeting and eradication of this antigen in the brain. Here, we review our experience with EGFRvIII CAR T cells and highlight important considerations for the clinical translation of this therapy in patients with GBM.
Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J
2016-05-20
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Merkel Cell Polyomavirus Large T Antigen Has Growth-Promoting and Inhibitory Activities
Cheng, Jingwei; Rozenblatt-Rosen, Orit; Paulson, Kelly G.; Nghiem, Paul
2013-01-01
Merkel cell carcinoma (MCC) is a rare and aggressive form of skin cancer. In at least 80% of all MCC, Merkel cell polyomavirus (MCPyV) DNA has undergone clonal integration into the host cell genome, and most tumors express the MCPyV large and small T antigens. In all cases of MCC reported to date, the integrated MCPyV genome has undergone mutations in the large T antigen. These mutations result in expression of a truncated large T antigen that retains the Rb binding or LXCXE motif but deletes the DNA binding and helicase domains. However, the transforming functions of full-length and truncated MCPyV large T antigen are unknown. We compared the transforming activities of full-length, truncated, and alternatively spliced 57kT forms of MCPyV large T antigen. MCPyV large T antigen could bind to Rb but was unable to bind to p53. Furthermore, MCPyV-truncated large T antigen was more effective than full-length and 57kT large T antigen in promoting the growth of human and mouse fibroblasts. In contrast, expression of the MCPyV large T antigen C-terminal 100 residues could inhibit the growth of several different cell types. These data imply that the deletion of the C terminus of MCPyV large T antigen found in MCC serves not only to disrupt viral replication but also results in the loss of a distinct growth-inhibitory function intrinsic to this region. PMID:23514892
Long, Meixiao; Higgins, Amy D.; Mihalyo, Marianne A.; Adler, Adam J.
2010-01-01
It has recently been shown that effector/memory T cells can undergo peripheral tolerization in response to self-antigen. In the present study, we found that within 24 h self-antigen profoundly impairs the ability of CD4 effectors to express TNF-α (and to a lesser extent IFN-γ); however, several days of self-antigen exposure is required to impair non-effector functions such as IL-2 expression and proliferation. Since only half of the initial effector CD4 cell population expresses effector cytokines following brief antigenic stimulation, tolerization might have been mediated either through functional inactivation of effector-competent cells, or alternatively by the selective deletion of competent and expansion of non-competent cells. When briefly stimulated effectors were fractionated based on their expression of IFN-γ, the IFN-γ− sub-population was able to express IFN-γ following secondary stimulation, indicating that all effector CD4 cells are functionally competent. Furthermore, both IFN-γ+ and IFN-γ− sub-populations underwent tolerization in response to self-HA (although the former was slightly more prone to deletion at later time points). Thus, effector CD4 cell tolerization is mediated primarily through the functional inactivation of effector-competent cells. PMID:14609577
Activation pathways of synovial T lymphocytes. Expression and function of the UM4D4/CDw60 antigen.
Fox, D A; Millard, J A; Kan, L; Zeldes, W S; Davis, W; Higgs, J; Emmrich, F; Kinne, R W
1990-01-01
Accumulating evidence implicates a central role for synovial T cells in the pathogenesis of rheumatoid arthritis, but the activation pathways that drive proliferation and effector function of these cells are not known. We have recently generated a novel monoclonal antibody against a rheumatoid synovial T cell line that recognizes an antigen termed UM4D4 (CDw60). This antigen is expressed on a minority of peripheral blood T cells, and represents the surface component of a distinct pathway of human T cell activation. The current studies were performed to examine the expression and function of UM4D4 on T cells obtained from synovial fluid and synovial membranes of patients with rheumatoid arthritis and other forms of inflammatory joint disease. The UM4D4 antigen is expressed at high surface density on about three-fourths of synovial fluid T cells and on a small subset of synovial fluid natural killer cells; in synovial tissue it is present on more than 90% of T cells in lymphoid aggregates, and on approximately 50% of T cells in stromal infiltrates In addition, UM4D4 is expressed in synovial tissue on a previously undescribed population of HLA-DR/DP-negative non-T cells with a dendritic morphology. Anti-UM4D4 was co-mitogenic for both RA and non-RA synovial fluid mononuclear cells, and induced IL-2 receptor expression. The UM4D4/CDw60 antigen may represent a functional activation pathway for synovial compartment T cells, which could play an important role in the pathogenesis of inflammatory arthritis. Images PMID:2212003
Leung, Carol S; Haigh, Tracey A; Mackay, Laura K; Rickinson, Alan B; Taylor, Graham S
2010-02-02
Whereas exogenously acquired proteins are the major source of antigens feeding the MHC class II pathway in antigen-presenting cells, some endogenously expressed antigens also access that pathway but the rules governing such access are poorly understood. Here we address this using Epstein-Barr virus (EBV)-coded nuclear antigen EBNA1, a protein naturally expressed in EBV-infected B lymphoblastoid cell lines (LCLs) and a source of multiple CD4(+) T cell epitopes. Using CD4(+) T cell clones against three indicator epitopes, we find that two epitopes are weakly displayed on the LCL surface whereas the third is undetectable, a pattern of limited epitope presentation that is maintained even when nuclear expression of EBNA1 is induced to high supraphysiological levels. Inhibitor and siRNA studies show that, of the two epitopes weakly presented under these conditions, one involves macroautophagy, and the second involves antigen delivery to the MHC II pathway by another endogenous route. In contrast, when EBNA1 is expressed as a cytoplasmic protein, all three CD4 epitopes are processed and presented much more efficiently, and all involve macroautophagy. We conclude that EBNA1's nuclear location limits its accessibility to the macroautophagy pathway and, in consequence, limits the level and range of EBNA1 CD4 epitopes naturally displayed on the infected cell surface.
Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els
2003-12-01
Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.
Burns, William R.; Zhao, Yangbing; Frankel, Timothy L.; Hinrichs, Christian S.; Zheng, Zhili; Xu, Hui; Feldman, Steven A.; Ferrone, Soldano; Rosenberg, Steven A.; Morgan, Richard A.
2011-01-01
Immunotherapy, particularly the adoptive cell transfer (ACT) of tumor infiltrating lymphocytes (TIL), is a very promising therapy for metastatic melanoma. Some patients unable to receive TIL have been successfully treated with autologous peripheral blood lymphocytes (PBL), genetically modified to express HLA class I antigen restricted, melanoma antigen-reactive T-cell receptors; however, substantial numbers of patients remain ineligible due to the lack of expression of the restricting HLA class I allele. We sought to overcome this limitation by designing a non-MHC-restricted, chimeric antigen receptor (CAR) targeting the high molecular weight-melanoma associated antigen (HMW-MAA), which is highly expressed on over 90% of human melanomas but has a restricted distribution in normal tissues. HMW-MAA-specific CARs containing an antigen recognition domain based on variations of the HMW-MAA-specific monoclonal antibody (mAb) 225.28S and a T-cell activation domain based on combinations of CD28, 4-1BB, and CD3ζ activation motifs were constructed within a retroviral vector to allow stable gene transfer into cells and their progeny. Following optimization of the HMW-MAA-specific CAR for expression and function in human PBL, these gene-modified T cells secreted cytokines, were cytolytic, and proliferated in response to HMW-MAA expressing cell lines. Furthermore, the receptor functioned in both CD4+ and CD8+ cells, was non-MHC-restricted, and reacted against explanted human melanomas. To evaluate this HMW-MAA-specific CAR in patients with metastatic melanoma, we developed a clinical-grade retroviral packaging line. This may represent a novel means to treat the majority of patients with advanced melanoma, most notably those unable to receive current ACT therapies. PMID:20395199
Expression of Chicken DEC205 Reflects the Unique Structure and Function of the Avian Immune System
Staines, Karen; Young, John R.; Butter, Colin
2013-01-01
The generation of appropriate adaptive immune responses relies critically on dendritic cells, about which relatively little is known in chickens, a vital livestock species, in comparison with man and mouse. We cloned and sequenced chicken DEC205 cDNA and used this knowledge to produce quantitative PCR assays and monoclonal antibodies to study expression of DEC205 as well as CD83. The gene structure of DEC205 was identical to those of other species. Transcripts of both genes were found at higher levels in lymphoid tissues and the expression of DEC205 in normal birds had a characteristic distribution in the primary lymphoid organs. In spleen, DEC205 was seen on cells ideally located to trap antigen. In thymus it was found on cells thought to participate in the education of T cells, and in the bursa on cells that may be involved in presentation of antigen to B cells and regulation of B cell migration. The expression of DEC205 on cells other than antigen presenting cells (APC) is also described. Isolated splenocytes strongly expressing DEC205 but not the KUL01 antigen have morphology similar to mammalian dendritic cells and the distinct expression of DEC205 within the avian-specific Bursa of Fabricius alludes to a unique function in this organ of B cell diversification. PMID:23326318
Arora, Pooja; Baena, Andres; Yu, Karl O.A.; Saini, Neeraj K.; Kharkwal, Shalu S.; Goldberg, Michael F.; Kunnath-Velayudhan, Shajo; Carreño, Leandro J.; Venkataswamy, Manjunatha M.; Kim, John; Lazar-Molnar, Eszter; Lauvau, Gregoire; Chang, Young-tae; Liu, Zheng; Bittman, Robert; Al-Shamkhani, Aymen; Cox, Liam R.; Jervis, Peter J.; Veerapen, Natacha; Besra, Gurdyal S.; Porcelli, Steven A.
2014-01-01
Summary Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α+ DEC-205+ dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α+ dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses. PMID:24412610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke
Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period ofmore » pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.« less
Moeller, Ines; Spagnoli, Giulio C; Finke, Jürgen; Veelken, Hendrik; Houet, Leonora
2012-11-01
Induction of tumor-antigen-specific T cells in active cancer immunotherapy is generally difficult due to the very low anti-tumoral precursor cytotoxic T cells. By improving tumor-antigen uptake and presentation by dendritic cells (DCs), this problem can be overcome. Focusing on MAGE-A3 protein, frequently expressed in many types of tumors, we analyzed different DC-uptake routes after additional coating the recombinant MAGE-A3 protein with either a specific monoclonal antibody or an immune complex formulation. Opsonization of the protein with antibody resulted in increased DC-uptake compared to the uncoated rhMAGE-A3 protein. This was partly due to Fcγ receptor-dependent internalization. However, unspecific antigen internalization via macropinocytosis also played a role. When analyzing DC-uptake of MAGE-A3 antigen expressed in multiple myeloma cell line U266, pretreatment with proteasome inhibitor bortezomib resulted in increased apoptosis compared to γ-irradiation. Bortezomib-mediated immunogenic apoptosis, characterized by elevated surface expression of hsp90, triggered higher phagocytosis of U266 cells by DCs involving specific DC-derived receptors. We further investigated the impact of antigen delivery on T-cell priming. Induction of CD8(+) T-cell response was favored by stimulating naïve T cells with either antibody-opsonized MAGE-A3 protein or with the bortezomib-pretreated U266 cells, indicating that receptor-mediated uptake favors cross-presentation of antigens. In contrast, CD4(+) T cells were preferentially induced after stimulation with the uncoated protein or protein in the immune complex, both antigen formulations were preferentially internalized by DCs via macropinocytosis. In summary, receptor-mediated DC-uptake mechanisms favored the induction of CD8(+) T cells, relevant for clinical anti-tumor response.
Moon, James J; Dash, Pradyot; Oguin, Thomas H; McClaren, Jennifer L; Chu, H Hamlet; Thomas, Paul G; Jenkins, Marc K
2011-08-30
It is currently thought that T cells with specificity for self-peptide/MHC (pMHC) ligands are deleted during thymic development, thereby preventing autoimmunity. In the case of CD4(+) T cells, what is unclear is the extent to which self-peptide/MHC class II (pMHCII)-specific T cells are deleted or become Foxp3(+) regulatory T cells. We addressed this issue by characterizing a natural polyclonal pMHCII-specific CD4(+) T-cell population in mice that either lacked or expressed the relevant antigen in a ubiquitous pattern. Mice expressing the antigen contained one-third the number of pMHCII-specific T cells as mice lacking the antigen, and the remaining cells exhibited low TCR avidity. In mice lacking the antigen, the pMHCII-specific T-cell population was dominated by phenotypically naive Foxp3(-) cells, but also contained a subset of Foxp3(+) regulatory cells. Both Foxp3(-) and Foxp3(+) pMHCII-specific T-cell numbers were reduced in mice expressing the antigen, but the Foxp3(+) subset was more resistant to changes in number and TCR repertoire. Therefore, thymic selection of self-pMHCII-specific CD4(+) T cells results in incomplete deletion within the normal polyclonal repertoire, especially among regulatory T cells.
Kløverpris, Henrik N.; McGregor, Reuben; McLaren, James E.; Ladell, Kristin; Stryhn, Anette; Koofhethile, Catherine; Brener, Jacqui; Chen, Fabian; Riddell, Lynn; Graziano, Luzzi; Klenerman, Paul; Leslie, Alasdair; Buus, Søren; Price, David A.; Goulder, Philip
2014-01-01
Objectives: Although CD8+ T cells play a critical role in the control of HIV-1 infection, their antiviral efficacy can be limited by antigenic variation and immune exhaustion. The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1), CD244 and lymphocyte activation gene-3 (LAG-3), which modulate the functional capabilities of CD8+ T cells. Design and methods: Here, we used an array of different human leukocyte antigen (HLA)-B∗15 : 03 and HLA-B∗42 : 01 tetramers to characterize inhibitory receptor expression as a function of differentiation on HIV-1-specific CD8+ T-cell populations (n = 128) spanning 11 different epitope targets. Results: Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated by effector memory CD8+ T cells. Conclusion: Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels are influenced by peptide/HLA class I antigen exposure. PMID:24906112
Antigen Availability Shapes T Cell Differentiation and Function during Tuberculosis.
Moguche, Albanus O; Musvosvi, Munyaradzi; Penn-Nicholson, Adam; Plumlee, Courtney R; Mearns, Helen; Geldenhuys, Hennie; Smit, Erica; Abrahams, Deborah; Rozot, Virginie; Dintwe, One; Hoff, Søren T; Kromann, Ingrid; Ruhwald, Morten; Bang, Peter; Larson, Ryan P; Shafiani, Shahin; Ma, Shuyi; Sherman, David R; Sette, Alessandro; Lindestam Arlehamn, Cecilia S; McKinney, Denise M; Maecker, Holden; Hanekom, Willem A; Hatherill, Mark; Andersen, Peter; Scriba, Thomas J; Urdahl, Kevin B
2017-06-14
CD4 T cells are critical for protective immunity against Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB). Yet to date, TB vaccine candidates that boost antigen-specific CD4 T cells have conferred little or no protection. Here we examined CD4 T cell responses to two leading TB vaccine antigens, ESAT-6 and Ag85B, in Mtb-infected mice and in vaccinated humans with and without underlying Mtb infection. In both species, Mtb infection drove ESAT-6-specific T cells to be more differentiated than Ag85B-specific T cells. The ability of each T cell population to control Mtb in the lungs of mice was restricted for opposite reasons: Ag85B-specific T cells were limited by reduced antigen expression during persistent infection, whereas ESAT-6-specific T cells became functionally exhausted due to chronic antigenic stimulation. Our findings suggest that different vaccination strategies will be required to optimize protection mediated by T cells recognizing antigens expressed at distinct stages of Mtb infection. Copyright © 2017 Elsevier Inc. All rights reserved.
TCR hypervariable regions expressed by T cells that respond to effective tumor vaccines.
Jordan, Kimberly R; Buhrman, Jonathan D; Sprague, Jonathan; Moore, Brandon L; Gao, Dexiang; Kappler, John W; Slansky, Jill E
2012-10-01
A major goal of immunotherapy for cancer is the activation of T cell responses against tumor-associated antigens (TAAs). One important strategy for improving antitumor immunity is vaccination with peptide variants of TAAs. Understanding the mechanisms underlying the expansion of T cells that respond to the native tumor antigen is an important step in developing effective peptide-variant vaccines. Using an immunogenic mouse colon cancer model, we compare the binding properties and the TCR genes expressed by T cells elicited by peptide variants that elicit variable antitumor immunity directly ex vivo. The steady-state affinity of the natural tumor antigen for the T cells responding to effective peptide vaccines was higher relative to ineffective peptides, consistent with their improved function. Ex vivo analysis showed that T cells responding to the effective peptides expressed a CDR3β motif, which was also shared by T cells responding to the natural antigen and not those responding to the less effective peptide vaccines. Importantly, these data demonstrate that peptide vaccines can expand T cells that naturally respond to tumor antigens, resulting in more effective antitumor immunity. Future immunotherapies may require similar stringent analysis of the responding T cells to select optimal peptides as vaccine candidates.
Chen, Ding-Ping; Tseng, Ching-Ping; Lin, Chi-Jui; Wang, Wei-Ting; Sun, Chien-Feng
2015-01-01
In the case of blood type B3 with typical mixed-field agglutination of RBCs in the presence of anti-B or anti-AB antibody, a number of genetic alternations have been reported. It is well known that the IVS3+5G→A mutation in the B gene destroys the consensus of the splice donor site leading to exon 3 skipping during mRNA splicing. The lack of exon 3 likely causes a short stem region, producing an unstable B3 protein, and is concomitant with a decrease in B3 protein expression. Whether the phenomenon also appears in the type A blood group is of question. In this study, we evaluate whether exon 3 deletion in the blood type A gene also results in mixed-field phenotype. Site-directed mutagenesis was used to generate cDNA encoding A1 gene with exon 3 deletion. The cDNA was stably expressed in K562 cells. The expression of A antigen was compared with expression in parental K562 cells that did not express A antigen and in the stable K562 cell line expressing A(1) cDNA by flow cytometry analyses. The expression of A antigen in A1 stable cells and parental K562 cells was set as 100% and 0%, respectively. The mean relative percentage of A antigen expression for the cells of A1 with exon 3 deletion was 59.9% of A1 stable cells. Consistent with the observations of B3, which is B gene with exon 3 deletion, mixed field agglutination was observed for the cells expressing A1 with exon 3 deletion. Exon 3 deletion results in mixed field phenotype in both type A and B RBCs. However, the degree of antigen expression change for exon 3 deletion in A gene was less severe when compared with the deletion occurred in B gene. © 2015 by the Association of Clinical Scientists, Inc.
Beatty, Gregory L
2014-01-01
Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells is under investigation as an approach to restore productive T cell immunosurveillance in patients with pancreatic ductal adenocarcinoma. Early findings demonstrate safety of this cell-based therapy and the capacity of CAR-expressing T cells to mediate anti-tumor activity as well as induce endogeneous antitumoral immune responses. PMID:25050204
Compeer, Ewoud B; Janssen, Willemijn; van Royen-Kerkhof, Annet; van Gijn, Marielle; van Montfrans, Joris M; Boes, Marianne
2015-05-10
Common Variable Immunodeficiency (CVID) is the most prevalent primary antibody deficiency, and characterized by defective generation of high-affinity antibodies. Patients have therefore increased risk to recurrent infections of the respiratory and intestinal tract. Development of high-affinity antigen-specific antibodies involves two key actions of B-cell receptors (BCR): transmembrane signaling through BCR-complexes to induce B-cell differentiation and proliferation, and BCR-mediated antigen internalization for class-II MHC-mediated presentation to acquire antigen-specific CD4(+) T-cell help.We identified a variant (L3P) in the B-lymphoid tyrosine kinase (BLK) gene of 2 related CVID-patients, which was absent in healthy relatives. BLK belongs to the Src-kinases family and involved in BCR-signaling. Here, we sought to clarify BLK function in healthy human B-cells and its association to CVID.BLK expression was comparable in patient and healthy B-cells. Functional analysis of L3P-BLK showed reduced BCR crosslinking-induced Syk phosphorylation and proliferation, in both primary B-cells and B-LCLs. B-cells expressing L3P-BLK showed accelerated destruction of BCR-internalized antigen and reduced ability to elicit CD40L-expression on antigen-specific CD4(+) T-cells.In conclusion, we found a novel BLK gene variant in CVID-patients that causes suppressed B-cell proliferation and reduced ability of B-cells to elicit antigen-specific CD4(+) T-cell responses. Both these mechanisms may contribute to hypogammaglobulinemia in CVID-patients.
Kuo, Robert; Saito, Eiji; Miller, Stephen D; Shea, Lonnie D
2017-07-05
Targeted approaches to treat autoimmune diseases would improve upon current therapies that broadly suppress the immune system and lead to detrimental side effects. Antigen-specific tolerance was induced using poly(lactide-co-glycolide) nanoparticles conjugated with disease-relevant antigen to treat a model of multiple sclerosis. Increasing the nanoparticle dose and amount of conjugated antigen both resulted in more durable immune tolerance. To identify active tolerance mechanisms, we investigated downstream cellular and molecular events following nanoparticle internalization by antigen-presenting cells. The initial cell response to nanoparticles indicated suppression of inflammatory signaling pathways. Direct and functional measurement of surface MHC-restricted antigen showed positive correlation with both increasing particle dose from 1 to 100 μg/mL and increasing peptide conjugation by 2-fold. Co-stimulatory analysis of cells expressing MHC-restricted antigen revealed most significant decreases in positive co-stimulatory molecules (CD86, CD80, and CD40) following high doses of nanoparticles with higher peptide conjugation, whereas expression of a negative co-stimulatory molecule (PD-L1) remained high. T cells isolated from mice immunized against myelin proteolipid protein (PLP 139-151 ) were co-cultured with antigen-presenting cells administered PLP 139-151 -conjugated nanoparticles, which resulted in reduced T cell proliferation, increased T cell apoptosis, and a stronger anti-inflammatory response. These findings indicate several potential mechanisms used by peptide-conjugated nanoparticles to induce antigen-specific tolerance. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Haabeth, Ole Audun Werner; Fauskanger, Marte; Manzke, Melanie; Lundin, Katrin U; Corthay, Alexandre; Bogen, Bjarne; Tveita, Anders Aune
2018-05-11
Tumor-specific CD4+ T cells have been shown to mediate efficient anti-tumor immune responses against cancer. Such responses can occur through direct binding to MHC class II (MHC II)-expressing tumor cells or indirectly via activation of professional antigen-presenting cells (APC) that take up and present the tumor antigen. We have previously shown that CD4+ T cells reactive against an epitope within the Ig light chain variable region of a murine B cell lymphoma can reject established tumors. Given the presence of MHC II molecules at the surface of lymphoma cells, we investigated whether MHC II-restricted antigen presentation on tumor cells alone was required for rejection. Variants of the A20 B lymphoma cell line that either secreted or intracellularly retained different versions of the tumor-specific antigen revealed that antigen secretion by the MHC II-expressing tumor cells was essential both for the priming and effector phase of CD4+ T cell-driven anti-tumor immune responses. Consistent with this, genetic ablation of MHC II in tumor cells, both in the case of B lymphoma and B16 melanoma, did not preclude rejection of tumors by tumor antigen-specific CD4+ T cells in vivo. These findings demonstrate that MHC class II expression on tumor cells themselves is not required for CD4+ T cell-mediated rejection, and that indirect display on host APC is sufficient for effective tumor elimination. These results support the importance of tumor-infiltrating APC as mediators of tumor cell killing by CD4+ T cells. Copyright ©2018, American Association for Cancer Research.
Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming
2017-06-01
We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.
Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.
2014-01-01
Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071
Rooney, Cliona M.; Di Stasi, Antonio; Abken, Hinrich; Hombach, Andreas; Foster, Aaron E.; Zhang, Lan; Heslop, Helen E.; Brenner, Malcolm K.; Dotti, Gianpietro
2007-01-01
Adoptive transfer of Epstein Barr virus (EBV)–specific cytotoxic T-lymphocytes (EBV-CTLs) has shown that these cells persist in patients with EBV+ Hodgkin lymphoma (HD) to produce complete tumor responses. Treatment failure, however, occurs if a subpopulation of malignant cells in the tumor lacks or loses expression of EBV antigens. We have therefore determined whether we could prepare EBV-CTLs that retained the antitumor activity conferred by their native receptor while expressing a chimeric antigen receptor (CAR) specific for CD30, a molecule highly and consistently expressed on malignant Hodgkin Reed-Sternberg cells. We made a CD30CAR and were able to express it on 26% (± 11%) and 22% (± 5%) of EBV-CTLs generated from healthy donors and HD patients, respectively. These CD30CAR+ CTLs killed both autologous EBV+ cells through their native receptor and EBV−/CD30+ targets through their major histocompatibility complex (MHC)–unrestricted CAR. A subpopulation of activated T cells also express CD30, but the CD30CAR+ CTLs did not impair cellular immune responses, probably because normal T cells express lower levels of the target antigen. In a xenograft model, CD30CAR+ EBV-CTLs could be costimulated by EBV-infected cells and produce antitumor effects even against EBV−/CD30+ tumors. EBV-CTLs expressing both a native and a chimeric antigen receptor may therefore have added value for treatment of HD. PMID:17507664
Gomes, J A P; Dua, H S; Rizzo, L V; Nishi, M; Joseph, A; Donoso, L A
2004-01-01
Background/aims: Peripheral blood CD8+ lymphocytes that home to mucosal surfaces express the human mucosal lymphocyte antigen (HML-1). At mucosal surfaces, including the ocular surface, only intraepithelial CD8+ lymphocytes express HML-1. These lymphocytes are retained in the intraepithelial compartment by virtue of the interaction between HML-1 and its natural ligand, E-cadherin, which is expressed on epithelial cells. The purpose of this study was to determine whether ocular surface epithelial cells (ocular mucosa) could induce the expression of human mucosal lymphocyte antigen on peripheral blood lymphocytes. Methods: Human corneal and conjunctival epithelial cells were co-cultured with peripheral blood lymphocytes. Both non-activated and activated lymphocytes were used in the experiments. After 7 days of incubation, lymphocytes were recovered and analysed for the antigens CD8/HML-1, CD4/HML-1, CD3/CD8, CD3/CD4, CD3/CD25, CD8/CD25, and CD4/CD25 by flowcytometry. Results: Significant statistical differences were observed in the CD8/HML-1 expression when conjunctival epithelial cells were co-cultured with non-activated and activated lymphocytes (p = 0.04 for each) and when corneal epithelial cells were co-cultured with non-activated lymphocytes (p = 0.03). Significant statistical difference in CD4/HML-1 expression was observed only when conjunctival epithelial cells were co-cultured with activated lymphocytes (p = 0.02). Conclusion: Ocular surface epithelial cells can induce the expression of human mucosal lymphocyte antigen on CD8+ (and to some extent on CD4+) lymphocytes. This may allow the retention of CD8+ and CD4+ lymphocytes within the epithelial compartment of the conjunctiva and play a part in mucosal homing of lymphocytes. PMID:14736792
Krug, Christian; Wiesinger, Manuel; Abken, Hinrich; Schuler-Thurner, Beatrice; Schuler, Gerold; Dörrie, Jan; Schaft, Niels
2014-10-01
Chimeric antigen receptors (CARs), which combine an antibody-derived binding domain (single chain fragment variable) with T-cell-activating signaling domains, have become a promising tool in the adoptive cellular therapy of cancer. Retro- and lenti-viral transductions are currently the standard methods to equip T cells with a CAR; permanent CAR expression, however, harbors several risks like uncontrolled auto-reactivity. Modification of T cells by electroporation with CAR-encoding RNA to achieve transient expression likely circumvents these difficulties. We here present a GMP-compliant protocol to activate and expand T cells for clinical application. The protocol is optimized in particular to produce CAR-modified T cells in clinically sufficient numbers under full GMP-compliance from late-stage cancer patients. This protocol allows the generation of 6.7 × 10(8) CAR-expressing T cells from one patient leukapheresis. The CAR-engineered T cells produced pro-inflammatory cytokines after stimulation with antigen-bearing tumor cells and lysed tumor cells in an antigen-specific manner. This functional capacity was maintained after cryopreservation. Taken together, we provide a clinically applicable protocol to transiently engineer sufficient numbers of antigen-specific patient T cells for use in adoptive cell therapy of cancer.
Leeth, Caroline M.; Racine, Jeremy; Chapman, Harold D.; Arpa, Berta; Carrillo, Jorge; Carrascal, Jorge; Wang, Qiming; Ratiu, Jeremy; Egia-Mendikute, Leire; Rosell-Mases, Estela; Stratmann, Thomas
2016-01-01
Although the autoimmune destruction of pancreatic β-cells underlying type 1 diabetes (T1D) development is ultimately mediated by T cells in NOD mice and also likely in humans, B cells play an additional key pathogenic role. It appears that the expression of plasma membrane–bound Ig molecules that efficiently capture β-cell antigens allows autoreactive B cells that bypass normal tolerance induction processes to be the subset of antigen-presenting cells most efficiently activating diabetogenic T cells. NOD mice transgenically expressing Ig molecules recognizing antigens that are (insulin) or are not (hen egg lysozyme [HEL]) expressed by β-cells have proven useful in dissecting the developmental basis of diabetogenic B cells. However, these transgenic Ig specificities were originally selected for their ability to recognize insulin or HEL as foreign, rather than autoantigens. Thus, we generated and characterized NOD mice transgenically expressing an Ig molecule representative of a large proportion of naturally occurring islet-infiltrating B cells in NOD mice recognizing the neuronal antigen peripherin. Transgenic peripherin-autoreactive B cells infiltrate NOD pancreatic islets, acquire an activated proliferative phenotype, and potently support accelerated T1D development. These results support the concept of neuronal autoimmunity as a pathogenic feature of T1D, and targeting such responses could ultimately provide an effective disease intervention approach. PMID:26961115
2013-01-01
Introduction Malignant pleural mesothelioma (MPM) is an incurable malignant disease, which results from chronic exposition to asbestos in at least 70% of the cases. Fibroblast activation protein (FAP) is predominantly expressed on the surface of reactive tumor-associated fibroblasts as well as on particular cancer types. Because of its expression on the cell surface, FAP is an attractive target for adoptive T cell therapy. T cells can be re-directed by retroviral transfer of chimeric antigen receptors (CAR) against tumor-associated antigens (TAA) and therefore represent a therapeutic strategy of adoptive immunotherapy. Methods To evaluate FAP expression immunohistochemistry was performed in tumor tissue from MPM patients. CD8+ human T cells were retrovirally transduced with an anti-FAP-F19-∆CD28/CD3ζ-CAR. T cell function was evaluated in vitro by cytokine release and cytotoxicity assays. In vivo function was tested with an intraperitoneal xenograft tumor model in immunodeficient mice. Results FAP was found to be expressed in all subtypes of MPM. Additionally, FAP expression was evaluated in healthy adult tissue samples and was only detected in specific areas in the pancreas, the placenta and very weakly for cervix and uterus. Expression of the anti-FAP-F19-∆CD28/CD3ζ-CAR in CD8+ T cells resulted in antigen-specific IFNγ release. Additionally, FAP-specific re-directed T cells lysed FAP positive mesothelioma cells and inflammatory fibroblasts in an antigen-specific manner in vitro. Furthermore, FAP-specific re-directed T cells inhibited the growth of FAP positive human tumor cells in the peritoneal cavity of mice and significantly prolonged survival of mice. Conclusion FAP re-directed CD8+ T cells showed antigen-specific functionality in vitro and in vivo. Furthermore, FAP expression was verified in all MPM histotypes. Therefore, our data support performing a phase I clinical trial in which MPM patients are treated with adoptively transferred FAP-specific re-directed T cells. PMID:23937772
Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors.
Kochenderfer, James N; Rosenberg, Steven A
2013-05-01
Most B-cell malignancies express CD19, and a majority of patients with B-cell malignancies are not cured by current standard therapies. Chimeric antigen receptors (CARs) are fusion proteins consisting of antigen recognition moieties and T-cell activation domains. T cells can be genetically modified to express CARs, and adoptive transfer of anti-CD19 CAR T cells is now being tested in clinical trials. Effective clinical treatment with anti-CD19 CAR T cells was first reported in 2010 after a patient with advanced-stage lymphoma treated at the NCI experienced a partial remission of lymphoma and long-term eradication of normal B cells. Additional patients have subsequently obtained long-term remissions of advanced-stage B-cell malignancies after infusions of anti-CD19 CAR T cells. Long-term eradication of normal CD19(+) B cells from patients receiving infusions of anti-CD19 CAR T cells demonstrates the potent antigen-specific activity of these T cells. Some patients treated with anti-CD19 CAR T cells have experienced acute adverse effects, which were associated with increased levels of serum inflammatory cytokines. Although anti-CD19 CAR T cells are at an early stage of development, the potent antigen-specific activity observed in patients suggests that infusions of anti-CD19 CAR T cells might become a standard therapy for some B-cell malignancies.
Liu, Xiaojun; Jiang, Shuguang; Fang, Chongyun; Yang, Shiyu; Olalere, Devvora; Pequignot, Edward C.; Cogdill, Alexandria P.; Li, Na; Ramones, Melissa; Granda, Brian; Zhou, Li; Loew, Andreas; Young, Regina M.; June, Carl H.; Zhao, Yangbing
2015-01-01
Target-mediated toxicity is a major limitation in the development of chimeric antigen T cell receptors (CAR) for adoptive cell therapy of solid tumors. In this study, we developed a strategy to adjust the affinities of the scFv component of CAR to discriminate tumors overexpressing the target from normal tissues which express it at physiologic levels. A CAR-expressing T cell panel was generated with target antigen affinities varying over three orders of magnitude. High-affinity cells recognized target expressed at any level, including at levels in normal cells that were undetectable by flow cytometry. Affinity-tuned cells exhibited robust antitumor efficacy similar to high-affinity cells, but spared normal cells expressing physiologic target levels. The use of affinity-tuned scFvs offers a strategy to empower wider use of CAR T cells against validated targets widely overexpressed on solid tumors, including those considered undruggable by this approach. PMID:26330166
Effective antigen presentation to helper T cells by human eosinophils.
Farhan, Ruhaifah K; Vickers, Mark A; Ghaemmaghami, Amir M; Hall, Andrew M; Barker, Robert N; Walsh, Garry M
2016-12-01
Although eosinophils are inflammatory cells, there is increasing attention on their immunomodulatory roles. For example, murine eosinophils can present antigen to CD4 + T helper (Th) cells, but it remains unclear whether human eosinophils also have this ability. This study determined whether human eosinophils present a range of antigens, including allergens, to activate Th cells, and characterized their expression of MHC class II and co-stimulatory molecules required for effective presentation. Human peripheral blood eosinophils purified from non-allergic donors were pulsed with the antigens house dust mite extract (HDM), Timothy Grass extract (TG) or Mycobacterium tuberculosis purified protein derivative (PPD), before co-culture with autologous CD4 + Th cells. Proliferative and cytokine responses were measured, with eosinophil expression of HLA-DR/DP/DQ and the co-stimulatory molecules CD40, CD80 and CD86 determined by flow cytometry. Eosinophils pulsed with HDM, TG or PPD drove Th cell proliferation, with the response strength dependent on antigen concentration. The cytokine responses varied with donor and antigen, and were not biased towards any particular Th subset, often including combinations of pro- and anti-inflammatory cytokines. Eosinophils up-regulated surface expression of HLA-DR/DP/DQ, CD80, CD86 and CD40 in culture, increases that were sustained over 5 days when incubated with antigens, including HDM, or the major allergens it contains, Der p I or Der p II. Human eosinophils can, therefore, act as effective antigen-presenting cells to stimulate varied Th cell responses against a panel of antigens including HDM, TG or PPD, an ability that may help to determine the development of allergic disease. © 2016 John Wiley & Sons Ltd.
Song, De-Gang; Ye, Qunrui; Poussin, Mathilde; Liu, Lin; Figini, Mariangela; Powell, Daniel J.
2015-01-01
Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors in an HLA-independent manner. To date, various CARs have been constructed using mouse single chain antibody variable fragments (scFvs) of high affinity that are immunogenic in humans and have the potential to mediate “on-target” toxicity. Here, we developed and evaluated a fully human CAR comprised of the human C4 folate receptor-alpha (αFR)-specific scFv coupled to intracellular T cell signaling domains. Human T cells transduced to express the C4 CAR specifically secreted proinflammatory cytokine and exerted cytolytic functions when cultured with αFR-expressing tumors in vitro. Adoptive transfer of C4 CAR T cells mediated the regression of large, established human ovarian cancer in a xenogeneic mouse model. Relative to a murine MOv19 scFv-based αFR CAR, C4 CAR T cells mediated comparable cytotoxic tumor activity in vitro and in vivo but had lower affinity for αFR protein and exhibited reduced recognition of normal cells expressing low levels of αFR. Thus, T cells expressing a fully human CAR of intermediate affinity can efficiently kill antigen-expressing tumors in vitro and in vivo and may overcome issues of transgene immunogenicity and “on-target off-tumor” toxicity that plague trials utilizing CARs containing mouse-derived, high affinity scFvs. PMID:26101914
Fujiwara, Hiroshi
2014-02-01
The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.
Berezhnaya, N M; Vinnichuk, U D; Belova, O B; Baranovich, V V
2006-09-01
To study expression of major histocompatibility complex (MHC) classes and antigens and CD25, CD71, Ki-67, CD54, CD56, CD11b, PCNA on lymphocytes and tumor cells and antitumor action of lymphocytes activated with IL-2. Tumor explants (soft tissue sarcoma, n = 20, melanoma, n = 25) were co-cultivated in diffusion chambers with autologous lymphocytes; antitumor action was evaluated by morphologic patterns of explant's growth. Expression of CD25, CD71, Ki-67, CD54, CD56, CD11b, PCNA was evaluated by the method of indirect fluorescence using respective monoclonal antibodies. The highest antitumor action of lymphocytes toward soft tissue sarcoma and melanoma cells is observed if tumor cells are expressing MHC class I antigens. In the cases of soft tissue sarcoma no correlation between the level of antitumor activity of lymphocytes and expression of CD25, CD71, Ki-67, CD54, CD56, CD11b, PCNA has been found, whilst in the case of melanoma it is associated with the high level of CD11b expression. There is a direct correlation between sensitivity of soft tissue sarcoma and melanoma cells to action of lymphokin-activated killer cells and the level of MHC class I antigens.
Identification of antigens by monoclonal antibody PD4 and its expression in Escherichia coli
Ning, Jin-Ying; Sun, Guo-Xun; Huang, Su; Ma, Hong; An, Ping; Meng, Lin; Song, Shu-Mei; Wu, Jian; Shou, Cheng-Chao
2003-01-01
AIM: To clone and express the antigen of monoclonal antibody (MAb) PD4 for further investigation of its function. METHODS: MGC803 cDNA expression library was constructed and screened with PD4 as probes to clone the antigen. After failed in the library screening, immunoprecipitation and SDS-polyacrylamide gel electrophoresis were applied to purify the antigen for sequence analysis. The antigen coming from Mycoplasma hyorhinis (M. hyorhinis) was further confirmed with Western blot analysis by infecting M. hyorhinis -free HeLa cells and eliminating the M. hyorhinis from MGC803 cells. The full p37 gene was cloned by PCR and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence assay was used to demonstrate if p37 protein could directly bind to gastric tumor cell AGS. RESULTS: The cDNA library constructed with MGC803 cells was screened by MAb PD4 as probes. Unfortunately, the positive clones identified with MAb PD4 were also reacted with unrelated antibodies. Then, immunoprecipitation was performed and the purified antigen was identified to be a membrane protein of Mycoplasma hyorhinis (M. hyorhinis) by sequencing of N-terminal amino acid residues. The membrane protein was intensively verified with Western blot by eliminating M. hyorhinis from MGC803 cells and by infecting M. hyorhinis-free HeLa cells. The full p37 gene was cloned and expressed successfully in Escherichia coli after site-directed mutations. Immunofluorescence demonstrated that p37 protein could directly bind to gastric tumor cell AGS. CONCLUSION: The antigen recognized by MAb PD4 is from M. hyorhinis, which suggests the actions involved in MAb PD4 is possibly mediated by p37 protein or M. hyorhinis. As p37 protein can bind directly to tumor cells, the pathogenic role of p37 involved in tumorigenesis justifies further investigation. PMID:14562370
Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O
2012-04-01
Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.
Antigen Presenting Properties of a Myeloid Dendritic-Like Cell in Murine Spleen.
Hey, Ying-Ying; O'Neill, Helen C
This paper distinguishes a rare subset of myeloid dendritic-like cells found in mouse spleen from conventional (c) dendritic cells (DC) in terms of phenotype, function and gene expression. These cells are tentatively named "L-DC" since they resemble dendritic-like cells produced in longterm cultures of spleen. L-DC can be distinguished on the basis of their unique phenotype as CD11bhiCD11cloMHCII-CD43+Ly6C-Ly6G-Siglec-F- cells. They demonstrate similar ability as cDC to uptake and retain complex antigens like mannan via mannose receptors, but much lower ability to endocytose and retain soluble antigen. While L-DC differ from cDC by their inability to activate CD4+ T cells, they are capable of antigen cross-presentation for activation of CD8+ T cells, although less effectively so than the cDC subsets. In terms of gene expression, CD8- cDC and CD8+ cDC are quite distinct from L-DC. CD8+ cDC are distinguishable from the other two subsets by expression of CD24a, Clec9a, Xcr1 and Tlr11, while CD8- cDC are distinguished by expression of Ccnd1 and H-2Eb2. L-DC are distinct from the two cDC subsets through upregulated expression of Clec4a3, Emr4, Itgam, Csf1r and CD300ld. The L-DC gene profile is quite distinct from that of cDC, confirming a myeloid cell type with distinct antigen presenting properties.
Genßler, Sabrina; Burger, Michael C; Zhang, Congcong; Oelsner, Sarah; Mildenberger, Iris; Wagner, Marlies; Steinbach, Joachim P; Wels, Winfried S
2016-04-01
Epidermal growth factor receptor (EGFR) and its mutant form EGFRvIII are overexpressed in a large proportion of glioblastomas (GBM). Immunotherapy with an EGFRvIII-specific vaccine has shown efficacy against GBM in clinical studies. However, immune escape by antigen-loss variants and lack of control of EGFR wild-type positive clones limit the usefulness of this approach. Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells may represent an alternative immunotherapeutic strategy. For targeting to GBM, we generated variants of the clinically applicable human NK cell line NK-92 that express CARs carrying a composite CD28-CD3ζ domain for signaling, and scFv antibody fragments for cell binding either recognizing EGFR, EGFRvIII, or an epitope common to both antigens. In vitro analysis revealed high and specific cytotoxicity of EGFR-targeted NK-92 against established and primary human GBM cells, which was dependent on EGFR expression and CAR signaling. EGFRvIII-targeted NK-92 only lysed EGFRvIII-positive GBM cells, while dual-specific NK cells expressing a cetuximab-based CAR were active against both types of tumor cells. In immunodeficient mice carrying intracranial GBM xenografts either expressing EGFR, EGFRvIII or both receptors, local treatment with dual-specific NK cells was superior to treatment with the corresponding monospecific CAR NK cells. This resulted in a marked extension of survival without inducing rapid immune escape as observed upon therapy with monospecific effectors. Our results demonstrate that dual targeting of CAR NK cells reduces the risk of immune escape and suggest that EGFR/EGFRvIII-targeted dual-specific CAR NK cells may have potential for adoptive immunotherapy of glioblastoma.
Toyoda, M; Ihara, T; Nakano, T; Ito, M; Kamiya, H
1999-03-17
In response to two types of measles virus (MV) antigens, a vaccine strain CAM and a wild strain isolated in 1994, the expression of IL-2 receptor alpha (CD25)(+)CD45RO(+)CD4(+) T-lymphocytes (T-cell activation) was analyzed by flow cytometry. In 75 healthy subjects with measles hemagglutination inhibition tests > or =1:16, the percentage of T-cell activation was significantly increased compared with that in seronegative individuals (p) < 0.05). Moreover, the T-cell expression was not significantly different among the vaccinated (n = 38), the naturally infected (n = 28) and the subclinically infected (exposed with wild type without history of measles infection and HI titers > or =1:16) (n = 10) groups. T-cell activation stimulated with MV antigens and HI antibody titers persisted for almost 30 years in the vaccinated group. These results suggest that cell-mediated immunity persists for long periods after vaccination and does not be influenced by antigenic drift.
Linscheid, C; Heitmann, E; Singh, P; Wickstrom, E; Qiu, L; Hodes, H; Nauser, T; Petroff, M G
2015-08-01
Maternal T-cells reactive towards paternally inherited fetal minor histocompatibility antigens are expanded during pregnancy. Placental trophoblast cells express at least four fetal antigens, including human minor histocompatibility antigen 1 (HA-1). We investigated oxygen as a potential regulator of HA-1 and whether HA-1 expression is altered in preeclamptic placentas. Expression and regulation of HA-1 mRNA and protein were examined by qRT-PCR and immunohistochemistry, using first, second, and third trimester placentas, first trimester placental explant cultures, and term purified cytotrophoblast cells. Low oxygen conditions were achieved by varying ambient oxygen, and were mimicked using cobalt chloride. HA-1 mRNA and protein expression levels were evaluated in preeclamptic and control placentas. HA-1 protein expression was higher in the syncytiotrophoblast of first trimester as compared to second trimester and term placentas (P<0.01). HA-1 mRNA was increased in cobalt chloride-treated placental explants and purified cytotrophoblast cells (P = 0.04 and P<0.01, respectively) and in purified cytotrophoblast cells cultured under 2% as compared to 8% and 21% oxygen (P<0.01). HA-1 mRNA expression in preeclamptic vs. control placentas was increased 3.3-fold (P = 0.015). HA-1 protein expression was increased in syncytial nuclear aggregates and the syncytiotrophoblast of preeclamptic vs. control placentas (P = 0.02 and 0.03, respectively). Placental HA-1 expression is regulated by oxygen and is increased in the syncytial nuclear aggregates and syncytiotrophoblast of preeclamptic as compared to control placentas. Increased HA-1 expression, combined with increased preeclamptic syncytiotrophoblast deportation, provides a novel potential mechanism for exposure of the maternal immune system to increased fetal antigenic load during preeclampsia. Published by Elsevier Ltd.
75 FR 75177 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-02
... antigens. SSX proteins, including SSX-2, are expressed primarily by tumor cells from a variety of cancers... antigens, including SSX-2, SSX-3, SSX-4, SSX-5, SSX-9, and/or SSX-10 expressed by cancer cells within... information. Synovial Sarcoma X Breakpoint-2 (SSX-2) Specific Human T Cell Receptors for Treating a Wide-Range...
Kumar, Anoop; Sherlin, Herald J; Ramani, Pratibha; Natesan, Anuja; Premkumar, Priya
2015-01-01
Multinucleated giant cells (MNCs) form an integral part of numerous bone and soft tissue tumors, tumor-like lesions and are often associated with granulomas of immunological and nonimmunological origin. The presence of various types of giant cells depends on the lesions in which they are present which are difficult to be diagnosed under routine histological techniques. Immunohistochemistry can be used for a better diagnosis and understanding of the origin of various giant cells using various markers of immune response like human leukocyte antigen-DR (HLA-DR) and those expressed on monocytes and macrophages like CD 68 and leukocyte common antigen (LCA). The study group consisted of 10 cases of giant cell tumor (GCT) of long bones, tuberculous granuloma, and giant cell granuloma to evaluate and analyze the expression pattern of LCA, CD 68, and HLA-DR in various giant cell lesions. Strong expression of CD 68 was observed in 80% of the lesions, strong and moderate expression of CD 45 observed in 70% of the lesions among and within the groups. In contrast, HLA-DR demonstrated negative expression in 80% of cases except for tuberculous granuloma where all the 10 cases showed moderate to strong immunoreactivity. CD 68 and CD 45 expression was found in central giant cell granuloma, peripheral giant cell granuloma and GCT, suggesting the origin from mononuclear phagocyte system and considering their clinical behavior of osteoclast type. High expressivity of HLA-DR in tuberculous granulomas which is an essential factor for presentation of the microbial antigen to CD 4 helper cells thus reassuring the fact that they are up-regulated in response to infection.
House Dust Mite Der p 1 Effects on Sinonasal Epithelial Tight Junctions
Henriquez, Oswaldo A.; Beste, Kyle Den; Hoddeson, Elizabeth K.; Parkos, Charles A.; Nusrat, Asma; Wise, Sarah K.
2013-01-01
Background Epithelial permeability is highly dependent upon the integrity of tight junctions, cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Methods Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen versus control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of tight junction proteins was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Results Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1 exposed cultured sinonasal cells versus controls. Conclusion Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. PMID:23592402
House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions.
Henriquez, Oswaldo A; Den Beste, Kyle; Hoddeson, Elizabeth K; Parkos, Charles A; Nusrat, Asma; Wise, Sarah K
2013-08-01
Epithelial permeability is highly dependent upon the integrity of tight junctions, which are cell-cell adhesion complexes located at the apical aspect of the lateral membrane of polarized epithelial cells. We hypothesize that sinonasal epithelial exposure to Der p 1 house dust mite antigen decreases expression of tight junction proteins (TJPs), representing a potential mechanism for increased permeability and presentation of antigens across the sinonasal epithelial layer. Confluent cultured primary human sinonasal epithelial cells were exposed to recombinant Der p 1 antigen vs control, and transepithelial resistance measurements were performed over 24 hours. Antibody staining for a panel of TJPs was examined with immunofluorescence/confocal microscopy and Western blotting. Tissue for these experiments was obtained from 4 patients total. Der p 1 exposed sinonasal cells showed a marked decrease in transepithelial resistance when compared to control cells. In addition, results of Western immunoblot and immunofluorescent labeling demonstrated decreased expression of TJPs claudin-1 and junction adhesion molecule-A (JAM-A) in Der p 1-exposed cultured sinonasal cells vs controls. Der p 1 antigen exposure decreases sinonasal epithelium TJP expression, most notably seen in JAM-A and claudin-1 in these preliminary experiments. This decreased TJP expression likely contributes to increased epithelial permeability and represents a potential mechanism for transepithelial antigen exposure in allergic rhinitis. © 2013 ARS-AAOA, LLC.
Heydari Zarnagh, Hafez; Ravanshad, Mehrdad; Pourfatollah, Ali Akbar; Rasaee, Mohammad Javad
2015-04-01
Computational tools are reliable alternatives to laborious work in chimeric protein design. In this study, a chimeric antigen was designed using computational techniques for simultaneous detection of anti-HTLV-I and anti-HBV in infected sera. Databases were searched for amino acid sequences of HBV/HLV-I diagnostic antigens. The immunodominant fragments were selected based on propensity scales. The diagnostic antigen was designed using these fragments. Secondary and tertiary structures were predicted and the B-cell epitopes were mapped on the surface of built model. The synthetic DNA coding antigen was sub-cloned into pGS21a expression vector. SDS-PAGE analysis showed that glutathione fused antigen was highly expressed in E. coli BL21 (DE3) cells. The recombinant antigen was purified by nickel affinity chromatography. ELISA results showed that soluble antigen could specifically react with the HTLV-I and HBV infected sera. This specific antigen could be used as suitable agent for antibody-antigen based screening tests and can help clinicians in order to perform quick and precise screening of the HBV and HTLV-I infections.
Tsang, K Y; Fudenberg, H H; Galbraith, G M; Donnelly, R P; Bishop, L R; Koopmann, W R
1985-01-01
The in vitro effects of isoprinosine (ISO) on interleukin-2 (IL-2) production, the expression of Tac antigen (IL-2 receptor) on lymphocytes, and the ability of Leu 3(+) cells to absorb interleukin-1 (IL-1) were investigated in 10 patients with acquired immune deficiency syndrome (AIDS). In 9 of the 10 patients, production of IL-2 from mononuclear cells and Leu 3(+) cells was depressed; expression of Tac antigen on mononuclear cells and Leu 2(+) cells was found to be depressed in 9 of 10 patients. The ability of the Leu 3(+) lymphocytes to absorb IL-1 was depressed in all (four of four) patients studied. After ISO treatment, IL-2 production, Tac antigen expression and IL-1 absorption were restored to normal or near normal levels in most of the patients. These results suggest that ISO has an immunostimulating capacity in AIDS patients and that the potential of ISO in immune response restoration in AIDS patients deserves critical consideration. PMID:2581997
Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P
1994-01-01
We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization.
Yurova, K A; Sokhonevich, N A; Khaziakhmatova, O G; Litvinova, L S
2016-01-01
The dose-dependent effects of cytokines (IL-2, IL-7, and IL-15), which have a common g-chain, on mRNA expression of U2afll4 and GFi1 genes involved in regulation of alternative splicing of the Ptprc gene, have been investigated in vitro using T-lymphocyte cultures with different degrees of differentiation. IL-2, IL-7, and IL-15 caused a similar unidirectional inhibitory effect of various severity on restimulated CD45RO+ T-cells exposed to an antigen-independent activation; they caused a dose-dependent decrease of the U2af1l4 gene expression, and an increase of Gfi1 gene expression. This may suggest formation of active forms of the CD45 receptor, and also limitation of the formation of low-molecular short splice variants of the CD45RO receptor. Under conditions of antigen-independent stimulation of naive CD45RA+-cells rIL-7 and IL-15 exhibited opposite effects on U2af1l4 and Gfi1 gene expression. The increase of IL-7 concentrations in the incubation medium of naive cells was accompanied by a decrease in expression of both genes. IL-15 IL-7 exhibited opposite effects. Cytokines possessing a common g-chain (IL-2, IL-7, and IL-15) prevented antigen-independent differentiation of naive T-cells, by preventing the formation of polyclonal "surrogate" cells. In general, the study of the molecular mechanisms of genetic control determining homeostatic processes of T-cells in response to exposure to antigenic or non-antigenic treatments may be important for construction of a general model of self-maintenance and differentiation of immune cells.
Herrmann, Amanda C.; Bernatchez, Chantale; Haymaker, Cara; Molldrem, Jeffrey J.; Hong, Waun Ki; Perez-Soler, Roman
2016-01-01
Skin toxicity is the most common toxicity caused by Epidermal Growth Factor Receptor (EGFR) inhibitors, and has been associated with clinical efficacy. As EGFR inhibitors enhance the expression of antigen presenting molecules in affected skin keratinocytes, they may concurrently facilitate neo-antigen presentation in lung cancer tumor cells contributing to anti-tumor immunity. Here, we investigated the modulatory effect of the EGFR inhibitor, erlotinib on antigen presenting molecules and PD-L1, prominent immune checkpoint protein, of skin keratinocytes and lung cancer cell lines to delineate the link between EGFR signaling pathway inhibition and potential anti-tumor immunity. Erlotinib up-regulated MHC-I and MHC-II proteins on IFNγ treated keratinocytes but abrogated IFNγ-induced expression of PD-L1, suggesting the potential role of infiltrating autoreactive T cells in the damage of keratinocytes in affected skin. Interestingly, the surface expression of MHC-I, MHC-II, and PD-L1 was up-regulated in response to IFNγ more often in lung cancer cell lines sensitive to erlotinib, but only expression of PD-L1 was inhibited by erlotinib. Further, erlotinib significantly increased T cell mediated cytotoxicity on lung cancer cells. Lastly, the analysis of gene expression dataset of 186 lung cancer cell lines from Cancer Cell Line Encyclopedia demonstrated that overexpression of PD-L1 was associated with sensitivity to erlotinib and higher expression of genes related to antigen presenting pathways and IFNγ signaling pathway. Our findings suggest that the EGFR inhibitors can facilitate anti-tumor adaptive immune responses by breaking tolerance especially in EGFR driven lung cancer that are associated with overexpression of PD-L1 and genes related to antigen presentation and inflammation. PMID:27467256
2009-07-01
27] Ross S, Spencer SD, Holcomb I, Tan C, Hongo J, Devaux B, et al. Prostate stem cell antigen as therapy target: tissue expression and in vivo...Holcomb I, Tan C, Hongo J, Devaux B, et al. Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate
Kim, Sueon; Sohn, Hyun-Jung; Lee, Hyun-Joo; Sohn, Dae-Hee; Hyun, Seung-Joo; Cho, Hyun-Il; Kim, Tai-Gyu
2017-04-01
Dendritic cell-derived exosomes (DEX) comprise an efficient stimulator of T cells. However, the production of sufficient DEX remains a barrier to their broad applicability in immunotherapeutic approaches. In previous studies, genetically engineered K562 have been used to generate artificial antigen presenting cells (AAPC). Here, we isolated exosomes from K562 cells (referred to as CoEX-A2s) engineered to express human leukocyte antigen (HLA)-A2 and costimulatory molecules such as CD80, CD83, and 41BBL. CoEX-A2s were capable of stimulating antigen-specific CD8 T cells both directly and indirectly via CoEX-A2 cross-dressed cells. Notably, CoEX-A2s also generated similar levels of HCMV pp65-specific and MART1-specific CD8 T cells as DEX in vitro. The results suggest that these novel exosomes may provide a crucial reagent for generating antigen-specific CD8 T cells for adoptive cell therapies against viral infection and tumors.
Jahn, Lorenz; Hagedoorn, Renate S.; van der Steen, Dirk M.; Hombrink, Pleun; Kester, Michel G.D.; Schoonakker, Marjolein P.; de Ridder, Daniëlle; van Veelen, Peter A.; Falkenburg, J.H. Frederik; Heemskerk, Mirjam H.M.
2016-01-01
CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy. PMID:27689397
Jahn, Lorenz; Hagedoorn, Renate S; van der Steen, Dirk M; Hombrink, Pleun; Kester, Michel G D; Schoonakker, Marjolein P; de Ridder, Daniëlle; van Veelen, Peter A; Falkenburg, J H Frederik; Heemskerk, Mirjam H M
2016-11-01
CD22 is currently evaluated as a target-antigen for the treatment of B-cell malignancies using chimeric antigen receptor (CAR)-engineered T-cells or monoclonal antibodies (mAbs). CAR- and mAbs-based immunotherapies have been successfully applied targeting other antigens, however, occurrence of refractory disease to these interventions urges the identification of additional strategies. Here, we identified a TCR recognizing the CD22-derived peptide RPFPPHIQL (CD22RPF) presented in human leukocyte antigen (HLA)-B*07:02. To overcome tolerance to self-antigens such as CD22, we exploited the immunogenicity of allogeneic HLA. CD22RPF-specific T-cell clone 9D4 was isolated from a healthy HLA-B*07:02neg individual, efficiently produced cytokines upon stimulation with primary acute lymphoblastic leukemia and healthy B-cells, but did not react towards healthy hematopoietic and nonhematopoietic cell subsets, including dendritic cells (DCs) and macrophages expressing low levels of CD22. Gene transfer of TCR-9D4 installed potent CD22-specificity onto recipient CD8+ T-cells that recognized and lysed primary B-cell leukemia. TCR-transduced T-cells spared healthy CD22neg hematopoietic cell subsets but weakly lysed CD22low-expressing DCs and macrophages. CD22-specific TCR-engineered T-cells could form an additional immunotherapeutic strategy with a complementary role to CAR- and antibody-based interventions in the treatment of B-cell malignancies. However, CD22 expression on non-B-cells may limit the attractiveness of CD22 as target-antigen in cellular immunotherapy.
Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma.
Mazzocco, Marta; Martini, Matteo; Rosato, Antonio; Stefani, Elisabetta; Matucci, Andrea; Dalla Santa, Silvia; De Sanctis, Francesco; Ugel, Stefano; Sandri, Sara; Ferrarini, Giovanna; Cestari, Tiziana; Ferrari, Sergio; Zanovello, Paola; Bronte, Vincenzo; Sartoris, Silvia
2015-09-01
In the Sp6 mouse plasmacytoma model, a whole-cell vaccination with Sp6 cells expressing de novo B7-1 (Sp6/B7) induced anatomically localized and cytotoxic T cell (CTL)-mediated protection against wild-type (WT) Sp6. Both WT Sp6 and Sp6/B7 showed down-regulated expression of MHC H-2 L(d). Increase of H-2 L(d) expression by cDNA transfection (Sp6/B7/L(d)) raised tumour immune protection and shifted most CTL responses towards H-2 L(d)-restricted antigenic epitopes. The tumour-protective responses were not specific for the H-2 L(d)-restricted immunodominant AH1 epitope of the gp70 common mouse tumour antigen, although WT Sp6 and transfectants were able to present it to specific T cells in vitro. Gp70 transcripts, absent in secondary lymphoid organs of naive mice, were detected in immunized mice as well as in splenocytes from naive mice incubated in vitro with supernatants of CTL-lysed Sp6 cell cultures, containing damage-associated molecular patterns (DAMPs). It has been shown that Toll-like receptor triggering induces gp70 expression. Damage-associated molecular patterns are released by CTL-mediated killing of Sp6/B7-Sp6/B7/L(d) cells migrated to draining lymph nodes during immunization and may activate gp70 expression and presentation in most resident antigen-presenting cells. The same could also apply for Mus musculus endogenous ecotropic murine leukaemia virus 1 particles present in Sp6-cytosol, discharged by dying cells and superinfecting antigen-presenting cells. The outcome of such a massive gp70 cross-presentation would probably be tolerogenic for the high-affinity AH1-gp70-specific CTL clones. In this scenario, autologous whole-tumour-cell vaccines rescue tumour-specific immunoprotection by amplification of subdominant tumour antigen responses when those against the immune dominant antigens are lost. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.
Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma
Mazzocco, Marta; Martini, Matteo; Rosato, Antonio; Stefani, Elisabetta; Matucci, Andrea; Dalla Santa, Silvia; De Sanctis, Francesco; Ugel, Stefano; Sandri, Sara; Ferrarini, Giovanna; Cestari, Tiziana; Ferrari, Sergio; Zanovello, Paola; Bronte, Vincenzo; Sartoris, Silvia
2015-01-01
In the Sp6 mouse plasmacytoma model, a whole-cell vaccination with Sp6 cells expressing de novo B7-1 (Sp6/B7) induced anatomically localized and cytotoxic T cell (CTL) -mediated protection against wild-type (WT) Sp6. Both WT Sp6 and Sp6/B7 showed down-regulated expression of MHC H-2 Ld. Increase of H-2 Ld expression by cDNA transfection (Sp6/B7/Ld) raised tumour immune protection and shifted most CTL responses towards H-2 Ld-restricted antigenic epitopes. The tumour-protective responses were not specific for the H-2 Ld-restricted immunodominant AH1 epitope of the gp70 common mouse tumour antigen, although WT Sp6 and transfectants were able to present it to specific T cells in vitro. Gp70 transcripts, absent in secondary lymphoid organs of naive mice, were detected in immunized mice as well as in splenocytes from naive mice incubated in vitro with supernatants of CTL-lysed Sp6 cell cultures, containing damage-associated molecular patterns (DAMPs). It has been shown that Toll-like receptor triggering induces gp70 expression. Damage-associated molecular patterns are released by CTL-mediated killing of Sp6/B7-Sp6/B7/Ld cells migrated to draining lymph nodes during immunization and may activate gp70 expression and presentation in most resident antigen-presenting cells. The same could also apply for Mus musculus endogenous ecotropic murine leukaemia virus 1 particles present in Sp6-cytosol, discharged by dying cells and superinfecting antigen-presenting cells. The outcome of such a massive gp70 cross-presentation would probably be tolerogenic for the high-affinity AH1-gp70-specific CTL clones. In this scenario, autologous whole-tumour-cell vaccines rescue tumour-specific immunoprotection by amplification of subdominant tumour antigen responses when those against the immune dominant antigens are lost. PMID:25959091
Zeelenberg, Ingrid S; Ostrowski, Matias; Krumeich, Sophie; Bobrie, Angélique; Jancic, Carolina; Boissonnas, Alexandre; Delcayre, Alain; Le Pecq, Jean-Bernard; Combadière, Béhazine; Amigorena, Sebastian; Théry, Clotilde
2008-02-15
Expression of non-self antigens by tumors can induce activation of T cells in vivo, although this activation can lead to either immunity or tolerance. CD8+ T-cell activation can be direct (if the tumor expresses MHC class I molecules) or indirect (after the capture and cross-presentation of tumor antigens by dendritic cells). The modes of tumor antigen capture by dendritic cells in vivo remain unclear. Here we examine the immunogenicity of the same model antigen secreted by live tumors either in association with membrane vesicles (exosomes) or as a soluble protein. We have artificially addressed the antigen to secreted vesicles by coupling it to the factor VIII-like C1C2 domain of milk fat globule epidermal growth factor-factor VIII (MFG-E8)/lactadherin. We show that murine fibrosarcoma tumor cells that secrete vesicle-bound antigen grow slower than tumors that secrete soluble antigen in immunocompetent, but not in immunodeficient, host mice. This growth difference is due to the induction of a more potent antigen-specific antitumor immune response in vivo by the vesicle-bound than by the soluble antigen. Finally, in vivo secretion of the vesicle-bound antigen either by tumors or by vaccination with naked DNA protects against soluble antigen-secreting tumors. We conclude that the mode of secretion can determine the immunogenicity of tumor antigens and that manipulation of the mode of antigen secretion may be used to optimize antitumor vaccination protocols.
Ebstein, Frédéric; Keller, Martin; Paschen, Annette; Walden, Peter; Seeger, Michael; Bürger, Elke; Krüger, Elke; Schadendorf, Dirk; Kloetzel, Peter-M.; Seifert, Ulrike
2016-01-01
Efficient processing of target antigens by the ubiquitin-proteasome-system (UPS) is essential for treatment of cancers by T cell therapies. However, immune escape due to altered expression of IFN-γ-inducible components of the antigen presentation machinery and consequent inefficient processing of HLA-dependent tumor epitopes can be one important reason for failure of such therapies. Here, we show that short-term co-culture of Melan-A/MART-1 tumor antigen-expressing melanoma cells with Melan-A/MART-126-35-specific cytotoxic T lymphocytes (CTL) led to resistance against CTL-induced lysis because of impaired Melan-A/MART-126-35 epitope processing. Interestingly, deregulation of p97/VCP expression, which is an IFN-γ-independent component of the UPS and part of the ER-dependent protein degradation pathway (ERAD), was found to be essentially involved in the observed immune escape. In support, our data demonstrate that re-expression of p97/VCP in Melan-A/MART-126-35 CTL-resistant melanoma cells completely restored immune recognition by Melan-A/MART-126-35 CTL. In conclusion, our experiments show that impaired expression of IFN-γ-independent components of the UPS can exert rapid immune evasion of tumor cells and suggest that tumor antigens processed by distinct UPS degradation pathways should be simultaneously targeted in T cell therapies to restrict the likelihood of immune evasion due to impaired antigen processing. PMID:27143649
1989-01-01
The structures of Ia molecules expressed by two BALB/c B cell lymphoma lines, A20-1.11 (A20) and 2PK3, were analyzed in an effort to explain the differences in antigen-presenting capacity displayed by these cells. Alloreactive T cell hybridomas specific for I-Ad and antigen- specific, I-Ad-restricted T cells responded well to A20 as the APC. The same alloreactive T cell hybridomas responded weakly or not at all to 2PK3 and the responses of the antigen-specific, I-Ad-restricted T cells were consistently lower to antigen presented by 2PK3 as compared with A20. T cells restricted to I-Ed responded equally well to either A20 or 2PK3 as APC. Additionally 2PK3, but not A20, stimulated a strong syngeneic mixed lymphocyte response. Structural analyses of the Ia antigens revealed that I-A and I-E molecules were expressed by A20, whereas an I-E and a novel I-A-like molecule were expressed by 2PK3. The novel class II molecule was affinity purified from 2PK3 cells using an mAb specific for Ad beta (MK-D6), and this molecule was subsequently shown by an RIA to react with an E alpha-specific mAb (14-4-4S) as well. Chain-specific polyclonal antisera raised against I-A and I-E alpha and beta chains indicated that the 2PK3 "I-A" alpha chain reacted in immunoblot with E alpha-specific and not A alpha-specific antisera, whereas the beta chain reacted with A beta- and not E beta-specific antisera. Peptide map and partial amino acid sequence analyses indicated that the "I-A" molecule expressed by 2PK3 represented a mixed isotype structure resulting from the pairing of Ed alpha with Ad beta. By immunofluorescence staining analysis, 2PK3 did not react with an mAb specific for Ad alpha. 2PK3 was capable of limited antigen presentation through the mixed isotype molecule to I-Ad-restricted OVA-specific T cell hybridomas, although the responses induced were low compared with presentation through I-A on A20. Previous descriptions of the expression of mixed isotype class II molecules in the mouse have resulted primarily from DNA-mediated gene transfer experiments. The results presented indicate that a mixed isotype class II molecule can be expressed naturally. PMID:2647893
Expression of Cancer/Testis Antigens in Prostate Cancer is Associated With Disease Progression
Suyama, Takahito; Shiraishi, Takumi; Zeng, Yu; Yu, Wayne; Parekh, Nehal; Vessella, Robert L.; Luo, Jun; Getzenberg, Robert H.; Kulkarni, Prakash
2011-01-01
Background The cancer/testis antigens (CTAs) are a unique group of proteins normally expressed in germ cells but aberrantly expressed in several types of cancers including prostate cancer (PCa). However, their role in PCa has not been fully explored. Methods CTA expression profiling in PCa samples and cell lines was done utilizing a custom microarray that contained probes for two-thirds of all CTAs. The data were validated by quantitative PCR (Q-PCR). Functional studies were carried out by silencing gene expression with siRNA. DNA methylation was determined by methylation-specific PCR. Results A majority of CTAs expressed in PCa are located on the X chromosome (CT-X antigens). Several CT-X antigens from the MAGEA/CSAG subfamilies are coordinately upregulated in castrate-resistant prostate cancer (CRPC) but not in primary PCa. In contrast, PAGE4 is highly upregulated in primary PCa but is virtually silent in CRPC. Further, there was good correlation between the extent of promoter DNA methylation and CTA expression. Finally, silencing the expression of MAGEA2 the most highly upregulated member, significantly impaired proliferation of prostate cancer cells while increasing their chemosensitivity. Conclusions Considered together, the remarkable stage-specific expression patterns of the CT-X antigens strongly suggests that these CTAs may serve as unique biomarkers that could potentially be used to distinguish men with aggressive disease who need treatment from men with indolent disease not requiring immediate intervention. The data also suggest that the CT-X antigens may be novel therapeutic targets for CRPC for which there are currently no effective therapeutics. PMID:20583133
Im, Mijeong; Chae, Hyojin; Kim, Taehoon; Park, Hun-Hee; Lim, Jihyang; Oh, Eun-Jee; Kim, Yonggoo; Park, Yeon-Joon; Han, Kyungja
2011-07-01
Since the recent introduction of radioimmunotherapy (RIT) using antibodies against cluster of differentiation (CD) 45 for the treatment of lymphoma, the clinical significance of the CD45 antigen has been increasing steadily. Here, we analyzed CD45 expression on lymphocyte subsets using flow cytometry in order to predict the susceptibility of normal lymphocytes to RIT. Peripheral blood specimens were collected from 14 healthy individuals aged 25-54 yr. The mean fluorescence intensity (MFI) of the cell surface antigens was measured using a FACSCanto II system (Becton Dickinson Bioscience, USA). MFI values were converted into antibody binding capacity values using a Quantum Simply Cellular microbead kit (Bangs Laboratories, Inc., USA). Among the lymphocyte subsets, the expression of CD45 was the highest (725,368±42,763) on natural killer T (NKT) cells, 674,030±48,187 on cytotoxic/suppressor T cells, 588,750±48,090 on natural killer (NK) cells, 580,211±29,168 on helper T (Th) cells, and 499,436±21,737 on B cells. The Th cells and NK cells expressed a similar level of CD45 (P=0.502). Forward scatter was the highest in NKT cells (P<0.05), whereas side scatter differed significantly between each of the lymphocyte subsets (P<0.05). CD3 expression was highest in the Th and NKT cells. NKT cells express the highest levels of CD45 antigen. Therefore, this lymphocyte subset would be most profoundly affected by RIT or pretargeted RIT. The monitoring of this lymphocyte subset during and after RIT should prove helpful.
Evolution of Alternative Adaptive Immune Systems in Vertebrates.
Boehm, Thomas; Hirano, Masayuki; Holland, Stephen J; Das, Sabyasachi; Schorpp, Michael; Cooper, Max D
2018-04-26
Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.
STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors
Hubert, Rene S.; Vivanco, Igor; Chen, Emily; Rastegar, Shiva; Leong, Kahan; Mitchell, Steve C.; Madraswala, Rashida; Zhou, Yanhong; Kuo, James; Raitano, Arthur B.; Jakobovits, Aya; Saffran, Douglas C.; Afar, Daniel E. H.
1999-01-01
In search of novel genes expressed in metastatic prostate cancer, we subtracted cDNA isolated from benign prostatic hypertrophic tissue from cDNA isolated from a prostate cancer xenograft model that mimics advanced disease. One novel gene that is highly expressed in advanced prostate cancer encodes a 339-amino acid protein with six potential membrane-spanning regions flanked by hydrophilic amino- and carboxyl-terminal domains. This structure suggests a potential function as a channel or transporter protein. This gene, named STEAP for six-transmembrane epithelial antigen of the prostate, is expressed predominantly in human prostate tissue and is up-regulated in multiple cancer cell lines, including prostate, bladder, colon, ovarian, and Ewing sarcoma. Immunohistochemical analysis of clinical specimens demonstrates significant STEAP expression at the cell–cell junctions of the secretory epithelium of prostate and prostate cancer cells. Little to no staining was detected at the plasma membranes of normal, nonprostate human tissues, except for bladder tissue, which expressed low levels of STEAP at the cell membrane. Protein analysis located STEAP at the cell surface of prostate-cancer cell lines. Our results support STEAP as a cell-surface tumor-antigen target for prostate cancer therapy and diagnostic imaging. PMID:10588738
Nakazawa, Yozo; Huye, Leslie E; Salsman, Vita S; Leen, Ann M; Ahmed, Nabil; Rollins, Lisa; Dotti, Gianpietro; Gottschalk, Stephen M; Wilson, Matthew H; Rooney, Cliona M
2011-01-01
Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral piggyBac (PB) transposon system as a platform for modifying EBV-CTLs to express a functional human epidermal growth factor receptor 2-specific chimeric antigen receptor (HER2-CAR) thereby directing virus-specific, gene modified CTLs towards HER2-positive cancer cells. Peripheral blood mononuclear cells (PBMCs) were nucleofected with transposons encoding a HER2-CAR and a truncated CD19 molecule for selection followed by specific activation and expansion of EBV-CTLs. HER2-CAR was expressed in ~40% of T cells after CD19 selection with retention of immunophenotype, polyclonality, and function. HER2-CAR-modified EBV-CTLs (HER2-CTLs) killed HER2-positive brain tumor cell lines in vitro, exhibited transient and reversible increases in HER2-CAR expression following antigen-specific stimulation, and stably expressed HER2-CAR beyond 120 days. Adoptive transfer of PB-modified HER2-CTLs resulted in tumor regression in a murine xenograft model. Our results demonstrate that PB can be used to redirect virus-specific CTLs to tumor targets, which should prolong tumor-specific T cell survival in vivo producing more efficacious immunotherapy. PMID:21772253
Nakazawa, Yozo; Huye, Leslie E; Salsman, Vita S; Leen, Ann M; Ahmed, Nabil; Rollins, Lisa; Dotti, Gianpietro; Gottschalk, Stephen M; Wilson, Matthew H; Rooney, Cliona M
2011-12-01
Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral piggyBac (PB) transposon system as a platform for modifying EBV-CTLs to express a functional human epidermal growth factor receptor 2-specific chimeric antigen receptor (HER2-CAR) thereby directing virus-specific, gene modified CTLs towards HER2-positive cancer cells. Peripheral blood mononuclear cells (PBMCs) were nucleofected with transposons encoding a HER2-CAR and a truncated CD19 molecule for selection followed by specific activation and expansion of EBV-CTLs. HER2-CAR was expressed in ~40% of T cells after CD19 selection with retention of immunophenotype, polyclonality, and function. HER2-CAR-modified EBV-CTLs (HER2-CTLs) killed HER2-positive brain tumor cell lines in vitro, exhibited transient and reversible increases in HER2-CAR expression following antigen-specific stimulation, and stably expressed HER2-CAR beyond 120 days. Adoptive transfer of PB-modified HER2-CTLs resulted in tumor regression in a murine xenograft model. Our results demonstrate that PB can be used to redirect virus-specific CTLs to tumor targets, which should prolong tumor-specific T cell survival in vivo producing more efficacious immunotherapy.
Srivastava, Pragya; Paluch, Benjamin E.; Matsuzaki, Junko; James, Smitha R.; Collamat-Lai, Golda; Blagitko-Dorfs, Nadja; Ford, Laurie Ann; Naqash, Rafeh; Lübbert, Michael; Karpf, Adam R.; Nemeth, Michael J.; Griffiths, Elizabeth A.
2016-01-01
Cancer testis antigens (CTAs) are promising cancer associated antigens in solid tumors, but in acute myeloid leukemia, dense promoter methylation silences their expression. Leukemia cell lines exposed to HMAs induce expression of CTAs. We hypothesized that AML patients treated with standard of care decitabine (20mg/m2 per day for 10 days) would demonstrate induced expression of CTAs. Peripheral blood blasts serially isolated from AML patients treated with decitabine were evaluated for CTA gene expression and demethylation. Induction of NY-ESO-1 and MAGEA3/A6, were observed following decitabine. Re-expression of NY-ESO-1 and MAGEA3/A6 was associated with both promoter specific and global (LINE-1) hypomethylation. NY-ESO-1 and MAGEA3/A6 mRNA levels were increased irrespective of clinical response, suggesting that these antigens might be applicable even in patients who are not responsive to HMA therapy. Circulating blasts harvested after decitabine demonstrate induced NY-ESO-1 expression sufficient to activate NY-ESO-1 specific CD8+ T-cells. Induction of CTA expression sufficient for recognition by T-cells occurs in AML patients receiving decitabine. Vaccination against NY-ESO-1 in this patient population is feasible. PMID:26883197
Lee, Lian Ni; Ronan, Edward O; de Lara, Catherine; Franken, Kees L M C; Ottenhoff, Tom H M; Tchilian, Elma Z; Beverley, Peter C L
2011-08-01
Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT6(1-20) peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment.
Lee, Lian Ni; Ronan, Edward O.; de Lara, Catherine; Franken, Kees L. M. C.; Ottenhoff, Tom H. M.; Tchilian, Elma Z.; Beverley, Peter C. L.
2011-01-01
Convincing correlates of protective immunity against tuberculosis have been elusive. In BALB/c mice, intranasal immunization with a replication-deficient recombinant adenovirus expressing Mycobacterium tuberculosis antigen 85A (adenovirus-85A) induces protective lower respiratory tract immunity against pulmonary challenge with Mycobacterium tuberculosis, while intradermal immunization with adenovirus-85A does not. Here we report that intranasal immunization with adenovirus-85A induces expression of the chemokine receptor CXCR6 on lung CD8 T lymphocytes, which is maintained for at least 3 months. CXCR6-positive antigen-specific T cell numbers are increased among bronchoalveolar lavage-recoverable cells. Similarly, intranasal immunization with recombinant antigen 85A with adjuvant induces CXCR6 expression on lung CD4 cells in BALB/c and C57BL/6 mice, while a synthetic ESAT61–20 peptide with adjuvant induces CXCR6 expression in C57BL/6 mice. Parenteral immunization fails to do so. Upregulation of CXCR6 is accompanied by a transient elevation of serum CXCL16 after intranasal immunization, and lung cells cultured ex vivo from mice immunized intranasally show increased production of CXCL16. Administration of CXCL16 and cognate antigen intranasally to mice previously immunized parenterally increases the number of antigen-specific T lymphocytes in the bronchoalveolar lavage-recoverable population, which mediates inhibition of the early growth of Mycobacterium tuberculosis after challenge. We conclude that expression of CXCR6 on lung T lymphocytes is a correlate of local protective immunity against Mycobacterium tuberculosis after intranasal immunization and that CXCR6 and CXCL16 play an important role in the localization of T cells within lung tissue and the bronchoalveolar lavage-recoverable compartment. PMID:21628524
Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen
Taylor, Justin J.; Martinez, Ryan J.; Titcombe, Philip J.; Barsness, Laura O.; Thomas, Stephanie R.; Zhang, Na; Katzman, Shoshana D.; Jenkins, Marc K.
2012-01-01
B cell tolerance to self-antigen is critical to preventing antibody-mediated autoimmunity. Previous work using B cell antigen receptor transgenic animals suggested that self-antigen–specific B cells are either deleted from the repertoire, enter a state of diminished function termed anergy, or are ignorant to the presence of self-antigen. These mechanisms have not been assessed in a normal polyclonal repertoire because of an inability to detect rare antigen-specific B cells. Using a novel detection and enrichment strategy to assess polyclonal self-antigen–specific B cells, we find no evidence of deletion or anergy of cells specific for antigen not bound to membrane, and tolerance to these types of antigens appears to be largely maintained by the absence of T cell help. In contrast, a combination of deleting cells expressing receptors with high affinity for antigen with anergy of the undeleted lower affinity cells maintains tolerance to ubiquitous membrane-bound self-antigens. PMID:23071255
Dose-dependent modulation of CD8 and functional avidity as a result of peptide encounter
Kroger, Charles J; Alexander-Miller, Martha A
2007-01-01
The generation of an optimal CD8+ cytotoxic T lymphocyte (CTL) response is critical for the clearance of many intracellular pathogens. Previous studies suggest that one contributor to an optimal immune response is the presence of CD8+ cells exhibiting high functional avidity. In this regard, CD8 expression has been shown to contribute to peptide sensitivity. Here, we investigated the ability of naive splenocytes to modulate CD8 expression according to the concentration of stimulatory peptide antigen. Our results showed that the level of CD8 expressed was inversely correlated with the amount of peptide used for the primary stimulation, with higher concentrations of antigen resulting in lower expression of both CD8α and CD8β. Importantly the ensuing CD8low and CD8high CTL populations were not the result of the selective outgrowth of naive CD8+ T-cell subpopulations expressing distinct levels of CD8. Subsequent encounter with peptide antigen resulted in continued modulation of both the absolute level and the isoform of CD8 expressed and in the functional avidity of the responding cells. We propose that CD8 cell surface expression is not a static property, but can be modulated to ‘fine tune’ the sensitivity of responding CTL to a defined concentration of antigen. PMID:17484768
Long, Meixiao; Slaiby, Aaron M.; Wu, Shuang; Hagymasi, Adam T.; Mihalyo, Marianne A.; Bandyopadhyay, Suman; Vella, Anthony T.; Adler, Adam J.
2010-01-01
When naive CD4+ Th cells encounter cognate pathogen-derived Ags they expand and develop the capacity to express the appropriate effector cytokines for neutralizing the pathogen. Central to this differentiation process are epigenetic modifications within the effector cytokine genes that allow accessibility to the transcriptional machinery. In contrast, when mature self-reactive CD4 cells encounter their cognate epitopes in the periphery they generally undergo a process of tolerization in which they become hyporesponsive/anergic to antigenic stimulation. In the current study, we used a TCR transgenic adoptive transfer system to demonstrate that in a dose-dependent manner parenchymal self-Ag programs cognate naive CD4 cells to acetylate histones bound to the promoter region of the Ifng gene (which encodes the signature Th1 effector cytokine) during peripheral tolerization. Although the Ifng gene gains transcriptional competence, these tolerized CD4 cells fail to express substantial amounts of IFN-γ in response to antigenic stimulation apparently because a blockage in TCR-mediated signaling also develops. Nevertheless, responsiveness to antigenic stimulation is partially restored when self-Ag-tolerized CD4 cells are retransferred into mice infected with a virus expressing the same Ag. Additionally, there is preferential boosting in the ability of these CD4 cells to express IFN-γ relative to other cytokines with expression that also becomes impaired. Taken together, these results suggest that epigenetic modification of the Ifng locus during peripheral CD4 cell tolerization might allow for preferential expression of IFN-γ during recovery from tolerance. PMID:17947638
Ber-H2 (CD30) Immunohistochemical Staining of Human Fetal Tissues
2005-01-01
OBJECTIVE: CD30 antigen has long been considered to be restricted to the tumour cells of Hodgkin's disease and of anaplastic large cell lymphoma as well as to T and B activated lymphocytes. It is now apparent that the range of normal and neoplastic cells, which may express CD30 antigen, is much wider than was at first thought. In order to gain insight into the physiological function of CD30 antigen, we studied the distribution of its expression in the tissues of fetuses from week 8th to week 16th. MATERIALS AND METHODS: We investigated the immunohistochemical expression of CD30 antigen in paraffin-embedded tissue samples representing all systems from 30 fetuses after therapeutic abortion at 8th to 10th and 12th to 16th week of gestation, respectively, using the monoclonal antibody Ber-H2. RESULTS: Our results demonstrated that CD30 is expressed early in human fetal development (8th to 10th week of gestation) in several fetal tissues derived from all three germ layers (gastrointestinal tract, special glands of the postpharyngeal foregut, urinary, musculoskeletal, reproductive, nervous, endocrine systems), with the exception of the skin and hematolymphoid system (thymus), in which the antigen is expressed later on (10th week onwards). Expression of CD30 was restricted to the hematolymphoid system in the 12-16 weeks of gestation. No expression of the marker was observed in the respiratory and cardiovascular systems during the entire period examined. CONCLUSIONS: CD30 antigen is of importance in cell development, and proliferation. It is also pathway-related to terminal differentiation in many fetal tissues and organs. PMID:16244703
Uniform cell-autonomous tumorigenesis of the choroid plexus by papovavirus large T antigens.
Chen, J D; Van Dyke, T
1991-01-01
The simian virus 40 (SV40) large tumor antigen (T antigen) under its natural regulatory elements induces choroid plexus papillomas in transgenic mice. Because these tumors develop focally after several months, it has been suggested that secondary cellular alterations are required to induce a tumor in this tissue. In contrast to SV40, the related lymphotropic papovavirus early region induces rapid nonfocal choroid plexus neoplasia in transgenic mice. Here, using hybrid gene constructs, we showed that T antigen from either virus in in fact sufficient to induce these tumors. Their abilities to induce proliferative abnormalities in other tissues, such as kidney and thymus, were also indistinguishable. Differences in the rate of choroid plexus tumorigenesis reflected differences in the control regions of the two viruses, rather than differences in T antigen per se. Under SV40 regulation, expression was limited to a fraction of the choroid plexus cells prior to the formation of focal tumors. When SV40 T antigen was placed under lymphotropic papovavirus control, in contrast, expression was generally uniform in the choroid plexus and rapid expansion of the tissue ensued. We found a direct relationship between T-antigen expression, morphological transformation, and proliferation of the choroid plexus epithelial cells. Analysis of mosaic transgenic mice indicated further that T antigen exerts its mitogenic effect cell autonomously. These studies form the foundation for elucidating the role of various T-antigen subactivities in tumorigenesis. Images PMID:1658622
Guthrie, Katherine A.; Cummings, Carrie L.; Sabo, Kathleen; Wood, Brent L.; Gooley, Ted; Yang, Taimei; Epping, Mirjam T.; Shou, Yaping; Pogosova-Agadjanyan, Era; Ladne, Paula; Stirewalt, Derek L.; Abkowitz, Janis L.; Radich, Jerald P.
2009-01-01
The preferentially expressed antigen in melanoma (PRAME) is expressed in several hematologic malignancies, but either is not expressed or is expressed at only low levels in normal hematopoietic cells, making it a target for cancer therapy. PRAME is a tumor-associated antigen and has been described as a corepressor of retinoic acid signaling in solid tumor cells, but its function in hematopoietic cells is unknown. PRAME mRNA expression increased with chronic myeloid leukemia (CML) disease progression and its detection in late chronic-phase CML patients before tyrosine kinase inhibitor therapy was associated with poorer therapeutic responses and ABL tyrosine kinase domain point mutations. In leukemia cell lines, PRAME protein expression inhibited granulocytic differentiation only in cell lines that differentiate along this lineage after all-trans retinoic acid (ATRA) exposure. Forced PRAME expression in normal hematopoietic progenitors, however, inhibited myeloid differentiation both in the presence and absence of ATRA, and this phenotype was reversed when PRAME was silenced in primary CML progenitors. These observations suggest that PRAME inhibits myeloid differentiation in certain myeloid leukemias, and that its function in these cells is lineage and phenotype dependent. Lastly, these observations suggest that PRAME is a target for both prognostic and therapeutic applications. PMID:19625708
Johal, Jasjit; Gresty, Karryn; Kongsuwan, Kritaya; Walker, Peter J
2008-01-01
Recombinant baculoviruses expressing the BEFV envelope glycoprotein G and non-structural glycoprotein G(NS) were constructed. The G protein expressed in insect cells was located on the cell surface and induced spontaneous cell fusion at mildly acidic pH. The expressed G protein reacted with MAbs to continuous and conformational neutralization sites (G1, G2, G3b and G4), but not to conformational site G3a. The expressed G(NS) protein was also located on the cell surface but did not exhibit fusogenic activity. The G(NS) protein reacted with polyclonal antiserum produced from vaccinia-virus-expressed recombinant G(NS) but did not react with G protein antibodies. A His(6)-tagged, soluble form of the G protein was expressed and purified by Ni(2+)-NTA chromatography. The purified G protein reacted with BEFV-neutralizing MAbs to all continuous and conformational antigenic sites. The highly protective characteristics of the native BEFV G protein suggest that the secreted, baculovirus-expressed product may be a useful vaccine antigen.
Sakai, Shinya; Mantani, Naoki; Kogure, Toshiaki; Ochiai, Hiroshi; Shimada, Yutaka; Terasawa, Katsutoshi
2002-12-01
Influenza virus is a worldwide health problem with significant economic consequences. To study the gene expression pattern induced by influenza virus infection, it is useful to reveal the pathogenesis of influenza virus infection; but this has not been well examined, especially in vivo study. To assess the influence of influenza virus infection on gene expression in mice, mRNA levels in the lung and tracheal tissue 48 h after infection were investigated by cDNA array analysis. Four-week-old outbred, specific pathogen free strain, ICR female mice were infected by intra-nasal inoculation of a virus solution under ether anesthesia. The mice were sacrificed 48 h after infection and the tracheas and lungs were removed. To determine gene expression, the membrane-based microtechnique with an Atlas cDNA expression array (mouse 1.2 array II) was performed in accordance with the manual provided. We focused on the expression of 46 mRNAs for cell surface antigens. Of these 46 mRNAs that we examined, four (CD1d2 antigen, CD39 antigen-like 1, CD39 antigen-like 3, CD68 antigen) were up-regulated and one (CD36 antigen) was down-regulated. Although further studies are required, these data suggest that these molecules play an important role in influenza virus infection, especially the phase before specific immunity.
Sarmiento, Rosa E; Tirado, Rocio G; Valverde, Laura E; Gómez-Garcia, Beatriz
2007-01-01
Background The binding of viral-specific antibodies to cell-surface antigens usually results in down modulation of the antigen through redistribution of antigens into patches that subsequently may be internalized by endocytosis or may form caps that can be expelled to the extracellular space. Here, by use of confocal-laser-scanning microscopy we investigated the kinetics of the modulation of respiratory syncytial virus (RSV) antigen by RSV-specific IgG. RSV-infected human epithelial cells (HEp-2) were incubated with anti-RSV polyclonal IgG and, at various incubation times, the RSV-cell-surface-antigen-antibody complexes (RSV Ag-Abs) and intracellular viral proteins were detected by indirect immunoflourescence. Results Interaction of anti-RSV polyclonal IgG with RSV HEp-2 infected cells induced relocalization and aggregation of viral glycoproteins in the plasma membrane formed patches that subsequently produced caps or were internalized through clathrin-mediated endocytosis participation. Moreover, the concentration of cell surface RSV Ag-Abs and intracellular viral proteins showed a time dependent cyclic variation and that anti-RSV IgG protected HEp-2 cells from viral-induced death. Conclusion The results from this study indicate that interaction between RSV cell surface proteins and specific viral antibodies alter the expression of viral antigens expressed on the cells surface and intracellular viral proteins; furthermore, interfere with viral induced destruction of the cell. PMID:17608950
Kunihiro, Marie; Fujii, Hideki; Miyagi, Takuya; Takahashi, Yoshiaki; Tanaka, Reiko; Fukushima, Takuya; Ansari, Aftab A; Tanaka, Yuetsu
2016-07-11
The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4⁺ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo.
Iacono-Connors, L C; Novak, J; Rossi, C; Mangiafico, J; Ksiazek, T
1994-01-01
We developed an antigen capture enzyme-linked immunosorbent assay (ELISA) which does not require purified protective antigen (PA) for detection of human antibodies to Bacillus anthracis PA. Lysates of Spodoptera frugiperda (Sf-9) cells infected with recombinant baculovirus containing the PA gene were used as the source of PA to develop the ELISA. Recombinant PA from crude Sf-9 cell lysates or PA purified from B. anthracis Sterne strain was captured by an anti-PA monoclonal antibody coated onto microtiter plates. We demonstrated that human serum antibody titers to PA were identical in the ELISA whether we used crude Sf-9 cell lysates containing recombinant baculovirus-expressed PA or purified Sterne PA. Finally, false-positive results observed in a direct ELISA were eliminated with this antigen capture ELISA. Thus, the antigen capture ELISA with crude preparations of baculovirus-expressed PA is reliable, safe, and inexpensive for determining anti-PA antibody levels in human sera. PMID:7496927
Kopitar, A N; Ihan Hren, N; Ihan, A
2006-02-01
In various immunopathologic conditions, bacterial flora induce an immune response which results in inflammatory manifestations, e.g. periapical granuloma. Dendritic cells provide the main orchestration of specific immune responses. The aim of our study was to test the capacity of distinct oral bacterial antigens (prepared from Streptococcus mitis, Propionibacterium acnes, and Bacteroides spp.) to prime human dendritic cells for stimulation of the T-lymphocyte response. To assess the T-lymphocyte response, the expression of CD25, CD69, intracellular interferon gamma (cIFN-gamma), and intracellular interleukin 4 (cIL-4) was determined. Dendritic cells were prepared from leukocyte buffy coat from healthy blood donors. Monocytes were stimulated with IL-4 and GM-CSF and dendritic cells activated with bacterial lysates. Cell suspensions contained up to 90% dendritic cells, which represented 2-12% of the initial number of mononuclear cells. Lymphocyte subsets that developed in lymphocyte cultures after 1 week of stimulation were analyzed by flow cytometry. Dendritic cells, primed with antigens of Bacteroides fragilis have shown significantly higher activation and expression of intercellular IFN-gamma by T lymphocytes compared to negative controls. The dendritic cells primed with antigens of P. acnes had no effect on T-lymphocyte activation or cytokine production; instead they induced differentiation of T lymphocytes into CD25bright cells (regulatory T cells) with a potentially inhibitory effect on immune response. Dendritic cells primed with antigens of S. mitis induced increased expression of cIL-4. We conclude that commensal oral bacteria antigens prepared from B. fragilis, S. mitis, and P. acnes prime human dendritic cells to induce Th1, Th2, and T(reg) differentiation, respectively. This may advance our understanding of immunopathologic manifestations in the oral cavity and offer new possibilities for redirecting immune responses in mucosal vaccination.
Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells.
Gantke, Thorsten; Weichel, Michael; Herbrecht, Carmen; Reusch, Uwe; Ellwanger, Kristina; Fucek, Ivica; Eser, Markus; Müller, Thomas; Griep, Remko; Molkenthin, Vera; Zhukovsky, Eugene A; Treder, Martin
2017-09-01
Bispecific antibodies that redirect the lytic activity of cytotoxic immune effector cells, such as T- and NK cells, onto tumor cells have emerged as a highly attractive and clinically validated treatment modality for hematological malignancies. Advancement of this therapeutic concept into solid tumor indications, however, is hampered by the scarcity of targetable antigens that are surface-expressed on tumor cells but demonstrate only limited expression on healthy tissues. To overcome this limitation, the concept of dual-targeting, i.e. the simultaneous targeting of two tumor-expressed surface antigens with limited co-expression on non-malignant cells, with multispecific antibodies has been proposed to increase tumor selectivity of antibody-induced effector cell cytotoxicity. Here, a novel CD16A (FcγRIIIa)-directed trispecific, tetravalent antibody format, termed aTriFlex, is described, that is capable of redirecting NK cell cytotoxicity to two surface-expressed antigens. Using a BCMA/CD200-based in vitro model system, the potential use of aTriFlex antibodies for dual-targeting and selective induction of NK cell-mediated target cell lysis was investigated. Bivalent bispecific target cell binding was found to result in significant avidity gains and up to 17-fold increased in vitro potency. These data suggest trispecific aTriFlex antibodies may support dual-targeting strategies to redirect NK cell cytotoxicity with increased selectivity to enable targeting of solid tumor antigens. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Yong; Wang Honglan; Mazzone, Theodore
2006-08-01
We identified stem cells from the umbilical cord blood, designated cord blood-stem cells (CB-SC). CB-SC displayed important embryonic stem (ES) cell characteristics including expression of ES-cell-specific molecular markers including transcription factors OCT-4 and Nanog, along with stage-specific embryonic antigen (SSEA)-3 and SSEA-4. CB-SC also expressed hematopoietic cell antigens including CD9, CD45 and CD117, but were negative for CD34. CB-SC displayed very low immunogenicity as indicated by expression of a very low level of major histocompatibility complex (MHC) antigens and failure to stimulate the proliferation of allogeneic lymphocytes. CB-SC could give rise to cells with endothelial-like and neuronal-like characteristics in vitro,more » as demonstrated by expression of lineage-associated markers. Notably, CB-SC could be stimulated to differentiate into functional insulin-producing cells in vivo and eliminated hyperglycemia after transplantation into a streptozotocin-induced diabetic mouse model. These findings may have significant potential to advance stem-cell-based therapeutics.« less
Inuo, G; Akao, N; Kohsaka, H; Saito, I; Miyasaka, N; Fujita, K
1995-02-01
The proliferative response of human peripheral blood mononuclear cells (PBMC) from healthy donors to Toxocara canis adult worm antigens (TcA) was examined. PBMC from all donors examined (n = 7) strongly responded to TcA in a dose-dependent fashion after six days of culture, irrespective of their serological reactivity. In contrast, cord blood mononuclear cells did not react to TcA. The proliferation of PBMC in response to TcA was completely inhibited by anti-HLA-DR antibody. Purified CD4+ T cells reconstituted with autologous irradiated antigen presenting cells (APC) vigorously proliferated in response to TcA, but this was abrogated by pretreatment of APC with paraformaldehyde. Significant IL-2, IL-3, IL-4, IL-5 and IFN-gamma mRNA expression was detected in PBMC stimulated with TcA, with expression peaking at 72 h after stimulation. IL-1 beta, IL-6, IL-10 and GM-CSF mRNA expression was also upregulated, peaking at 24 h after stimulation. Taken together, these results suggest that adult T. canis-derived antigens have the ability to activate human PBMC as conventional antigens, possibly due to their cross-reactivity, which may be involved in the host defence against helminth infection.
Park, Jae H; Brentjens, Renier J
2010-04-01
Chemotherapy-resistant B-cell hematologic malignancies may be cured with allogeneic hematopoietic stem cell transplantation (HSCT), demonstrating the potential susceptibility of these tumors to donor T-cell mediated immune responses. However, high rates of transplant-related morbidity and mortality limit this approach. For this reason, there is an urgent need for less-toxic forms of immune-based cellular therapy to treat these malignancies. Adoptive transfer of autologous T cells genetically modified to express chimeric antigen receptors (CARs) targeted to specific tumor-associated antigens represents an attractive means of overcoming the limitations of conventional HSCT. To this end, investigators have generated CARs targeted to various antigens expressed by B-cell malignancies, optimized the design of these CARs to enhance receptor mediated T cell signaling, and demonstrated significant anti-tumor efficacy of the resulting CAR modified T cells both in vitro and in vivo mouse tumor models. These encouraging preclinical data have justified the translation of this approach to the clinical setting with currently 12 open clinical trials and one completed clinical trial treating various B-cell malignancies utilizing CAR modified T cells targeted to either the CD19 or CD20 B-cell specific antigens.
Chimeric antigen receptor T cells: a novel therapy for solid tumors.
Yu, Shengnan; Li, Anping; Liu, Qian; Li, Tengfei; Yuan, Xun; Han, Xinwei; Wu, Kongming
2017-03-29
The chimeric antigen receptor T (CAR-T) cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs) expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII) was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2), and mesothelin (MSLN), as well as the challenges for CAR-T cell therapy.
Yong, Carmen S.M.; John, Liza B.; Devaud, Christel; Prince, Miles H.; Johnstone, Ricky W.; Trapani, Joseph A.
2016-01-01
While adoptive immunotherapy using chimeric antigen receptor (CAR)-modified T cells can induce remission of some tumors, the role of other CAR-modified leukocytes is not well characterized. In this study, we characterize the function of leukocytes including natural killer (NK) cells, macrophages and CAR T cells from transgenic mice expressing a CAR under the control of the pan-hematopoietic promoter, vav, and determine the ability of these mice to respond to ERB expressing tumors. We demonstrate the anti-tumor functions of leukocytes, including antigen specific cytotoxicity and cytokine secretion. The adoptive transfer of CAR T cells provided a greater survival advantage in the E0771ERB tumor model than their wildtype (WT) counterparts. In addition, CAR NK cells and CAR T cells also mediated increased survival in the RMAERB tumor model. When challenged with Her2 expressing tumors, F38 mice were shown to mount an effective immune response, resulting in tumor rejection and long-term survival. This was shown to be predominantly dependent on both CD8+ T cells and NK cells. However, macrophages and CD4+ T cells were also shown to contribute to this response. Overall, this study highlights the use of the vav-CAR mouse model as a unique tool to determine the anti-tumor function of various immune subsets, either alone or when acting alongside CAR T cells in adoptive immunotherapy. PMID:27153556
Ju, Jung Won; Kim, Ho-Cheol; Shin, Hyun-Il; Kim, Yu Jung; Kim, Dong-Myung
2015-01-01
Progress towards genetic sequencing of human parasites has provided the groundwork for a post-genomic approach to develop novel antigens for the diagnosis and treatment of parasite infections. To fully utilize the genomic data, however, high-throughput methodologies are required for functional analysis of the proteins encoded in the genomic sequences. In this study, we investigated cell-free expression and in situ immobilization of parasite proteins as a novel platform for the discovery of antigenic proteins. PCR-amplified parasite DNA was immobilized on microbeads that were also functionalized to capture synthesized proteins. When the microbeads were incubated in a reaction mixture for cell-free synthesis, proteins expressed from the microbead-immobilized DNA were instantly immobilized on the same microbeads, providing a physical linkage between the genetic information and encoded proteins. This approach of in situ expression and isolation enables streamlined recovery and analysis of cell-free synthesized proteins and also allows facile identification of the genes coding antigenic proteins through direct PCR of the microbead-bound DNA. PMID:26599101
Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing
2013-01-01
Background Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. Aims The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Methods Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. Results High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. Conclusion High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD. PMID:24312613
Janbazian, Loury; Price, David A.; Canderan, Glenda; Filali-Mouhim, Abdelali; Asher, Tedi E.; Ambrozak, David R.; Scheinberg, Phillip; Boulassel, Mohamad Rachid; Routy, Jean-Pierre; Koup, Richard A.; Douek, Daniel C.; Sekaly, Rafick-Pierre; Trautmann, Lydie
2011-01-01
Persistent exposure to cognate antigen leads to the functional impairment and exhaustion of HIV-specific CD8 T cells. Antigen withdrawal, due either to antiretroviral treatment or the emergence of epitope escape mutations, causes HIV-specific CD8 T cell responses to wane over time. However, this process does not continue to extinction, and residual CD8 T cells likely play an important role in the control of HIV replication. Here, we conducted a longitudinal analysis of clonality, phenotype and function to define the characteristics of HIV-specific CD8 T cell populations that persist under conditions of limited antigenic stimulation. Antigen decay was associated with dynamic changes in the TCR repertoire, increased expression of CD45RA and CD127, decreased expression of PD-1 and the emergence of poly-functional HIV-specific CD8 T cells. High definition analysis of individual clonotypes revealed that the antigen loss-induced gain of function within HIV-specific CD8 T cell populations could be attributed to two non-exclusive mechanisms: (i) functional improvement of persisting clonotypes; and, (ii) recruitment of particular clonotypes endowed with superior functional capabilities. PMID:22210916
Zoccola, Emmanuelle; Delamare-Deboutteville, Jérôme; Barnes, Andrew C.
2015-01-01
Antigen presentation is a critical step bridging innate immune recognition and specific immune memory. In mammals, the process is orchestrated by dendritic cells (DCs) in the lymphatic system, which initiate clonal proliferation of antigen-specific lymphocytes. However, fish lack a classical lymphatic system and there are currently no cellular markers for DCs in fish, thus antigen-presentation in fish is poorly understood. Recently, antigen-presenting cells similar in structure and function to mammalian DCs were identified in various fish, including rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). The present study aimed to identify a potential molecular marker for DCs in fish and therefore targeted DC-SCRIPT, a well-conserved zinc finger protein that is preferentially expressed in all sub-types of human DCs. Putative dendritic cells were obtained in culture by maturation of spleen and pronephros-derived monocytes. DC-SCRIPT was identified in barramundi by homology using RACE PCR and genome walking. Specific expression of DC-SCRIPT was detected in barramundi cells by Stellaris mRNA FISH, in combination with MHCII expression when exposed to bacterial derived peptidoglycan, suggesting the presence of DCs in L. calcarifer. Moreover, morphological identification was achieved by light microscopy of cytospins prepared from these cultures. The cultured cells were morphologically similar to mammalian and trout DCs. Migration assays determined that these cells have the ability to move towards pathogens and pathogen associated molecular patterns, with a preference for peptidoglycans over lipopolysaccharides. The cells were also strongly phagocytic, engulfing bacteria and rapidly breaking them down. Barramundi DCs induced significant proliferation of responder populations of T-lymphocytes, supporting their role as antigen presenting cells. DC-SCRIPT expression in head kidney was higher 6 and 24 h following intraperitoneal challenge with peptidoglycan and lipopolysaccharide and declined after 3 days relative to PBS-injected controls. Relative expression was also lower in the spleen at 3 days post challenge but increased again at 7 days. As DC-SCRIPT is a constitutively expressed nuclear receptor, independent of immune activation, this may indicate initial migration of immature DCs from head kidney and spleen to the injection site, followed by return to the spleen for maturation and antigen presentation. DC-SCRIPT may be a valuable tool in the investigation of antigen presentation in fish and facilitate optimisation of vaccines and adjuvants for aquaculture. PMID:26173015
Alonso-Camino, Vanesa; Sánchez-Martín, David; Compte, Marta; Nuñez-Prado, Natalia; Diaz, Rosa M; Vile, Richard; Alvarez-Vallina, Luis
2013-01-01
A human single-chain variable fragment (scFv) antibody library was expressed on the surface of human T cells after transduction with lentiviral vectors (LVs). The repertoire was fused to a first-generation T cell receptor ζ (TCRζ)-based chimeric antigen receptor (CAR). We used this library to isolate antibodies termed CARbodies that recognize antigens expressed on the tumor cell surface in a proof-of-principle system. After three rounds of activation-selection there was a clear repertoire restriction, with the emergence dominant clones. The CARbodies were purified from bacterial cultures as soluble and active proteins. Furthermore, to validate its potential application for adoptive cell therapy, human T cells were transduced with a LV encoding a second-generation costimulatory CAR (CARv2) bearing the selected CARbodies. Transduced human primary T cells expressed significant levels of the CARbodies-based CARv2 fusion protein on the cell surface, and importantly could be specifically activated, after stimulation with tumor cells. This approach is a promising tool for the generation of antibodies fully adapted to the display format (CAR) and the selection context (cell synapse), which could extend the scope of current adoptive cell therapy strategies with CAR-redirected T cells. PMID:23695536
Barros, Maria C E S; Galasso, Tatiane G C M; Chaib, Antônio J M; Degallier, Nicolas; Nagata, Tatsuya; Ribeiro, Bergmann M
2011-05-27
Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine.
Methods of preparing and using single chain anti-tumor antibodies
Cheung, Nai-Kong; Guo, Hong-Fen
2010-02-23
This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.
Method for preparation of single chain antibodies
Cheung, Nai-Kong V [New York, NY; Guo, Hong-fen [New York, NY
2012-04-03
This invention provides a method for identifying cells expressing a target single chain antibody (scFv) directed against a target antigen from a collection of cells that includes cells that do not express the target scFv, comprising the step of combining the collection of cells with an anti-idiotype directed to an antibody specific for the target antigen and detecting interaction, if any, of the anti-idiotype with the cells, wherein the occurrence of an interaction identifies the cell as one which expresses the target scFv. This invention also provides a method for making a single chain antibody (scFv) directed against an antigen, wherein the selection of clones is made based upon interaction of those clones with an appropriate anti-idiotype, and heretofore inaccessible scFv so made. This invention provides the above methods or any combination thereof. Finally, this invention provides various uses of these methods.
Expression of mouse Tla region class I genes in tissues enriched for gamma delta cells.
Eghtesady, P; Brorson, K A; Cheroutre, H; Tigelaar, R E; Hood, L; Kronenberg, M
1992-01-01
The Tla region of the BALB/c mouse major histocompatibility complex contains at least 20 class I genes. The function of the products of these genes is unknown, but recent evidence demonstrates that some Tla region gene products could be involved in presentation of antigens to gamma delta T cells. We have generated a set of polymerase chain reaction (PCR) oligonucleotide primers and hybridization probes that permit us to specifically amplify and detect expression of 11 of the 20 BALB/c Tla region genes. cDNA prepared from 12 adult and fetal tissues and from seven cell lines was analyzed. In some cases, northern blot analysis or staining with monoclonal antibodies specific for the Tla-encoded thymus leukemia (TL) antigen were used to confirm the expression pattern of several of the genes as determined by PCR. Some Tla region genes, such as T24d and the members of the T10d/T22d gene pair, are expressed in a wide variety of tissues in a manner similar to the class I transplantation antigens. The members of the TL antigen encoding gene pair, T3d/T18d, are expressed in only a limited number of organs, including several sites enriched for gamma delta T cells. Other Tla region genes, including T1d, T2d, T16d, and T17d, are transcriptionally silent and transcripts from the T8d/T20d gene pair do not undergo proper splicing. In general, sites that contain gamma delta T lymphocytes have Tla region transcripts. The newly identified pattern of expression of the genes analyzed in sites containing gamma delta T cells further extends the list of potential candidates for antigen presentation to gamma delta T cells.
Persistent poliovirus infection of human fetal brain cells.
Pavio, N; Buc-Caron, M H; Colbère-Garapin, F
1996-09-01
It has been suggested that poliovirus (PV), the causative agent of poliomyelitis, could persist in surviving patients. We have previously shown that PV can persistently infect some human cell lines in vitro, particularly neuroblastoma cell lines. We report here an ex vivo model in which PV can persistently infect primary cultures of human fetal brain cells. Two mutations involving capsid residues 142 of VP2 and 95 of VP1 were repeatedly selected during the persistent infections. These residues are located in capsid regions known to be involved in interactions between PV and its receptor. During the first week after infection, viral antigens were found in cells of both the neuronal and glial lineages. In contrast, 2 weeks after infection, viral antigens were detected almost exclusively in cells of the neuronal lineage. They were detected predominantly in cells expressing a marker of early commitment to the neuronal lineage, MAP-5, particularly in neuroblasts. Viral antigens were also found in immature progenitors expressing a neuroepithelium marker, nestin, and in cells expressing a marker of postmitotic neurons, MAP-2. The presence of viral antigens in postmitotic neurons suggests that PV can persist in neurons of patients who have survived poliomyelitis.
Antigen specific suppression of humoral immunity by anergic Ars/A1 B cells1
Aviszus, Katja; MacLeod, Megan K.L.; Kirchenbaum, Greg A.; Detanico, Thiago O.; Heiser, Ryan A.; St. Clair, James B.; Guo, Wenzhong; Wysocki, Lawrence J.
2012-01-01
Autoreactive anergic B lymphocytes are considered to be dangerous because of their potential for activation and recruitment into autoimmune responses. Yet they persist for days and constitute ~5% of the B cell pool. We assessed their functional potential in the Ars/A1 transgene model, where anergic B cells express a dual-reactive antigen receptor that binds, in addition to a self-antigen, the hapten p-azophenylarsonate (Ars). When Ars/A1 B cells were transferred into adoptive recipients that were immunized with foreign proteins covalently conjugated with Ars, endogenous IgG immune responses to both were selectively and severely diminished, and the development of T helper cells was impaired. Approximately 95% inhibition of the anti-Ars response was attained with ~4000 transferred Ars/A1 B cells through redundant mechanisms, one of which depended upon their expression of MHC II but not upon secretion of IL-10 or IgM. This antigen-specific suppressive activity implicates the autoreactive anergic B cell as an enforcer of immunological tolerance to self-antigens. PMID:23008448
Martens, I; Nilsson, S A; Linder, S; Magnusson, G
1989-01-01
The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions. Images PMID:2704075
Martens, I; Nilsson, S A; Linder, S; Magnusson, G
1989-05-01
The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions.
Skin-Resident T Cells Drive Dermal Dendritic Cell Migration in Response to Tissue Self-Antigen.
Ali, Niwa; Zirak, Bahar; Truong, Hong-An; Maurano, Megan M; Gratz, Iris K; Abbas, Abul K; Rosenblum, Michael D
2018-05-01
Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103 + dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression. This window of time was characterized by the preferential activation of tissue-resident Ag-specific effector T cells (Teffs), with no concurrent activation of Ag-specific Teffs in SDLNs. Using genetic deletion and adoptive transfer approaches, we show that activation of skin-resident Teffs is required to drive CD103 + DDC migration in response to tissue self-antigen and this Batf3-dependent DC population is necessary to mount a fulminant autoimmune response in skin. Conversely, activation of Ag-specific Teffs in SDLNs played no role in DDC migration. Our studies reveal a crucial role for skin-resident T cell-derived signals, originating at the site of self-antigen expression, to drive DDC migration during the elicitation phase of an autoimmune response. Copyright © 2018 by The American Association of Immunologists, Inc.
Ahmad, Sarfraz; Casey, Garrett; Sweeney, Paul; Tangney, Mark; O'Sullivan, Gerald C
2009-01-01
Prostate stem cell antigen (PSCA) is a cell surface antigen expressed in normal human prostate and over expressed in prostate cancer. Elevated levels of PSCA protein in prostate cancer correlate with increased tumor stage/grade, with androgen independence and have higher expression in bone metastases. In this study, the PSCA gene was isolated from the transgenic adenocarcinoma mouse prostate cell line (TRAMPC1), and a vaccine plasmid construct was generated. This plasmid PSCA (pmPSCA) was delivered by intramuscular electroporation (EP) and induced effective antitumor immune responses against subcutaneous TRAMPC1 tumors in male C57 BL/6 mice. The pmPSCA vaccination inhibited tumor growth, resulting in cure or prolongation in survival. Similarly, the vaccine inhibited metastases in PSCA expressing B16 F10 tumors. There was activation of Th-1 type immunity against PSCA, indicating the breaking of tolerance to a self-antigen. This immunity was tumor specific and was transferable by adoptive transfer of splenocytes. The mice remained healthy and there was no evidence of collateral autoimmune responses in normal tissues. EP-assisted delivery of the pmPSCA evoked strong specific responses and could, in neoadjuvant or adjuvant settings, provide a safe and effective immune control of prostate cancer, given that there is significant homology between human and mouse PSCA. PMID:19337234
FLT3-regulated antigens as targets for leukemia-reactive cytotoxic T lymphocytes
Brackertz, B; Conrad, H; Daniel, J; Kast, B; Krönig, H; Busch, D H; Adamski, J; Peschel, C; Bernhard, H
2011-01-01
The FMS-like tyrosine kinase 3 (FLT3) is highly expressed in acute myeloid leukemia (AML). Internal tandem duplications (ITD) of the juxtamembrane domain lead to the constitutive activation of the FLT3 kinase inducing the activation of multiple genes, which may result in the expression of leukemia-associated antigens (LAAs). We analyzed the regulation of LAA in FLT3-wild-type (WT)- and FLT3-ITD+ myeloid cells to identify potential targets for antigen-specific immunotherapy for AML patients. Antigens, such as PR-3, RHAMM, Survivin, WT-1 and PRAME, were upregulated by constitutively active FLT3-ITD as well as FLT3-WT activated by FLT3 ligand (FL). Cytotoxic T-cell (CTL) clones against PR-3, RHAMM, Survivin and an AML-directed CTL clone recognized AML cell lines and primary AML blasts expressing FLT3-ITD, as well as FLT3-WT+ myeloid dendritic cells in the presence of FL. Downregulation of FLT3 led to the abolishment of CTL recognition. Comparing our findings concerning LAA upregulation by the FLT3 kinase with those already made for the Bcr-Abl kinase, we found analogies in the LAA expression pattern. Antigens upregulated by both FLT3 and Bcr-Abl may be promising targets for the development of immunotherapeutical approaches against myeloid leukemia of different origin. PMID:22829124
Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer.
Liu, Hong; Xu, Yiyang; Xiang, Jingyi; Long, Li; Green, Shon; Yang, Zhiyuan; Zimdahl, Bryan; Lu, Jingwei; Cheng, Neal; Horan, Lucas H; Liu, Bin; Yan, Su; Wang, Pei; Diaz, Juan; Jin, Lu; Nakano, Yoko; Morales, Javier F; Zhang, Pengbo; Liu, Lian-Xing; Staley, Binnaz K; Priceman, Saul J; Brown, Christine E; Forman, Stephen J; Chan, Vivien W; Liu, Cheng
2017-01-15
The majority of tumor-specific antigens are intracellular and/or secreted and therefore inaccessible by conventional chimeric antigen receptor (CAR) T-cell therapy. Given that all intracellular/secreted proteins are processed into peptides and presented by class I MHC on the surface of tumor cells, we used alpha-fetoprotein (AFP), a specific liver cancer marker, as an example to determine whether peptide-MHC complexes can be targets for CAR T-cell therapy against solid tumors. We generated a fully human chimeric antigen receptor, ET1402L1-CAR (AFP-CAR), with exquisite selectivity and specificity for the AFP 158-166 peptide complexed with human leukocyte antigen (HLA)-A*02:01. We report that T cells expressing AFP-CAR selectively degranulated, released cytokines, and lysed liver cancer cells that were HLA-A*02:01 + /AFP + while sparing cells from multiple tissue types that were negative for either expressed proteins. In vivo, intratumoral injection of AFP-CAR T cells significantly regressed both Hep G2 and AFP 158 -expressing SK-HEP-1 tumors in SCID-Beige mice (n = 8 for each). Moreover, intravenous administration of AFP-CAR T cells in Hep G2 tumor-bearing NSG mice lead to rapid and profound tumor growth inhibition (n = 6). Finally, in an established intraperitoneal liver cancer xenograft model, AFP-CAR T cells showed robust antitumor activity (n = 6). This study demonstrates that CAR T-cell immunotherapy targeting intracellular/secreted solid tumor antigens can elicit a potent antitumor response. Our approach expands the spectrum of antigens available for redirected T-cell therapy against solid malignancies and offers a promising new avenue for liver cancer immunotherapy. Clin Cancer Res; 23(2); 478-88. ©2016 AACR. ©2016 American Association for Cancer Research.
Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.
Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro
2018-01-01
Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.
Tissue factor expression by endothelial cells in sickle cell anemia.
Solovey, A; Gui, L; Key, N S; Hebbel, R P
1998-05-01
The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that sickle CEC abnormally express TF antigen (expressed as percent CEC that are TF-positive), with 66+/-13% positive in sickle patients in steady-state, 83+/-19% positive in sickle patients presenting with acute vasoocclusive episodes, and only 10+/-13% positive in normal controls. Repeated samplings confirmed this impression that TF expression is greater when sickle patients develop acute vasoocclusive episodes. Sickle CEC are also positive for TF mRNA, with excellent concurrence between antigen and mRNA expression. The TF expressed on the antigen-positive CEC is functional, as demonstrated by a binding assay for Factor VIIa and a chromogenic assay sensitive to generation of Factor Xa. By establishing that endothelial cells in vivo can express TF, these data imply that the vast endothelial surface area does provide an important pathophysiologic trigger for coagulation activation.
[Research advances of genomic GYP coding MNS blood group antigens].
Liu, Chang-Li; Zhao, Wei-Jun
2012-02-01
The MNS blood group system includes more than 40 antigens, and the M, N, S and s antigens are the most significant ones in the system. The antigenic determinants of M and N antigens lie on the top of GPA on the surface of red blood cells, while the antigenic determinants of S and s antigens lie on the top of GPB on the surface of red blood cells. The GYPA gene coding GPA and the GYPB gene coding GPB locate at the longarm of chromosome 4 and display 95% homologus sequence, meanwhile both genes locate closely to GYPE gene that did not express product. These three genes formed "GYPA-GYPB-GYPE" structure called GYP genome. This review focuses on the molecular basis of genomic GYP and the variety of GYP genome in the expression of diversity MNS blood group antigens. The molecular basis of Miltenberger hybrid glycophorin polymorphism is specifically expounded.
Koh, Yi T.; Gray, Andrew; Higgins, Sean A.; Hubby, Bolyn; Kast, W. Martin
2009-01-01
Background Androgen ablation (AA) causes apoptosis of normal and neoplastic prostate cells. It is a standard treatment for advanced prostate cancer. Androgen ablation-mediated immunological effects include bone marrow hyperplasia, thymic regeneration, T and B cell lymphopoeisis and restoration of age-related peripheral T cell dysfunction. Androgens also regulate the transcription of several cytokines. Dendritic cells (DC) are the most potent antigen presenting cells that can activate antigen-specific naïve T cells. Despite myriad clinical trials involving DC-based prostate cancer immunotherapies, the effects of AA on DC function remain largely uncharacterized. Therefore, we investigated the effects of AA on DC and whether it could improve the efficacy of prostate cancer immunotherapy. Methods Cytokine expression changes due to AA were quantified by multiplex ELISA. Flow cytometry was used to assess AA-mediated effects on DC maturation and expression of costimulatory markers. Mixed leukocyte reactions and cell-mediated lysis assays elucidated the role of androgens in DC function. The effect of AA on the efficacy of vaccination against a prostate tumor-associated antigen was tested using Elispot assays. Results Androgen ablation increased dendritic cell maturation and costimulatory marker expression, but had no effect on DC costimulatory function. However, DC isolated from castrated mice increased the expression of key cytokines by antigen-experienced T cells while decreasing their expression in naïve cells. Finally, androgen ablation improved immune responses to vaccination only when applied after immunization. Conclusion Androgen ablation causes differential effects of DC on primary and secondary T cell responses, thus augmenting vaccine immunogenicity only when applied after immunization. PMID:19143030
Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P
1994-01-01
We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7507012
Chiba, Asako; Tamura, Naoto; Yoshikiyo, Kazunori; Murayama, Goh; Kitagaichi, Mie; Yamaji, Ken; Takasaki, Yoshinari; Miyake, Sachiko
2017-03-14
Mucosal-associated invariant T (MAIT) cells are innate-like lymphocytes constituting a large proportion of peripheral blood T cells expressing αβ T-cell receptor in humans. In this study, we aimed to investigate their involvement in systemic lupus erythematosus (SLE). Peripheral blood MAIT cells from patients with SLE were assessed for their frequency, activation markers, and cell death by flow cytometry. The correlation between plasma cytokine levels and CD69 expression on MAIT cells was analyzed. The major histocompatibility complex class I-related protein MR1-restricted antigen-presenting capacity of antigen-presenting cells was investigated. Cytokine-mediated activation of MAIT cells in the absence of exogenous antigens was also examined. The frequency of MAIT cells was markedly reduced in SLE. The reduced number of MAIT cells was not attributable to the downregulation of surface markers, but it was partially due to the enhanced cell death of MAIT cells, possibly by activation-induced cell death. The CD69 expression levels on MAIT cells in SLE correlated with disease activity. Moreover, monocytes from patients with SLE exhibited increased ability to induce MAIT cell activation. The plasma concentration of interleukin (IL)-6, IL-18, and interferon (IFN)-α positively correlated with the expression levels of CD69 on MAIT cells in SLE. MAIT cells were activated by cytokines, including IFN-α, IL-15, and IL-12 plus IL-18, in the absence of exogenous antigens. These results suggest that MAIT cells reflect the pathological condition of SLE and that their activated status correlates with presence of disease.
Abdizadeh, Rahman; Maraghi, Sharif; Ghadiri, Ata A.; Tavalla, Mehdi; Shojaee, Saeedeh
2015-01-01
Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to one-third of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites and are promising approaches for antigen preparation in vaccine development. PMID:25861441
Hult, A K; Dykes, J H; Storry, J R; Olsson, M L
2017-06-01
ABO-incompatible haematopoietic stem cell transplantation (HSCT) presents a challenge to blood component transfusion. The aim of this study was to investigate the weak blood group A or B antigen expression by donor-derived group O red blood cells (RBC) observed following transfusion or minor ABO-incompatible HSCT. In addition, in vitro experiments were performed to elucidate possible mechanisms underlying this phenomenon. A sensitive flow cytometry assay for the semi-quantification of RBC A/B antigen levels was used to assess patient samples and evaluate in vitro experiments. Analysis of blood samples from patients, originally typed as A, B and AB but recently transplanted or transfused with cells from group O donors, revealed the A antigen expression on donor-derived RBC, ranging from very low levels in non-secretor individuals to almost subgroup A x -like profiles in group A secretors. The B antigen expression was less readily detectable. In vitro experiments, in which group O donor RBC were incubated with (i) group A/B secretor/non-secretor donor plasma or (ii) group A/B donor RBC in the absence of plasma, supported the proposed adsorption of A/B antigen-bearing glycolipids from secretor plasma but also indicated a secretor-independent mechanism for A/B antigen acquisition as well as direct cell-to-cell transfer of ABO antigens. The in vivo conversion of donor-derived blood group O RBC to ABO subgroup-like RBC after transfusion or minor ABO-incompatible HSCT raises the question of appropriate component selection. Based on these data, AB plasma should be transfused following ABO-incompatible HSCT. © 2017 British Blood Transfusion Society.
1996-01-01
Thymic selection of natural killer-1+ natural T cells that express alpha beta T cell receptors requires a conserved beta 2-microglobulin- associated molecule, presumably CD1d, displayed by CD4+8+ thymocytes. Here we demonstrate that positive selection of natural T cells occurs independent of transporters associated with antigen presentation-1 (TAP- 1) function. Moreover, natural T cells in TAP-1o/o mice are numerically expanded. Several H-2 class Ib molecules function in a TAP-independent manner, suggesting that if expressed in TAP-1o/o thymocytes, they could play a role in natural T cell development. Of these class Ib molecules, H-2TL is expressed by TAP-1o/o thymocytes. Moreover, we find that thymi of TL+ mice congenic or transgenic for H-2T18 also have a numerically expanded natural T cell repertoire compared with TL- mice. This expansion, as in TAP-1o/o thymi, is evident in each of the limited T cell receptor V beta chains expressed by natural T cells, suggesting that TL and CD1d impact similar repertoires. Thus TL, in addition to CD1d, plays a role in natural T cell development. PMID:8879233
De Harven, E; He, S; Hanna, W; Bootsma, G; Connolly, J G
1987-10-01
The deletion of ABH blood group antigens from the luminal surface of the bladder mucosa in cases of well differentiated transitional cell carcinomata, and the formation of pleomorphic microvilli have both been associated with aggressive biological behaviour and invasiveness of the tumors. We have studied cold cup biopsies from 8 normal mucosae and 17 papillary transitional cell carcinomata of the urinary bladder. The aim of our study was to correlate the formation of uniform or pleomorphic microvilli with the extent of deletion of the ABH blood group antigens on the surface of normal and transformed bladder urothelium. Immunogold scanning electron microscopy (SEM) in the backscattered electron (BE) imaging mode was used for this purpose. In the normal urothelium, uniform labeling of the luminal cells was demonstrated. In well differentiated tumors, the superficial cells exhibited uniform microvilli and a heterogeneous expression of the ABH antigens, giving characteristic 'mosaic' patterns of the antigenic labeling across the mucosal surface. These patterns were sharply delimitated at cell junctions when viewed by SEM; these observations were confirmed by transmission electron microscopy. In higher grade tumors, decreased ABH antigen expression, pleomorphic microvilli and/or featureless luminal cells were observed. In the transformed urothelium, the formation of uniform microvilli appeared to precede the loss of ABH antigen in most cases.
Munkley, Jennifer; Oltean, Sebastian; Vodák, Daniel; Wilson, Brian T.; Livermore, Karen E.; Zhou, Yan; Star, Eleanor; Floros, Vasileios I.; Johannessen, Bjarne; Knight, Bridget; McCullagh, Paul; McGrath, John; Crundwell, Malcolm; Skotheim, Rolf I.; Robson, Craig N.; Leung, Hing Y.; Harries, Lorna W.; Rajan, Prabhakar; Mills, Ian G.; Elliott, David J.
2015-01-01
Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, being significantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression. PMID:26452038
Wu, Julie H; Simonette, Rebecca A; Nguyen, Harrison P; Doan, Hung Q; Rady, Peter L; Tyring, Stephen K
2016-03-01
Merkel cell carcinoma (MCC) and trichodysplasia spinulosa (TS) are two proliferative cutaneous diseases caused by the Merkel cell polyomavirus (MCPyV) and trichodysplasia spinulosa-associated polyomavirus (TSPyV) respectively. Recently, studies have elucidated a key role of the small tumor (sT) antigen in the proliferative pathogenic mechanisms of MCPyV and likely TSPyV. While both sT antigens have demonstrated a capacity in regulating cellular pathways, it remains unknown whether MCPyV and TSPyV sT antigens contribute similarly or differentially to cell proliferation. The present study aims to explore the proliferative potential of MCPyV and TSPyV sT antigens by investigating their regulatory effects on the retinoblastoma protein (pRb) tumor suppressor. Inducible cell lines expressing MCPyV sT or TSPyV sT were created using a lentiviral packaging system. Cellular proteins were extracted and subjected to SDS-PAGE followed by Western blot detection and densitometric analysis. Expression of TSPyV sT markedly enhanced the phosphorylation of pRb in Western blot experiments. In contrast, expression of MCPyV sT did not alter pRb phosphorylation under the same experimental conditions. Densitometric analysis revealed that TSPyV sT antigen expression nearly doubled the ratio of phosphorylated to total pRb (P<0.001, Student's T-test), while MCPyV sT antigen expression did not cause significant change in pRb phosphorylation status. Given that hyperphosphorylation of pRb is associated with dysregulation of the cell cycle, S-phase induction, and increased cell proliferation, our findings support an important role of TSPyV-mediated pRb deactivation in the development of TS. The observation that the pRb tumor suppressor is inactivated by TSPyV sT but not MCPyV sT provides further insights into the distinct pathobiological mechanisms of MCC and TS. Copyright © 2016 Elsevier B.V. All rights reserved.
CD1d expression by hepatocytes is a main restriction element for intrahepatic T-cell recognition.
Agrati, C; Martini, F; Nisii, C; Oliva, A; D'Offizi, G; Narciso, P; Nardacci, R; Piacentini, M; Dieli, F; Pucillo, L P; Poccia, F
2005-01-01
The liver has specific mechanisms to protect itself from infectious agents and to avoid autoimmunity, indicating an important role of the hepatic tissues in antigen presentation and tolerance induction. Since intrahepatic lymphocytes may contribute to the innate immunity and to the liver pathology, it is of interest to analyze the expression of antigen presenting molecules and of the related T cell recognition in liver, and how these change in relation to different diseases. We analyzed the expression of MHC class I, and of CD1-a, -b, -c, and -d proteins on liver tissues from patients with different hepatic diseases. Moreover, in the same patients we studied the intrahepatic and peripheral NKT cell recognition of alpha-galactosyl ceramide antigen in the context of CD1d. Unlike in other tissues, classical MHC class I molecules were poorly expressed in the hepatic compartment, suggesting that inflamed hepatocytes may trigger weak MHC-restricted T cell responses. Nevertheless, we observed a prevalent expression of HLA class I-like CD1d isoform on the hepatocyte surface, indicating that CD1d is the main restriction element in the liver. In patients with viral hepatitis, the intrahepatic CD1d expression parallels the recruitment of CD56+Valpha24Vbeta11+ NKT cells in the liver which recognize CD1d presenting glycolipids such as alpha-galactosyl ceramide, suggesting that the intrahepatic T cell immunity may focus on glycolipid antigens.
Detecting T-cell reactivity to whole cell vaccines
Brusic, Ana; Hainz, Ursula; Wadleigh, Martha; Neuberg, Donna; Su, Mei; Canning, Christine M.; DeAngelo, Daniel J.; Stone, Richard M.; Lee, Jeng-Shin; Mulligan, Richard C.; Ritz, Jerome; Dranoff, Glenn; Sasada, Tetsuro; Wu, Catherine J.
2012-01-01
BCR-ABL+ K562 cells hold clinical promise as a component of cancer vaccines, either as bystander cells genetically modified to express immunostimulatory molecules, or as a source of leukemia antigens. To develop a method for detecting T-cell reactivity against K562 cell-derived antigens in patients, we exploited the dendritic cell (DC)-mediated cross-presentation of proteins generated from apoptotic cells. We used UVB irradiation to consistently induce apoptosis of K562 cells, which were then fed to autologous DCs. These DCs were used to both stimulate and detect antigen-specific CD8+ T-cell reactivity. As proof-of-concept, we used cross-presented apoptotic influenza matrix protein-expressing K562 cells to elicit reactivity from matrix protein-reactive T cells. Likewise, we used this assay to detect increased anti-CML antigen T-cell reactivity in CML patients that attained long-lasting clinical remissions following immunotherapy (donor lymphocyte infusion), as well as in 2 of 3 CML patients vaccinated with lethally irradiated K562 cells that were modified to secrete high levels of granulocyte macrophage colony-stimulating factor (GM-CSF). This methodology can be readily adapted to examine the effects of other whole tumor cell-based vaccines, a scenario in which the precise tumor antigens that stimulate immune responses are unknown. PMID:23170257
Global Manufacturing of CAR T Cell Therapy.
Levine, Bruce L; Miskin, James; Wonnacott, Keith; Keir, Christopher
2017-03-17
Immunotherapy using chimeric antigen receptor-modified T cells has demonstrated high response rates in patients with B cell malignancies, and chimeric antigen receptor T cell therapy is now being investigated in several hematologic and solid tumor types. Chimeric antigen receptor T cells are generated by removing T cells from a patient's blood and engineering the cells to express the chimeric antigen receptor, which reprograms the T cells to target tumor cells. As chimeric antigen receptor T cell therapy moves into later-phase clinical trials and becomes an option for more patients, compliance of the chimeric antigen receptor T cell manufacturing process with global regulatory requirements becomes a topic for extensive discussion. Additionally, the challenges of taking a chimeric antigen receptor T cell manufacturing process from a single institution to a large-scale multi-site manufacturing center must be addressed. We have anticipated such concerns in our experience with the CD19 chimeric antigen receptor T cell therapy CTL019. In this review, we discuss steps involved in the cell processing of the technology, including the use of an optimal vector for consistent cell processing, along with addressing the challenges of expanding chimeric antigen receptor T cell therapy to a global patient population.
Behboodi, E; Ayres, S L; Memili, E; O'Coin, M; Chen, L H; Reggio, B C; Landry, A M; Gavin, W G; Meade, H M; Godke, R A; Echelard, Y
2005-01-01
Nuclear transfer (NT) using transfected primary cells is an efficient approach for the generation of transgenic goats. However, reprogramming abnormalities associated with this process might result in compromised animals. We examined the health, reproductive performance, and milk production of four transgenic does derived from somatic cell NT. Goats were derived from two fetal cell lines, each transfected with a transgene expressing a different version of the MSP-1(42) malaria antigen, either glycosylated or non-glycosylated. Two female kids were produced per cell line. Health and growth of these NT animals were monitored and compared with four age-matched control does. There were no differences in birth and weaning weights between NT and control animals. The NT does were bred and produced a total of nine kids. The control does delivered five kids. The NT does expressing the glycosylated antigen lactated only briefly, probably as a result of over-expression of the MSP-1(42) protein. However, NT does expressing the non-glycosylated antigen had normal milk yields and produced the recombinant protein. These data demonstrated that the production of healthy transgenic founder goats by somatic cell NT is readily achievable and that these animals can be used successfully for the production of a candidate Malaria vaccine.
Enhancing the Breadth of Efficacy of Therapeutic Vaccines for Breast Cancer
2014-10-01
4b. Generate specific tumor antigen lysates from recombinant baculovirus- infected insect cells. *Currently expressing antigens in C1R cells since... Immunology Conference, Breckenridge CO (invited by Jim Hagman). Sept 20, 2014, Analysis of the T cell repertoire in breast cancer using emulsion...by Jonathan Bramson). 13 Nov 11, 2014 (anticipated), Elimination of the bottlenecks in T cell receptor antigen discovery, Immunology Forum
Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma.
Iwagami, Yoshifumi; Casulli, Sarah; Nagaoka, Katsuya; Kim, Miran; Carlson, Rolf I; Ogawa, Kosuke; Lebowitz, Michael S; Fuller, Steve; Biswas, Biswajit; Stewart, Solomon; Dong, Xiaoqun; Ghanbari, Hossein; Wands, Jack R
2017-09-01
Hepatocellular carcinoma (HCC) is a difficult to treat tumor with a poor prognosis. Aspartate β-hydroxylase (ASPH) is a highly conserved enzyme overexpressed on the cell surface of both murine and human HCC cells. We evaluated therapeutic effects of nanoparticle lambda (λ) phage vaccine constructs against ASPH expressing murine liver tumors. Mice were immunized before and after subcutaneous implantation of a syngeneic BNL HCC cell line. Antitumor actively was assessed by generation of antigen specific cellular immune responses and the identification of tumor infiltrating lymphocytes. Prophylactic and therapeutic immunization significantly delayed HCC growth and progression. ASPH-antigen specific CD4+ and CD8+ lymphocytes were identified in the spleen of tumor bearing mice and cytotoxicity was directed against ASPH expressing BNL HCC cells. Furthermore, vaccination generated antigen specific Th1 and Th2 cytokine secretion by immune cells. There was widespread necrosis with infiltration of CD3+ and CD8+ T cells in HCC tumors of λ phage vaccinated mice compared to controls. Moreover, further confirmation of anti-tumor effects on ASPH expressing tumor cell growth were obtained in another murine syngeneic vaccine model with pulmonary metastases. These observations suggest that ASPH may serve as a highly antigenic target for immunotherapy.
[HLA-G: from feto-maternal tolerance to organ acceptance].
Carosella, Edgardo D
2014-01-01
HLA-G is a nonclassical class I molecule that differs from classical antigens by its restricted expression, very low polymorphism, expression of 7 different protein isoforms, and immune tolerance-inducing activity. HLA-G plays a key role in feto-maternal tolerance. Its interaction with three specific receptors expressed on immune cells (T, B, natural killer and antigen-presenting cells) allows it to act at all levels of the immune response. HLA-G can also be expressed by tumor cells and their microenvironment, endowing them with significant local tolerance. The same is true in some inflammatory and viral diseases.
Stable expression of hepatitis delta virus antigen in a eukaryotic cell line.
Macnaughton, T B; Gowans, E J; Reinboth, B; Jilbert, A R; Burrell, C J
1990-06-01
The gene encoding the hepatitis delta virus structural antigen (HDAg) was linked to a neomycin resistance gene in a retrovirus expression vector, and human HepG2 cells were transfected with the recombinant plasmid. A stable cell line was cloned that expressed HDAg in the nuclei of 100% of cells, in a pattern indicating a close relationship with cell nucleoli. Analysis of partially purified recombinant HDAg by HPLC showed an Mr in the range of 7 x 10(5) to 2 x 10(6), which appeared to contain conformation-dependent epitopes, whereas the density of the antigen was 1.19 g/ml by equilibrium centrifugation in caesium chloride, and in rate zonal centrifugation it sedimented with a value of 50S, close to that of particulate hepatitis B virus surface antigen. Immunoblotting demonstrated a single polypeptide with an Mr of 24K which corresponded to the smaller of the two HDAg-specific polypeptides present in infected sera. The recombinant HDAg polypeptide was shown to be a RNA-binding protein with specificity for both genomic and antigenomic species of hepatitis delta virus RNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terasawa, Masao; Nagata, Kisaburo; Kobayashi, Yoshiro
2008-12-12
Antigen-transporting cells take up pathogens, and then migrate from sites of inflammation to secondary lymphoid tissues to induce an immune response. Among antigen-transporting cells, dendritic cells (DCs) are believed to be the most potent and professional antigen-presenting cells that can stimulate naive T cells. However, the cells that transport antigens, tumor cell antigens in particular, have not been clearly identified. In this study we have analyzed what types of cells transport tumor cell antigens to secondary lymphoid tissues. We show that neutrophils, monocytes and macrophages but not DCs engulf X-irradiated P388 leukemic cells after their injection into the peritoneal cavity,more » and that neutrophils and monocytes but not macrophages migrate to the parathymic lymph nodes (pLN), the blood, and then the spleen. The monocytes in the pLN comprise Gr-1{sup -} and Gr-1{sup +} ones, and some of these cells express CD11c. Overall, this study demonstrates that neutrophils and monocytes transport tumor cell antigens from the peritoneal cavity to secondary lymphoid tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogate, N.; Yamabe, Toshio; Verma, L.
1996-04-01
Lack of major histocompatibility class I antigens on neurons has been implicated as a possible mechanism for viral persistence in the brain since these antigens are required for cytotoxic T-lymphocyte recognition of infected cells. In subacute sclerosing panencephalitis (SSPE), measles virus (MV) persists in neurons, resulting in a fatal chronic infection. MHC class I mRNA expression was examined in formalin-fixed brain tissue from 6 SSPE patients by in situ hybridization. In addition MHC class I protein expression in MV-infected neurons was examined in experimental Subacute Measles Encephalitis (SME) by double immunohistochemistry. MHC class I mRNA expression was found to bemore » upregulated in SSPE tissues studied, and in 5 out of 6 cases the expression was definitively seen on neurons. The percentage of neurons expressing MHC class I mRNA ranged between 20 to 84% in infected areas. There was no correlation between the degree of infection and expression of MHC class I molecules on neurons. Importantly, the number of neurons co-expressing MHC class I and MV antigens was markedly low, varying between 2 to 8%. Similar results were obtained in SME where 20 to 30% of the neurons expressed MHC class I but < 8% co-expressed MHC class I and MV antigens. Perivascular infiltrating cells in the infected regions in SME expressed IFN{gamma} immunoreactivity. The results suggest that MV may not be directly involved in the induction of MHC class I on neurons and that cytokines such as IFN{gamma} may play an important role. Furthermore, the paucity of neurons co-expressing MHC class I and MV antigens in SSPE and SME suggests that such cells are either rapidly cleared by cytotoxic T lymphocytes (CTL), or, alternatively, lack of co-expression of MHC class I on MV infected neurons favors MV persistence in these cells by escaping CTL recognition. 33 refs., 3 figs., 3 tabs.« less
Bonaldo, Myrna C; Martins, Mauricio A; Rudersdorf, Richard; Mudd, Philip A; Sacha, Jonah B; Piaskowski, Shari M; Costa Neves, Patrícia C; Veloso de Santana, Marlon G; Vojnov, Lara; Capuano, Saverio; Rakasz, Eva G; Wilson, Nancy A; Fulkerson, John; Sadoff, Jerald C; Watkins, David I; Galler, Ricardo
2010-04-01
Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.
Curran, Kevin J; Seinstra, Beatrijs A; Nikhamin, Yan; Yeh, Raymond; Usachenko, Yelena; van Leeuwen, Dayenne G; Purdon, Terence; Pegram, Hollie J; Brentjens, Renier J
2015-01-01
Adoptive cell therapy with genetically modified T cells expressing a chimeric antigen receptor (CAR) is a promising therapy for patients with B-cell acute lymphoblastic leukemia. However, CAR-modified T cells (CAR T cells) have mostly failed in patients with solid tumors or low-grade B-cell malignancies including chronic lymphocytic leukemia with bulky lymph node involvement. Herein, we enhance the antitumor efficacy of CAR T cells through the constitutive expression of CD40 ligand (CD40L, CD154). T cells genetically modified to constitutively express CD40L (CD40L-modified T cells) demonstrated increased proliferation and secretion of proinflammatory TH1 cytokines. Further, CD40L-modified T cells augmented the immunogenicity of CD40+ tumor cells by the upregulated surface expression of costimulatory molecules (CD80 and CD86), adhesion molecules (CD54, CD58, and CD70), human leukocyte antigen (HLA) molecules (Class I and HLA-DR), and the Fas-death receptor (CD95). Additionally, CD40L-modified T cells induced maturation and secretion of the proinflammatory cytokine interleukin-12 by monocyte-derived dendritic cells. Finally, tumor-targeted CD19-specific CAR/CD40L T cells exhibited increased cytotoxicity against CD40+ tumors and extended the survival of tumor-bearing mice in a xenotransplant model of CD19+ systemic lymphoma. This preclinical data supports the clinical application of CAR T cells additionally modified to constitutively express CD40L with anticipated enhanced antitumor efficacy. PMID:25582824
Censoring of self-reactive B cells by follicular dendritic cell-displayed self-antigen
Yau, Irene W.; Cato, Matthew H.; Jellusova, Julia; Hurtado de Mendoza, Tatiana; Brink, Robert; Rickert, Robert C.
2013-01-01
In the secondary lymphoid organs, intimate contact with follicular dendritic cells (FDCs) is required for B cell retention and antigen-driven selection during the germinal center response. However, selection of self-reactive B cells by antigen on FDCs has not been addressed. To this end, we generated a mouse model to conditionally express a membrane-bound self-antigen on FDCs, and monitor the fate of developing self-reactive B cells. Here, we show that self-antigen displayed on FDCs mediates effective elimination of self-reactive B cells at the transitional stage. Notwithstanding, some self-reactive B cells persist beyond this checkpoint, showing evidence of antigen experience and intact proximal BCR signaling, but they are short-lived and unable to elicit T cell help. These results implicate FDCs as an important component of peripheral B cell tolerance that prevent the emergence of naïve B cells capable of responding to sequestered self-antigens. PMID:23817432
Papapetrou, Eirini P; Kovalovsky, Damian; Beloeil, Laurent; Sant'angelo, Derek; Sadelain, Michel
2009-01-01
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression by targeting complementary sequences, referred to as miRNA recognition elements (MREs), typically located in the 3' untranslated region of mRNAs. miR-181a is highly expressed in developing thymocytes and markedly downregulated in post-thymic T cells. We investigated whether endogenous miR-181a can be harnessed to segregate expression of chimeric antigen receptors (CARs) and TCRs between developing and mature T cells. Lentiviral-encoded antigen receptors were tagged with a miR-181a-specific MRE and transduced into mouse BM cells that were used to generate hematopoietic chimeras. Expression of a CAR specific for human CD19 (hCD19) was selectively suppressed in late double-negative and double-positive thymocytes, coinciding with the peak in endogenous miR-181a expression. Receptor expression was fully restored in post-thymic resting and activated T cells, affording protection against a subsequent challenge with hCD19+ tumors. Hematopoietic mouse chimeras engrafted with a conalbumin-specific TCR prone to thymic clonal deletion acquired peptide-specific T cell responsiveness only when the vector-encoded TCR transcript was similarly engineered to be subject to regulation by miR-181a. These results demonstrate the potential of miRNA-regulated transgene expression in stem cell-based therapies, including cancer immunotherapy.
Imberg, Keren; Mercer, Frances; Zhong, Shi; Krogsgaard, Michelle; Unutmaz, Derya
2013-01-01
Activation of T cells through the engagement of the T cell receptors (TCRs) with specific peptide-MHC complexes on antigen presenting cells (APCs) is the major determinant for their proliferation, differentiation and display of effector functions. To assess the role of quantity and quality of peptide-MHC presentation in eliciting T cell activation and suppression functions, we genetically engineered human T cells with two TCRs that recognize HLA-A*0201-restricted peptides derived from either HIV or melanoma antigens. The engineered-TCRs are highly functional in both CD8+ and CD4+ T cells as assessed by the upregulation of activation markers, induction of cytokine secretion and cytotoxicity. We further demonstrated that engineered-TCRs can also be expressed on naïve human T cells, which are stimulated through APCs presenting specific peptides to induce T cell proliferation and acquire effector functions. Furthermore, regulatory T cells (Tregs) ectopically expressing the engineered-TCRs are activated in an antigen-specific fashion and suppress T cell proliferation. In this system, the inhibitory activity of peptide-stimulated Tregs require the presence of dendritic cells (DCs) in the culture, either as presenters or as bystander cells, pointing to a critical role for DCs in suppression by Tregs. In conclusion, the engineered-TCR system reported here advances our ability to understand the differentiation pathways of naïve T cells into antigen-specific effector cells and the role of antigen-specific signaling in Treg-mediated immune suppression. PMID:23437112
T follicular helper and T follicular regulatory cells have different TCR specificity
Maceiras, Ana Raquel; Almeida, Silvia Cristina Paiva; Mariotti-Ferrandiz, Encarnita; Chaara, Wahiba; Jebbawi, Fadi; Six, Adrien; Hori, Shohei; Klatzmann, David; Faro, Jose; Graca, Luis
2017-01-01
Immunization leads to the formation of germinal centres (GCs) that contain both T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. Whether T-cell receptor (TCR) specificity defines the differential functions of Tfh and Tfr cells is unclear. Here we show that antigen-specific T cells after immunization are preferentially recruited to the GC to become Tfh cells, but not Tfr cells. Tfh cells, but not Tfr cells, also proliferate efficiently on restimulation with the same immunizing antigen in vitro. Ex vivo TCR repertoire analysis shows that immunization induces oligoclonal expansion of Tfh cells. By contrast, the Tfr pool has a TCR repertoire that more closely resembles that of regulatory T (Treg) cells. Our data thus indicate that the GC Tfh and Tfr pools are generated from distinct TCR repertoires, with Tfh cells expressing antigen-responsive TCRs to promote antibody responses, and Tfr cells expressing potentially autoreactive TCRs to suppress autoimmunity. PMID:28429709
Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T cells.
Davies, David Marc; Maher, John
2010-06-01
Harnessing the power of the immune system to target cancer has long been a goal of tumor immunologists. One avenue under investigation is the modification of T cells to express a chimeric antigen receptor (CAR). Expression of such a receptor enables T-cell specificity to be redirected against a chosen tumor antigen. Substantial research in this field has been carried out, incorporating a wide variety of malignancies and tumor-associated antigens. Ongoing investigations will ensure this area continues to expand at a rapid pace. This review will explain the evolution of CAR technology over the last two decades in addition to detailing the associated benefits and disadvantages. The outcome of recent phase I clinical trials and the impact that these have had upon the direction of future research in this field will also be addressed.
Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D
2014-01-01
Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. PMID:24727440
Gram, Anna M.; Oosenbrug, Timo; Lindenbergh, Marthe F. S.; Büll, Christian; Comvalius, Anouskha; Dickson, Kathryn J. I.; Wiegant, Joop; Vrolijk, Hans; Lebbink, Robert Jan; Wolterbeek, Ron; Adema, Gosse J.; Griffioen, Marieke; Heemskerk, Mirjam H. M.; Tscharke, David C.; Hutt-Fletcher, Lindsey M.; Ressing, Maaike E.
2016-01-01
Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150’s cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle. PMID:27077376
Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban
2017-11-17
Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.
Gorskaya, Yu F; Danilova, T A; Mezentseva, M V; Shapoval, I M; Narovlyanskii, A N; Nesterenko, V G
2011-06-01
Injection of S. typhimurium antigens significantly (9-fold) increased cloning efficiency and, hence, the content of stromal precursor cells in the spleen as soon as after 24 h. These parameters returned to normal by days 6-15 after immunization. Cultured splenocytes collected from immune (but not intact) animals expressed the genes of proinflammatory cytokines IL-1β (on days 1, 6, 15) and IL-6 (on days 1 and 6), TNF-α (on days 6 and 15), and of IFN-α and IL-18 (on days 6 and 15). The expression of IL-4 gene was suppressed on day 6 after immunization, of IL-10 gene on days 1 and 6, of IL-6 gene on day 15. Hence, no signs of immune response suppression by stromal cells were found in this system. The spectrum and dynamics of the expression of pro- and anti-inflammatory cytokine genes in stromal cell cultures from the spleen of immunized mice seemed to correspond to those needed for support of the immune response to S. typhimurium antigens, observed in immunized animals. The results indicate possible involvement of stromal cells in the realization of immune response in vivo. The increase of stromal precursor cells cloning efficiency in response to antigen injection could not be reproduced in vitro: the presence of S. typhimurium antigens in primary cultures of intact mouse bone marrow and spleen throughout the entire period of culturing ≈ 20-fold reduced cloning efficiency in cultures.
Krenciute, Giedre; Krebs, Simone; Torres, David; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Li, Xiao-Nan; Lesniak, Maciej S; Balyasnikova, Irina V; Gottschalk, Stephen
2016-01-01
Immunotherapy with T cells expressing chimeric antigen receptors (CARs) is an attractive approach to improve outcomes for patients with glioblastoma (GBM). IL13Rα2 is expressed at a high frequency in GBM but not in normal brain, making it a promising CAR T-cell therapy target. IL13Rα2-specific CARs generated up to date contain mutated forms of IL13 as an antigen-binding domain. While these CARs target IL13Rα2, they also recognize IL13Rα1, which is broadly expressed. To overcome this limitation, we constructed a panel of IL13Rα2-specific CARs that contain the IL13Rα2-specific single-chain variable fragment (scFv) 47 as an antigen binding domain, short or long spacer regions, a transmembrane domain, and endodomains derived from costimulatory molecules and CD3.ζ (IL13Rα2-CARs). IL13Rα2-CAR T cells recognized IL13Rα2-positive target cells in coculture and cytotoxicity assays with no cross-reactivity to IL13Rα1. However, only IL13Rα2-CAR T cells with a short spacer region produced IL2 in an antigen-dependent fashion. In vivo, T cells expressing IL13Rα2-CARs with short spacer regions and CD28.ζ, 41BB.ζ, and CD28.OX40.ζ endodomains had potent anti-glioma activity conferring a significant survival advantage in comparison to mice that received control T cells. Thus, IL13Rα2-CAR T cells hold the promise to improve current IL13Rα2-targeted immunotherapy approaches for GBM and other IL13Rα2-positive malignancies. PMID:26514825
Rose, Marie-Clare St.; Taylor, Roslyn A.; Bandyopadhyay, Suman; Qui, Harry Z.; Hagymasi, Adam T.; Vella, Anthony T.; Adler, Adam J.
2012-01-01
T cell tolerance to tumor antigens represents a major hurdle in generating tumor immunity. Combined administration of agonistic monoclonal antibodies to the costimulatory receptors CD134 plus CD137 can program T cells responding to tolerogenic antigen to undergo expansion and effector T cell differentiation, and also elicits tumor immunity. Nevertheless, CD134 and CD137 agonists can also engage inhibitory immune components. To understand how immune stimulatory versus inhibitory components are regulated during CD134 plus CD137 dual costimulation, the current study utilized a model where dual costimulation programs T cells encountering a highly tolerogenic self-antigen to undergo effector differentiation. IFN-γ was found to play a pivotal role in maximizing the function of effector T cells while simultaneously limiting the expansion of CD4+CD25+Foxp3+ Tregs. In antigen-responding effector T cells, IFN-γ operates via a direct cell-intrinsic mechanism to cooperate with IL-2 to program maximal expression of granzyme B. Simultaneously, IFN-γ limits expression of the IL-2 receptor alpha chain (CD25) and IL-2 signaling through a mechanism that does not involve T-bet-mediated repression of IL-2. IFN-γ also limited CD25 and Foxp3 expression on bystanding CD4+Foxp3+ Tregs, and limited the potential of these Tregs to expand. These effects could not be explained by the ability of IFN-γ to limit IL-2 availability. Taken together, during dual costimulation IFN-γ interacts with IL-2 through distinct mechanisms to program maximal expression of effector molecules in antigen-responding T cells while simultaneously limiting Treg expansion. PMID:23295363
Nakamoto, Nobuhiro; Kaplan, David E; Coleclough, Jennifer; Li, Yun; Valiga, Mary E; Kaminski, Mary; Shaked, Abraham; Olthoff, Kim; Gostick, Emma; Price, David A; Freeman, Gordon J; Wherry, E John; Chang, Kyong-Mi
2008-06-01
The immunoinhibitory receptor programmed death-1 (PD-1) is up-regulated on dysfunctional virus-specific CD8 T cells during chronic viral infections, and blockade of PD-1/PD-ligand (PD-L) interactions can restore their function. As hepatitis C virus (HCV) persists in the liver with immune-mediated disease pathogenesis, we examined the role of PD-1/PD-L pathway in antigen-specific CD8 T-cell dysfunction in the liver and blood of HCV-infected patients. PD-1 expression and function of circulating CD8 T cells specific for HCV, Epstein-Barr virus, and influenza virus were examined ex vivo and following antigenic stimulation in vitro in patients with acute, chronic, and resolved HCV infection using class I tetramers and flow cytometry. Intrahepatic CD8 T cells were examined from liver explants of chronically HCV-infected transplant recipients. Intrahepatic HCV-specific CD8 T cells from chronically HCV-infected patients were highly PD-1 positive, profoundly dysfunctional, and unexpectedly refractory to PD-1/PD-L blockade, contrasting from circulating PD-1-intermediate HCV-specific CD8 T cells with responsiveness to PD-1/PD-L blockade. This intrahepatic functional impairment was HCV-specific and directly associated with the level of PD-1 expression. Highly PD-1-positive intrahepatic CD8 T cells were more phenotypically exhausted with increased cytotoxic T-lymphocyte antigen 4 and reduced CD28 and CD127 expression, suggesting that active antigen-specific stimulation in the liver induces a profound functional exhaustion not reversible by PD-1/PD-L blockade alone. HCV-specific CD8 T-cell dysfunction and responsiveness to PD-1/PD-L blockade are defined by their PD-1 expression and compartmentalization. These findings provide new and clinically relevant insight to differential antigen-specific CD8 T-cell exhaustion and their functional restoration.
Nakamoto, Nobuhiro; Kaplan, David E.; Coleclough, Jennifer; Li, Yun; Kaminski, Mary; Shaked, Abraham; Olthoff, Kim; Gostick, Emma; Price, David A.; Freeman, Gordon J.; Wherry, E. John; Chang, Kyong-Mi
2008-01-01
Background & Aims The immuno-inhibitory receptor Programmed Death-1 (PD-1) is upregulated on dysfunctional virus-specific CD8 T-cells during chronic viral infections and blockade of PD-1:PD-ligand (PD-L) interactions can restore their function. As hepatitis C virus (HCV) persists in the liver with immune-mediated disease pathogenesis, we examined the role of PD1/PD-L pathway in antigen-specific CD8 T-cell dysfunction in the liver and blood of HCV-infected patients. Methods PD-1 expression and function of circulating CD8 T-cells specific for HCV, EBV and Flu were examined ex vivo and following antigenic stimulation in vitro in patients with acute, chronic and resolved HCV infection using class I tetramers and flow cytometry. Intrahepatic CD8 T-cells were examined from liver explants of chronically HCV-infected transplant recipients. Results Intrahepatic HCV-specific CD8 T-cells from chronically HCV-infected patients were highly PD-1-positive, profoundly dysfunctional and unexpectedly refractory to PD-1:PD-L blockade, contrasting from circulating PD-1-intermediate HCV-specific CD8 T-cells with responsiveness to PD-1:PD-L blockade. This intrahepatic functional impairment was HCV-specific and directly associated with the level of PD-1 expression. Highly PD-1-positive intrahepatic CD8 T-cells were more phenotypically exhausted with increased cytotoxic T-lymphocyte antigen 4 (CTLA-4) and reduced CD28 and CD127 expression, suggesting that active antigen-specific stimulation in the liver induces a profound functional exhaustion not reversible by PD-1:PD-L blockade alone. Conclusion HCV-specific CD8 T-cell dysfunction and responsiveness to PD-1:PD-L blockade are defined by their PD-1 expression and compartmentalization. These findings provide new and clinically relevant insight to differential antigen-specific CD8 T-cell exhaustion and their functional restoration. PMID:18549878
Nguyen, Thao; Hatfield, Stephen M.; Ohta, Akio; Sitkovsky, Michail V.
2017-01-01
Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME. PMID:29155844
Singh, Harjeet; Figliola, Matthew J.; Dawson, Margaret J.; Olivares, Simon; Zhang, Ling; Yang, Ge; Maiti, Sourindra; Manuri, Pallavi; Senyukov, Vladimir; Jena, Bipulendu; Kebriaei, Partow; Champlin, Richard E.; Huls, Helen; Cooper, Laurence J. N.
2013-01-01
Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼1010 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion. PMID:23741305
Hercend, T; Griffin, J D; Bensussan, A; Schmidt, R E; Edson, M A; Brennan, A; Murray, C; Daley, J F; Schlossman, S F; Ritz, J
1985-01-01
The initial characterization of two monoclonal antibodies directed at antigens selectively expressed on large granular lymphocytes (LGL) is reported in the present paper. These two reagents, anti-natural killer (NK) H1A and anti-NKH2, were obtained following immunization of mouse spleen cells with a cloned human NK cell line termed JT3. In fresh human peripheral blood, both anti-NKH1A and anti-NKH2 selectively reacted with cells that appeared morphologically as large granular lymphocytes. However, complement lysis studies and two color fluorescence analysis demonstrated that some LGL express both antigens and other cells express only NKH1A or NKH2. Functional analysis of these subsets indicated that the population of NKH1A+ cells contains the entire pool of NK active lymphocytes, whereas expression of NKH2 antigen appeared to delineate a unique subpopulation of LGL which, in a resting state, display a low degree of spontaneous cytotoxicity. Expression of NKH1A and NKH2 was also investigated using a series of nine well characterized human NK clones. All NK clones were found to be NKH1A+ and four out of nine also expressed NKH2. These results strongly supported the view that NKH1A is a "pan-NK" associated antigen, and indicated that at least a fraction of cloned NKH2 + LGL are strongly cytotoxic. Anti-NKH1A was shown to have the same specificity as the previously described N901 antibody and was found here to precipitate a 200,000-220,000-mol wt molecule in SDS-polyacrylamide gel electrophoresis (PAGE) analysis. Anti-NKH2 was specific for a structure that migrates at 60,000 mol wt in SDS-PAGE analysis under reducing conditions. Two color immunofluorescence analysis of NKH1A, NKH2, and other NK-associated antigens (Leu7 and B73.1) demonstrated variable degrees of coexpression of these antigens, which confirmed that NKH1A and NKH2 define distinct cell surface structures. Anti-NKH1A and anti-NKH2 appear to be useful reagents for characterizing LGL present in human peripheral blood and for identifying functionally relevant subsets within this heterogeneous population of cytotoxic lymphocytes. Images PMID:3884668
Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M
2016-03-01
T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin (I) as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278.
FcepsilonRI-alpha siRNA inhibits the antigen-induced activation of mast cells.
Safaralizadeh, Reza; Soheili, Zahra-Soheila; Deezagi, Abdolkhaleg; Pourpak, Zahra; Samiei, Shahram; Moin, Mostafa
2009-12-01
FcepsilonRI, The high affinity receptor for IgE plays a critical role in triggering the allergic reactions. It is responsible for inducing mast cell degranulation and deliberation of allergy mediators when it is aggregated by allergen and IgE complexes. FcepsilonRI on the mast cells consists of three subunits; alpha chain directly binds IgE, beta chain and dimmer of gamma chains together mediate intracellular signaling. Cross-linking of IgE-bound FcepsilonRI on the surface of mast cells and basophils by the multivalent antigen induces release of chemical mediators. The present in vitro study was designed to investigate the effect of synthetic FcepsilonRI-alpha siRNA on the antigen-induced activation of MC/9 cells. MC/9 cells which are murine mast cells were transfected by FcepsilonRI-alpha siRNA and negative control siRNA. After 6 h, anti-DNP (Dinitrophenyl) IgE was used for the cells sensitization. Then the cells were challenged with Dinitrophenyl-Human Serum Albumin (DNP-HSA) for mast cell degranulation induction before collection of supernatants. The amount of mRNA and protein expression was measured by Real Time PCR and western blot analysis, respectively. Determination of the expression rate of FcepsilonRI-alpha on cell surface was achieved by flow cytometry. ELISA and spectrophotometry methods were used subsequently for measuring the effects of FcepsilonRI-alpha siRNA on antigen-induced histamine and beta-hexosaminidase release. FcepsilonRI-alpha siRNA treated cells showed significant decrease in FcepsilonRI-alpha mRNA and protein expression in comparison to control cells. FcepsilonRI-mediated mast cell release of beta-hexosaminidase and histamine were also inhibited. In this study it was shown that FcepsilonRI-alpha siRNA could suppress FcepsilonRI-alpha expression and inhibited degranulation and histamine release in antigen-stimulated MC/9 cells. In conclusion, knock-down of FcepsilonRI-alpha by siRNA could be a promising method for inhibition of the mast cell-mediated allergic reactions.
1993-01-01
To assess the role of immunoglobulin D (IgD) in vivo we generated IgD- deficient mice by gene targeting and studied B cell development and function in the absence of IgD expression. In the mutant animals, conventional and CD5-positive (B1) B cells are present in normal numbers, and the expression of the surface markers CD22 and CD23 in the compartment of conventional B cells indicates acquisition of a mature phenotype. As in wild-type animals, most of the peripheral B cells are resting cells. The IgD-deficient mice respond well to T cell- independent and -dependent antigens. However, in heterozygous mutant animals, B cells expressing the wild type IgH locus are overrepresented in the peripheral B cell pool, and T cell-dependent IgG1 responses are further dominated by B cells expressing the wild-type allele. Similarly, in homozygous mutant (IgD-deficient) animals, affinity maturation is delayed in the early primary response compared to control animals, although the mutants are capable of generating high affinity B cell memory. Thus, rather than being involved in major regulatory processes as had been suggested, IgD seems to function as an antigen receptor optimized for efficient recruitment of B cells into antigen- driven responses. The IgD-mediated acceleration of affinity maturation in the early phase of the T cell-dependent primary response may confer to the animal a critical advantage in the defense against pathogens. PMID:8418208
Therapeutic use of Aldara in chronic myeloid leukemia.
Marleau, Annette M; Lipton, Jeffrey H; Riordan, Neil H; Ichim, Thomas E
2007-01-25
The potent clinical responses seen in patients with chronic myeloid leukemia (CML) after administration of donor-specific lymphocytes, as well as the correlation between the presence of antigen specific T cells and prolonged remission in these patients, suggests a role for the immunological control of CML. Here we propose Aldara, a clinically used formulation of imiquimod, as an agent for augmenting immune responses to CML antigens. Our proposition is based upon 3 tenets: 1) Endogenous dendritic cells (DC) of CML patients, which are known to be derived from the malignant clone, express and present various leukemic antigens; 2) CML-antigen reactive T cell clones exist in the patient but in many situations are ineffectively stimulated to cause significant hematological responses; and 3) Antigen presentation by mature, activated DC, which endogenously express CML-antigens may endow the pre-existing ineffective T cell responses with ability to control CML progression. The practical use of Aldara as a localized activator of DC in the context of present day leukemic therapeutics, as well as various properties of this unique immune modulator will be discussed.
2011-01-01
Background Yellow fever is an haemorrhagic disease caused by a virus that belongs to the genus Flavivirus (Flaviviridae family) and is transmitted by mosquitoes. Among the viral proteins, the envelope protein (E) is the most studied one, due to its high antigenic potencial. Baculovirus are one of the most popular and efficient eukaryotic expression system. In this study a recombinant baculovirus (vSynYFE) containing the envelope gene (env) of the 17D vaccine strain of yellow fever virus was constructed and the recombinant protein antigenicity was tested. Results Insect cells infected with vSynYFE showed syncytium formation, which is a cytopathic effect characteristic of flavivirus infection and expressed a polypeptide of around 54 kDa, which corresponds to the expected size of the recombinant E protein. Furthermore, the recombinant E protein expression was also confirmed by fluorescence microscopy of vSynYFE-infected insect cells. Total vSynYFE-infected insect extracts used as antigens detected the presence of antibodies for yellow fever virus in human sera derived from yellow fever-infected patients in an immunoassay and did not cross react with sera from dengue virus-infected patients. Conclusions The E protein expressed by the recombinant baculovirus in insect cells is antigenically similar to the wild protein and it may be useful for different medical applications, from improved diagnosis of the disease to source of antigens for the development of a subunit vaccine. PMID:21619598
Peixoto, António; Evaristo, César; Munitic, Ivana; Monteiro, Marta; Charbit, Alain; Rocha, Benedita; Veiga-Fernandes, Henrique
2007-01-01
To study in vivo CD8 T cell differentiation, we quantified the coexpression of multiple genes in single cells throughout immune responses. After in vitro activation, CD8 T cells rapidly express effector molecules and cease their expression when the antigen is removed. Gene behavior after in vivo activation, in contrast, was quite heterogeneous. Different mRNAs were induced at very different time points of the response, were transcribed during different time periods, and could decline or persist independently of the antigen load. Consequently, distinct gene coexpression patterns/different cell types were generated at the various phases of the immune responses. During primary stimulation, inflammatory molecules were induced and down-regulated shortly after activation, generating early cells that only mediated inflammation. Cytotoxic T cells were generated at the peak of the primary response, when individual cells simultaneously expressed multiple killer molecules, whereas memory cells lost killer capacity because they no longer coexpressed killer genes. Surprisingly, during secondary responses gene transcription became permanent. Secondary cells recovered after antigen elimination were more efficient killers than cytotoxic T cells present at the peak of the primary response. Thus, primary responses produced two transient effector types. However, after boosting, CD8 T cells differentiate into long-lived killer cells that persist in vivo in the absence of antigen. PMID:17485515
Gacerez, Albert T; Hua, Casey K; Ackerman, Margaret E; Sentman, Charles L
2018-05-01
B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.
In vitro stimulation of rabbit T lymphocytes by cells expressing herpes simplex antigens.
Kapoor, A K; Ling, N R; Nash, A A; Bachan, A; Wildy, P
1982-04-01
Lymphocyte stimulation responses to herpes antigens were studied using virus-infected X-irradiated cells. Rabbits were immunized with herpes simplex virus type 1 (strain HFEM) grown in RK 13 cells. For in vitro stimulation assay BHK21 cells were X-irradiated (15 000 rad) and infected with a high m.o.i. of a temperature-sensitive (ts) mutant (N102) of HFEM strain at the non-permissive temperature (38.5 degrees C) of virus. Virus antigens were expressed on the infected cells and there was no leakage of infectious virus into the medium at 38.5 degrees C. T lymphocytes from rabbits immunized with herpes simplex virus were specifically activated by herpesvirus-infected X-irradiated cells; lymph node cells from rabbits immunized with RK13 cells and from non-immune rabbits showed no proliferative response.
A structural basis for antigen recognition by the T cell-like lymphocytes of sea lamprey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Lu; Velikovsky, C. Alejandro; Xu, Gang
Adaptive immunity in jawless vertebrates is mediated by leucine-rich repeat proteins called 'variable lymphocyte receptors' (VLRs). Two types of VLR (A and B) are expressed by mutually exclusive lymphocyte populations in lamprey. VLRB lymphocytes resemble the B cells of jawed vertebrates; VLRA lymphocytes are similar to T cells. We determined the structure of a high-affinity VLRA isolated from lamprey immunized with hen egg white lysozyme (HEL) in unbound and antigen-bound forms. The VLRA-HEL complex demonstrates that certain VLRAs, like {gamma}{delta} T-cell receptors (TCRs) but unlike {alpha}{beta} TCRs, can recognize antigens directly, without a requirement for processing or antigen-presenting molecules. Thus,more » these VLRAs feature the nanomolar affinities of antibodies, the direct recognition of unprocessed antigens of both antibodies and {gamma}{delta} TCRs, and the exclusive expression on the lymphocyte surface that is unique to {alpha}{beta} and {gamma}{delta} TCRs.« less
Yi, Y; Zhang, M; Liu, C
2001-06-01
To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.
Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia
Barrett, David; Aplenc, Richard; Porter, David L.; Rheingold, Susan R.; Teachey, David T.; Chew, Anne; Hauck, Bernd; Wright, J. Fraser; Milone, Michael C.; Levine, Bruce L.; June, Carl H.
2014-01-01
Summary Chimeric antigen receptor–modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre–B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×106 to 1.2×107 CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce anti-leukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor–modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL. PMID:23527958
Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.
Grupp, Stephan A; Kalos, Michael; Barrett, David; Aplenc, Richard; Porter, David L; Rheingold, Susan R; Teachey, David T; Chew, Anne; Hauck, Bernd; Wright, J Fraser; Milone, Michael C; Levine, Bruce L; June, Carl H
2013-04-18
Chimeric antigen receptor-modified T cells with specificity for CD19 have shown promise in the treatment of chronic lymphocytic leukemia (CLL). It remains to be established whether chimeric antigen receptor T cells have clinical activity in acute lymphoblastic leukemia (ALL). Two children with relapsed and refractory pre-B-cell ALL received infusions of T cells transduced with anti-CD19 antibody and a T-cell signaling molecule (CTL019 chimeric antigen receptor T cells), at a dose of 1.4×10(6) to 1.2×10(7) CTL019 cells per kilogram of body weight. In both patients, CTL019 T cells expanded to a level that was more than 1000 times as high as the initial engraftment level, and the cells were identified in bone marrow. In addition, the chimeric antigen receptor T cells were observed in the cerebrospinal fluid (CSF), where they persisted at high levels for at least 6 months. Eight grade 3 or 4 adverse events were noted. The cytokine-release syndrome and B-cell aplasia developed in both patients. In one child, the cytokine-release syndrome was severe; cytokine blockade with etanercept and tocilizumab was effective in reversing the syndrome and did not prevent expansion of chimeric antigen receptor T cells or reduce antileukemic efficacy. Complete remission was observed in both patients and is ongoing in one patient at 11 months after treatment. The other patient had a relapse, with blast cells that no longer expressed CD19, approximately 2 months after treatment. Chimeric antigen receptor-modified T cells are capable of killing even aggressive, treatment-refractory acute leukemia cells in vivo. The emergence of tumor cells that no longer express the target indicates a need to target other molecules in addition to CD19 in some patients with ALL.
Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun
2015-01-01
Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells.
Fu, Jun; Luo, Bin; Guo, Wen-Wen; Zhang, Qing-Mei; Shi, Lei; Hu, Qi-Ping; Chen, Fang; Xiao, Shao-Wen; Xie, Xiao-Xun
2015-01-01
Cancer/testis (CT) antigens are normally expressed in testis and overexpressed in various tumor types. However, their biological function is largely unknown. OY-TES-1, one of cancer/testis (CT) antigens, is reported overexpression in hepatocellular carcinoma (HCC). And we assumed that OY-TES-1 contribute to oncogenesis and progression of HCC. In this study, we knocked down OY-TES-1 by small interference RNA (siRNA) in HCC cell lines (HepG2 and BEL-7404) to verify this assumption and evaluate its potential as therapeutic targets for HCC. We showed that down regulation of OY-TES-1 decreased cell growth, induced the G0/G1 arrest and apoptosis, and prevented migration and invasion in the two HCC cell lines. Further analysis revealed that down regulation of OY-TES-1 increased expression of apoptosis-regulated protein caspase-3, and decreased expression of cell cycle-regulated protein cyclin E, migration/invasion-regulated proteins MMP2 and MMP9. These findings may shed light on the gene therapy about the OY-TES-1 expression in HCC cells. PMID:26339343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabuchi, Yoshiaki; Kondo, Takashi; Suzuki, Yoshihisa
2005-04-15
Sertoli TTE3 cells, derived from transgenic mice bearing temperature-sensitive simian virus 40 large T (tsSV40LT)-antigen, proliferated continuously at a permissive temperature (33 deg C) whereas inactivation of the large T-antigen by a nonpermissive temperature (39 deg C) led to differentiation as judged by elevation of transferrin. To clarify the detailed mechanisms of differentiation, we investigated the time course of changes in gene expression using cDNA microarrays. Of the 865 genes analyzed, 14 genes showed increased levels of expression. Real-time quantitative PCR revealed that the mRNA levels of p21{sup waf1}, milk fat globule membrane protein E8, heat-responsive protein 12, and selenoproteinmore » P were markedly elevated. Moreover, the differentiated condition induced by the nonpermissive temperature significantly increased mRNA levels of these four genes in several cell lines from the transgenic mice bearing the oncogene. The present results regarding changes in gene expression will provide a basis for a further understanding of molecular mechanisms of differentiation in both Sertoli cells and cell lines transformed by tsSV40LT-antigen.« less
Song, De-Gang; Ye, Qunrui; Poussin, Mathilde; Chacon, Jessica A; Figini, Mariangela; Powell, Daniel J
2016-07-20
The poor prognosis and the limited efficacy of targeted therapy in patients with triple-negative breast cancer (TNBC) have raised the need for alternative therapies. Recent studies have demonstrated that folate receptor-alpha (FRα) may represent an ideal tumor-associated marker for immunotherapy for TNBC. The aim of the present study was to apply a chimeric antigen receptor (CAR) approach for the targeting of FRα expressed on TNBC cells and evaluate the antitumor activity of CAR-engineered T cells in vitro and in vivo. We found that human T cells expressing a FRα-specific CAR were potent and specific killers of TNBC cells that express moderate levels of FRα in vitro and significantly inhibited tumor outgrowth following infusion into immunodeficient mice bearing an MDA-MB-231 tumor xenograft. However, the antitumor activity of the FRα CAR T cells was modest when compared to the same CAR T cells applied in an ovarian tumor xenograft model where FRα expression is more abundant. Notably, FRα CAR T cells induced superior tumor regression in vivo against MDA-MB-231 that was engineered for overexpression of FRα. Taken together, our results show that FRα CAR T cells can mediate antitumor activity against established TNBC tumor, particularly when FRα is expressed at higher levels. These results have significant implications for the pre-selection of patients with high antigen expression levels when utilizing CAR-based adoptive T cell therapies of cancer in future clinical trials.
Watanabe, Masashi; Fujihara, Chiharu; Radtke, Andrea J; Chiang, Y Jeffrey; Bhatia, Sumeena; Germain, Ronald N; Hodes, Richard J
2017-09-04
T cell-dependent germinal center (GC) responses require coordinated interactions of T cells with two antigen-presenting cell (APC) populations, B cells and dendritic cells (DCs), in the presence of B7- and CD40-dependent co-stimulatory pathways. Contrary to the prevailing paradigm, we found unique cellular requirements for B7 and CD40 expression in primary GC responses to vaccine immunization with protein antigen and adjuvant: B7 was required on DCs but was not required on B cells, whereas CD40 was required on B cells but not on DCs in the generation of antigen-specific follicular helper T cells, antigen-specific GC B cells, and high-affinity class-switched antibody production. There was, in fact, no requirement for coexpression of B7 and CD40 on the same cell in these responses. Our findings support a substantially revised model for co-stimulatory function in the primary GC response, with crucial and distinct contributions of B7- and CD40-dependent pathways expressed by different APC populations and with important implications for understanding how to optimize vaccine responses or limit autoimmunity. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
The genetic origin of minor histocompatibility antigens.
Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E
1993-01-01
The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.
Hyper-reactive cloned mice generated by direct nuclear transfer of antigen-specific CD4+ T cells.
Kaminuma, Osamu; Katayama, Kazufumi; Inoue, Kimiko; Saeki, Mayumi; Nishimura, Tomoe; Kitamura, Noriko; Shimo, Yusuke; Tofukuji, Soichi; Ishida, Satoru; Ogonuki, Narumi; Kamimura, Satoshi; Oikawa, Mami; Katoh, Shigeki; Mori, Akio; Shichijo, Michitaka; Hiroi, Takachika; Ogura, Atsuo
2017-06-01
T-cell receptor (TCR)-transgenic mice have been employed for evaluating antigen-response mechanisms, but their non-endogenous TCR might induce immune response differently than the physiologically expressed TCR Nuclear transfer cloning produces animals that retain the donor genotype in all tissues including germline and immune systems. Taking advantage of this feature, we generated cloned mice that carry endogenously rearranged TCR genes from antigen-specific CD4 + T cells. We show that T cells of the cloned mice display distinct developmental pattern and antigen reactivity because of their endogenously pre-rearranged TCRα (rTα) and TCRβ (rTβ) alleles. These alleles were transmitted to the offspring, allowing us to establish a set of mouse lines that show chronic-type allergic phenotypes, that is, bronchial and nasal inflammation, upon local administrations of the corresponding antigens. Intriguingly, the existence of either rTα or rTβ is sufficient to induce in vivo hypersensitivity. These cloned mice expressing intrinsic promoter-regulated antigen-specific TCR are a unique animal model with allergic predisposition for investigating CD4 + T-cell-mediated pathogenesis and cellular commitment in immune diseases. © 2017 The Authors.
Benson, Kathleen F; Redman, Kimberlee A; Carter, Steve G; Keller, David; Farmer, Sean; Endres, John R; Jensen, Gitte S
2012-01-01
AIM: To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells. METHODS: Ganeden Bacillus coagulans 30 (GBC30) bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction. A second fraction was made to generate a crude cell-wall-enriched fraction, by centrifugation and lysis, followed by washing. A preparation of MET was subjected to size exclusion centrifugation, generating three fractions: < 3 kDa, 3-30 kDa, and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes. The maturation status of mononuclear phagocytes was evaluated by staining with monoclonal antibodies towards CD14, CD16, CD80 and CD86 and analyzed by flow cytometry. RESULTS: Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes. The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory cells, and this property was associated with the high molecular weight metabolite fraction. Changes were also seen for the dendritic cell maturation markers CD80 and CD86. On CD14dim cells, an increase in both CD80 and CD86 expression was seen, in contrast to a selective increase in CD86 expression on CD14bright cells. The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation. The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells. CONCLUSION: The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells, important for immunological decision-making. PMID:22563167
Deppert, W; Hanke, K; Henning, R
1980-01-01
Simian virus 40 (SV40)-transformed monolayer cells were analyzed in situ by indirect immunofluorescence microscopy for the postulated cell surface location of SV40 T-antigen-related molecules. With antisera prepared against purified, sodium dodecyl sulfate-denatured SV40 T-antigen, positive surface staining was obtained when the cells had been treated with formaldehyde before immunofluorescence analysis. In contrast, living SV40-transformed cells analyzed in monolayer were surface fluorescence negative. The fixation procedure developed in this study combined with a double staining immunofluorescence technique allowed the simultaneous analysis of the same cells for the expression of both SV40 T-antigen-related surface antigen and nuclear T-antigen. The localization of SV40 T-antigen-related surface antigen on the outer surface of the plasma membrane of formaldehyde-fixed SV40-transformed cells was demonstrated directly by the protein A-mediated binding of Staphylococcus aureus bacteria on formaldehyde-fixed SV40-transformed cells precoated with antiserum against sodium dodecyl sulfate-denatured T-antigen. Both cell surface staining and S. aureus binding were found to be highly specific for SV40 T-antigen-related binding sites. These results indicate that T-antigen-related molecules in a cryptic form are located on the surface of SV40-transformed monolayer cells and can be detected in situ after modification of the cell surface architecture. Images PMID:6255189
Jeyakanthan, M; Tao, K; Zou, L; Meloncelli, P J; Lowary, T L; Suzuki, K; Boland, D; Larsen, I; Burch, M; Shaw, N; Beddows, K; Addonizio, L; Zuckerman, W; Afzali, B; Kim, D H; Mengel, M; Shapiro, A M J; West, L J
2015-10-01
Blood group ABH(O) carbohydrate antigens are carried by precursor structures denoted type I-IV chains, creating unique antigen epitopes that may differ in expression between circulating erythrocytes and vascular endothelial cells. Characterization of such differences is invaluable in many clinical settings including transplantation. Monoclonal antibodies were generated and epitope specificities were characterized against chemically synthesized type I-IV ABH and related glycans. Antigen expression was detected on endomyocardial biopsies (n = 50) and spleen (n = 11) by immunohistochemical staining and on erythrocytes by flow cytometry. On vascular endothelial cells of heart and spleen, only type II-based ABH antigens were expressed; type III/IV structures were not detected. Type II-based ABH were expressed on erythrocytes of all blood groups. Group A1 and A2 erythrocytes additionally expressed type III/IV precursors, whereas group B and O erythrocytes did not. Intensity of A/B antigen expression differed among group A1 , A2 , A1 B, A2 B and B erythrocytes. On group A2 erythrocytes, type III H structures were largely un-glycosylated with the terminal "A" sugar α-GalNAc. Together, these studies define qualitative and quantitative differences in ABH antigen expression between erythrocytes and vascular tissues. These expression profiles have important implications that must be considered in clinical settings of ABO-incompatible transplantation when interpreting anti-ABO antibodies measured by hemagglutination assays with reagent erythrocytes. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Haynes, Nicole M; Trapani, Joseph A; Teng, Michèle W L; Jackson, Jacob T; Cerruti, Loretta; Jane, Stephen M; Kershaw, Michael H; Smyth, Mark J; Darcy, Phillip K
2002-11-01
Tumor cells are usually weakly immunogenic as they largely express self-antigens and can down-regulate major histocompatability complex/peptide molecules and critical costimulatory ligands. The challenge for immunotherapies has been to provide vigorous immune effector cells that circumvent these tumor escape mechanisms and eradicate established tumors. One promising approach is to engineer T cells with single-chain antibody receptors, and since T cells require 2 distinct signals for optimal activation, we have compared the therapeutic efficacy of erbB2-reactive chimeric receptors that contain either T-cell receptor zeta (TCR-zeta) or CD28/TCR-zeta signaling domains. We have demonstrated that primary mouse CD8(+) T lymphocytes expressing the single-chain Fv (scFv)-CD28-zeta receptor have a greater capacity to secrete Tc1 cytokines, induce T-cell proliferation, and inhibit established tumor growth and metastases in vivo. The suppression of established tumor burden by cytotoxic T cells expressing the CD28/TCR-zeta chimera was critically dependent upon their interferon gamma (IFN-gamma) secretion. Our study has illustrated the practical advantage of engineering a T-cell signaling complex that codelivers CD28 activation, dependent only upon the tumor's expression of the appropriate tumor associated antigen.
IgM and IgD B cell receptors differentially respond to endogenous antigens and control B cell fate
Noviski, Mark; Mueller, James L; Satterthwaite, Anne; Garrett-Sinha, Lee Ann; Brombacher, Frank
2018-01-01
Naive B cells co-express two BCR isotypes, IgM and IgD, with identical antigen-binding domains but distinct constant regions. IgM but not IgD is downregulated on autoreactive B cells. Because these isotypes are presumed to be redundant, it is unknown how this could impose tolerance. We introduced the Nur77-eGFP reporter of BCR signaling into mice that express each BCR isotype alone. Despite signaling strongly in vitro, IgD is less sensitive than IgM to endogenous antigen in vivo and developmental fate decisions are skewed accordingly. IgD-only Lyn−/− B cells cannot generate autoantibodies and short-lived plasma cells (SLPCs) in vivo, a fate thought to be driven by intense BCR signaling induced by endogenous antigens. Similarly, IgD-only B cells generate normal germinal center, but impaired IgG1+ SLPC responses to T-dependent immunization. We propose a role for IgD in maintaining the quiescence of autoreactive B cells and restricting their differentiation into autoantibody secreting cells. PMID:29521626
Rafiq, S; Purdon, TJ; Daniyan, AF; Koneru, M; Dao, T; Liu, C; Scheinberg, DA; Brentjens, RJ
2017-01-01
CD19-directed chimeric antigen receptor (CAR) T cells are clinically effective in a limited set of leukemia patients. However, CAR T-cell therapy thus far has been largely restricted to targeting extracellular tumor-associated antigens (TAA). Herein, we report a T-cell receptor-mimic (TCRm) CAR, termed WT1-28z, that is reactive to a peptide portion of the intracellular onco-protein Wilms Tumor 1(WT1), as it is expressed on the surface of the tumor cell in the context of HLA-A*02:01. T cells modified to express WT1-28z specifically targeted and lysed HLA-A*02:01+ WT1+ tumors and enhanced survival of mice engrafted with HLA-A*02:01+, WT1+ leukemia or ovarian tumors. This in vivo functional validation of TCRm CAR T cells provides the proof-of-concept necessary to expand the range of TAA that can be effectively targeted for immunotherapy to include attractive intracellular targets, and may hold great potential to expand on the success of CAR T-cell therapy. PMID:27924074
Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S
2015-01-01
Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520
Identification of novel tumor antigens with patient-derived immune-selected antibodies
Rodriguez-Pinto, Daniel; Sparkowski, Jason; Keough, Martin P.; Phoenix, Kathryn N.; Vumbaca, Frank; Han, David K.; Gundelfinger, Eckart D.; Beesley, Philip
2010-01-01
The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions. PMID:18568347
Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K
2017-01-01
CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.
Brigl, Manfred; Tatituri, Raju V V; Watts, Gerald F M; Bhowruth, Veemal; Leadbetter, Elizabeth A; Barton, Nathaniel; Cohen, Nadia R; Hsu, Fong-Fu; Besra, Gurdyal S; Brenner, Michael B
2011-06-06
Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.
Marks, Benjamin R.; Nowyhed, Heba N.; Choi, Jin-Young; Poholek, Amanda C.; Odegard, Jared M.; Flavell, Richard A.; Craft, Joe
2009-01-01
Interleukin 17 (IL-17)-producing CD4+ T (TH-17) cells share a developmental relationship with FoxP3+ regulatory T (Treg) cells. Here we show that a TH-17 population differentiates within the thymus in a manner influenced by self-antigen recognition, and by the cytokines IL-6 and transforming growth factor (TGF)-β. Like previously described TH-17 cells, TH-17 cells that develop in the thymus expressed the orphan nuclear receptor RORγt and the IL-23 receptor. These cells also expressed α4β1 integrins and the chemokine receptor CCR6, and were recruited to the lung, gut, and liver. In the liver these cells secreted IL-22 in response to self-antigen and mediated host protection during inflammation. Thus, TH-17 cells, like Treg cells, can be selected by self-antigens in the thymus. PMID:19734905
Clapéron, Audrey; Rose, Christiane; Gane, Pierre; Collec, Emmanuel; Bertrand, Olivier; Ouimet, Tanja
2005-06-03
The Kell blood group is a highly polymorphic system containing over 20 different antigens borne by the protein Kell, a 93-kDa type II glycoprotein that displays high sequence homology with members of the M13 family of zinc-dependent metalloproteases whose prototypical member is neprilysin. Kell K1 is an antigen expressed in 9% of the Caucasian population, characterized by a point mutation (T193M) of the Kell K2 antigen, and located within a putative N-glycosylation consensus sequence. Recently, a recombinant, non-physiological, soluble form of Kell was shown to cleave Big ET-3 to produce the mature vasoconstrictive peptide. To better characterize the enzymatic activity of the Kell protein and the possible differences introduced by antigenic point mutations affecting post-translational processing, the membrane-bound forms of the Kell K1 and Kell K2 antigens were expressed either in K562 cells, an erythroid cell line, or in HEK293 cells, a non-erythroid system, and their pharmacological profiles and enzymatic specificities toward synthetic and natural peptides were evaluated. Results presented herein reveal that the two antigens possess considerable differences in their enzymatic activities, although not in their trafficking pattern. Indeed, although both antigens are expressed at the cell surface, Kell K1 protein is shown to be inactive, whereas the Kell K2 antigen binds neprilysin inhibitory compounds such as phosphoramidon and thiorphan with high affinity, cleaves the precursors of the endothelin peptides, and inactivates members of the tachykinin family with enzymatic properties resembling those of other members of the M13 family of metalloproteases to which it belongs.
Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing
2017-10-25
Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p < 0.05) in the immune response levels were observed between probiotics expressing the COE-DCpep fusion protein and COE antigen alone, suggesting better immune efficiency of the probiotics vaccine expressing the DC-targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.
Vyas, Ashish Kumar; Ramakrishna, Usha; Sen, Bijoya; Islam, Mojahidul; Ramakrishna, Gayatri; Patra, Sharda; Rastogi, Archana; Sarin, Shiv Kumar; Trehanpati, Nirupma
2018-04-30
Asialoglycoprotein receptor expression on hepatocytes has been associated with endocytosis, binding and uptake of hepatitis B virus. The role of asialoglycoprotein receptor in hepatitis B virus vertical transmission and its expression on placenta has not yet been studied. Thirty-four HBsAg+ve and 13 healthy pregnant mothers along with their newborns were enrolled. The former were categorized into transmitting and non-transmitting mothers based on their newborns being hepatitis B surface antigen and hepatitis B virus DNA positive. Expression of asialoglycoprotein receptor and hepatitis B surface antigen in placenta and isoform of asialoglycoprotein receptor on dendritic cell in peripheral and cord blood dendritic cells were analysed using flowcytometry, immune histochemistry, immune florescence and qRT-PCR. Twelve HBsAg+ve mothers transmitted hepatitis B virus to their newborns whereas the rest (n = 22) did not. Hepatitis B virus-transmitting mothers showed increased expression of asialoglycoprotein receptor in trophoblasts of placenta. Immunofluorescence microscopy revealed colocalization of hepatitis B surface antigen and asialoglycoprotein receptor in placenta as well as in DCs of transmitting mothers. There was no significant difference in the expression of asialoglycoprotein receptor on peripheral blood mononuclear cells or chord blood mononuclear cells between the 2 groups. However, hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed increased mRNA levels of isoform of asialoglycoprotein receptor on dendritic cell in peripheral blood mononuclear cells. Hepatitis B virus-transmitting mothers and their HBsAg+ve newborns showed an increased expression of isoform of asialoglycoprotein receptor on dendritic cell on circulating dendritic cells compared to hepatitis B virus non-transmitting mothers and their negative newborns. This study revealed that increased expression of asialoglycoprotein receptor in placenta and colocalization with hepatitis B surface antigen strongly indicates its role in intrauterine transmission of hepatitis B virus. Asialoglycoprotein receptor-blocking strategy can be used for therapeutic intervention of vertical transmission. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Expression of cancer-testis antigens MAGE-A4 and MAGE-C1 in oral squamous cell carcinoma.
Montoro, José Raphael de Moura Campos; Mamede, Rui Celso Martins; Neder Serafini, Luciano; Saggioro, Fabiano Pinto; Figueiredo, David Livingstone Alves; Silva, Wilson Araújo da; Jungbluth, Achim A; Spagnoli, Giulio Cesare; Zago, Marco Antônio
2012-08-01
Tumor markers are genes or their products expressed exclusively or preferentially in tumor cells and cancer-testis antigens (CTAs) form a group of genes with a typical expression pattern expressed in a variety of malignant neoplasms. CTAs are considered potential targets for cancer vaccines. It is possible that the CTA MAGE-A4 (melanoma antigen) and MAGE-C1 are expressed in carcinoma of the oral cavity and are related with survival. This study involved immunohistochemical analysis of 23 patients with oral squamous cell carcinoma (SCC) and was carried out using antibodies for MAGE-A4 and MAGE-C1. Fisher's exact test and log-rank test were used to evaluate the results. The expression of the MAGE-A4 and MAGE-C1 were 56.5% and 47.8% without statistical difference in studied variables and survival. The expression of at least 1 CTA was present in 78.3% of the patients, however, without correlation with clinicopathologic variables and survival. Copyright © 2011 Wiley Periodicals, Inc.
Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H
2010-12-01
Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.
Regulation of humoral immunity by complement.
Carroll, Michael C; Isenman, David E
2012-08-24
The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity. Copyright © 2012 Elsevier Inc. All rights reserved.
Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry.
Karkmann, U; Radbruch, A; Hölzel, V; Scheffold, A
1999-11-19
Flow cytometry is the method of choice for the analysis of single cells with respect to the expression of specific antigens. Antigens can be detected with specific antibodies either on the cell surface or within the cells, after fixation and permeabilization of the cell membrane. Using conventional fluorochrome-labeled antibodies several thousand antigens are required for clear-cut separation of positive and negative cells. More sensitive reagents, e.g., magnetofluorescent liposomes conjugated to specific antibodies permit the detection of less than 200 molecules per cell but cannot be used for the detection of intracellular antigens. Here, we describe an enzymatic amplification technique (intracellular tyramine-based signal amplification, ITSA) for the sensitive cytometric analysis of intracellular cytokines by immunofluorescence. This approach results in a 10 to 15-fold improvement of the signal-to-noise ratio compared to conventional fluorochrome labeled antibodies and permits the detection of as few as 300-400 intracellular antigens per cell.
Characterization of porcine CD205
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) express a cell-surface receptor, CD205, that plays a role in antigen capture and delivery to the endocytic pathway. Besides DCs, high CD205 expression is also detected on thymic epithelial cells, but B cells, macrophages, and T cells have limited or no expression. CD205 has be...
Keesen, T S L; Antonelli, L R V; Faria, D R; Guimarães, L H; Bacellar, O; Carvalho, E M; Dutra, W O; Gollob, K J
2011-01-01
Leishmaniasis is caused by infection with the protozoan parasite, Leishmania, that parasitizes human cells, and the cellular immune response is essential for controlling infection. In order to measure the host T cell response to Leishmania infection, we have measured the expansion, activation state and functional potential of specific T cells as identified by their T cell receptor Vβ region expression. In a group of cutaneous leishmaniasis (CL) patients, we evaluated these characteristics in nine different T cell subpopulations as identified by their Vβ region expression, before and after specific Leishmania antigen stimulation. Our results show: (1) an increase in CD4+ T cells expressing Vβ 5·2 and Vβ 24 in CL compared to controls; (2) a Leishmania antigen-induced increase in CD4+ T cells expressing Vβ 5·2, 11, 12 and 17; (3) a profile of previous activation of CD4+ Vβ 5·2-, 11- and 24-positive T cells, with higher expression of CD45RO, HLA-DR, interferon-γ, tumour necrosis factor-α and interleukin-10 compared to other Vβ-expressing subpopulations; (4) a positive correlation between higher frequencies of CD4+Vβ5·2+ T cells and larger lesions; and (5) biased homing of CD4+ T cells expressing Vβ 5·2 to the lesion site. Given that CL disease involves a level of pathology (ulcerated lesions) and is often followed by long-lived protection and cure, the identification of specific subpopulations active in this form of disease could allow for the discovery of immunodominant Leishmania antigens important for triggering efficient host responses against the parasite, or identify cell populations most involved in pathology. PMID:21726211
Buferne, Michel; Chasson, Lionel; Grange, Magali; Mas, Amandine; Arnoux, Fanny; Bertuzzi, Mélanie; Naquet, Philippe; Leserman, Lee; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie
2015-01-01
Tumors with reduced expression of MHC class I (MHC-I) molecules may be unrecognized by tumor antigen-specific CD8+ T cells and thus constitute a challenge for cancer immunotherapy. Here we monitored development of autochthonous melanomas in TiRP mice that develop tumors expressing a known tumor antigen as well as a red fluorescent protein (RFP) reporter knock in gene. The latter permits non-invasive monitoring of tumor growth by biofluorescence. One developing melanoma was deficient in cell surface expression of MHC-I, but MHC-I expression could be rescued by exposure of these cells to IFNγ. We show that CD8+ T cells specific for tumor antigen/MHC-I were efficient at inducing regression of the MHC-I-deficient melanoma, provided that the T cells were endowed with properties permitting their migration into the tumor and their efficient production of IFNγ. This was the case for CD8+ T cells transfected to express an active form of STAT5 (STAT5CA). The amount of IFNγ produced ex vivo from T cells present in tumors after adoptive transfer of the CD8+ T cells was correlated with an increase in surface expression of MHC-I molecules by the tumor cells. We also show that these CD8+ T cells expressed PD-1 and upregulated its ligand PDL-1 on melanoma cells within the tumor. Despite upregulation of this immunosuppressive pathway, efficient IFNγ production in the melanoma microenvironment was found associated with resistance of STAT5CA-expressing CD8+ T cells to inhibition both by PD-1/PDL-1 engagement and by TGFβ1, two main immune regulatory mechanisms hampering the efficiency of immunotherapy in patients. PMID:25949872
Ozawa, Keiya
2014-03-01
Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.
Mayer, Elisabeth; Bannert, Christina; Gruber, Saskia; Klunker, Sven; Spittler, Andreas; Akdis, Cezmi A; Szépfalusi, Zsolt; Eiwegger, Thomas
2012-01-01
Upon antigen exposure, cord blood derived T cells respond to ubiquitous environmental antigens by high proliferation. To date it remains unclear whether these "excessive" responses relate to different regulatory properties of the putative T regulatory cell (Treg) compartment or even expansion of the Treg compartment itself. Cord blood (>37 week of gestation) and peripheral blood (healthy controls) were obtained and different Treg cell subsets were isolated. The suppressive potential of Treg populations after antigen exposure was evaluated via functional inhibition assays ([(3)H]thymidine incorporation assay and CFSE staining) with or without allergen stimulation. The frequency and markers of CD4(+)CD25(high)FoxP3(+) T cells were characterized by mRNA analysis and flow cytometry. Cord blood derived CD4(+)CD25(high) cells did not show substantial suppressor capacity upon TCR activation, in contrast to CD4(+)CD25(high) cells freshly purified from adult blood. This could not be explained by a lower frequency of FoxP3(+)CD4(+)CD25(high)cells or FOXP3 mRNA expression. However, after antigen-specific stimulation in vitro, these cells showed strong proliferation and expansion and gained potent suppressive properties. The efficiency of their suppressive capacity can be enhanced in the presence of endotoxins. If T-cells were sorted according to their CD127 expression, a tiny subset of Treg cells (CD4(+)CD25(+)CD127(low)) is highly suppressive even without prior antigen exposure. Cord blood harbors a very small subset of CD4(+)CD25(high) Treg cells that requires antigen-stimulation to show expansion and become functional suppressive Tregs.
Than, Van Thai; Baek, In Hyuk; Lee, Hee Young; Kim, Jong Bum; Shon, Dong Hwa; Chung, In Sik; Kim, Wonyong
2012-01-01
Rotavirus and hepatitis A virus (HAV) spread by the fecal-oral route and infections are important in public health, especially in developing countries. Here, two antigenic epitopes of the HAV polyprotein, domain 2 (D2) and domain 3 (D3), were recombined with rotavirus VP7, generating D2/VP7 and D3/VP7, cloned in a baculovirus expression system, and expressed in Spodoptera frugiperda 9 (Sf9) insect cells. All were highly expressed, with peak expression 2 days post-infection. Western blotting and ELISA revealed that two chimeric proteins were antigenic, but only D2/VP7 was immunogenic and elicited neutralizing antibody responses against rotavirus and HAV by neutralization assay, implicating D2/VP7 as a multivalent subunit-vaccine Candidate for preventing both rotavirus and HAV infections. PMID:24130930
Maddaluno, Marcella; MacRitchie, Neil; Grassia, Gianluca; Ialenti, Armando; Butcher, John P.; Garside, Paul; Brewer, James M.; Maffia, Pasquale
2014-01-01
In the present study aortic murine smooth muscle cell (SMC) antigen presentation capacity was evaluated using the Eα-GFP/Y-Ae system to visualize antigen uptake through a GFP tag and tracking of Eα peptide/MHCII presentation using the Y-Ae Ab. Stimulation with IFN-γ (100 ng/mL) for 72 h caused a significant (P < 0.01) increase in the percentage of MHC class II positive SMCs, compared with unstimulated cells. Treatment with Eα-GFP (100 μg/mL) for 48 h induced a significant (P < 0.05) increase in the percentage of GFP positive SMCs while it did not affect the percentage of Y-Ae positive cells, being indicative of antigen uptake without its presentation in the context of MHC class II. After IFN-γ-stimulation, ovalbumin- (OVA, 1 mg/mL) or OVA323–339 peptide-(0.5 μg/mL) treated SMCs failed to induce OT-II CD4+ T cell activation/proliferation; this was also accompanied by a lack of expression of key costimulatory molecules (OX40L, CD40, CD70, and CD86) on SMCs. Finally, OVA-treated SMCs failed to induce DO11.10-GFP hybridoma activation, a process independent of costimulation. Our results demonstrate that while murine primary aortic SMCs express MHC class II and can acquire exogenous antigens, they fail to activate T cells through a failure in antigen presentation and a lack of costimulatory molecule expression. PMID:25136640
Anti-tumor immune response after photodynamic therapy
NASA Astrophysics Data System (ADS)
Mroz, Pawel; Castano, Ana P.; Wu, Mei X.; Kung, Andrew L.; Hamblin, Michael R.
2009-06-01
Anti-tumor immunity is stimulated after PDT due a number of factors including: the acute inflammatory response caused by PDT, release of antigens from PDT-damaged tumor cells, priming of the adaptive immune system to recognize tumor-associated antigens (TAA), and induction of heat-shock proteins. The induction of specific CD8+ T-lymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy as it would allow the treatment of tumors that may have already metastasized. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. We have carried out in vivo PDT with a BPD-mediated vascular regimen using a pair of BALB/c mouse colon carcinomas: CT26 wild type expressing the naturally occurring retroviral antigen gp70 and CT26.CL25 additionally expressing beta-galactosidase (b-gal) as a model tumor rejection antigen. PDT of CT26.CL25 cured 100% of tumors but none of the CT26WT tumors (all recurred). Cured CT26.CL25 mice were resistant to rechallenge. Moreover mice with two bilateral CT26.CL25 tumors that had only one treated with PDT demonstrated spontaneous regression of 70% of untreated contralateral tumors. T-lymphocytes were isolated from lymph nodes of PDT cured mice that recognized a particular peptide specific to b-gal antigen. T-lymphocytes from LN were able to kill CT26.CL25 target cells in vitro but not CT26WT cells as shown by a chromium release assay. CT26.CL25 tumors treated with PDT and removed five days later had higher levels of Th1 cytokines than CT26 WT tumors showing a higher level of immune response. When mice bearing CT26WT tumors were treated with a regimen of low dose cyclophosphamide (CY) 2 days before, PDT led to 100% of cures (versus 0% without CY) and resistance to rechallenge. Low dose CY is thought to deplete regulatory T-cells (Treg, CD4+CD25+foxp3+) and potentiate immune response after PDT in the case of tumors that express self-antigens. These data suggest that PDT alone will stimulate a strong immune response when tumors express a robust antigen, and in cases where tumors express a self-antigen, T-reg depletion can unmask the immune response after PDT.
Takahashi, Yoichiro; Kubo, Rieko; Sano, Rie; Nakajima, Tamiko; Takahashi, Keiko; Kobayashi, Momoko; Handa, Hiroshi; Tsukada, Junichi; Kominato, Yoshihiko
2017-03-01
The ABO system is of fundamental importance in the fields of transfusion and transplantation and has apparent associations with certain diseases, including cardiovascular disorders. ABO expression is reduced in the late phase of erythroid differentiation in vitro, whereas histone deacetylase inhibitors (HDACIs) are known to promote cell differentiation. Therefore, whether or not HDACIs could reduce the amount of ABO transcripts and A or B antigens is an intriguing issue. Quantitative polymerase chain reactions were carried out for the ABO transcripts in erythroid-lineage K562 and epithelial-lineage KATOIII cells after incubation with HDACIs, such as sodium butyrate, panobinostat, vorinostat, and sodium valproate. Flow cytometric analysis was conducted to evaluate the amounts of antigen in KATOIII cells treated with panobinostat. Quantitative chromatin immunoprecipitation (ChIP) assays and luciferase assays were performed on both cell types to examine the mechanisms of ABO suppression. HDACIs reduced the ABO transcripts in both K562 and KATOIII cells, with panobinostat exerting the most significant effect. Flow cytometric analysis demonstrated a decrease in B-antigen expression on panobinostat-treated KATOIII cells. ChIP assays indicated that panobinostat altered the modification of histones in the transcriptional regulatory regions of ABO, and luciferase assays demonstrated reduced activity of these elements. ABO transcription seems to be regulated by an epigenetic mechanism. Panobinostat appears to suppress ABO transcription, reducing the amount of antigens on the surface of cultured cells. © 2016 AABB.
Slaney, Clare Y; von Scheidt, Bianca; Davenport, Alexander J; Beavis, Paul A; Westwood, Jennifer A; Mardiana, Sherly; Tscharke, David C; Ellis, Sarah; Prince, H Miles; Trapani, Joseph A; Johnstone, Ricky W; Smyth, Mark J; Teng, Michele W; Ali, Aesha; Yu, Zhiya; Rosenberg, Steven A; Restifo, Nicholas P; Neeson, Paul; Darcy, Phillip K; Kershaw, Michael H
2017-05-15
Purpose: While adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) can eliminate substantial burdens of some leukemias, the ultimate challenge remains the eradication of large solid tumors for most cancers. We aimed to develop an immunotherapy approach effective against large tumors in an immunocompetent, self-antigen preclinical mouse model. Experimental Design: In this study, we generated dual-specific T cells expressing both a CAR specific for Her2 and a TCR specific for the melanocyte protein (gp100). We used a regimen of adoptive cell transfer incorporating vaccination (ACTIV), with recombinant vaccinia virus expressing gp100, to treat a range of tumors including orthotopic breast tumors and large liver tumors. Results: ACTIV therapy induced durable complete remission of a variety of Her2 + tumors, some in excess of 150 mm 2 , in immunocompetent mice expressing Her2 in normal tissues, including the breast and brain. Vaccinia virus induced extensive proliferation of T cells, leading to massive infiltration of T cells into tumors. Durable tumor responses required the chemokine receptor CXCR3 and exogenous IL2, but were independent of IFNγ. Mice were resistant to tumor rechallenge, indicating immune memory involving epitope spreading. Evidence of limited neurologic toxicity was observed, associated with infiltration of cerebellum by T cells, but was only transient. Conclusions: This study supports a view that it is possible to design a highly effective combination immunotherapy for solid cancers, with acceptable transient toxicity, even when the target antigen is also expressed in vital tissues. Clin Cancer Res; 23(10); 2478-90. ©2016 AACR . ©2016 American Association for Cancer Research.
Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.
2015-01-01
Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164
Little, S F; Leppla, S H; Cora, E
1988-01-01
Thirty-six monoclonal antibodies to the protective antigen protein of Bacillus anthracis exotoxin have been characterized for affinity, antibody subtype, competitive binding to antigenic regions, and ability to neutralize lethal and edema toxin activities. At least 23 antigenic regions were detected on protective antigen by a blocking, enzyme-linked immunosorbent assay. Two clones, 3B6 and 14B7, competed for a single antigenic region and neutralized the activity of both the lethal toxin in vivo (Fisher 344 rat) and the edema toxin in vitro (CHO cells). These two antibodies blocked the binding of 125I-labeled protective antigen to FRL-103 cells. Our results support the proposal that binding of protective antigen to cell receptors is required for expression of toxicity. Images PMID:3384478
Müller, Tina; Uherek, Christoph; Maki, Guitta; Chow, Kai Uwe; Schimpf, Annemarie; Klingemann, Hans-Georg; Tonn, Torsten; Wels, Winfried S
2008-03-01
Despite the clinical success of CD20-specific antibody rituximab, malignancies of B-cell origin continue to present a major clinical challenge, in part due to an inability of the antibody to activate antibody-dependent cell-mediated cytotoxicity (ADCC) in some patients, and development of resistance in others. Expression of chimeric antigen receptors in effector cells operative in ADCC might allow to bypass insufficient activation via FcgammaRIII and other resistance mechanisms that limit natural killer (NK)-cell activity. Here we have generated genetically modified NK cells carrying a chimeric antigen receptor that consists of a CD20-specific scFv antibody fragment, via a flexible hinge region connected to the CD3zeta chain as a signaling moiety. As effector cells we employed continuously growing, clinically applicable human NK-92 cells. While activity of the retargeted NK-92 against CD20-negative targets remained unchanged, the gene modified NK cells displayed markedly enhanced cytotoxicity toward NK-sensitive CD20 expressing cells. Importantly, in contrast to parental NK-92, CD20-specific NK cells efficiently lysed CD20 expressing but otherwise NK-resistant established and primary lymphoma and leukemia cells, demonstrating that this strategy can overcome NK-cell resistance and might be suitable for the development of effective cell-based therapeutics for the treatment of B-cell malignancies.
Forbes, Emily K.; de Cassan, Simone C.; Llewellyn, David; Biswas, Sumi; Goodman, Anna L.; Cottingham, Matthew G.; Long, Carole A.; Pleass, Richard J.; Hill, Adrian V. S.; Hill, Fergal; Draper, Simon J.
2012-01-01
Viral vectored vaccines have been shown to induce both T cell and antibody responses in animals and humans. However, the induction of even higher level T cell responses may be crucial in achieving vaccine efficacy against difficult disease targets, especially in humans. Here we investigate the oligomerization domain of the α-chain of C4b-binding protein (C4 bp) as a candidate T cell “molecular adjuvant” when fused to malaria antigens expressed by human adenovirus serotype 5 (AdHu5) vectored vaccines in BALB/c mice. We demonstrate that i) C-terminal fusion of an oligomerization domain can enhance the quantity of antigen-specific CD4+ and CD8+ T cell responses induced in mice after only a single immunization of recombinant AdHu5, and that the T cells maintain similar functional cytokine profiles; ii) an adjuvant effect is observed for AdHu5 vectors expressing either the 42 kDa C-terminal domain of Plasmodium yoelii merozoite surface protein 1 (PyMSP142) or the 83 kDa ectodomain of P. falciparum strain 3D7 apical membrane antigen 1 (PfAMA1), but not a candidate 128kDa P. falciparum MSP1 biallelic fusion antigen; iii) following two homologous immunizations of AdHu5 vaccines, antigen-specific T cell responses are further enhanced, however, in both BALB/c mice and New Zealand White rabbits no enhancement of functional antibody responses is observed; and iv) that the T cell adjuvant activity of C4 bp is not dependent on a functional Fc-receptor γ-chain in the host, but is associated with the oligomerization of small (<80 kDa) antigens expressed by recombinant AdHu5. The oligomerization domain of C4 bp can thus adjuvant T cell responses induced by AdHu5 vectors against selected antigens and its clinical utility as well as mechanism of action warrant further investigation. PMID:22984589
Lutje, V; Mertens, B; Boulangé, A; Williams, D J; Authié, E
1995-09-01
T-cell-mediated immune responses to defined antigens of Trypanosoma congolense were measured in cattle undergoing primary infection. The antigens used were the variable surface glycoprotein and two invariant antigens, a 33-kDa cysteine protease (congopain) and a recombinant form of a 69-kDa heat-shock protein. Proliferative responses were highest during the second week postinfection and were detected in cells obtained from the lymph node draining the site of infection but not in peripheral blood mononuclear cells. Production of IL-2 and IFN-gamma was measured in supernatants from antigen-stimulated lymph node cell cultures. Expression of IL-2, IL-4, and IFN-gamma mRNA was detected in antigen-stimulated lymph node cells by reverse transcription-polymerase chain amplification.
Mizukami, Yoshiki; Kono, Koji; Daigo, Yataro; Takano, Atsushi; Tsunoda, Takuya; Kawaguchi, Yoshihiko; Nakamura, Yusuke; Fujii, Hideki
2008-07-01
We recently identified three HLA-A2402-restricted epitope peptides derived from cancer-testis antigens (CTA), TTK protein kinase (TTK), lymphocyte antigen 6 complex locus K (LY6K), and insulin-like growth factor (IGF)-II mRNA binding protein 3 (IMP-3) for the development of immunotherapies against esophageal squamous cell carcinoma (ESCC). In order to evaluate their immunotherapeutic potential in ESCC patients, we estimated by ELISPOT assay the TTK-, LY6K-, or IMP-3-specific T-cell immune responses in tumor-infiltrating lymphocytes (TIL), regional lymph node lymphocytes (RLNL), and peripheral blood lymphocytes (PBL) expanded from 20HLA-A2402 (+) ESCC patients, and correlated their immune activity with the expression levels of TTK, LY6K, and IMP-3, and MHC class I in the tumors. Induction of TTK-antigen specific T-cell response in TIL to the peptide-pulsed target cells was detected in 14 out of 20 (70%) cases, while LY6K or IMP-3 specific T-cell activity was observed in 11 of 20 (55%) or in eight of 20 (40%) cases, respectively. Furthermore, T-cell activity in RLNL and PBL was detectable in the similar proportion of the 20 ESCC patients. Interestingly, CTA-specific T-cell immune response was found in 13 of 14 (93%) TIL obtained from ESCC tumors with strong MHC class I expression, while it could be observed only in two of six (33%) TIL from ESCC tumors with weak MHC class I expression. These results strongly suggest the pre-existence of specific T-cell responses to HLA-A24-restricted epitope peptides from TTK, LY6K, and IMP-3 in ESCC patients. Monitoring antigen-specific T-cell responses, as well as the expression levels of MHC class I and epitope CTA in tumors, should be a selection index for application of cancer vaccine therapies to the patients who are likely to show good immune response.
Dias, Joana; Sobkowiak, Michał J; Sandberg, Johan K; Leeansyah, Edwin
2016-07-01
Mucosa-associated invariant T cells are a large and relatively recently described innate-like antimicrobial T-cell subset in humans. These cells recognize riboflavin metabolites from a range of microbes presented by evolutionarily conserved major histocompatibility complex, class I-related molecules. Given the innate-like characteristics of mucosa-associated invariant T cells and the novel type of antigens they recognize, new methodology must be developed and existing methods refined to allow comprehensive studies of their role in human immune defense against microbial infection. In this study, we established protocols to examine a range of mucosa-associated invariant T-cell functions as they respond to antigen produced by Escherichia coli These improved and dose- and time-optimized experimental protocols allow detailed studies of MR1-dependent mucosa-associated invariant T-cell responses to Escherichia coli pulsed antigen-presenting cells, as assessed by expression of activation markers and cytokines, by proliferation, and by induction of apoptosis and death in major histocompatibility complex, class I-related-expressing target cells. The novel and optimized protocols establish a framework of methods and open new possibilities to study mucosa-associated invariant T-cell immunobiology, using Escherichia coli as a model antigen. Furthermore, we propose that these robust experimental systems can also be adapted to study mucosa-associated invariant T-cell responses to other microbes and types of antigen-presenting cells. © The Author(s).
Nair, Smita K.; Tomaras, Georgia D.; Sales, Ana Paula; Boczkowski, David; Chan, Cliburn; Plonk, Kelly; Cai, Yongting; Dannull, Jens; Kepler, Thomas B.; Pruitt, Scott K.; Weinhold, Kent J.
2014-01-01
Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19. PMID:24755960
Anandasabapathy, Niroshana; Victora, Gabriel D.; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L.; Nussenzweig, Michel C.; Steinman, Ralph M.
2011-01-01
Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5–7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia. PMID:21788405
Anandasabapathy, Niroshana; Victora, Gabriel D; Meredith, Matthew; Feder, Rachel; Dong, Baojun; Kluger, Courtney; Yao, Kaihui; Dustin, Michael L; Nussenzweig, Michel C; Steinman, Ralph M; Liu, Kang
2011-08-01
Antigen-presenting cells in the disease-free brain have been identified primarily by expression of antigens such as CD11b, CD11c, and MHC II, which can be shared by dendritic cells (DCs), microglia, and monocytes. In this study, starting with the criterion of Flt3 (FMS-like receptor tyrosine kinase 3)-dependent development, we characterize the features of authentic DCs within the meninges and choroid plexus in healthy mouse brains. Analyses of morphology, gene expression, and antigen-presenting function established a close relationship between meningeal and choroid plexus DCs (m/chDCs) and spleen DCs. DCs in both sites shared an intrinsic requirement for Flt3 ligand. Microarrays revealed differences in expression of transcripts encoding surface molecules, transcription factors, pattern recognition receptors, and other genes in m/chDCs compared with monocytes and microglia. Migrating pre-DC progenitors from bone marrow gave rise to m/chDCs that had a 5-7-d half-life. In contrast to microglia, DCs actively present self-antigens and stimulate T cells. Therefore, the meninges and choroid plexus of a steady-state brain contain DCs that derive from local precursors and exhibit a differentiation and antigen-presenting program similar to spleen DCs and distinct from microglia.
Manzo, Teresa; Sturmheit, Tabea; Basso, Veronica; Petrozziello, Elisabetta; Hess Michelini, Rodrigo; Riba, Michela; Freschi, Massimo; Elia, Angela R; Grioni, Matteo; Curnis, Flavio; Protti, Maria Pia; Schumacher, Ton N; Debets, Reno; Swartz, Melody A; Corti, Angelo; Bellone, Matteo; Mondino, Anna
2017-02-01
Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR. ©2016 American Association for Cancer Research.
Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi
2012-01-01
TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.
Ananias, Hildo J K; van den Heuvel, Marius C; Helfrich, Wijnand; de Jong, Igle J
2009-07-01
Cell membrane antigens like the gastrin-releasing peptide receptor (GRPR), the prostate stem cell antigen (PSCA), and the prostate-specific membrane antigen (PSMA), expressed in prostate cancer, are attractive targets for new therapeutic and diagnostic applications. Therefore, we investigated in this study whether these antigens are expressed in metastasized prostate cancer. Formalin-fixed, paraffin-embedded specimens of 15 patients with uni- or bilateral lymph node metastases of prostate cancer (totaling 21 cases) and 17 patient-cases of bone metastases were processed for immunohistochemistry with anti-GRPR, anti-PSCA, and anti-PSMA antibodies. A pathologist blinded to clinical and pathological data scored the immunoreactivity for these antibodies on a four-point scale (0 = no staining; 1+ = weak staining; 2+ = moderate staining; 3+ = strong staining) and documented the distribution pattern. GRPR staining in lymph node metastases was seen in 85.7% of cases (18 of 21 cases), PSCA in 95.2% (20/21), and PSMA in 100% (21/21). GRPR in bone metastases was seen in 52.9% of cases (9/17), PSCA in 94.1% (16/17), and PSMA in 100% (17/17). We have shown for the first time that GRPR is expressed in the vast majority of lymph node metastases and in 52.9% of bone metastases of prostate cancer. PSCA and PSMA are both highly expressed in lymph node and bone metastases. Although PSCA and PSMA are mostly expressed in prostate cancer metastases, GRPR offers an interesting alternative target as it can be targeted relatively easy with peptide-based (radio)pharmaceuticals. (c) 2009 Wiley-Liss, Inc.
Martner, Anna; Östman, Sofia; Lundin, Samuel; Rask, Carola; Björnsson, Viktor; Telemo, Esbjörn; Collins, L. Vincent; Axelsson, Lars; Wold, Agnes E.
2013-01-01
This study aimed to clarify whether Gram-positive (G+) and Gram-negative (G−) bacteria affect antigen-presenting cells differently and thereby influence the immunogenicity of proteins they express. Lactobacilli, lactococci and Escherichia coli strains were transformed with plasmids conferring intracellular ovalbumin (OVA) production. Murine splenic antigen presenting cells (APCs) were pulsed with washed and UV-inactivated OVA-producing bacteria, control bacteria, or soluble OVA. The ability of the APCs to activate OVA-specific DO11.10 CD4+ T cells was assessed by measurments of T cell proliferation and cytokine (IFN-γ, IL-13, IL-17, IL-10) production. OVA expressed within E. coli was strongly immunogenic, since 500 times higher concentrations of soluble OVA were needed to achieve a similar level of OVA-specific T cell proliferation. Furthermore, T cells responding to soluble OVA produced mainly IL-13, while T cells responding to E. coli-expressed OVA produced high levels of both IFN-γ and IL-13. Compared to E. coli, G+ lactobacilli and lactococci were poor inducers of OVA-specific T cell proliferation and cytokine production, despite efficient intracellular expression and production of OVA and despite being efficiently phagocytosed. These results demonstrate a pronounced difference in immunogenicity of intracellular antigens in G+ and G− bacteria and may be relevant for the use of bacterial carriers in vaccine development. PMID:23741469
Expression of the rat CD26 antigen (dipeptidyl peptidase IV) on subpopulations of rat lymphocytes.
Gorrell, M D; Wickson, J; McCaughan, G W
1991-04-15
The T cell activation antigen CD26 has been recently identified as the cell surface ectopeptidase dipeptidyl peptidase IV (DPP-IV). DPP-IV is found on many cell types, including lymphocytes, epithelial cells, and certain endothelial cells. The MRC OX61 monoclonal antibody (MAb) which specifically recognises rat DPP-IV was used to examine the expression of CD26/DPP-IV on rat lymphocytes. The molecular nature of the antigen was examined by immunoprecipitation from thymocytes, splenocytes, and hepatocytes. Analysis by one- and two-dimensional gel electrophoresis indicated that the native form of CD26 includes a 220-kDa homodimer. On tissue sections MRC OX61 MAb stained nearly all thymocytes and in the spleen and lymph nodes predominantly stained the T cell areas. However, in immunofluorescence experiments OX61 stained 80 to 87% of lymph node cells and 78 to 85% of spleen cells. Furthermore, two-colour immunofluorescence analysis of the CD4+, CD8+, and Ig+ lymphocyte subsets indicated that only 2 to 5% of each of these subsets lacked OX61 staining. Spleen cells and thymocytes of both CD4+ and CD8+ subsets stained much more intensely with OX61 after these cells were stimulated with phytohemagglutinin. These findings indicate that rat CD26 antigen expression is not confined to the T cell population as has been suggested, but also occurs on B cells, and is increased on T cells following their activation.
Moran, Amy E.; Polesso, Fanny; Weinberg, Andrew D.
2016-01-01
Cancer cells harbor high affinity tumor-associated antigens capable of eliciting potent anti-tumor T cell responses yet detecting these polyclonal T cells is challenging. Therefore, surrogate markers of T cell activation such as CD69, CD44, and PD-1 have been used. We report here that in mice, expression of activation markers including PD-1 is insufficient in the tumor microenvironment to identify tumor-antigen specific T cells. Using the Nur77GFP T cell affinity reporter mouse, we highlight that PD-1 expression can be induced independent of TCR ligation within the tumor. Given this, we characterized the utility of the Nur77GFP model system in elucidating mechanisms of action of immunotherapies independent of PD-1 expression. Co-expression of Nur77GFP and OX40 identifies a polyclonal population of high affinity tumor-associated antigen-specific CD8+ T cells, which produce more IFNγ in situ than OX40 negative and doubles in quantity with anti-OX40 and anti-CTLA4 mAb therapy but not with anti-PD-1 or PD-L1. Moreover, expansion of these high affinity CD8 T cells prolongs survival of tumor bearing animals. Upon chronic stimulation in tumors and after adoptive cell therapy, CD8 TCR signaling and Nur77GFP induction is impaired and tumors progress. However, this can be reversed and overall survival significantly enhanced after adoptive cell therapy with agonist OX40 immunotherapy. Therefore, we propose that OX40 agonist immunotherapy can maintain functional TCR signaling of chronically stimulated tumor resident CD8 T cells thereby increasing the frequency of cytolytic, high affinity, tumor-associated antigen-specific cells. PMID:27503208
Comprehensive definition of human immunodominant CD8 antigens in tuberculosis.
Lewinsohn, Deborah A; Swarbrick, Gwendolyn M; Park, Byung; Cansler, Meghan E; Null, Megan D; Toren, Katelynne G; Baseke, Joy; Zalwango, Sarah; Mayanja-Kizza, Harriet; Malone, LaShaunda L; Nyendak, Melissa; Wu, Guanming; Guinn, Kristi; McWeeney, Shannon; Mori, Tomi; Chervenak, Keith A; Sherman, David R; Boom, W Henry; Lewinsohn, David M
2017-01-01
Despite widespread use of the Bacillus Calmette-Guerin vaccine, tuberculosis, caused by infection with Mycobacterium tuberculosis , remains a leading cause of morbidity and mortality worldwide. As CD8 + T cells are critical to tuberculosis host defense and a phase 2b vaccine trial of modified vaccinia Ankara expressing Ag85a that failed to demonstrate efficacy, also failed to induce a CD8 + T cell response, an effective tuberculosis vaccine may need to induce CD8 + T cells. However, little is known about CD8, as compared to CD4, antigens in tuberculosis. Herein, we report the results of the first ever HLA allele independent genome-wide CD8 antigen discovery program. Using CD8 + T cells derived from humans with latent tuberculosis infection or tuberculosis and an interferon-γ ELISPOT assay, we screened a synthetic peptide library representing 10% of the Mycobacterium tuberculosis proteome, selected to be enriched for Mycobacterium tuberculosis antigens. We defined a set of immunodominant CD8 antigens including part or all of 74 Mycobacterium tuberculosis proteins, only 16 of which are previously known CD8 antigens. Immunogenicity was associated with the degree of expression of mRNA and protein. Immunodominant antigens were enriched in cell wall proteins with preferential recognition of Esx protein family members, and within proteins comprising the Mycobacterium tuberculosis secretome. A validation study of immunodominant antigens demonstrated that these antigens were strongly recognized in Mycobacterium tuberculosis -infected individuals from a tuberculosis endemic region in Africa. The tuberculosis vaccine field will likely benefit from this greatly increased known repertoire of CD8 immunodominant antigens and definition of properties of Mycobacterium tuberculosis proteins important for CD8 antigenicity.
1991-01-01
8217 terminus of E. When the recombinant virus was grown in Spodoptera frugiperda cells. about I mg of E antigen was made per 10’ cells. Recombinant E antigen...assay with DEN-I virus coprotein gene and its expression in Spodoptera hyperimmune mouse ascitic fluid. This heat-in- frugiperda cells activated...immunization, S. frugiperda cells infected with tion with BstNI (cuts at nucleotides 801 and recombinant baculovirus were pelleted. lysed by 2150). The
Researchers at the NCI have developed chimeric antigen receptors (CARs) with a high affinity for mesothelin to be used as an immunotherapy to treat pancreatic cancer, ovarian cancer, and mesothelioma. Cells that express CARs, most notably T cells, are highly reactive against their specific tumor antigen in an MHC-unrestricted manner to generate an immune response that promotes robust tumor cell elimination when infused into cancer patients.
Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications.
Mirzaei, Hamid R; Rodriguez, Analiz; Shepphird, Jennifer; Brown, Christine E; Badie, Behnam
2017-01-01
Adoptive cellular immunotherapy (ACT) employing engineered T lymphocytes expressing chimeric antigen receptors (CARs) has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.
Depletion of CD8+ cells in human thymic medulla results in selective immune deficiency
1989-01-01
CD8 molecules expressed on the surface of a subset of T cells participate in the selection of class I MHC antigen-restricted T cells in the thymus, and in MHC-restricted immune responses of mature class I MHC antigen-restricted T cells. Here we describe an immune-deficient patient with lack of CD8+ peripheral blood cells. The patient presented with Pneumocystis carinii pneumonia and was unable to reject an allogeneic skin graft, but had normal primary and secondary antibody responses. Examination of the patient's thymus revealed that the loss of CD8+ cells occurred during intrathymic differentiation: the patient's immature cortical thymocytes included both CD4+ and CD8+ cells while the mature medullary cells expressed the CD4 but not the CD8 protein on their surface. Northern blot and polymerase chain reaction analyses revealed the presence of CD8 alpha and beta mRNA in the patient's thymus but not in the peripheral blood. Both class I MHC antigen expression and the expressed TCR V beta repertoire are normal in this patient. These data are consistent with an impaired selection of CD8+ cells in the patient's thymus and support the role of the CD8 surface protein in thymic selection previously characterized in genetically manipulated and inbred mice. PMID:2511270
Cinnamon extract suppresses experimental colitis through modulation of antigen-presenting cells.
Kwon, Ho-Keun; Hwang, Ji-Sun; Lee, Choong-Gu; So, Jae-Seon; Sahoo, Anupama; Im, Chang-Rok; Jeon, Won Kyung; Ko, Byoung Seob; Lee, Sung Haeng; Park, Zee Yong; Im, Sin-Hyeog
2011-02-28
To investigate the anti-inflammatory effects of cinnamon extract and elucidate its mechanisms for targeting the function of antigen presenting cells. Cinnamon extract was used to treat murine macrophage cell line (Raw 264.7), mouse primary antigen-presenting cells (APCs, MHCII(+)) and CD11c(+) dendritic cells to analyze the effects of cinnamon extract on APC function. The mechanisms of action of cinnamon extract on APCs were investigated by analyzing cytokine production, and expression of MHC antigens and co-stimulatory molecules by quantitative real-time PCR and flow cytometry. In addition, the effect of cinnamon extract on antigen presentation capacity and APC-dependent T-cell differentiation were analyzed by [H(3)]-thymidine incorporation and cytokine analysis, respectively. To confirm the anti-inflammatory effects of cinnamon extract in vivo, cinnamon or PBS was orally administered to mice for 20 d followed by induction of experimental colitis with 2,4,6 trinitrobenzenesulfonic acid. The protective effects of cinnamon extract against experimental colitis were measured by checking clinical symptoms, histological analysis and cytokine expression profiles in inflamed tissue. Treatment with cinnamon extract inhibited maturation of MHCII(+) APCs or CD11c(+) dendritic cells (DCs) by suppressing expression of co-stimulatory molecules (B7.1, B7.2, ICOS-L), MHCII and cyclooxygenase (COX)-2. Cinnamon extract induced regulatory DCs (rDCs) that produce low levels of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, IL-12, interferon (IFN)-γ and tumor necrosis factor (TNF)-α] while expressing high levels of immunoregulatory cytokines (IL-10 and transforming growth factor-β). In addition, rDCs generated by cinnamon extract inhibited APC-dependent T-cell proliferation, and converted CD4(+) T cells into IL-10(high) CD4(+) T cells. Furthermore, oral administration of cinnamon extract inhibited development and progression of intestinal colitis by inhibiting expression of COX-2 and pro-inflammatory cytokines (IL-1β, IFN-γ and TNF-α), while enhancing IL-10 levels. Our study suggests the potential of cinnamon extract as an anti-inflammatory agent by targeting the generation of regulatory APCs and IL-10(+) regulatory T cells.
Aberrant phenotypes in peripheral T cell lymphomas.
Hastrup, N; Ralfkiaer, E; Pallesen, G
1989-01-01
Seventy six peripheral T cell lymphomas were examined immunohistologically to test their reactivity with a panel of monoclonal antibodies against 11 T cell associated antigens (CD1-8, CD27, UCHL1, and the T cell antigen receptor). Sixty two (82%) lymphomas showed aberrant phenotypes, and four main categories were distinguished as follows: (i) lack of one or several pan-T cell antigens (49, 64% of the cases); (ii) loss of both the CD4 and CD8 antigens (11, 15% of the cases); (iii) coexpression of the CD4 and CD8 antigens (13, 17% of the cases); and (iv) expression of the CD1 antigen (eight, 11% of the cases). No correlation was seen between the occurrence of aberrant phenotypes and the histological subtype. It is concluded that the demonstration of an aberrant phenotype is a valuable supplement to histological assessment in the diagnosis of peripheral T cell lymphomas. It is recommended that the panel of monoclonal antibodies against T cell differentiation antigens should be fairly large, as apparently any antigen may be lost in the process of malignant transformation. Images Figure PMID:2469701
NASA Astrophysics Data System (ADS)
Fradet, Yves; Islam, Nazrul; Boucher, Lucie; Parent-Vaugeois, Carmen; Tardif, Marc
1987-10-01
Three mouse monoclonal antibodies (mAbs), which define a highly restricted antigen, were obtained by simultaneous immunizations with superficial papillary bladder tumor cells and mouse polyclonal serum against normal urothelium. The antigen was detected by the avidin/biotin/peroxidase method in 30/44 superficial bladder tumors (68%) but in only 4/27 infiltrating urothelial cancers (with much less intensity). No normal adult or fetal tissues tested expressed the antigen, including normal urothelium from 40 individuals, 13 of whom had a bladder tumor positive for the antigen. Only 1 of 45 nonbladder tumors showed some reactivity with one of the three mAbs. Serological tests on a large panel of human cancer cell lines and normal cultured cells were negative. The antigen is highly stable and well preserved on paraffin-embedded tissues. Electrophoretic transfer blot experiments with fresh tumor extracts showed that all three mAbs react with a determinant on a component of 300,000 Mr (pI 9.5) and 62,000 Mr (pI 6.5). The antigen shows polymorphic expression at the cellular level on tissue sections and also at a molecular level on immunoblots where the two bands are differentially detected on extracts of a series of tumors but are not visualized on normal urothelium extracts. The characteristics of this antigenic system suggest that it may provide some insights about the biology of bladder cancer. Specific detection of the antigen on 70% of superficial bladder tumors with normal cytology may be useful for their diagnosis and follow-up.
Kasi, Devi; Catherine, Christy; Lee, Seung-Won; Lee, Kyung-Ho; Kim, Yu Jung; Ro Lee, Myeong; Ju, Jung Won; Kim, Dong-Myung
2017-05-01
The rapidly evolving cloning and sequencing technologies have enabled understanding of genomic structure of parasite genomes, opening up new ways of combatting parasite-related diseases. To make the most of the exponentially accumulating genomic data, however, it is crucial to analyze the proteins encoded by these genomic sequences. In this study, we adopted an engineered cell-free protein synthesis system for large-scale expression screening of an expression sequence tag (EST) library of Clonorchis sinensis to identify potential antigens that can be used for diagnosis and treatment of clonorchiasis. To allow high-throughput expression and identification of individual genes comprising the library, a cell-free synthesis reaction was designed such that both the template DNA and the expressed proteins were co-immobilized on the same microbeads, leading to microbead-based linkage of the genotype and phenotype. This reaction configuration allowed streamlined expression, recovery, and analysis of proteins. This approach enabled us to identify 21 antigenic proteins. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:832-837, 2017. © 2017 American Institute of Chemical Engineers.
Russell, Katie C.; Tucker, H. Alan; Bunnell, Bruce A.; Andreeff, Michael; Schober, Wendy; Gaynor, Andrew S.; Strickler, Karen L.; Lin, Shuwen; Lacey, Michelle R.
2013-01-01
Cellular heterogeneity of mesenchymal stem cells (MSCs) impedes their use in regenerative medicine. The objective of this research is to identify potential biomarkers for the enrichment of progenitors from heterogeneous MSC cultures. To this end, the present study examines variation in expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) on the surface of MSCs derived from human bone marrow in response to culture conditions and among cell populations. Multipotent cells isolated from heterogeneous MSC cultures exhibit a greater than three-fold increase in surface expression for NG2 and greater than two-fold increase for CD146 as compared with parental and lineage-committed MSCs. For both antigens, surface expression is downregulated by greater than or equal to six-fold when MSCs become confluent. During serial passage, maximum surface expression of NG2 and CD146 is associated with minimum doubling time. Upregulation of NG2 and CD146 during loss of adipogenic potential at early passage suggests some limits to their utility as potency markers. A potential relationship between proliferation and antigen expression was explored by sorting heterogeneous MSCs into rapidly and slowly dividing groups. Fluorescence-activated cell sorting revealed that rapidly dividing MSCs display lower scatter and 50% higher NG2 surface expression than slowly dividing cells, but CD146 expression is comparable in both groups. Heterogeneous MSCs were sorted based on scatter properties and surface expression of NG2 and CD146 into high (HI) and low (LO) groups. ScLONG2HI and ScLONG2HICD146HI MSCs have the highest proliferative potential of the sorted groups, with colony-forming efficiencies that are 1.5–2.2 times the value for the parental controls. The ScLO gate enriches for rapidly dividing cells. Addition of the NG2HI gate increases cell survival to 1.5 times the parental control. Further addition of the CD146HI gate does not significantly improve cell division or survival. The combination of low scatter and high NG2 surface expression is a promising selection criterion to enrich a proliferative phenotype from heterogeneous MSCs during ex vivo expansion, with potentially numerous applications. PMID:23611563
Masked Chimeric Antigen Receptor for Tumor-Specific Activation.
Han, Xiaolu; Bryson, Paul D; Zhao, Yifan; Cinay, Gunce E; Li, Si; Guo, Yunfei; Siriwon, Natnaree; Wang, Pin
2017-01-04
Adoptive cellular therapy based on chimeric antigen receptor (CAR)-engineered T (CAR-T) cells is a powerful form of cancer immunotherapy. CAR-T cells can be redirected to specifically recognize tumor-associated antigens (TAAs) and induce high levels of antitumor activity. However, they may also display "on-target off-tumor" toxicities, resulting from low-level expression of TAAs in healthy tissues. These adverse effects have raised considerable safety concerns and limited the clinical application of this otherwise promising therapeutic modality. To minimize such side effects, we have designed an epidermal growth factor receptor (EGFR)-specific masked CAR (mCAR), which consists of a masking peptide that blocks the antigen-binding site and a protease-sensitive linker. Proteases commonly active in the tumor microenvironment can cleave the linker and disengage the masking peptide, thereby enabling CAR-T cells to recognize target antigens only at the tumor site. In vitro mCAR showed dramatically reduced antigen binding and antigen-specific activation in the absence of proteases, but normal levels of binding and activity upon treatment with certain proteases. Masked CAR-T cells also showed antitumor efficacy in vivo comparable to that of unmasked CAR. Our study demonstrates the feasibility of improving the safety profile of conventional CARs and may also inspire future design of CAR molecules targeting broadly expressed TAAs. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
[Expression of AC133 vs. CD34 in acute childhood leukemias].
Ebener, U; Brinkmann, A; Zotova, V; Niegemann, E; Wehner, S
2000-01-01
AC133, a newly discovered antigen on human progenitor cells, demonstrating 5-transmembranous domains is expressed by 30-60% out of all CD34+ cells. Our aim therefore was to investigate the extent of human stem-/progenitor cells expressing AC133 antigen in umbilical cord blood, peripheral blood without or following an application of granulocyte-colony stimulating factor (rhG-CSF). The main task was the investigation of bone marrow aspirates derived from children suffering from newly diagnosed acute leukemias, as well as from patients with a relapse or during a complete remission. The determination of antigen expression was done by application of flow cytometry (FACScan analysis) and the usage of newly developed monoclonal antibodies (AC133/1 and AC133/2; Miltenyi Biotec GmbH) in combination with monoclonal antibody directed against CD34-antigens (HPCA-2; BD). Our studies till now show average percentages in umbilical cord blood derived from 43 newborns about 0.294 +/- 0.165% AC133+ vs. 0.327 +/- 0.156% CD34+ hematopoietic stem-/progenitor cells (HSPC). In peripheral blood from 11 healthy donors we verified up to 0.15% CD34+ as well as AC133+ HSPC's. The concentration of progenitor cells was found to be obviously higher in peripheral blood from children with various diseases (neuroblastoma, rhabdomyosarcoma, ALL/AML) and undergoing application with rhG-CSF in order to be prepared for PBSC-transplantation. In those cases we found up to 3.51% AC133+ cells as well as slightly higher values (3.94%) for CD34 antigens. Additionally we quantified 128 bone marrow (BM) samples for AC133+ and CD34+ cells. In 10 BM samples, derived from patients without any neoplasia, the CD34+ cells were about 0.03% and 1.49%, whereas AC133 values were up to 0.64%. Bone marrow aspirates from 53 children with acute leukemias at time of diagnosis (ALL: n = 41/AML: n = 12) have been immunophenotyped and leukemic blast cells have been proved for AC133- and CD34 antigen expression. 32/41 (78%) of lymphoblastic leukemic cells showed to be positive for CD34 antigen and 24/41 (58%) demonstrated AC133 antigens. Interestingly there were 2 ALL-patients with pathological blast cells positive for AC133 but lacking of any CD34 antigens. 42% (5/12) of investigated AML patients showed CD34+ phenotype, on the other hand there were only 25% (3/12) with AC133+ phenotype. Similar values were found in relapsed patients (n = 18). In BM samples from patients during complete remission (n = 47) we could detect percentages up to 5.55% for CD34 and up to 1.25% for AC133 positive stem-/progenitor cells. Such quite high data may be explained by occasionally application of rhG-CSF therapy. Our results till now lead to the conclusion, that it seems to be useful, to recruit quantification of CD34+ HPSC by additionally detecting AC133 antigens. This new stem cell marker (AC133) may be of great value in case of autologous peripheral blood stem cell transplantation (PBSCT) because it could be an alternative to the usual CD34+ MACS selection system.
Methods and compositions for diagnosing and preventing a group B streptococcal infection
Brady, Linda Jeannine [Gainesville, FL; Seifert, Kyle N [Harrisonburg, VA; Adderson, Elisabeth E [Memphis, TN; Bohnsack, John F [Salt Lake City, UT
2009-09-15
The present invention provides a group B streptococcal (GBS) surface antigen, designated epsilon antigen, that is co-expressed with the delta antigen on a subset of serotype III GBS. Epsilon is expressed on more pathogenic Restriction Digest Pattern (RDP) III-3 GBS, but not on RDP types 1, 2, or 4. Accordingly, the present invention provides compositions and methods for detecting a group B streptococcus serotype III, RDP III-3 strain. Vaccines and methods of identifying agents which inhibit adhesion of a group B streptococcal cell to a host cell are also provided.
2014-01-01
Background The development of immunotherapy has led to significant progress in the treatment of metastatic cancer, including the development of genetic engineering technologies that redirect lymphocytes to recognize and target a wide variety of tumor antigens. Chimeric antigen receptors (CARs) are hybrid proteins combining antibody recognition domains linked to T cell signaling elements. Clinical trials of CAR-transduced peripheral blood lymphocytes (PBL) have induced remission of both solid organ and hematologic malignancies. Chondroitin sulfate proteoglycan 4 (CSPG4) is a promising target antigen that is overexpressed in multiple cancer histologies including melanoma, triple-negative breast cancer, glioblastoma, mesothelioma and sarcoma. Methods CSPG4 expression in cancer cell lines was assayed using flow cytometry (FACS) and reverse-transcription PCR (RT-PCR). Immunohistochemistry was utilized to assay resected melanomas and normal human tissues (n = 30) for CSPG4 expression and a reverse-phase protein array comprising 94 normal tissue samples was also interrogated for CSPG4 expression. CARs were successfully constructed from multiple murine antibodies (225.28S, TP41.2, 149.53) using second generation (CD28.CD3ζ) signaling domains. CAR sequences were cloned into a gamma-retroviral vector with subsequent successful production of retroviral supernatant and PBL transduction. CAR efficacy was assayed by cytokine release and cytolysis following coculture with target cell lines. Additionally, glioblastoma stem cells were generated from resected human tumors, and CSPG4 expression was determined by RT-PCR and FACS. Results Immunohistochemistry demonstrated prominent CSPG4 expression in melanoma tumors, but failed to demonstrate expression in any of the 30 normal human tissues studied. Two of 94 normal tissue protein lysates were positive by protein array. CAR constructs demonstrated cytokine secretion and cytolytic function after co-culture with tumor cell lines from multiple different histologies, including melanoma, breast cancer, mesothelioma, glioblastoma and osteosarcoma. Furthermore, we report for the first time that CSPG4 is expressed on glioblastoma cancer stem cells (GSC) and demonstrate that anti-CSPG4 CAR-transduced T cells recognize and kill these GSC. Conclusions The functionality of multiple different CARs, with the widespread expression of CSPG4 on multiple malignancies, suggests that CSPG4 may be an attractive candidate tumor antigen for CAR-based immunotherapies using appropriate technology to limit possible off-tumor toxicity. PMID:25197555
Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines.
Witter, Lauren E; Gruber, Erika J; Lean, Fabian Z X; Stokol, Tracy
2017-01-01
OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor-replete or specific coagulation factor-deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X-deficient plasma; residual thrombin generation in factor VII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma.
Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines
Witter, Lauren E.; Gruber, Erika J.; Lean, Fabian Z. X.; Stokol, Tracy
2017-01-01
OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor–replete or specific coagulation factor–deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X–deficient plasma; residual thrombin generation in FVII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma. PMID:28029283
Tarkowski, M; Chrul, S; Bodalski, J
2002-01-01
CD30 is expressed on activated T cells that, as has been suggested, preferentially produce IFN-γ. Interleukin 12 increases antigen-induced CD30 expression on T cells and IFN-γ production. Synthesis of IFN-γ can be augmented further by IL-18. The aim of our study was to investigate whether IL-18 affects the IL-12 induced CD30 expression and cytokine production by allergen or PPD specific T cells. Mononuclear cells of healthy or atopic volunteers were stimulated with PPD or allergen, respectively, to obtain specific T cell lines. T cells were restimulated with appropriate antigen and antigen-presenting cells in the presence of IL-12, IL-18 or a combination of these cytokines. After 3 days, expression of CD30 was investigated on CD4 and CD8 T cells and IFN-γ and IL-4 cytokine production was estimated in the culture supernatants. Flow cytometric analyses showed no effect of IL-18 on CD30 expression during IL-12 co-stimulation. At the same time after the optimal stimulation for CD30 expression, the levels of IFN-γ were high in PPD-stimulated cell lines but have not been up-regulated by IL-18. IFN-γ levels were much lower in allergen-stimulated T cells and although they were up-regulated by IL-12 there was no additional or synergistic effect from IL-18. IL-18, however, increased production of IL-4 in allergen-stimulated cell lines. Our studies provide new information about IL-18 activity on human cells and question its exclusive role in Th1 mediated responses. PMID:11882036
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... Exclusive License: The Development of Modified T-cells for the Treatment of Multiple Myeloma AGENCY... Targeting B-cell Maturation Antigen'' [HHS Ref. E-040-2012/0-US-01]. The patent rights in these inventions..., development, and manufacture of chimeric antigen receptor (CAR)-expressing human T-cells directed against B...
Bürckert, Jean-Philippe; Dubois, Axel R S X; Faison, William J; Farinelle, Sophie; Charpentier, Emilie; Sinner, Regina; Wienecke-Baldacchino, Anke; Muller, Claude P
2017-01-01
The identification and tracking of antigen-specific immunoglobulin (Ig) sequences within total Ig repertoires is central to high-throughput sequencing (HTS) studies of infections or vaccinations. In this context, public Ig sequences shared by different individuals exposed to the same antigen could be valuable markers for tracing back infections, measuring vaccine immunogenicity, and perhaps ultimately allow the reconstruction of the immunological history of an individual. Here, we immunized groups of transgenic rats expressing human Ig against tetanus toxoid (TT), Modified Vaccinia virus Ankara (MVA), measles virus hemagglutinin and fusion proteins expressed on MVA, and the environmental carcinogen benzo[a]pyrene, coupled to TT. We showed that these antigens impose a selective pressure causing the Ig heavy chain (IgH) repertoires of the rats to converge toward the expression of antibodies with highly similar IgH CDR3 amino acid sequences. We present a computational approach, similar to differential gene expression analysis, that selects for clusters of CDR3s with 80% similarity, significantly overrepresented within the different groups of immunized rats. These IgH clusters represent antigen-induced IgH signatures exhibiting stereotypic amino acid patterns including previously described TT- and measles-specific IgH sequences. Our data suggest that with the presented methodology, transgenic Ig rats can be utilized as a model to identify antigen-induced, human IgH signatures to a variety of different antigens.
Finn, Jonathan D; Bassett, Jennifer; Millar, James B; Grinshtein, Natalie; Yang, Teng Chih; Parsons, Robin; Evelegh, Carole; Wan, Yonghong; Parks, Robin J; Bramson, Jonathan L
2009-12-01
Previous studies determined that the CD8(+) T-cell response elicited by recombinant adenovirus exhibited a protracted contraction phase that was associated with long-term presentation of antigen. To gain further insight into this process, a doxycycline-regulated adenovirus was constructed to enable controlled extinction of transgene expression in vivo. We investigated the impact of premature termination of transgene expression at various time points (day 3 to day 60) following immunization. When transgene expression was terminated before the maximum response had been attained, overall expansion was attenuated, yielding a small memory population. When transgene expression was terminated between day 13 and day 30, the memory population was not sustained, demonstrating that the early memory population was antigen dependent. Extinction of transgene expression at day 60 had no obvious impact on memory maintenance, indicating that maintenance of the memory population may ultimately become independent of transgene expression. Premature termination of antigen expression had significant but modest effects on the phenotype and cytokine profile of the memory population. These results offer new insights into the mechanisms of memory CD8(+) T-cell maintenance following immunization with a recombinant adenovirus.
Prevalence of feline leukaemia provirus DNA in feline lymphomas.
Weiss, Alexander Th A; Klopfleisch, Robert; Gruber, Achim D
2010-12-01
A significant drop in the prevalence of feline leukaemia virus (FeLV) antigenaemic cats and antigen-associated lymphomas has been observed after the introduction of FeLV vaccination and antigen-testing with removal of persistently antigenaemic cats. However, recent reports have indicated that regressively infected cats may contain FeLV provirus DNA and that lymphoma development may be associated with the presence of provirus alone. In the present study, we investigated the presence of FeLV antigen and provirus DNA in 50 lymphomas by immunohistochemistry and semi-nested polymerase chain reaction, respectively. Interestingly, almost 80% of T-cell lymphomas and 60% of B-cell lymphomas contained provirus DNA while only 21% of T-cell lymphomas and 11% of B-cell lymphomas expressed FeLV antigen. In conclusion, our results support previous hypotheses that vaccination and removal of persistently antigenaemic cats have led to a drop in FeLV antigen-expressing lymphomas. However, FeLV provirus DNA is still present in a high percentage of feline lymphomas. Copyright © 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Endogenous antigen tunes the responsiveness of naive B cells but not T cells
Zikherman, Julie; Parameswaran, Ramya; Weiss, Arthur
2012-01-01
In humans up to 75% of newly generated B cells and about 30% of mature B cells exhibit some degree of autoreactivity1. Yet, how B cells establish and maintain tolerance in the face of autoantigen exposure during and after development is not certain. Studies of model BCR transgenic systems have highlighted the critical role played by functional unresponsiveness or ‘anergy’2,3. Unlike T cells, evidence suggests that receptor editing and anergy, rather than deletion, account for much of B cell tolerance4,5. However, it remains unclear whether the mature diverse B cell repertoire of mice contains anergic autoreactive B cells, and if so, whether antigen was encountered during or after their development. By taking advantage of a reporter mouse in which B cell antigen receptor (BCR) signaling rapidly and robustly induces GFP expression under the control of the Nur77 regulatory region, antigen-dependent and – independent BCR signaling events in vivo during B cell maturation were visualized. Here we show that B cells encounter antigen during development in the spleen, and that this antigen exposure in turn tunes the responsiveness of BCR signaling in B cells at least partly by down-modulating expression of surface IgM but not IgD BCRs, and by modifying basal calcium levels. By contrast, no analogous process occurs in naive mature T cells. Our data demonstrate not only that autoreactive B cells persist in the mature repertoire, but that functional unresponsiveness or ‘anergy’ exists in the mature B cell repertoire along a continuum, a fact that has long been suspected, but never yet shown. These results have important implications for understanding how tolerance in T and B cells is differently imposed, and how these processes might go awry in disease. PMID:22902503
Expression of Antigen Processing and Presenting Molecules in Brain Metastasis of Breast Cancer
Liu, Yan; Komohara, Yoshihiro; Domenick, Natalie; Ohno, Masasuke; Ikeura, Maki; Hamilton, Ronald L.; Horbinski, Craig; Wang, Xinhui; Ferrone, Soldano; Okada, Hideho
2012-01-01
Defects in human leukocyte antigen (HLA) class I antigen processing machinery (APM) component expression can have a negative impact on the clinical course of tumors and the response to T-cell-based immunotherapy. Since brain metastases of breast cancer are of increasing clinical significance, the APM component expression levels and CD8+ T-cell infiltration patterns were analyzed in primary breast and metastatic brain lesions of breast cancer by immunohistochemistry. Comparison of unpaired 50 primary and 33 brain metastases showed lower expression of β2-microgloblin, transporter associated with antigen processing (TAP) 1, TAP2 and calnexin in the brain lesions. Although no significant differences were found in APM component scores between primary breast and brain lesions in 15 paired cases, primary breast lesions of which patients eventually developed brain metastases showed lower levels of β2-microgloblin, TAP1 and calnexin compared with breast lesions without known brain metastases. The extent of CD8+ T cell infiltration was significantly higher in the lesions without metastasis compared with the ones with brain metastases, and was positively associated with the expression of TAP1 and calnexin. Furthermore, mouse tumor cells stably transfected with silencing hairpin (sh)RNA for TAP1 demonstrated a decreased susceptibility to cytotoxic T lymphocytes (CTL) in vitro and enhanced spontaneous brain metastasis in vivo. These data support the functional significance of TAP1 expression in tumor cells. Taken together, our data suggest that patients with low or defective TAP1 or calnexin in primary breast cancers may be at higher risks for developing brain metastasis due to the defects in T cell-based immunosurveillance. PMID:22065046
Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein.
Gargett, Tessa; Grubor-Bauk, Branka; Miller, Darren; Garrod, Tamsin; Yu, Stanley; Wesselingh, Steve; Suhrbier, Andreas; Gowans, Eric J
2014-06-01
The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.
Liao, Ting-Yu Angela; Lau, Alice; Joseph, Sunil; Hytönen, Vesa; Hmama, Zakaria
2015-01-01
Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb) antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.
Indirect radioimmunoassay for thymus leukemia (TL) antigens. [Mice, /sup 125/I tracer technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmon, N.L.; Little, J.R.
1976-09-01
An indirect radioimmunoassay for thymus leukemia TL antigens has been developed and its specificity documented. The assay makes use of anti-TL antibodies produced in congenic mice (A-Tla/sup b/) and radioiodinated purified rabbit anti-mouse IgG. Using this assay, differences can be detected in the amounts of antigen expressed on thymocytes of the three known phenotypes (TL.1,2,3; TL.2; TL/sup -/) of inbred mouse strains. Significant differences are also detected in comparison of the thymocytes from homozygous TL.1,2,3 mice (A-Tla/sup a/) and heterozygotes from Tla/sup a/ and Tla/sup b/ parents. Optimum conditions for the assay have been established. Its ability to detect antigensmore » on glutaraldehyde-fixed cells and the binding of noncytolytic antibodies on both viable and fixed cells are documented. The assay has also been used to quantitate the changes in TL antigen expression on cells incubated in anti-TL antisera under conditions of antigenic modulation.« less
Nishida, Tetsuya; Hudecek, Michael; Kostic, Ana; Bleakley, Marie; Warren, Edus H; Maloney, David; Storb, Rainer; Riddell, Stanley R
2009-07-15
Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koike, Eiko; Kobayashi, Takahiro
2005-12-15
We hypothesized that diesel exhaust particles (DEP) induce the activation of antigen-presenting cells (APC) in lung. The present study was designed to clarify the following about DEP: (1) whether it affects the expression of Ia and B7 molecules in alveolar macrophages (AM) as a mature cell or in peripheral blood monocytes (PBM) as an immature cell (2) if it affects the antigen-presenting (AP) activity of PBM (3) what component of DEP is responsible for the effects, and (4) whether the effect of DEP is related to oxidative stress. DEP was extracted with methylene chloride. Cells were exposed to whole DEP,more » organic extract, or residual particles for 24 h. Cell-surface molecules were measured by flow cytometry. AP activity was assessed by antigen-specific T cell proliferation. Whole DEP or organic extract significantly increased the expression of Ia and B7 molecules on PBM but not on AM. No significant effect of residual particles was observed. A low concentration of organic extract also increased the AP activity of PBM. When the induction of an antioxidative enzyme was assessed, heme oxygenase-1 protein was found to be significantly increased by exposure to whole DEP, and the organic extract was more effective than the residual particles. Furthermore, the organic extract-induced expression of Ia antigen on PBM was reduced by the addition of an antioxidative agent. These results suggest that DEP may act on immature APC and enhance their AP activity and that the action contributing to oxidative stress may be mediated by organic compounds of DEP.« less
ZANDVOORT, A; TIMENS, W
2002-01-01
The splenic marginal zone (S-MZ) is especially well equipped for rapid humoral responses and is unique in its ability to initiate an immune response to encapsulated bacteria (T-cell independent type 2 (TI-2) antigens). Because of the rapid spreading through the blood, infections with blood-borne bacteria form a major health risk. To cope with blood-borne antigens, a system is needed that can respond rapidly to a great diversity of organisms. Because of a number of unique features, S-MZ B cells can respond rapid and efficient to all sorts of blood-borne antigens. These unique features include a low blood flow microenvironment, low threshold for activation, high expression of complement receptor 2 (CR2, CD21) and multireactivity. Because of the unique high expression of CD21 in a low flow compartment, S-MZ B cells can bind and respond to TI-2 antigens even with relatively low-avid B cell receptors. Although TI-2 antigens are in general poorly opsonized by classic opsonins, a particular characteristic of these antigens is their ability to bind very rapidly to complement fragment C3d without the necessity of previous immunoglobulin binding. TI-2 primed S-MZ B cells, already by first passage through the germinal centre, will meet antigen-C3d complexes bound to follicular dendritic cells, allowing unique immediate isotype switching. This explains that the primary humoral response to TI-2 antigens is unique in its characterization by a rapid increase in IgM concurrent with IgG antibody levels. PMID:12296846
Analysis of antigen-specific B-cell memory directly ex vivo.
McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G
2004-01-01
Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.
Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies
Barrett, David M.; Shestova, Olga; Hofmann, Ted J.; Perazzelli, Jessica; Klichinsky, Michael; Aikawa, Vania; Nazimuddin, Farzana; Kozlowski, Miroslaw; Scholler, John; Lacey, Simon F.; Melenhorst, Jan J.; Morrissette, Jennifer J.D.; Christian, David A.; Hunter, Christopher A.; Kalos, Michael; Porter, David L.; June, Carl H.; Grupp, Stephan A.
2016-01-01
Potent CD19-directed immunotherapies, such as chimeric antigen receptor T cells (CART) and blinatumomab, have drastically changed the outcome of patients with relapsed/refractory B cell acute lymphoblastic leukemia (B-ALL). However, CD19-negative relapses have emerged as a major problem that is observed in approximately 30% of treated patients. Developing approaches to preventing and treating antigen-loss escapes would therefore represent a vertical advance in the field. Here, we found that in primary patient samples, the IL-3 receptor α chain CD123 was highly expressed on leukemia-initiating cells and CD19-negative blasts in bulk B-ALL at baseline and at relapse after CART19 administration. Using intravital imaging in an antigen-loss CD19-negative relapse xenograft model, we determined that CART123, but not CART19, recognized leukemic blasts, established protracted synapses, and eradicated CD19-negative leukemia, leading to prolonged survival. Furthermore, combining CART19 and CART123 prevented antigen-loss relapses in xenograft models. Finally, we devised a dual CAR-expressing construct that combined CD19- and CD123-mediated T cell activation and demonstrated that it provides superior in vivo activity against B-ALL compared with single-expressing CART or pooled combination CART. In conclusion, these findings indicate that targeting CD19 and CD123 on leukemic blasts represents an effective strategy for treating and preventing antigen-loss relapses occurring after CD19-directed therapies PMID:27571406
Miyagi, K; Ingram, M; Techy, G B; Jacques, D B; Freshwater, D B; Sheldon, H
1990-09-01
As part of an on-going clinical trial of immunotherapy for recurrent malignant gliomas, using alkaline phosphatase-anti-alkaline phosphatase method with monoclonal antibodies, we investigated the correlation between expression of the major histocompatibility complex (MHC) and the subpopulation of tumor-infiltrating lymphocytes (TILs) in 38 glioma specimens (20 grade IV, 11 grade III, and 7 grade II) from 33 patients. Thirty specimens (78.9%) were positive to class I MHC antigen and 20 (52.6%) were positive to class II MHC antigen. The correlations between class I MHC antigen expression and the number of infiltrating T8 (p less than 0.01), and also between class II MHC antigen expression and the number of infiltrating T4 (p less than 0.05) were significant. We conclude that TILs are the result of immunoreaction (host-defense mechanism). 31.6% of specimens had perivascular infiltration of T cells. The main infiltrating lymphocyte subset in moderate to marked perivascular cuffing was T4. Our results may indicate that lack of MHC antigen on the glioma cell surface has a share in the poor immunogenicity in glioma-bearing patients. In addition, considering the effector/target ratio, the number of infiltrating lymphocytes against glioma cells was too small, so the immunological intervention seems to be essential in glioma therapy. Previous radiation therapy and chemotherapy, including steroid therapy, did not influence lymphocyte and macrophage infiltration.
The oncogenic potential of BK-polyomavirus is linked to viral integration into the human genome.
Kenan, Daniel J; Mieczkowski, Piotr A; Burger-Calderon, Raquel; Singh, Harsharan K; Nickeleit, Volker
2015-11-01
It has been suggested that BK-polyomavirus is linked to oncogenesis via high expression levels of large T-antigen in some urothelial neoplasms arising following kidney transplantation. However, a causal association between BK-polyomavirus, large T-antigen expression and oncogenesis has never been demonstrated in humans. Here we describe an investigation using high-throughput sequencing of tumour DNA obtained from an urothelial carcinoma arising in a renal allograft. We show that a novel BK-polyomavirus strain, named CH-1, is integrated into exon 26 of the myosin-binding protein C1 gene (MYBPC1) on chromosome 12 in tumour cells but not in normal renal cells. Integration of the BK-polyomavirus results in a number of discrete alterations in viral gene expression, including: (a) disruption of VP1 protein expression and robust expression of large T-antigen; (b) preclusion of viral replication; and (c) deletions in the non-coding control region (NCCR), with presumed alterations in promoter feedback loops. Viral integration disrupts one MYBPC1 gene copy and likely alters its expression. Circular episomal BK-polyomavirus gene sequences are not found, and the renal allograft shows no productive polyomavirus infection or polyomavirus nephropathy. These findings support the hypothesis that integration of polyomaviruses is essential to tumourigenesis. It is likely that dysregulation of large T-antigen, with persistent over-expression in non-lytic cells, promotes cell growth, genetic instability and neoplastic transformation. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Cerruti, Fulvia; Martano, Marina; Petterino, Claudio; Bollo, Enrico; Morello, Emanuela; Bruno, Renato; Buracco, Paolo; Cascio, Paolo
2007-01-01
In human tumors, changes in the surface expression and/or function of major histocompatibility complex (MHC) class I antigens are frequently found and may provide malignant cells with a mechanism to escape control of the immune system. This altered human lymphocyte antigen (HLA) class I phenotype can be caused by either structural alterations or dysregulation of genes encoding subunits of HLA class I antigens and/or components of the MHC class I antigen-processing machinery (APM). Herein we analyze the expression of several proteins involved in the generation of MHC class I epitopes in feline injection site sarcoma, a spontaneously occurring tumor in cats that is an informativemodel for the study of tumor biology in other species, including humans. Eighteen surgically removed primary fibrosarcoma lesions were analyzed, and an enhanced expression of two catalytic subunits of immunoproteasomes, PA28 and leucine aminopeptidase, was found in tumors compared to matched normal tissues. As a functional counterpart of these changes in protein levels, proteasomal activities were increased in tissue extracts from fibrosarcomas. Taken together, these results suggest that alterations in the APM system may account for reduced processing of selected tumor antigens and may potentially provide neoplastic fibroblasts with a mechanism for escape from T-cell recognition and destruction. PMID:18030364
Cerruti, Fulvia; Martano, Marina; Petterino, Claudio; Bollo, Enrico; Morello, Emanuela; Bruno, Renato; Buracco, Paolo; Cascio, Paolo
2007-11-01
In human tumors, changes in the surface expression and/or function of major histocompatibility complex (MHC) class I antigens are frequently found and may provide malignant cells with a mechanism to escape control of the immune system. This altered human lymphocyte antigen (HLA) class I phenotype can be caused by either structural alterations or dysregulation of genes encoding subunits of HLA class I antigens and/or components of the MHC class I antigen-processing machinery (APM). Herein we analyze the expression of several proteins involved in the generation of MHC class I epitopes in feline injection site sarcoma, a spontaneously occurring tumor in cats that is an informative model for the study of tumor biology in other species, including humans. Eighteen surgically removed primary fibrosarcoma lesions were analyzed, and an enhanced expression of two catalytic subunits of immunoproteasomes, PA28 and leucine aminopeptidase, was found in tumors compared to matched normal tissues. As a functional counterpart of these changes in protein levels, proteasomal activities were increased in tissue extracts from fibrosarcomas. Taken together, these results suggest that alterations in the APM system may account for reduced processing of selected tumor antigens and may potentially provide neoplastic fibroblasts with a mechanism for escape from T-cell recognition and destruction.
Characteristics of cell lines established from human colorectal carcinoma.
Park, J G; Oie, H K; Sugarbaker, P H; Henslee, J G; Chen, T R; Johnson, B E; Gazdar, A
1987-12-15
We have characterized 14 human colorectal carcinoma cell lines established from primary and metastatic sites by us during the years 1982 to 1985. Five lines were established in fully defined ACL-4 medium and 9 in serum supplemented R10 medium. However, after establishment, cultures could be grown interchangeably in either medium. The lines grew as floating cell aggregates in ACL-4 medium, while most demonstrated substrate adherence in R10 medium. The lines had relatively long doubling times and low cloning efficiencies. Twelve were tumorigenic in athymic nude mice when injected s.c., and two grew i.p. as well. Based on culture, xenograft, and ultrastructural morphologies, the 14 lines could be subtyped as follows: 4 were well differentiated; 5 were moderately differentiated; 4 were poorly differentiated; and 1 was a mucinous carcinoma. Membrane associated antigens characteristic for gastrointestinal cells (carcinoembryonic antigen, CA 19-9, and TAG-72 antigens) were expressed by 50-71% of the lines. Lines expressing carcinoembryonic antigen and CA 19-9 actively secreted these antigens into the supernatant fluids while TAG-72 antigen was not secreted. Surprisingly, 5 of 7 of the original tumor samples tested and 13 of 14 cultured lines expressed L-dopa decarboxylase activity, which is a characteristic enzyme marker of neuroendocrine cells and tumors. In addition, one poorly differentiated cell line contained dense core granules, characteristic of endocrine secretion. Preliminary cytogenetic analyses indicated that 9 of 11 lines examined contained double minute chromosomes. In addition, 3 of the 9 lines with double minutes also had homogeneously staining regions. These findings indicate a high incidence of amplification of one or more as yet unidentified genes.
T lymphocyte-derived TNF and IFN-γ repress HFE expression in cancer cells.
Reuben, Alexandre; Godin-Ethier, Jessica; Santos, Manuela M; Lapointe, Réjean
2015-06-01
The immune system and tumors are closely intertwined initially upon tumor development. During this period, tumors evolve to promote self-survival through immune escape, including by targeting crucial components involved in the presentation of antigens to the immune system in order to avoid recognition. Accordingly, components involved in MHC I presentation of tumor antigens are often mutated and down-regulated targets in tumors. On the other hand, the immune system has been shown to influence tumors through production of immunosuppressive cytokines, recruitment and polarization of cells favoring or impeding tumor escape or through production of anti-tumor cytokines promoting tumor rejection. We previously discovered that the hemochromatosis protein HFE, a negative regulator of iron absorption, dampens classical MHC I antigen presentation. In this study, we evaluated the impact of activated T lymphocytes purified from peripheral blood mononuclear cells (PBMC) on HFE expression in tumor cell lines. We co-cultured tumor cell lines from melanoma, lung, and kidney cancers with anti-CD3-activated PBMC and established that HFE expression is increased in tumor cell lines compared to healthy tissues, whilst being down-regulated significantly upon exposure to activated PBMC. HFE down-regulation was mediated by both CD4 and CD8 T lymphocytes, through production of soluble mediators, namely TNF and IFN-γ. These results suggest that the immune system may modulate tumor HFE expression in inflammatory conditions in order to regulate MHC I antigen presentation and promote tumor clearance. Copyright © 2015. Published by Elsevier Ltd.
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-04-10
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.
ɣδ T cell receptor ligands and modes of antigen recognition
Champagne, Eric
2011-01-01
T lymphocytes expressing the γδ-type of T cell receptors for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs. PMID:21298486
γδ T cell receptor ligands and modes of antigen recognition.
Champagne, Eric
2011-04-01
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Ahmed, Nabil; Salsman, Vita S; Yvon, Eric; Louis, Chrystal U; Perlaky, Laszlo; Wels, Winfried S; Dishop, Meghan K; Kleinerman, Eugenie E; Pule, Martin; Rooney, Cliona M; Heslop, Helen E; Gottschalk, Stephen
2009-10-01
Human epidermal growth factor receptor 2 (HER2) is expressed by the majority of human osteosarcomas and is a risk factor for poor outcome. Unlike breast cancer, osteosarcoma cells express HER2 at too low, a level for patients to benefit from HER2 monoclonal antibodies. We reasoned that this limitation might be overcome by genetically modifying T cells with HER2-specific chimeric antigen receptors (CARs), because even a low frequency of receptor engagement could be sufficient to induce effector cell killing of the tumor. HER2-specific T cells were generated by retroviral transduction with a HER2-specific CAR containing a CD28.zeta signaling domain. HER2-specific T cells recognized HER2-positive osteosarcoma cells as judged by their ability to proliferate, produce immunostimulatory T helper 1 cytokines, and kill HER2-positive osteosarcoma cell lines in vitro. The adoptive transfer of HER2-specific T cells caused regression of established osteosarcoma xenografts in locoregional as well as metastatic mouse models. In contrast, delivery of nontransduced (NT) T cells did not change the tumor growth pattern. Genetic modification of T cells with CARs specific for target antigens, expressed at too low a level to be effectively recognized by monoclonal antibodies, may allow immunotherapy to be more broadly applicable for human cancer therapy.
Johnson, Laura A.; Davis, Jeremy L.; Zheng, Zhili; Woolard, Kevin D.; Reap, Elizabeth A.; Feldman, Steven A.; Chinnasamy, Nachimuthu; Kuan, Chien-Tsun; Song, Hua; Zhang, Wei; Fine, Howard A.; Rosenberg, Steven A.
2012-01-01
Abstract No curative treatment exists for glioblastoma, with median survival times of less than 2 years from diagnosis. As an approach to develop immune-based therapies for glioblastoma, we sought to target antigens expressed in glioma stem cells (GSCs). GSCs have multiple properties that make them significantly more representative of glioma tumors than established glioma cell lines. Epidermal growth factor receptor variant III (EGFRvIII) is the result of a novel tumor-specific gene rearrangement that produces a unique protein expressed in approximately 30% of gliomas, and is an ideal target for immunotherapy. Using PCR primers spanning the EGFRvIII-specific deletion, we found that this tumor-specific gene is expressed in three of three GCS lines. Based on the sequence information of seven EGFRvIII-specific monoclonal antibodies (mAbs), we assembled chimeric antigen receptors (CARs) and evaluated the ability of CAR-engineered T cells to recognize EGFRvIII. Three of these anti-EGFRvIII CAR-engineered T cells produced the effector cytokine, interferon-γ, and lysed antigen-expressing target cells. We concentrated development on a CAR produced from human mAb 139, which specifically recognized GSC lines and glioma cell lines expressing mutant EGFRvIII, but not wild-type EGFR and did not recognize any normal human cell tested. Using the 139-based CAR, T cells from glioblastoma patients could be genetically engineered to recognize EGFRvIII-expressing tumors and could be expanded ex vivo to large numbers, and maintained their antitumor activity. Based on these observations, a γ-retroviral vector expressing this EGFRvIII CAR was produced for clinical application. PMID:22780919
Morgan, Richard A; Johnson, Laura A; Davis, Jeremy L; Zheng, Zhili; Woolard, Kevin D; Reap, Elizabeth A; Feldman, Steven A; Chinnasamy, Nachimuthu; Kuan, Chien-Tsun; Song, Hua; Zhang, Wei; Fine, Howard A; Rosenberg, Steven A
2012-10-01
No curative treatment exists for glioblastoma, with median survival times of less than 2 years from diagnosis. As an approach to develop immune-based therapies for glioblastoma, we sought to target antigens expressed in glioma stem cells (GSCs). GSCs have multiple properties that make them significantly more representative of glioma tumors than established glioma cell lines. Epidermal growth factor receptor variant III (EGFRvIII) is the result of a novel tumor-specific gene rearrangement that produces a unique protein expressed in approximately 30% of gliomas, and is an ideal target for immunotherapy. Using PCR primers spanning the EGFRvIII-specific deletion, we found that this tumor-specific gene is expressed in three of three GCS lines. Based on the sequence information of seven EGFRvIII-specific monoclonal antibodies (mAbs), we assembled chimeric antigen receptors (CARs) and evaluated the ability of CAR-engineered T cells to recognize EGFRvIII. Three of these anti-EGFRvIII CAR-engineered T cells produced the effector cytokine, interferon-γ, and lysed antigen-expressing target cells. We concentrated development on a CAR produced from human mAb 139, which specifically recognized GSC lines and glioma cell lines expressing mutant EGFRvIII, but not wild-type EGFR and did not recognize any normal human cell tested. Using the 139-based CAR, T cells from glioblastoma patients could be genetically engineered to recognize EGFRvIII-expressing tumors and could be expanded ex vivo to large numbers, and maintained their antitumor activity. Based on these observations, a γ-retroviral vector expressing this EGFRvIII CAR was produced for clinical application.
Comparison of the algorithms classifying the ABC and GCB subtypes in diffuse large B-cell lymphoma.
Boltežar, Lučka; Prevodnik, Veronika Kloboves; Perme, Maja Pohar; Gašljević, Gorana; Novaković, Barbara Jezeršek
2018-05-01
Different immunohistochemical algorithms for the classification of the activated B-cell (ABC) and germinal center B-cell (GCB) subtypes of diffuse large B-cell lymphoma (DLBCL) are applied in different laboratories. In the present study, 127 patients with DLCBL were investigated, all treated with rituximab and cyclophosphamide, hydroxydaunorubicin, oncovin and prednisone (CHOP) or CHOP-like regimens between April 2004 and December 2010. Multi-tumor tissue microarrays were prepared and were tested according to 4 algorithms: Hans; modified Hans; Choi; and modified Choi. For 39 patients, the flow cytometric quantification of CD19 and CD20 antigen expression was performed and the level of expression presented as molecules of equivalent soluble fluorochrome units. The Choi algorithm was demonstrated to be prognostic for OS and classified patients into the GCB subgroup with an HR of 0.91. No difference in the expression of the CD19 antigen between the ABC and GCB groups was observed, but the ABC subtype exhibited a decreased expression of the CD20 antigen compared with the GCB subtype.
Corrias, Maria Valeria; Levreri, Isabella; Scaruffi, Paola; Raffaghello, Lizzia; Carlini, Barbara; Bocca, Paola; Prigione, Ignazia; Stigliani, Sara; Amoroso, Loredana; Ferrone, Soldano; Pistoia, Vito
2012-01-01
The high molecular weight melanoma-associated antigen (HMW-MAA) and the cytoplasmic melanoma-associated antigen (cyt-MAA/LGALS3BP) are expressed in melanoma. Their serum levels are increased in melanoma patients and correlate with clinical outcome. We investigated whether these molecules can serve as prognostic markers for neuroblastoma (NB) patients. Expression of cyt-MAA and HMW-MAA was evaluated by flow cytometry in NB cell lines, patients’ neuroblasts (FI-NB), and short-term cultures of these latter cells (cNB). LGALS3BP gene expression was evaluated by RT–qPCR on FI-NB, cNB, and primary tumor specimens. Soluble HMW-MAA and cyt-MAA were tested by ELISA. Cyt-MAA and HMW-MAA were expressed in NB cell lines, cNB, and FI-NB samples. LGALS3BP gene expression was higher in primary tumors and cNB than in FI-NB samples. Soluble cyt-MAA, but not HMW-MAA, was detected in NB cell lines and cNBs supernatants. NB patients’ serum levels of both antigens were higher than those of the healthy children. High cyt-MAA serum levels at diagnosis associated with higher incidence of relapse, independently from other known risk factors. In conclusion, both HMW-MAA and cyt-MAA antigens, and LGALS3BP gene, were expressed by NB cell lines and patients’ neuroblasts, and both antigens’ serum levels were increased in NB patients. Elevated serum levels of cyt-MAA at diagnosis correlated with relapse, supporting that cyt-MAA may serve as early serological biomarker to individuate patients at higher risk of relapse that may require a more careful follow-up, after being validated in a larger cohort of patients at different time-points during follow-up. Given its immunogenicity, cyt-MAA may also be a potential target for NB immunotherapy. PMID:21660451
Iheagwara, Uzoma K.; Beatty, Pamela L.; Van, Phu T.; Ross, Ted M.; Minden, Jonathan S.; Finn, Olivera J.
2014-01-01
Most tumor-associated antigens (TAA) are self-molecules that are abnormally expressed in cancer cells and become targets of antitumor immune responses. Antibodies and T cells specific for some TAA have been found in healthy individuals and are associated with lowered lifetime risk for developing cancer. Lower risk for cancer has also been associated with a history of febrile viral diseases. We hypothesized that virus infections could lead to transient expression of abnormal forms of self-molecules, some of which are TAA; facilitated by the adjuvant effects of infection and inflammation, these molecules could elicit specific antibodies, T cells and lasting immune memory simultaneously with immunity against viral antigens. Such infection-induced immune memory for TAA would be expected to provide life-long immune surveillance of cancer. Using influenza virus infection in mice as a model system, we tested this hypothesis and demonstrated that influenza-experienced mice control 3LL mouse lung tumor challenge better than infection-naive control mice. Using 2D-Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry, we identified numerous molecules, some of which are known TAA, on the 3LL tumor cells recognized by antibodies elicited by two successive influenza infections. We studied in detail immune responses against GAPDH, Histone H4, HSP90, Malate Dehydrogenase 2 and Annexin A2, all of which were overexpressed in influenza-infected lungs and in tumor cells. Lastly, we show that immune responses generated through vaccination against peptides derived from these antigens correlated with improved tumor control. PMID:24778322
Chinnasamy, Dhanalakshmi; Tran, Eric; Yu, Zhiya; Morgan, Richard A; Restifo, Nicholas P; Rosenberg, Steven A
2013-06-01
Most systemic cancer therapies target tumor cells directly, although there is increasing interest in targeting the tumor stroma that can comprise a substantial portion of the tumor mass. We report here a synergy between two T-cell therapies, one directed against the stromal tumor vasculature and the other directed against antigens expressed on the tumor cell. Simultaneous transfer of genetically engineered syngeneic T cells expressing a chimeric antigen receptor targeting the VEGF receptor-2 (VEGFR2; KDR) that is overexpressed on tumor vasculature and T-cells specific for the tumor antigens gp100 (PMEL), TRP-1 (TYRP1), or TRP-2 (DCT) synergistically eradicated established B16 melanoma tumors in mice and dramatically increased the tumor-free survival of mice compared with treatment with either cell type alone or T cells coexpressing these two targeting molecules. Host lymphodepletion before cell transfer was required to mediate the antitumor effect. The synergistic antitumor response was accompanied by a significant increase in the infiltration and expansion and/or persistence of the adoptively transferred tumor antigen-specific T cells in the tumor microenvironment and thus enhanced their antitumor potency. The data presented here emphasize the possible beneficial effects of combining antiangiogenic with tumor-specific immunotherapeutic approaches for the treatment of patients with cancer. ©2013 AACR.
Lee, Song; Lee, Chan Mi; Kim, Song Cheol
2016-11-11
Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4 + cells. Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4 + and CA19-9 + cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4 + and CA19-9 + cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4 + cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4 + cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9 + cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4 + or CA19-9 + cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9 + cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4 + cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4 + cells. SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may be used as a source of stem/progenitor cells for pancreatic cell lineage-specific differentiation.
Ensslen, Silke; Marquardt, Yvonne; Czaja, Katharina; Joussen, Sylvia; Beer, Daniel; Abele, Rupert; Plewnia, Gabriele; Tampé, Robert; Merk, Hans F.; Hermanns, Heike M.; Baron, Jens M.
2016-01-01
Introduction Interferon alpha (IFNα) is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1) is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling. Results We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs) of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment. Conclusion We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in ‘silent’ metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and monitor therapeutic response of IFNα treatment in the future. PMID:26735690
Thomas, Michael; Suwa, Tetsuya; Yang, Lianqing; Zhao, Lifang; Hawks, Christina L; Hornsby, Peter J
2002-01-01
Abstract Expression of TERT, the reverse transcriptase component of telomerase, is necessary to convert normal human cells to cancer cells. Despite this, “telomerization” by hTERT does not appear to alter the normal properties of cells. In a cell transplantation model in which bovine adrenocortical cells form vascularized tissue structures beneath the kidney capsule in scid mice, telomerization does not perturb the functional tissue-forming capacity of the cells. This cell transplantation model was used to study the cooperation of hTERT with SV40 T antigen (SV40 TAg) and oncogenic Ras in tumorigenesis. Only cells expressing all three genes were tumorigenic; this required large T, but not small t, antigen. These cells produced a continuously expanding tissue mass; they were invasive with respect to adjacent organs and eventually destroyed the kidney. Cells expressing only hTERT or only Ras produced minimally altered tissues. In contrast, SV40 TAg alone produced noninvasive nodules beneath the kidney capsule that had high proliferation rates balanced by high rates of apoptosis. The use of cell transplantation techniques in a cell type that is able to form tissue structures with or without full neoplastic conversion allows the phenotypes produced by individual cooperating oncogenes to be observed. PMID:12407443
Phenotypic and in vivo functional characterization of immortalized human fetal liver cells.
Patil, Pradeep B; Begum, Setara; Joshi, Meghnad; Kleman, Marika I; Olausson, Michael; Sumitran-Holgersson, Suchitra
2014-06-01
We report the establishment and characterization of immortalized human fetal liver progenitor cells by expression of the Simian virus 40 large T (SV40 LT) antigen. Well-characterized cells at various passages were transplanted into nude mice with acute liver injury and tested for functional capacity. The SV40LT antigen-immortalized fetal liver cells showed a morphology similar to primary cells. Cultured cells demonstrated stable phenotypic expression in various passages, of hepatic markers such as albumin, CK 8, CK18, transcription factors HNF-4α and HNF-1α and CYP3A/7. The cells did not stain for any of the tested cancer-associated markers. Albumin, HNF-4α and CYP3A7 expression was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Flow cytometry showed expression of some progenitor cell markers. In vivo study showed that the cells expressed both fetal and differentiated hepatocytes markers. Our study suggests new approaches to expand hepatic progenitor cells, analyze their fate in animal models aiming at cell therapy of hepatic diseases.
Identification and characterization of polyclonal αβ T cells with dendritic cell properties
Kuka, Mirela; Munitic, Ivana; Ashwell, Jonathan D.
2012-01-01
An efficient immune response requires coordination between innate and adaptive immunity, which act through cells different in origin and function. Here we report the identification of thymus-derived αβ TCR+ cells that express CD11c and MHC class II, and require FLT3L for development (TDC). TDC express genes heretofore found uniquely in T cells or DC, as well as a distinctive signature of cytotoxicity-related genes. Unlike other innate T cell subsets, TDC have a polyclonal TCR repertoire andrespond to cognate antigens. However, they differ from conventional T cells in that they do not require help from antigen-presenting cells, respond to TLR-mediated stimulation by producing IL-12 and process and present antigen. The physiologic relevance of TDC, found in mice and humans, is still under investigation, but the fact that they combine key features of T and DC cells suggests that they provide a bridge between the innate and adaptive immune systems. PMID:23187623
PDC expressing CD36, CD61 and IL-10 may contribute to propagation of immune tolerance.
Parcina, Marijo; Schiller, Martin; Gierschke, Aline; Heeg, Klaus; Bekeredjian-Ding, Isabelle
2009-05-01
Human plasmacytoid dendritic cells (PDC) are blood dendritic cell antigen 2 (BDCA2) and blood dendritic cell antigen 4 (BDCA4) positive leukocytes that do not express common lineage markers. They have been described as proinflammatory innate immune cells and are the major source of alphaIFN in the human body. PDC-derived secretion of type I IFNs upon triggering of nucleic acid-sensing toll-like receptors (TLR) primes immune cells to rapidly respond to microbial stimuli and promotes a Th1 response. Here, we report that human PDC express CD36 and CD61 (beta3 integrin), both involved in uptake of apoptotic cells and in induction of tolerance. Freshly isolated PDC and PDC within human blood leukocytes constitutively express IL-10. Thus, PDC may possess a so far neglected role in propagation of immune tolerance.
Leukemia-associated antigens in man.
Brown, G; Capellaro, D; Greaves, M
1975-12-01
Rabbit antisera raised against acute lymphoblastic leukemia (ALL) cells were used to distinguish ALL from other leukemias, to identify rare leukemia cells in the bone marrow of patients in remission, and to define human leukemia-associated antigens. Antibody binding was studied with the use of immunofluorescence reagents and the analytic capacity of the Fluorescence Activated Cell Sorter-1 (FACS-1). The results indicated that most non-T-cell ALL have three leukemia-associated antigens on their surface which are absent from normal lymphoid cells: 1) an antigen shared with myelocytes, myeloblastic leukemia cells, and fetal liver (hematopoietic) cells; 2) an antigen shared with a subset of intermediate normoblasts in normal bone marrow and fetal liver; and 3) an antigen found thus far only on non-T-cell ALL and in some acute undifferentiated leukemias, which we therefore regard as a strong candidate for a leukemia-specific antigen. These antigens are absent from a subgroup of ALL patients in which the lymphoblasta express T-cell surface markers. Preliminary studies on the bone marrow samples of patients in remission indicated that rare leukemia cells were present in some samples. The implications of these findings with respect to the heterogeneity and cell origin(s) of ALL, its diagnosis, and its potential monitoring during treatment were discussed.
Role of Dendritic Cells in the Immune Response Induced by Mouse Mammary Tumor Virus Superantigen
Baribaud, Frédéric; Maillard, Ivan; Vacheron, Sonia; Brocker, Thomas; Diggelmann, Heidi; Acha-Orbea, Hans
1999-01-01
After mouse mammary tumor virus (MMTV) infection, B lymphocytes present a superantigen (Sag) and receive help from the unlimited number of CD4+ T cells expressing Sag-specific T-cell receptor Vβ elements. The infected B cells divide and differentiate, similarly to what occurs in classical B-cell responses. The amplification of Sag-reactive T cells can be considered a primary immune response. Since B cells are usually not efficient in the activation of naive T cells, we addressed the question of whether professional antigen-presenting cells such as dendritic cells (DCs) are responsible for T-cell priming. We show here, using MMTV(SIM), a viral isolate which requires major histocompatibility complex class II I-E expression to induce a strong Sag response in vivo, that transgenic mice expressing I-E exclusively on DCs (I-EαDC tg) reveal a strong Sag response. This Sag response was dependent on the presence of B cells, as indicated by the absence of stimulation in I-EαDC tg mice lacking B cells (I-EαDC tg μMT−/−), even if these B cells lack I-E expression. Furthermore, the involvement of either residual transgene expression by B cells or transfer of I-E from DCs to B cells was excluded by the use of mixed bone marrow chimeras. Our results indicate that after priming by DCs in the context of I-E, the MMTV(SIM) Sag can be recognized on the surface of B cells in the context of I-A. The most likely physiological relevance of the lowering of the antigen threshold required for T-cell/B-cell collaboration after DC priming is to allow B cells with a low affinity for antigen to receive T-cell help in a primary immune response. PMID:10482591
Westhoff, Connie M.; Uy, Jon Michael; Aguad, Maria; Smeland‐Wagman, Robin; Kaufman, Richard M.; Rehm, Heidi L.; Green, Robert C.; Silberstein, Leslie E.
2015-01-01
BACKGROUND There are 346 serologically defined red blood cell (RBC) antigens and 33 serologically defined platelet (PLT) antigens, most of which have known genetic changes in 45 RBC or six PLT genes that correlate with antigen expression. Polymorphic sites associated with antigen expression in the primary literature and reference databases are annotated according to nucleotide positions in cDNA. This makes antigen prediction from next‐generation sequencing data challenging, since it uses genomic coordinates. STUDY DESIGN AND METHODS The conventional cDNA reference sequences for all known RBC and PLT genes that correlate with antigen expression were aligned to the human reference genome. The alignments allowed conversion of conventional cDNA nucleotide positions to the corresponding genomic coordinates. RBC and PLT antigen prediction was then performed using the human reference genome and whole genome sequencing (WGS) data with serologic confirmation. RESULTS Some major differences and alignment issues were found when attempting to convert the conventional cDNA to human reference genome sequences for the following genes: ABO, A4GALT, RHD, RHCE, FUT3, ACKR1 (previously DARC), ACHE, FUT2, CR1, GCNT2, and RHAG. However, it was possible to create usable alignments, which facilitated the prediction of all RBC and PLT antigens with a known molecular basis from WGS data. Traditional serologic typing for 18 RBC antigens were in agreement with the WGS‐based antigen predictions, providing proof of principle for this approach. CONCLUSION Detailed mapping of conventional cDNA annotated RBC and PLT alleles can enable accurate prediction of RBC and PLT antigens from whole genomic sequencing data. PMID:26634332
Pearce, Hayden; Hutton, Paul; Chaudhri, Shalini; Porfiri, Emilio; Patel, Prashant; Viney, Richard
2017-01-01
Cancer/testis antigen (CTAg) expression is restricted to spermatogenic cells in an immune‐privileged site within the testis. However, these proteins are expressed aberrantly by malignant cells and T‐cell responses against CTAgs develop in many cancer patients. We investigated the prevalence, magnitude and phenotype of CTAg‐specific T cells in the blood of patients with testicular germ cell tumors (TGCTs). CD8+ and CD4+ T‐cell responses against MAGE‐A family antigens were present in 44% (20/45) of patients’ samples assayed by ex vivo IFN‐γ ELISPOT. The presence of MAGE‐specific CD8+ T cells was further determined following short‐term in vitro expansion through the use of pMHC‐I multimers containing known immunogenic peptides. Longitudinal analysis revealed that the frequency of MAGE‐specific T cells decreased by 89% following orchidectomy suggesting that persistence of tumor antigen is required to sustain CTAg‐specific T‐cell immunity. Notably, this decrease correlated with a decline in the global effector/memory T‐cell pool following treatment. Spontaneous T‐cell immunity against CTAg proteins therefore develops in many patients with testicular cancer and may play an important role in the excellent clinical outcome of patients with this tumor subtype. PMID:28555838
Prostate specific membrane antigen (PSMA) expression in non-small cell lung cancer
Heitkötter, Birthe; Schulze, Arik B.; Schliemann, Christoph; Steinestel, Konrad; Trautmann, Marcel; Marra, Alessandro; Hillejan, Ludger; Mohr, Michael; Evers, Georg; Wardelmann, Eva; Rahbar, Kambiz; Görlich, Dennis; Lenz, Georg; Berdel, Wolfgang E.; Hartmann, Wolfgang; Wiewrodt, Rainer; Huss, Sebastian
2017-01-01
Objectives PSMA (prostate-specific membrane antigen) is overexpressed in prostate cancer cells and is reported to be a promising target for antibody-based radioligand therapy in patients with metastasized prostate cancer. Since PSMA expression is not restricted to prostate cancer, the underlying study investigates PSMA expression in non-small cell lung cancer (NSCLC). Material and methods Immunohistochemistry was used to identify PSMA expression in n = 275 samples of NSCLC tissue specimens. By means of CD34 co-expression, the level of PSMA expression in tumor associated neovasculature was investigated. The impact of PSMA expression on clinicopathologic parameters and prognosis was evaluated. Results PSMA tumor cell expression in NSCLC is as low as 6% and was predominantly found in squamous cell carcinoma (p = 0.002). Neovascular PSMA expression was found in 49% of NSCLC. High neovascular PSMA expression was associated with higher tumor grading (G3/G4) (p < 0.001). Neither for PSMA tumor cell expression, nor for PSMA neovascular cell expression prognostic effects were found for the investigated NSCLC cases. Conclusion Here, we report on the expression of PSMA in NSCLC tissue samples. Against the background of a potential treatment with radiolabeled PSMA ligands, our data might serve for the future identification of patients who could benefit from this therapeutic option. PMID:29077706
Nestin expression in neuroepithelial tumors.
Schiffer, Davide; Manazza, Andrea; Tamagno, Ilaria
2006-05-29
Nestin is a marker of early stages of neurocytogenesis. It has been studied in 50 neuroepithelial tumors, mostly gliomas of different malignancy grades, by immunohistochemistry, immunofluorescence, immunoblotting, and confocal microscopy and compared with GFAP and Vimentin. As an early marker of differentiation, Nestin is almost not expressed in diffuse astrocytomas, variably expressed in anaplastic astrocytomas and strongly and irregularly expressed in glioblastomas. Negative in oligodendrogliomas, it stains ependymomas and shows a gradient of expression in pilocytic astrocytomas. In glioblastomas, Nestin distribution does not completely correspond to that of GFAP and Vimentin with which its expression varies in tumor cells in a complementary way, as confirmed by confocal microscopy. Tumor cells can thus either derive from or differentiate toward the neurocytogenetic stages. Hypothetically, they could be put in relation with radial glia where during embriogenesis the three antigens are successively expressed. Completely negative cells of invasive or recurrent glioblastomas may represent malignant selected clones after accumulation of mutations or early stem cells not expressing antigens.
Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells.
Herbst, H; Dallenbach, F; Hummel, M; Niedobitek, G; Pileri, S; Müller-Lantzsch, N; Stein, H
1991-01-01
Cryostat sections from lymph nodes of 47 Hodgkin disease patients were examined by immunohistology for the Epstein-Barr virus (EBV)-encoded latent membrane protein (LMP), nuclear antigen 2, and late viral glycoprotein gp350/250. A distinct LMP-specific membrane and cytoplasmic staining was detected exclusively in Hodgkin and Reed-Sternberg cells in 18 patients (38%); EBV nuclear antigen 2 and gp350/250 immunoreactivity was absent in all instances. Thirty-two of 47 (68%) cases contained EBV-specific DNA sequences as detected by PCR, all LMP-positive cases being in this category. Our results confirm previous studies establishing the presence of EBV genomes in Hodgkin and Reed-Sternberg cells by demonstrating expression of an EBV-encoded protein in the tumor-cell population. The finding of LMP expression in the absence of EBV nuclear antigen 2 suggests a pattern of EBV gene expression different from that of B-lymphoblastoid cell lines and Burkitt lymphoma, whereas this finding shows similarities with that seen in undifferentiated nasopharyngeal carcinoma. Because the LMP gene has transforming potential, our findings support the concept of a pathoetiological role of EBV in many cases of Hodgkin disease. Images PMID:1647016
Yuasa, Noriyuki; Koyama, Tsubasa; Fujita-Yamaguchi, Yoko
2014-02-01
T-antigen (Galβ1-3GalNAcα-1-Ser/Thr) is an oncofetal antigen that is commonly expressed as a carbohydrate determinant in many adenocarcinomas. Since it is associated with tumor progression and metastasis, production of recombinant antibodies specific for T-antigen could lead to the development of cancer diagnostics and therapeutics. Previously, we isolated and characterized 11 anti-T-antigen phage clones from a phage library displaying human single-chain antibodies (scFvs) and purified one scFv protein, 1G11. More recently, we purified and characterized 1E8 scFv protein using a Drosophila S2 expression system. In the current study, four anti-T-antigen scFv genes belonging to Groups 1-4 were purified from inclusion bodies expressed in Escherichia coli cells. Inclusion bodies isolated from E. coli cells were denatured in 3.5 M Gdn-HCl. Solubilized His-tagged scFv proteins were purified using Ni(2+)-Sepharose column chromatography in the presence of 3.5 M Gdn-HCl. Purified scFv proteins were refolded according to a previously published method of step-wise dialysis. Two anti-T-antigen scFv proteins, 1E6 and 1E8 that belong to Groups 1 and 2, respectively, were produced in sufficient amounts, thus allowing further characterization of their binding activity with T-antigen. Specificity and affinity constants determined using enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR), respectively, provided evidence that both 1E8 and 1E6 scFv proteins are T-antigen specific and suggested that 1E8 scFv protein has a higher affinity for T-antigen than 1E6 scFv protein.
Revaud, Julien; Unterfinger, Yves; Rol, Nicolas; Suleman, Muhammad; Shaw, Julia; Galea, Sandra; Gavard, Françoise; Lacour, Sandrine A.; Coulpier, Muriel; Versillé, Nicolas; Havenga, Menzo; Klonjkowski, Bernard; Zanella, Gina; Biacchesi, Stéphane; Cordonnier, Nathalie; Corthésy, Blaise; Ben Arous, Juliette; Richardson, Jennifer P.
2018-01-01
To define the bottlenecks that restrict antigen expression after oral administration of viral-vectored vaccines, we tracked vectors derived from the human adenovirus type 5 at whole body, tissue, and cellular scales throughout the digestive tract in a murine model of oral delivery. After intragastric administration of vectors encoding firefly luciferase or a model antigen, detectable levels of transgene-encoded protein or mRNA were confined to the intestine, and restricted to delimited anatomical zones. Expression of luciferase in the form of multiple small bioluminescent foci in the distal ileum, cecum, and proximal colon suggested multiple crossing points. Many foci were unassociated with visible Peyer's patches, implying that transduced cells lay in proximity to villous rather than follicle-associated epithelium, as supported by detection of transgene-encoded antigen in villous epithelial cells. Transgene-encoded mRNA but not protein was readily detected in Peyer's patches, suggesting that post-transcriptional regulation of viral gene expression might limit expression of transgene-encoded antigen in this tissue. To characterize the pathways by which the vector crossed the intestinal epithelium and encountered sentinel cells, a fluorescent-labeled vector was administered to mice by the intragastric route or inoculated into ligated intestinal loops comprising a Peyer's patch. The vector adhered selectively to microfold cells in the follicle-associated epithelium, and, after translocation to the subepithelial dome region, was captured by phagocytes that expressed CD11c and lysozyme. In conclusion, although a large number of crossing events took place throughout the intestine within and without Peyer's patches, multiple firewalls prevented systemic dissemination of vector and suppressed production of transgene-encoded protein in Peyer's patches. PMID:29423380
Schirmer, David; Grünewald, Thomas G. P.; Klar, Richard; Schmidt, Oxana; Wohlleber, Dirk; Rubío, Rebeca Alba; Uckert, Wolfgang; Thiel, Uwe; Bohne, Felix; Busch, Dirk H.; Krackhardt, Angela M.; Burdach, Stefan; Richter, Günther H. S.
2016-01-01
ABSTRACT Pediatric cancers, including Ewing sarcoma (ES), are only weakly immunogenic and the tumor-patients' immune system often is devoid of effector T cells for tumor elimination. Based on expression profiling technology, targetable tumor-associated antigens (TAA) are identified and exploited for engineered T-cell therapy. Here, the specific recognition and lytic potential of transgenic allo-restricted CD8+ T cells, directed against the ES-associated antigen 6-transmembrane epithelial antigen of the prostate 1 (STEAP1), was examined. Following repetitive STEAP1130 peptide-driven stimulations with HLA-A*02:01+ dendritic cells (DC), allo-restricted HLA-A*02:01− CD8+ T cells were sorted with HLA-A*02:01/peptide multimers and expanded by limiting dilution. After functional analysis of suitable T cell clones via ELISpot, flow cytometry and xCELLigence assay, T cell receptors' (TCR) α- and β-chains were identified, cloned into retroviral vectors, codon optimized, transfected into HLA-A*02:01− primary T cell populations and tested again for specificity and lytic capacity in vitro and in a Rag2−/−γc−/− mouse model. Initially generated transgenic T cells specifically recognized STEAP1130-pulsed or transfected cells in the context of HLA-A*02:01 with minimal cross-reactivity as determined by specific interferon-γ (IFNγ) release, lysed cells and inhibited growth of HLA-A*02:01+ ES lines more effectively than HLA-A*02:01− ES lines. In vivo tumor growth was inhibited more effectively with transgenic STEAP1130-specific T cells than with unspecific T cells. Our results identify TCRs capable of recognizing and inhibiting growth of STEAP1-expressing HLA-A*02:01+ ES cells in vitro and in vivo in a highly restricted manner. As STEAP1 is overexpressed in a wide variety of cancers, we anticipate these STEAP1-specific TCRs to be potentially useful for immunotherapy of other STEAP1-expressing tumors. PMID:27471654
Galandrini, Ricciarda; Porpora, Maria Grazia; Stoppacciaro, Antonella; Micucci, Federica; Capuano, Cristina; Tassi, Ilaria; Di Felice, Alessia; Benedetti-Panici, Pierluigi; Santoni, Angela
2008-05-01
To analyze the frequency of peritoneal natural killer (NK) cells expressing the human leukocyte antigen (HLA)-E receptor CD94/NKG2A in patients with endometriosis. Case-control study. University hospital. Stage III and stage IV endometriosis, according to the revised American Society for Reproductive Medicine classification, was laparoscopically and histologically confirmed in 11 and 9 patients, respectively; 13 subjects without endometriosis were selected for the control group. Collection of peripheral venous blood, peritoneal fluid, endometriotic tissue, and normal endometrium in subjects undergoing laparoscopy. Surface expression levels of CD94/NKG2A and CD94/NKG2C were detected by three-color cytofluorometric analysis. Semiquantitative HLA-E messenger RNA expression analysis was performed in endometriotic lesions and in eutopic endometrium. NK cell-mediated cytotoxic activity toward HLA-E positive target, DT360 cell line, was also determined. In women with endometriosis, the percentage of CD94/NKG2A-positive peritoneal NK cells was significantly higher than in the control group. The CD94/NKG2A ligand, HLA-E, was detected at high levels in endometriotic tissue as messenger RNA transcript. Target cells bearing HLA-E were resistant to NK cell-mediated lysis in a CD94/NKG2A-dependent manner. Increased expression of CD94/NKG2A in peritoneal NK cells may mediate the resistance of endometriotic tissue to NK cell-mediated lysis, thus contributing to the progression of the disease.
Dulson, Deborah K; Bishop, Nicolette C
2016-02-01
This study investigated the effect of caffeine on antigen-stimulated lymphocyte activation. Six males rested for 3.5 h after ingesting 0 (PLA), 2, or 6 (6CAF) mg·kg(-1) body mass of caffeine. The number of antigen-stimulated NK CD69(+) cells increased in 6CAF at 1 h compared with PLA (P = 0.021). Caffeine did not influence the number of antigen-stimulated CD69(+) T cells or the geometric mean fluorescence intensity expression of CD69 on antigen-stimulated lymphocytes, suggesting caffeine has little effect on antigen-stimulated lymphocyte activation.
Morgan, Mary E.; Zheng, Bin; Koelink, Pim J.; van de Kant, Hendrick J. G.; Haazen, Lizette C. J. M.; van Roest, Manon; Garssen, Johan; Folkerts, Gert; Kraneveld, Aletta D.
2013-01-01
CD4+ T cell responses against oral antigens can develop in inflammatory bowel disease (IBD) patients, which may modulate disease. Dextran sodium sulfate (DSS) colitis is commonly used to study IBD, however, it is not considered the best model in which to study T cell involvement in intestinal disease. Our aim was to determine if antigen-specific T cells could be induced during DSS colitis and if they could be detected after disease resolution. To induce antigen-specific T cells, the tracking antigen, ovalbumin (OVA), was administered orally during colitis initiation. Disease severity was monitored, and the antigen-reactivity of CD4+ T cells examined using CD69 expression. While OVA-directed, CD4+ Foxp3+ regulatory T cells could be detected in the spleens of both OVA-treated control and DSS mice, OVA-reactive, CD4+ Foxp3-T cells were only found in the OVA and DSS-treated mice. These results indicate that during DSS colitis T cells develop that are specific against oral antigens, and they are found systemically after colitis resolution. This gives added depth and utility to the DSS model as well as a way to track T cells that are primed against luminal antigens. PMID:23936123
Leisegang, Matthias; Engels, Boris; Schreiber, Karin; Yew, Poh Yin; Kiyotani, Kazuma; Idel, Christian; Arina, Ainhoa; Duraiswamy, Jaikumar; Weichselbaum, Ralph R; Uckert, Wolfgang; Nakamura, Yusuke; Schreiber, Hans
2016-06-01
Cancers usually contain multiple unique tumor-specific antigens produced by single amino acid substitutions (AAS) and encoded by somatic nonsynonymous single nucleotide substitutions. We determined whether adoptively transferred T cells can reject large, well-established solid tumors when engineered to express a single type of T-cell receptor (TCR) that is specific for a single AAS. By exome and RNA sequencing of an UV-induced tumor, we identified an AAS in p68 (mp68), a co-activator of p53. This AAS seemed to be an ideal tumor-specific neoepitope because it is encoded by a trunk mutation in the primary autochthonous cancer and binds with highest affinity to the MHC. A high-avidity mp68-specific TCR was used to genetically engineer T cells as well as to generate TCR-transgenic mice for adoptive therapy. When the neoepitope was expressed at high levels and by all cancer cells, their direct recognition sufficed to destroy intratumor vessels and eradicate large, long-established solid tumors. When the neoepitope was targeted as autochthonous antigen, T cells caused cancer regression followed by escape of antigen-negative variants. Escape could be thwarted by expressing the antigen at increased levels in all cancer cells or by combining T-cell therapy with local irradiation. Therapeutic efficacies of TCR-transduced and TCR-transgenic T cells were similar. Gene therapy with a single TCR targeting a single AAS can eradicate large established cancer, but a uniform expression and/or sufficient levels of the targeted neoepitope or additional therapy are required to overcome tumor escape. Clin Cancer Res; 22(11); 2734-43. ©2015 AACRSee related commentary by Liu, p. 2602. ©2015 American Association for Cancer Research.
Lou, David; Steiner, Stephanie; Rezwanul, Tasmia; Guo, Qin; Picking, William D.; Nene, Vishvanath; Sztein, Marcelo B.
2017-01-01
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever, is a pathogen of great public health importance. Typhoid vaccines have the potential to be cost-effective measures towards combating this disease, yet the antigens triggering host protective immune responses are largely unknown. Given the key role of cellular-mediated immunity in S. Typhi protection, it is crucial to identify S. Typhi proteins involved in T-cell responses. Here, cells from individuals immunized with Ty21a typhoid vaccine were collected before and after immunization and used as effectors. We also used an innovative antigen expressing system based on the infection of B-cells with recombinant Escherichia coli (E. coli) expressing one of four S. Typhi gene products (i.e., SifA, OmpC, FliC, GroEL) as targets. Using flow cytometry, we found that the pattern of response to specific S. Typhi proteins was variable. Some individuals responded to all four proteins while others responded to only one or two proteins. We next evaluated whether T-cells responding to recombinant E. coli also possess the ability to respond to purified proteins. We observed that CD4+ cell responses, but not CD8+ cell responses, to recombinant E. coli were significantly associated with the responses to purified proteins. Thus, our results demonstrate the feasibility of using an E. coli expressing system to uncover the antigen specificity of T-cells and highlight its applicability to vaccine studies. These results also emphasize the importance of selecting the stimuli appropriately when evaluating CD4+ and CD8+ cell responses. PMID:28873442
Pyo, Suhkneung; Kang, Chung Hyo; Lee, Chong Ock; Lee, Heung Kyoung; Choi, Sang Un; Park, Chi Hoon
2018-01-01
Gastric cancer is a malignancy that has a high mortality rate. Although progress has been made in the treatment of gastric cancer, many patients experience cancer recurrence and metastasis. Folate receptor 1 (FOLR1) is overexpressed on the cell surface in over one-third of gastric cancer patients, but rarely is expressed in normal tissue. This makes FOLR1 a potential target for chimeric antigen receptor (CAR) T cell immunotherapy, although the function of FOLR1 has not been elucidated. CAR are engineered fusion receptor composed of an antigen recognition region and signaling domains. T cells expressing CAR have specific activation and cytotoxic effects against cancer cells containing the target antigen. In this study, we generated a CAR that targets FOLR1 composed of a single-chain variable fragment (scFv) of FOLR1 antibody and signaling domains consisting of CD28 and CD3ζ. Both FOLR1-CAR KHYG-1, a natural killer cell line, and FOLR1-CAR T cells recognized FOLR1-positive gastric cancer cells in a MHC-independent manner and induced secretion of various cytokines and caused cell death. Conclusively, this is the first study to demonstrate that CAR KHYG-1/T cells targeting FOLR1 are effective against FOLR1-positive gastric cancer cells. PMID:29874279
Ioannides, C G; Freedman, R S; Platsoucas, C D; Rashed, S; Kim, Y P
1991-03-01
CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.
Ampomah, Paulina; Stevenson, Liz; Ofori, Michael F.; Barfod, Lea
2014-01-01
Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines. PMID:24566620
Allogeneic chimeric antigen receptor-modified cells for adoptive cell therapy of cancer.
Marcus, Assaf; Eshhar, Zelig
2014-07-01
Chimeric antigen (or antibody) receptors (CAR) are fusion proteins typically combining an antibody-derived targeting fragment with signaling domains capable of activating immune cells. Recent clinical trials have shown the tremendous potential of adoptive cell transfer (ACT) of autologous T cells engineered to express a CD19-specific CAR targeting B-cell malignancies. Building on this approach, ACT therapies employing allogeneic CAR-expressing cytotoxic cells are now being explored. The basic principles of CAR-ACT are introduced. The potential benefits as well as problems of using allogeneic CAR-modified cells against tumor antigens are discussed. Various approaches to allogeneic CAR therapy are presented, including donor leukocyte infusion, CAR-redirected γδ T cells and natural killer cells, strategies to avoid graft-versus-host disease, modulation of lymphocyte migration, and exploitation of graft-versus-host reactivity. CAR-modified allogeneic cells have the potential to act as universal effector cells, which can be administered to any patient regardless of MHC type. Such universal effector cells could be used as an 'off-the-shelf' cell-mediated treatment for cancer.
Ghannam, Khetam; Martinez-Gamboa, Lorena; Spengler, Lydia; Krause, Sabine; Smiljanovic, Biljana; Bonin, Marc; Bhattarai, Salyan; Grützkau, Andreas; Burmester, Gerd-R.
2014-01-01
Objective In idiopathic inflammatory myopathies (IIM) infiltration of immune cells into muscle and upregulation of MHC-I expression implies increased antigen presentation and involvement of the proteasome system. To decipher the role of immunoproteasomes in myositis, we investigated individual cell types and muscle tissues and focused on possible immune triggers. Methods Expression of constitutive (PSMB5, -6, -7) and corresponding immunoproteasomal subunits (PSMB8, -9, -10) was analyzed by real-time RT-PCR in muscle biopsies and sorted peripheral blood cells of patients with IIM, non-inflammatory myopathies (NIM) and healthy donors (HD). Protein analysis in muscle biopsies was performed by western blot. Affymetrix HG-U133 platform derived transcriptome data from biopsies of different muscle diseases and from immune cell types as well as monocyte stimulation experiments were used for validation, coregulation and coexpression analyses. Results Real-time RT-PCR revealed significantly increased expression of immunoproteasomal subunits (PSMB8/-9/-10) in DC, monocytes and CD8+ T-cells in IIM. In muscle biopsies, the immunosubunits were elevated in IIM compared to NIM and exceeded levels of matched blood samples. Proteins of PSMB8 and -9 were found only in IIM but not NIM muscle biopsies. Reanalysis of 78 myositis and 20 healthy muscle transcriptomes confirmed these results and revealed involvement of the antigen processing and presentation pathway. Comparison with reference profiles of sorted immune cells and healthy muscle confirmed upregulation of PSMB8 and -9 in myositis biopsies beyond infiltration related changes. This upregulation correlated highest with STAT1, IRF1 and IFNγ expression. Elevation of T-cell specific transcripts in active IIM muscles was accompanied by increased expression of DC and monocyte marker genes and thus reflects the cell type specific involvement observed in peripheral blood. Conclusions Immunoproteasomes seem to indicate IIM activity and suggest that dominant involvement of antigen processing and presentation may qualify these diseases exemplarily for the evolving therapeutic concepts of immunoproteasome specific inhibition. PMID:25098831
Ghannam, Khetam; Martinez-Gamboa, Lorena; Spengler, Lydia; Krause, Sabine; Smiljanovic, Biljana; Bonin, Marc; Bhattarai, Salyan; Grützkau, Andreas; Burmester, Gerd-R; Häupl, Thomas; Feist, Eugen
2014-01-01
In idiopathic inflammatory myopathies (IIM) infiltration of immune cells into muscle and upregulation of MHC-I expression implies increased antigen presentation and involvement of the proteasome system. To decipher the role of immunoproteasomes in myositis, we investigated individual cell types and muscle tissues and focused on possible immune triggers. Expression of constitutive (PSMB5, -6, -7) and corresponding immunoproteasomal subunits (PSMB8, -9, -10) was analyzed by real-time RT-PCR in muscle biopsies and sorted peripheral blood cells of patients with IIM, non-inflammatory myopathies (NIM) and healthy donors (HD). Protein analysis in muscle biopsies was performed by western blot. Affymetrix HG-U133 platform derived transcriptome data from biopsies of different muscle diseases and from immune cell types as well as monocyte stimulation experiments were used for validation, coregulation and coexpression analyses. Real-time RT-PCR revealed significantly increased expression of immunoproteasomal subunits (PSMB8/-9/-10) in DC, monocytes and CD8+ T-cells in IIM. In muscle biopsies, the immunosubunits were elevated in IIM compared to NIM and exceeded levels of matched blood samples. Proteins of PSMB8 and -9 were found only in IIM but not NIM muscle biopsies. Reanalysis of 78 myositis and 20 healthy muscle transcriptomes confirmed these results and revealed involvement of the antigen processing and presentation pathway. Comparison with reference profiles of sorted immune cells and healthy muscle confirmed upregulation of PSMB8 and -9 in myositis biopsies beyond infiltration related changes. This upregulation correlated highest with STAT1, IRF1 and IFNγ expression. Elevation of T-cell specific transcripts in active IIM muscles was accompanied by increased expression of DC and monocyte marker genes and thus reflects the cell type specific involvement observed in peripheral blood. Immunoproteasomes seem to indicate IIM activity and suggest that dominant involvement of antigen processing and presentation may qualify these diseases exemplarily for the evolving therapeutic concepts of immunoproteasome specific inhibition.
Kudo, Takashi; Kaneko, Mika; Iwasaki, Hiroko; Togayachi, Akira; Nishihara, Shoko; Abe, Kuniya; Narimatsu, Hisashi
2004-05-01
Stage-specific embryonic antigen 1 (SSEA-1), an antigenic epitope defined as a Lewis x carbohydrate structure, is expressed during the 8-cell to blastocyst stages in mouse embryos and in primordial germ cells, undifferentiated embryonic stem cells, and embryonic carcinoma cells. For many years, SSEA-1 has been implicated in the development of mouse embryos as a functional carbohydrate epitope in cell-to-cell interaction during morula compaction. In a previous study, alpha 1,3-fucosyltransferase IX (Fut9) exhibited very strong activity for the synthesis of Lewis x compared to other alpha 1,3-fucosyltransferases in an in vitro substrate specificity assay. Fut4 and Fut9 transcripts were expressed in mouse embryos. The Fut9 transcript was detected in embryonic-day-13.5 gonads containing primordial germ cells, but the Fut4 transcript was not. In order to identify the role of SSEA-1 and determine the key enzyme for SSEA-1 synthesis in vivo, we have generated Fut9-deficient (Fut9(-/-)) mice. Fut9(-/-) mice develop normally, with no gross phenotypic abnormalities, and are fertile. Immunohistochemical analysis revealed an absence of SSEA-1 expression in early embryos and primordial germ cells of Fut9(-/-) mice. Therefore, we conclude that expression of the SSEA-1 epitope in the developing mouse embryo is not essential for embryogenesis in vivo.
Non-viral RNA chimeric antigen receptor modified T cells in patients with Hodgkin lymphoma.
Svoboda, Jakub; Rheingold, Susan R; Gill, Saar I; Grupp, Stephan A; Lacey, Simon F; Kulikovskaya, Irina; Suhoski, Megan M; Melenhorst, J Joseph; Loudon, Brandon; Mato, Anthony R; Nasta, Sunita Dwivedy; Landsburg, Daniel J; Youngman, Matthew R; Levine, Bruce L; Porter, David L; June, Carl H; Schuster, Stephen J
2018-06-20
Chimeric antigen receptor (CAR) modified T cells are being investigated in many settings including classical Hodgkin lymphoma (cHL). The unique biology of cHL, characterized by scant Hodgkin and Reed-Sternberg (HRS) cells within an immunosuppressive tumor microenvironment (TME), may pose challenges for cellular therapies directly targeting antigens expressed on HRS. We hypothesized that eradicating CD19 positive (+) B cells within the TME and the putative circulating CD19+ HRS clonotypic cells using anti-CD19 directed CAR modified T cells (CART19) may indirectly affect HRS cells, which do not express CD19. Here we describe our pilot trial using CART19 in patients with relapsed and refractory cHL. To limit potential toxicities, we used non-viral RNA CART19 cells which are expected to express CAR protein only a few days, as opposed to CART19 generated by viral vector transduction, which expand in vivo and retain CAR expression. All 5 enrolled patients underwent successful manufacturing of non-viral RNA CART19 and 4 were infused with protocol specified cell dose. There were no severe toxicities. Responses were seen, but these were transient. To our knowledge, this is the first CART19 clinical trial to use non-viral RNA gene delivery. This trial was registered at www.clinicaltrials.gov as NCT02277522 (adult) and NCT02624258 (pediatric). Copyright © 2018 American Society of Hematology.
Till, Kathleen J; Allen, John C; Talab, Fatima; Lin, Ke; Allsup, David; Cawkwell, Lynn; Bentley, Alison; Ringshausen, Ingo; Duckworth, Andrew D; Pettitt, Andrew R; Kalakonda, Nagesh; Slupsky, Joseph R
2017-12-01
Pathogenesis of chronic lymphocytic leukaemia (CLL) is contingent upon antigen receptor (BCR) expressed by malignant cells of this disease. Studies on somatic hypermutation of the antigen binding region, receptor expression levels and signal capacity have all linked BCR on CLL cells to disease prognosis. Our previous work showed that the src-family kinase Lck is a targetable mediator of BCR signalling in CLL cells, and that variance in Lck expression associated with ability of BCR to induce signal upon engagement. This latter finding makes Lck similar to ZAP70, another T-cell kinase whose aberrant expression in CLL cells also associates with BCR signalling capacity, but also different because ZAP70 is not easily pharmacologically targetable. Here we describe a robust method of measuring Lck expression in CLL cells using flow cytometry. However, unlike ZAP70 whose expression in CLL cells predicts prognosis, we find Lck expression and disease outcome in CLL are unrelated despite observations that its inhibition produces effects that biologically resemble the egress phenotype taken on by CLL cells treated with idelalisib. Taken together, our findings provide insight into the pathobiology of CLL to suggest a more complex relationship between expression of molecules within the BCR signalling pathway and disease outcome.
Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function
1994-01-01
Antigen-specific T cell activation requires the engagement of the T cell receptor (TCR) with antigen as well as the engagement of appropriate costimulatory molecules. The most extensively characterized pathway of costimulation has been that involving the interaction of CD28 and CTLA4 on the T cell with B7 (now termed B7-1) on antigen presenting cells. Recently, B7-2 a second costimulatory ligand for CTLA4, was described, demonstrating the potential complexity of costimulatory interactions. This report examines and compares the expression and function of B7-1 and B7-2. Overall these results indicate that (a) B7-1 and B7-2 can be expressed by multiple cell types, including B cells, T cells, macrophages, and dendritic cells, all of which are therefore candidate populations for delivering costimulatory signals mediated by these molecules; (b) stimulating B cells with either LPS or anti-IgD-dextran induced expression of both B7- 1 and B7-2, and peak expression of both costimulatory molecules occurred after 18-42 h of culture. Expression of B7-2 on these B cell populations was significantly higher than expression of B7-1 at all times assayed after stimulation; (c) blocking of B7-2 costimulatory activity inhibited TCR-dependent T cell proliferation and cytokine production, without affecting early consequences of TCR signaling such as induction of CD69 or interleukin 2 receptor alpha (IL-2R alpha); and (d) expression of B7-1 and of B7-2 can be regulated by a variety of stimuli. Moreover, expression of B7-1 and B7-2 can be independently regulated by the same stimulus, providing an additional complexity in the mechanisms available for regulating costimulation and hence immune response. PMID:7519245
Quakkelaar, Esther D.; Redeker, Anke; Haddad, Elias K.; Harari, Alexandre; McCaughey, Stella Mayo; Duhen, Thomas; Filali-Mouhim, Abdelali; Goulet, Jean-Philippe; Loof, Nikki M.; Ossendorp, Ferry; Perdiguero, Beatriz; Heinen, Paul; Gomez, Carmen E.; Kibler, Karen V.; Koelle, David M.; Sékaly, Rafick P.; Sallusto, Federica; Lanzavecchia, Antonio; Pantaleo, Giuseppe; Esteban, Mariano; Tartaglia, Jim; Jacobs, Bertram L.; Melief, Cornelis J. M.
2011-01-01
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines. PMID:21347234
Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells.
Brown, Christine E; Starr, Renate; Martinez, Catalina; Aguilar, Brenda; D'Apuzzo, Massimo; Todorov, Ivan; Shih, Chu-Chih; Badie, Behnam; Hudecek, Michael; Riddell, Stanley R; Jensen, Michael C
2009-12-01
Solid tumors contain a subset of stem-like cells that are resistant to the cytotoxic effects of chemotherapy/radiotherapy, but their susceptibility to cytolytic T lymphocyte (CTL) effector mechanisms has not been well characterized. Using a panel of early-passage human brain tumor stem/initiating cell (BTSC) lines derived from high-grade gliomas, we show that BTSCs are subject to immunologic recognition and elimination by CD8(+) CTLs. Compared with serum-differentiated CD133(low) tumor cells and established glioma cell lines, BTSCs are equivalent with respect to expression levels of HLA class I and ICAM-1, similar in their ability to trigger degranulation and cytokine synthesis by antigen-specific CTLs, and equally susceptible to perforin-dependent CTL-mediated cytolysis. BTSCs are also competent in the processing and presentation of antigens as evidenced by the killing of these cells by CTL when antigen is endogenously expressed. Moreover, we show that CTLs can eliminate all BTSCs with tumor-initiating activity in an antigen-specific manner in vivo. Current models predict that curative therapies for many cancers will require the elimination of the stem/initiating population, and these studies lay the foundation for developing immunotherapeutic approaches to eradicate this tumor population.
Smith, Mark L; Mason, Hugh S; Shuler, Michael L
2002-12-30
The production of edible vaccines in transgenic plants and plant cell culture may be improved through a better understanding of antigen processing and assembly. The hepatitis B surface antigen (HBsAg) was chosen for study because it undergoes substantial and complex post-translational modifications, which are necessary for its immunogenicity. This antigen was expressed in soybean (Glycine max L. Merr. cv Williams 82) and tobacco NT1 (Nicotiana tabacum L.) cell suspension cultures, and HBsAg production in batch culture was characterized. The plant-derived antigen consisted predominantly of disulfide cross-linked HBsAg protein (p24(s)) dimers, which were all membrane associated. Similar to yeast, the plant-expressed HBsAg was retained intracellularly. The maximal HBsAg titers were obtained with soybean suspension cultures (20-22 mg/L) with titers in tobacco cultures being approximately 10-fold lower. For soybean cells, electron microscopy and immunolocalization demonstrated that all the HBsAg was localized to the endoplasmic reticulum (ER) and provoked dilation and proliferation of the ER network. Sucrose gradient analysis of crude extracts showed that HBsAg had a complex size distribution uncharacteristic of the antigen's normal structure of uniform 22-nm virus-like particles. The extent of authentic epitope formation was assessed by comparing total p24(s) synthesized to that reactive by polyclonal and monoclonal immunoassays. Depending on culture age, between 40% and 100% of total p24(s) was polyclonal antibody reactive whereas between 6% and 37% was recognized by a commercial monoclonal antibody assay. Possible strategies to increase HBsAg production and improve post-translational processing are discussed. Copyright 2002 Wiley Periodicals, Inc.
He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu
2011-08-01
Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.
KP-CoT-23 (CCDC83) is a novel immunogenic cancer/testis antigen in colon cancer.
Song, Myung-Ha; Ha, Jin-Mok; Shin, Dong-Hoon; Lee, Chang-Hun; Old, Lloyd; Lee, Sang-Yull
2012-11-01
Cancer/testis (CT) antigens are considered target molecules for cancer immunotherapy. To identify novel CT antigens, immunoscreening of a testicular cDNA library was performed using serum obtained from a colon cancer patient who was immunized with a new dendritic cell vaccine. We isolated 64 positive cDNA clones comprised of 40 different genes, designated KP-CoT-1 through KP-CoT-40. Three of these putative antigens, including KP-CoT-23 (CCDC83), had testis-specific expression profiles in the Unigene database. RT-PCR analysis showed that the expression of 2 KP-Cot-23 variants was restricted to the testis in normal adult tissues. In addition, KP-CoT-23 variants were frequently expressed in a variety of tumors and cancer cell lines, including colon cancer. A serological western blot assay showed IgG antibodies to the KP-CoT-23 protein in 26 of 37 colon cancer patients and in 4 of 21 healthy patients. These data suggest that KP-CoT-23 is a novel CT antigen that may be useful for the diagnosis and immunotherapy of cancer.
Klein, G; Falk, L; Falk, K
1978-01-01
Herpesvirus papio(HVP)-carrying baboon lymphoblastoid lines do not express a nuclear antigen like the Epstein-Barr virus(EBV)-determined nuclear antigen (EBNA), as judged by in situ anticomplement fluorescence staining, although the carry multiple viral genomes and, in the case of producerlines, early antigen (EA) and viral capsid antigen (VCA) that cross-react with the corresponding human EBV-determined antigens. To test whether the lack of in situ nuclear antigen expression is a property innate to the baboon virus or the baboon cell, nonproducer HVP-carrying baboon lymphoid cells of the 26 CB-1 line were superinfected with two human EBV strains. B95-8-derived EBV induced brilliant EBNA staining, proving that the baboon lymphoid cell was competent to synthesize EBNA. In the mirror experiment, HVP derived from the 9B or the 18C baboon line was added to the EBV-carrying Raji line, the EBV-negative Ramos and BJAB lines and the HVP-carrying nonproducer 26 CB-1 line, respectively. HVP induced EA and VCA in Raji, and EA in BJAB and 26 CB-1. EBNA was not induced in any of the three EBNA-negative lines, BJAB, Ramos and 26 CB-1. It is concluded that the lack of in situ nuclear staining in HVP-carrying baboon lines is a HVP-associated property and is not due to any innate inability of the baboon lymphoid cell to synthesize an antigen of the EBNA type.
Engelhard, V H; Powers, G A; Moore, L C; Holterman, M J; Correa-Freire, M C
1984-01-01
HLA-A2 and -B7 antigens were introduced into EL4 (H-2b) cells by cell-liposome fusion and were used as targets or stimulators for cytotoxic T lymphocytes (CTL) generated in C57B1/6 (H-2b) mice. It was found that such EL4-HLA cells were not recognized by CTL that had been raised against either a human cell line bearing these HLA antigens or the purified HLA-A2 and -B7 antigens reconstituted into liposomes. In addition, EL4-HLA cells were not capable of inducing CTL that could recognize a human cell line bearing HLA-A2 and -B7 antigens. Instead, EL4-HLA cells induced CTL that specifically lysed EL4-HLA cells and not human cells expressing HLA-A2 and -B7. CTL recognition required the presence of HLA antigens on the EL4 cell surface and was inhibited by antibodies against either H-2b or HLA-A/B. Monoclonal antibody binding studies showed that the expected polymorphic determinants of the HLA-A2 and -B7 antigens were still present on EL4-HLA cells. However, the specificity of CTL or their precursors that are capable of recognizing HLA-A2 or -B7 was altered after these antigens became associated with the EL4 surface. Possible explanations for these results are discussed.
CD1a presentation of endogenous antigens by group 2 innate lymphoid cells.
Hardman, Clare S; Chen, Yi-Ling; Salimi, Maryam; Jarrett, Rachael; Johnson, David; Järvinen, Valtteri J; Owens, Raymond J; Repapi, Emmanouela; Cousins, David J; Barlow, Jillian L; McKenzie, Andrew N J; Ogg, Graham
2017-12-22
Group 2 innate lymphoid cells (ILC2) are effectors of barrier immunity, with roles in infection, wound healing, and allergy. A proportion of ILC2 express MHCII (major histocompatibility complex II) and are capable of presenting peptide antigens to T cells and amplifying the subsequent adaptive immune response. Recent studies have highlighted the importance of CD1a-reactive T cells in allergy and infection, activated by the presentation of endogenous neolipid antigens and bacterial components. Using a human skin challenge model, we unexpectedly show that human skin-derived ILC2 can express CD1a and are capable of presenting endogenous antigens to T cells. CD1a expression is up-regulated by TSLP (thymic stromal lymphopoietin) at levels observed in the skin of patients with atopic dermatitis, and the response is dependent on PLA2G4A. Furthermore, this pathway is used to sense Staphylococcus aureus by promoting Toll-like receptor-dependent CD1a-reactive T cell responses to endogenous ligands. These findings define a previously unrecognized role for ILC2 in lipid surveillance and identify shared pathways of CD1a- and PLA2G4A-dependent ILC2 inflammation amenable to therapeutic intervention. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
López-Karpovitch, Xavier; Graue, Gerardo; Crespo-Solís, Erick; Piedras, Josefa
2008-07-01
High P-glycoprotein-mediated multidrug resistance-1 (P-gp/MDR1) activity in lymphocytes from idiopathic thrombocytopenic purpura (ITP) patients may affect disease outcome. ITP treatment includes glucocorticoids that are substrates of P-gp; hence, P-gp functional activity and antigenic expression were assessed by flow cytometry in T and natural killer (NK) cells from ITP patients before and after prednisone therapy. Herein, patients' T and NK cells did not show increased MDR1 functional activity, whereas P-gp antigenic expression was significantly enhanced in both therapy-free and prednisone-treated patients. Prednisone treatment did not significantly modify the function and expression of MDR1 in T and NK cells of ITP patients.
Singh, Harjeet; Huls, Helen; Cooper, Laurence JN
2014-01-01
Summary The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing approaches to improve the potency of tumor-specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CAR) that provide T cells with ability to directly recognize tumor-associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral-based and non-viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase system improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen-presenting cells (aAPC) can selectively propagate and thus retrieve CAR+ T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost-effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next-generation T cells with improved therapeutic potential. PMID:24329797
Functional analysis of HPV-like particle-activated Langerhans cells in vitro.
Yan, Lisa; Woodham, Andrew W; Da Silva, Diane M; Kast, W Martin
2015-01-01
Langerhans cells (LCs) are antigen-presenting cells responsible for initiating an immune response against human papillomaviruses (HPVs) entering the epithelial layer in vivo as they are the first immune cell that HPV comes into contact with. LCs become activated in response to foreign antigens, which causes internal signaling resulting in the increased expression of co-stimulatory molecules and the secretion of inflammatory cytokines. Functionally activated LCs are then capable of migrating to the lymph nodes where they interact with antigen-specific T cells and initiate an adaptive T-cell response in vivo. However, HPV has evolved in a manner that suppresses LC function, and thus the induction of antigen-specific T cells is hindered. While many methods exist to monitor the activity of LCs in vitro, the migration and induction of cytotoxic T cells is ultimately indicative of a functional immune response. Here, methods in analyzing functional migration and induction of antigen-specific T cells after stimulation of LCs with HPV virus-like particles in vitro are described.
Immunohistochemical studies in equine recurrent uveitis (ERU).
Romeike, A; Brügmann, M; Drommer, W
1998-11-01
Despite extensive clinical research, the etiology of equine recurrent uveitis (ERU) is still unknown. After an immunologic pathogenesis was established in recurrent uveitis in humans, a similar pathogenic mechanism was assumed to exist in ERU. To investigate whether immunopathologic mechanisms are involved in ERU, 20 eyes of 15 horses with ERU were examined immunohistochemically with a T cell marker, B cell marker, and anti-major histocompatibility complex (MHC) class II antibodies. Twenty-six eyes of 20 horses were used for investigation of MHC class II antigen expression in normal equine eyes. In 18 eyes of 14 horses, the number of T cells in the inflammatory cell population within the uvea was assessed. In 16/18 eyes (89%), the T lymphocyte fraction was > 70%. This cell population was distributed mostly in a diffuse manner throughout the uvea and also within the mantle zone of follicular lymphocytic aggregates. Foci of B lymphocytes could be found within the center of follicular aggregates in three eyes. The expression of MHC class II antigen on resident ocular cells was evaluated in 10 eyes of six horses with ERU. An increase of MHC class II antigen expression in the trabecular meshwork and on the nonpigmented ciliary epithelium was noted as was a deviant expression on proliferating Müller cells and retinal pigment epithelial cells. The predominance of T cells in the inflammatory infiltrates supports the central role of a cell-mediated immune response. Furthermore, the observation of a deviant MHC class II expression on resident ocular cells suggests that aberrant immune regulation may play a role in the pathogenesis of ERU.
Swierkosz, J E; Marrack, P; Kappler, J W
1979-12-01
We have examined the expression of I-region antigens on functional subpopulations of murine T cells. A.TH anti-A.TL (anti-Ik, Sk, Gk) alloantiserum was raised by immunization of recipients with concanavalin A (Con A) stimulated thymic and peripheral T-cell blasts. In contrast to similar antisera made by conventional methods, the anti-Ia blast serum was highly cytotoxic for purified T lymphocytes. Moreover, it reacted in a specific fashion with T cells having particular functions. Treatment of keyhole limpet hemocyanin (KLH)-primed B10.A (H-2 alpha) T cells with this antiserum plus complement resulted in the elimination of helper activity for B-cell responses to trinitrophenyl-KLH. Inhibition was shown to be a result of the selective killing of one type of helper T cell whose activity could be replaced by a factor(s) found in the supernate of Con A-activated spleen cells. A second type of helper cell required for responses to protein-bound antigens appeared to be Ia-. By absorption and analysis on H-2 recombinants, at least two specificities were detectable on helper T cells; one mapping in the I-A subregion and a second in a region(s) to the right of I-J. In addition, the helper T cell(s) involved in the generation of alloreactive cytotoxic lymphocytes was shown to be Ia+, whereas cytotoxic effector cells and their precursors were Ia- with this antiserum. These results provide strong evidence for the selective expression of I-region determinants on T-cell subsets and suggest that T-cell-associated Ia antigens may play an important role in T-lymphocyte function.
Kailayangiri, Sareetha; Jamitzky, Silke; Schelhaas, Sonja; Jacobs, Andreas H.; Wiek, Constanze; Hanenberg, Helmut; Hartmann, Wolfgang; Wiendl, Heinz; Pankratz, Susann; Meltzer, Jutta; Farwick, Nicole; Greune, Lea; Fluegge, Maike; Rossig, Claudia
2017-01-01
ABSTRACT Activated and in vitro expanded natural killer (NK) cells have substantial cytotoxicity against many tumor cells, but their in vivo efficacy to eliminate solid cancers is limited. Here, we used chimeric antigen receptors (CARs) to enhance the activity of NK cells against Ewing sarcomas (EwS) in a tumor antigen-specific manner. Expression of CARs directed against the ganglioside antigen GD2 in activated NK cells increased their responses to GD2+ allogeneic EwS cells in vitro and overcame resistance of individual cell lines to NK cell lysis. Second-generation CARs with 4-1BB and 2B4 co-stimulatory signaling and third-generation CARs combining both co-stimulatory domains were all equally effective. By contrast, adoptive transfer of GD2-specific CAR gene-modified NK cells both by intratumoral and intraperitoneal delivery failed to eliminate GD2-expressing EwS xenografts. Histopathology review revealed upregulation of the immunosuppressive ligand HLA-G in tumor autopsies from mice treated with NK cells compared to untreated control mice. Supporting the relevance of this finding, in vitro co-incubation of NK cells with allogeneic EwS cells induced upregulation of the HLA-G receptor CD85j, and HLA-G1 expressed by EwS cells suppressed the activity of NK cells from three of five allogeneic donors against the tumor cells in vitro. We conclude that HLA-G is a candidate immune checkpoint in EwS where it can contribute to resistance to NK cell therapy. HLA-G deserves evaluation as a potential target for more effective immunotherapeutic combination regimens in this and other cancers. PMID:28197367
2013-01-01
The efficacious delivery of antigens to antigen-presenting cells (APCs), in particular, to dendritic cells (DCs), and their subsequent activation remains a significant challenge in the development of effective vaccines. This study highlights the potential of dissolving microneedle (MN) arrays laden with nanoencapsulated antigen to increase vaccine immunogenicity by targeting antigen specifically to contiguous DC networks within the skin. Following in situ uptake, skin-resident DCs were able to deliver antigen-encapsulated poly-d,l-lactide-co-glycolide (PGLA) nanoparticles to cutaneous draining lymph nodes where they subsequently induced significant expansion of antigen-specific T cells. Moreover, we show that antigen-encapsulated nanoparticle vaccination via microneedles generated robust antigen-specific cellular immune responses in mice. This approach provided complete protection in vivo against both the development of antigen-expressing B16 melanoma tumors and a murine model of para-influenza, through the activation of antigen-specific cytotoxic CD8+ T cells that resulted in efficient clearance of tumors and virus, respectively. In addition, we show promising findings that nanoencapsulation facilitates antigen retention into skin layers and provides antigen stability in microneedles. Therefore, the use of biodegradable polymeric nanoparticles for selective targeting of antigen to skin DC subsets through dissolvable MNs provides a promising technology for improved vaccination efficacy, compliance, and coverage. PMID:23373658
Song, Xiu-Guang; Bian, Peng-Fei; Yu, Shu-Li; Zhao, Xiu-Hua; Xu, Wei; Bu, Xue-Hui; Li, Xia; Ma, Li-Xian
2013-01-01
AIM: To investigate the expression of the hepatitis B virus (HBV) 1.3-fold genome plasmid (pHBV1.3) in an immortalized mouse hepatic cell line induced by SV40 T-antigen (SV40T) expression. METHODS: Mouse hepatic cells were isolated from mouse liver tissue fragments from 3-5 d old Kunming mice by the direct collagenase digestion method and cultured in vitro. The pRSV-T plasmid was transfected into mouse hepatic cells to establish an SV40LT-immortalized mouse hepatic cell line. The SV40LT-immortalized mouse hepatic cells were identified and transfected with the pHBV1.3 plasmid. The levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) in the supernatant were determined by an electrochemiluminescence immunoassay at 24, 48, 72 and 96 h after transfection. The expressions of HBsAg and hepatitis B c antigen (HBcAg) in the cells were investigated by indirect immunofluorescence analysis. The presence of HBV DNA replication intermediates in the transfected cells and viral particles in the supernatant of the transfected cell cultures was monitored using the Southern hybridization assay and transmission electronic microscopy, respectively. RESULTS: The pRSV-T plasmid was used to immortalize mouse hepatocytes and an SV40LT-immortalized mouse hepatic cell line was successfully established. SV40LT-immortalized mouse hepatic cells have the same morphology and growth characteristics as primary mouse hepatic cells can be subcultured and produce albumin and cytokeratin-18 in vitro. Immortalized mouse hepatic cells did not show the characteristics of tumor cells, as alpha-fetoprotein levels were comparable (0.58 ± 0.37 vs 0.61 ± 0.31, P = 0.37). SV40LT-immortalized mouse hepatic cells were then transfected with the pHBV1.3 plasmid, and it was found that the HBV genome replicated in SV40LT-immortalized mouse hepatic cells. The levels of HBsAg and HBeAg continuously increased in the supernatant after the transfection of pHBV1.3, and began to decrease 72 h after transfection. The expressions of HBsAg and HBcAg were observed in the pHBV1.3-transfected cells. HBV DNA replication intermediates were also observed at 72 h after transfection, including relaxed circular DNA, double-stranded DNA and single-stranded DNA. Furthermore, a few 42 nm Dane particles, as well as many 22 nm subviral particles with a spherical or filamentous shape, were detected in the supernatant. CONCLUSION: SV40T expression can immortalize mouse hepatic cells, and the pHBV1.3-transfected SV40T-immortalized mouse hepatic cell line can be a new in vitro cell model. PMID:24307795
Song, Xiu-Guang; Bian, Peng-Fei; Yu, Shu-Li; Zhao, Xiu-Hua; Xu, Wei; Bu, Xue-Hui; Li, Xia; Ma, Li-Xian
2013-11-28
To investigate the expression of the hepatitis B virus (HBV) 1.3-fold genome plasmid (pHBV1.3) in an immortalized mouse hepatic cell line induced by SV40 T-antigen (SV40T) expression. Mouse hepatic cells were isolated from mouse liver tissue fragments from 3-5 d old Kunming mice by the direct collagenase digestion method and cultured in vitro. The pRSV-T plasmid was transfected into mouse hepatic cells to establish an SV40LT-immortalized mouse hepatic cell line. The SV40LT-immortalized mouse hepatic cells were identified and transfected with the pHBV1.3 plasmid. The levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) in the supernatant were determined by an electrochemiluminescence immunoassay at 24, 48, 72 and 96 h after transfection. The expressions of HBsAg and hepatitis B c antigen (HBcAg) in the cells were investigated by indirect immunofluorescence analysis. The presence of HBV DNA replication intermediates in the transfected cells and viral particles in the supernatant of the transfected cell cultures was monitored using the Southern hybridization assay and transmission electronic microscopy, respectively. The pRSV-T plasmid was used to immortalize mouse hepatocytes and an SV40LT-immortalized mouse hepatic cell line was successfully established. SV40LT-immortalized mouse hepatic cells have the same morphology and growth characteristics as primary mouse hepatic cells can be subcultured and produce albumin and cytokeratin-18 in vitro. Immortalized mouse hepatic cells did not show the characteristics of tumor cells, as alpha-fetoprotein levels were comparable (0.58 ± 0.37 vs 0.61 ± 0.31, P = 0.37). SV40LT-immortalized mouse hepatic cells were then transfected with the pHBV1.3 plasmid, and it was found that the HBV genome replicated in SV40LT-immortalized mouse hepatic cells. The levels of HBsAg and HBeAg continuously increased in the supernatant after the transfection of pHBV1.3, and began to decrease 72 h after transfection. The expressions of HBsAg and HBcAg were observed in the pHBV1.3-transfected cells. HBV DNA replication intermediates were also observed at 72 h after transfection, including relaxed circular DNA, double-stranded DNA and single-stranded DNA. Furthermore, a few 42 nm Dane particles, as well as many 22 nm subviral particles with a spherical or filamentous shape, were detected in the supernatant. SV40T expression can immortalize mouse hepatic cells, and the pHBV1.3-transfected SV40T-immortalized mouse hepatic cell line can be a new in vitro cell model.
Uhlig, Katharina M.; Schülke, Stefan; Scheuplein, Vivian A. M.; Malczyk, Anna H.; Reusch, Johannes; Kugelmann, Stefanie; Muth, Anke; Koch, Vivian; Hutzler, Stefan; Bodmer, Bianca S.; Schambach, Axel; Buchholz, Christian J.; Waibler, Zoe; Scheurer, Stephan
2015-01-01
ABSTRACT To induce and trigger innate and adaptive immune responses, antigen-presenting cells (APCs) take up and process antigens. Retroviral particles are capable of transferring not only genetic information but also foreign cargo proteins when they are genetically fused to viral structural proteins. Here, we demonstrate the capacity of lentiviral protein transfer vectors (PTVs) for targeted antigen transfer directly into APCs and thereby induction of cytotoxic T cell responses. Targeting of lentiviral PTVs to APCs can be achieved analogously to gene transfer vectors by pseudotyping the particles with truncated wild-type measles virus (MV) glycoproteins (GPs), which use human SLAM (signaling lymphocyte activation molecule) as a main entry receptor. SLAM is expressed on stimulated lymphocytes and APCs, including dendritic cells. SLAM-targeted PTVs transferred the reporter protein green fluorescent protein (GFP) or Cre recombinase with strict receptor specificity into SLAM-expressing CHO and B cell lines, in contrast to broadly transducing vesicular stomatitis virus G protein (VSV-G) pseudotyped PTVs. Primary myeloid dendritic cells (mDCs) incubated with targeted or nontargeted ovalbumin (Ova)-transferring PTVs stimulated Ova-specific T lymphocytes, especially CD8+ T cells. Administration of Ova-PTVs into SLAM-transgenic and control mice confirmed the observed predominant induction of antigen-specific CD8+ T cells and demonstrated the capacity of protein transfer vectors as suitable vaccines for the induction of antigen-specific immune responses. IMPORTANCE This study demonstrates the specificity and efficacy of antigen transfer by SLAM-targeted and nontargeted lentiviral protein transfer vectors into antigen-presenting cells to trigger antigen-specific immune responses in vitro and in vivo. The observed predominant activation of antigen-specific CD8+ T cells indicates the suitability of SLAM-targeted and also nontargeted PTVs as a vaccine for the induction of cytotoxic immune responses. Since cytotoxic CD8+ T lymphocytes are a mainstay of antitumoral immune responses, PTVs could be engineered for the transfer of specific tumor antigens provoking tailored antitumoral immunity. Therefore, PTVs can be used as safe and efficient alternatives to gene transfer vectors or live attenuated replicating vector platforms, avoiding genotoxicity or general toxicity in highly immunocompromised patients, respectively. Thereby, the potential for easy envelope exchange allows the circumventing of neutralizing antibodies, e.g., during repeated boost immunizations. PMID:26085166
CARs: Driving T-cell specificity to enhance anti-tumor immunity
Kebriaei, Partow; Kelly, Susan S.; Manuri, Pallavi; Jena, Bipulendu; Jackson, Rineka; Shpall, Elizabeth; Champlin, Richard; Cooper, Laurence J. N.
2013-01-01
Adoptive transfer of antigen-specific T cells is a compelling tool to treat cancer. To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens, robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve the potency of genetically modified T cells. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, antitumor activity, paving the way for multi-center trials to establish the efficacy of this novel T-cell therapy. PMID:22202074
Cirulli, V.; Crisa, L.; Beattie, G.M.; Mally, M.I.; Lopez, A.D.; Fannon, A.; Ptasznik, A.; Inverardi, L.; Ricordi, C.; Deerinck, T.; Ellisman, M.; Reisfeld, R.A.; Hayek, A.
1998-01-01
Cell adhesion molecules (CAMs) are important mediators of cell–cell interactions and regulate cell fate determination by influencing growth, differentiation, and organization within tissues. The human pancarcinoma antigen KSA is a glycoprotein of 40 kD originally identified as a marker of rapidly proliferating tumors of epithelial origin. Interestingly, most normal epithelia also express this antigen, although at lower levels, suggesting that a dynamic regulation of KSA may occur during cell growth and differentiation. Recently, evidence has been provided that this glycoprotein may function as an epithelial cell adhesion molecule (Ep-CAM). Here, we report that Ep-CAM exhibits the features of a morphoregulatory molecule involved in the development of human pancreatic islets. We demonstrate that Ep-CAM expression is targeted to the lateral domain of epithelial cells of the human fetal pancreas, and that it mediates calcium-independent cell–cell adhesion. Quantitative confocal immunofluorescence in fetal pancreata identified the highest levels of Ep-CAM expression in developing islet-like cell clusters budding from the ductal epithelium, a cell compartment thought to comprise endocrine progenitors. A surprisingly reversed pattern was observed in the human adult pancreas, displaying low levels of Ep-CAM in islet cells and high levels in ducts. We further demonstrate that culture conditions promoting epithelial cell growth induce upregulation of Ep-CAM, whereas endocrine differentiation of fetal pancreatic epithelial cells, transplanted in nude mice, is associated with a downregulation of Ep-CAM expression. In addition, a blockade of Ep-CAM function by KS1/4 mAb induced insulin and glucagon gene transcription and translation in fetal pancreatic cell clusters. These results indicate that developmentally regulated expression and function of Ep-CAM play a morphoregulatory role in pancreatic islet ontogeny. PMID:9508783
Bai, Wen-tao; Xu, Zhi-kai; Zhang, Fang-lin; Luo, Wen; Liu, Yong; Wu, Xing-an; Yan, Yan
2004-11-01
To transiently express an intracellular single chain Fv of monoclonal antibody 1A8 against nucleocapsid protein of Hantavirus and characterize the immunological activities of the expressed products. COS-7 cells were transfected with mammalian expression vector 1A8-scFv-Ckappa/pCI-neo via lipofectin. The expressed product was identified by indirect immunofluorescence and immunoprecipitation. A diffuse pattern fluorescence was observed in less than 1% cytoplasm of transfected COS-7 cells. The binding of intracellular antibody fragments to NP antigen was confirmed by immunoprecipitation analysis. Transiently expressed single chain intrabodies can effectively target NP antigen in the cytoplasm. The present study may provide a new approach for treatment of Hantavirus.
Red blood cell microparticles and blood group antigens: an analysis by flow cytometry
Canellini, Giorgia; Rubin, Olivier; Delobel, Julien; Crettaz, David; Lion, Niels; Tissot, Jean-Daniel
2012-01-01
Background The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. Material and methods Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. Results The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. Discussion We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies. PMID:22890266
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-01-01
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088
Jiang, Feng; Saunders, Beatriz O; Haller, Edward; Livingston, Sandra; Nicosia, Santo V; Bai, Wenlong
2003-01-01
The tendency of the ovarian surface epithelium (OSE) to undergo metaplastic and morphogenetic changes during the life cycle, at variance with the adjacent peritoneal mesothelial cells, suggests that its biology may be regulated by underlying ovarian stromal cues. However, little is known about the role that the ovarian stroma plays in the pathobiology of the OSE, largely because of the lack of a suitable in vitro model. Here, we describe the establishment and characterization of conditionally immortalized ovarian stromal and surface epithelial cell lines from H-2K(b)-tsA58 transgenic mice that carry the thermolabile mutant of SV-40 large T antigen under the control of an interferon-gamma (IFN-gamma)-inducible promoter. These cells express functional T antigens, grow continuously under permissive conditions at 33 degrees C in the presence of IFN-gamma, and stop dividing when the activity and expression of the tumor antigen is suppressed by restrictive conditions without IFN-gamma at 39 degrees C. Morphological, immunohistochemical, and ultrastructural analyses show that conditionally immortal OSE cells form cobblestone-like monolayers, express cytokeratin and vimentin, contain several microvilli, and develop tight junctions, whereas stromal cells are spindle-like, express vimentin but not cytokeratin, and contain rare microvilli, thus exhibiting epithelial and stromal phenotypes, respectively. At variance with the reported behavior of rat epithelial cells, conditionally immortal mouse epithelial cells are not spontaneously transformed after continuous culture in vitro. More importantly, conditioned media from stromal cells cultured under permissive conditions increase the specific activity of the endogenous estrogen receptor in BG-1 human ovarian epithelial cancer cells and promote these cells' anchorage-independent growth, suggesting the paracrine influence of a stromal factor. In addition, stromal cells cultured under restrictive conditions retain this growth-stimulatory activity, which, therefore, appears to be independent of T antigen expression. These established cell lines should provide a useful in vitro model system for studying the role of cellular interactions in OSE cell growth and tumorigenesis.
Caviedes-Bucheli, J; Canales-Sánchez, P; Castrillón-Sarria, N; Jovel-Garcia, J; Alvarez-Vásquez, J; Rivero, C; Azuero-Holguín, M M; Diaz, E; Munoz, H R
2009-08-01
To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.
Enhancing the Breadth of Efficacy of Therapeutic Vaccines for Breast Cancer
2015-10-01
from recombinant baculovirus- infected insect cells . *Currently expressing antigens in C1R cells since these cells can also be used as antigen...co-transfect SF9 insect cells . Co-transfection of SF9 cells is initially assesed by survival of the cells compared to un-infected controls. The...Clones with higher TCR production are amplified again and used to infect Hi5 insect cells for protein production. 17 Figure 10. ELISA used to
Cirelli, Kimberly M.; Dan, Jennifer M.; Morou, Antigoni; Daigneault, Audrey; Brassard, Nathalie; Silvestri, Guido; Routy, Jean-Pierre; Havenar-Daughton, Colin; Crotty, Shane
2017-01-01
The identification and study of antigen-specific CD4 T cells, both in peripheral blood and in tissues, is key for a broad range of immunological research, including vaccine responses and infectious diseases. Detection of these cells is hampered by both their rarity and their heterogeneity, in particular with regards to cytokine secretion profiles. These factors prevent the identification of the total pool of antigen-specific CD4 T cells by classical methods. We have developed assays for the highly sensitive detection of such cells by measuring the upregulation of surface activation induced markers (AIM). Here, we compare two such assays based on concurrent expression of CD69 plus CD40L (CD154) or expression of OX40 plus CD25, and we develop additional AIM assays based on OX40 plus PD-L1 or 4-1BB. We compare the relative sensitivity of these assays for detection of vaccine and natural infection-induced CD4 T cell responses and show that these assays identify distinct, but overlapping populations of antigen-specific CD4 T cells, a subpopulation of which can also be detected on the basis of cytokine synthesis. Bystander activation had minimal effect on AIM markers. However, some T regulatory cells upregulate CD25 upon antigen stimulation. We therefore validated AIM assays designed to exclude most T regulatory cells, for both human and non-human primate (NHP, Macaca mulatta) studies. Overall, through head-to-head comparisons and methodological improvements, we show that AIM assays represent a sensitive and valuable method for the detection of antigen-specific CD4 T cells. PMID:29065175
Reiss, Samantha; Baxter, Amy E; Cirelli, Kimberly M; Dan, Jennifer M; Morou, Antigoni; Daigneault, Audrey; Brassard, Nathalie; Silvestri, Guido; Routy, Jean-Pierre; Havenar-Daughton, Colin; Crotty, Shane; Kaufmann, Daniel E
2017-01-01
The identification and study of antigen-specific CD4 T cells, both in peripheral blood and in tissues, is key for a broad range of immunological research, including vaccine responses and infectious diseases. Detection of these cells is hampered by both their rarity and their heterogeneity, in particular with regards to cytokine secretion profiles. These factors prevent the identification of the total pool of antigen-specific CD4 T cells by classical methods. We have developed assays for the highly sensitive detection of such cells by measuring the upregulation of surface activation induced markers (AIM). Here, we compare two such assays based on concurrent expression of CD69 plus CD40L (CD154) or expression of OX40 plus CD25, and we develop additional AIM assays based on OX40 plus PD-L1 or 4-1BB. We compare the relative sensitivity of these assays for detection of vaccine and natural infection-induced CD4 T cell responses and show that these assays identify distinct, but overlapping populations of antigen-specific CD4 T cells, a subpopulation of which can also be detected on the basis of cytokine synthesis. Bystander activation had minimal effect on AIM markers. However, some T regulatory cells upregulate CD25 upon antigen stimulation. We therefore validated AIM assays designed to exclude most T regulatory cells, for both human and non-human primate (NHP, Macaca mulatta) studies. Overall, through head-to-head comparisons and methodological improvements, we show that AIM assays represent a sensitive and valuable method for the detection of antigen-specific CD4 T cells.
Verhaegen, Monique E.; Mangelberger, Doris; Harms, Paul W.; Eberl, Markus; Wilbert, Dawn M.; Meireles, Julia; Bichakjian, Christopher K.; Saunders, Thomas L.; Wong, Sunny Y.; Dlugosz, Andrzej A.
2017-01-01
Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a non-proliferative population of neuroendocrine cells which arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor’s cell of origin, are unknown. Using a panel of pre-term transgenic mice, we show that epidermis-targeted co-expression of sT and the cell fate determinant atonal bHLH transcription factor 1 (Atoh1) leads to development of widespread cellular aggregates with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Co-expression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with Atoh1. MCPyV sT, when co-expressed with Atoh1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. PMID:28512245
Adipose-derived stem cell: a better stem cell than BMSC.
Zhu, Yanxia; Liu, Tianqing; Song, Kedong; Fan, Xiubo; Ma, Xuehu; Cui, Zhanfeng
2008-08-01
To further study the proliferation and multi-differentiation potentials of adipose-derived stem cells (ADSCs), the cells were isolated with improved methods and their growth curves were achieved with cck-8. Surface protein expression was analyzed by flow cytometry to characterize the cell phenotype. The multi-lineage potential of ADSCs was testified by differentiating cells with adipogenic, chondrogenic, osteogenic, and myogenic inducers. The results showed that about 5 x 10(5) stem cells could be obtained from 400 to 600 mg adipose tissue. The ADSCs can be continuously cultured in vitro for up to 1 month without passage and they have several logarithmic growth phases during the culture period. Also, the flow cytometry analysis showed that ADSCs expressed high levels of stem cell-related antigens (CD13, CD29, CD44, CD105, and CD166), while did not express hematopoiesis-related antigens CD34 and CD45, and human leukocyte antigen HLA-DR was also negative. Moreover, stem cell-related transcription factors, Nanog, Oct-4, Sox-2, and Rex-1 were positively expressed in ADSCs. The expression of alkaline phosphatase (ALP) was detected in the early osteogenic induction and the calcified nodules were observed by von Kossa staining. Intracellular lipid droplets could be observed by Oil Red staining. Differentiated cardiomyocytes were observed by connexin43 fluorescent staining. In order to obtain more stem cells, we can subculture ADSCs every 14 days instead of the normal 5 days. ADSCs still keep strong proliferation ability, maintain their phenotypes, and have stronger multi-differentiation potential after 25 passages. Copyright 2008 John Wiley & Sons, Ltd.
Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G; Scholler, John; Levine, Bruce L; Albelda, Steven M; June, Carl H
2010-11-15
Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. Copyright © 2010 AACR.
Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M.; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G.; Scholler, John; Levine, Bruce L.; Albelda, Steven M.; June, Carl H.
2010-01-01
Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CARs). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week post electroporation. Multiple injections of RNA CAR electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(−/−) mice. Dramatic tumor reduction also occurred when the pre-existing intraperitoneal human-derived tumors, that had been growing in vivo for over 50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes demonstrating that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. PMID:20926399
Kim, Tae S; Jung, Mi Y; Cho, Daeho; Cohen, Edward P
2006-10-30
Breast cancer cells, like other types of neoplastic cells, form weakly immunogenic tumor-associated antigens. The antigenic properties of the tumor-associated antigens can be enhanced if they are expressed by highly immunogenic cells. In this study, a cancer vaccine was prepared by transfer of a cDNA expression library from SB5b breast carcinoma into mouse fibroblast cells of C3H/He mouse origin (H-2(k)), that had been previously modified to secrete GM-CSF and to express allogeneic class I-determinants (H-2(b)). The transfected syngeneic/allogeneic fibroblasts secreting GM-CSF were used as a vaccine in C3H/He mice. Robust cell-mediated immunity toward the breast cancer cells was generated in mice immunized with the cDNA-based vaccine. The immunity, mediated predominantly by CD8(+) T lymphocytes, was directed toward the breast cancer cells, but not against either of two other non-cross-reactive neoplasms of C3H/He mice. The immunity was sufficient to prolong the survival of mice with established breast cancer. Among other advantages, preparation of the vaccine by cDNA-transfer into a fibroblast cell line enabled the recipient cells to be modified in advance of DNA-transfer to augment their immunogenic properties. As the transferred DNA is replicated as the transfected cells divide, the vaccine could be prepared from microgram quantities of tumor tissue.
Regulation of theta-antigen expression by agents altering cyclic AMP level and by thymic factor.
Bach, M A; Fournier, C; Bach, J F
1975-02-28
Thymic factor, cyclic AMP, and products increasing its cellular level, such as Prostaglandin E1, induce the appearance of the theta-antigen on T-cell precursors whether assessed by a rossette-inhibition assay or a cytotoxic assay after cell fractionation on BSA discontinuous gradiet. Synergism has been demonstrated between cyclic AMPT and TF for that effect. Conversely, decrease of theta expression has been obtained by altering cyclic AMP level in theta-positive cells either increasing it by dibutyryl cAMP treatment or decreasing it by indomethacin treatment. Finally, these data suggest the involvement of cyclic AMP in the regulation of theta expression under thymic hormone control.
The cell proliferation antigen Ki-67 organises heterochromatin
Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel
2016-01-01
Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251
Antigen Loss Variants: Catching Hold of Escaping Foes.
Vyas, Maulik; Müller, Rolf; Pogge von Strandmann, Elke
2017-01-01
Since mid-1990s, the field of cancer immunotherapy has seen steady growth and selected immunotherapies are now a routine and preferred therapeutic option of certain malignancies. Both active and passive cancer immunotherapies exploit the fact that tumor cells express specific antigens on the cell surface, thereby mounting an immune response specifically against malignant cells. It is well established that cancer cells typically lose surface antigens following natural or therapy-induced selective pressure and these antigen-loss variants are often the population that causes therapy-resistant relapse. CD19 and CD20 antigen loss in acute lymphocytic leukemia and chronic lymphocytic leukemia, respectively, and lineage switching in leukemia associated with mixed lineage leukemia (MLL) gene rearrangements are well-documented evidences in this regard. Although increasing number of novel immunotherapies are being developed, majority of these do not address the control of antigen loss variants. Here, we review the occurrence of antigen loss variants in leukemia and discuss the therapeutic strategies to tackle the same. We also present an approach of dual-targeting immunoligand effectively retargeting NK cells against antigen loss variants in MLL-associated leukemia. Novel immunotherapies simultaneously targeting more than one tumor antigen certainly hold promise to completely eradicate tumor and prevent therapy-resistant relapses.
Ching, W.-M.; Wang, H.; Eamsila, C.; Kelly, D. J.; Dasch, G. A.
1998-01-01
The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. The gene encoding this protein from Karp strain was cloned into the expression vector pET11a. The recombinant protein (r56) was expressed as a truncated nonfusion protein (amino acids 80 to 456 of the open reading frame) which formed an inclusion body when expressed in Escherichia coli BL21. Refolded r56 was purified and compared to purified whole-cell lysate of the Karp strain of O. tsutsugamushi by immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for reactivity with rabbit sera prepared against eight antigenic prototypes of O. tsutsugamushi as well as several other species of Rickettsiales and nonrickettsial antigens. Refolded r56 exhibited broad reactivity with the rabbit antisera against the Orientia prototypes, and the ELISA reactions with the r56 and Karp whole-cell lysate antigens correlated well (r = 0.81, n = 22, sensitivity compared to that of standard ELISA of 91%). Refolded r56 did not react with most antisera against other rickettsial species or control antigens (specificity = 92%, n = 13) using a positive cutoff value determined with eight uninfected rabbit sera. Refolded r56 was evaluated further by ELISA, using 128 sera obtained from patients with suspected scrub typhus from Korat, Thailand, and 74 serum specimens from healthy Thai soldiers. By using the indirect immunoperoxidase assay as the reference assay, the recombinant antigen exhibited a sensitivity and specificity of 93% or greater for detection of both IgG and IgM in the ELISA at 1:400 serum dilution. These results strongly suggest that purified r56 is a suitable candidate for replacing the density gradient-purified, rickettsia-derived, whole-cell antigen currently used in the commercial dipstick assay available in the United States. PMID:9665960
Ching, W M; Wang, H; Eamsila, C; Kelly, D J; Dasch, G A
1998-07-01
The variable 56-kDa major outer membrane protein of Orientia tsutsugamushi is the immunodominant antigen in human scrub typhus infections. The gene encoding this protein from Karp strain was cloned into the expression vector pET11a. The recombinant protein (r56) was expressed as a truncated nonfusion protein (amino acids 80 to 456 of the open reading frame) which formed an inclusion body when expressed in Escherichia coli BL21. Refolded r56 was purified and compared to purified whole-cell lysate of the Karp strain of O. tsutsugamushi by immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for reactivity with rabbit sera prepared against eight antigenic prototypes of O. tsutsugamushi as well as several other species of Rickettsiales and nonrickettsial antigens. Refolded r56 exhibited broad reactivity with the rabbit antisera against the Orientia prototypes, and the ELISA reactions with the r56 and Karp whole-cell lysate antigens correlated well (r = 0.81, n = 22, sensitivity compared to that of standard ELISA of 91%). Refolded r56 did not react with most antisera against other rickettsial species or control antigens (specificity = 92%, n = 13) using a positive cutoff value determined with eight uninfected rabbit sera. Refolded r56 was evaluated further by ELISA, using 128 sera obtained from patients with suspected scrub typhus from Korat, Thailand, and 74 serum specimens from healthy Thai soldiers. By using the indirect immunoperoxidase assay as the reference assay, the recombinant antigen exhibited a sensitivity and specificity of 93% or greater for detection of both IgG and IgM in the ELISA at 1:400 serum dilution. These results strongly suggest that purified r56 is a suitable candidate for replacing the density gradient-purified, rickettsia-derived, whole-cell antigen currently used in the commercial dipstick assay available in the United States.
Hume, D A; Allan, W; Hogan, P G; Doe, W F
1987-11-01
This report describes the immunocytochemical characterisation of macrophages in sections of human liver, gastrointestinal tract, and associated lymphoid tissue and the inflammatory lesions of Crohn's disease. 25F9 is an antigen reported to be induced during the maturation of blood monocytes in vitro. The antigen was concentrated in cytoplasmic vesicular structures of isolated gastrointestinal macrophages. Similar labelled cells were observed in the apical regions of lamina propria in both small and large intestine in vivo. Their numbers and size were greatly increased in specimens of colon from patients with melanosis coli. Mucosal inflammatory lesions in specimens from patients with Crohn's disease did not contain 25F9-positive cells. The antigen was absent from giant cells and epithelioid cells in granulomata but was expressed on histiocytes in submucosal microgranulomata. In lymphoid organs, 25F9-positive cells were found in germinal centres, in the dome region of Peyer's patch, and in the medulla, but were largely excluded from T cell areas. In reactive nodes from Crohn's disease patients, the number of labelled cells in germinal centres and T cell areas was greatly increased. 25F9 was absent from the majority of typical liver Kupffer cells, but was expressed on cytoplasmic granules in a minor subpopulation of larger, more rounded cells in the liver. The results suggest that 25F9 is a marker for endocytosis rather than maturation. In parallel sections, resident macrophages of both liver and gastrointestinal tract labelled with Leu 3a/OKT4 (CD4) and with OKIa (HLA-DR antigen) but did not express OKM1 (type III complement receptor). By contrast, OKM1 was present on inflammatory cells, epithelioid cells, and giant cells in mucosal lesions of Crohn's disease.
Tsaltas, G; Ford, C H
1993-02-01
Methods following the process of binding and internalization of antibodies to cell surface antigens have often employed low pH isoosmolar buffers in order to dissociate surface antigen-antibody complexes. One of the most widely used buffers is a 0.05 M glycine-HCL buffer pH 2.8. Since the efficacy of action of this buffer was critical to a series of internalization experiments employing monoclonal antibodies (Mabs) to carcinoembryonic antigen (CEA) expressing cancer cell lines in this laboratory, we tested its performance in a number of different assays. Our results indicate that this buffer only partially dissociates antigen-antibody bonds and therefore can introduce major inaccuracies in internalization experiments.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... Cell Malignancies AGENCY: National Institutes of Health, Public Health Service, HHS. ACTION: Notice... exclusive license territory may be worldwide, and the field of use may be limited to: Treatment of B cell malignancies that express CD22 on their cell surface using chimeric antigen receptors which contain the m971 or...
Samplaski, Mary K; Heston, Warren; Elson, Paul; Magi-Galluzzi, Cristina; Hansel, Donna E
2011-11-01
Folate hydrolase (prostate-specific antigen) 1 (FH(PSA)1), also known as prostate-specific membrane antigen (PSMA), is a transmembrane receptor expressed on prostate cancer cells that correlates with a more aggressive phenotype. Recent studies have demonstrated FH(PSA)1 expression in numerous benign and malignant tissue types, as well as the malignant neovasculature. As FH(PSA)1 represents a diagnostic immunomarker for prostate cancer, we explored its expression pattern in various subtypes of bladder cancer. Immunohistochemical analysis (IHC) of FH(PSA)1 was performed using tissue microarrays constructed from 167 bladder cancers, including 96 urothelial carcinomas (UCCs), 37 squamous cell carcinomas, 17 adenocarcinomas and 17 small cell carcinomas. We used a FH(PSA)1 monoclonal antibody obtained from Dako (clone 3E6, dilution 1:100), which recognizes the epitope present in the 57-134 amino acid region of the extracellular portion of the PSMA molecule. Intensity of IHC staining was scored as 0 (no expression) to 3+ (strong expression), with 2-3+ IHC considered a positive result. FH(PSA)1 demonstrated expression in a subset of bladder cancers and was most common in small cell carcinoma (3/17; 18%), with concurrent expression in non-small cell components in a subset of cases (2/6). FH(PSA)1 expression was less frequent in UCC (3/96; 3%) and adenocarcinoma (2/17; 12%). None of the squamous cell carcinomas demonstrated tumor cell expression of FH(PSA)1. However, all bladder cancers examined expressed FH(PSA)1 in the tumor vasculature, suggesting a potential role for this molecule in mediating new vessel ingrowth. FH(PSA)1 may occasionally be expressed in various subtypes of bladder cancer. These findings suggest cautious use of FH(PSA)1 as a diagnostic marker for prostatic tissue invading the bladder. The finding of FH(PSA)1 in the bladder cancer neovasculature suggests that this molecule may promote tumor growth and may represent a potential new vascular target in this disease.
Thuring, Camilla; Follin, Elna; Geironson, Linda; Freyhult, Eva; Junghans, Victoria; Harndahl, Mikkel; Buus, Søren; Paulsson, Kajsa M
2015-09-15
Tumour cells can evade the immune system by dysregulation of human leukocyte antigens (HLA-I). Low quantity and/or altered quality of HLA-I cell surface expression is the result of either HLA-I alterations or dysregulations of proteins of the antigen-processing machinery (APM). Tapasin is an APM protein dedicated to the maturation of HLA-I and dysregulation of tapasin has been linked to higher malignancy in several different tumours. We studied the expression of APM components and HLA-I, as well as HLA-I tapasin-dependency profiles in glioblastoma tissues and corresponding cell lines. Tapasin displayed the strongest correlation to HLA-I heavy chain but also clustered with β2-microglobulin, transporter associated with antigen processing (TAP) and LMP. Moreover, tapasin also correlated to survival of glioblastoma patients. Some APM components, for example, TAP1/TAP2 and LMP2/LMP7, showed variable but coordinated expression, whereas ERAP1/ERAP2 displayed an imbalanced expression pattern. Furthermore, analysis of HLA-I profiles revealed variable tapasin dependence of HLA-I allomorphs in glioblastoma patients. Expression of APM proteins is highly variable between glioblastomas. Tapasin stands out as the APM component strongest correlated to HLA-I expression and we proved that HLA-I profiles in glioblastoma patients include tapasin-dependent allomorphs. The level of tapasin was also correlated with patient survival time. Our results support the need for individualisation of immunotherapy protocols.
Barrena, M J; Echaniz, P; Garcia-Serrano, C; Zubillaga, P; Cuadrado, E
1992-01-01
We analysed the expression of lymphocyte function-associated antigen LFA-1 on the cell surface of peripheral blood lymphocytes, monocytes and granulocytes from 20 children with Down's syndrome. No differences in LFA-1 expression was found within monocytes or granulocytes from either normal or Down's syndrome children; however, a clear-cut difference was observed on lymphoid cells. Both normal and Down's syndrome lymphocytes displayed a bimodal pattern of LFA-1 staining by flow cytometry, with a predominance of cells with low expression in normal population, and an increased proportion of lymphocytes with high level of LFA-1 expression in Down's syndrome children. This difference correlates well with the abnormal proportion of T cell subsets and inversion of CD4/CD8 observed in a majority of our cases, and therefore, it could merely reflect the increase of certain T cell subsets normally expressing higher number of LFA-1 molecules. Taken together, our results do not support an abnormally increased expression of leucocytes integrins in trisomy 21 cells, and raise some doubt about the suggested role of the abnormal cellular expression of LFA-1 in the pathogensis of secondary immunodeficiency associated to Down's syndrome. PMID:1348667
Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases.
Pender, Michael P
2003-11-01
I hypothesize that human chronic autoimmune diseases are based on infection of autoreactive B lymphocytes by Epstein-Barr virus (EBV), in the following proposed scenario. During primary infection, autoreactive B cells are infected by EBV, proliferate and become latently infected memory B cells, which are resistant to the apoptosis that occurs during normal B-cell homeostasis because they express virus-encoded anti-apoptotic molecules. Genetic susceptibility to the effects of B-cell infection by EBV leads to an increased number of latently infected autoreactive memory B cells, which lodge in organs where their target antigen is expressed, and act there as antigen-presenting cells. When CD4(+) T cells that recognize antigens within the target organ are activated in lymphoid organs by cross-reactivity with infectious agents, they migrate to the target organ but fail to undergo activation-induced apoptosis because they receive a co-stimulatory survival signal from the infected B cells. The autoreactive T cells proliferate and produce cytokines, which recruit other inflammatory cells, with resultant target organ damage and chronic autoimmune disease.
BI-31ANALYSIS AND QUANTIFICATION OF MULTIPLE ANTIGEN EXPRESSION IN GLIOBLASTOMA
Weng, Lihong; Zhai, Yubo; D'Apuzzo, Massimo; Badie, Behnam; Forman, Stephen J.; Barish, Michael; Brown, Christine E.
2014-01-01
Glioblastoma (GBM), one of the most common and fatal types of brain tumor, is marked by significant antigenic heterogeneity. Identification and quantification of tumor related antigens in the context of GBM tissue is an essential step towards developing antigen- targeted therapies. Immunohistochemistry (IHC) on formalin-fixed paraffin embedded (FFPE) clinical specimens is a valuable technique for evaluating antigen expression in large study cohorts. To overcome the limitations of manual semi-quantitative scoring and subjectivity in the evaluation of IHC staining, we analyzed and quantified multiple antigens across entire tumor sections using Image Pro Premier v9.1 (DAB plug-in). For each slide, dense tumor regions (DTRs, tumor cells >60%), tumor infiltration regions (TIRs, tumor cells <50%) and pseudopalisading necrosis regions (PPNs) were defined from HE section by a neuropathologist. We quantified the expression of tumor-associated antigens IL13Rα2, HER2, EGFR and the proliferation marker Ki67 within these defined regions for 44 brain tumor samples (35 stage IV and 9 stage III). Our results demonstrate the heterogeneous expression patterns of IL13Rα2, HER2 and EGFR in GBMs. For example, in dense tumor regions 52%, 61% and 77% of samples showed IL13Rα2, HER2 or EGFR positivity, respectively. In correlation studies, 25% of samples were triple positive, 11% of samples showed double positivity for IL13Rα2 and HER2 or IL13Rα2 and EGFR, and 25% of samples were double positive of EGFR and HER2. Less than 7% of samples were negative for all three antigens. Interestingly, a higher percentage of samples showed triple positive expression in PPN regions (43%) versus the DTR (25%) and TIR (25%) regions. Also, Ki67 positivity was higher in PPN and DTR regions. In this study we developed methods for combining pathological annotations with DAB-capturing software, which allowed us to quantify protein expression in a more precise, consistent and efficient manner.
Shemesh, J; Rotem-Yehudar, R; Ehrlich, R
1991-01-01
Transformation of rodent cells by human adenoviruses is a well-established model system for studying the expression, regulation, and function of class I antigens. In this report, we demonstrate that the highly oncogenic adenovirus type 12 operates at the transcriptional and posttranscriptional levels in regulating the activity of major histocompatibility complex class I genes and products in transformed cells. Adenovirus type 12 suppresses the cell surface expression of class I antigens in most cell lines. Nevertheless, in a number of cell lines suppression is the result of reduction in the amount of stable specific mRNA, while in another group of cell lines suppression involves interference with processing of a posttranscriptional product. The two mechanisms operate both for the endogenous H-2 genes and for a miniature swine class I transgene that is expressed in the cells. Images PMID:1895404
Remote control of therapeutic T cells through a small molecule-gated chimeric receptor
Wu, Chia-Yung; Roybal, Kole T.; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.
2016-01-01
There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control. PMID:26405231
Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.
Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A
2015-10-16
There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.
Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim
2015-05-01
Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.
Antigen-specific T-cell lines transfer protective immunity against Trichinella spiralis in vivo.
Riedlinger, J; Grencis, R K; Wakelin, D
1986-01-01
T-cell lines specific for infective muscle larvae antigens of the intestinal nematode Trichinella spiralis have been generated in vitro. These antigen-specific T-cell lines express the L3T4+ Ly2- phenotype and secrete the lymphokines IL-2, IL-3 and gamma-IFN. They are stable in culture for up to 15 weeks and are protective when adoptively transferred into naive recipients. As few as 2 x 10(5) T. spiralis-specific tract. In addition, intestinal mastocytosis and peripheral blood eosinophilia were accelerated after adoptive transfer of T. spiralis-specific T-cell lines. PMID:2423438
Constructing Chimeric Antigen for Precise Screening of HTLV-I Infection.
Heydari Zarnagh, Hafez; Hassanpour, Kazem; Rasaee, Mohammad Javad
2015-08-01
Individual preparation of two human T-cell lymphotropic virus type I (HTLV-I) diagnostic GST fused peptides (MTA-1 and GD21) is time-consuming and expensive. The aim of this study was to design a novel single chimeric antigen (SCA) to obviate separate expression of proteins and reduce the cost of reagent preparation. Structural protein fragments, including immunodominant B cell linear epitopes, were selected and different SCAs were designed. Tertiary structure, epitope exposure, solubility and stability were calculated for each SCA and compared with each other. The synthetic DNA encoding the interested SCA was sub-cloned into pET32a expression vector, expressed as a soluble form in Escherichia coli BL21 (DE3) cells and purified under native condition using affinity chromatography. The SDS-PAGE results indicated that thioredoxin-fused SCA was successfully expressed as a soluble form in E. coli BL21 (DE3) cells. The results of ELISA confirmed that SCA reacted with anti-HTLV-I antibodies in a concentration-dependent manner. Our results indicated that the designed SCA may be a good candidate for the screening of HTLV-I carriers with antigen-antibody-based tests.
A compound chimeric antigen receptor strategy for targeting multiple myeloma.
Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y
2018-02-01
Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.
Correale, Jorge; Farez, Mauricio F.
2012-01-01
Multiple sclerosis (MS) is an inflammatory autoimmune demyelinating disease affecting the Central Nervous System (CNS), in which Th1 and Th17 cells appear to recognize and react against certain myelin sheath components. Epidemiological evidence has accumulated indicating steady increase in autoimmune disease incidence in developed countries. Reduced infectious disease prevalence in particular has been proposed as the cause. In agreement with this hypothesis, we recently demonstrated significantly better clinical and radiological outcome in helminth-infected MS patients, compared to uninfected ones. Parasite-driven protection was associated with regulatory T cell induction and anti-inflammatory cytokine secretion, including increased TGF-β and IL-10 levels. Interestingly, surface expression of TLR2, on both B cells and dendritic cells (DC) was significantly higher in infected MS patients. Moreover, stimulation of myelin-specific T cell lines with a TLR2 agonist induced inhibition of T cell proliferation, suppression of IFN-γ, IL-12, and IL-17 secretion, as well as increase in IL-10 production, suggesting the functional responses observed correlate with TLR2 expression patterns. Furthermore, parasite antigens were able to induce TLR2 expression on both B cells and DCs. All functional effects mediated by TLR2 were abrogated when MyD88 gene expression was silenced; indicating helminth-mediated signaling induced changes in cytokine secretion in a MyD88-dependent manner. In addition, helminth antigens significantly enhanced co-stimulatory molecule expression, effects not mediated by MyD88. Parasite antigens acting on MyD88 induced significant ERK kinase phosphorylation in DC. Addition of the ERK inhibitor U0126 was associated with dose-dependent IL-10 inhibition and reciprocal enhancement in IL-12, both correlating with ERK inhibition. Finally, cytokine effects and changes observed in co-stimulatory DC molecules after helminth antigen exposure were lost when TLR2 was silenced. Overall, the data described indicate that helminth molecules exert potent regulatory effects on both DCs and B cells from MS patients through TLR2 regulation. PMID:22937527
Chemotherapy Enhances Cross-Presentation of Nuclear Tumor Antigens
Anyaegbu, Chidozie C.; Lake, Richard A.; Heel, Kathy; Robinson, Bruce W.; Fisher, Scott A.
2014-01-01
Cross-presentation of tumor antigen is essential for efficient priming of naïve CD8+ T lymphocytes and induction of effective anti-tumor immunity. We hypothesized that the subcellular location of a tumor antigen could affect the efficiency of cross-presentation, and hence the outcome of anti-tumor responses to that antigen. We compared cross-presentation of a nominal antigen expressed in the nuclear, secretory, or cytoplasmic compartments of B16 melanoma tumors. All tumors expressed similar levels of the antigen. The antigen was cross-presented from all compartments but when the concentration was low, nuclear antigen was less efficiently cross-presented than antigen from other cellular locations. The efficiency of cross-presentation of the nuclear antigen was improved following chemotherapy-induced tumor cell apoptosis and this correlated with an increase in the proportion of effector CTL. These data demonstrate that chemotherapy improves nuclear tumor antigen cross-presentation and could be important for anti-cancer immunotherapies that target nuclear antigens. PMID:25243472
McComb, Scott; Mulligan, Rebecca; Sad, Subash
2010-01-01
Background CD8+ T cell responses develop rapidly during infection and are swiftly reduced during contraction, wherein >90% of primed CD8+ T cells are eliminated. The role of apoptotic mechanisms in controlling this rapid proliferation and contraction of CD8+ T cells remains unclear. Surprisingly, evidence has shown non-apoptotic activation of caspase-3 to occur during in vitro T-cell proliferation, but the relevance of these mechanisms to in vivo CD8+ T cell responses has yet to be examined. Methods and Findings We have evaluated the activity of caspase-3, a key downstream inducer of apoptosis, throughout the entirety of a CD8+ T cell response. We utilized two infection models that differ in the intensity, onset and duration of antigen-presentation and inflammation. Expression of cleaved caspase-3 in antigen specific CD8+ T cells was coupled to the timing and strength of antigen presentation in lymphoid organs. We also observed coordinated activation of additional canonical apoptotic markers, including phosphatidylserine exposure. Limiting dilution analysis directly showed that in the presence of IL7, very little cell death occurred in both caspase-3hi and caspase-3low CD8+ T cells. The expression of active caspase-3 peaked before effector phenotype (CD62Llow) CD8+ T cells emerged, and was undetectable in effector-phenotype cells. In addition, OVA-specific CD8+ cells remained active caspase-3low throughout the contraction phase. Conclusions Our results specifically implicate antigen and not inflammation in driving activation of apoptotic mechanisms without cell death in proliferating CD8+ T cells. Furthermore, the contraction of CD8+ T cell response following expansion is likely not mediated by the key downstream apoptosis inducer, caspase-3. PMID:21203525
Genetic engineering with T cell receptors.
Zhang, Ling; Morgan, Richard A
2012-06-01
In the past two decades, human gene transfer research has been translated from a laboratory technology to clinical evaluation. The success of adoptive transfer of tumor-reactive lymphocytes to treat the patients with metastatic melanoma has led to new strategies to redirect normal T cells to recognize tumor antigens by genetic engineering with tumor antigen-specific T cell receptor (TCR) genes. This new strategy can generate large numbers of defined antigen-specific cells for therapeutic application. Much progress has been made to TCR gene transfer systems by optimizing gene expression and gene transfer protocols. Vector and protein modifications have enabled excellent expression of introduced TCR chains in human lymphocytes with reduced mis-pairing between the introduced and endogenous TCR chains. Initial clinical studies have demonstrated that TCR gene-engineered T cells could mediate tumor regression in vivo. In this review, we discuss the progress and prospects of TCR gene-engineered T cells as a therapeutic strategy for treating patients with melanoma and other cancers. Published by Elsevier B.V.
HIV infection impairs Th1 and Th17 Mycobacterium tuberculosis-specific T cell responses
Murray, Lyle W; Satti, Iman; Meyerowitz, Jodi; Jones, Matthew; Willberg, Christian B; Ussher, James E; Goedhals, Dominique; Hurst, Jacob; Phillips, Rodney E; McShane, Helen
2018-01-01
Background HIV-infected individuals have a higher risk of developing active tuberculosis than HIV-uninfected individuals, but the mechanisms underpinning this are unclear. We hypothesized that depletion of specific components of Mycobacterium tuberculosis (M.tb)-specific CD4+ and CD8+ T cell responses contributed to this increased risk. Methods M.tb-specific T cell responses in 147 HIV-infected and 44 HIV-uninfected control subjects in a TB-endemic setting in Bloemfontein, South Africa were evaluated. Using a whole-blood flow cytometry assay, we measured expression of IFNγ, TNFα, IL-2 and IL-17 in CD4+ and CD8+ T cells in response to M.tb antigens (PPD, ESAT-6/CFP-10 (EC) and DosR regulon-encoded α-crystallin (Rv2031c)). Results Fewer HIV-infected individuals had detectable CD4+ and CD8+ T cell responses to PPD and Rv2031c than HIV-uninfected subjects. M.tb-specific T cells showed distinct patterns of cytokine expression comprising both Th1 (CD4 and CD8) and Th17 (CD4) cytokines, the latter at highest frequency for Rv2031c. Th17 antigen-specific responses to all antigens tested were specifically impaired in HIV-infected individuals. Conclusions HIV-associated impairment of CD4+ and CD8+ M.tb-specific T cell responses is antigen-specific, particularly impacting responses to PPD and Rv2031c. Preferential depletion of Th17 cytokine-expressing CD4+ T cells suggests this T cell subset may be key to TB susceptibility in HIV-infected individuals. PMID:29546381
Eggink, H F; Houthoff, H J; Huitema, S; Wolters, G; Poppema, S; Gips, C H
1984-01-01
The characteristics and distribution of the inflammatory infiltrate in liver biopsies of 25 patients with hepatitis B viral (HBV) infection were studied in relation to the distribution and expression of HBV antigens. Mononuclear subsets were characterized with monoclonal (OKT, OKM, Leu) antibodies to surface antigens. For the demonstration of viral antigens directly conjugated antibodies to surface (HBsAg), core (HBcAg) and 'e' (HBeAg) antigen were used. For the study of mutual relations all methods were performed on serial cut tissue sections. In chronic active hepatitis B (CAH-B, n = 12) OKT8+ lymphocytes of T cell origin were the only cell type present in areas with liver cell degeneration and T cell cytotoxicity appears to be the only immune mechanism. In chronic persistent hepatitis B (CPH-B, n = 7) the only conspicuous feature was the presence of many Leu 3+ lymphocytes of the helper/inducer population in the portal tracts. In acute hepatitis B (AHB, n = 6) OKT8+ cells of non-T origin (OKT1-,3-) and Leu 7+ cells of presumed natural killer (NK) potential predominated in the areas with liver cell necrosis, and non-T cell cytotoxicity appears to be the predominant immune mechanism. In none of these disease entities a positive spatial relation could be established between the cytotoxic cells and the demonstrable expression of HBV antigens in hepatocytes. It is concluded that differences in immunological reaction pattern may explain the different course in the three forms of HBV infection studied. Images Fig. 1 Fig. 2 PMID:6713726
Pearce, Hayden; Hutton, Paul; Chaudhri, Shalini; Porfiri, Emilio; Patel, Prashant; Viney, Richard; Moss, Paul
2017-07-01
Cancer/testis antigen (CTAg) expression is restricted to spermatogenic cells in an immune-privileged site within the testis. However, these proteins are expressed aberrantly by malignant cells and T-cell responses against CTAgs develop in many cancer patients. We investigated the prevalence, magnitude and phenotype of CTAg-specific T cells in the blood of patients with testicular germ cell tumors (TGCTs). CD8 + and CD4 + T-cell responses against MAGE-A family antigens were present in 44% (20/45) of patients' samples assayed by ex vivo IFN-γ ELISPOT. The presence of MAGE-specific CD8 + T cells was further determined following short-term in vitro expansion through the use of pMHC-I multimers containing known immunogenic peptides. Longitudinal analysis revealed that the frequency of MAGE-specific T cells decreased by 89% following orchidectomy suggesting that persistence of tumor antigen is required to sustain CTAg-specific T-cell immunity. Notably, this decrease correlated with a decline in the global effector/memory T-cell pool following treatment. Spontaneous T-cell immunity against CTAg proteins therefore develops in many patients with testicular cancer and may play an important role in the excellent clinical outcome of patients with this tumor subtype. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anti-MUC1 nanobody can redirect T-body cytotoxic effector function.
Bakhtiari, Seyed Hamid Aghaee; Rahbarizadeh, Fatemeh; Hasannia, Sadegh; Ahmadvand, Davoud; Iri-Sofla, Farnoush Jafari; Rasaee, Mohammad Javad
2009-04-01
Chimeric antigen T cell receptors provide a good approach for adoptive immunotherapy of cancer, especially in the context of cancerous cells that fail to express major histocompatibility complex antigen and co-stimulatory molecules. Clinical applications of these receptors are limited, mostly due to the xenogenic origin of the antibodies, which cause immunogenic reactions. Nanobodies are the smallest fragments of antibodies that have great homology to human VH and low immunogenic potential. MUC1 is a highly attractive immunotherapeutic target owing to increased expression, altered glycosylation, and loss of polarity in more than 80% of human malignancies. We used anti-MUC1 nanobody as an antigen binding domain, CD28 and CD3zeta as signaling domains, and IgG3 as a spacer in a chimeric receptor construct. This construct was transfected to Jurkat cells. The transfected Jurkat cells were exposed to MUC1-positive MCF7 cells. Then we analyzed the secretion of IL2, proliferation of Jurkat cells, and death of MCF7 cells. These data revealed that the nanobody chimeric receptor can target tumor-associated antigen-positive cells. Regarding the efficient and specific function of nanobody chimeric receptor and non-immunogenic nature of nanobodies, these chimeric receptors might be used as promising candidates for clinical applications.
Sellebjerg, F; Krakauer, M; Khademi, M; Olsson, T; Sørensen, P S
2012-01-01
Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4+CD25high T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied the phenotype of CD4+CD25high T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4+CD25high T cells and higher intracellular CTLA-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4+CD25high T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated with CBLB and ITCH and T helper type 2 cytokine mRNA expression in MS patients. These data link expression of FOXP3, CBLB and ITCH mRNA and CTLA-4 expression on the surface of CD4+CD25high T cell in MS. We hypothesize that this may reflect alterations in the inhibitory effect of CTLA-4 or in regulatory T cell function. PMID:23039885
Souza, Anselmo; Santos, Silvane; Carvalho, Lucas P.; Grassi, Maria Fernanda R.; Carvalho, Edgar M.
2016-01-01
T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4+ T cells expressing IFN-γ, TNF and IL-10 in response to TT were lower in the (HC) than in the controls. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it’s necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4+ T cell immune responses after vaccination. PMID:27282836
Doxorubicin-anti-carcinoembryonic antigen immunoconjugate activity in vitro.
Richardson, V J; Ford, C H; Tsaltas, G; Gallant, M E
1989-04-01
An in vitro model consisting of a series of 11 human cancer cell lines with varying density of expression of membrane carcinoembryonic antigen (CEA) has been used to evaluate conjugates of doxorubicin (Adriamycin) covalently linked by a carbodiimide method to goat polyclonal antibodies and mouse monoclonal antibodies to CEA. Conjugates were produced which retained both antigen binding and drug cytotoxicity. IC50 values were determined for free drug, free drug mixed with unconjugated antibodies and for the immunoconjugates. Cell lines that were very sensitive to free drug (IC50 less than 100 ng/ml) were also found to be highly sensitive to conjugated drug and similarly cell lines resistant to drug (IC50 greater than 1,000 ng/ml) were also resistant to conjugated drug. Although there was no correlation between CEA expression and conjugates efficacy, competitive inhibition studies using autologous antibody to block conjugate binding to cells indicated immunoconjugates specificity for the CEA target.
Zhao, Jun; Lu, Jing; Liu, Ya-qin; Yang, Hong-yan; Huang, You-tian; Zhao, Ji-min; Li, Shan; Zhai, Jing-ming; Zhao, Ming-yao; Zhang, Xi; Dong, Zi-ming
2011-01-01
To explore the specific cellular and humoral immunity induced by dendritic cells (DC) vaccine loading allogenic microvascular endothelial cell bEnd.3 antigen against U14 cervical cancer cell of mice. Mouse brain microvascular endothelial cell bEnd.3 was cultured and identified for preparation endothelial cell bEnd.3 antigen. The level of mRNA expression of vascular endothelial growth factor receptor 2 (VEGF-R₂) and integrin αV was detected by reverse transcription (RT)-PCR. The BALB/c mice were immuned with DC loading bEnd.3 antigen 4 times in 4 weeks (bEnd.3-DC group), while the mice only were immuned with DC or injected with phosphate buffer saline (PBS group) as control group. One week after last vaccination, U14 cervical cancer cells were injected subcutaneously into the mice. The tumor size, cytotoxic T lymphocyte (CTL) response of spleen lymphocytes in vitro, the percentage of CD₃+CD₈+ surface markers of spleen lymphocytes, and the titer of serum antibody were detected. The specific immunity was examined by immunocytochemistry and western blot. The expression of VEGF-R₂ and integrin αV gene in bEnd.3 cells were expressed highly. After the vaccine was injected, the tumors of mice in PBS group grew faster than those in other groups, while the tumors in bEnd.3-DC group grew slowly and disappeared after 2 weeks. The volume of tumors in DC group grew slower than those in PBS group [(0.11 ± 0.13) cm³ versus (3.38 ± 0.34) cm³]. The CTL response of spleen lymphocytes in vitro showed that bEnd.3-DC cells could kill bEnd.3 cells, the special lysis rate was more than 60%. The percentage of CD₃+CD₈+ spleen lymphocytes in bEnd.3-DC group [(38.6 ± 0.7)%] was higher than those in other groups (P < 0.05). The titer of serum antibody of bEnd.3-DC group was 1:3200, while it was 1:800 in DC group and there were not any in PBS group. Immunocytochemistry analysis indicated there were specific antigen-antibody reaction to bEnd.3 cell in bEnd.3-DC group. Western blot analysis revealed that there were specific bands at 220,000 (VEGF-R₂). bEnd.3-DC vaccine can inhibit the tumor growth of U14 cervical cancer cell of mice, which indicates that the special cellular and humoral immunity are induced by bEnd.3-DC antigen which maybe have some antigens in bEnd.3 cells that reacts with endothelial cell proliferation-related antigens.
Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo
2017-10-25
We report a rapid and cost-effective monoclonal antibody screening method from single animal B cells using reverse transcription (RT)-PCR and Escherichia coli cell-free protein synthesis (CFPS), which allows evaluation of antibodies within 2 working days. This process is named "Ecobody technology". The method includes strategies to isolate B cells that specifically bind an antigen from the peripheral blood of immunised animals, and single-cell RT-PCR to generate DNA fragments of the V H and V L genes, followed by CFPS for production of fragments of antigen binding (Fab). In the CFPS step, we employed our techniques: 1) 'Zipbody' as a method for producing Fab, in which the association of heavy and light chains is facilitated by adhesive leucine zipper peptides fused at the C-termini of the Fab; and 2) an N-terminal SKIK peptide tag that can increase protein expression levels. Using Ecobody technology, we obtained highly-specific monoclonal antibodies for the antigens Vibrio parahaemolyticus and E. coli O26. The anti-V. parahaemolyticus Zipbody mAb was further produced in E. coli strain SHuffle T7 Express in inclusion bodies and refolded by a conventional method, resulting in significant antigen-binding activity (K D = 469 pM) and productivity of 8.5 mg purified antibody/L-culture.
The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia
NASA Astrophysics Data System (ADS)
Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.
1990-08-01
B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.
Generation of Rat Monoclonal Antibodies Against Human Pancreatic Ductal Adenocarcinoma Cells.
Higashi, Kiyoshi; Fujii, Nobuaki; Kushida, Masahiko; Yamada, Keita; Suzuki, Noriyuki; Saito, Koichi; Tachibana, Taro
2016-06-01
Pancreatic ductal adenocarcinoma is an aggressive tumor with a poor prognosis. Biomarkers that can detect the tumor in its early stages when it may be amenable to curative resection might improve prognosis. To discover novel markers expressed in primary pancreatic cancer, we generated a panel of monoclonal antibodies against pancreatic ductal adenocarcinoma cell line BxPC3 using a rat medial iliac lymph node method. The antigen recognized by 1B5A5 was expressed on the cell surface and secreted into the conditioned medium of BxPC3 cells, and characterized as glycoproteins with molecular mass between 60 and 90 kDa. A wide range of molecular weights of 1B5A5 antigen in several pancreatic cancer cell lines were observed. Immunohistochemistry using a human multiple organ tumor tissue array showed an enhanced expression of 1B5A5 antigen in pancreas, lung, stomach, breast, urinary bladder, colon, and cervix uteri cancers. Immunoprecipitation followed by proteomic analyses identified CEACAM6 as a 1B5A5 antigen. In addition, western blot analysis results indicated that the 1B5A5 epitope is located within an amino-terminal domain of CEACAM6. These results raised the possibility that our approach could lead to discovery of novel biomarkers for the early stage of cancers in a relatively short period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freund, R.; Bauer, P.H.; Benjamin, T.L.
1994-11-01
The authors have examined the growth properties of polyomavirus large T-antigen mutants that ar unable to bind pRB, the product of the retinoblastoma tumor suppressor gene. These mutants grow poorly on primary mouse cells yet grow well on NIH 3T3 and other established mouse cell lines. Preinfection of primary baby mouse kidney (BMK) epithelial cells with wild-type simian virus 40 renders these cells permissive to growth of pRB-binding polyomavirus mutants. Conversely, NIH 3T3 cells transfected by and expressing wild-type human pRB become nonpermissive. Primary fibroblasts for mouse embryos that carry a homozygous knockout of the RB gene are permissive, whilemore » those from normal littermates are nonpermissive. The host range of polyomavirus pRB-binding mutants is thus determined by expression or lack of expression of functional pRB by the host. These results demonstrate the importance of pRB binding by large T antigen for productive viral infection in primary cells. Failure of pRB-binding mutants to grow well in BMK cells correlates with their failure to induce progression from G{sub 0} or G{sub 1} through the S phase of the cell cycle. Time course studies show delayed synthesis and lower levels of accumulation of large T antigen, viral DNA, and VP1 in mutant compared with wild-type virus-infected BMK cells. These results support a model in which productive infection by polyomavirus in normal mouse cells is tightly coupled to the induction and progression of the cell cycle. 48 refs., 6 figs., 5 tabs.« less
Sarcoidosis Th17 Cells are ESAT-6 Antigen Specific but Demonstrate Reduced IFN-γ Expression
Richmond, Bradley W.; Ploetze, Kristen; Isom, Joan; Chambers-Harris, Isfahan; Braun, Nicole A.; Taylor, Thyneice; Abraham, Susamma; Mageto, Yolanda; Culver, Dan A.; Oswald-Richter, Kyra A.; Drake, Wonder P.
2013-01-01
Rationale Sarcoidosis is a granulomatous disease of unknown etiology. Many patients with sarcoidosis demonstrate antigen-specific immunity to mycobacterial virulence factors. Th-17 cells are crucial to the immune response in granulomatous inflammation, and have recently been shown to be present in greater numbers in the peripheral blood and bronchoalveolar lavage (BAL) fluid (BALF) of sarcoidosis patients than healthy controls. It is unclear whether Th-17 cells in sarcoidosis are specific for mycobacterial antigens, or whether they have similar functionality to control Th-17 cells. Methods Flow cytometry was used to determine the numbers of Th-17 cells present in the peripheral blood and BALF of patients with sarcoidosis, the percentage of Th-17 cells that were specific to the mycobacterial virulence factor ESAT-6, and as well as to assess IFN-γ expression in Th-17 cells following polyclonal stimulation. Results Patients with sarcoidosis had greater numbers of Th-17 cells in the peripheral blood and BALF than controls and produced significantly more extracellular IL-17A (p=0.03 and p=0.02, respectively). ESAT-6 specific Th-17 cells were present in both peripheral blood and BALF of sarcoidosis patients (p<0.001 and p=0.03, respectively). After polyclonal stimulation, Th-17 cells from sarcoidosis patients produced less IFN-γ than healthy controls. Conclusions Patients with sarcoidosis have mycobacterial antigen-specific Th-17 cells peripherally and in sites of active sarcoidosis involvement. Despite the Th1 immunophenotype of sarcoidosis immunology, the Th-17 cells have reduced IFN-γ expression, compared to healthy controls. This reduction in immunity may contribute to sarcoidosis pathogenesis. PMID:23073617
Shen, Chan-Juan; Yang, Yu-Xiu; Han, Ethan Q; Cao, Na; Wang, Yun-Fei; Wang, Yi; Zhao, Ying-Ying; Zhao, Li-Ming; Cui, Jian; Gupta, Puja; Wong, Albert J; Han, Shuang-Yin
2013-05-09
Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells appears to be a promising immunotherapeutic strategy. CAR combines the specificity of antibody and cytotoxicity of cytotoxic T lymphocytes, enhancing T cells' ability to specifically target antigens and to effectively kill cancer cells. Recent efforts have been made to integrate the costimulatory signals in the CAR to improve the antitumor efficacy. Epidermal growth factor receptor variant III (EGFRvIII) is an attractive therapeutic target as it frequently expresses in glioma and many other types of cancers. Our current study aimed to investigate the specific and efficient antitumor effect of T cells modified with CAR containing inducible costimulator (ICOS) signaling domain. A second generation of EGFRvIII/CAR was generated and it contained the EGFRvIII single chain variable fragment, ICOS signaling domain and CD3ζ chain. Lentiviral EGFRvIII/CAR was prepared and human CD3+ T cells were infected by lentivirus encoding EGFRvIII/CAR. The expression of EGFRvIII/CAR on CD3+ T cells was confirmed by flow cytometry and Western blot. The functions of EGFRvIII/CAR+ T cells were evaluated using in vitro and in vivo methods including cytotoxicity assay, cytokine release assay and xenograft tumor mouse model. Chimeric EGFRvIIIscFv-ICOS-CD3ζ (EGFRvIII/CAR) was constructed and lentiviral EGFRvIII/CAR were made to titer of 106 TU/ml. The transduction efficiency of lentiviral EGFRvIII/CAR on T cells reached around 70% and expression of EGFRvIII/CAR protein was verified by immunoblotting as a band of about 57 kDa. Four hour 51Cr release assays demonstrated specific and efficient cytotoxicity of EGFRvIII/CAR+ T cells against EGFRvIII expressing U87 cells. A robust increase in the IFN-γ secretion was detected in the co-culture supernatant of the EGFRvIII/CAR+ T cells and the EGFRvIII expressing U87 cells. Intravenous and intratumor injection of EGFRvIII/CAR+ T cells inhibited the in vivo growth of the EGFRvIII expressing glioma cells. Our study demonstrates that the EGFRvIII/CAR-modified T cells can destroy glioma cells efficiently in an EGFRvIII specific manner and release IFN-γ in an antigen dependent manner. The specific recognition and effective killing activity of the EGFRvIII-directed T cells with ICOS signaling domain lays a foundation for us to employ such approach in future cancer treatment.
Letendre, Corinne; Auger, Jean-Philippe; Lemire, Paul; Galbas, Tristan; Gottschalk, Marcelo; Thibodeau, Jacques; Segura, Mariela
2018-01-01
Streptococcus suis is an important swine pathogen and emerging zoonotic agent. Encapsulated strains of S. suis modulate dendritic cell (DC) functions, leading to poorly activated CD4+ T cells. However, the antigen presentation ability of S. suis-stimulated DCs has not been investigated yet. In this work, we aimed to characterize the antigen presentation profiles of S. suis-stimulated DCs, both in vitro and in vivo. Upon direct activation in vitro, S. suis-stimulated murine bone marrow-derived DCs (bmDCs) preserved their antigen capture/processing capacities. However, they showed delayed kinetics of MHC-II expression compared to lipopolysaccharide-stimulated bmDCs. Meanwhile, splenic DCs from infected mice exhibited a compromised MHC-II expression, despite an appropriate expression of maturation markers. To identify potential interfering mechanisms, Class II Major Histocompatibility Complex Transactivator (CIITA) and membrane-associated RING-CH (MARCH)1/8 transcription were studied. S. suis-stimulated DCs maintained low levels of CIITA at early time points, both in vitro and in vivo, which could limit their ability to increase MHC-II synthesis. S. suis-stimulated DCs also displayed sustained/upregulated levels of MARCH1/8, thus possibly leading to MHC-II lysosomal degradation. The bacterial capsular polysaccharide played a partial role in this modulation. Finally, interleukin (IL)-12p70 production was inhibited in splenic DCs from infected mice, a profile compatible with DC indirect activation by pro-inflammatory compounds. Consequently, these cells induced lower levels of IL-2 and TNF-α in an antigen-specific CD4+ T cell presentation assay and blunted T cell CD25 expression. It remains unclear at this stage whether these phenotypical and transcriptional modulations observed in response to S. suis in in vivo infections are part of a bacterial immune evasion strategy or rather a feature common to systemic inflammatory response-inducing agents. However, it appears that the MHC-II-restricted antigen presentation and Th1-polarizing cytokine production capacities of DCs are impaired during S. suis infection. This study highlights the potential consequences of inflammation on the type and magnitude of the immune response elicited by a pathogen. PMID:29899744
Conserved region C functions to regulate PD-1 expression and subsequent CD8 T cell memory1
Bally, Alexander P. R.; Tang, Yan; Lee, Joshua T.; Barwick, Benjamin G.; Martinez, Ryan; Evavold, Brian D.; Boss, Jeremy M.
2016-01-01
Expression of programmed death 1 (PD-1) on CD8 T cells promotes T cell exhaustion during chronic antigen exposure. During acute infections, PD-1 is transiently expressed and has the potential to modulate CD8 T cell memory formation. Conserved Region C (CR-C), a promoter proximal cis-regulatory element that is critical to PD-1 expression in vitro, responds to NFATc1, FoxO1, and/or NF-κB signaling pathways. Here, a CR-C knockout mouse (CRC−) was established to determine its role on PD-1 expression and corresponding effects on T cell function in vivo. Deletion of CR-C decreased PD-1 expression on CD4 T cells and antigen-specific CD8 T cells during acute and chronic lymphocytic choriomeningitis virus (LCMV) challenges, but did not affect the ability to clear an infection. Following acute LCMV infection, memory CD8 T cells in the CRC− mouse were formed in greater numbers, were more functional, and were more effective at responding to a melanoma tumor than wild-type memory cells. These data implicate a critical role for CR-C in governing PD-1 expression, and a subsequent role in guiding CD8 T cell differentiation. The data suggest the possibility that titrating PD-1 expression during CD8 T cell activation could have important ramifications in vaccine development and clinical care. PMID:27895178
Lohmueller, Jason J.; Sato, Shuji; Popova, Lana; Chu, Isabel M.; Tucker, Meghan A.; Barberena, Roberto; Innocenti, Gregory M.; Cudic, Mare; Ham, James D.; Cheung, Wan Cheung; Polakiewicz, Roberto D.; Finn, Olivera J.
2016-01-01
MUC1 is a shared tumor antigen expressed on >80% of human cancers. We completed the first prophylactic cancer vaccine clinical trial based on a non-viral antigen, MUC1, in healthy individuals at-risk for colon cancer. This trial provided a unique source of potentially effective and safe immunotherapeutic drugs, fully-human antibodies affinity-matured in a healthy host to a tumor antigen. We purified, cloned, and characterized 13 IgGs specific for several tumor-associated MUC1 epitopes with a wide range of binding affinities. These antibodies bind hypoglycosylated MUC1 on human cancer cell lines and tumor tissues but show no reactivity against fully-glycosylated MUC1 on normal cells and tissues. We found that several antibodies activate complement-mediated cytotoxicity and that T cells carrying chimeric antigen receptors with the antibody variable regions kill MUC1+ target cells, express activation markers, and produce interferon gamma. Fully-human and tumor-specific, these antibodies are candidates for further testing and development as immunotherapeutic drugs. PMID:27545199
The Plasma Concentration of the B Cell Activating Factor Is Increased in Children With Acute Malaria
Nduati, Eunice; Gwela, Agnes; Karanja, Henry; Mugyenyi, Cleopatra; Langhorne, Jean; Marsh, Kevin
2011-01-01
Malaria-specific antibody responses in children often appear to be short-lived but the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the relationship between the B-cell activating factor (BAFF) and its receptors expressed on B cells with antibody responses during and after acute malaria in children. Our results demonstrate that BAFF plasma levels increased during acute malarial disease and reflected disease severity. The expression profiles for BAFF receptors on B cells agreed with rapid activation and differentiation of a proportion of B cells to plasma cells. However, BAFF receptor (BAFF-R) expression was reduced on all peripheral blood B cells during acute infection, but those children with the highest level of BAFF-R expression on B cells maintained schizont-specific immunoglobin G (IgG) over a period of 4 months, indicating that dysregulation of BAFF-R expression on B cells may contribute to short-lived antibody responses to malarial antigens in children. In summary, this study suggests a potential role for BAFF during malaria disease, both as a marker for disease severity and in shaping the differentiation pattern of antigen-specific B cells. PMID:21849293
Grange, Magali; Buferne, Michel; Verdeil, Grégory; Leserman, Lee; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie
2012-01-01
Immunotherapy based on adoptive transfer of tumor antigen-specific CD8(+) T cell (TC) is generally limited by poor in vivo expansion and tumor infiltration. In this study, we report that activated STAT5 transcription factors (STAT5CA) confer high efficiency on CD8(+) effector T cells (eTC) for host colonization after adoptive transfer. Engineered expression of STAT5CA in antigen-experienced TCs with poor replicative potential was also sufficient to convert them into long-lived antigen-responsive eTCs. In transplanted mastocytoma- or melanoma-bearing hosts, STAT5CA greatly enhanced the ability of eTCs to accumulate in tumors, become activated by tumor antigens, and to express the cytolytic factor granzyme B. Taken together, these properties contributed to an increase in tumor regression by STAT5CA-transduced, as compared with untransduced, TCs including when the latter control cells were combined with infusion of interleukin (IL)-2/anti-IL-2 complexes. In tumors arising in the autochthonous TiRP transgenic model of melanoma associated with systemic chronic inflammation, endogenous CD8(+) TCs were nonfunctional. In this setting, adoptive transfer of STAT5CA-transduced TCs produced superior antitumor effects compared with nontransduced TCs. Our findings imply that STAT5CA expression can render TCs resistant to the immunosuppressive environment of melanoma tumors, enhancing their ability to home to tumors and to maintain high granzyme B expression, as well as their capacity to stimulate granzyme B expression in endogenous TCs. ©2011 AACR.
CD4 and CD8 T-Cell Responses to Mycobacterial Antigens in African Children
Tena-Coki, Nontobeko G.; Scriba, Thomas J.; Peteni, Nomathemba; Eley, Brian; Wilkinson, Robert J.; Andersen, Peter; Hanekom, Willem A.; Kampmann, Beate
2010-01-01
Rationale: The current tuberculosis (TB) vaccine, bacille Calmette-Guérin (BCG), does not provide adequate protection against TB disease in children. Furthermore, more efficacious TB vaccines are needed for children with immunodeficiencies such as HIV infection, who are at highest risk of disease. Objectives: To characterize mycobacteria-specific T cells in children who might benefit from vaccination against TB, focusing on responses to antigens contained in novel TB vaccines. Methods: Whole blood was collected from three groups of BCG-vaccinated children: HIV-seronegative children receiving TB treatment (n = 30), HIV-infected children (n = 30), and HIV-unexposed healthy children (n = 30). Blood was stimulated with Ag85B and TB10.4, or purified protein derivative, and T-cell cytokine production by CD4 and CD8 was determined by flow cytometry. The memory phenotype of antigen-specific CD4 and CD8 T cells was also determined. Measurements and Main Results: Mycobacteria-specific CD4 and CD8 T-cell responses were detectable in all three groups of children. Children receiving TB treatment had significantly higher frequencies of antigen-specific CD4 T cells compared with HIV-infected children (P = 0.0176). No significant differences in magnitude, function, or phenotype of specific T cells were observed in HIV-infected children compared with healthy control subjects. CD4 T cells expressing IFN-γ, IL-2, or both expressed a CD45RA−CCR7−CD27+/− effector memory phenotype. Mycobacteria-specific CD8 T cells expressed mostly IFN-γ in all groups of children; these cells expressed CD45RA−CCR7−CD27+/− or CD45RA+CCR7−CD27+/− effector memory phenotypes. Conclusions: Mycobacteria-specific T-cell responses could be demonstrated in all groups of children, suggesting that the responses could be boosted by new TB vaccines currently in clinical trials. PMID:20224065
[Cellular immunophenotypes in 97 adults with acute leukemia].
Piedras, J; López-Karpovitch, X; Cárdenas, M R
1997-01-01
To analyze hematopoietic cell surface antigen reactivity in acute leukemia (AL) by flow cytometry and identify acute mixed-lineage leukemias (AMLL) employing the most widely accepted criteria. Ninety seven patients with de novo AL were studied. Cell surface antigens were investigated with monoclonal antibodies directed to: B lymphoid (CD10, CD19, CD20, CD21, CD22); T lymphoid (CD2, CD3, CD5, CD7); and myeloid (CD13, CD14, CD15, CD33, CD41) cell lineages. Maturation cell-associated antigens (CD34, HLA-DR and TdT) were also studied. Twelve patients unclassified by cytomorphology could be classified by immunophenotype. Using cytomorphologic, cytochemical and immunophenotypic data, 54 cases corresponded to acute lymphoblastic leukemia (ALL) and 43 were acute myeloblastic leukemia (AML). In All there were 63% B lineage, 15% T, 7% T/B, 6% undifferentiated and 9% mixed-lineage (coexpression of two or more myeloid-associated antigens). In AML, myeloid immunophenotype was observed in 86% undifferentiated in 2%, and mixed-lineage in 12% (coexpression of two or more lymphoid-associated antigens). In addition, 26% of ALL cases and 12% of AML cases expressed a single myeloid and lymphoid antigen respectively. The most common aberrant antigens in ALL and AML were CD13 and CD7 respectively. The highest frequency of CD34 antigen expression (90%) was detected in patients with AMLL. Flow cytometric immunophenotypic analysis allowed to: a) establish diagnosis in cytomorphologically unclassified cases; b) identify AMLL with a frequency similar to that reported in other series; and c) confirm the heterogeneity of AL.
Lipowska-Bhalla, Grazyna; Gilham, David E; Hawkins, Robert E; Rothwell, Dominic G
2013-12-01
The clinical potential of chimeric antigen receptors in adoptive cellular therapy is beginning to be realized with several recent clinical trials targeting CD19 showing promising results in advanced B cell malignancies. This increased efficacy corresponds with improved engineering of the chimeric receptors with the latest-generation receptors eliciting greater signaling and proliferation potential. However, the antigen-binding single-chain variable fragment (scFv) domain of the receptors is critical in determining the activity of the chimeric receptor-expressing T cells, as this determines specificity and affinity to the tumor antigen. In this study, we describe a mammalian T cell line screening protocol employing a 2A-based bicistronic retroviral vector to isolate functional scFvs. This approach involves expression of the scFv library in a chimeric antigen receptor, and is based on selection of clones capable of stimulating CD69 upregulation in a T cell line and has a number of advantages over previously described methods in that the use of a 2A cassette ensures the exclusion of nonexpressing scFvs and the screening using a chimeric receptor in a mammalian T cell line ensures selection in the optimum context for therapeutic use. Proof-of-principle experiments show that the protocol was capable of a 10(5)-fold enrichment of positive clones after three rounds of selection. Furthermore, an antigen-specific clone was successfully isolated from a partially enriched scFv library, confirming the strength of the protocol. This approach has the potential to identify novel scFvs of use in adoptive T cell therapy and, potentially, wider antibody-based applications.
2013-01-01
Background Adoptive transfer of chimeric antigen receptor (CAR)-modified T cells appears to be a promising immunotherapeutic strategy. CAR combines the specificity of antibody and cytotoxicity of cytotoxic T lymphocytes, enhancing T cells’ ability to specifically target antigens and to effectively kill cancer cells. Recent efforts have been made to integrate the costimulatory signals in the CAR to improve the antitumor efficacy. Epidermal growth factor receptor variant III (EGFRvIII) is an attractive therapeutic target as it frequently expresses in glioma and many other types of cancers. Our current study aimed to investigate the specific and efficient antitumor effect of T cells modified with CAR containing inducible costimulator (ICOS) signaling domain. Methods A second generation of EGFRvIII/CAR was generated and it contained the EGFRvIII single chain variable fragment, ICOS signaling domain and CD3ζ chain. Lentiviral EGFRvIII/CAR was prepared and human CD3+ T cells were infected by lentivirus encoding EGFRvIII/CAR. The expression of EGFRvIII/CAR on CD3+ T cells was confirmed by flow cytometry and Western blot. The functions of EGFRvIII/CAR+ T cells were evaluated using in vitro and in vivo methods including cytotoxicity assay, cytokine release assay and xenograft tumor mouse model. Results Chimeric EGFRvIIIscFv-ICOS-CD3ζ (EGFRvIII/CAR) was constructed and lentiviral EGFRvIII/CAR were made to titer of 106 TU/ml. The transduction efficiency of lentiviral EGFRvIII/CAR on T cells reached around 70% and expression of EGFRvIII/CAR protein was verified by immunoblotting as a band of about 57 kDa. Four hour 51Cr release assays demonstrated specific and efficient cytotoxicity of EGFRvIII/CAR+ T cells against EGFRvIII expressing U87 cells. A robust increase in the IFN-γ secretion was detected in the co-culture supernatant of the EGFRvIII/CAR+ T cells and the EGFRvIII expressing U87 cells. Intravenous and intratumor injection of EGFRvIII/CAR+ T cells inhibited the in vivo growth of the EGFRvIII expressing glioma cells. Conclusions Our study demonstrates that the EGFRvIII/CAR-modified T cells can destroy glioma cells efficiently in an EGFRvIII specific manner and release IFN-γ in an antigen dependent manner. The specific recognition and effective killing activity of the EGFRvIII-directed T cells with ICOS signaling domain lays a foundation for us to employ such approach in future cancer treatment. PMID:23656794
Prostate Stem Cell Antigen: A Prospective Therapeutic and Diagnostic Target
Raff, Adam B.; Gray, Andrew; Kast, W. Martin
2009-01-01
The development of novel clinical tools to combat cancer is an intense field of research and recent efforts have been directed at the identification of proteins that may provide diagnostic, prognostic and/or therapeutic applications due to their restricted expression. To date, a number of protein candidates have emerged as potential clinical tools in the treatment of prostate cancer. Discovered over ten year ago, prostate stem cell antigen (PSCA) is a cell surface antigen that belongs to the Ly-6/Thy-1 family of glycosylphosphatidylinositol-anchored proteins. PSCA is highly overexpressed in human prostate cancer, with limited expression in normal tissues, making it an ideal target for both diagnosis and therapy. Several studies have now clearly correlated the expression of PSCA with relevant clinical benchmarks, such as Gleason score and metastasis, while others have demonstrated the efficacy of PSCA targeting in treatment through various modalities. The purpose of this review is to present the current body of knowledge about PSCA and its potential role in the treatment of human prostate cancer. PMID:18838214
Sundberg, C.; Ljungström, M.; Lindmark, G.; Gerdin, B.; Rubin, K.
1993-01-01
The expression of platelet-derived growth factor- beta (PDGF-beta) receptors in the microvasculature of human healing wounds and colorectal adenocarcinoma was investigated. Frozen sections were subjected to double immunofluorescence staining using monoclonal antibodies (MAbs) specific for pericytes (MAb 225.28 recognizing the high-molecular weight-melanoma-associated antigen, expressed by activated pericytes during angiogenesis), endothelial cells (MAb PAL-E), laminin, as well as PDGF-beta receptors (MAb PDGFR-B2) and its ligand PDGF-B chain (MAb PDGF 007). Stained sections were analyzed by computer-aided imaging processing that allowed for a numerical quantification of the degree of colocalization of the investigated antigens. An apparent background colocalization, varying between 23 and 35%, between markers for cells not expected to co-localize was recorded. This background could be due to limitations of camera resolution, to out-of-focus fluorescence, and to interdigitations of the investigated structures. In all six tumor specimens, co-localization of PDGF-beta receptors and PAL-E was not different from the background co-localization, whereas that of PDGF-beta receptors and high-molecular weight-melanoma-associated antigen was significantly higher with mean values between 57 and 71%. Qualitatively, the same pattern was obtained in the two investigated healing wounds. PDGF-B chain did not co-localize with either PAL-E or high-molecular weight-melanoma-associated antigen, but PDGF-B chain-expressing cells were, however, frequently found juxtaposed to the microvasculature. The expression of PDGF-beta receptors on pericytes in activated microvessels and the presence of PDGF-B chain-expressing cells in close proximity to the microvasculature of healing wounds and colorectal adenocarcinoma is compatible with a role for PDGF in the physiology of the microvasculature in these conditions. Images Figure 1 p1381-a Figure 3 Figure 4 PMID:8238254
T-cell receptor revision: friend or foe?
Hale, J Scott; Fink, Pamela J
2010-04-01
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue.
Functional expression of a cattle MHC class II DR-like antigen on mouse L cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraser, D.C.; Craigmile, S.; Campbell, J.D.M.
1996-09-01
Cattle DRA and DRB genes, cloned by reverse-transcription polymerase chain reaction, were transfected into mouse L cells. The cattle DR-expressing L-cell transfectant generated was analyzed serologically, biochemically, and functionally. Sequence analysis of the transfected DRB gene clearly showed showed that it was DRB3 allele DRB3*0101, which corresponds to the 1D-IEF-determined allele DRBF3. 1D-IEF analysis of the tranfectant confirmed that the expressed DR product was DRBF3. Functional integrity of the transfected gene products was demonstrated by the ability of the transfectant cell line to present two antigens (the foot-and-mouth disease virus-derived peptide FMDV15, and ovalbumin) to antigen-specific CD4{sup +} T cellsmore » from both the original animal used to obtain the genes, and also from an unrelated DRBF3{sup +} heterozygous animal. Such transfectants will be invaluable tools, allowing us to dissect the precise contributions each locus product makes to the overall immune response in heterozygous animals, information essential for rational vaccine design. 45 refs., 5 figs., 1 tab.« less
An Immunological Fingerprint Differentiates Muscular Lymphatics from Arteries and Veins
Bridenbaugh, Eric A.; Wang, Wei; Srimushnam, Maya; Cromer, Walter E.; Zawieja, Scott D.; Schmidt, Susan E.; Jupiter, Daniel C.; Huang, Hung-Chung; Van Buren, Vincent
2013-01-01
Abstract The principal function of the lymphatic system is to transport lymph from the interstitium to the nodes and then from the nodes to the blood. In doing so lymphatics play important roles in fluid homeostasis, macromolecular/antigen transport and immune cell trafficking. To better understand the genes that contribute to their unique physiology, we compared the transcriptional profile of muscular lymphatics (prenodal mesenteric microlymphatics and large, postnodal thoracic duct) to axillary and mesenteric arteries and veins isolated from rats. Clustering of the differentially expressed genes demonstrated that the lymph versus blood vessel differences were more profound than between blood vessels, particularly the microvessels. Gene ontology functional category analysis indicated that microlymphatics were enriched in antigen processing/presentation, IgE receptor signaling, catabolic processes, translation and ribosome; while they were diminished in oxygen transport, regulation of cell proliferation, glycolysis and inhibition of adenylate cyclase activity by G-proteins. We evaluated the differentially expressed microarray genes/products by qPCR and/or immunofluorescence. Immunofluorescence documented that multiple MHC class II antigen presentation proteins were highly expressed by an antigen-presenting cell (APC) type found resident within the lymphatic wall. These APCs also expressed CD86, a co-stimulatory protein necessary for T-cell activation. We evaluated the distribution and phenotype of APCs within the pre and postnodal lymphatic network. This study documents a novel population of APCs resident within the walls of muscular, prenodal lymphatics that indicates novel roles in antigen sampling and immune responses. In conclusion, these prenodal lymphatics exhibit a unique profile that distinguishes them from blood vessels and highlights the role of the lymphatic system as an immunovascular system linking the parenchymal interstitium, lymph nodes and the blood. PMID:24044756
[Molecular mechanisms of thymocyte differentiation].
Kuklina, E M
2003-01-01
A review of the main molecular events occurring during differentiation of T-lymphocytes in the thymus: T-cell specialization of early intrathymic precursors, formation and expression of antigen receptor, formation of antigen recognizing cell repertoire, and alpha beta/gamma beta- and CD4/CD8-commitment. The mechanisms of glucocorticoid-induced apoptosis of thymocytes and its blockade during antigen-dependent activation are considered. A special attention is paid to the analysis of intracellular signals underlying the clonal selection of thymocytes.
Gerer, Kerstin F; Hoyer, Stefanie; Dörrie, Jan; Schaft, Niels
2017-01-01
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 10 6 to approximately 10 8 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.
Haas, Michael J.; Dragan, Yvonne P.; Hikita, Hiroshi; Shimel, Randee; Takimoto, Koichi; Heath, Susan; Vaughan, Jennifer; Pitot, Henry C.
1999-01-01
Transgenic Sprague-Dawley rats expressing either human transforming growth factor-α (TGFα) or simian virus 40 large and small T antigen (TAg), each under the control of the phosphoenolpyruvate carboxykinase (PEPCK) promoter, were developed as an approach to the study of the promotion of hepatocarcinogenesis in the presence of a transgene regulatable by diet and/or hormones. Five lines of PEPCK-TGFα transgenic rats were established, each genetic line containing from one to several copies of the transgene per haploid genome. Two PEPCK-TAg transgenic founder rats were obtained, each with multiple copies of the transgene. Expression of the transgene was undetectable in the TGFα transgenic rats and could not be induced when the animals were placed on a high-protein, low-carbohydrate diet. The transgene was found to be highly methylated in all of these lines. No pathological alterations in the liver and intestine were observed at any time (up to 2 years) during the lives of these rats. One line of transgenic rats expressing the PEPCK-TAg transgene developed pancreatic islet cell hyperplasias and carcinomas, with few normal islets evident in the pancreas. This transgene is integrated as a hypomethylated tandem array of 10 to 12 copies on chromosome 8q11. Expression of large T antigen is highest in pancreatic neoplasms, but is also detectable in the normal brain, kidney, and liver. Mortality is most rapid in males, starting at 5 months of age and reaching 100% by 8 months. Morphologically, islet cell differentiation in the tumors ranges from poor to well differentiated, with regions of necrosis and fibrosis. Spontaneous metastasis of TAg-positive tumor cells to regional lymph nodes was observed. These studies indicate the importance of DNA methylation in the repression of specific transgenes in the rat. However, the expression of the PEPCK-TAg induces neoplastic transformation in islet cells, probably late in neuroendocrine cell differentiation. T antigen expression during neoplastic development may result in a pervasive change in the islet cell growth properties with selection of a transformed phenotype as a possible requirement for cell viability. PMID:10393850
Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells
Kebriaei, Partow; Singh, Harjeet; Huls, M. Helen; Figliola, Matthew J.; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J.; Kumaresan, Pappanaicken R.; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N.; Moyes, Judy S.; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J.; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A.; Lee, Dean A.; Hackett, Perry B.; Champlin, Richard E.; Cooper, Laurence J.N.
2016-01-01
BACKGROUND. T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS. SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details. PMID:27482888
van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T
2000-10-16
Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.
Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells.
Kebriaei, Partow; Singh, Harjeet; Huls, M Helen; Figliola, Matthew J; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J; Kumaresan, Pappanaicken R; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir; Orozco, Aaron; Liu, Tingting; McCarty, Jessica; Jackson, Rineka N; Moyes, Judy S; Rondon, Gabriela; Qazilbash, Muzaffar; Ciurea, Stefan; Alousi, Amin; Nieto, Yago; Rezvani, Katy; Marin, David; Popat, Uday; Hosing, Chitra; Shpall, Elizabeth J; Kantarjian, Hagop; Keating, Michael; Wierda, William; Do, Kim Anh; Largaespada, David A; Lee, Dean A; Hackett, Perry B; Champlin, Richard E; Cooper, Laurence J N
2016-09-01
T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.
Inhibition of CD1 antigen presentation by human cytomegalovirus.
Raftery, Martin J; Hitzler, Manuel; Winau, Florian; Giese, Thomas; Plachter, Bodo; Kaufmann, Stefan H E; Schönrich, Günther
2008-05-01
The betaherpesvirus human cytomegalovirus (HCMV) encodes several molecules that block antigen presentation by the major histocompatibility complex (MHC) proteins. Humans also possess one other family of antigen-presenting molecules, the CD1 family; however, the effect of HCMV on CD1 expression is unknown. The majority of CD1 molecules are classified on the basis of homology as group 1 CD1 and are present almost exclusively on professional antigen-presenting cells such as dendritic cells, which are a major target for HCMV infection and latency. We have determined that HCMV encodes multiple blocking strategies targeting group 1 CD1 molecules. CD1 transcription is strongly inhibited by the HCMV interleukin-10 homologue cmvIL-10. HCMV also blocks CD1 antigen presentation posttranscriptionally by the inhibition of CD1 localization to the cell surface. This function is not performed by a known HCMV MHC class I-blocking molecule and is substantially stronger than the blockage induced by herpes simplex virus type 1. Antigen presentation by CD1 is important for the development of the antiviral immune response and the generation of mature antigen-presenting cells. HCMV present in antigen-presenting cells thus blunts the immune response by the blockage of CD1 molecules.
Cao, Yonghao; Amezquita, Robert A.; Kleinstein, Steven H.; Stathopoulos, Panos; Nowak, Richard J.; O’Connor, Kevin C.
2016-01-01
Myasthenia gravis (MG) is a prototypical autoimmune disease that is among the few for which the target antigen and the pathogenic autoantibodies are clearly defined. The pathology of the disease is affected by autoantibodies directed toward the acetylcholine receptor (AChR). Mature, antigen-experienced B cells rely on the action of helper T cells to produce these pathogenic antibodies. The phenotype of the MG antigen-reactive T cell compartment is not well defined, thus we sought to determine whether such cells exhibit both a pro-inflammatory and pathogenic phenotype. A novel T cell library assay that affords multi-parameter interrogation of rare antigen-reactive CD4+ T cells was applied. Proliferation and cytokine production in response to both AChR and control antigens were measured from 3,120 T cell libraries derived from eleven MG subjects and paired healthy controls. The frequency of CCR6+ memory T cells from MG subjects proliferating in response to AChR-derived peptides was significantly higher than that of healthy controls. Production of both IFN-γ and IL-17, in response to AChR was also restricted to the CCR6+ memory T cell compartment in the MG cohort indicating a pro-inflammatory phenotype. These T cells also included an elevated expression of GM-CSF and absence of IL-10 expression, indicating a pro-inflammatory and pathogenic phenotype. This component of the autoimmune response in MG is of particular importance when considering the durability of MG treatment strategies that eliminate B cells, as the autoreactive T cells could renew autoimmunity in the reconstituted B cell compartment with ensuing clinical manifestations. PMID:26826242
Pim-1: A Molecular Target to Modulate Cellular Resistance to Therapy in Prostate Cancer
2005-10-01
Reiter RE, Lilly MB: Gene expression profiling in R- flurbiprofen -treated prostate cancer: Identification of prostate stem cell antigen as a... flurbiprofen -regulated gene. (submitted, 2006). 51. Holder SL, Zemskova M, Bremner R, Neidigh J, Lilly MB: Identification of specific, cell-permeable...profiling in R- flurbiprofen - treated prostate cancer: Identification of prostate stem cell antigen as a flurbiprofen - regulated gene. (poster
CD30 antigen in embryonal carcinoma and embryogenesis and release of the soluble molecule.
Latza, U.; Foss, H. D.; Dürkop, H.; Eitelbach, F.; Dieckmann, K. P.; Loy, V.; Unger, M.; Pizzolo, G.; Stein, H.
1995-01-01
The expression, serological detection, and possible functional role of the CD30 antigen in Hodgkin's disease and anaplastic large cell lymphoma is well documented. In embryonal carcinoma (EC), the expression of this cytokine receptor has been demonstrated only by immunohistology. Because the CD30 monoclonal antibody Ki-1 was found to cross-react with an unrelated molecule, we examined by in situ hybridization testicular germ cell neoplasms for the presence of CD30-specific transcripts. CD30 mRNA was detectable in the tumor cells of 9 of 9 cases of EC or mixed germ cell tumors with an EC component but in no other nonlymphoid tumors. Thus, the CD30 transcript expression pattern proved to be identical to the immunostaining pattern seen with the CD30-specific monoclonal antibody Ber-H2. By Northern blot analysis, CD30 transcripts could be demonstrated in the EC cell line Tera-2. Employing a highly sensitive second generation sandwich enzyme-linked immunosorbent assay, we could detect the soluble CD30 molecule in 8 of 8 sera from patients with a diagnosis of EC but not in 8 of 10 sera from patients with other testicular germ cell tumors. In fetal tissue, no CD30-expressing germ cells or epithelial cells could be observed. Thus, the cellularly expressed CD30 marker for testicular neoplasms of EC type. Moreover, the serum levels of soluble CD30 antigen seem to be a promising parameter for monitoring patients with EC. Images Figure 1 Figure 2 PMID:7856755
Hartley, Ashley N.; Tarleton, Rick L.
2015-01-01
Canines suffer from and serve as strong translational animals models for many immunological disorders and infectious diseases. Routine vaccination has been a mainstay of protecting dogs through the stimulation of robust antibody responses and expansion of memory T cell populations. Commercially available reagents and described techniques are limited for identifying and characterizing canine T cell subsets and evaluating T cell-specific effector function. To define reagents for delineating naïve versus activated T cells and identify antigen-specific T cells, we tested anti-human and anti-bovine T-cell specific cell surface marker reagents for cross-reactivity with canine peripheral blood mononuclear cells (PBMCs. Both CD4+ and CD8+ T cells from healthy canine donors showed reactivity to CCL19-Ig, a CCR7 ligand, and coexpression with CD62L. An in vitro stimulation with concanavalin A validated downregulation of CCR7 and CD62L expression on stimulated healthy control PBMCs, consistent with an activated T cell phenotype. Anti-IFNγ antibodies identified antigen-specific IFNγ-producing CD4+ and CD8+ T cells upon in vitro vaccine antigen PBMC stimulation. PBMC isolation within 24 hours of sample collection allowed for efficient cell recovery and accurate T cell effector function characterization. These data provide a reagent and techniques platform via flow cytometry for identifying canine T cell subsets and characterizing circulating antigen-specific canine T cells for potential use in diagnostic and field settings. PMID:25758065
Endothelial adhesion molecules and leukocyte integrins in preeclamptic patients.
Haller, H; Ziegler, E M; Homuth, V; Drab, M; Eichhorn, J; Nagy, Z; Busjahn, A; Vetter, K; Luft, F C
1997-01-01
Endothelial cell activation is important in the pathogenesis of preeclampsia; however, the nature of the activation is unknown. We investigated 22 patients with preeclampsia. 29 normotensive pregnancies, and 18 nonpregnant women to test the hypothesis that serum from preeclamptic patients induces expression of intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) and stimulates intracellular free calcium concentrations [Ca2+]i in cultured endothelial cells. We then asked whether the corresponding integrin adhesive counter receptors lymphocyte function-associated antigen-1 (CD11a/CD18), macrophage-1 antigen (CD11b/CD18), p150,95 (CD11c/CD18), and very late activation antigen-4 (CD49/CD29) are increased in patients with preeclampsia. In the pregnant women, the measurements were conducted both before and after delivery. Integrin expression was measured by fluorescent antibody cell sorting analysis using monoclonal antibodies. ICAM-1 and VCAM-1 were analyzed on endothelial cells by enzyme-linked immunosorbent assay. [Ca2+]i was measured with fura 2. Serum from preeclamptic patients increased endothelial cell ICAM-1 expression but not VCAM-1 expression. Preeclamptic patients' serum also increased [Ca2+]i in endothelial cells compared with serum from normal nonpregnant or normal pregnant women. Endothelial cell [Ca2+]i concentrations were correlated with the ICAM-1 expression in preeclamptic patients (r = .80, P < .001) before but not after delivery. Expression of the integrin counter receptors on leukocytes was similarly increased in preclampsia and normal pregnancy compared with the nonpregnant state. The expression decreased significantly after delivery in both groups. Our results demonstrate that serum from preeclamptic women induces increased ICAM-1 surface expression on endothelial cells, while the expression of the integrin counterreceptors was not different. The effect on endothelial cells may be related to an increase in [Ca2+]i. The effect on cultured endothelial cells and the rapid decrease after delivery suggests the presence of a circulating serum factor which increases endothelial cell [Ca2+]i and enhances adhesion molecule expression.
HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells
Gornalusse, Germán G.; Hirata, Roli K.; Funk, Sarah; Riolobos, Laura; Lopes, Vanda S.; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G.; Hanafi, Laïla-Aïcha; Clegg, Dennis O.; Turtle, Cameron; Russell, David W.
2017-01-01
Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this ‘missing self’ response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies, and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression. PMID:28504668
HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells.
Gornalusse, Germán G; Hirata, Roli K; Funk, Sarah E; Riolobos, Laura; Lopes, Vanda S; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G; Hanafi, Laïla-Aïcha; Clegg, Dennis O; Turtle, Cameron; Russell, David W
2017-08-01
Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this 'missing-self' response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8 + T cells, do not bind anti-HLA antibodies and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.
Ramakrishna, V; Eisenthal, A; Skornick, Y; Shinitzky, M
1993-05-01
The B16-BL6 melanoma, like most spontaneously arising tumors, is poorly immunogenic and expresses low levels of major histocompatibility complex (MHC) antigens. Treatment of cells of this tumor in vitro by hydrostatic pressure in the presence of adenosine 2',3'-dialdehyde (oxAdo), a membrane-impermeant crosslinker, caused elevated projection of MHC and a specific tumor antigen as demonstrated by flow-cytometric analysis. Maximum projection of both the MHC and the tumor antigens could be reached by application of 1200 atm for 15 min in the presence of 20 mM oxAdo. It is not yet clear whether this passive increase in availability of antigens on the cell surface originated from a dormant pool of antigens in the plasma membrane or from pressure-induced fusion of antigen-rich intracellular organelles (e.g. the endoplasmic reticulum). The immunogenic properties of the antigen-enriched B16-BL6 cells are described in the following paper.
T LYMPHOCYTES TARGETING NATIVE RECEPTORS
Rooney, Cliona M; Leen, Ann M; Vera, Juan F; Heslop, Helen E
2013-01-01
Summary The adoptive transfer of T cells specific for native tumor antigens (TAs) is an increasingly popular cancer treatment option because of the ability of these cells to discriminate between normal and tumor tissues and corresponding lack of short or long-term toxicities. Infusions of antigen-specific CD4+ and CD8+ T cells targeting viral antigens derived from Epstein Barr virus (EBV) induce sustained complete tumor remissions in patients with highly immunogenic tumor’s such as post-transplant lymphoproliferative disease, although resistance occurred when the infused T-cell population had restricted antigen specificity. T cells specific for EBV antigens have also produced complete remissions of EBV-positive nasopharyngeal carcinomas and lymphomas developing in immunocompetent individuals, even though in these patients tumor survival is dependent on their ability to evade T-cell immunity. Adapting this strategy to non-viral tumors is more challenging, as the target antigens expressed are less immunogenic and the tumors lack the potent danger signals that are characteristic of viruses. The goals of current studies are to define conditions that promote expansion of antigen-specific T cells ex vivo and to ensure their in vivo persistence and survival by combining with maneuvers such as lymphodepletion, checkpoint inhibition, cytokine infusions, or genetic manipulations. More pragmatic goals are to streamline manufacturing to facilitate the transition of these therapies to late phase trials and to evaluate closely histocompatibility antigen (HLA)-matched banked antigen-specific T-cells so that T-cell therapies can be made more broadly available. PMID:24329788
Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease.
Ko, Hyun-Ja; Chung, Jie-Yu; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Toh, Ban-Hock; Alderuccio, Frank
2011-05-01
Haematopoietic stem cell (HSC) transfer coupled with gene therapy is a powerful approach to treating fatal diseases such as X-linked severe combined immunodeficiency. This ability to isolate and genetically manipulate HSCs also offers a strategy for inducing immune tolerance through ectopic expression of autoantigens. We have previously shown that retroviral transduction of bone marrow (BM) with vectors encoding the autoantigen, myelin oligodendrocyte glycoprotein (MOG), can prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, ubiquitous cellular expression of autoantigen driven by retroviral promoters may not be the best approach for clinical translation and a targeted expression approach may be more acceptable. As BM-derived dendritic cells (DCs) play a major role in tolerance induction, we asked whether targeted expression of MOG, a target autoantigen in EAE, to DCs can promote tolerance induction and influence the development of EAE. Self-inactivating retroviral vectors incorporating the mouse CD11c promoter were generated and used to transduce mouse BM cells. Transplantation of gene-modified cells into irradiated recipients resulted in the generation of chimeric mice with transgene expression limited to DCs. Notably, chimeric mice transplanted with MOG-expressing BM cells manifest a significant delay in the development of EAE suggesting that targeted antigen expression to tolerogenic cell types may be a feasible approach to inducing antigen-specific tolerance.
Brown, W C; Davis, W C; Dobbelaere, D A; Rice-Ficht, A C
1994-01-01
The well-established importance of helper T (Th)-cell subsets in immunity and immunoregulation of many experimental helminth infections prompted a detailed study of the cellular immune response against Fasciola hepatica in the natural bovine host. T-cell lines established from two cattle infected with F. hepatica were characterized for the expression of T-cell surface markers and proliferative responses against F. hepatica adult worm antigen. Parasite-specific T-cell lines contained a mixture of CD4+, CD8+, and gamma/delta T-cell-receptor-bearing T cells. However, cell lines containing either fewer than 10% CD8+ T cells or depleted of gamma/delta T cells proliferated vigorously against F. hepatica antigen, indicating that these T-cell subsets are not required for proliferative responses in vitro. Seventeen F. hepatica-specific CD4+ Th-cell clones were examined for cytokine expression following concanavalin A stimulation. Biological assays to measure interleukin-2 (IL-2) or IL-4, gamma interferon (IFN-gamma), and tumor necrosis factor and Northern (RNA) blot analysis to verify the expression of IL-2, IL-4, and IFN-gamma revealed that the Th-cell clones expressed a spectrum of cytokine profiles. Several Th-cell clones were identified as Th2 cells by the strong expression of IL-4 but little or no IL-2 or IFN-gamma mRNA. The majority of Th-cell clones were classified as Th0 cells by the expression of either all three cytokines or combinations of IL-2 and IL-4 or IL-4 and IFN-gamma. No Th1-cell clones were obtained. All of the Th-cell clones expressed a typical memory cell surface phenotype, characterized as CD45Rlow, and all expressed the lymph node homing receptor (L selectin). These results are the first to describe cytokine responses of F. hepatica-specific T cells obtained from infected cattle and extend our previous analysis of Th0 and Th1 cells from cattle immune to Babesia bovis (W. C. Brown, V. M. Woods, D. A. E. Dobbelaere, and K. S. Logan, Infect. Immun. 61:3273-3281, 1993) to include F. hepatica-specific Th2 cells. Images PMID:7509319
Sasaki, Takanori; Kanaseki, Takayuki; Shionoya, Yosuke; Tokita, Serina; Miyamoto, Sho; Saka, Eri; Kochin, Vitaly; Takasawa, Akira; Hirohashi, Yoshihiko; Tamura, Yasuaki; Miyazaki, Akihiro; Torigoe, Toshihiko; Hiratsuka, Hiroyoshi; Sato, Noriyuki
2016-04-01
Hypoxia and glucose deprivation are often observed in the microenvironment surrounding solid tumors in vivo. However, how they interfere with MHC class I antigen processing and CD8(+) T-cell responses remains unclear. In this study, we analyzed the production of antigenic peptides presented by classical MHC class I in mice, and showed that it is quantitatively decreased in the cells exposed to either hypoxia or glucose deprivation. In addition, we unexpectedly found increased surface expression of HLA-E in human and Qa-1 in mouse tumor cells exposed to combined oxygen and glucose deprivation. The induced Qa-1 on the stressed tumor model interacted with an inhibitory NKG2/CD94 receptor on activated CD8(+) T cells and attenuated their specific response to the antigen. Our results thus suggest that microenvironmental stresses modulate not only classical but also nonclassical MHC class I presentation, and confer the stressed cells the capability to escape from the CD8(+) T-cell recognition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D.; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C.
2015-01-01
Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity towards B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs (ITAM)-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared to standard first and second generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors. PMID:25941351
Pérez-Antón, Elena; Egui, Adriana; Thomas, M Carmen; Puerta, Concepción J; González, John Mario; Cuéllar, Adriana; Segovia, Manuel; López, Manuel Carlos
2018-05-11
Chagas disease is caused by Trypanosoma cruzi. The persistence of the parasite is associated with the disease chronicity and the impairment of the cellular immune response. It has been reported that the CD4+CD8+ T cell population expands in chronic Chagas disease patients. Few studies have focused on this subset of cells, and very little is known about the impact of antiparasitic treatment on this population. Thirty-eight chronic Chagas disease patients (20 asymptomatic and 18 symptomatic) and twelve healthy controls were enrolled in this study. Peripheral blood mononuclear cells were stimulated with soluble T. cruzi antigens to analyze the production of cytokines and cytotoxic molecules by CD4+CD8+ T cells before and after benznidazole treatment. Additionally, expression and co-expression of five inhibitory receptors in these patients after treatment were studied using a multiparameter flow cytometry technique. The frequency of CD4+CD8+ T cells was higher in chronic Chagas disease patients compared with healthy donors. Furthermore, a higher ratio of CD4+CD8low/CD4+CD8high subpopulations was observed in chronic Chagas disease patients than in healthy donors. Additionally, CD4+CD8+ T cells from these patients expressed and co-expressed higher levels of inhibitory receptors in direct proportion to the severity of the pathology. Benznidazole treatment reduced the frequency of CD4+CD8+ T cells and decreased the ratio of CD4+CD8low/CD4+CD8high subpopulations. The co-expression level of the inhibitory receptor was reduced after treatment simultaneously with the enhancement of the multifunctional capacity of CD4+CD8+ T cells. After treatment, an increase in the frequency of T. cruzi antigen-specific CD4+CD8+ T cells expressing IL-2 and TNF-α was also observed. CD4+CD8+ T cells could play an important role in the control of T. cruzi infection since they were able to produce effector molecules for parasite control. Benznidazole treatment partially reversed the exhaustion process caused by T. cruzi infection in these cells with an improvement in the functional response of the T. cruzi antigen-specific CD4+CD8+ T cells.
Pérez-Antón, Elena; Egui, Adriana; Thomas, M. Carmen; Puerta, Concepción J.; González, John Mario; Cuéllar, Adriana; Segovia, Manuel
2018-01-01
Background Chagas disease is caused by Trypanosoma cruzi. The persistence of the parasite is associated with the disease chronicity and the impairment of the cellular immune response. It has been reported that the CD4+CD8+ T cell population expands in chronic Chagas disease patients. Few studies have focused on this subset of cells, and very little is known about the impact of antiparasitic treatment on this population. Methodology Thirty-eight chronic Chagas disease patients (20 asymptomatic and 18 symptomatic) and twelve healthy controls were enrolled in this study. Peripheral blood mononuclear cells were stimulated with soluble T. cruzi antigens to analyze the production of cytokines and cytotoxic molecules by CD4+CD8+ T cells before and after benznidazole treatment. Additionally, expression and co-expression of five inhibitory receptors in these patients after treatment were studied using a multiparameter flow cytometry technique. Principal findings The frequency of CD4+CD8+ T cells was higher in chronic Chagas disease patients compared with healthy donors. Furthermore, a higher ratio of CD4+CD8low/CD4+CD8high subpopulations was observed in chronic Chagas disease patients than in healthy donors. Additionally, CD4+CD8+ T cells from these patients expressed and co-expressed higher levels of inhibitory receptors in direct proportion to the severity of the pathology. Benznidazole treatment reduced the frequency of CD4+CD8+ T cells and decreased the ratio of CD4+CD8low/CD4+CD8high subpopulations. The co-expression level of the inhibitory receptor was reduced after treatment simultaneously with the enhancement of the multifunctional capacity of CD4+CD8+ T cells. After treatment, an increase in the frequency of T. cruzi antigen-specific CD4+CD8+ T cells expressing IL-2 and TNF-α was also observed. Conclusions CD4+CD8+ T cells could play an important role in the control of T. cruzi infection since they were able to produce effector molecules for parasite control. Benznidazole treatment partially reversed the exhaustion process caused by T. cruzi infection in these cells with an improvement in the functional response of the T. cruzi antigen-specific CD4+CD8+ T cells. PMID:29750791
Proteomics show antigen presentation processes in human immune cells after AS03-H5N1 vaccination.
Galassie, Allison C; Goll, Johannes B; Samir, Parimal; Jensen, Travis L; Hoek, Kristen L; Howard, Leigh M; Allos, Tara M; Niu, Xinnan; Gordy, Laura E; Creech, C Buddy; Hill, Heather; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J
2017-06-01
Adjuvants enhance immunity elicited by vaccines through mechanisms that are poorly understood. Using a systems biology approach, we investigated temporal protein expression changes in five primary human immune cell populations: neutrophils, monocytes, natural killer cells, T cells, and B cells after administration of either an Adjuvant System 03 adjuvanted or unadjuvanted split-virus H5N1 influenza vaccine. Monocytes demonstrated the strongest differential signal between vaccine groups. On day 3 post-vaccination, several antigen presentation-related pathways, including MHC class I-mediated antigen processing and presentation, were enriched in monocytes and neutrophils and expression of HLA class I proteins was increased in the Adjuvant System 03 group. We identified several protein families whose proteomic responses predicted seroprotective antibody responses (>1:40 hemagglutination inhibition titer), including inflammation and oxidative stress proteins at day 1 as well as immunoproteasome subunit (PSME1 and PSME2) and HLA class I proteins at day 3 in monocytes. While comparison between temporal proteomic and transcriptomic results showed little overlap overall, enrichment of the MHC class I antigen processing and presentation pathway in monocytes and neutrophils was confirmed by both approaches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The glycosphingolipid P₁ is an ovarian cancer-associated carbohydrate antigen involved in migration.
Jacob, F; Anugraham, M; Pochechueva, T; Tse, B W C; Alam, S; Guertler, R; Bovin, N V; Fedier, A; Hacker, N F; Huflejt, M E; Packer, N; Heinzelmann-Schwarz, V A
2014-10-14
The level of plasma-derived naturally circulating anti-glycan antibodies (AGA) to P1 trisaccharide has previously been shown to significantly discriminate between ovarian cancer patients and healthy women. Here we aim to identify the Ig class that causes this discrimination, to identify on cancer cells the corresponding P1 antigen recognised by circulating anti-P1 antibodies and to shed light into the possible function of this glycosphingolipid. An independent Australian cohort was assessed for the presence of anti-P1 IgG and IgM class antibodies using suspension array. Monoclonal and human derived anti-glycan antibodies were verified using three independent glycan-based immunoassays and flow cytometry-based inhibition assay. The P1 antigen was detected by LC-MS/MS and flow cytometry. FACS-sorted cell lines were studied on the cellular migration by colorimetric assay and real-time measurement using xCELLigence system. Here we show in a second independent cohort (n=155) that the discrimination of cancer patients is mediated by the IgM class of anti-P1 antibodies (P=0.0002). The presence of corresponding antigen P1 and structurally related epitopes in fresh tissue specimens and cultured cancer cells is demonstrated. We further link the antibody and antigen (P1) by showing that human naturally circulating and affinity-purified anti-P1 IgM isolated from patients ascites can bind to naturally expressed P1 on the cell surface of ovarian cancer cells. Cell-sorted IGROV1 was used to obtain two study subpopulations (P1-high, 66.1%; and P1-low, 33.3%) and observed that cells expressing high P1-levels migrate significantly faster than those with low P1-levels. This is the first report showing that P1 antigen, known to be expressed on erythrocytes only, is also present on ovarian cancer cells. This suggests that P1 is a novel tumour-associated carbohydrate antigen recognised by the immune system in patients and may have a role in cell migration. The clinical value of our data may be both diagnostic and prognostic; patients with low anti-P1 IgM antibodies present with a more aggressive phenotype and earlier relapse.
NguyenHoang, SonTung; Liu, Yidong; Xu, Le; Zhou, Lin; Chang, Yuan; Fu, Qiang; Liu, Zheng; Lin, Zongming; Xu, Jiejie
2017-10-03
Truncated O-glycans, including Tn-antigen, sTn-antigen, T-antigen, sT-antigen, are incomplete glycosylated structures and their expression occur frequently in tumor tissue. The study aims to evaluate the abundance of each truncated O-glycans and its clinical significance in postoperative patients with localized clear-cell renal cell carcinoma (ccRCC). We used immunohistochemical testing to analyze the expression of truncated O-glycans in tumor specimens from 401 patients with localized ccRCC. Truncated-O-glycan score was built by integrating the expression level of Tn-, sTn- and sT-antigen. Kaplan-Meier survival and Cox regression analysis were done to compare clinical outcomes in subgroups. Receiver operating characteristic (ROC) was applied to assess the impact of prognostic factors on overall survival (OS) and recurrence-free survival (RFS). The results identified Tn-, sTn-, sT-antigen as independent prognosticators. The OS and RFS were shortened among the 198 (49.4%) patients with high Truncated-O-glycan score than among the 203 (50.6%) patients with low score (hazard ratio for OS, 7.060; 95% confidence interval [CI]: 2.765 to 18.027; p <0.001; for RFS, 4.612; 95% CI: 2.141 to 9.931; p <0.001). There is no difference between low-risk patients and high-risk patients in low score group ( p = 0.987). High-risk patients with low score showed a better prognosis than low-risk patient with high score ( p = 0.029). The Truncated-O-glycan score showed better prognostic value for OS (AUC: 0.739, p = 0.003) and RFS (AUC: 0.719, p = 0.003) than TNM stage. In summary, the high Truncated-O-glycan score could predict adverse clinical outcome in localized ccRCC patients after surgery.
Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla
McCaughtry, Tom M.; Baldwin, Troy A.; Wilken, Matthew S.; Hogquist, Kristin A.
2008-01-01
The thymic medulla is generally held to be a specialized environment for negative selection. However, many self-reactive thymocytes first encounter ubiquitous self-antigens in the cortex. Cortical epithelial cells are vital for positive selection, but whether such cells can also promote negative selection is controversial. We used the HYcd4 model, where T cell receptor for antigen (TCR) expression is appropriately timed and a ubiquitous self-antigen drives clonal deletion in male mice. We demonstrated unambiguously that this deletion event occurs in the thymic cortex. However, the kinetics in vivo indicated that apoptosis was activated asynchronously relative to TCR activation. We found that radioresistant antigen-presenting cells and, specifically, cortical epithelial cells do not efficiently induce apoptosis, although they do cause TCR activation. Rather, thymocytes undergoing clonal deletion were preferentially associated with rare CD11c+ cortical dendritic cells, and elimination of such cells impaired deletion. PMID:18936237
The search for new antigenic targets in myasthenia gravis.
Cossins, Judith; Belaya, Katsiaryna; Zoltowska, Katarzyna; Koneczny, Inga; Maxwell, Susan; Jacobson, Leslie; Leite, Maria Isabel; Waters, Patrick; Vincent, Angela; Beeson, David
2012-12-01
Around 80% of myasthenia gravis patients have antibodies against the acetylcholine receptor, and 0-60% of the remaining patients have antibodies against the muscle-specific tyrosine kinase, MuSK. Another recently identified antigen is low-density lipoprotein receptor-related protein 4 (Lrp4). To improve the existing assays and widen the search for new antigenic targets, we have employed cell-based assays in which candidate target proteins are expressed on the cell surface of transfected cells and probed with patient sera. These assays, combined with use of myotube cultures to explore the effects of the antibodies, enable us to begin to identify new antigenic targets and test antibody pathogenicity in vitro. © 2012 New York Academy of Sciences.
Sharma, Sharad K.; Casey, Janet R.
2012-01-01
A low level of serum antibody to antigens expressed by Streptococcus pneumoniae has been proposed to explain the susceptibility of children to recurrent episodes of acute otitis media (hereafter, “otitis-prone children”). By use of enzyme-linked immunospot assays, the percentages of memory B cells to pneumococcal protein antigens PhtD, LytB, PcpA, PhtE, and Ply were compared between otitis-prone and non–otitis-prone children at the time of acute otitis media or nasopharyngeal colonization with S. pneumoniae. We found significantly lower percentages of memory B cells to 3 pneumococcal protein antigens (PhtD, PhtE, and Ply) and reduced antigen-specific immunoglobulin G concentrations in otitis-prone children, compared with non–otitis-prone children. PMID:22383675
Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B.; Lattemann, Claus T.
2003-01-01
To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp6074-86), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp6074-86 was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp6074-86-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-γ secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains. PMID:12654812
Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B; Lattemann, Claus T
2003-04-01
To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp60(74-86)), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp60(74-86) was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp60(74-86)-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-gamma secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains.
Enhancing the Breadth and Efficacy of Therapeutic Vaccines for Breast Cancer
2015-10-01
including antigens preferentially expressed by breast cancer stem cells. We will identify both MHC-I- and MHC-II- restricted antigens driving both CD8...even two of them were exclusively targeted by T cells in chronic lymphocytic leukemia ( CLL ) patients (3). This analysis demonstrated both that...lymphocytic leukemia ( CLL ) 7 positive CLLs (23%) 3 Table 1. Immunogenic peptides that have been eluted from the cell surface of breast carcinoma cells
Legastelois, Isabelle; Buffin, Sophie; Peubez, Isabelle; Mignon, Charlotte; Sodoyer, Régis; Werle, Bettina
2017-01-01
ABSTRACT The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids. PMID:27905833
Lindh, Ingrid; Bråve, Andreas; Hallengärd, David; Hadad, Ronza; Kalbina, Irina; Strid, Åke; Andersson, Sören
2014-04-25
During early infection with human immunodeficiency virus type 1 (HIV-1), there is a rapid depletion of CD4(+) T-cells in the gut-associated lymphoid tissue (GALT) in the gastrointestinal tract. Therefore, immediate protection at these surfaces is of high priority for the development of an HIV-1 vaccine. Thus, transgenic plants expressing HIV-1 antigens, which are exposed to immune competent cells in the GALT during oral administration, can be interesting as potential vaccine candidates. In the present study, we used two HIV-1 p24 antigen-expressing transgenic plant systems, Arabidopsis thaliana and Daucus carota, in oral immunization experiments. Both transgenic plant systems showed a priming effect in mice and induced humoral immune responses, which could be detected as anti-p24-specific IgG in sera after an intramuscular p24 protein boost. Dose-dependent antigen analyses using transgenic A. thaliana indicated that low p24 antigen doses were superior to high p24 antigen doses. Copyright © 2014. Published by Elsevier Ltd.
Peifang, S.; Pira, G. L.; Fenoglio, D.; Harris, S.; Costa, M. G.; Venturino, V.; Dessì, V.; Layton, G.; Laman, J.; Huisman, J. G.; Manca, F.
1994-01-01
Recombinant virus-like particles (VLP), formed by the yeast Ty p1 protein, carrying the HIV gp120 V3 loop on their surface (V3-VLP) have been tested in vitro for immunogenicity and antigenicity by using VLP p1-specific human CD4+ T cell lines and clones. VLP-specific human T cell lines and clones were generated from normal individuals, indicating that VLP-specific precursor cells present in the peripheral lymphocyte pool can be induced to expand clonally upon antigen challenge in vitro, in the absence of previous immunization. It was also shown that V3-specific polyclonal antibodies enhance V3-VLP-induced activation of VLP-specific T cell clones. Antibody-dependent potentiation has been shown previously in other antigen systems, and it depends on enhanced uptake of complexed antigen by Fc receptor-positive antigen-presenting cells. Since in this case antigen is internalized by presenting cells as a complex, it can be inferred that a similar event of antibody-mediated antigen uptake can take place with V3-specific B cells, resulting in presentation by the B cells of T helper epitopes derived from processing of the VLP p1 moiety. This suggests that T helper cells specific for the carrier VLP p1 protein can be activated to provide help to V3-specific B cells in the presence of the appropriate antigen construct. PMID:7915974
1991-01-01
Rat monoclonal antibody FA/11 has been used to identify macrosialin, a sialoglycoprotein confined to murine mononuclear phagocytes and related cells. Originally identified as a macrophage-associated glycoprotein predominantly localized in intracellular membranes (Smith, M.J., and G.L.E. Koch. 1987. J. Cell Sci. 87:113), the antigen is widely expressed on tissue macrophages, including those in lymphoid areas, and is expressed at low levels on isolated dendritic cells. Immuno- adsorption experiments reported here show that macrosialin is identical to the major 87-115-kD sialoglycoprotein previously identified by lectin blotting in exudate but not resident peritoneal macrophages (Rabinowitz, S., and S. Gordon. 1989. J. Cell Sci. 93:623). Resident peritoneal macrophages express low levels of macrosialin antigen in a glycoform that does not bind 125I wheat germ agglutinin or 125I peanut agglutinin; inflammatory stimuli upregulate expression of this antigen (up to 17-fold), in an alternative glycoform that is detected by these lectins. Pulse-chase experiments reveal a 44-kD core peptide that initially bears high-mannose chains (giving Mr 66 kD) and is subsequently processed to a mature protein of Mr 87-104 kD. Each glycoform contains N-linked glycan, as well as O-linked sugar structures that show alternative processing. Poly-N-acetyllactosamine structures are detected in the exudate cell glycoform only. This new marker for mononuclear phagocytes illustrates two strategies by which macrophages remodel their membranes in response to inflammatory stimuli. Its predominantly intracellular location and restricted cell distribution suggest a possible role in membrane fusion or antigen processing. PMID:1919437
Allegra, Alessandro; Innao, Vanessa; Gerace, Demetrio; Vaddinelli, Doriana; Musolino, Caterina
2016-11-01
Hematological malignancies frequently express cancer-associated antigens that are shared with normal cells. Such tumor cells elude the host immune system because several T cells targeted against self-antigens are removed during thymic development, and those that persist are eliminated by a regulatory population of T cells. Chimeric antigen receptor-modified T cells (CAR-Ts) have emerged as a novel modality for tumor immunotherapy due to their powerful efficacy against tumor cells. These cells are created by transducing genes-coding fusion proteins of tumor antigen-recognition single-chain Fv connected to the intracellular signaling domains of T cell receptors, and are classed as first-, second- and third-generation, differing on the intracellular signaling domain number of T cell receptors. CAR-T treatment has emerged as a promising approach for patients with hematological malignancies, and there are several works reporting clinical trials of the use of CAR-modified T-cells in acute lymphoblastic leukemia, chronic lymphoblastic leukemia, multiple myeloma, lymphoma, and in acute myeloid leukemia by targeting different antigens. This review reports the history of adoptive immunotherapy using CAR-Ts, the CAR-T manufacturing process, and T cell therapies in development for hematological malignancies. Copyright © 2016 Elsevier Inc. All rights reserved.
Kwon, Kwang-Chul; Verma, Dheeraj; Singh, Nameirakpam D.; Herzog, Roland; Daniell, Henry
2012-01-01
Among 12 billion injections administered annually, unsafe delivery leads to >20 million infections and >100 million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections. PMID:23099275
Nozawa, Hayabusa; Kishibe, Kan; Takahara, Miki; Harabuchi, Yasuaki
2005-07-01
Pustulosis palmaris et plantaris (PPP) is known to be a one of the tonsil-related diseases because tonsillectomy is quite effective in curing this condition. However etiological association between tonsils and PPP have not fully clarified yet. Cutaneous lymphocyte-associated antigen (CLA) is known to be a specific homing receptor that facilitates T-cell migration into skin. In this study, we investigated the expression of CLA on T-cells in tonsil, peripheral blood, and skin from patients with PPP. Two-color flow cytometric and two-color immunohistological analyses revealed that the numbers of CLA/CD3 double-positive cells in freshly isolated tonsillar mononuclear cells (TMC) and in tonsillar tissues were significantly higher in patients with PPP than in patients without PPP (P<0.01, each). In vitro stimulus with alpha-streptococcal antigens enhanced CLA expression of tonsillar T-cells and TGF-beta production of TMC in patients with PPP (P<0.01, each), but did not in patients without PPP. In peripheral blood from PPP patients, the number of the CLA/CD3 double-positive cells significantly decreased at 6 months after tonsillectomy (P<0.05). The CLA/CD3 double-positive cells and the postcapillary venule that expressed with a ligand of CLA, E-selectin, were found more frequently in the plantar skin from patients with PPP as compared to that from healthy volunteers (P<0.01, each). These data suggest that a novel immune response to alpha-streptococci may enhance CLA expression on tonsillar T-cells through TGF-beta production in patients with PPP, resulting in moving of CLA-positive tonsillar T-cells to skin and tissue damages. This may play a key role in pathogenesis of PPP.
Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John
2009-12-30
In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.
Zhang, S; Zhang, H S; Cordon-Cardo, C; Ragupathi, G; Livingston, P O
1998-11-01
The relative expression of mucin antigens MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, and MUC7 and glycoprotein antigens KSA, carcinoembryonic antigen, prostate-specific membrane antigen (PSMA), HER-2/neu, and human chorionic gonadotropin-beta on different cancers and normal tissues is difficult to determine from available reports. We have compared the distribution of these antigens by immunohistology on a broad range of malignant and normal tissues. MUC1 expression was most intense in cancers of breast, lung, ovarian, and endometrial origin; MUC2 was most intense in cancers of colon and prostate origin; and MUC5AC was most intense in cancers of breast and gastric origin. MUC4 was intensely expressed in 50% of cancers of colon and pancreas origin, and MUC3, MUC5B, and MUC7 were expressed in a variety of epithelial cancers, but not so intensely. KSA was intensely and uniformly expressed on all epithelial cancers; carcinoembryonic antigen was expressed in most cancers of breast, lung, colon, pancreas, and gastric origin; and PSMA was expressed only in cancers of prostate origin. Human chorionic gonadotropin-beta was expressed on the majority of sarcomas and cancers of breast, lung, and pancreas origin, although intense staining was not seen. Staining on normal tissues was restricted to one or many normal epithelial tissues ranging from MUC3, MUC4, and PSMA, which were expressed only on epithelia of pancreas, stomach, and prostate origin, respectively, to MUC1 and KSA, which were expressed on most normal epithelia. Expression was restricted to the secretory borders of these epithelia while stroma and other normal tissues were completely negative. These results plus the results of the two previous papers (S. Zhang et al, Int. J. Cancer, 73: 42-49, 1997; S. Zhang et al., Int. J. Cancer, 73: 50-56, 1997) in this series provide the basis for selection of multiple cell surface antigens as targets for antibody-mediated attack against these cancers.
Panjwani, M Kazim; Smith, Jenessa B; Schutsky, Keith; Gnanandarajah, Josephine; O'Connor, Colleen M; Powell, Daniel J; Mason, Nicola J
2016-09-01
Preclinical murine models of chimeric antigen receptor (CAR) T cell therapy are widely applied, but are greatly limited by their inability to model the complex human tumor microenvironment and adequately predict safety and efficacy in patients. We therefore sought to develop a system that would enable us to evaluate CAR T cell therapies in dogs with spontaneous cancers. We developed an expansion methodology that yields large numbers of canine T cells from normal or lymphoma-diseased dogs. mRNA electroporation was utilized to express a first-generation canine CD20-specific CAR in expanded T cells. The canine CD20 (cCD20) CAR expression was efficient and transient, and electroporated T cells exhibited antigen-specific interferon-gamma (IFN-γ) secretion and lysed cCD20+ targets. In a first-in-canine study, autologous cCD20-ζ CAR T cells were administered to a dog with relapsed B cell lymphoma. Treatment was well tolerated and led to a modest, but transient, antitumor activity, suggesting that stable CAR expression will be necessary for durable clinical remissions. Our study establishes the methodologies necessary to evaluate CAR T cell therapy in dogs with spontaneous malignancies and lays the foundation for use of outbred canine cancer patients to evaluate the safety and efficacy of next-generation CAR therapies and their optimization prior to translation into humans.
Song, Yanjing; Tong, Chuan; Wang, Yao; Gao, Yunhe; Dai, Hanren; Guo, Yelei; Zhao, Xudong; Wang, Yi; Wang, Zizheng; Han, Weidong; Chen, Lin
2017-03-10
Human epidermal growth factor receptor 2 (HER2) proteins are overexpressed in a high proportion of gastric cancer (GC) cases and affect the maintenance of cancer stem cell (CSC) subpopulations, which are used as targets for the clinical treatment of patients with HER2-positive GC. Despite improvements in survival, numerous HER2-positive patients fail treatment with trastuzumab, highlighting the need for more effective therapies. In this study, we generated a novel type of genetically modified human T cells, expressing a chimeric antigen receptor (CAR), and targeting the GC cell antigen HER2, which harbors the CD137 and CD3ζ moieties. Our findings show that the expanded CAR-T cells, expressing an increased central memory phenotype, were activated by the specific recognition of HER2 antigens in an MHC-independent manner, and effectively killed patient-derived HER2-positive GC cells. In HER2-positive xenograft tumors, CAR-T cells exhibited considerably enhanced tumor inhibition ability, long-term survival, and homing to targets, compared with those of non-transduced T cells. The sphere-forming ability and in vivo tumorigenicity of patient-derived gastric cancer stem-like cells, expressing HER2 and the CD44 protein, were also inhibited. Our results support the future development and clinical application of this adoptive immunotherapy in patients with HER2-positive advanced GC.
Panjwani, M Kazim; Smith, Jenessa B; Schutsky, Keith; Gnanandarajah, Josephine; O'Connor, Colleen M; Powell, Daniel J; Mason, Nicola J
2016-01-01
Preclinical murine models of chimeric antigen receptor (CAR) T cell therapy are widely applied, but are greatly limited by their inability to model the complex human tumor microenvironment and adequately predict safety and efficacy in patients. We therefore sought to develop a system that would enable us to evaluate CAR T cell therapies in dogs with spontaneous cancers. We developed an expansion methodology that yields large numbers of canine T cells from normal or lymphoma-diseased dogs. mRNA electroporation was utilized to express a first-generation canine CD20-specific CAR in expanded T cells. The canine CD20 (cCD20) CAR expression was efficient and transient, and electroporated T cells exhibited antigen-specific interferon-gamma (IFN-γ) secretion and lysed cCD20+ targets. In a first-in-canine study, autologous cCD20-ζ CAR T cells were administered to a dog with relapsed B cell lymphoma. Treatment was well tolerated and led to a modest, but transient, antitumor activity, suggesting that stable CAR expression will be necessary for durable clinical remissions. Our study establishes the methodologies necessary to evaluate CAR T cell therapy in dogs with spontaneous malignancies and lays the foundation for use of outbred canine cancer patients to evaluate the safety and efficacy of next-generation CAR therapies and their optimization prior to translation into humans. PMID:27401141
Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection
Kumaresan, Pappanaicken R.; Manuri, Pallavi R.; Albert, Nathaniel D.; Maiti, Sourindra; Singh, Harjeet; Mi, Tiejuan; Roszik, Jason; Rabinovich, Brian; Olivares, Simon; Krishnamurthy, Janani; Zhang, Ling; Najjar, Amer M.; Huls, M. Helen; Lee, Dean A.; Champlin, Richard E.; Kontoyiannis, Dimitrios P.; Cooper, Laurence J. N.
2014-01-01
Clinical-grade T cells are genetically modified ex vivo to express chimeric antigen receptors (CARs) to redirect their specificity to target tumor-associated antigens in vivo. We now have developed this molecular strategy to render cytotoxic T cells specific for fungi. We adapted the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ (designated “D-CAR”) upon binding with carbohydrate in the cell wall of Aspergillus germlings. T cells genetically modified with the Sleeping Beauty system to express D-CAR stably were propagated selectively on artificial activating and propagating cells using an approach similar to that approved by the Food and Drug Administration for manufacturing CD19-specific CAR+ T cells for clinical trials. The D-CAR+ T cells exhibited specificity for β-glucan which led to damage and inhibition of hyphal growth of Aspergillus in vitro and in vivo. Treatment of D-CAR+ T cells with steroids did not compromise antifungal activity significantly. These data support the targeting of carbohydrate antigens by CAR+ T cells and provide a clinically appealing strategy to enhance immunity for opportunistic fungal infections using T-cell gene therapy. PMID:25002471
Cytokine-mediated activation of human ex vivo-expanded Vγ9Vδ2 T cells
Domae, Eisuke; Hirai, Yuya; Ikeo, Takashi; Goda, Seiji; Shimizu, Yoji
2017-01-01
Vγ9Vδ2 T cells, the major subset of the human peripheral blood γδ T-cell, respond to microbial infection and stressed cells through the recognition of phosphoantigens. In contrast to the growing knowledge of antigen-mediated activation mechanisms, the antigen-independent and cytokine-mediated activation mechanisms of Vγ9Vδ2 T cells are poorly understood. Here, we show that interleukin (IL) -12 and IL-18 synergize to activate human ex vivo-expanded Vγ9Vδ2 T cells. Vγ9Vδ2 T cells treated with IL-12 and IL-18 enhanced effector functions, including the expression of IFN-γ and granzyme B, and cytotoxicity. These enhanced effector responses following IL-12 and IL-18 treatment were associated with homotypic aggregation, enhanced expression of ICAM-1 and decreased expression of the B- and T-lymphocyte attenuator (BTLA), a co-inhibitory receptor. IL-12 and IL-18 also induced the antigen-independent proliferation of Vγ9Vδ2 T cells. Increased expression of IκBζ, IL-12Rβ2 and IL-18Rα following IL-12 and IL-18 stimulation resulted in sustained activation of STAT4 and NF-κB. The enhanced production of IFN-γ and cytotoxic activity are critical for cancer immunotherapy using Vγ9Vδ2 T cells. Thus, the combined treatment of ex vivo-expanded Vγ9Vδ2 T cells with IL-12 and IL-18 may serve as a new strategy for the therapeutic activation of these cells. PMID:28521284
Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne
2010-10-01
We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.
Zhang, Z X; Liu, Y X; Chen, H C; Allaudeen, H S; De Clercq, E
1984-01-01
The selective and potent anti-herpesvirus drug, (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVdU), has been examined for its inhibitory effects on several parameters of Epstein-Barr virus (EBV) infection in the lymphoblastoid cell lines Raji, P3HR-1, B-95-8 and P3 hybrid cells (a human embryo oropharyngeal cell line fused with a nasopharyngeal carcinoma cell line). At a dosage of 0.03 to 0.1 mM, BVdU caused a marked inhibition of (i) spontaneous viral capsid antigen (VCA) expression in B-95-8 and P3 hybrid cells, (ii) VCA expression and DNA synthesis in B-95-8 cells induced with croton oil and n-butyrate, (iii) early antigen (EA) expression and DNA synthesis in Raji cells superinfected with EBV, and (iv) VCA expression and DNA synthesis in B-95-8 cells superinfected with EBV. In its inhibitory effects on these various parameters of EBV infection, BVdU appears to be comparable to acyclovir [9-(2-hydroxyethoxymethyl)guanine], another selective anti-herpesvirus drug which has been previously recognized as an effective inhibitor of EBV replication.
NASA Astrophysics Data System (ADS)
Yang, Lili; Baltimore, David
2005-03-01
A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.
Human Neoplasms Elicit Multiple Specific Immune Responses in the Autologous Host
NASA Astrophysics Data System (ADS)
Sahin, Ugur; Tureci, Ozlem; Schmitt, Holger; Cochlovius, Bjorn; Johannes, Thomas; Schmits, Rudolf; Stenner, Frank; Luo, Guorong; Schobert, Ingrid; Pfreundschuh, Michael
1995-12-01
Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.
Brudno, Jennifer N; Somerville, Robert P T; Shi, Victoria; Rose, Jeremy J; Halverson, David C; Fowler, Daniel H; Gea-Banacloche, Juan C; Pavletic, Steven Z; Hickstein, Dennis D; Lu, Tangying L; Feldman, Steven A; Iwamoto, Alexander T; Kurlander, Roger; Maric, Irina; Goy, Andre; Hansen, Brenna G; Wilder, Jennifer S; Blacklock-Schuver, Bazetta; Hakim, Frances T; Rosenberg, Steven A; Gress, Ronald E; Kochenderfer, James N
2016-04-01
Progressive malignancy is the leading cause of death after allogeneic hematopoietic stem-cell transplantation (alloHSCT). After alloHSCT, B-cell malignancies often are treated with unmanipulated donor lymphocyte infusions (DLIs) from the transplant donor. DLIs frequently are not effective at eradicating malignancy and often cause graft-versus-host disease, a potentially lethal immune response against normal recipient tissues. We conducted a clinical trial of allogeneic T cells genetically engineered to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. Patients with B-cell malignancies that had progressed after alloHSCT received a single infusion of CAR T cells. No chemotherapy or other therapies were administered. The T cells were obtained from each recipient's alloHSCT donor. Eight of 20 treated patients obtained remission, which included six complete remissions (CRs) and two partial remissions. The response rate was highest for acute lymphoblastic leukemia, with four of five patients obtaining minimal residual disease-negative CR. Responses also occurred in chronic lymphocytic leukemia and lymphoma. The longest ongoing CR was more than 30 months in a patient with chronic lymphocytic leukemia. New-onset acute graft-versus-host disease after CAR T-cell infusion developed in none of the patients. Toxicities included fever, tachycardia, and hypotension. Peak blood CAR T-cell levels were higher in patients who obtained remissions than in those who did not. Programmed cell death protein-1 expression was significantly elevated on CAR T cells after infusion. Presence of blood B cells before CAR T-cell infusion was associated with higher postinfusion CAR T-cell levels. Allogeneic anti-CD19 CAR T cells can effectively treat B-cell malignancies that progress after alloHSCT. The findings point toward a future when antigen-specific T-cell therapies will play a central role in alloHSCT. © 2016 by American Society of Clinical Oncology.
Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki
2013-01-01
Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer reactivity mediated by CD8+ T cells double gene-modified to express WT1-specific TCR and CCR2 not only via CCL2-tropic tumor trafficking, but also CCL2-enhanced WT1-responsiveness. PMID:23441216
Globotriaosylceramide induces lysosomal degradation of endothelial KCa3.1 in fabry disease.
Choi, Shinkyu; Kim, Ji Aee; Na, Hye-Young; Cho, Sung-Eun; Park, Seonghee; Jung, Sung-Chul; Suh, Suk Hyo
2014-01-01
Globotriaosylceramide (Gb3) induces KCa3.1 downregulation in Fabry disease (FD). We investigated whether Gb3 induces KCa3.1 endocytosis and degradation. KCa3.1, especially plasma membrane-localized KCa3.1, was downregulated in both Gb3-treated mouse aortic endothelial cells (MAECs) and human umbilical vein endothelial cells. Gb3-induced KCa3.1 downregulation was prevented by lysosomal inhibitors but not by a proteosomal inhibitor. Endoplasmic reticulum stress-inducing agents did not induce KCa3.1 downregulation. Gb3 upregulated the protein levels of early endosome antigen 1 and lysosomal-associated membrane protein 2 in MAECs. Compared with MAECs from age-matched wild-type mice, those from aged α-galactosidase A (Gla)-knockout mice, an animal model of FD, showed downregulated KCa3.1 expression and upregulated early endosome antigen 1 and lysosomal-associated membrane protein 2 expression. In contrast, no significant difference was found in early endosome antigen 1 and lysosomal-associated membrane protein 2 expression between young Gla-knockout and wild-type MAECs. In aged Gla-knockout MAECs, clathrin was translocated close to the cell border and clathrin knockdown recovered KCa3.1 expression. Rab5, an effector of early endosome antigen 1, was upregulated, and Rab5 knockdown restored KCa3.1 expression, the current, and endothelium-dependent relaxation. -Gb3 accelerates the endocytosis and lysosomal degradation of endothelial KCa3.1 via a clathrin-dependent process, leading to endothelial dysfunction in FD.